1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/sched/signal.h> 23 #include <linux/syscalls.h> 24 #include <linux/fs.h> 25 #include <linux/iomap.h> 26 #include <linux/mm.h> 27 #include <linux/percpu.h> 28 #include <linux/slab.h> 29 #include <linux/capability.h> 30 #include <linux/blkdev.h> 31 #include <linux/file.h> 32 #include <linux/quotaops.h> 33 #include <linux/highmem.h> 34 #include <linux/export.h> 35 #include <linux/backing-dev.h> 36 #include <linux/writeback.h> 37 #include <linux/hash.h> 38 #include <linux/suspend.h> 39 #include <linux/buffer_head.h> 40 #include <linux/task_io_accounting_ops.h> 41 #include <linux/bio.h> 42 #include <linux/cpu.h> 43 #include <linux/bitops.h> 44 #include <linux/mpage.h> 45 #include <linux/bit_spinlock.h> 46 #include <linux/pagevec.h> 47 #include <linux/sched/mm.h> 48 #include <trace/events/block.h> 49 50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 52 enum rw_hint hint, struct writeback_control *wbc); 53 54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 55 56 inline void touch_buffer(struct buffer_head *bh) 57 { 58 trace_block_touch_buffer(bh); 59 mark_page_accessed(bh->b_page); 60 } 61 EXPORT_SYMBOL(touch_buffer); 62 63 void __lock_buffer(struct buffer_head *bh) 64 { 65 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 66 } 67 EXPORT_SYMBOL(__lock_buffer); 68 69 void unlock_buffer(struct buffer_head *bh) 70 { 71 clear_bit_unlock(BH_Lock, &bh->b_state); 72 smp_mb__after_atomic(); 73 wake_up_bit(&bh->b_state, BH_Lock); 74 } 75 EXPORT_SYMBOL(unlock_buffer); 76 77 /* 78 * Returns if the page has dirty or writeback buffers. If all the buffers 79 * are unlocked and clean then the PageDirty information is stale. If 80 * any of the pages are locked, it is assumed they are locked for IO. 81 */ 82 void buffer_check_dirty_writeback(struct page *page, 83 bool *dirty, bool *writeback) 84 { 85 struct buffer_head *head, *bh; 86 *dirty = false; 87 *writeback = false; 88 89 BUG_ON(!PageLocked(page)); 90 91 if (!page_has_buffers(page)) 92 return; 93 94 if (PageWriteback(page)) 95 *writeback = true; 96 97 head = page_buffers(page); 98 bh = head; 99 do { 100 if (buffer_locked(bh)) 101 *writeback = true; 102 103 if (buffer_dirty(bh)) 104 *dirty = true; 105 106 bh = bh->b_this_page; 107 } while (bh != head); 108 } 109 EXPORT_SYMBOL(buffer_check_dirty_writeback); 110 111 /* 112 * Block until a buffer comes unlocked. This doesn't stop it 113 * from becoming locked again - you have to lock it yourself 114 * if you want to preserve its state. 115 */ 116 void __wait_on_buffer(struct buffer_head * bh) 117 { 118 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 119 } 120 EXPORT_SYMBOL(__wait_on_buffer); 121 122 static void 123 __clear_page_buffers(struct page *page) 124 { 125 ClearPagePrivate(page); 126 set_page_private(page, 0); 127 put_page(page); 128 } 129 130 static void buffer_io_error(struct buffer_head *bh, char *msg) 131 { 132 if (!test_bit(BH_Quiet, &bh->b_state)) 133 printk_ratelimited(KERN_ERR 134 "Buffer I/O error on dev %pg, logical block %llu%s\n", 135 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 136 } 137 138 /* 139 * End-of-IO handler helper function which does not touch the bh after 140 * unlocking it. 141 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 142 * a race there is benign: unlock_buffer() only use the bh's address for 143 * hashing after unlocking the buffer, so it doesn't actually touch the bh 144 * itself. 145 */ 146 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 147 { 148 if (uptodate) { 149 set_buffer_uptodate(bh); 150 } else { 151 /* This happens, due to failed read-ahead attempts. */ 152 clear_buffer_uptodate(bh); 153 } 154 unlock_buffer(bh); 155 } 156 157 /* 158 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 159 * unlock the buffer. This is what ll_rw_block uses too. 160 */ 161 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 162 { 163 __end_buffer_read_notouch(bh, uptodate); 164 put_bh(bh); 165 } 166 EXPORT_SYMBOL(end_buffer_read_sync); 167 168 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 169 { 170 if (uptodate) { 171 set_buffer_uptodate(bh); 172 } else { 173 buffer_io_error(bh, ", lost sync page write"); 174 mark_buffer_write_io_error(bh); 175 clear_buffer_uptodate(bh); 176 } 177 unlock_buffer(bh); 178 put_bh(bh); 179 } 180 EXPORT_SYMBOL(end_buffer_write_sync); 181 182 /* 183 * Various filesystems appear to want __find_get_block to be non-blocking. 184 * But it's the page lock which protects the buffers. To get around this, 185 * we get exclusion from try_to_free_buffers with the blockdev mapping's 186 * private_lock. 187 * 188 * Hack idea: for the blockdev mapping, private_lock contention 189 * may be quite high. This code could TryLock the page, and if that 190 * succeeds, there is no need to take private_lock. 191 */ 192 static struct buffer_head * 193 __find_get_block_slow(struct block_device *bdev, sector_t block) 194 { 195 struct inode *bd_inode = bdev->bd_inode; 196 struct address_space *bd_mapping = bd_inode->i_mapping; 197 struct buffer_head *ret = NULL; 198 pgoff_t index; 199 struct buffer_head *bh; 200 struct buffer_head *head; 201 struct page *page; 202 int all_mapped = 1; 203 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 204 205 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 206 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 207 if (!page) 208 goto out; 209 210 spin_lock(&bd_mapping->private_lock); 211 if (!page_has_buffers(page)) 212 goto out_unlock; 213 head = page_buffers(page); 214 bh = head; 215 do { 216 if (!buffer_mapped(bh)) 217 all_mapped = 0; 218 else if (bh->b_blocknr == block) { 219 ret = bh; 220 get_bh(bh); 221 goto out_unlock; 222 } 223 bh = bh->b_this_page; 224 } while (bh != head); 225 226 /* we might be here because some of the buffers on this page are 227 * not mapped. This is due to various races between 228 * file io on the block device and getblk. It gets dealt with 229 * elsewhere, don't buffer_error if we had some unmapped buffers 230 */ 231 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 232 if (all_mapped && __ratelimit(&last_warned)) { 233 printk("__find_get_block_slow() failed. block=%llu, " 234 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 235 "device %pg blocksize: %d\n", 236 (unsigned long long)block, 237 (unsigned long long)bh->b_blocknr, 238 bh->b_state, bh->b_size, bdev, 239 1 << bd_inode->i_blkbits); 240 } 241 out_unlock: 242 spin_unlock(&bd_mapping->private_lock); 243 put_page(page); 244 out: 245 return ret; 246 } 247 248 /* 249 * I/O completion handler for block_read_full_page() - pages 250 * which come unlocked at the end of I/O. 251 */ 252 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 253 { 254 unsigned long flags; 255 struct buffer_head *first; 256 struct buffer_head *tmp; 257 struct page *page; 258 int page_uptodate = 1; 259 260 BUG_ON(!buffer_async_read(bh)); 261 262 page = bh->b_page; 263 if (uptodate) { 264 set_buffer_uptodate(bh); 265 } else { 266 clear_buffer_uptodate(bh); 267 buffer_io_error(bh, ", async page read"); 268 SetPageError(page); 269 } 270 271 /* 272 * Be _very_ careful from here on. Bad things can happen if 273 * two buffer heads end IO at almost the same time and both 274 * decide that the page is now completely done. 275 */ 276 first = page_buffers(page); 277 local_irq_save(flags); 278 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 279 clear_buffer_async_read(bh); 280 unlock_buffer(bh); 281 tmp = bh; 282 do { 283 if (!buffer_uptodate(tmp)) 284 page_uptodate = 0; 285 if (buffer_async_read(tmp)) { 286 BUG_ON(!buffer_locked(tmp)); 287 goto still_busy; 288 } 289 tmp = tmp->b_this_page; 290 } while (tmp != bh); 291 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 292 local_irq_restore(flags); 293 294 /* 295 * If none of the buffers had errors and they are all 296 * uptodate then we can set the page uptodate. 297 */ 298 if (page_uptodate && !PageError(page)) 299 SetPageUptodate(page); 300 unlock_page(page); 301 return; 302 303 still_busy: 304 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 305 local_irq_restore(flags); 306 return; 307 } 308 309 /* 310 * Completion handler for block_write_full_page() - pages which are unlocked 311 * during I/O, and which have PageWriteback cleared upon I/O completion. 312 */ 313 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 314 { 315 unsigned long flags; 316 struct buffer_head *first; 317 struct buffer_head *tmp; 318 struct page *page; 319 320 BUG_ON(!buffer_async_write(bh)); 321 322 page = bh->b_page; 323 if (uptodate) { 324 set_buffer_uptodate(bh); 325 } else { 326 buffer_io_error(bh, ", lost async page write"); 327 mark_buffer_write_io_error(bh); 328 clear_buffer_uptodate(bh); 329 SetPageError(page); 330 } 331 332 first = page_buffers(page); 333 local_irq_save(flags); 334 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 335 336 clear_buffer_async_write(bh); 337 unlock_buffer(bh); 338 tmp = bh->b_this_page; 339 while (tmp != bh) { 340 if (buffer_async_write(tmp)) { 341 BUG_ON(!buffer_locked(tmp)); 342 goto still_busy; 343 } 344 tmp = tmp->b_this_page; 345 } 346 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 347 local_irq_restore(flags); 348 end_page_writeback(page); 349 return; 350 351 still_busy: 352 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 353 local_irq_restore(flags); 354 return; 355 } 356 EXPORT_SYMBOL(end_buffer_async_write); 357 358 /* 359 * If a page's buffers are under async readin (end_buffer_async_read 360 * completion) then there is a possibility that another thread of 361 * control could lock one of the buffers after it has completed 362 * but while some of the other buffers have not completed. This 363 * locked buffer would confuse end_buffer_async_read() into not unlocking 364 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 365 * that this buffer is not under async I/O. 366 * 367 * The page comes unlocked when it has no locked buffer_async buffers 368 * left. 369 * 370 * PageLocked prevents anyone starting new async I/O reads any of 371 * the buffers. 372 * 373 * PageWriteback is used to prevent simultaneous writeout of the same 374 * page. 375 * 376 * PageLocked prevents anyone from starting writeback of a page which is 377 * under read I/O (PageWriteback is only ever set against a locked page). 378 */ 379 static void mark_buffer_async_read(struct buffer_head *bh) 380 { 381 bh->b_end_io = end_buffer_async_read; 382 set_buffer_async_read(bh); 383 } 384 385 static void mark_buffer_async_write_endio(struct buffer_head *bh, 386 bh_end_io_t *handler) 387 { 388 bh->b_end_io = handler; 389 set_buffer_async_write(bh); 390 } 391 392 void mark_buffer_async_write(struct buffer_head *bh) 393 { 394 mark_buffer_async_write_endio(bh, end_buffer_async_write); 395 } 396 EXPORT_SYMBOL(mark_buffer_async_write); 397 398 399 /* 400 * fs/buffer.c contains helper functions for buffer-backed address space's 401 * fsync functions. A common requirement for buffer-based filesystems is 402 * that certain data from the backing blockdev needs to be written out for 403 * a successful fsync(). For example, ext2 indirect blocks need to be 404 * written back and waited upon before fsync() returns. 405 * 406 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 407 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 408 * management of a list of dependent buffers at ->i_mapping->private_list. 409 * 410 * Locking is a little subtle: try_to_free_buffers() will remove buffers 411 * from their controlling inode's queue when they are being freed. But 412 * try_to_free_buffers() will be operating against the *blockdev* mapping 413 * at the time, not against the S_ISREG file which depends on those buffers. 414 * So the locking for private_list is via the private_lock in the address_space 415 * which backs the buffers. Which is different from the address_space 416 * against which the buffers are listed. So for a particular address_space, 417 * mapping->private_lock does *not* protect mapping->private_list! In fact, 418 * mapping->private_list will always be protected by the backing blockdev's 419 * ->private_lock. 420 * 421 * Which introduces a requirement: all buffers on an address_space's 422 * ->private_list must be from the same address_space: the blockdev's. 423 * 424 * address_spaces which do not place buffers at ->private_list via these 425 * utility functions are free to use private_lock and private_list for 426 * whatever they want. The only requirement is that list_empty(private_list) 427 * be true at clear_inode() time. 428 * 429 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 430 * filesystems should do that. invalidate_inode_buffers() should just go 431 * BUG_ON(!list_empty). 