xref: /linux/fs/buffer.c (revision 1ee54195a305fae3955642af8528bdf67496d353)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7 
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 
52 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
53 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
54 			 enum rw_hint hint, struct writeback_control *wbc);
55 
56 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
57 
58 inline void touch_buffer(struct buffer_head *bh)
59 {
60 	trace_block_touch_buffer(bh);
61 	mark_page_accessed(bh->b_page);
62 }
63 EXPORT_SYMBOL(touch_buffer);
64 
65 void __lock_buffer(struct buffer_head *bh)
66 {
67 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
68 }
69 EXPORT_SYMBOL(__lock_buffer);
70 
71 void unlock_buffer(struct buffer_head *bh)
72 {
73 	clear_bit_unlock(BH_Lock, &bh->b_state);
74 	smp_mb__after_atomic();
75 	wake_up_bit(&bh->b_state, BH_Lock);
76 }
77 EXPORT_SYMBOL(unlock_buffer);
78 
79 /*
80  * Returns if the page has dirty or writeback buffers. If all the buffers
81  * are unlocked and clean then the PageDirty information is stale. If
82  * any of the pages are locked, it is assumed they are locked for IO.
83  */
84 void buffer_check_dirty_writeback(struct page *page,
85 				     bool *dirty, bool *writeback)
86 {
87 	struct buffer_head *head, *bh;
88 	*dirty = false;
89 	*writeback = false;
90 
91 	BUG_ON(!PageLocked(page));
92 
93 	if (!page_has_buffers(page))
94 		return;
95 
96 	if (PageWriteback(page))
97 		*writeback = true;
98 
99 	head = page_buffers(page);
100 	bh = head;
101 	do {
102 		if (buffer_locked(bh))
103 			*writeback = true;
104 
105 		if (buffer_dirty(bh))
106 			*dirty = true;
107 
108 		bh = bh->b_this_page;
109 	} while (bh != head);
110 }
111 EXPORT_SYMBOL(buffer_check_dirty_writeback);
112 
113 /*
114  * Block until a buffer comes unlocked.  This doesn't stop it
115  * from becoming locked again - you have to lock it yourself
116  * if you want to preserve its state.
117  */
118 void __wait_on_buffer(struct buffer_head * bh)
119 {
120 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
121 }
122 EXPORT_SYMBOL(__wait_on_buffer);
123 
124 static void
125 __clear_page_buffers(struct page *page)
126 {
127 	ClearPagePrivate(page);
128 	set_page_private(page, 0);
129 	put_page(page);
130 }
131 
132 static void buffer_io_error(struct buffer_head *bh, char *msg)
133 {
134 	if (!test_bit(BH_Quiet, &bh->b_state))
135 		printk_ratelimited(KERN_ERR
136 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
137 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
138 }
139 
140 /*
141  * End-of-IO handler helper function which does not touch the bh after
142  * unlocking it.
143  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
144  * a race there is benign: unlock_buffer() only use the bh's address for
145  * hashing after unlocking the buffer, so it doesn't actually touch the bh
146  * itself.
147  */
148 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
149 {
150 	if (uptodate) {
151 		set_buffer_uptodate(bh);
152 	} else {
153 		/* This happens, due to failed read-ahead attempts. */
154 		clear_buffer_uptodate(bh);
155 	}
156 	unlock_buffer(bh);
157 }
158 
159 /*
160  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
161  * unlock the buffer. This is what ll_rw_block uses too.
162  */
163 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
164 {
165 	__end_buffer_read_notouch(bh, uptodate);
166 	put_bh(bh);
167 }
168 EXPORT_SYMBOL(end_buffer_read_sync);
169 
170 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
171 {
172 	if (uptodate) {
173 		set_buffer_uptodate(bh);
174 	} else {
175 		buffer_io_error(bh, ", lost sync page write");
176 		mark_buffer_write_io_error(bh);
177 		clear_buffer_uptodate(bh);
178 	}
179 	unlock_buffer(bh);
180 	put_bh(bh);
181 }
182 EXPORT_SYMBOL(end_buffer_write_sync);
183 
184 /*
185  * Various filesystems appear to want __find_get_block to be non-blocking.
186  * But it's the page lock which protects the buffers.  To get around this,
187  * we get exclusion from try_to_free_buffers with the blockdev mapping's
188  * private_lock.
189  *
190  * Hack idea: for the blockdev mapping, private_lock contention
191  * may be quite high.  This code could TryLock the page, and if that
192  * succeeds, there is no need to take private_lock.
193  */
194 static struct buffer_head *
195 __find_get_block_slow(struct block_device *bdev, sector_t block)
196 {
197 	struct inode *bd_inode = bdev->bd_inode;
198 	struct address_space *bd_mapping = bd_inode->i_mapping;
199 	struct buffer_head *ret = NULL;
200 	pgoff_t index;
201 	struct buffer_head *bh;
202 	struct buffer_head *head;
203 	struct page *page;
204 	int all_mapped = 1;
205 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
206 
207 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
208 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
209 	if (!page)
210 		goto out;
211 
212 	spin_lock(&bd_mapping->private_lock);
213 	if (!page_has_buffers(page))
214 		goto out_unlock;
215 	head = page_buffers(page);
216 	bh = head;
217 	do {
218 		if (!buffer_mapped(bh))
219 			all_mapped = 0;
220 		else if (bh->b_blocknr == block) {
221 			ret = bh;
222 			get_bh(bh);
223 			goto out_unlock;
224 		}
225 		bh = bh->b_this_page;
226 	} while (bh != head);
227 
228 	/* we might be here because some of the buffers on this page are
229 	 * not mapped.  This is due to various races between
230 	 * file io on the block device and getblk.  It gets dealt with
231 	 * elsewhere, don't buffer_error if we had some unmapped buffers
232 	 */
233 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
234 	if (all_mapped && __ratelimit(&last_warned)) {
235 		printk("__find_get_block_slow() failed. block=%llu, "
236 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
237 		       "device %pg blocksize: %d\n",
238 		       (unsigned long long)block,
239 		       (unsigned long long)bh->b_blocknr,
240 		       bh->b_state, bh->b_size, bdev,
241 		       1 << bd_inode->i_blkbits);
242 	}
243 out_unlock:
244 	spin_unlock(&bd_mapping->private_lock);
245 	put_page(page);
246 out:
247 	return ret;
248 }
249 
250 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
251 {
252 	unsigned long flags;
253 	struct buffer_head *first;
254 	struct buffer_head *tmp;
255 	struct page *page;
256 	int page_uptodate = 1;
257 
258 	BUG_ON(!buffer_async_read(bh));
259 
260 	page = bh->b_page;
261 	if (uptodate) {
262 		set_buffer_uptodate(bh);
263 	} else {
264 		clear_buffer_uptodate(bh);
265 		buffer_io_error(bh, ", async page read");
266 		SetPageError(page);
267 	}
268 
269 	/*
270 	 * Be _very_ careful from here on. Bad things can happen if
271 	 * two buffer heads end IO at almost the same time and both
272 	 * decide that the page is now completely done.
273 	 */
274 	first = page_buffers(page);
275 	local_irq_save(flags);
276 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
277 	clear_buffer_async_read(bh);
278 	unlock_buffer(bh);
279 	tmp = bh;
280 	do {
281 		if (!buffer_uptodate(tmp))
282 			page_uptodate = 0;
283 		if (buffer_async_read(tmp)) {
284 			BUG_ON(!buffer_locked(tmp));
285 			goto still_busy;
286 		}
287 		tmp = tmp->b_this_page;
288 	} while (tmp != bh);
289 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
290 	local_irq_restore(flags);
291 
292 	/*
293 	 * If none of the buffers had errors and they are all
294 	 * uptodate then we can set the page uptodate.
295 	 */
296 	if (page_uptodate && !PageError(page))
297 		SetPageUptodate(page);
298 	unlock_page(page);
299 	return;
300 
301 still_busy:
302 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
303 	local_irq_restore(flags);
304 	return;
305 }
306 
307 struct decrypt_bh_ctx {
308 	struct work_struct work;
309 	struct buffer_head *bh;
310 };
311 
312 static void decrypt_bh(struct work_struct *work)
313 {
314 	struct decrypt_bh_ctx *ctx =
315 		container_of(work, struct decrypt_bh_ctx, work);
316 	struct buffer_head *bh = ctx->bh;
317 	int err;
318 
319 	err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
320 					       bh_offset(bh));
321 	end_buffer_async_read(bh, err == 0);
322 	kfree(ctx);
323 }
324 
325 /*
326  * I/O completion handler for block_read_full_page() - pages
327  * which come unlocked at the end of I/O.
328  */
329 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
330 {
331 	/* Decrypt if needed */
332 	if (uptodate && IS_ENABLED(CONFIG_FS_ENCRYPTION) &&
333 	    IS_ENCRYPTED(bh->b_page->mapping->host) &&
334 	    S_ISREG(bh->b_page->mapping->host->i_mode)) {
335 		struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
336 
337 		if (ctx) {
338 			INIT_WORK(&ctx->work, decrypt_bh);
339 			ctx->bh = bh;
340 			fscrypt_enqueue_decrypt_work(&ctx->work);
341 			return;
342 		}
343 		uptodate = 0;
344 	}
345 	end_buffer_async_read(bh, uptodate);
346 }
347 
348 /*
349  * Completion handler for block_write_full_page() - pages which are unlocked
350  * during I/O, and which have PageWriteback cleared upon I/O completion.
351  */
352 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
353 {
354 	unsigned long flags;
355 	struct buffer_head *first;
356 	struct buffer_head *tmp;
357 	struct page *page;
358 
359 	BUG_ON(!buffer_async_write(bh));
360 
361 	page = bh->b_page;
362 	if (uptodate) {
363 		set_buffer_uptodate(bh);
364 	} else {
365 		buffer_io_error(bh, ", lost async page write");
366 		mark_buffer_write_io_error(bh);
367 		clear_buffer_uptodate(bh);
368 		SetPageError(page);
369 	}
370 
371 	first = page_buffers(page);
372 	local_irq_save(flags);
373 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
374 
375 	clear_buffer_async_write(bh);
376 	unlock_buffer(bh);
377 	tmp = bh->b_this_page;
378 	while (tmp != bh) {
379 		if (buffer_async_write(tmp)) {
380 			BUG_ON(!buffer_locked(tmp));
381 			goto still_busy;
382 		}
383 		tmp = tmp->b_this_page;
384 	}
385 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
386 	local_irq_restore(flags);
387 	end_page_writeback(page);
388 	return;
389 
390 still_busy:
391 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
392 	local_irq_restore(flags);
393 	return;
394 }
395 EXPORT_SYMBOL(end_buffer_async_write);
396 
397 /*
398  * If a page's buffers are under async readin (end_buffer_async_read
399  * completion) then there is a possibility that another thread of
400  * control could lock one of the buffers after it has completed
401  * but while some of the other buffers have not completed.  This
402  * locked buffer would confuse end_buffer_async_read() into not unlocking
403  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
404  * that this buffer is not under async I/O.
405  *
406  * The page comes unlocked when it has no locked buffer_async buffers
407  * left.
408  *
409  * PageLocked prevents anyone starting new async I/O reads any of
410  * the buffers.
411  *
412  * PageWriteback is used to prevent simultaneous writeout of the same
413  * page.
414  *
415  * PageLocked prevents anyone from starting writeback of a page which is
416  * under read I/O (PageWriteback is only ever set against a locked page).
417  */
418 static void mark_buffer_async_read(struct buffer_head *bh)
419 {
420 	bh->b_end_io = end_buffer_async_read_io;
421 	set_buffer_async_read(bh);
422 }
423 
424 static void mark_buffer_async_write_endio(struct buffer_head *bh,
425 					  bh_end_io_t *handler)
426 {
427 	bh->b_end_io = handler;
428 	set_buffer_async_write(bh);
429 }
430 
431 void mark_buffer_async_write(struct buffer_head *bh)
432 {
433 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
434 }
435 EXPORT_SYMBOL(mark_buffer_async_write);
436 
437 
438 /*
439  * fs/buffer.c contains helper functions for buffer-backed address space's
440  * fsync functions.  A common requirement for buffer-based filesystems is
441  * that certain data from the backing blockdev needs to be written out for
442  * a successful fsync().  For example, ext2 indirect blocks need to be
443  * written back and waited upon before fsync() returns.
444  *
445  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
446  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
447  * management of a list of dependent buffers at ->i_mapping->private_list.
448  *
449  * Locking is a little subtle: try_to_free_buffers() will remove buffers
450  * from their controlling inode's queue when they are being freed.  But
451  * try_to_free_buffers() will be operating against the *blockdev* mapping
452  * at the time, not against the S_ISREG file which depends on those buffers.
453  * So the locking for private_list is via the private_lock in the address_space
454  * which backs the buffers.  Which is different from the address_space
455  * against which the buffers are listed.  So for a particular address_space,
456  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
457  * mapping->private_list will always be protected by the backing blockdev's
458  * ->private_lock.
459  *
460  * Which introduces a requirement: all buffers on an address_space's
461  * ->private_list must be from the same address_space: the blockdev's.
462  *
463  * address_spaces which do not place buffers at ->private_list via these
464  * utility functions are free to use private_lock and private_list for
465  * whatever they want.  The only requirement is that list_empty(private_list)
466  * be true at clear_inode() time.
467  *
468  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
469  * filesystems should do that.  invalidate_inode_buffers() should just go
470  * BUG_ON(!list_empty).
471  *
472  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
473  * take an address_space, not an inode.  And it should be called
474  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
475  * queued up.
476  *
477  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
478  * list if it is already on a list.  Because if the buffer is on a list,
479  * it *must* already be on the right one.  If not, the filesystem is being
480  * silly.  This will save a ton of locking.  But first we have to ensure
481  * that buffers are taken *off* the old inode's list when they are freed
482  * (presumably in truncate).  That requires careful auditing of all
483  * filesystems (do it inside bforget()).  It could also be done by bringing
484  * b_inode back.
485  */
486 
487 /*
488  * The buffer's backing address_space's private_lock must be held
489  */
490 static void __remove_assoc_queue(struct buffer_head *bh)
491 {
492 	list_del_init(&bh->b_assoc_buffers);
493 	WARN_ON(!bh->b_assoc_map);
494 	bh->b_assoc_map = NULL;
495 }
496 
497 int inode_has_buffers(struct inode *inode)
498 {
499 	return !list_empty(&inode->i_data.private_list);
500 }
501 
502 /*
503  * osync is designed to support O_SYNC io.  It waits synchronously for
504  * all already-submitted IO to complete, but does not queue any new
505  * writes to the disk.
506  *
507  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
508  * you dirty the buffers, and then use osync_inode_buffers to wait for
509  * completion.  Any other dirty buffers which are not yet queued for
510  * write will not be flushed to disk by the osync.
511  */
512 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
513 {
514 	struct buffer_head *bh;
515 	struct list_head *p;
516 	int err = 0;
517 
518 	spin_lock(lock);
519 repeat:
520 	list_for_each_prev(p, list) {
521 		bh = BH_ENTRY(p);
522 		if (buffer_locked(bh)) {
523 			get_bh(bh);
524 			spin_unlock(lock);
525 			wait_on_buffer(bh);
526 			if (!buffer_uptodate(bh))
527 				err = -EIO;
528 			brelse(bh);
529 			spin_lock(lock);
530 			goto repeat;
531 		}
532 	}
533 	spin_unlock(lock);
534 	return err;
535 }
536 
537 void emergency_thaw_bdev(struct super_block *sb)
538 {
539 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
540 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
541 }
542 
543 /**
544  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
545  * @mapping: the mapping which wants those buffers written
546  *
547  * Starts I/O against the buffers at mapping->private_list, and waits upon
548  * that I/O.
549  *
550  * Basically, this is a convenience function for fsync().
551  * @mapping is a file or directory which needs those buffers to be written for
552  * a successful fsync().
553  */
554 int sync_mapping_buffers(struct address_space *mapping)
555 {
556 	struct address_space *buffer_mapping = mapping->private_data;
557 
558 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
559 		return 0;
560 
561 	return fsync_buffers_list(&buffer_mapping->private_lock,
562 					&mapping->private_list);
563 }
564 EXPORT_SYMBOL(sync_mapping_buffers);
565 
566 /*
567  * Called when we've recently written block `bblock', and it is known that
568  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
569  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
570  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
571  */
572 void write_boundary_block(struct block_device *bdev,
573 			sector_t bblock, unsigned blocksize)
574 {
575 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
576 	if (bh) {
577 		if (buffer_dirty(bh))
578 			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
579 		put_bh(bh);
580 	}
581 }
582 
583 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
584 {
585 	struct address_space *mapping = inode->i_mapping;
586 	struct address_space *buffer_mapping = bh->b_page->mapping;
587 
588 	mark_buffer_dirty(bh);
589 	if (!mapping->private_data) {
590 		mapping->private_data = buffer_mapping;
591 	} else {
592 		BUG_ON(mapping->private_data != buffer_mapping);
593 	}
594 	if (!bh->b_assoc_map) {
595 		spin_lock(&buffer_mapping->private_lock);
596 		list_move_tail(&bh->b_assoc_buffers,
597 				&mapping->private_list);
598 		bh->b_assoc_map = mapping;
599 		spin_unlock(&buffer_mapping->private_lock);
600 	}
601 }
602 EXPORT_SYMBOL(mark_buffer_dirty_inode);
603 
604 /*
605  * Mark the page dirty, and set it dirty in the page cache, and mark the inode
606  * dirty.
607  *
608  * If warn is true, then emit a warning if the page is not uptodate and has
609  * not been truncated.
610  *
611  * The caller must hold lock_page_memcg().
612  */
613 void __set_page_dirty(struct page *page, struct address_space *mapping,
614 			     int warn)
615 {
616 	unsigned long flags;
617 
618 	xa_lock_irqsave(&mapping->i_pages, flags);
619 	if (page->mapping) {	/* Race with truncate? */
620 		WARN_ON_ONCE(warn && !PageUptodate(page));
621 		account_page_dirtied(page, mapping);
622 		__xa_set_mark(&mapping->i_pages, page_index(page),
623 				PAGECACHE_TAG_DIRTY);
624 	}
625 	xa_unlock_irqrestore(&mapping->i_pages, flags);
626 }
627 EXPORT_SYMBOL_GPL(__set_page_dirty);
628 
629 /*
630  * Add a page to the dirty page list.
631  *
632  * It is a sad fact of life that this function is called from several places
633  * deeply under spinlocking.  It may not sleep.
634  *
635  * If the page has buffers, the uptodate buffers are set dirty, to preserve
636  * dirty-state coherency between the page and the buffers.  It the page does
637  * not have buffers then when they are later attached they will all be set
638  * dirty.
639  *
640  * The buffers are dirtied before the page is dirtied.  There's a small race
641  * window in which a writepage caller may see the page cleanness but not the
642  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
643  * before the buffers, a concurrent writepage caller could clear the page dirty
644  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
645  * page on the dirty page list.
646  *
647  * We use private_lock to lock against try_to_free_buffers while using the
648  * page's buffer list.  Also use this to protect against clean buffers being
649  * added to the page after it was set dirty.
650  *
651  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
652  * address_space though.
653  */
654 int __set_page_dirty_buffers(struct page *page)
655 {
656 	int newly_dirty;
657 	struct address_space *mapping = page_mapping(page);
658 
659 	if (unlikely(!mapping))
660 		return !TestSetPageDirty(page);
661 
662 	spin_lock(&mapping->private_lock);
663 	if (page_has_buffers(page)) {
664 		struct buffer_head *head = page_buffers(page);
665 		struct buffer_head *bh = head;
666 
667 		do {
668 			set_buffer_dirty(bh);
669 			bh = bh->b_this_page;
670 		} while (bh != head);
671 	}
672 	/*
673 	 * Lock out page->mem_cgroup migration to keep PageDirty
674 	 * synchronized with per-memcg dirty page counters.
675 	 */
676 	lock_page_memcg(page);
677 	newly_dirty = !TestSetPageDirty(page);
678 	spin_unlock(&mapping->private_lock);
679 
680 	if (newly_dirty)
681 		__set_page_dirty(page, mapping, 1);
682 
683 	unlock_page_memcg(page);
684 
685 	if (newly_dirty)
686 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
687 
688 	return newly_dirty;
689 }
690 EXPORT_SYMBOL(__set_page_dirty_buffers);
691 
692 /*
693  * Write out and wait upon a list of buffers.
694  *
695  * We have conflicting pressures: we want to make sure that all
696  * initially dirty buffers get waited on, but that any subsequently
697  * dirtied buffers don't.  After all, we don't want fsync to last
698  * forever if somebody is actively writing to the file.
699  *
700  * Do this in two main stages: first we copy dirty buffers to a
701  * temporary inode list, queueing the writes as we go.  Then we clean
702  * up, waiting for those writes to complete.
703  *
704  * During this second stage, any subsequent updates to the file may end
705  * up refiling the buffer on the original inode's dirty list again, so
706  * there is a chance we will end up with a buffer queued for write but
707  * not yet completed on that list.  So, as a final cleanup we go through
708  * the osync code to catch these locked, dirty buffers without requeuing
709  * any newly dirty buffers for write.
710  */
711 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
712 {
713 	struct buffer_head *bh;
714 	struct list_head tmp;
715 	struct address_space *mapping;
716 	int err = 0, err2;
717 	struct blk_plug plug;
718 
719 	INIT_LIST_HEAD(&tmp);
720 	blk_start_plug(&plug);
721 
722 	spin_lock(lock);
723 	while (!list_empty(list)) {
724 		bh = BH_ENTRY(list->next);
725 		mapping = bh->b_assoc_map;
726 		__remove_assoc_queue(bh);
727 		/* Avoid race with mark_buffer_dirty_inode() which does
728 		 * a lockless check and we rely on seeing the dirty bit */
729 		smp_mb();
730 		if (buffer_dirty(bh) || buffer_locked(bh)) {
731 			list_add(&bh->b_assoc_buffers, &tmp);
732 			bh->b_assoc_map = mapping;
733 			if (buffer_dirty(bh)) {
734 				get_bh(bh);
735 				spin_unlock(lock);
736 				/*
737 				 * Ensure any pending I/O completes so that
738 				 * write_dirty_buffer() actually writes the
739 				 * current contents - it is a noop if I/O is
740 				 * still in flight on potentially older
741 				 * contents.
742 				 */
743 				write_dirty_buffer(bh, REQ_SYNC);
744 
745 				/*
746 				 * Kick off IO for the previous mapping. Note
747 				 * that we will not run the very last mapping,
748 				 * wait_on_buffer() will do that for us
749 				 * through sync_buffer().