432 * 433 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 434 * take an address_space, not an inode. And it should be called 435 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 436 * queued up. 437 * 438 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 439 * list if it is already on a list. Because if the buffer is on a list, 440 * it *must* already be on the right one. If not, the filesystem is being 441 * silly. This will save a ton of locking. But first we have to ensure 442 * that buffers are taken *off* the old inode's list when they are freed 443 * (presumably in truncate). That requires careful auditing of all 444 * filesystems (do it inside bforget()). It could also be done by bringing 445 * b_inode back. 446 */ 447 448 /* 449 * The buffer's backing address_space's private_lock must be held 450 */ 451 static void __remove_assoc_queue(struct buffer_head *bh) 452 { 453 list_del_init(&bh->b_assoc_buffers); 454 WARN_ON(!bh->b_assoc_map); 455 bh->b_assoc_map = NULL; 456 } 457 458 int inode_has_buffers(struct inode *inode) 459 { 460 return !list_empty(&inode->i_data.private_list); 461 } 462 463 /* 464 * osync is designed to support O_SYNC io. It waits synchronously for 465 * all already-submitted IO to complete, but does not queue any new 466 * writes to the disk. 467 * 468 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 469 * you dirty the buffers, and then use osync_inode_buffers to wait for 470 * completion. Any other dirty buffers which are not yet queued for 471 * write will not be flushed to disk by the osync. 472 */ 473 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 474 { 475 struct buffer_head *bh; 476 struct list_head *p; 477 int err = 0; 478 479 spin_lock(lock); 480 repeat: 481 list_for_each_prev(p, list) { 482 bh = BH_ENTRY(p); 483 if (buffer_locked(bh)) { 484 get_bh(bh); 485 spin_unlock(lock); 486 wait_on_buffer(bh); 487 if (!buffer_uptodate(bh)) 488 err = -EIO; 489 brelse(bh); 490 spin_lock(lock); 491 goto repeat; 492 } 493 } 494 spin_unlock(lock); 495 return err; 496 } 497 498 void emergency_thaw_bdev(struct super_block *sb) 499 { 500 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 501 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 502 } 503 504 /** 505 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 506 * @mapping: the mapping which wants those buffers written 507 * 508 * Starts I/O against the buffers at mapping->private_list, and waits upon 509 * that I/O. 510 * 511 * Basically, this is a convenience function for fsync(). 512 * @mapping is a file or directory which needs those buffers to be written for 513 * a successful fsync(). 514 */ 515 int sync_mapping_buffers(struct address_space *mapping) 516 { 517 struct address_space *buffer_mapping = mapping->private_data; 518 519 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 520 return 0; 521 522 return fsync_buffers_list(&buffer_mapping->private_lock, 523 &mapping->private_list); 524 } 525 EXPORT_SYMBOL(sync_mapping_buffers); 526 527 /* 528 * Called when we've recently written block `bblock', and it is known that 529 * `bblock' was for a buffer_boundary() buffer. This means that the block at 530 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 531 * dirty, schedule it for IO. So that indirects merge nicely with their data. 532 */ 533 void write_boundary_block(struct block_device *bdev, 534 sector_t bblock, unsigned blocksize) 535 { 536 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 537 if (bh) { 538 if (buffer_dirty(bh)) 539 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh); 540 put_bh(bh); 541 } 542 } 543 544 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 545 { 546 struct address_space *mapping = inode->i_mapping; 547 struct address_space *buffer_mapping = bh->b_page->mapping; 548 549 mark_buffer_dirty(bh); 550 if (!mapping->private_data) { 551 mapping->private_data = buffer_mapping; 552 } else { 553 BUG_ON(mapping->private_data != buffer_mapping); 554 } 555 if (!bh->b_assoc_map) { 556 spin_lock(&buffer_mapping->private_lock); 557 list_move_tail(&bh->b_assoc_buffers, 558 &mapping->private_list); 559 bh->b_assoc_map = mapping; 560 spin_unlock(&buffer_mapping->private_lock); 561 } 562 } 563 EXPORT_SYMBOL(mark_buffer_dirty_inode); 564 565 /* 566 * Mark the page dirty, and set it dirty in the page cache, and mark the inode 567 * dirty. 568 * 569 * If warn is true, then emit a warning if the page is not uptodate and has 570 * not been truncated. 571 * 572 * The caller must hold lock_page_memcg(). 573 */ 574 void __set_page_dirty(struct page *page, struct address_space *mapping, 575 int warn) 576 { 577 unsigned long flags; 578 579 xa_lock_irqsave(&mapping->i_pages, flags); 580 if (page->mapping) { /* Race with truncate? */ 581 WARN_ON_ONCE(warn && !PageUptodate(page)); 582 account_page_dirtied(page, mapping); 583 __xa_set_mark(&mapping->i_pages, page_index(page), 584 PAGECACHE_TAG_DIRTY); 585 } 586 xa_unlock_irqrestore(&mapping->i_pages, flags); 587 } 588 EXPORT_SYMBOL_GPL(__set_page_dirty); 589 590 /* 591 * Add a page to the dirty page list. 592 * 593 * It is a sad fact of life that this function is called from several places 594 * deeply under spinlocking. It may not sleep. 595 * 596 * If the page has buffers, the uptodate buffers are set dirty, to preserve 597 * dirty-state coherency between the page and the buffers. It the page does 598 * not have buffers then when they are later attached they will all be set 599 * dirty. 600 * 601 * The buffers are dirtied before the page is dirtied. There's a small race 602 * window in which a writepage caller may see the page cleanness but not the 603 * buffer dirtiness. That's fine. If this code were to set the page dirty 604 * before the buffers, a concurrent writepage caller could clear the page dirty 605 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 606 * page on the dirty page list. 607 * 608 * We use private_lock to lock against try_to_free_buffers while using the 609 * page's buffer list. Also use this to protect against clean buffers being 610 * added to the page after it was set dirty. 611 * 612 * FIXME: may need to call ->reservepage here as well. That's rather up to the 613 * address_space though. 614 */ 615 int __set_page_dirty_buffers(struct page *page) 616 { 617 int newly_dirty; 618 struct address_space *mapping = page_mapping(page); 619 620 if (unlikely(!mapping)) 621 return !TestSetPageDirty(page); 622 623 spin_lock(&mapping->private_lock); 624 if (page_has_buffers(page)) { 625 struct buffer_head *head = page_buffers(page); 626 struct buffer_head *bh = head; 627 628 do { 629 set_buffer_dirty(bh); 630 bh = bh->b_this_page; 631 } while (bh != head); 632 } 633 /* 634 * Lock out page->mem_cgroup migration to keep PageDirty 635 * synchronized with per-memcg dirty page counters. 636 */ 637 lock_page_memcg(page); 638 newly_dirty = !TestSetPageDirty(page); 639 spin_unlock(&mapping->private_lock); 640 641 if (newly_dirty) 642 __set_page_dirty(page, mapping, 1); 643 644 unlock_page_memcg(page); 645 646 if (newly_dirty) 647 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 648 649 return newly_dirty; 650 } 651 EXPORT_SYMBOL(__set_page_dirty_buffers); 652 653 /* 654 * Write out and wait upon a list of buffers. 655 * 656 * We have conflicting pressures: we want to make sure that all 657 * initially dirty buffers get waited on, but that any subsequently 658 * dirtied buffers don't. After all, we don't want fsync to last 659 * forever if somebody is actively writing to the file. 660 * 661 * Do this in two main stages: first we copy dirty buffers to a 662 * temporary inode list, queueing the writes as we go. Then we clean 663 * up, waiting for those writes to complete. 664 * 665 * During this second stage, any subsequent updates to the file may end 666 * up refiling the buffer on the original inode's dirty list again, so 667 * there is a chance we will end up with a buffer queued for write but 668 * not yet completed on that list. So, as a final cleanup we go through 669 * the osync code to catch these locked, dirty buffers without requeuing 670 * any newly dirty buffers for write. 671 */ 672 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 673 { 674 struct buffer_head *bh; 675 struct list_head tmp; 676 struct address_space *mapping; 677 int err = 0, err2; 678 struct blk_plug plug; 679 680 INIT_LIST_HEAD(&tmp); 681 blk_start_plug(&plug); 682 683 spin_lock(lock); 684 while (!list_empty(list)) { 685 bh = BH_ENTRY(list->next); 686 mapping = bh->b_assoc_map; 687 __remove_assoc_queue(bh); 688 /* Avoid race with mark_buffer_dirty_inode() which does 689 * a lockless check and we rely on seeing the dirty bit */ 690 smp_mb(); 691 if (buffer_dirty(bh) || buffer_locked(bh)) { 692 list_add(&bh->b_assoc_buffers, &tmp); 693 bh->b_assoc_map = mapping; 694 if (buffer_dirty(bh)) { 695 get_bh(bh); 696 spin_unlock(lock); 697 /* 698 * Ensure any pending I/O completes so that 699 * write_dirty_buffer() actually writes the 700 * current contents - it is a noop if I/O is 701 * still in flight on potentially older 702 * contents. 703 */ 704 write_dirty_buffer(bh, REQ_SYNC); 705 706 /* 707 * Kick off IO for the previous mapping. Note 708 * that we will not run the very last mapping, 709 * wait_on_buffer() will do that for us 710 * through sync_buffer(). 711 */ 712 brelse(bh); 713 spin_lock(lock); 714 } 715 } 716 } 717 718 spin_unlock(lock); 719 blk_finish_plug(&plug); 720 spin_lock(lock); 721 722 while (!list_empty(&tmp)) { 723 bh = BH_ENTRY(tmp.prev); 724 get_bh(bh); 725 mapping = bh->b_assoc_map; 726 __remove_assoc_queue(bh); 727 /* Avoid race with mark_buffer_dirty_inode() which does 728 * a lockless check and we rely on seeing the dirty bit */ 729 smp_mb(); 730 if (buffer_dirty(bh)) { 731 list_add(&bh->b_assoc_buffers, 732 &mapping->private_list); 733 bh->b_assoc_map = mapping; 734 } 735 spin_unlock(lock); 736 wait_on_buffer(bh); 737 if (!buffer_uptodate(bh)) 738 err = -EIO; 739 brelse(bh); 740 spin_lock(lock); 741 } 742 743 spin_unlock(lock); 744 err2 = osync_buffers_list(lock, list); 745 if (err) 746 return err; 747 else 748 return err2; 749 } 750 751 /* 752 * Invalidate any and all dirty buffers on a given inode. We are 753 * probably unmounting the fs, but that doesn't mean we have already 754 * done a sync(). Just drop the buffers from the inode list. 755 * 756 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 757 * assumes that all the buffers are against the blockdev. Not true 758 * for reiserfs. 759 */ 760 void invalidate_inode_buffers(struct inode *inode) 761 { 762 if (inode_has_buffers(inode)) { 763 struct address_space *mapping = &inode->i_data; 764 struct list_head *list = &mapping->private_list; 765 struct address_space *buffer_mapping = mapping->private_data; 766 767 spin_lock(&buffer_mapping->private_lock); 768 while (!list_empty(list)) 769 __remove_assoc_queue(BH_ENTRY(list->next)); 770 spin_unlock(&buffer_mapping->private_lock); 771 } 772 } 773 EXPORT_SYMBOL(invalidate_inode_buffers); 774 775 /* 776 * Remove any clean buffers from the inode's buffer list. This is called 777 * when we're trying to free the inode itself. Those buffers can pin it. 778 * 779 * Returns true if all buffers were removed. 780 */ 781 int remove_inode_buffers(struct inode *inode) 782 { 783 int ret = 1; 784 785 if (inode_has_buffers(inode)) { 786 struct address_space *mapping = &inode->i_data; 787 struct list_head *list = &mapping->private_list; 788 struct address_space *buffer_mapping = mapping->private_data; 789 790 spin_lock(&buffer_mapping->private_lock); 791 while (!list_empty(list)) { 792 struct buffer_head *bh = BH_ENTRY(list->next); 793 if (buffer_dirty(bh)) { 794 ret = 0; 795 break; 796 } 797 __remove_assoc_queue(bh); 798 } 799 spin_unlock(&buffer_mapping->private_lock); 800 } 801 return ret; 802 } 803 804 /* 805 * Create the appropriate buffers when given a page for data area and 806 * the size of each buffer.. Use the bh->b_this_page linked list to 807 * follow the buffers created. Return NULL if unable to create more 808 * buffers. 809 * 810 * The retry flag is used to differentiate async IO (paging, swapping) 811 * which may not fail from ordinary buffer allocations. 