750 				 */
751 				brelse(bh);
752 				spin_lock(lock);
753 			}
754 		}
755 	}
756 
757 	spin_unlock(lock);
758 	blk_finish_plug(&plug);
759 	spin_lock(lock);
760 
761 	while (!list_empty(&tmp)) {
762 		bh = BH_ENTRY(tmp.prev);
763 		get_bh(bh);
764 		mapping = bh->b_assoc_map;
765 		__remove_assoc_queue(bh);
766 		/* Avoid race with mark_buffer_dirty_inode() which does
767 		 * a lockless check and we rely on seeing the dirty bit */
768 		smp_mb();
769 		if (buffer_dirty(bh)) {
770 			list_add(&bh->b_assoc_buffers,
771 				 &mapping->private_list);
772 			bh->b_assoc_map = mapping;
773 		}
774 		spin_unlock(lock);
775 		wait_on_buffer(bh);
776 		if (!buffer_uptodate(bh))
777 			err = -EIO;
778 		brelse(bh);
779 		spin_lock(lock);
780 	}
781 
782 	spin_unlock(lock);
783 	err2 = osync_buffers_list(lock, list);
784 	if (err)
785 		return err;
786 	else
787 		return err2;
788 }
789 
790 /*
791  * Invalidate any and all dirty buffers on a given inode.  We are
792  * probably unmounting the fs, but that doesn't mean we have already
793  * done a sync().  Just drop the buffers from the inode list.
794  *
795  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
796  * assumes that all the buffers are against the blockdev.  Not true
797  * for reiserfs.
798  */
799 void invalidate_inode_buffers(struct inode *inode)
800 {
801 	if (inode_has_buffers(inode)) {
802 		struct address_space *mapping = &inode->i_data;
803 		struct list_head *list = &mapping->private_list;
804 		struct address_space *buffer_mapping = mapping->private_data;
805 
806 		spin_lock(&buffer_mapping->private_lock);
807 		while (!list_empty(list))
808 			__remove_assoc_queue(BH_ENTRY(list->next));
809 		spin_unlock(&buffer_mapping->private_lock);
810 	}
811 }
812 EXPORT_SYMBOL(invalidate_inode_buffers);
813 
814 /*
815  * Remove any clean buffers from the inode's buffer list.  This is called
816  * when we're trying to free the inode itself.  Those buffers can pin it.
817  *
818  * Returns true if all buffers were removed.
819  */
820 int remove_inode_buffers(struct inode *inode)
821 {
822 	int ret = 1;
823 
824 	if (inode_has_buffers(inode)) {
825 		struct address_space *mapping = &inode->i_data;
826 		struct list_head *list = &mapping->private_list;
827 		struct address_space *buffer_mapping = mapping->private_data;
828 
829 		spin_lock(&buffer_mapping->private_lock);
830 		while (!list_empty(list)) {
831 			struct buffer_head *bh = BH_ENTRY(list->next);
832 			if (buffer_dirty(bh)) {
833 				ret = 0;
834 				break;
835 			}
836 			__remove_assoc_queue(bh);
837 		}
838 		spin_unlock(&buffer_mapping->private_lock);
839 	}
840 	return ret;
841 }
842 
843 /*
844  * Create the appropriate buffers when given a page for data area and
845  * the size of each buffer.. Use the bh->b_this_page linked list to
846  * follow the buffers created.  Return NULL if unable to create more
847  * buffers.
848  *
849  * The retry flag is used to differentiate async IO (paging, swapping)
850  * which may not fail from ordinary buffer allocations.
851  */
852 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
853 		bool retry)
854 {
855 	struct buffer_head *bh, *head;
856 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
857 	long offset;
858 	struct mem_cgroup *memcg;
859 
860 	if (retry)
861 		gfp |= __GFP_NOFAIL;
862 
863 	memcg = get_mem_cgroup_from_page(page);
864 	memalloc_use_memcg(memcg);
865 
866 	head = NULL;
867 	offset = PAGE_SIZE;
868 	while ((offset -= size) >= 0) {
869 		bh = alloc_buffer_head(gfp);
870 		if (!bh)
871 			goto no_grow;
872 
873 		bh->b_this_page = head;
874 		bh->b_blocknr = -1;
875 		head = bh;
876 
877 		bh->b_size = size;
878 
879 		/* Link the buffer to its page */
880 		set_bh_page(bh, page, offset);
881 	}
882 out:
883 	memalloc_unuse_memcg();
884 	mem_cgroup_put(memcg);
885 	return head;
886 /*
887  * In case anything failed, we just free everything we got.
888  */
889 no_grow:
890 	if (head) {
891 		do {
892 			bh = head;
893 			head = head->b_this_page;
894 			free_buffer_head(bh);
895 		} while (head);
896 	}
897 
898 	goto out;
899 }
900 EXPORT_SYMBOL_GPL(alloc_page_buffers);
901 
902 static inline void
903 link_dev_buffers(struct page *page, struct buffer_head *head)
904 {
905 	struct buffer_head *bh, *tail;
906 
907 	bh = head;
908 	do {
909 		tail = bh;
910 		bh = bh->b_this_page;
911 	} while (bh);
912 	tail->b_this_page = head;
913 	attach_page_buffers(page, head);
914 }
915 
916 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
917 {
918 	sector_t retval = ~((sector_t)0);
919 	loff_t sz = i_size_read(bdev->bd_inode);
920 
921 	if (sz) {
922 		unsigned int sizebits = blksize_bits(size);
923 		retval = (sz >> sizebits);
924 	}
925 	return retval;
926 }
927 
928 /*
929  * Initialise the state of a blockdev page's buffers.
930  */
931 static sector_t
932 init_page_buffers(struct page *page, struct block_device *bdev,
933 			sector_t block, int size)
934 {
935 	struct buffer_head *head = page_buffers(page);
936 	struct buffer_head *bh = head;
937 	int uptodate = PageUptodate(page);
938 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
939 
940 	do {
941 		if (!buffer_mapped(bh)) {
942 			bh->b_end_io = NULL;
943 			bh->b_private = NULL;
944 			bh->b_bdev = bdev;
945 			bh->b_blocknr = block;
946 			if (uptodate)
947 				set_buffer_uptodate(bh);
948 			if (block < end_block)
949 				set_buffer_mapped(bh);
950 		}
951 		block++;
952 		bh = bh->b_this_page;
953 	} while (bh != head);
954 
955 	/*
956 	 * Caller needs to validate requested block against end of device.
957 	 */
958 	return end_block;
959 }
960 
961 /*
962  * Create the page-cache page that contains the requested block.
963  *
964  * This is used purely for blockdev mappings.
965  */
966 static int
967 grow_dev_page(struct block_device *bdev, sector_t block,
968 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
969 {
970 	struct inode *inode = bdev->bd_inode;
971 	struct page *page;
972 	struct buffer_head *bh;
973 	sector_t end_block;
974 	int ret = 0;		/* Will call free_more_memory() */
975 	gfp_t gfp_mask;
976 
977 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
978 
979 	/*
980 	 * XXX: __getblk_slow() can not really deal with failure and
981 	 * will endlessly loop on improvised global reclaim.  Prefer
982 	 * looping in the allocator rather than here, at least that
983 	 * code knows what it's doing.
984 	 */
985 	gfp_mask |= __GFP_NOFAIL;
986 
987 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
988 
989 	BUG_ON(!PageLocked(page));
990 
991 	if (page_has_buffers(page)) {
992 		bh = page_buffers(page);
993 		if (bh->b_size == size) {
994 			end_block = init_page_buffers(page, bdev,
995 						(sector_t)index << sizebits,
996 						size);
997 			goto done;
998 		}
999 		if (!try_to_free_buffers(page))
1000 			goto failed;
1001 	}
1002 
1003 	/*
1004 	 * Allocate some buffers for this page
1005 	 */
1006 	bh = alloc_page_buffers(page, size, true);
1007 
1008 	/*
1009 	 * Link the page to the buffers and initialise them.  Take the
1010 	 * lock to be atomic wrt __find_get_block(), which does not
1011 	 * run under the page lock.
1012 	 */
1013 	spin_lock(&inode->i_mapping->private_lock);
1014 	link_dev_buffers(page, bh);
1015 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1016 			size);
1017 	spin_unlock(&inode->i_mapping->private_lock);
1018 done:
1019 	ret = (block < end_block) ? 1 : -ENXIO;
1020 failed:
1021 	unlock_page(page);
1022 	put_page(page);
1023 	return ret;
1024 }
1025 
1026 /*
1027  * Create buffers for the specified block device block's page.  If
1028  * that page was dirty, the buffers are set dirty also.
1029  */
1030 static int
1031 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1032 {
1033 	pgoff_t index;
1034 	int sizebits;
1035 
1036 	sizebits = -1;
1037 	do {
1038 		sizebits++;
1039 	} while ((size << sizebits) < PAGE_SIZE);
1040 
1041 	index = block >> sizebits;
1042 
1043 	/*
1044 	 * Check for a block which wants to lie outside our maximum possible
1045 	 * pagecache index.  (this comparison is done using sector_t types).
1046 	 */
1047 	if (unlikely(index != block >> sizebits)) {
1048 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1049 			"device %pg\n",
1050 			__func__, (unsigned long long)block,
1051 			bdev);
1052 		return -EIO;
1053 	}
1054 
1055 	/* Create a page with the proper size buffers.. */
1056 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1057 }
1058 
1059 static struct buffer_head *
1060 __getblk_slow(struct block_device *bdev, sector_t block,
1061 	     unsigned size, gfp_t gfp)
1062 {
1063 	/* Size must be multiple of hard sectorsize */
1064 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1065 			(size < 512 || size > PAGE_SIZE))) {
1066 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1067 					size);
1068 		printk(KERN_ERR "logical block size: %d\n",
1069 					bdev_logical_block_size(bdev));
1070 
1071 		dump_stack();
1072 		return NULL;
1073 	}
1074 
1075 	for (;;) {
1076 		struct buffer_head *bh;
1077 		int ret;
1078 
1079 		bh = __find_get_block(bdev, block, size);
1080 		if (bh)
1081 			return bh;
1082 
1083 		ret = grow_buffers(bdev, block, size, gfp);
1084 		if (ret < 0)
1085 			return NULL;
1086 	}
1087 }
1088 
1089 /*
1090  * The relationship between dirty buffers and dirty pages:
1091  *
1092  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1093  * the page is tagged dirty in the page cache.
1094  *
1095  * At all times, the dirtiness of the buffers represents the dirtiness of
1096  * subsections of the page.  If the page has buffers, the page dirty bit is
1097  * merely a hint about the true dirty state.
1098  *
1099  * When a page is set dirty in its entirety, all its buffers are marked dirty
1100  * (if the page has buffers).
1101  *
1102  * When a buffer is marked dirty, its page is dirtied, but the page's other
1103  * buffers are not.
1104  *
1105  * Also.  When blockdev buffers are explicitly read with bread(), they
1106  * individually become uptodate.  But their backing page remains not
1107  * uptodate - even if all of its buffers are uptodate.  A subsequent
1108  * block_read_full_page() against that page will discover all the uptodate
1109  * buffers, will set the page uptodate and will perform no I/O.
1110  */
1111 
1112 /**
1113  * mark_buffer_dirty - mark a buffer_head as needing writeout
1114  * @bh: the buffer_head to mark dirty
1115  *
1116  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1117  * its backing page dirty, then tag the page as dirty in the page cache
1118  * and then attach the address_space's inode to its superblock's dirty
1119  * inode list.
1120  *
1121  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1122  * i_pages lock and mapping->host->i_lock.
1123  */
1124 void mark_buffer_dirty(struct buffer_head *bh)
1125 {
1126 	WARN_ON_ONCE(!buffer_uptodate(bh));
1127 
1128 	trace_block_dirty_buffer(bh);
1129 
1130 	/*
1131 	 * Very *carefully* optimize the it-is-already-dirty case.
1132 	 *
1133 	 * Don't let the final "is it dirty" escape to before we
1134 	 * perhaps modified the buffer.
1135 	 */
1136 	if (buffer_dirty(bh)) {
1137 		smp_mb();
1138 		if (buffer_dirty(bh))
1139 			return;
1140 	}
1141 
1142 	if (!test_set_buffer_dirty(bh)) {
1143 		struct page *page = bh->b_page;
1144 		struct address_space *mapping = NULL;
1145 
1146 		lock_page_memcg(page);
1147 		if (!TestSetPageDirty(page)) {
1148 			mapping = page_mapping(page);
1149 			if (mapping)
1150 				__set_page_dirty(page, mapping, 0);
1151 		}
1152 		unlock_page_memcg(page);
1153 		if (mapping)
1154 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1155 	}
1156 }
1157 EXPORT_SYMBOL(mark_buffer_dirty);
1158 
1159 void mark_buffer_write_io_error(struct buffer_head *bh)
1160 {
1161 	set_buffer_write_io_error(bh);
1162 	/* FIXME: do we need to set this in both places? */
1163 	if (bh->b_page && bh->b_page->mapping)
1164 		mapping_set_error(bh->b_page->mapping, -EIO);
1165 	if (bh->b_assoc_map)
1166 		mapping_set_error(bh->b_assoc_map, -EIO);
1167 }
1168 EXPORT_SYMBOL(mark_buffer_write_io_error);
1169 
1170 /*
1171  * Decrement a buffer_head's reference count.  If all buffers against a page
1172  * have zero reference count, are clean and unlocked, and if the page is clean
1173  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1174  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1175  * a page but it ends up not being freed, and buffers may later be reattached).
1176  */
1177 void __brelse(struct buffer_head * buf)
1178 {
1179 	if (atomic_read(&buf->b_count)) {
1180 		put_bh(buf);
1181 		return;
1182 	}
1183 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1184 }
1185 EXPORT_SYMBOL(__brelse);
1186 
1187 /*
1188  * bforget() is like brelse(), except it discards any
1189  * potentially dirty data.
1190  */
1191 void __bforget(struct buffer_head *bh)
1192 {
1193 	clear_buffer_dirty(bh);
1194 	if (bh->b_assoc_map) {
1195 		struct address_space *buffer_mapping = bh->b_page->mapping;
1196 
1197 		spin_lock(&buffer_mapping->private_lock);
1198 		list_del_init(&bh->b_assoc_buffers);
1199 		bh->b_assoc_map = NULL;
1200 		spin_unlock(&buffer_mapping->private_lock);
1201 	}
1202 	__brelse(bh);
1203 }
1204 EXPORT_SYMBOL(__bforget);
1205 
1206 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1207 {
1208 	lock_buffer(bh);
1209 	if (buffer_uptodate(bh)) {
1210 		unlock_buffer(bh);
1211 		return bh;
1212 	} else {
1213 		get_bh(bh);
1214 		bh->b_end_io = end_buffer_read_sync;
1215 		submit_bh(REQ_OP_READ, 0, bh);
1216 		wait_on_buffer(bh);
1217 		if (buffer_uptodate(bh))
1218 			return bh;
1219 	}
1220 	brelse(bh);
1221 	return NULL;
1222 }
1223 
1224 /*
1225  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1226  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1227  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1228  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1229  * CPU's LRUs at the same time.
1230  *
1231  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1232  * sb_find_get_block().
1233  *
1234  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1235  * a local interrupt disable for that.
1236  */
1237 
1238 #define BH_LRU_SIZE	16
1239 
1240 struct bh_lru {
1241 	struct buffer_head *bhs[BH_LRU_SIZE];
1242 };
1243 
1244 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1245 
1246 #ifdef CONFIG_SMP
1247 #define bh_lru_lock()	local_irq_disable()
1248 #define bh_lru_unlock()	local_irq_enable()
1249 #else
1250 #define bh_lru_lock()	preempt_disable()
1251 #define bh_lru_unlock()	preempt_enable()
1252 #endif
1253 
1254 static inline void check_irqs_on(void)
1255 {
1256 #ifdef irqs_disabled
1257 	BUG_ON(irqs_disabled());
1258 #endif
1259 }
1260 
1261 /*
1262  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1263  * inserted at the front, and the buffer_head at the back if any is evicted.
1264  * Or, if already in the LRU it is moved to the front.
1265  */
1266 static void bh_lru_install(struct buffer_head *bh)
1267 {
1268 	struct buffer_head *evictee = bh;
1269 	struct bh_lru *b;
1270 	int i;
1271 
1272 	check_irqs_on();
1273 	bh_lru_lock();
1274 
1275 	b = this_cpu_ptr(&bh_lrus);
1276 	for (i = 0; i < BH_LRU_SIZE; i++) {
1277 		swap(evictee, b->bhs[i]);
1278 		if (evictee == bh) {
1279 			bh_lru_unlock();
1280 			return;
1281 		}
1282 	}
1283 
1284 	get_bh(bh);
1285 	bh_lru_unlock();
1286 	brelse(evictee);
1287 }
1288 
1289 /*
1290  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1291  */
1292 static struct buffer_head *
1293 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1294 {
1295 	struct buffer_head *ret = NULL;
1296 	unsigned int i;
1297 
1298 	check_irqs_on();
1299 	bh_lru_lock();
1300 	for (i = 0; i < BH_LRU_SIZE; i++) {
1301 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1302 
1303 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1304 		    bh->b_size == size) {
1305 			if (i) {
1306 				while (i) {
1307 					__this_cpu_write(bh_lrus.bhs[i],
1308 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1309 					i--;
1310 				}
1311 				__this_cpu_write(bh_lrus.bhs[0], bh);
1312 			}
1313 			get_bh(bh);
1314 			ret = bh;
1315 			break;
1316 		}
1317 	}
1318 	bh_lru_unlock();
1319 	return ret;
1320 }
1321 
1322 /*
1323  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1324  * it in the LRU and mark it as accessed.  If it is not present then return
1325  * NULL
1326  */
1327 struct buffer_head *
1328 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1329 {
1330 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1331 
1332 	if (bh == NULL) {
1333 		/* __find_get_block_slow will mark the page accessed */
1334 		bh = __find_get_block_slow(bdev, block);
1335 		if (bh)
1336 			bh_lru_install(bh);
1337 	} else
1338 		touch_buffer(bh);
1339 
1340 	return bh;
1341 }
1342 EXPORT_SYMBOL(__find_get_block);
1343 
1344 /*
1345  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1346  * which corresponds to the passed block_device, block and size. The
1347  * returned buffer has its reference count incremented.
1348  *
1349  * __getblk_gfp() will lock up the machine if grow_dev_page's
1350  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1351  */
1352 struct buffer_head *
1353 __getblk_gfp(struct block_device *bdev, sector_t block,
1354 	     unsigned size, gfp_t gfp)
1355 {
1356 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1357 
1358 	might_sleep();
1359 	if (bh == NULL)
1360 		bh = __getblk_slow(bdev, block, size, gfp);
1361 	return bh;
1362 }
1363 EXPORT_SYMBOL(__getblk_gfp);
1364 
1365 /*
1366  * Do async read-ahead on a buffer..
1367  */
1368 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1369 {
1370 	struct buffer_head *bh = __getblk(bdev, block, size);
1371 	if (likely(bh)) {
1372 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1373 		brelse(bh);
1374 	}
1375 }
1376 EXPORT_SYMBOL(__breadahead);
1377 
1378 /**
1379  *  __bread_gfp() - reads a specified block and returns the bh
1380  *  @bdev: the block_device to read from
1381  *  @block: number of block
1382  *  @size: size (in bytes) to read
1383  *  @gfp: page allocation flag
1384  *
1385  *  Reads a specified block, and returns buffer head that contains it.
1386  *  The page cache can be allocated from non-movable area
1387  *  not to prevent page migration if you set gfp to zero.
1388  *  It returns NULL if the block was unreadable.
1389  */
1390 struct buffer_head *
1391 __bread_gfp(struct block_device *bdev, sector_t block,
1392 		   unsigned size, gfp_t gfp)
1393 {
1394 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1395 
1396 	if (likely(bh) && !buffer_uptodate(bh))
1397 		bh = __bread_slow(bh);
1398 	return bh;
1399 }
1400 EXPORT_SYMBOL(__bread_gfp);
1401 
1402 /*
1403  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1404  * This doesn't race because it runs in each cpu either in irq
1405  * or with preempt disabled.
1406  */
1407 static void invalidate_bh_lru(void *arg)
1408 {
1409 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1410 	int i;
1411 
1412 	for (i = 0; i < BH_LRU_SIZE; i++) {
1413 		brelse(b->bhs[i]);
1414 		b->bhs[i] = NULL;
1415 	}
1416 	put_cpu_var(bh_lrus);
1417 }
1418 
1419 static bool has_bh_in_lru(int cpu, void *dummy)
1420 {
1421 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1422 	int i;
1423 
1424 	for (i = 0; i < BH_LRU_SIZE; i++) {
1425 		if (b->bhs[i])
1426 			return 1;
1427 	}
1428 
1429 	return 0;
1430 }
1431 
1432 void invalidate_bh_lrus(void)
1433 {
1434 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1435 }
1436 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1437 
1438 void set_bh_page(struct buffer_head *bh,
1439 		struct page *page, unsigned long offset)
1440 {
1441 	bh->b_page = page;
1442 	BUG_ON(offset >= PAGE_SIZE);
1443 	if (PageHighMem(page))
1444 		/*
1445 		 * This catches illegal uses and preserves the offset:
1446 		 */
1447 		bh->b_data = (char *)(0 + offset);
1448 	else
1449 		bh->b_data = page_address(page) + offset;
1450 }
1451 EXPORT_SYMBOL(set_bh_page);
1452 
1453 /*
1454  * Called when truncating a buffer on a page completely.
1455  */
1456 
1457 /* Bits that are cleared during an invalidate */
1458 #define BUFFER_FLAGS_DISCARD \
1459 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1460 	 1 << BH_Delay | 1 << BH_Unwritten)
1461 
1462 static void discard_buffer(struct buffer_head * bh)
1463 {
1464 	unsigned long b_state, b_state_old;
1465 
1466 	lock_buffer(bh);
1467 	clear_buffer_dirty(bh);
1468 	bh->b_bdev = NULL;
1469 	b_state = bh->b_state;
1470 	for (;;) {
1471 		b_state_old = cmpxchg(&bh->b_state, b_state,
1472 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1473 		if (b_state_old == b_state)
1474 			break;
1475 		b_state = b_state_old;
1476 	}
1477 	unlock_buffer(bh);
1478 }
1479 
1480 /**
1481  * block_invalidatepage - invalidate part or all of a buffer-backed page
1482  *
1483  * @page: the page which is affected
1484  * @offset: start of the range to invalidate
1485  * @length: length of the range to invalidate
1486  *
1487  * block_invalidatepage() is called when all or part of the page has become
1488  * invalidated by a truncate operation.