812 */ 813 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 814 bool retry) 815 { 816 struct buffer_head *bh, *head; 817 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 818 long offset; 819 struct mem_cgroup *memcg; 820 821 if (retry) 822 gfp |= __GFP_NOFAIL; 823 824 memcg = get_mem_cgroup_from_page(page); 825 memalloc_use_memcg(memcg); 826 827 head = NULL; 828 offset = PAGE_SIZE; 829 while ((offset -= size) >= 0) { 830 bh = alloc_buffer_head(gfp); 831 if (!bh) 832 goto no_grow; 833 834 bh->b_this_page = head; 835 bh->b_blocknr = -1; 836 head = bh; 837 838 bh->b_size = size; 839 840 /* Link the buffer to its page */ 841 set_bh_page(bh, page, offset); 842 } 843 out: 844 memalloc_unuse_memcg(); 845 mem_cgroup_put(memcg); 846 return head; 847 /* 848 * In case anything failed, we just free everything we got. 849 */ 850 no_grow: 851 if (head) { 852 do { 853 bh = head; 854 head = head->b_this_page; 855 free_buffer_head(bh); 856 } while (head); 857 } 858 859 goto out; 860 } 861 EXPORT_SYMBOL_GPL(alloc_page_buffers); 862 863 static inline void 864 link_dev_buffers(struct page *page, struct buffer_head *head) 865 { 866 struct buffer_head *bh, *tail; 867 868 bh = head; 869 do { 870 tail = bh; 871 bh = bh->b_this_page; 872 } while (bh); 873 tail->b_this_page = head; 874 attach_page_buffers(page, head); 875 } 876 877 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 878 { 879 sector_t retval = ~((sector_t)0); 880 loff_t sz = i_size_read(bdev->bd_inode); 881 882 if (sz) { 883 unsigned int sizebits = blksize_bits(size); 884 retval = (sz >> sizebits); 885 } 886 return retval; 887 } 888 889 /* 890 * Initialise the state of a blockdev page's buffers. 891 */ 892 static sector_t 893 init_page_buffers(struct page *page, struct block_device *bdev, 894 sector_t block, int size) 895 { 896 struct buffer_head *head = page_buffers(page); 897 struct buffer_head *bh = head; 898 int uptodate = PageUptodate(page); 899 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 900 901 do { 902 if (!buffer_mapped(bh)) { 903 bh->b_end_io = NULL; 904 bh->b_private = NULL; 905 bh->b_bdev = bdev; 906 bh->b_blocknr = block; 907 if (uptodate) 908 set_buffer_uptodate(bh); 909 if (block < end_block) 910 set_buffer_mapped(bh); 911 } 912 block++; 913 bh = bh->b_this_page; 914 } while (bh != head); 915 916 /* 917 * Caller needs to validate requested block against end of device. 918 */ 919 return end_block; 920 } 921 922 /* 923 * Create the page-cache page that contains the requested block. 924 * 925 * This is used purely for blockdev mappings. 926 */ 927 static int 928 grow_dev_page(struct block_device *bdev, sector_t block, 929 pgoff_t index, int size, int sizebits, gfp_t gfp) 930 { 931 struct inode *inode = bdev->bd_inode; 932 struct page *page; 933 struct buffer_head *bh; 934 sector_t end_block; 935 int ret = 0; /* Will call free_more_memory() */ 936 gfp_t gfp_mask; 937 938 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 939 940 /* 941 * XXX: __getblk_slow() can not really deal with failure and 942 * will endlessly loop on improvised global reclaim. Prefer 943 * looping in the allocator rather than here, at least that 944 * code knows what it's doing. 945 */ 946 gfp_mask |= __GFP_NOFAIL; 947 948 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 949 950 BUG_ON(!PageLocked(page)); 951 952 if (page_has_buffers(page)) { 953 bh = page_buffers(page); 954 if (bh->b_size == size) { 955 end_block = init_page_buffers(page, bdev, 956 (sector_t)index << sizebits, 957 size); 958 goto done; 959 } 960 if (!try_to_free_buffers(page)) 961 goto failed; 962 } 963 964 /* 965 * Allocate some buffers for this page 966 */ 967 bh = alloc_page_buffers(page, size, true); 968 969 /* 970 * Link the page to the buffers and initialise them. Take the 971 * lock to be atomic wrt __find_get_block(), which does not 972 * run under the page lock. 973 */ 974 spin_lock(&inode->i_mapping->private_lock); 975 link_dev_buffers(page, bh); 976 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 977 size); 978 spin_unlock(&inode->i_mapping->private_lock); 979 done: 980 ret = (block < end_block) ? 1 : -ENXIO; 981 failed: 982 unlock_page(page); 983 put_page(page); 984 return ret; 985 } 986 987 /* 988 * Create buffers for the specified block device block's page. If 989 * that page was dirty, the buffers are set dirty also. 990 */ 991 static int 992 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 993 { 994 pgoff_t index; 995 int sizebits; 996 997 sizebits = -1; 998 do { 999 sizebits++; 1000 } while ((size << sizebits) < PAGE_SIZE); 1001 1002 index = block >> sizebits; 1003 1004 /* 1005 * Check for a block which wants to lie outside our maximum possible 1006 * pagecache index. (this comparison is done using sector_t types). 1007 */ 1008 if (unlikely(index != block >> sizebits)) { 1009 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1010 "device %pg\n", 1011 __func__, (unsigned long long)block, 1012 bdev); 1013 return -EIO; 1014 } 1015 1016 /* Create a page with the proper size buffers.. */ 1017 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1018 } 1019 1020 static struct buffer_head * 1021 __getblk_slow(struct block_device *bdev, sector_t block, 1022 unsigned size, gfp_t gfp) 1023 { 1024 /* Size must be multiple of hard sectorsize */ 1025 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1026 (size < 512 || size > PAGE_SIZE))) { 1027 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1028 size); 1029 printk(KERN_ERR "logical block size: %d\n", 1030 bdev_logical_block_size(bdev)); 1031 1032 dump_stack(); 1033 return NULL; 1034 } 1035 1036 for (;;) { 1037 struct buffer_head *bh; 1038 int ret; 1039 1040 bh = __find_get_block(bdev, block, size); 1041 if (bh) 1042 return bh; 1043 1044 ret = grow_buffers(bdev, block, size, gfp); 1045 if (ret < 0) 1046 return NULL; 1047 } 1048 } 1049 1050 /* 1051 * The relationship between dirty buffers and dirty pages: 1052 * 1053 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1054 * the page is tagged dirty in the page cache. 1055 * 1056 * At all times, the dirtiness of the buffers represents the dirtiness of 1057 * subsections of the page. If the page has buffers, the page dirty bit is 1058 * merely a hint about the true dirty state. 1059 * 1060 * When a page is set dirty in its entirety, all its buffers are marked dirty 1061 * (if the page has buffers). 1062 * 1063 * When a buffer is marked dirty, its page is dirtied, but the page's other 1064 * buffers are not. 1065 * 1066 * Also. When blockdev buffers are explicitly read with bread(), they 1067 * individually become uptodate. But their backing page remains not 1068 * uptodate - even if all of its buffers are uptodate. A subsequent 1069 * block_read_full_page() against that page will discover all the uptodate 1070 * buffers, will set the page uptodate and will perform no I/O. 1071 */ 1072 1073 /** 1074 * mark_buffer_dirty - mark a buffer_head as needing writeout 1075 * @bh: the buffer_head to mark dirty 1076 * 1077 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1078 * its backing page dirty, then tag the page as dirty in the page cache 1079 * and then attach the address_space's inode to its superblock's dirty 1080 * inode list. 1081 * 1082 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1083 * i_pages lock and mapping->host->i_lock. 1084 */ 1085 void mark_buffer_dirty(struct buffer_head *bh) 1086 { 1087 WARN_ON_ONCE(!buffer_uptodate(bh)); 1088 1089 trace_block_dirty_buffer(bh); 1090 1091 /* 1092 * Very *carefully* optimize the it-is-already-dirty case. 1093 * 1094 * Don't let the final "is it dirty" escape to before we 1095 * perhaps modified the buffer. 1096 */ 1097 if (buffer_dirty(bh)) { 1098 smp_mb(); 1099 if (buffer_dirty(bh)) 1100 return; 1101 } 1102 1103 if (!test_set_buffer_dirty(bh)) { 1104 struct page *page = bh->b_page; 1105 struct address_space *mapping = NULL; 1106 1107 lock_page_memcg(page); 1108 if (!TestSetPageDirty(page)) { 1109 mapping = page_mapping(page); 1110 if (mapping) 1111 __set_page_dirty(page, mapping, 0); 1112 } 1113 unlock_page_memcg(page); 1114 if (mapping) 1115 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1116 } 1117 } 1118 EXPORT_SYMBOL(mark_buffer_dirty); 1119 1120 void mark_buffer_write_io_error(struct buffer_head *bh) 1121 { 1122 set_buffer_write_io_error(bh); 1123 /* FIXME: do we need to set this in both places? */ 1124 if (bh->b_page && bh->b_page->mapping) 1125 mapping_set_error(bh->b_page->mapping, -EIO); 1126 if (bh->b_assoc_map) 1127 mapping_set_error(bh->b_assoc_map, -EIO); 1128 } 1129 EXPORT_SYMBOL(mark_buffer_write_io_error); 1130 1131 /* 1132 * Decrement a buffer_head's reference count. If all buffers against a page 1133 * have zero reference count, are clean and unlocked, and if the page is clean 1134 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1135 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1136 * a page but it ends up not being freed, and buffers may later be reattached). 1137 */ 1138 void __brelse(struct buffer_head * buf) 1139 { 1140 if (atomic_read(&buf->b_count)) { 1141 put_bh(buf); 1142 return; 1143 } 1144 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1145 } 1146 EXPORT_SYMBOL(__brelse); 1147 1148 /* 1149 * bforget() is like brelse(), except it discards any 1150 * potentially dirty data. 1151 */ 1152 void __bforget(struct buffer_head *bh) 1153 { 1154 clear_buffer_dirty(bh); 1155 if (bh->b_assoc_map) { 1156 struct address_space *buffer_mapping = bh->b_page->mapping; 1157 1158 spin_lock(&buffer_mapping->private_lock); 1159 list_del_init(&bh->b_assoc_buffers); 1160 bh->b_assoc_map = NULL; 1161 spin_unlock(&buffer_mapping->private_lock); 1162 } 1163 __brelse(bh); 1164 } 1165 EXPORT_SYMBOL(__bforget); 1166 1167 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1168 { 1169 lock_buffer(bh); 1170 if (buffer_uptodate(bh)) { 1171 unlock_buffer(bh); 1172 return bh; 1173 } else { 1174 get_bh(bh); 1175 bh->b_end_io = end_buffer_read_sync; 1176 submit_bh(REQ_OP_READ, 0, bh); 1177 wait_on_buffer(bh); 1178 if (buffer_uptodate(bh)) 1179 return bh; 1180 } 1181 brelse(bh); 1182 return NULL; 1183 } 1184 1185 /* 1186 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1187 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1188 * refcount elevated by one when they're in an LRU. A buffer can only appear 1189 * once in a particular CPU's LRU. A single buffer can be present in multiple 1190 * CPU's LRUs at the same time. 1191 * 1192 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1193 * sb_find_get_block(). 1194 * 1195 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1196 * a local interrupt disable for that. 1197 */ 1198 1199 #define BH_LRU_SIZE 16 1200 1201 struct bh_lru { 1202 struct buffer_head *bhs[BH_LRU_SIZE]; 1203 }; 1204 1205 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1206 1207 #ifdef CONFIG_SMP 1208 #define bh_lru_lock() local_irq_disable() 1209 #define bh_lru_unlock() local_irq_enable() 1210 #else 1211 #define bh_lru_lock() preempt_disable() 1212 #define bh_lru_unlock() preempt_enable() 1213 #endif 1214 1215 static inline void check_irqs_on(void) 1216 { 1217 #ifdef irqs_disabled 1218 BUG_ON(irqs_disabled()); 1219 #endif 1220 } 1221 1222 /* 1223 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1224 * inserted at the front, and the buffer_head at the back if any is evicted. 1225 * Or, if already in the LRU it is moved to the front. 1226 */ 1227 static void bh_lru_install(struct buffer_head *bh) 1228 { 1229 struct buffer_head *evictee = bh; 1230 struct bh_lru *b; 1231 int i; 1232 1233 check_irqs_on(); 1234 bh_lru_lock(); 1235 1236 b = this_cpu_ptr(&bh_lrus); 1237 for (i = 0; i < BH_LRU_SIZE; i++) { 1238 swap(evictee, b->bhs[i]); 1239 if (evictee == bh) { 1240 bh_lru_unlock(); 1241 return; 1242 } 1243 } 1244 1245 get_bh(bh); 1246 bh_lru_unlock(); 1247 brelse(evictee); 1248 } 1249 1250 /* 1251 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1252 */ 1253 static struct buffer_head * 1254 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1255 { 1256 struct buffer_head *ret = NULL; 1257 unsigned int i; 1258 1259 check_irqs_on(); 1260 bh_lru_lock(); 1261 for (i = 0; i < BH_LRU_SIZE; i++) { 1262 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1263 1264 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1265 bh->b_size == size) { 1266 if (i) { 1267 while (i) { 1268 __this_cpu_write(bh_lrus.bhs[i], 1269 __this_cpu_read(bh_lrus.bhs[i - 1])); 1270 i--; 1271 } 1272 __this_cpu_write(bh_lrus.bhs[0], bh); 1273 } 1274 get_bh(bh); 1275 ret = bh; 1276 break; 1277 } 1278 } 1279 bh_lru_unlock(); 1280 return ret; 1281 } 1282 1283 /* 1284 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1285 * it in the LRU and mark it as accessed. If it is not present then return 1286 * NULL 1287 */ 1288 struct buffer_head * 1289 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1290 { 1291 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1292 1293 if (bh == NULL) { 1294 /* __find_get_block_slow will mark the page accessed */ 1295 bh = __find_get_block_slow(bdev, block); 1296 if (bh) 1297 bh_lru_install(bh); 1298 } else 1299 touch_buffer(bh); 1300 1301 return bh; 1302 } 1303 EXPORT_SYMBOL(__find_get_block); 1304 1305 /* 1306 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1307 * which corresponds to the passed block_device, block and size. The 1308 * returned buffer has its reference count incremented. 1309 * 1310 * __getblk_gfp() will lock up the machine if grow_dev_page's 1311 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1312 */ 1313 struct buffer_head * 1314 __getblk_gfp(struct block_device *bdev, sector_t block, 1315 unsigned size, gfp_t gfp) 1316 { 1317 struct buffer_head *bh = __find_get_block(bdev, block, size); 1318 1319 might_sleep(); 1320 if (bh == NULL) 1321 bh = __getblk_slow(bdev, block, size, gfp); 1322 return bh; 1323 } 1324 EXPORT_SYMBOL(__getblk_gfp); 1325 1326 /* 1327 * Do async read-ahead on a buffer.. 1328 */ 1329 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1330 { 1331 struct buffer_head *bh = __getblk(bdev, block, size); 1332 if (likely(bh)) { 1333 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); 1334 brelse(bh); 1335 } 1336 } 1337 EXPORT_SYMBOL(__breadahead); 1338 1339 /** 1340 * __bread_gfp() - reads a specified block and returns the bh 1341 * @bdev: the block_device to read from 1342 * @block: number of block 1343 * @size: size (in bytes) to read 1344 * @gfp: page allocation flag 1345 * 1346 * Reads a specified block, and returns buffer head that contains it. 1347 * The page cache can be allocated from non-movable area 1348 * not to prevent page migration if you set gfp to zero. 1349 * It returns NULL if the block was unreadable. 1350 */ 1351 struct buffer_head * 1352 __bread_gfp(struct block_device *bdev, sector_t block, 1353 unsigned size, gfp_t gfp) 1354 { 1355 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1356 1357 if (likely(bh) && !buffer_uptodate(bh)) 1358 bh = __bread_slow(bh); 1359 return bh; 1360 } 1361 EXPORT_SYMBOL(__bread_gfp); 1362 1363 /* 1364 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1365 * This doesn't race because it runs in each cpu either in irq 1366 * or with preempt disabled. 1367 */ 1368 static void invalidate_bh_lru(void *arg) 1369 { 1370 struct bh_lru *b = &get_cpu_var(bh_lrus); 1371 int i; 1372 1373 for (i = 0; i < BH_LRU_SIZE; i++) { 1374 brelse(b->bhs[i]); 1375 b->bhs[i] = NULL; 1376 } 1377 put_cpu_var(bh_lrus); 1378 } 1379 1380 static bool has_bh_in_lru(int cpu, void *dummy) 1381 { 1382 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1383 int i; 1384 1385 for (i = 0; i < BH_LRU_SIZE; i++) { 1386 if (b->bhs[i]) 1387 return 1; 1388 } 1389 1390 return 0; 1391 } 1392 1393 void invalidate_bh_lrus(void) 1394 { 1395 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); 1396 } 1397 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1398 1399 void set_bh_page(struct buffer_head *bh, 1400 struct page *page, unsigned long offset) 1401 { 1402 bh->b_page = page; 1403 BUG_ON(offset >= PAGE_SIZE); 1404 if (PageHighMem(page)) 1405 /* 1406 * This catches illegal uses and preserves the offset: 1407 */ 1408 bh->b_data = (char *)(0 + offset); 1409 else 1410 bh->b_data = page_address(page) + offset; 1411 } 1412 EXPORT_SYMBOL(set_bh_page); 1413 1414 /* 1415 * Called when truncating a buffer on a page completely. 1416 */ 1417 1418 /* Bits that are cleared during an invalidate */ 1419 #define BUFFER_FLAGS_DISCARD \ 1420 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1421 1 << BH_Delay | 1 << BH_Unwritten) 1422 1423 static void discard_buffer(struct buffer_head * bh) 1424 { 1425 unsigned long b_state, b_state_old; 1426 1427 lock_buffer(bh); 1428 clear_buffer_dirty(bh); 1429 bh->b_bdev = NULL; 1430 b_state = bh->b_state; 1431 for (;;) { 1432 b_state_old = cmpxchg(&bh->b_state, b_state, 1433 (b_state & ~BUFFER_FLAGS_DISCARD)); 1434 if (b_state_old == b_state) 1435 break; 1436 b_state = b_state_old; 1437 } 1438 unlock_buffer(bh); 1439 } 1440 1441 /** 1442 * block_invalidatepage - invalidate part or all of a buffer-backed page 1443 * 1444 * @page: the page which is affected 1445 * @offset: start of the range to invalidate 1446 * @length: length of the range to invalidate 1447 * 1448 * block_invalidatepage() is called when all or part of the page has become 1449 * invalidated by a truncate operation. 1450 * 1451 * block_invalidatepage() does not have to release all buffers, but it must 1452 * ensure that no dirty buffer is left outside @offset and that no I/O 1453 * is underway against any of the blocks which are outside the truncation 1454 * point. Because the caller is about to free (and possibly reuse) those 1455 * blocks on-disk. 1456 */ 1457 void block_invalidatepage(struct page *page, unsigned int offset, 1458 unsigned int length) 1459 { 1460 struct buffer_head *head, *bh, *next; 1461 unsigned int curr_off = 0; 1462 unsigned int stop = length + offset; 1463 1464 BUG_ON(!PageLocked(page)); 1465 if (!page_has_buffers(page)) 1466 goto out; 1467 1468 /* 1469 * Check for overflow 1470 */ 1471 BUG_ON(stop > PAGE_SIZE || stop < length); 1472 1473 head = page_buffers(page); 1474 bh = head; 1475 do { 1476 unsigned int next_off = curr_off + bh->b_size; 1477 next = bh->b_this_page; 1478 1479 /* 1480 * Are we still fully in range ? 1481 */ 1482 if (next_off > stop) 1483 goto out; 1484 1485 /* 1486 * is this block fully invalidated? 1487 */ 1488 if (offset <= curr_off) 1489 discard_buffer(bh); 1490 curr_off = next_off; 1491 bh = next; 1492 } while (bh != head); 1493 1494 /* 1495 * We release buffers only if the entire page is being invalidated. 1496 * The get_block cached value has been unconditionally invalidated, 1497 * so real IO is not possible anymore. 1498 */ 1499 if (length == PAGE_SIZE) 1500 try_to_release_page(page, 0); 1501 out: 1502 return; 1503 } 1504 EXPORT_SYMBOL(block_invalidatepage); 1505 1506 1507 /* 1508 * We attach and possibly dirty the buffers atomically wrt 1509 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1510 * is already excluded via the page lock. 1511 */ 1512 void create_empty_buffers(struct page *page, 1513 unsigned long blocksize, unsigned long b_state) 1514 { 1515 struct buffer_head *bh, *head, *tail; 1516 1517 head = alloc_page_buffers(page, blocksize, true); 1518 bh = head; 1519 do { 1520 bh->b_state |= b_state; 1521 tail = bh; 1522 bh = bh->b_this_page; 1523 } while (bh); 1524 tail->b_this_page = head; 1525 1526 spin_lock(&page->mapping->private_lock); 1527 if (PageUptodate(page) || PageDirty(page)) { 1528 bh = head; 1529 do { 1530 if (PageDirty(page)) 1531 set_buffer_dirty(bh); 1532 if (PageUptodate(page)) 1533 set_buffer_uptodate(bh); 1534 bh = bh->b_this_page; 1535 } while (bh != head); 1536 } 1537 attach_page_buffers(page, head); 1538 spin_unlock(&page->mapping->private_lock); 1539 } 1540 EXPORT_SYMBOL(create_empty_buffers); 1541 1542 /** 1543 * clean_bdev_aliases: clean a range of buffers in block device 1544 * @bdev: Block device to clean buffers in 1545 * @block: Start of a range of blocks to clean 1546 * @len: Number of blocks to clean 1547 * 1548 * We are taking a range of blocks for data and we don't want writeback of any 1549 * buffer-cache aliases starting from return from this function and until the 1550 * moment when something will explicitly mark the buffer dirty (hopefully that 1551 * will not happen until we will free that block ;-) We don't even need to mark 1552 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1553 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1554 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1555 * would confuse anyone who might pick it with bread() afterwards... 1556 * 1557 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1558 * writeout I/O going on against recently-freed buffers. We don't wait on that 1559 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1560 * need to. That happens here. 1561 */ 1562 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1563 { 1564 struct inode *bd_inode = bdev->bd_inode; 1565 struct address_space *bd_mapping = bd_inode->i_mapping; 1566 struct pagevec pvec; 1567 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1568 pgoff_t end; 1569 int i, count; 1570 struct buffer_head *bh; 1571 struct buffer_head *head; 1572 1573 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1574 pagevec_init(&pvec); 1575 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) { 1576 count = pagevec_count(&pvec); 1577 for (i = 0; i < count; i++) { 1578 struct page *page = pvec.pages[i]; 1579 1580 if (!page_has_buffers(page)) 1581 continue; 1582 /* 1583 * We use page lock instead of bd_mapping->private_lock 1584 * to pin buffers here since we can afford to sleep and 1585 * it scales better than a global spinlock lock. 1586 */ 1587 lock_page(page); 1588 /* Recheck when the page is locked which pins bhs */ 1589 if (!page_has_buffers(page)) 1590 goto unlock_page; 1591 head = page_buffers(page); 1592 bh = head; 1593 do { 1594 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1595 goto next; 1596 if (bh->b_blocknr >= block + len) 1597 break; 1598 clear_buffer_dirty(bh); 1599 wait_on_buffer(bh); 1600 clear_buffer_req(bh); 1601 next: 1602 bh = bh->b_this_page; 1603 } while (bh != head); 1604 unlock_page: 1605 unlock_page(page); 1606 } 1607 pagevec_release(&pvec); 1608 cond_resched(); 1609 /* End of range already reached? */ 1610 if (index > end || !index) 1611 break; 1612 } 1613 } 1614 EXPORT_SYMBOL(clean_bdev_aliases); 1615 1616 /* 1617 * Size is a power-of-two in the range 512..PAGE_SIZE, 1618 * and the case we care about most is PAGE_SIZE. 1619 * 1620 * So this *could* possibly be written with those 1621 * constraints in mind (relevant mostly if some 1622 * architecture has a slow bit-scan instruction) 1623 */ 1624 static inline int block_size_bits(unsigned int blocksize) 1625 { 1626 return ilog2(blocksize); 1627 } 1628 1629 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1630 { 1631 BUG_ON(!PageLocked(page)); 1632 1633 if (!page_has_buffers(page)) 1634 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits), 1635 b_state); 1636 return page_buffers(page); 1637 } 1638 1639 /* 1640 * NOTE! All mapped/uptodate combinations are valid: 1641 * 1642 * Mapped Uptodate Meaning 1643 * 1644 * No No "unknown" - must do get_block() 1645 * No Yes "hole" - zero-filled 1646 * Yes No "allocated" - allocated on disk, not read in 1647 * Yes Yes "valid" - allocated and up-to-date in memory. 1648 * 1649 * "Dirty" is valid only with the last case (mapped+uptodate). 1650 */ 1651 1652 /* 1653 * While block_write_full_page is writing back the dirty buffers under 1654 * the page lock, whoever dirtied the buffers may decide to clean them 1655 * again at any time. We handle that by only looking at the buffer 1656 * state inside lock_buffer(). 1657 * 1658 * If block_write_full_page() is called for regular writeback 1659 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1660 * locked buffer. This only can happen if someone has written the buffer 1661 * directly, with submit_bh(). At the address_space level PageWriteback 1662 * prevents this contention from occurring. 1663 * 1664 * If block_write_full_page() is called with wbc->sync_mode == 1665 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1666 * causes the writes to be flagged as synchronous writes. 1667 */ 1668 int __block_write_full_page(struct inode *inode, struct page *page, 1669 get_block_t *get_block, struct writeback_control *wbc, 1670 bh_end_io_t *handler) 1671 { 1672 int err; 1673 sector_t block; 1674 sector_t last_block; 1675 struct buffer_head *bh, *head; 1676 unsigned int blocksize, bbits; 1677 int nr_underway = 0; 1678 int write_flags = wbc_to_write_flags(wbc); 1679 1680 head = create_page_buffers(page, inode, 1681 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1682 1683 /* 1684 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1685 * here, and the (potentially unmapped) buffers may become dirty at 1686 * any time. If a buffer becomes dirty here after we've inspected it 1687 * then we just miss that fact, and the page stays dirty. 1688 * 1689 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1690 * handle that here by just cleaning them. 1691 */ 1692 1693 bh = head; 1694 blocksize = bh->b_size; 1695 bbits = block_size_bits(blocksize); 1696 1697 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1698 last_block = (i_size_read(inode) - 1) >> bbits; 1699 1700 /* 1701 * Get all the dirty buffers mapped to disk addresses and 1702 * handle any aliases from the underlying blockdev's mapping. 