1489  *
1490  * block_invalidatepage() does not have to release all buffers, but it must
1491  * ensure that no dirty buffer is left outside @offset and that no I/O
1492  * is underway against any of the blocks which are outside the truncation
1493  * point.  Because the caller is about to free (and possibly reuse) those
1494  * blocks on-disk.
1495  */
1496 void block_invalidatepage(struct page *page, unsigned int offset,
1497 			  unsigned int length)
1498 {
1499 	struct buffer_head *head, *bh, *next;
1500 	unsigned int curr_off = 0;
1501 	unsigned int stop = length + offset;
1502 
1503 	BUG_ON(!PageLocked(page));
1504 	if (!page_has_buffers(page))
1505 		goto out;
1506 
1507 	/*
1508 	 * Check for overflow
1509 	 */
1510 	BUG_ON(stop > PAGE_SIZE || stop < length);
1511 
1512 	head = page_buffers(page);
1513 	bh = head;
1514 	do {
1515 		unsigned int next_off = curr_off + bh->b_size;
1516 		next = bh->b_this_page;
1517 
1518 		/*
1519 		 * Are we still fully in range ?
1520 		 */
1521 		if (next_off > stop)
1522 			goto out;
1523 
1524 		/*
1525 		 * is this block fully invalidated?
1526 		 */
1527 		if (offset <= curr_off)
1528 			discard_buffer(bh);
1529 		curr_off = next_off;
1530 		bh = next;
1531 	} while (bh != head);
1532 
1533 	/*
1534 	 * We release buffers only if the entire page is being invalidated.
1535 	 * The get_block cached value has been unconditionally invalidated,
1536 	 * so real IO is not possible anymore.
1537 	 */
1538 	if (length == PAGE_SIZE)
1539 		try_to_release_page(page, 0);
1540 out:
1541 	return;
1542 }
1543 EXPORT_SYMBOL(block_invalidatepage);
1544 
1545 
1546 /*
1547  * We attach and possibly dirty the buffers atomically wrt
1548  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1549  * is already excluded via the page lock.
1550  */
1551 void create_empty_buffers(struct page *page,
1552 			unsigned long blocksize, unsigned long b_state)
1553 {
1554 	struct buffer_head *bh, *head, *tail;
1555 
1556 	head = alloc_page_buffers(page, blocksize, true);
1557 	bh = head;
1558 	do {
1559 		bh->b_state |= b_state;
1560 		tail = bh;
1561 		bh = bh->b_this_page;
1562 	} while (bh);
1563 	tail->b_this_page = head;
1564 
1565 	spin_lock(&page->mapping->private_lock);
1566 	if (PageUptodate(page) || PageDirty(page)) {
1567 		bh = head;
1568 		do {
1569 			if (PageDirty(page))
1570 				set_buffer_dirty(bh);
1571 			if (PageUptodate(page))
1572 				set_buffer_uptodate(bh);
1573 			bh = bh->b_this_page;
1574 		} while (bh != head);
1575 	}
1576 	attach_page_buffers(page, head);
1577 	spin_unlock(&page->mapping->private_lock);
1578 }
1579 EXPORT_SYMBOL(create_empty_buffers);
1580 
1581 /**
1582  * clean_bdev_aliases: clean a range of buffers in block device
1583  * @bdev: Block device to clean buffers in
1584  * @block: Start of a range of blocks to clean
1585  * @len: Number of blocks to clean
1586  *
1587  * We are taking a range of blocks for data and we don't want writeback of any
1588  * buffer-cache aliases starting from return from this function and until the
1589  * moment when something will explicitly mark the buffer dirty (hopefully that
1590  * will not happen until we will free that block ;-) We don't even need to mark
1591  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1592  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1593  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1594  * would confuse anyone who might pick it with bread() afterwards...
1595  *
1596  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1597  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1598  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1599  * need to.  That happens here.
1600  */
1601 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1602 {
1603 	struct inode *bd_inode = bdev->bd_inode;
1604 	struct address_space *bd_mapping = bd_inode->i_mapping;
1605 	struct pagevec pvec;
1606 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1607 	pgoff_t end;
1608 	int i, count;
1609 	struct buffer_head *bh;
1610 	struct buffer_head *head;
1611 
1612 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1613 	pagevec_init(&pvec);
1614 	while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1615 		count = pagevec_count(&pvec);
1616 		for (i = 0; i < count; i++) {
1617 			struct page *page = pvec.pages[i];
1618 
1619 			if (!page_has_buffers(page))
1620 				continue;
1621 			/*
1622 			 * We use page lock instead of bd_mapping->private_lock
1623 			 * to pin buffers here since we can afford to sleep and
1624 			 * it scales better than a global spinlock lock.
1625 			 */
1626 			lock_page(page);
1627 			/* Recheck when the page is locked which pins bhs */
1628 			if (!page_has_buffers(page))
1629 				goto unlock_page;
1630 			head = page_buffers(page);
1631 			bh = head;
1632 			do {
1633 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1634 					goto next;
1635 				if (bh->b_blocknr >= block + len)
1636 					break;
1637 				clear_buffer_dirty(bh);
1638 				wait_on_buffer(bh);
1639 				clear_buffer_req(bh);
1640 next:
1641 				bh = bh->b_this_page;
1642 			} while (bh != head);
1643 unlock_page:
1644 			unlock_page(page);
1645 		}
1646 		pagevec_release(&pvec);
1647 		cond_resched();
1648 		/* End of range already reached? */
1649 		if (index > end || !index)
1650 			break;
1651 	}
1652 }
1653 EXPORT_SYMBOL(clean_bdev_aliases);
1654 
1655 /*
1656  * Size is a power-of-two in the range 512..PAGE_SIZE,
1657  * and the case we care about most is PAGE_SIZE.
1658  *
1659  * So this *could* possibly be written with those
1660  * constraints in mind (relevant mostly if some
1661  * architecture has a slow bit-scan instruction)
1662  */
1663 static inline int block_size_bits(unsigned int blocksize)
1664 {
1665 	return ilog2(blocksize);
1666 }
1667 
1668 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1669 {
1670 	BUG_ON(!PageLocked(page));
1671 
1672 	if (!page_has_buffers(page))
1673 		create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1674 				     b_state);
1675 	return page_buffers(page);
1676 }
1677 
1678 /*
1679  * NOTE! All mapped/uptodate combinations are valid:
1680  *
1681  *	Mapped	Uptodate	Meaning
1682  *
1683  *	No	No		"unknown" - must do get_block()
1684  *	No	Yes		"hole" - zero-filled
1685  *	Yes	No		"allocated" - allocated on disk, not read in
1686  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1687  *
1688  * "Dirty" is valid only with the last case (mapped+uptodate).
1689  */
1690 
1691 /*
1692  * While block_write_full_page is writing back the dirty buffers under
1693  * the page lock, whoever dirtied the buffers may decide to clean them
1694  * again at any time.  We handle that by only looking at the buffer
1695  * state inside lock_buffer().
1696  *
1697  * If block_write_full_page() is called for regular writeback
1698  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1699  * locked buffer.   This only can happen if someone has written the buffer
1700  * directly, with submit_bh().  At the address_space level PageWriteback
1701  * prevents this contention from occurring.
1702  *
1703  * If block_write_full_page() is called with wbc->sync_mode ==
1704  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1705  * causes the writes to be flagged as synchronous writes.
1706  */
1707 int __block_write_full_page(struct inode *inode, struct page *page,
1708 			get_block_t *get_block, struct writeback_control *wbc,
1709 			bh_end_io_t *handler)
1710 {
1711 	int err;
1712 	sector_t block;
1713 	sector_t last_block;
1714 	struct buffer_head *bh, *head;
1715 	unsigned int blocksize, bbits;
1716 	int nr_underway = 0;
1717 	int write_flags = wbc_to_write_flags(wbc);
1718 
1719 	head = create_page_buffers(page, inode,
1720 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1721 
1722 	/*
1723 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1724 	 * here, and the (potentially unmapped) buffers may become dirty at
1725 	 * any time.  If a buffer becomes dirty here after we've inspected it
1726 	 * then we just miss that fact, and the page stays dirty.
1727 	 *
1728 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1729 	 * handle that here by just cleaning them.
1730 	 */
1731 
1732 	bh = head;
1733 	blocksize = bh->b_size;
1734 	bbits = block_size_bits(blocksize);
1735 
1736 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1737 	last_block = (i_size_read(inode) - 1) >> bbits;
1738 
1739 	/*
1740 	 * Get all the dirty buffers mapped to disk addresses and
1741 	 * handle any aliases from the underlying blockdev's mapping.
1742 	 */
1743 	do {
1744 		if (block > last_block) {
1745 			/*
1746 			 * mapped buffers outside i_size will occur, because
1747 			 * this page can be outside i_size when there is a
1748 			 * truncate in progress.
1749 			 */
1750 			/*
1751 			 * The buffer was zeroed by block_write_full_page()
1752 			 */
1753 			clear_buffer_dirty(bh);
1754 			set_buffer_uptodate(bh);
1755 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1756 			   buffer_dirty(bh)) {
1757 			WARN_ON(bh->b_size != blocksize);
1758 			err = get_block(inode, block, bh, 1);
1759 			if (err)
1760 				goto recover;
1761 			clear_buffer_delay(bh);
1762 			if (buffer_new(bh)) {
1763 				/* blockdev mappings never come here */
1764 				clear_buffer_new(bh);
1765 				clean_bdev_bh_alias(bh);
1766 			}
1767 		}
1768 		bh = bh->b_this_page;
1769 		block++;
1770 	} while (bh != head);
1771 
1772 	do {
1773 		if (!buffer_mapped(bh))
1774 			continue;
1775 		/*
1776 		 * If it's a fully non-blocking write attempt and we cannot
1777 		 * lock the buffer then redirty the page.  Note that this can
1778 		 * potentially cause a busy-wait loop from writeback threads
1779 		 * and kswapd activity, but those code paths have their own
1780 		 * higher-level throttling.
1781 		 */
1782 		if (wbc->sync_mode != WB_SYNC_NONE) {
1783 			lock_buffer(bh);
1784 		} else if (!trylock_buffer(bh)) {
1785 			redirty_page_for_writepage(wbc, page);
1786 			continue;
1787 		}
1788 		if (test_clear_buffer_dirty(bh)) {
1789 			mark_buffer_async_write_endio(bh, handler);
1790 		} else {
1791 			unlock_buffer(bh);
1792 		}
1793 	} while ((bh = bh->b_this_page) != head);
1794 
1795 	/*
1796 	 * The page and its buffers are protected by PageWriteback(), so we can
1797 	 * drop the bh refcounts early.
1798 	 */
1799 	BUG_ON(PageWriteback(page));
1800 	set_page_writeback(page);
1801 
1802 	do {
1803 		struct buffer_head *next = bh->b_this_page;
1804 		if (buffer_async_write(bh)) {
1805 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1806 					inode->i_write_hint, wbc);
1807 			nr_underway++;
1808 		}
1809 		bh = next;
1810 	} while (bh != head);
1811 	unlock_page(page);
1812 
1813 	err = 0;
1814 done:
1815 	if (nr_underway == 0) {
1816 		/*
1817 		 * The page was marked dirty, but the buffers were
1818 		 * clean.  Someone wrote them back by hand with
1819 		 * ll_rw_block/submit_bh.  A rare case.
1820 		 */
1821 		end_page_writeback(page);
1822 
1823 		/*
1824 		 * The page and buffer_heads can be released at any time from
1825 		 * here on.