1703 */ 1704 do { 1705 if (block > last_block) { 1706 /* 1707 * mapped buffers outside i_size will occur, because 1708 * this page can be outside i_size when there is a 1709 * truncate in progress. 1710 */ 1711 /* 1712 * The buffer was zeroed by block_write_full_page() 1713 */ 1714 clear_buffer_dirty(bh); 1715 set_buffer_uptodate(bh); 1716 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1717 buffer_dirty(bh)) { 1718 WARN_ON(bh->b_size != blocksize); 1719 err = get_block(inode, block, bh, 1); 1720 if (err) 1721 goto recover; 1722 clear_buffer_delay(bh); 1723 if (buffer_new(bh)) { 1724 /* blockdev mappings never come here */ 1725 clear_buffer_new(bh); 1726 clean_bdev_bh_alias(bh); 1727 } 1728 } 1729 bh = bh->b_this_page; 1730 block++; 1731 } while (bh != head); 1732 1733 do { 1734 if (!buffer_mapped(bh)) 1735 continue; 1736 /* 1737 * If it's a fully non-blocking write attempt and we cannot 1738 * lock the buffer then redirty the page. Note that this can 1739 * potentially cause a busy-wait loop from writeback threads 1740 * and kswapd activity, but those code paths have their own 1741 * higher-level throttling. 1742 */ 1743 if (wbc->sync_mode != WB_SYNC_NONE) { 1744 lock_buffer(bh); 1745 } else if (!trylock_buffer(bh)) { 1746 redirty_page_for_writepage(wbc, page); 1747 continue; 1748 } 1749 if (test_clear_buffer_dirty(bh)) { 1750 mark_buffer_async_write_endio(bh, handler); 1751 } else { 1752 unlock_buffer(bh); 1753 } 1754 } while ((bh = bh->b_this_page) != head); 1755 1756 /* 1757 * The page and its buffers are protected by PageWriteback(), so we can 1758 * drop the bh refcounts early. 1759 */ 1760 BUG_ON(PageWriteback(page)); 1761 set_page_writeback(page); 1762 1763 do { 1764 struct buffer_head *next = bh->b_this_page; 1765 if (buffer_async_write(bh)) { 1766 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1767 inode->i_write_hint, wbc); 1768 nr_underway++; 1769 } 1770 bh = next; 1771 } while (bh != head); 1772 unlock_page(page); 1773 1774 err = 0; 1775 done: 1776 if (nr_underway == 0) { 1777 /* 1778 * The page was marked dirty, but the buffers were 1779 * clean. Someone wrote them back by hand with 1780 * ll_rw_block/submit_bh. A rare case. 1781 */ 1782 end_page_writeback(page); 1783 1784 /* 1785 * The page and buffer_heads can be released at any time from 1786 * here on. 1787 */ 1788 } 1789 return err; 1790 1791 recover: 1792 /* 1793 * ENOSPC, or some other error. We may already have added some 1794 * blocks to the file, so we need to write these out to avoid 1795 * exposing stale data. 1796 * The page is currently locked and not marked for writeback 1797 */ 1798 bh = head; 1799 /* Recovery: lock and submit the mapped buffers */ 1800 do { 1801 if (buffer_mapped(bh) && buffer_dirty(bh) && 1802 !buffer_delay(bh)) { 1803 lock_buffer(bh); 1804 mark_buffer_async_write_endio(bh, handler); 1805 } else { 1806 /* 1807 * The buffer may have been set dirty during 1808 * attachment to a dirty page. 1809 */ 1810 clear_buffer_dirty(bh); 1811 } 1812 } while ((bh = bh->b_this_page) != head); 1813 SetPageError(page); 1814 BUG_ON(PageWriteback(page)); 1815 mapping_set_error(page->mapping, err); 1816 set_page_writeback(page); 1817 do { 1818 struct buffer_head *next = bh->b_this_page; 1819 if (buffer_async_write(bh)) { 1820 clear_buffer_dirty(bh); 1821 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1822 inode->i_write_hint, wbc); 1823 nr_underway++; 1824 } 1825 bh = next; 1826 } while (bh != head); 1827 unlock_page(page); 1828 goto done; 1829 } 1830 EXPORT_SYMBOL(__block_write_full_page); 1831 1832 /* 1833 * If a page has any new buffers, zero them out here, and mark them uptodate 1834 * and dirty so they'll be written out (in order to prevent uninitialised 1835 * block data from leaking). And clear the new bit. 1836 */ 1837 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1838 { 1839 unsigned int block_start, block_end; 1840 struct buffer_head *head, *bh; 1841 1842 BUG_ON(!PageLocked(page)); 1843 if (!page_has_buffers(page)) 1844 return; 1845 1846 bh = head = page_buffers(page); 1847 block_start = 0; 1848 do { 1849 block_end = block_start + bh->b_size; 1850 1851 if (buffer_new(bh)) { 1852 if (block_end > from && block_start < to) { 1853 if (!PageUptodate(page)) { 1854 unsigned start, size; 1855 1856 start = max(from, block_start); 1857 size = min(to, block_end) - start; 1858 1859 zero_user(page, start, size); 1860 set_buffer_uptodate(bh); 1861 } 1862 1863 clear_buffer_new(bh); 1864 mark_buffer_dirty(bh); 1865 } 1866 } 1867 1868 block_start = block_end; 1869 bh = bh->b_this_page; 1870 } while (bh != head); 1871 } 1872 EXPORT_SYMBOL(page_zero_new_buffers); 1873 1874 static void 1875 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 1876 struct iomap *iomap) 1877 { 1878 loff_t offset = block << inode->i_blkbits; 1879 1880 bh->b_bdev = iomap->bdev; 1881 1882 /* 1883 * Block points to offset in file we need to map, iomap contains 1884 * the offset at which the map starts. If the map ends before the 1885 * current block, then do not map the buffer and let the caller 1886 * handle it. 1887 */ 1888 BUG_ON(offset >= iomap->offset + iomap->length); 1889 1890 switch (iomap->type) { 1891 case IOMAP_HOLE: 1892 /* 1893 * If the buffer is not up to date or beyond the current EOF, 1894 * we need to mark it as new to ensure sub-block zeroing is 1895 * executed if necessary. 1896 */ 1897 if (!buffer_uptodate(bh) || 1898 (offset >= i_size_read(inode))) 1899 set_buffer_new(bh); 1900 break; 1901 case IOMAP_DELALLOC: 1902 if (!buffer_uptodate(bh) || 1903 (offset >= i_size_read(inode))) 1904 set_buffer_new(bh); 1905 set_buffer_uptodate(bh); 1906 set_buffer_mapped(bh); 1907 set_buffer_delay(bh); 1908 break; 1909 case IOMAP_UNWRITTEN: 1910 /* 1911 * For unwritten regions, we always need to ensure that regions 1912 * in the block we are not writing to are zeroed. Mark the 1913 * buffer as new to ensure this. 1914 */ 1915 set_buffer_new(bh); 1916 set_buffer_unwritten(bh); 1917 /* FALLTHRU */ 1918 case IOMAP_MAPPED: 1919 if ((iomap->flags & IOMAP_F_NEW) || 1920 offset >= i_size_read(inode)) 1921 set_buffer_new(bh); 1922 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 1923 inode->i_blkbits; 1924 set_buffer_mapped(bh); 1925 break; 1926 } 1927 } 1928 1929 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len, 1930 get_block_t *get_block, struct iomap *iomap) 1931 { 1932 unsigned from = pos & (PAGE_SIZE - 1); 1933 unsigned to = from + len; 1934 struct inode *inode = page->mapping->host; 1935 unsigned block_start, block_end; 1936 sector_t block; 1937 int err = 0; 1938 unsigned blocksize, bbits; 1939 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1940 1941 BUG_ON(!PageLocked(page)); 1942 BUG_ON(from > PAGE_SIZE); 1943 BUG_ON(to > PAGE_SIZE); 1944 BUG_ON(from > to); 1945 1946 head = create_page_buffers(page, inode, 0); 1947 blocksize = head->b_size; 1948 bbits = block_size_bits(blocksize); 1949 1950 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1951 1952 for(bh = head, block_start = 0; bh != head || !block_start; 1953 block++, block_start=block_end, bh = bh->b_this_page) { 1954 block_end = block_start + blocksize; 1955 if (block_end <= from || block_start >= to) { 1956 if (PageUptodate(page)) { 1957 if (!buffer_uptodate(bh)) 1958 set_buffer_uptodate(bh); 1959 } 1960 continue; 1961 } 1962 if (buffer_new(bh)) 1963 clear_buffer_new(bh); 1964 if (!buffer_mapped(bh)) { 1965 WARN_ON(bh->b_size != blocksize); 1966 if (get_block) { 1967 err = get_block(inode, block, bh, 1); 1968 if (err) 1969 break; 1970 } else { 1971 iomap_to_bh(inode, block, bh, iomap); 1972 } 1973 1974 if (buffer_new(bh)) { 1975 clean_bdev_bh_alias(bh); 1976 if (PageUptodate(page)) { 1977 clear_buffer_new(bh); 1978 set_buffer_uptodate(bh); 1979 mark_buffer_dirty(bh); 1980 continue; 1981 } 1982 if (block_end > to || block_start < from) 1983 zero_user_segments(page, 1984 to, block_end, 1985 block_start, from); 1986 continue; 1987 } 1988 } 1989 if (PageUptodate(page)) { 1990 if (!buffer_uptodate(bh)) 1991 set_buffer_uptodate(bh); 1992 continue; 1993 } 1994 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1995 !buffer_unwritten(bh) && 1996 (block_start < from || block_end > to)) { 1997 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1998 *wait_bh++=bh; 1999 } 2000 } 2001 /* 2002 * If we issued read requests - let them complete. 2003 */ 2004 while(wait_bh > wait) { 2005 wait_on_buffer(*--wait_bh); 2006 if (!buffer_uptodate(*wait_bh)) 2007 err = -EIO; 2008 } 2009 if (unlikely(err)) 2010 page_zero_new_buffers(page, from, to); 2011 return err; 2012 } 2013 2014 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2015 get_block_t *get_block) 2016 { 2017 return __block_write_begin_int(page, pos, len, get_block, NULL); 2018 } 2019 EXPORT_SYMBOL(__block_write_begin); 2020 2021 static int __block_commit_write(struct inode *inode, struct page *page, 2022 unsigned from, unsigned to) 2023 { 2024 unsigned block_start, block_end; 2025 int partial = 0; 2026 unsigned blocksize; 2027 struct buffer_head *bh, *head; 2028 2029 bh = head = page_buffers(page); 2030 blocksize = bh->b_size; 2031 2032 block_start = 0; 2033 do { 2034 block_end = block_start + blocksize; 2035 if (block_end <= from || block_start >= to) { 2036 if (!buffer_uptodate(bh)) 2037 partial = 1; 2038 } else { 2039 set_buffer_uptodate(bh); 2040 mark_buffer_dirty(bh); 2041 } 2042 clear_buffer_new(bh); 2043 2044 block_start = block_end; 2045 bh = bh->b_this_page; 2046 } while (bh != head); 2047 2048 /* 2049 * If this is a partial write which happened to make all buffers 2050 * uptodate then we can optimize away a bogus readpage() for 2051 * the next read(). Here we 'discover' whether the page went 2052 * uptodate as a result of this (potentially partial) write. 2053 */ 2054 if (!partial) 2055 SetPageUptodate(page); 2056 return 0; 2057 } 2058 2059 /* 2060 * block_write_begin takes care of the basic task of block allocation and 2061 * bringing partial write blocks uptodate first. 2062 * 2063 * The filesystem needs to handle block truncation upon failure. 2064 */ 2065 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2066 unsigned flags, struct page **pagep, get_block_t *get_block) 2067 { 2068 pgoff_t index = pos >> PAGE_SHIFT; 2069 struct page *page; 2070 int status; 2071 2072 page = grab_cache_page_write_begin(mapping, index, flags); 2073 if (!page) 2074 return -ENOMEM; 2075 2076 status = __block_write_begin(page, pos, len, get_block); 2077 if (unlikely(status)) { 2078 unlock_page(page); 2079 put_page(page); 2080 page = NULL; 2081 } 2082 2083 *pagep = page; 2084 return status; 2085 } 2086 EXPORT_SYMBOL(block_write_begin); 2087 2088 int __generic_write_end(struct inode *inode, loff_t pos, unsigned copied, 2089 struct page *page) 2090 { 2091 loff_t old_size = inode->i_size; 2092 bool i_size_changed = false; 2093 2094 /* 2095 * No need to use i_size_read() here, the i_size cannot change under us 2096 * because we hold i_rwsem. 2097 * 2098 * But it's important to update i_size while still holding page lock: 2099 * page writeout could otherwise come in and zero beyond i_size. 2100 */ 2101 if (pos + copied > inode->i_size) { 2102 i_size_write(inode, pos + copied); 2103 i_size_changed = true; 2104 } 2105 2106 unlock_page(page); 2107 put_page(page); 2108 2109 if (old_size < pos) 2110 pagecache_isize_extended(inode, old_size, pos); 2111 /* 2112 * Don't mark the inode dirty under page lock. First, it unnecessarily 2113 * makes the holding time of page lock longer. Second, it forces lock 2114 * ordering of page lock and transaction start for journaling 2115 * filesystems. 2116 */ 2117 if (i_size_changed) 2118 mark_inode_dirty(inode); 2119 return copied; 2120 } 2121 2122 int block_write_end(struct file *file, struct address_space *mapping, 2123 loff_t pos, unsigned len, unsigned copied, 2124 struct page *page, void *fsdata) 2125 { 2126 struct inode *inode = mapping->host; 2127 unsigned start; 2128 2129 start = pos & (PAGE_SIZE - 1); 2130 2131 if (unlikely(copied < len)) { 2132 /* 2133 * The buffers that were written will now be uptodate, so we 2134 * don't have to worry about a readpage reading them and 2135 * overwriting a partial write. However if we have encountered 2136 * a short write and only partially written into a buffer, it 2137 * will not be marked uptodate, so a readpage might come in and 2138 * destroy our partial write. 2139 * 2140 * Do the simplest thing, and just treat any short write to a 2141 * non uptodate page as a zero-length write, and force the 2142 * caller to redo the whole thing. 