1826 		 */
1827 	}
1828 	return err;
1829 
1830 recover:
1831 	/*
1832 	 * ENOSPC, or some other error.  We may already have added some
1833 	 * blocks to the file, so we need to write these out to avoid
1834 	 * exposing stale data.
1835 	 * The page is currently locked and not marked for writeback
1836 	 */
1837 	bh = head;
1838 	/* Recovery: lock and submit the mapped buffers */
1839 	do {
1840 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1841 		    !buffer_delay(bh)) {
1842 			lock_buffer(bh);
1843 			mark_buffer_async_write_endio(bh, handler);
1844 		} else {
1845 			/*
1846 			 * The buffer may have been set dirty during
1847 			 * attachment to a dirty page.
1848 			 */
1849 			clear_buffer_dirty(bh);
1850 		}
1851 	} while ((bh = bh->b_this_page) != head);
1852 	SetPageError(page);
1853 	BUG_ON(PageWriteback(page));
1854 	mapping_set_error(page->mapping, err);
1855 	set_page_writeback(page);
1856 	do {
1857 		struct buffer_head *next = bh->b_this_page;
1858 		if (buffer_async_write(bh)) {
1859 			clear_buffer_dirty(bh);
1860 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1861 					inode->i_write_hint, wbc);
1862 			nr_underway++;
1863 		}
1864 		bh = next;
1865 	} while (bh != head);
1866 	unlock_page(page);
1867 	goto done;
1868 }
1869 EXPORT_SYMBOL(__block_write_full_page);
1870 
1871 /*
1872  * If a page has any new buffers, zero them out here, and mark them uptodate
1873  * and dirty so they'll be written out (in order to prevent uninitialised
1874  * block data from leaking). And clear the new bit.
1875  */
1876 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1877 {
1878 	unsigned int block_start, block_end;
1879 	struct buffer_head *head, *bh;
1880 
1881 	BUG_ON(!PageLocked(page));
1882 	if (!page_has_buffers(page))
1883 		return;
1884 
1885 	bh = head = page_buffers(page);
1886 	block_start = 0;
1887 	do {
1888 		block_end = block_start + bh->b_size;
1889 
1890 		if (buffer_new(bh)) {
1891 			if (block_end > from && block_start < to) {
1892 				if (!PageUptodate(page)) {
1893 					unsigned start, size;
1894 
1895 					start = max(from, block_start);
1896 					size = min(to, block_end) - start;
1897 
1898 					zero_user(page, start, size);
1899 					set_buffer_uptodate(bh);
1900 				}
1901 
1902 				clear_buffer_new(bh);
1903 				mark_buffer_dirty(bh);
1904 			}
1905 		}
1906 
1907 		block_start = block_end;
1908 		bh = bh->b_this_page;
1909 	} while (bh != head);
1910 }
1911 EXPORT_SYMBOL(page_zero_new_buffers);
1912 
1913 static void
1914 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1915 		struct iomap *iomap)
1916 {
1917 	loff_t offset = block << inode->i_blkbits;
1918 
1919 	bh->b_bdev = iomap->bdev;
1920 
1921 	/*
1922 	 * Block points to offset in file we need to map, iomap contains
1923 	 * the offset at which the map starts. If the map ends before the
1924 	 * current block, then do not map the buffer and let the caller
1925 	 * handle it.
1926 	 */
1927 	BUG_ON(offset >= iomap->offset + iomap->length);
1928 
1929 	switch (iomap->type) {
1930 	case IOMAP_HOLE:
1931 		/*
1932 		 * If the buffer is not up to date or beyond the current EOF,
1933 		 * we need to mark it as new to ensure sub-block zeroing is
1934 		 * executed if necessary.
1935 		 */
1936 		if (!buffer_uptodate(bh) ||
1937 		    (offset >= i_size_read(inode)))
1938 			set_buffer_new(bh);
1939 		break;
1940 	case IOMAP_DELALLOC:
1941 		if (!buffer_uptodate(bh) ||
1942 		    (offset >= i_size_read(inode)))
1943 			set_buffer_new(bh);
1944 		set_buffer_uptodate(bh);
1945 		set_buffer_mapped(bh);
1946 		set_buffer_delay(bh);
1947 		break;
1948 	case IOMAP_UNWRITTEN:
1949 		/*
1950 		 * For unwritten regions, we always need to ensure that regions
1951 		 * in the block we are not writing to are zeroed. Mark the
1952 		 * buffer as new to ensure this.
1953 		 */
1954 		set_buffer_new(bh);
1955 		set_buffer_unwritten(bh);
1956 		/* FALLTHRU */
1957 	case IOMAP_MAPPED:
1958 		if ((iomap->flags & IOMAP_F_NEW) ||
1959 		    offset >= i_size_read(inode))
1960 			set_buffer_new(bh);
1961 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1962 				inode->i_blkbits;
1963 		set_buffer_mapped(bh);
1964 		break;
1965 	}
1966 }
1967 
1968 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1969 		get_block_t *get_block, struct iomap *iomap)
1970 {
1971 	unsigned from = pos & (PAGE_SIZE - 1);
1972 	unsigned to = from + len;
1973 	struct inode *inode = page->mapping->host;
1974 	unsigned block_start, block_end;
1975 	sector_t block;
1976 	int err = 0;
1977 	unsigned blocksize, bbits;
1978 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1979 
1980 	BUG_ON(!PageLocked(page));
1981 	BUG_ON(from > PAGE_SIZE);
1982 	BUG_ON(to > PAGE_SIZE);
1983 	BUG_ON(from > to);
1984 
1985 	head = create_page_buffers(page, inode, 0);
1986 	blocksize = head->b_size;
1987 	bbits = block_size_bits(blocksize);
1988 
1989 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1990 
1991 	for(bh = head, block_start = 0; bh != head || !block_start;
1992 	    block++, block_start=block_end, bh = bh->b_this_page) {
1993 		block_end = block_start + blocksize;
1994 		if (block_end <= from || block_start >= to) {
1995 			if (PageUptodate(page)) {
1996 				if (!buffer_uptodate(bh))
1997 					set_buffer_uptodate(bh);
1998 			}
1999 			continue;
2000 		}
2001 		if (buffer_new(bh))
2002 			clear_buffer_new(bh);
2003 		if (!buffer_mapped(bh)) {
2004 			WARN_ON(bh->b_size != blocksize);
2005 			if (get_block) {
2006 				err = get_block(inode, block, bh, 1);
2007 				if (err)
2008 					break;
2009 			} else {
2010 				iomap_to_bh(inode, block, bh, iomap);
2011 			}
2012 
2013 			if (buffer_new(bh)) {
2014 				clean_bdev_bh_alias(bh);
2015 				if (PageUptodate(page)) {
2016 					clear_buffer_new(bh);
2017 					set_buffer_uptodate(bh);
2018 					mark_buffer_dirty(bh);
2019 					continue;
2020 				}
2021 				if (block_end > to || block_start < from)
2022 					zero_user_segments(page,
2023 						to, block_end,
2024 						block_start, from);
2025 				continue;
2026 			}
2027 		}
2028 		if (PageUptodate(page)) {
2029 			if (!buffer_uptodate(bh))
2030 				set_buffer_uptodate(bh);
2031 			continue;
2032 		}
2033 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2034 		    !buffer_unwritten(bh) &&
2035 		     (block_start < from || block_end > to)) {
2036 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2037 			*wait_bh++=bh;
2038 		}
2039 	}
2040 	/*
2041 	 * If we issued read requests - let them complete.
2042 	 */
2043 	while(wait_bh > wait) {
2044 		wait_on_buffer(*--wait_bh);
2045 		if (!buffer_uptodate(*wait_bh))
2046 			err = -EIO;
2047 	}
2048 	if (unlikely(err))
2049 		page_zero_new_buffers(page, from, to);
2050 	return err;
2051 }
2052 
2053 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2054 		get_block_t *get_block)
2055 {
2056 	return __block_write_begin_int(page, pos, len, get_block, NULL);
2057 }
2058 EXPORT_SYMBOL(__block_write_begin);
2059 
2060 static int __block_commit_write(struct inode *inode, struct page *page,
2061 		unsigned from, unsigned to)
2062 {
2063 	unsigned block_start, block_end;
2064 	int partial = 0;
2065 	unsigned blocksize;
2066 	struct buffer_head *bh, *head;
2067 
2068 	bh = head = page_buffers(page);
2069 	blocksize = bh->b_size;
2070 
2071 	block_start = 0;
2072 	do {
2073 		block_end = block_start + blocksize;
2074 		if (block_end <= from || block_start >= to) {
2075 			if (!buffer_uptodate(bh))
2076 				partial = 1;
2077 		} else {
2078 			set_buffer_uptodate(bh);
2079 			mark_buffer_dirty(bh);
2080 		}
2081 		clear_buffer_new(bh);
2082 
2083 		block_start = block_end;
2084 		bh = bh->b_this_page;
2085 	} while (bh != head);
2086 
2087 	/*
2088 	 * If this is a partial write which happened to make all buffers
2089 	 * uptodate then we can optimize away a bogus readpage() for
2090 	 * the next read(). Here we 'discover' whether the page went
2091 	 * uptodate as a result of this (potentially partial) write.
2092 	 */
2093 	if (!partial)
2094 		SetPageUptodate(page);
2095 	return 0;
2096 }
2097 
2098 /*
2099  * block_write_begin takes care of the basic task of block allocation and
2100  * bringing partial write blocks uptodate first.
2101  *
2102  * The filesystem needs to handle block truncation upon failure.
2103  */
2104 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2105 		unsigned flags, struct page **pagep, get_block_t *get_block)
2106 {
2107 	pgoff_t index = pos >> PAGE_SHIFT;
2108 	struct page *page;
2109 	int status;
2110 
2111 	page = grab_cache_page_write_begin(mapping, index, flags);
2112 	if (!page)
2113 		return -ENOMEM;
2114 
2115 	status = __block_write_begin(page, pos, len, get_block);
2116 	if (unlikely(status)) {
2117 		unlock_page(page);
2118 		put_page(page);
2119 		page = NULL;
2120 	}
2121 
2122 	*pagep = page;
2123 	return status;
2124 }
2125 EXPORT_SYMBOL(block_write_begin);
2126 
2127 int block_write_end(struct file *file, struct address_space *mapping,
2128 			loff_t pos, unsigned len, unsigned copied,
2129 			struct page *page, void *fsdata)
2130 {
2131 	struct inode *inode = mapping->host;
2132 	unsigned start;
2133 
2134 	start = pos & (PAGE_SIZE - 1);
2135 
2136 	if (unlikely(copied < len)) {
2137 		/*
2138 		 * The buffers that were written will now be uptodate, so we
2139 		 * don't have to worry about a readpage reading them and
2140 		 * overwriting a partial write. However if we have encountered
2141 		 * a short write and only partially written into a buffer, it
2142 		 * will not be marked uptodate, so a readpage might come in and
2143 		 * destroy our partial write.
2144 		 *
2145 		 * Do the simplest thing, and just treat any short write to a
2146 		 * non uptodate page as a zero-length write, and force the
2147 		 * caller to redo the whole thing.