2143 */ 2144 if (!PageUptodate(page)) 2145 copied = 0; 2146 2147 page_zero_new_buffers(page, start+copied, start+len); 2148 } 2149 flush_dcache_page(page); 2150 2151 /* This could be a short (even 0-length) commit */ 2152 __block_commit_write(inode, page, start, start+copied); 2153 2154 return copied; 2155 } 2156 EXPORT_SYMBOL(block_write_end); 2157 2158 int generic_write_end(struct file *file, struct address_space *mapping, 2159 loff_t pos, unsigned len, unsigned copied, 2160 struct page *page, void *fsdata) 2161 { 2162 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2163 return __generic_write_end(mapping->host, pos, copied, page); 2164 } 2165 EXPORT_SYMBOL(generic_write_end); 2166 2167 /* 2168 * block_is_partially_uptodate checks whether buffers within a page are 2169 * uptodate or not. 2170 * 2171 * Returns true if all buffers which correspond to a file portion 2172 * we want to read are uptodate. 2173 */ 2174 int block_is_partially_uptodate(struct page *page, unsigned long from, 2175 unsigned long count) 2176 { 2177 unsigned block_start, block_end, blocksize; 2178 unsigned to; 2179 struct buffer_head *bh, *head; 2180 int ret = 1; 2181 2182 if (!page_has_buffers(page)) 2183 return 0; 2184 2185 head = page_buffers(page); 2186 blocksize = head->b_size; 2187 to = min_t(unsigned, PAGE_SIZE - from, count); 2188 to = from + to; 2189 if (from < blocksize && to > PAGE_SIZE - blocksize) 2190 return 0; 2191 2192 bh = head; 2193 block_start = 0; 2194 do { 2195 block_end = block_start + blocksize; 2196 if (block_end > from && block_start < to) { 2197 if (!buffer_uptodate(bh)) { 2198 ret = 0; 2199 break; 2200 } 2201 if (block_end >= to) 2202 break; 2203 } 2204 block_start = block_end; 2205 bh = bh->b_this_page; 2206 } while (bh != head); 2207 2208 return ret; 2209 } 2210 EXPORT_SYMBOL(block_is_partially_uptodate); 2211 2212 /* 2213 * Generic "read page" function for block devices that have the normal 2214 * get_block functionality. This is most of the block device filesystems. 2215 * Reads the page asynchronously --- the unlock_buffer() and 2216 * set/clear_buffer_uptodate() functions propagate buffer state into the 2217 * page struct once IO has completed. 2218 */ 2219 int block_read_full_page(struct page *page, get_block_t *get_block) 2220 { 2221 struct inode *inode = page->mapping->host; 2222 sector_t iblock, lblock; 2223 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2224 unsigned int blocksize, bbits; 2225 int nr, i; 2226 int fully_mapped = 1; 2227 2228 head = create_page_buffers(page, inode, 0); 2229 blocksize = head->b_size; 2230 bbits = block_size_bits(blocksize); 2231 2232 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits); 2233 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2234 bh = head; 2235 nr = 0; 2236 i = 0; 2237 2238 do { 2239 if (buffer_uptodate(bh)) 2240 continue; 2241 2242 if (!buffer_mapped(bh)) { 2243 int err = 0; 2244 2245 fully_mapped = 0; 2246 if (iblock < lblock) { 2247 WARN_ON(bh->b_size != blocksize); 2248 err = get_block(inode, iblock, bh, 0); 2249 if (err) 2250 SetPageError(page); 2251 } 2252 if (!buffer_mapped(bh)) { 2253 zero_user(page, i * blocksize, blocksize); 2254 if (!err) 2255 set_buffer_uptodate(bh); 2256 continue; 2257 } 2258 /* 2259 * get_block() might have updated the buffer 2260 * synchronously 2261 */ 2262 if (buffer_uptodate(bh)) 2263 continue; 2264 } 2265 arr[nr++] = bh; 2266 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2267 2268 if (fully_mapped) 2269 SetPageMappedToDisk(page); 2270 2271 if (!nr) { 2272 /* 2273 * All buffers are uptodate - we can set the page uptodate 2274 * as well. But not if get_block() returned an error. 2275 */ 2276 if (!PageError(page)) 2277 SetPageUptodate(page); 2278 unlock_page(page); 2279 return 0; 2280 } 2281 2282 /* Stage two: lock the buffers */ 2283 for (i = 0; i < nr; i++) { 2284 bh = arr[i]; 2285 lock_buffer(bh); 2286 mark_buffer_async_read(bh); 2287 } 2288 2289 /* 2290 * Stage 3: start the IO. Check for uptodateness 2291 * inside the buffer lock in case another process reading 2292 * the underlying blockdev brought it uptodate (the sct fix). 2293 */ 2294 for (i = 0; i < nr; i++) { 2295 bh = arr[i]; 2296 if (buffer_uptodate(bh)) 2297 end_buffer_async_read(bh, 1); 2298 else 2299 submit_bh(REQ_OP_READ, 0, bh); 2300 } 2301 return 0; 2302 } 2303 EXPORT_SYMBOL(block_read_full_page); 2304 2305 /* utility function for filesystems that need to do work on expanding 2306 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2307 * deal with the hole. 2308 */ 2309 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2310 { 2311 struct address_space *mapping = inode->i_mapping; 2312 struct page *page; 2313 void *fsdata; 2314 int err; 2315 2316 err = inode_newsize_ok(inode, size); 2317 if (err) 2318 goto out; 2319 2320 err = pagecache_write_begin(NULL, mapping, size, 0, 2321 AOP_FLAG_CONT_EXPAND, &page, &fsdata); 2322 if (err) 2323 goto out; 2324 2325 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2326 BUG_ON(err > 0); 2327 2328 out: 2329 return err; 2330 } 2331 EXPORT_SYMBOL(generic_cont_expand_simple); 2332 2333 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2334 loff_t pos, loff_t *bytes) 2335 { 2336 struct inode *inode = mapping->host; 2337 unsigned int blocksize = i_blocksize(inode); 2338 struct page *page; 2339 void *fsdata; 2340 pgoff_t index, curidx; 2341 loff_t curpos; 2342 unsigned zerofrom, offset, len; 2343 int err = 0; 2344 2345 index = pos >> PAGE_SHIFT; 2346 offset = pos & ~PAGE_MASK; 2347 2348 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2349 zerofrom = curpos & ~PAGE_MASK; 2350 if (zerofrom & (blocksize-1)) { 2351 *bytes |= (blocksize-1); 2352 (*bytes)++; 2353 } 2354 len = PAGE_SIZE - zerofrom; 2355 2356 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2357 &page, &fsdata); 2358 if (err) 2359 goto out; 2360 zero_user(page, zerofrom, len); 2361 err = pagecache_write_end(file, mapping, curpos, len, len, 2362 page, fsdata); 2363 if (err < 0) 2364 goto out; 2365 BUG_ON(err != len); 2366 err = 0; 2367 2368 balance_dirty_pages_ratelimited(mapping); 2369 2370 if (fatal_signal_pending(current)) { 2371 err = -EINTR; 2372 goto out; 2373 } 2374 } 2375 2376 /* page covers the boundary, find the boundary offset */ 2377 if (index == curidx) { 2378 zerofrom = curpos & ~PAGE_MASK; 2379 /* if we will expand the thing last block will be filled */ 2380 if (offset <= zerofrom) { 2381 goto out; 2382 } 2383 if (zerofrom & (blocksize-1)) { 2384 *bytes |= (blocksize-1); 2385 (*bytes)++; 2386 } 2387 len = offset - zerofrom; 2388 2389 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2390 &page, &fsdata); 2391 if (err) 2392 goto out; 2393 zero_user(page, zerofrom, len); 2394 err = pagecache_write_end(file, mapping, curpos, len, len, 2395 page, fsdata); 2396 if (err < 0) 2397 goto out; 2398 BUG_ON(err != len); 2399 err = 0; 2400 } 2401 out: 2402 return err; 2403 } 2404 2405 /* 2406 * For moronic filesystems that do not allow holes in file. 2407 * We may have to extend the file. 2408 */ 2409 int cont_write_begin(struct file *file, struct address_space *mapping, 2410 loff_t pos, unsigned len, unsigned flags, 2411 struct page **pagep, void **fsdata, 2412 get_block_t *get_block, loff_t *bytes) 2413 { 2414 struct inode *inode = mapping->host; 2415 unsigned int blocksize = i_blocksize(inode); 2416 unsigned int zerofrom; 2417 int err; 2418 2419 err = cont_expand_zero(file, mapping, pos, bytes); 2420 if (err) 2421 return err; 2422 2423 zerofrom = *bytes & ~PAGE_MASK; 2424 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2425 *bytes |= (blocksize-1); 2426 (*bytes)++; 2427 } 2428 2429 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2430 } 2431 EXPORT_SYMBOL(cont_write_begin); 2432 2433 int block_commit_write(struct page *page, unsigned from, unsigned to) 2434 { 2435 struct inode *inode = page->mapping->host; 2436 __block_commit_write(inode,page,from,to); 2437 return 0; 2438 } 2439 EXPORT_SYMBOL(block_commit_write); 2440 2441 /* 2442 * block_page_mkwrite() is not allowed to change the file size as it gets 2443 * called from a page fault handler when a page is first dirtied. Hence we must 2444 * be careful to check for EOF conditions here. We set the page up correctly 2445 * for a written page which means we get ENOSPC checking when writing into 2446 * holes and correct delalloc and unwritten extent mapping on filesystems that 2447 * support these features. 2448 * 2449 * We are not allowed to take the i_mutex here so we have to play games to 2450 * protect against truncate races as the page could now be beyond EOF. Because 2451 * truncate writes the inode size before removing pages, once we have the 2452 * page lock we can determine safely if the page is beyond EOF. If it is not 2453 * beyond EOF, then the page is guaranteed safe against truncation until we 2454 * unlock the page. 2455 * 2456 * Direct callers of this function should protect against filesystem freezing 2457 * using sb_start_pagefault() - sb_end_pagefault() functions. 2458 */ 2459 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2460 get_block_t get_block) 2461 { 2462 struct page *page = vmf->page; 2463 struct inode *inode = file_inode(vma->vm_file); 2464 unsigned long end; 2465 loff_t size; 2466 int ret; 2467 2468 lock_page(page); 2469 size = i_size_read(inode); 2470 if ((page->mapping != inode->i_mapping) || 2471 (page_offset(page) > size)) { 2472 /* We overload EFAULT to mean page got truncated */ 2473 ret = -EFAULT; 2474 goto out_unlock; 2475 } 2476 2477 /* page is wholly or partially inside EOF */ 2478 if (((page->index + 1) << PAGE_SHIFT) > size) 2479 end = size & ~PAGE_MASK; 2480 else 2481 end = PAGE_SIZE; 2482 2483 ret = __block_write_begin(page, 0, end, get_block); 2484 if (!ret) 2485 ret = block_commit_write(page, 0, end); 2486 2487 if (unlikely(ret < 0)) 2488 goto out_unlock; 2489 set_page_dirty(page); 2490 wait_for_stable_page(page); 2491 return 0; 2492 out_unlock: 2493 unlock_page(page); 2494 return ret; 2495 } 2496 EXPORT_SYMBOL(block_page_mkwrite); 2497 2498 /* 2499 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2500 * immediately, while under the page lock. So it needs a special end_io 2501 * handler which does not touch the bh after unlocking it. 2502 */ 2503 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2504 { 2505 __end_buffer_read_notouch(bh, uptodate); 2506 } 2507 2508 /* 2509 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2510 * the page (converting it to circular linked list and taking care of page 2511 * dirty races). 2512 */ 2513 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2514 { 2515 struct buffer_head *bh; 2516 2517 BUG_ON(!PageLocked(page)); 2518 2519 spin_lock(&page->mapping->private_lock); 2520 bh = head; 2521 do { 2522 if (PageDirty(page)) 2523 set_buffer_dirty(bh); 2524 if (!bh->b_this_page) 2525 bh->b_this_page = head; 2526 bh = bh->b_this_page; 2527 } while (bh != head); 2528 attach_page_buffers(page, head); 2529 spin_unlock(&page->mapping->private_lock); 2530 } 2531 2532 /* 2533 * On entry, the page is fully not uptodate. 2534 * On exit the page is fully uptodate in the areas outside (from,to) 2535 * The filesystem needs to handle block truncation upon failure. 2536 */ 2537 int nobh_write_begin(struct address_space *mapping, 2538 loff_t pos, unsigned len, unsigned flags, 2539 struct page **pagep, void **fsdata, 2540 get_block_t *get_block) 2541 { 2542 struct inode *inode = mapping->host; 2543 const unsigned blkbits = inode->i_blkbits; 2544 const unsigned blocksize = 1 << blkbits; 2545 struct buffer_head *head, *bh; 2546 struct page *page; 2547 pgoff_t index; 2548 unsigned from, to; 2549 unsigned block_in_page; 2550 unsigned block_start, block_end; 2551 sector_t block_in_file; 2552 int nr_reads = 0; 2553 int ret = 0; 2554 int is_mapped_to_disk = 1; 2555 2556 index = pos >> PAGE_SHIFT; 2557 from = pos & (PAGE_SIZE - 1); 2558 to = from + len; 2559 2560 page = grab_cache_page_write_begin(mapping, index, flags); 2561 if (!page) 2562 return -ENOMEM; 2563 *pagep = page; 2564 *fsdata = NULL; 2565 2566 if (page_has_buffers(page)) { 2567 ret = __block_write_begin(page, pos, len, get_block); 2568 if (unlikely(ret)) 2569 goto out_release; 2570 return ret; 2571 } 2572 2573 if (PageMappedToDisk(page)) 2574 return 0; 2575 2576 /* 2577 * Allocate buffers so that we can keep track of state, and potentially 2578 * attach them to the page if an error occurs. In the common case of 2579 * no error, they will just be freed again without ever being attached 2580 * to the page (which is all OK, because we're under the page lock). 