2148 		 */
2149 		if (!PageUptodate(page))
2150 			copied = 0;
2151 
2152 		page_zero_new_buffers(page, start+copied, start+len);
2153 	}
2154 	flush_dcache_page(page);
2155 
2156 	/* This could be a short (even 0-length) commit */
2157 	__block_commit_write(inode, page, start, start+copied);
2158 
2159 	return copied;
2160 }
2161 EXPORT_SYMBOL(block_write_end);
2162 
2163 int generic_write_end(struct file *file, struct address_space *mapping,
2164 			loff_t pos, unsigned len, unsigned copied,
2165 			struct page *page, void *fsdata)
2166 {
2167 	struct inode *inode = mapping->host;
2168 	loff_t old_size = inode->i_size;
2169 	bool i_size_changed = false;
2170 
2171 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2172 
2173 	/*
2174 	 * No need to use i_size_read() here, the i_size cannot change under us
2175 	 * because we hold i_rwsem.
2176 	 *
2177 	 * But it's important to update i_size while still holding page lock:
2178 	 * page writeout could otherwise come in and zero beyond i_size.
2179 	 */
2180 	if (pos + copied > inode->i_size) {
2181 		i_size_write(inode, pos + copied);
2182 		i_size_changed = true;
2183 	}
2184 
2185 	unlock_page(page);
2186 	put_page(page);
2187 
2188 	if (old_size < pos)
2189 		pagecache_isize_extended(inode, old_size, pos);
2190 	/*
2191 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2192 	 * makes the holding time of page lock longer. Second, it forces lock
2193 	 * ordering of page lock and transaction start for journaling
2194 	 * filesystems.
2195 	 */
2196 	if (i_size_changed)
2197 		mark_inode_dirty(inode);
2198 	return copied;
2199 }
2200 EXPORT_SYMBOL(generic_write_end);
2201 
2202 /*
2203  * block_is_partially_uptodate checks whether buffers within a page are
2204  * uptodate or not.
2205  *
2206  * Returns true if all buffers which correspond to a file portion
2207  * we want to read are uptodate.
2208  */
2209 int block_is_partially_uptodate(struct page *page, unsigned long from,
2210 					unsigned long count)
2211 {
2212 	unsigned block_start, block_end, blocksize;
2213 	unsigned to;
2214 	struct buffer_head *bh, *head;
2215 	int ret = 1;
2216 
2217 	if (!page_has_buffers(page))
2218 		return 0;
2219 
2220 	head = page_buffers(page);
2221 	blocksize = head->b_size;
2222 	to = min_t(unsigned, PAGE_SIZE - from, count);
2223 	to = from + to;
2224 	if (from < blocksize && to > PAGE_SIZE - blocksize)
2225 		return 0;
2226 
2227 	bh = head;
2228 	block_start = 0;
2229 	do {
2230 		block_end = block_start + blocksize;
2231 		if (block_end > from && block_start < to) {
2232 			if (!buffer_uptodate(bh)) {
2233 				ret = 0;
2234 				break;
2235 			}
2236 			if (block_end >= to)
2237 				break;
2238 		}
2239 		block_start = block_end;
2240 		bh = bh->b_this_page;
2241 	} while (bh != head);
2242 
2243 	return ret;
2244 }
2245 EXPORT_SYMBOL(block_is_partially_uptodate);
2246 
2247 /*
2248  * Generic "read page" function for block devices that have the normal
2249  * get_block functionality. This is most of the block device filesystems.
2250  * Reads the page asynchronously --- the unlock_buffer() and
2251  * set/clear_buffer_uptodate() functions propagate buffer state into the
2252  * page struct once IO has completed.
2253  */
2254 int block_read_full_page(struct page *page, get_block_t *get_block)
2255 {
2256 	struct inode *inode = page->mapping->host;
2257 	sector_t iblock, lblock;
2258 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2259 	unsigned int blocksize, bbits;
2260 	int nr, i;
2261 	int fully_mapped = 1;
2262 
2263 	head = create_page_buffers(page, inode, 0);
2264 	blocksize = head->b_size;
2265 	bbits = block_size_bits(blocksize);
2266 
2267 	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2268 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2269 	bh = head;
2270 	nr = 0;
2271 	i = 0;
2272 
2273 	do {
2274 		if (buffer_uptodate(bh))
2275 			continue;
2276 
2277 		if (!buffer_mapped(bh)) {
2278 			int err = 0;
2279 
2280 			fully_mapped = 0;
2281 			if (iblock < lblock) {
2282 				WARN_ON(bh->b_size != blocksize);
2283 				err = get_block(inode, iblock, bh, 0);
2284 				if (err)
2285 					SetPageError(page);
2286 			}
2287 			if (!buffer_mapped(bh)) {
2288 				zero_user(page, i * blocksize, blocksize);
2289 				if (!err)
2290 					set_buffer_uptodate(bh);
2291 				continue;
2292 			}
2293 			/*
2294 			 * get_block() might have updated the buffer
2295 			 * synchronously
2296 			 */
2297 			if (buffer_uptodate(bh))
2298 				continue;
2299 		}
2300 		arr[nr++] = bh;
2301 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2302 
2303 	if (fully_mapped)
2304 		SetPageMappedToDisk(page);
2305 
2306 	if (!nr) {
2307 		/*
2308 		 * All buffers are uptodate - we can set the page uptodate
2309 		 * as well. But not if get_block() returned an error.
2310 		 */
2311 		if (!PageError(page))
2312 			SetPageUptodate(page);
2313 		unlock_page(page);
2314 		return 0;
2315 	}
2316 
2317 	/* Stage two: lock the buffers */
2318 	for (i = 0; i < nr; i++) {
2319 		bh = arr[i];
2320 		lock_buffer(bh);
2321 		mark_buffer_async_read(bh);
2322 	}
2323 
2324 	/*
2325 	 * Stage 3: start the IO.  Check for uptodateness
2326 	 * inside the buffer lock in case another process reading
2327 	 * the underlying blockdev brought it uptodate (the sct fix).
2328 	 */
2329 	for (i = 0; i < nr; i++) {
2330 		bh = arr[i];
2331 		if (buffer_uptodate(bh))
2332 			end_buffer_async_read(bh, 1);
2333 		else
2334 			submit_bh(REQ_OP_READ, 0, bh);
2335 	}
2336 	return 0;
2337 }
2338 EXPORT_SYMBOL(block_read_full_page);
2339 
2340 /* utility function for filesystems that need to do work on expanding
2341  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2342  * deal with the hole.
2343  */
2344 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2345 {
2346 	struct address_space *mapping = inode->i_mapping;
2347 	struct page *page;
2348 	void *fsdata;
2349 	int err;
2350 
2351 	err = inode_newsize_ok(inode, size);
2352 	if (err)
2353 		goto out;
2354 
2355 	err = pagecache_write_begin(NULL, mapping, size, 0,
2356 				    AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2357 	if (err)
2358 		goto out;
2359 
2360 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2361 	BUG_ON(err > 0);
2362 
2363 out:
2364 	return err;
2365 }
2366 EXPORT_SYMBOL(generic_cont_expand_simple);
2367 
2368 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2369 			    loff_t pos, loff_t *bytes)
2370 {
2371 	struct inode *inode = mapping->host;
2372 	unsigned int blocksize = i_blocksize(inode);
2373 	struct page *page;
2374 	void *fsdata;
2375 	pgoff_t index, curidx;
2376 	loff_t curpos;
2377 	unsigned zerofrom, offset, len;
2378 	int err = 0;
2379 
2380 	index = pos >> PAGE_SHIFT;
2381 	offset = pos & ~PAGE_MASK;
2382 
2383 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2384 		zerofrom = curpos & ~PAGE_MASK;
2385 		if (zerofrom & (blocksize-1)) {
2386 			*bytes |= (blocksize-1);
2387 			(*bytes)++;
2388 		}
2389 		len = PAGE_SIZE - zerofrom;
2390 
2391 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2392 					    &page, &fsdata);
2393 		if (err)
2394 			goto out;
2395 		zero_user(page, zerofrom, len);
2396 		err = pagecache_write_end(file, mapping, curpos, len, len,
2397 						page, fsdata);
2398 		if (err < 0)
2399 			goto out;
2400 		BUG_ON(err != len);
2401 		err = 0;
2402 
2403 		balance_dirty_pages_ratelimited(mapping);
2404 
2405 		if (fatal_signal_pending(current)) {
2406 			err = -EINTR;
2407 			goto out;
2408 		}
2409 	}
2410 
2411 	/* page covers the boundary, find the boundary offset */
2412 	if (index == curidx) {
2413 		zerofrom = curpos & ~PAGE_MASK;
2414 		/* if we will expand the thing last block will be filled */
2415 		if (offset <= zerofrom) {
2416 			goto out;
2417 		}
2418 		if (zerofrom & (blocksize-1)) {
2419 			*bytes |= (blocksize-1);
2420 			(*bytes)++;
2421 		}
2422 		len = offset - zerofrom;
2423 
2424 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2425 					    &page, &fsdata);
2426 		if (err)
2427 			goto out;
2428 		zero_user(page, zerofrom, len);
2429 		err = pagecache_write_end(file, mapping, curpos, len, len,
2430 						page, fsdata);
2431 		if (err < 0)
2432 			goto out;
2433 		BUG_ON(err != len);
2434 		err = 0;
2435 	}
2436 out:
2437 	return err;
2438 }
2439 
2440 /*
2441  * For moronic filesystems that do not allow holes in file.
2442  * We may have to extend the file.
2443  */
2444 int cont_write_begin(struct file *file, struct address_space *mapping,
2445 			loff_t pos, unsigned len, unsigned flags,
2446 			struct page **pagep, void **fsdata,
2447 			get_block_t *get_block, loff_t *bytes)
2448 {
2449 	struct inode *inode = mapping->host;
2450 	unsigned int blocksize = i_blocksize(inode);
2451 	unsigned int zerofrom;
2452 	int err;
2453 
2454 	err = cont_expand_zero(file, mapping, pos, bytes);
2455 	if (err)
2456 		return err;
2457 
2458 	zerofrom = *bytes & ~PAGE_MASK;
2459 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2460 		*bytes |= (blocksize-1);
2461 		(*bytes)++;
2462 	}
2463 
2464 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2465 }
2466 EXPORT_SYMBOL(cont_write_begin);
2467 
2468 int block_commit_write(struct page *page, unsigned from, unsigned to)
2469 {
2470 	struct inode *inode = page->mapping->host;
2471 	__block_commit_write(inode,page,from,to);
2472 	return 0;
2473 }
2474 EXPORT_SYMBOL(block_commit_write);
2475 
2476 /*
2477  * block_page_mkwrite() is not allowed to change the file size as it gets
2478  * called from a page fault handler when a page is first dirtied. Hence we must
2479  * be careful to check for EOF conditions here. We set the page up correctly
2480  * for a written page which means we get ENOSPC checking when writing into
2481  * holes and correct delalloc and unwritten extent mapping on filesystems that
2482  * support these features.
2483  *
2484  * We are not allowed to take the i_mutex here so we have to play games to
2485  * protect against truncate races as the page could now be beyond EOF.  Because
2486  * truncate writes the inode size before removing pages, once we have the
2487  * page lock we can determine safely if the page is beyond EOF. If it is not
2488  * beyond EOF, then the page is guaranteed safe against truncation until we
2489  * unlock the page.
2490  *
2491  * Direct callers of this function should protect against filesystem freezing
2492  * using sb_start_pagefault() - sb_end_pagefault() functions.