2581 * 2582 * Be careful: the buffer linked list is a NULL terminated one, rather 2583 * than the circular one we're used to. 2584 */ 2585 head = alloc_page_buffers(page, blocksize, false); 2586 if (!head) { 2587 ret = -ENOMEM; 2588 goto out_release; 2589 } 2590 2591 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 2592 2593 /* 2594 * We loop across all blocks in the page, whether or not they are 2595 * part of the affected region. This is so we can discover if the 2596 * page is fully mapped-to-disk. 2597 */ 2598 for (block_start = 0, block_in_page = 0, bh = head; 2599 block_start < PAGE_SIZE; 2600 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2601 int create; 2602 2603 block_end = block_start + blocksize; 2604 bh->b_state = 0; 2605 create = 1; 2606 if (block_start >= to) 2607 create = 0; 2608 ret = get_block(inode, block_in_file + block_in_page, 2609 bh, create); 2610 if (ret) 2611 goto failed; 2612 if (!buffer_mapped(bh)) 2613 is_mapped_to_disk = 0; 2614 if (buffer_new(bh)) 2615 clean_bdev_bh_alias(bh); 2616 if (PageUptodate(page)) { 2617 set_buffer_uptodate(bh); 2618 continue; 2619 } 2620 if (buffer_new(bh) || !buffer_mapped(bh)) { 2621 zero_user_segments(page, block_start, from, 2622 to, block_end); 2623 continue; 2624 } 2625 if (buffer_uptodate(bh)) 2626 continue; /* reiserfs does this */ 2627 if (block_start < from || block_end > to) { 2628 lock_buffer(bh); 2629 bh->b_end_io = end_buffer_read_nobh; 2630 submit_bh(REQ_OP_READ, 0, bh); 2631 nr_reads++; 2632 } 2633 } 2634 2635 if (nr_reads) { 2636 /* 2637 * The page is locked, so these buffers are protected from 2638 * any VM or truncate activity. Hence we don't need to care 2639 * for the buffer_head refcounts. 2640 */ 2641 for (bh = head; bh; bh = bh->b_this_page) { 2642 wait_on_buffer(bh); 2643 if (!buffer_uptodate(bh)) 2644 ret = -EIO; 2645 } 2646 if (ret) 2647 goto failed; 2648 } 2649 2650 if (is_mapped_to_disk) 2651 SetPageMappedToDisk(page); 2652 2653 *fsdata = head; /* to be released by nobh_write_end */ 2654 2655 return 0; 2656 2657 failed: 2658 BUG_ON(!ret); 2659 /* 2660 * Error recovery is a bit difficult. We need to zero out blocks that 2661 * were newly allocated, and dirty them to ensure they get written out. 2662 * Buffers need to be attached to the page at this point, otherwise 2663 * the handling of potential IO errors during writeout would be hard 2664 * (could try doing synchronous writeout, but what if that fails too?) 2665 */ 2666 attach_nobh_buffers(page, head); 2667 page_zero_new_buffers(page, from, to); 2668 2669 out_release: 2670 unlock_page(page); 2671 put_page(page); 2672 *pagep = NULL; 2673 2674 return ret; 2675 } 2676 EXPORT_SYMBOL(nobh_write_begin); 2677 2678 int nobh_write_end(struct file *file, struct address_space *mapping, 2679 loff_t pos, unsigned len, unsigned copied, 2680 struct page *page, void *fsdata) 2681 { 2682 struct inode *inode = page->mapping->host; 2683 struct buffer_head *head = fsdata; 2684 struct buffer_head *bh; 2685 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2686 2687 if (unlikely(copied < len) && head) 2688 attach_nobh_buffers(page, head); 2689 if (page_has_buffers(page)) 2690 return generic_write_end(file, mapping, pos, len, 2691 copied, page, fsdata); 2692 2693 SetPageUptodate(page); 2694 set_page_dirty(page); 2695 if (pos+copied > inode->i_size) { 2696 i_size_write(inode, pos+copied); 2697 mark_inode_dirty(inode); 2698 } 2699 2700 unlock_page(page); 2701 put_page(page); 2702 2703 while (head) { 2704 bh = head; 2705 head = head->b_this_page; 2706 free_buffer_head(bh); 2707 } 2708 2709 return copied; 2710 } 2711 EXPORT_SYMBOL(nobh_write_end); 2712 2713 /* 2714 * nobh_writepage() - based on block_full_write_page() except 2715 * that it tries to operate without attaching bufferheads to 2716 * the page. 2717 */ 2718 int nobh_writepage(struct page *page, get_block_t *get_block, 2719 struct writeback_control *wbc) 2720 { 2721 struct inode * const inode = page->mapping->host; 2722 loff_t i_size = i_size_read(inode); 2723 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2724 unsigned offset; 2725 int ret; 2726 2727 /* Is the page fully inside i_size? */ 2728 if (page->index < end_index) 2729 goto out; 2730 2731 /* Is the page fully outside i_size? (truncate in progress) */ 2732 offset = i_size & (PAGE_SIZE-1); 2733 if (page->index >= end_index+1 || !offset) { 2734 /* 2735 * The page may have dirty, unmapped buffers. For example, 2736 * they may have been added in ext3_writepage(). Make them 2737 * freeable here, so the page does not leak. 2738 */ 2739 #if 0 2740 /* Not really sure about this - do we need this ? */ 2741 if (page->mapping->a_ops->invalidatepage) 2742 page->mapping->a_ops->invalidatepage(page, offset); 2743 #endif 2744 unlock_page(page); 2745 return 0; /* don't care */ 2746 } 2747 2748 /* 2749 * The page straddles i_size. It must be zeroed out on each and every 2750 * writepage invocation because it may be mmapped. "A file is mapped 2751 * in multiples of the page size. For a file that is not a multiple of 2752 * the page size, the remaining memory is zeroed when mapped, and 2753 * writes to that region are not written out to the file." 2754 */ 2755 zero_user_segment(page, offset, PAGE_SIZE); 2756 out: 2757 ret = mpage_writepage(page, get_block, wbc); 2758 if (ret == -EAGAIN) 2759 ret = __block_write_full_page(inode, page, get_block, wbc, 2760 end_buffer_async_write); 2761 return ret; 2762 } 2763 EXPORT_SYMBOL(nobh_writepage); 2764 2765 int nobh_truncate_page(struct address_space *mapping, 2766 loff_t from, get_block_t *get_block) 2767 { 2768 pgoff_t index = from >> PAGE_SHIFT; 2769 unsigned offset = from & (PAGE_SIZE-1); 2770 unsigned blocksize; 2771 sector_t iblock; 2772 unsigned length, pos; 2773 struct inode *inode = mapping->host; 2774 struct page *page; 2775 struct buffer_head map_bh; 2776 int err; 2777 2778 blocksize = i_blocksize(inode); 2779 length = offset & (blocksize - 1); 2780 2781 /* Block boundary? Nothing to do */ 2782 if (!length) 2783 return 0; 2784 2785 length = blocksize - length; 2786 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2787 2788 page = grab_cache_page(mapping, index); 2789 err = -ENOMEM; 2790 if (!page) 2791 goto out; 2792 2793 if (page_has_buffers(page)) { 2794 has_buffers: 2795 unlock_page(page); 2796 put_page(page); 2797 return block_truncate_page(mapping, from, get_block); 2798 } 2799 2800 /* Find the buffer that contains "offset" */ 2801 pos = blocksize; 2802 while (offset >= pos) { 2803 iblock++; 2804 pos += blocksize; 2805 } 2806 2807 map_bh.b_size = blocksize; 2808 map_bh.b_state = 0; 2809 err = get_block(inode, iblock, &map_bh, 0); 2810 if (err) 2811 goto unlock; 2812 /* unmapped? It's a hole - nothing to do */ 2813 if (!buffer_mapped(&map_bh)) 2814 goto unlock; 2815 2816 /* Ok, it's mapped. Make sure it's up-to-date */ 2817 if (!PageUptodate(page)) { 2818 err = mapping->a_ops->readpage(NULL, page); 2819 if (err) { 2820 put_page(page); 2821 goto out; 2822 } 2823 lock_page(page); 2824 if (!PageUptodate(page)) { 2825 err = -EIO; 2826 goto unlock; 2827 } 2828 if (page_has_buffers(page)) 2829 goto has_buffers; 2830 } 2831 zero_user(page, offset, length); 2832 set_page_dirty(page); 2833 err = 0; 2834 2835 unlock: 2836 unlock_page(page); 2837 put_page(page); 2838 out: 2839 return err; 2840 } 2841 EXPORT_SYMBOL(nobh_truncate_page); 2842 2843 int block_truncate_page(struct address_space *mapping, 2844 loff_t from, get_block_t *get_block) 2845 { 2846 pgoff_t index = from >> PAGE_SHIFT; 2847 unsigned offset = from & (PAGE_SIZE-1); 2848 unsigned blocksize; 2849 sector_t iblock; 2850 unsigned length, pos; 2851 struct inode *inode = mapping->host; 2852 struct page *page; 2853 struct buffer_head *bh; 2854 int err; 2855 2856 blocksize = i_blocksize(inode); 2857 length = offset & (blocksize - 1); 2858 2859 /* Block boundary? Nothing to do */ 2860 if (!length) 2861 return 0; 2862 2863 length = blocksize - length; 2864 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2865 2866 page = grab_cache_page(mapping, index); 2867 err = -ENOMEM; 2868 if (!page) 2869 goto out; 2870 2871 if (!page_has_buffers(page)) 2872 create_empty_buffers(page, blocksize, 0); 2873 2874 /* Find the buffer that contains "offset" */ 2875 bh = page_buffers(page); 2876 pos = blocksize; 2877 while (offset >= pos) { 2878 bh = bh->b_this_page; 2879 iblock++; 2880 pos += blocksize; 2881 } 2882 2883 err = 0; 2884 if (!buffer_mapped(bh)) { 2885 WARN_ON(bh->b_size != blocksize); 2886 err = get_block(inode, iblock, bh, 0); 2887 if (err) 2888 goto unlock; 2889 /* unmapped? It's a hole - nothing to do */ 2890 if (!buffer_mapped(bh)) 2891 goto unlock; 2892 } 2893 2894 /* Ok, it's mapped. Make sure it's up-to-date */ 2895 if (PageUptodate(page)) 2896 set_buffer_uptodate(bh); 2897 2898 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2899 err = -EIO; 2900 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2901 wait_on_buffer(bh); 2902 /* Uhhuh. Read error. Complain and punt. */ 2903 if (!buffer_uptodate(bh)) 2904 goto unlock; 2905 } 2906 2907 zero_user(page, offset, length); 2908 mark_buffer_dirty(bh); 2909 err = 0; 2910 2911 unlock: 2912 unlock_page(page); 2913 put_page(page); 2914 out: 2915 return err; 2916 } 2917 EXPORT_SYMBOL(block_truncate_page); 2918 2919 /* 2920 * The generic ->writepage function for buffer-backed address_spaces 2921 */ 2922 int block_write_full_page(struct page *page, get_block_t *get_block, 2923 struct writeback_control *wbc) 2924 { 2925 struct inode * const inode = page->mapping->host; 2926 loff_t i_size = i_size_read(inode); 2927 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2928 unsigned offset; 2929 2930 /* Is the page fully inside i_size? */ 2931 if (page->index < end_index) 2932 return __block_write_full_page(inode, page, get_block, wbc, 2933 end_buffer_async_write); 2934 2935 /* Is the page fully outside i_size? (truncate in progress) */ 2936 offset = i_size & (PAGE_SIZE-1); 2937 if (page->index >= end_index+1 || !offset) { 2938 /* 2939 * The page may have dirty, unmapped buffers. For example, 2940 * they may have been added in ext3_writepage(). Make them 2941 * freeable here, so the page does not leak. 2942 */ 2943 do_invalidatepage(page, 0, PAGE_SIZE); 2944 unlock_page(page); 2945 return 0; /* don't care */ 2946 } 2947 2948 /* 2949 * The page straddles i_size. It must be zeroed out on each and every 2950 * writepage invocation because it may be mmapped. "A file is mapped 2951 * in multiples of the page size. For a file that is not a multiple of 2952 * the page size, the remaining memory is zeroed when mapped, and 2953 * writes to that region are not written out to the file." 2954 */ 2955 zero_user_segment(page, offset, PAGE_SIZE); 2956 return __block_write_full_page(inode, page, get_block, wbc, 2957 end_buffer_async_write); 2958 } 2959 EXPORT_SYMBOL(block_write_full_page); 2960 2961 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2962 get_block_t *get_block) 2963 { 2964 struct inode *inode = mapping->host; 2965 struct buffer_head tmp = { 2966 .b_size = i_blocksize(inode), 2967 }; 2968 2969 get_block(inode, block, &tmp, 0); 2970 return tmp.b_blocknr; 2971 } 2972 EXPORT_SYMBOL(generic_block_bmap); 2973 2974 static void end_bio_bh_io_sync(struct bio *bio) 2975 { 2976 struct buffer_head *bh = bio->bi_private; 2977 2978 if (unlikely(bio_flagged(bio, BIO_QUIET))) 2979 set_bit(BH_Quiet, &bh->b_state); 2980 2981 bh->b_end_io(bh, !bio->bi_status); 2982 bio_put(bio); 2983 } 2984 2985 /* 2986 * This allows us to do IO even on the odd last sectors 2987 * of a device, even if the block size is some multiple 2988 * of the physical sector size. 2989 * 2990 * We'll just truncate the bio to the size of the device, 2991 * and clear the end of the buffer head manually. 2992 * 2993 * Truly out-of-range accesses will turn into actual IO 2994 * errors, this only handles the "we need to be able to 2995 * do IO at the final sector" case. 2996 */ 2997 void guard_bio_eod(int op, struct bio *bio) 2998 { 2999 sector_t maxsector; 3000 struct bio_vec *bvec = bio_last_bvec_all(bio); 3001 unsigned truncated_bytes; 3002 struct hd_struct *part; 3003 3004 rcu_read_lock(); 3005 part = __disk_get_part(bio->bi_disk, bio->bi_partno); 3006 if (part) 3007 maxsector = part_nr_sects_read(part); 3008 else 3009 maxsector = get_capacity(bio->bi_disk); 3010 rcu_read_unlock(); 3011 3012 if (!maxsector) 3013 return; 3014 3015 /* 3016 * If the *whole* IO is past the end of the device, 3017 * let it through, and the IO layer will turn it into 3018 * an EIO. 3019 */ 3020 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 3021 return; 3022 3023 maxsector -= bio->bi_iter.bi_sector; 3024 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 3025 return; 3026 3027 /* Uhhuh. We've got a bio that straddles the device size! */ 3028 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9); 3029 3030 /* 3031 * The bio contains more than one segment which spans EOD, just return 3032 * and let IO layer turn it into an EIO 3033 */ 3034 if (truncated_bytes > bvec->bv_len) 3035 return; 3036 3037 /* Truncate the bio.. */ 3038 bio->bi_iter.bi_size -= truncated_bytes; 3039 bvec->bv_len -= truncated_bytes; 3040 3041 /* ..and clear the end of the buffer for reads */ 3042 if (op == REQ_OP_READ) { 3043 struct bio_vec bv; 3044 3045 mp_bvec_last_segment(bvec, &bv); 3046 zero_user(bv.bv_page, bv.bv_offset + bv.bv_len, 3047 truncated_bytes); 3048 } 3049 } 3050 3051 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 3052 enum rw_hint write_hint, struct writeback_control *wbc) 3053 { 3054 struct bio *bio; 3055 3056 BUG_ON(!buffer_locked(bh)); 3057 BUG_ON(!buffer_mapped(bh)); 3058 BUG_ON(!bh->b_end_io); 3059 BUG_ON(buffer_delay(bh)); 3060 BUG_ON(buffer_unwritten(bh)); 3061 3062 /* 3063 * Only clear out a write error when rewriting 3064 */ 3065 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 3066 clear_buffer_write_io_error(bh); 3067 3068 /* 3069 * from here on down, it's all bio -- do the initial mapping, 3070 * submit_bio -> generic_make_request may further map this bio around 3071 */ 3072 bio = bio_alloc(GFP_NOIO, 1); 3073 3074 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 3075 bio_set_dev(bio, bh->b_bdev); 3076 bio->bi_write_hint = write_hint; 3077 3078 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 3079 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 3080 3081 bio->bi_end_io = end_bio_bh_io_sync; 3082 bio->bi_private = bh; 3083 3084 /* Take care of bh's that straddle the end of the device */ 3085 guard_bio_eod(op, bio); 3086 3087 if (buffer_meta(bh)) 3088 op_flags |= REQ_META; 3089 if (buffer_prio(bh)) 3090 op_flags |= REQ_PRIO; 3091 bio_set_op_attrs(bio, op, op_flags); 3092 3093 if (wbc) { 3094 wbc_init_bio(wbc, bio); 3095 wbc_account_io(wbc, bh->b_page, bh->b_size); 3096 } 3097 3098 submit_bio(bio); 3099 return 0; 3100 } 3101 3102 int submit_bh(int op, int op_flags, struct buffer_head *bh) 3103 { 3104 return submit_bh_wbc(op, op_flags, bh, 0, NULL); 3105 } 3106 EXPORT_SYMBOL(submit_bh); 3107 3108 /** 3109 * ll_rw_block: low-level access to block devices (DEPRECATED) 3110 * @op: whether to %READ or %WRITE 3111 * @op_flags: req_flag_bits 3112 * @nr: number of &struct buffer_heads in the array 3113 * @bhs: array of pointers to &struct buffer_head 3114 * 3115 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3116 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE. 3117 * @op_flags contains flags modifying the detailed I/O behavior, most notably 3118 * %REQ_RAHEAD. 3119 * 3120 * This function drops any buffer that it cannot get a lock on (with the 3121 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3122 * request, and any buffer that appears to be up-to-date when doing read 3123 * request. Further it marks as clean buffers that are processed for 3124 * writing (the buffer cache won't assume that they are actually clean 3125 * until the buffer gets unlocked). 3126 * 3127 * ll_rw_block sets b_end_io to simple completion handler that marks 3128 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes 3129 * any waiters. 3130 * 3131 * All of the buffers must be for the same device, and must also be a 3132 * multiple of the current approved size for the device. 3133 */ 3134 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[]) 3135 { 3136 int i; 3137 3138 for (i = 0; i < nr; i++) { 3139 struct buffer_head *bh = bhs[i]; 3140 3141 if (!trylock_buffer(bh)) 3142 continue; 3143 if (op == WRITE) { 3144 if (test_clear_buffer_dirty(bh)) { 3145 bh->b_end_io = end_buffer_write_sync; 3146 get_bh(bh); 3147 submit_bh(op, op_flags, bh); 3148 continue; 3149 } 3150 } else { 3151 if (!buffer_uptodate(bh)) { 3152 bh->b_end_io = end_buffer_read_sync; 3153 get_bh(bh); 3154 submit_bh(op, op_flags, bh); 3155 continue; 3156 } 3157 } 3158 unlock_buffer(bh); 3159 } 3160 } 3161 EXPORT_SYMBOL(ll_rw_block); 3162 3163 void write_dirty_buffer(struct buffer_head *bh, int op_flags) 3164 { 3165 lock_buffer(bh); 3166 if (!test_clear_buffer_dirty(bh)) { 3167 unlock_buffer(bh); 3168 return; 3169 } 3170 bh->b_end_io = end_buffer_write_sync; 3171 get_bh(bh); 3172 submit_bh(REQ_OP_WRITE, op_flags, bh); 3173 } 3174 EXPORT_SYMBOL(write_dirty_buffer); 3175 3176 /* 3177 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3178 * and then start new I/O and then wait upon it. The caller must have a ref on 3179 * the buffer_head. 3180 */ 3181 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags) 3182 { 3183 int ret = 0; 3184 3185 WARN_ON(atomic_read(&bh->b_count) < 1); 3186 lock_buffer(bh); 3187 if (test_clear_buffer_dirty(bh)) { 3188 get_bh(bh); 3189 bh->b_end_io = end_buffer_write_sync; 3190 ret = submit_bh(REQ_OP_WRITE, op_flags, bh); 3191 wait_on_buffer(bh); 3192 if (!ret && !buffer_uptodate(bh)) 3193 ret = -EIO; 3194 } else { 3195 unlock_buffer(bh); 3196 } 3197 return ret; 3198 } 3199 EXPORT_SYMBOL(__sync_dirty_buffer); 3200 3201 int sync_dirty_buffer(struct buffer_head *bh) 3202 { 3203 return __sync_dirty_buffer(bh, REQ_SYNC); 3204 } 3205 EXPORT_SYMBOL(sync_dirty_buffer); 3206 3207 /* 3208 * try_to_free_buffers() checks if all the buffers on this particular page 3209 * are unused, and releases them if so. 3210 * 3211 * Exclusion against try_to_free_buffers may be obtained by either 3212 * locking the page or by holding its mapping's private_lock. 3213 * 3214 * If the page is dirty but all the buffers are clean then we need to 3215 * be sure to mark the page clean as well. This is because the page 3216 * may be against a block device, and a later reattachment of buffers 3217 * to a dirty page will set *all* buffers dirty. Which would corrupt 3218 * filesystem data on the same device. 3219 * 3220 * The same applies to regular filesystem pages: if all the buffers are 3221 * clean then we set the page clean and proceed. To do that, we require 3222 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3223 * private_lock. 3224 * 3225 * try_to_free_buffers() is non-blocking. 3226 */ 3227 static inline int buffer_busy(struct buffer_head *bh) 3228 { 3229 return atomic_read(&bh->b_count) | 3230 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3231 } 3232 3233 static int 3234 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3235 { 3236 struct buffer_head *head = page_buffers(page); 3237 struct buffer_head *bh; 3238 3239 bh = head; 3240 do { 3241 if (buffer_busy(bh)) 3242 goto failed; 3243 bh = bh->b_this_page; 3244 } while (bh != head); 3245 3246 do { 3247 struct buffer_head *next = bh->b_this_page; 3248 3249 if (bh->b_assoc_map) 3250 __remove_assoc_queue(bh); 3251 bh = next; 3252 } while (bh != head); 3253 *buffers_to_free = head; 3254 __clear_page_buffers(page); 3255 return 1; 3256 failed: 3257 return 0; 3258 } 3259 3260 int try_to_free_buffers(struct page *page) 3261 { 3262 struct address_space * const mapping = page->mapping; 3263 struct buffer_head *buffers_to_free = NULL; 3264 int ret = 0; 3265 3266 BUG_ON(!PageLocked(page)); 3267 if (PageWriteback(page)) 3268 return 0; 3269 3270 if (mapping == NULL) { /* can this still happen? */ 3271 ret = drop_buffers(page, &buffers_to_free); 3272 goto out; 3273 } 3274 3275 spin_lock(&mapping->private_lock); 3276 ret = drop_buffers(page, &buffers_to_free); 3277 3278 /* 3279 * If the filesystem writes its buffers by hand (eg ext3) 3280 * then we can have clean buffers against a dirty page. We 3281 * clean the page here; otherwise the VM will never notice 3282 * that the filesystem did any IO at all. 3283 * 3284 * Also, during truncate, discard_buffer will have marked all 3285 * the page's buffers clean. We discover that here and clean 3286 * the page also. 3287 * 3288 * private_lock must be held over this entire operation in order 3289 * to synchronise against __set_page_dirty_buffers and prevent the 3290 * dirty bit from being lost. 3291 */ 3292 if (ret) 3293 cancel_dirty_page(page); 3294 spin_unlock(&mapping->private_lock); 3295 out: 3296 if (buffers_to_free) { 3297 struct buffer_head *bh = buffers_to_free; 3298 3299 do { 3300 struct buffer_head *next = bh->b_this_page; 3301 free_buffer_head(bh); 3302 bh = next; 3303 } while (bh != buffers_to_free); 3304 } 3305 return ret; 3306 } 3307 EXPORT_SYMBOL(try_to_free_buffers); 3308 3309 /* 3310 * There are no bdflush tunables left. But distributions are 3311 * still running obsolete flush daemons, so we terminate them here. 3312 * 3313 * Use of bdflush() is deprecated and will be removed in a future kernel. 3314 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3315 */ 3316 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3317 { 3318 static int msg_count; 3319 3320 if (!capable(CAP_SYS_ADMIN)) 3321 return -EPERM; 3322 3323 if (msg_count < 5) { 3324 msg_count++; 3325 printk(KERN_INFO 3326 "warning: process `%s' used the obsolete bdflush" 3327 " system call\n", current->comm); 3328 printk(KERN_INFO "Fix your initscripts?\n"); 3329 } 3330 3331 if (func == 1) 3332 do_exit(0); 3333 return 0; 3334 } 3335 3336 /* 3337 * Buffer-head allocation 3338 */ 3339 static struct kmem_cache *bh_cachep __read_mostly; 3340 3341 /* 3342 * Once the number of bh's in the machine exceeds this level, we start 3343 * stripping them in writeback. 3344 */ 3345 static unsigned long max_buffer_heads; 3346 3347 int buffer_heads_over_limit; 3348 3349 struct bh_accounting { 3350 int nr; /* Number of live bh's */ 3351 int ratelimit; /* Limit cacheline bouncing */ 3352 }; 3353 3354 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3355 3356 static void recalc_bh_state(void) 3357 { 3358 int i; 3359 int tot = 0; 3360 3361 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3362 return; 3363 __this_cpu_write(bh_accounting.ratelimit, 0); 3364 for_each_online_cpu(i) 3365 tot += per_cpu(bh_accounting, i).nr; 3366 buffer_heads_over_limit = (tot > max_buffer_heads); 3367 } 3368 3369 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3370 { 3371 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3372 if (ret) { 3373 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3374 preempt_disable(); 3375 __this_cpu_inc(bh_accounting.nr); 3376 recalc_bh_state(); 3377 preempt_enable(); 3378 } 3379 return ret; 3380 } 3381 EXPORT_SYMBOL(alloc_buffer_head); 3382 3383 void free_buffer_head(struct buffer_head *bh) 3384 { 3385 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3386 kmem_cache_free(bh_cachep, bh); 3387 preempt_disable(); 3388 __this_cpu_dec(bh_accounting.nr); 3389 recalc_bh_state(); 3390 preempt_enable(); 3391 } 3392 EXPORT_SYMBOL(free_buffer_head); 3393 3394 static int buffer_exit_cpu_dead(unsigned int cpu) 3395 { 3396 int i; 3397 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3398 3399 for (i = 0; i < BH_LRU_SIZE; i++) { 3400 brelse(b->bhs[i]); 3401 b->bhs[i] = NULL; 3402 } 3403 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3404 per_cpu(bh_accounting, cpu).nr = 0; 3405 return 0; 3406 } 3407 3408 /** 3409 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3410 * @bh: struct buffer_head 3411 * 3412 * Return true if the buffer is up-to-date and false, 3413 * with the buffer locked, if not. 3414 */ 3415 int bh_uptodate_or_lock(struct buffer_head *bh) 3416 { 3417 if (!buffer_uptodate(bh)) { 3418 lock_buffer(bh); 3419 if (!buffer_uptodate(bh)) 3420 return 0; 3421 unlock_buffer(bh); 3422 } 3423 return 1; 3424 } 3425 EXPORT_SYMBOL(bh_uptodate_or_lock); 3426 3427 /** 3428 * bh_submit_read - Submit a locked buffer for reading 3429 * @bh: struct buffer_head 3430 * 3431 * Returns zero on success and -EIO on error. 3432 */ 3433 int bh_submit_read(struct buffer_head *bh) 3434 { 3435 BUG_ON(!buffer_locked(bh)); 3436 3437 if (buffer_uptodate(bh)) { 3438 unlock_buffer(bh); 3439 return 0; 3440 } 3441 3442 get_bh(bh); 3443 bh->b_end_io = end_buffer_read_sync; 3444 submit_bh(REQ_OP_READ, 0, bh); 3445 wait_on_buffer(bh); 3446 if (buffer_uptodate(bh)) 3447 return 0; 3448 return -EIO; 3449 } 3450 EXPORT_SYMBOL(bh_submit_read); 3451 3452 void __init buffer_init(void) 3453 { 3454 unsigned long nrpages; 3455 int ret; 3456 3457 bh_cachep = kmem_cache_create("buffer_head", 3458 sizeof(struct buffer_head), 0, 3459 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3460 SLAB_MEM_SPREAD), 3461 NULL); 3462 3463 /* 3464 * Limit the bh occupancy to 10% of ZONE_NORMAL 3465 */ 3466 nrpages = (nr_free_buffer_pages() * 10) / 100; 3467 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3468 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3469 NULL, buffer_exit_cpu_dead); 3470 WARN_ON(ret < 0); 3471 } 3472