2493  */
2494 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2495 			 get_block_t get_block)
2496 {
2497 	struct page *page = vmf->page;
2498 	struct inode *inode = file_inode(vma->vm_file);
2499 	unsigned long end;
2500 	loff_t size;
2501 	int ret;
2502 
2503 	lock_page(page);
2504 	size = i_size_read(inode);
2505 	if ((page->mapping != inode->i_mapping) ||
2506 	    (page_offset(page) > size)) {
2507 		/* We overload EFAULT to mean page got truncated */
2508 		ret = -EFAULT;
2509 		goto out_unlock;
2510 	}
2511 
2512 	/* page is wholly or partially inside EOF */
2513 	if (((page->index + 1) << PAGE_SHIFT) > size)
2514 		end = size & ~PAGE_MASK;
2515 	else
2516 		end = PAGE_SIZE;
2517 
2518 	ret = __block_write_begin(page, 0, end, get_block);
2519 	if (!ret)
2520 		ret = block_commit_write(page, 0, end);
2521 
2522 	if (unlikely(ret < 0))
2523 		goto out_unlock;
2524 	set_page_dirty(page);
2525 	wait_for_stable_page(page);
2526 	return 0;
2527 out_unlock:
2528 	unlock_page(page);
2529 	return ret;
2530 }
2531 EXPORT_SYMBOL(block_page_mkwrite);
2532 
2533 /*
2534  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2535  * immediately, while under the page lock.  So it needs a special end_io
2536  * handler which does not touch the bh after unlocking it.
2537  */
2538 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2539 {
2540 	__end_buffer_read_notouch(bh, uptodate);
2541 }
2542 
2543 /*
2544  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2545  * the page (converting it to circular linked list and taking care of page
2546  * dirty races).
2547  */
2548 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2549 {
2550 	struct buffer_head *bh;
2551 
2552 	BUG_ON(!PageLocked(page));
2553 
2554 	spin_lock(&page->mapping->private_lock);
2555 	bh = head;
2556 	do {
2557 		if (PageDirty(page))
2558 			set_buffer_dirty(bh);
2559 		if (!bh->b_this_page)
2560 			bh->b_this_page = head;
2561 		bh = bh->b_this_page;
2562 	} while (bh != head);
2563 	attach_page_buffers(page, head);
2564 	spin_unlock(&page->mapping->private_lock);
2565 }
2566 
2567 /*
2568  * On entry, the page is fully not uptodate.
2569  * On exit the page is fully uptodate in the areas outside (from,to)
2570  * The filesystem needs to handle block truncation upon failure.
2571  */
2572 int nobh_write_begin(struct address_space *mapping,
2573 			loff_t pos, unsigned len, unsigned flags,
2574 			struct page **pagep, void **fsdata,
2575 			get_block_t *get_block)
2576 {
2577 	struct inode *inode = mapping->host;
2578 	const unsigned blkbits = inode->i_blkbits;
2579 	const unsigned blocksize = 1 << blkbits;
2580 	struct buffer_head *head, *bh;
2581 	struct page *page;
2582 	pgoff_t index;
2583 	unsigned from, to;
2584 	unsigned block_in_page;
2585 	unsigned block_start, block_end;
2586 	sector_t block_in_file;
2587 	int nr_reads = 0;
2588 	int ret = 0;
2589 	int is_mapped_to_disk = 1;
2590 
2591 	index = pos >> PAGE_SHIFT;
2592 	from = pos & (PAGE_SIZE - 1);
2593 	to = from + len;
2594 
2595 	page = grab_cache_page_write_begin(mapping, index, flags);
2596 	if (!page)
2597 		return -ENOMEM;
2598 	*pagep = page;
2599 	*fsdata = NULL;
2600 
2601 	if (page_has_buffers(page)) {
2602 		ret = __block_write_begin(page, pos, len, get_block);
2603 		if (unlikely(ret))
2604 			goto out_release;
2605 		return ret;
2606 	}
2607 
2608 	if (PageMappedToDisk(page))
2609 		return 0;
2610 
2611 	/*
2612 	 * Allocate buffers so that we can keep track of state, and potentially
2613 	 * attach them to the page if an error occurs. In the common case of
2614 	 * no error, they will just be freed again without ever being attached
2615 	 * to the page (which is all OK, because we're under the page lock).
2616 	 *
2617 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2618 	 * than the circular one we're used to.
2619 	 */
2620 	head = alloc_page_buffers(page, blocksize, false);
2621 	if (!head) {
2622 		ret = -ENOMEM;
2623 		goto out_release;
2624 	}
2625 
2626 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2627 
2628 	/*
2629 	 * We loop across all blocks in the page, whether or not they are
2630 	 * part of the affected region.  This is so we can discover if the
2631 	 * page is fully mapped-to-disk.
2632 	 */
2633 	for (block_start = 0, block_in_page = 0, bh = head;
2634 		  block_start < PAGE_SIZE;
2635 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2636 		int create;
2637 
2638 		block_end = block_start + blocksize;
2639 		bh->b_state = 0;
2640 		create = 1;
2641 		if (block_start >= to)
2642 			create = 0;
2643 		ret = get_block(inode, block_in_file + block_in_page,
2644 					bh, create);
2645 		if (ret)
2646 			goto failed;
2647 		if (!buffer_mapped(bh))
2648 			is_mapped_to_disk = 0;
2649 		if (buffer_new(bh))
2650 			clean_bdev_bh_alias(bh);
2651 		if (PageUptodate(page)) {
2652 			set_buffer_uptodate(bh);
2653 			continue;
2654 		}
2655 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2656 			zero_user_segments(page, block_start, from,
2657 							to, block_end);
2658 			continue;
2659 		}
2660 		if (buffer_uptodate(bh))
2661 			continue;	/* reiserfs does this */
2662 		if (block_start < from || block_end > to) {
2663 			lock_buffer(bh);
2664 			bh->b_end_io = end_buffer_read_nobh;
2665 			submit_bh(REQ_OP_READ, 0, bh);
2666 			nr_reads++;
2667 		}
2668 	}
2669 
2670 	if (nr_reads) {
2671 		/*
2672 		 * The page is locked, so these buffers are protected from
2673 		 * any VM or truncate activity.  Hence we don't need to care
2674 		 * for the buffer_head refcounts.
2675 		 */
2676 		for (bh = head; bh; bh = bh->b_this_page) {
2677 			wait_on_buffer(bh);
2678 			if (!buffer_uptodate(bh))
2679 				ret = -EIO;
2680 		}
2681 		if (ret)
2682 			goto failed;
2683 	}
2684 
2685 	if (is_mapped_to_disk)
2686 		SetPageMappedToDisk(page);
2687 
2688 	*fsdata = head; /* to be released by nobh_write_end */
2689 
2690 	return 0;
2691 
2692 failed:
2693 	BUG_ON(!ret);
2694 	/*
2695 	 * Error recovery is a bit difficult. We need to zero out blocks that
2696 	 * were newly allocated, and dirty them to ensure they get written out.
2697 	 * Buffers need to be attached to the page at this point, otherwise
2698 	 * the handling of potential IO errors during writeout would be hard
2699 	 * (could try doing synchronous writeout, but what if that fails too?)
2700 	 */
2701 	attach_nobh_buffers(page, head);
2702 	page_zero_new_buffers(page, from, to);
2703 
2704 out_release:
2705 	unlock_page(page);
2706 	put_page(page);
2707 	*pagep = NULL;
2708 
2709 	return ret;
2710 }
2711 EXPORT_SYMBOL(nobh_write_begin);
2712 
2713 int nobh_write_end(struct file *file, struct address_space *mapping,
2714 			loff_t pos, unsigned len, unsigned copied,
2715 			struct page *page, void *fsdata)
2716 {
2717 	struct inode *inode = page->mapping->host;
2718 	struct buffer_head *head = fsdata;
2719 	struct buffer_head *bh;
2720 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2721 
2722 	if (unlikely(copied < len) && head)
2723 		attach_nobh_buffers(page, head);
2724 	if (page_has_buffers(page))
2725 		return generic_write_end(file, mapping, pos, len,
2726 					copied, page, fsdata);
2727 
2728 	SetPageUptodate(page);
2729 	set_page_dirty(page);
2730 	if (pos+copied > inode->i_size) {
2731 		i_size_write(inode, pos+copied);
2732 		mark_inode_dirty(inode);
2733 	}
2734 
2735 	unlock_page(page);
2736 	put_page(page);
2737 
2738 	while (head) {
2739 		bh = head;
2740 		head = head->b_this_page;
2741 		free_buffer_head(bh);
2742 	}
2743 
2744 	return copied;
2745 }
2746 EXPORT_SYMBOL(nobh_write_end);
2747 
2748 /*
2749  * nobh_writepage() - based on block_full_write_page() except
2750  * that it tries to operate without attaching bufferheads to
2751  * the page.
2752  */
2753 int nobh_writepage(struct page *page, get_block_t *get_block,
2754 			struct writeback_control *wbc)
2755 {
2756 	struct inode * const inode = page->mapping->host;
2757 	loff_t i_size = i_size_read(inode);
2758 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2759 	unsigned offset;
2760 	int ret;
2761 
2762 	/* Is the page fully inside i_size? */
2763 	if (page->index < end_index)
2764 		goto out;
2765 
2766 	/* Is the page fully outside i_size? (truncate in progress) */
2767 	offset = i_size & (PAGE_SIZE-1);
2768 	if (page->index >= end_index+1 || !offset) {
2769 		/*
2770 		 * The page may have dirty, unmapped buffers.  For example,
2771 		 * they may have been added in ext3_writepage().  Make them
2772 		 * freeable here, so the page does not leak.
2773 		 */
2774 #if 0
2775 		/* Not really sure about this  - do we need this ? */
2776 		if (page->mapping->a_ops->invalidatepage)
2777 			page->mapping->a_ops->invalidatepage(page, offset);
2778 #endif
2779 		unlock_page(page);
2780 		return 0; /* don't care */
2781 	}
2782 
2783 	/*
2784 	 * The page straddles i_size.  It must be zeroed out on each and every
2785 	 * writepage invocation because it may be mmapped.  "A file is mapped
2786 	 * in multiples of the page size.  For a file that is not a multiple of
2787 	 * the  page size, the remaining memory is zeroed when mapped, and
2788 	 * writes to that region are not written out to the file."
2789 	 */
2790 	zero_user_segment(page, offset, PAGE_SIZE);
2791 out:
2792 	ret = mpage_writepage(page, get_block, wbc);
2793 	if (ret == -EAGAIN)
2794 		ret = __block_write_full_page(inode, page, get_block, wbc,
2795 					      end_buffer_async_write);
2796 	return ret;
2797 }
2798 EXPORT_SYMBOL(nobh_writepage);
2799 
2800 int nobh_truncate_page(struct address_space *mapping,
2801 			loff_t from, get_block_t *get_block)
2802 {
2803 	pgoff_t index = from >> PAGE_SHIFT;
2804 	unsigned offset = from & (PAGE_SIZE-1);
2805 	unsigned blocksize;
2806 	sector_t iblock;
2807 	unsigned length, pos;
2808 	struct inode *inode = mapping->host;
2809 	struct page *page;
2810 	struct buffer_head map_bh;
2811 	int err;
2812 
2813 	blocksize = i_blocksize(inode);
2814 	length = offset & (blocksize - 1);
2815 
2816 	/* Block boundary? Nothing to do */
2817 	if (!length)
2818 		return 0;
2819 
2820 	length = blocksize - length;
2821 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2822 
2823 	page = grab_cache_page(mapping, index);
2824 	err = -ENOMEM;
2825 	if (!page)
2826 		goto out;
2827 
2828 	if (page_has_buffers(page)) {
2829 has_buffers:
2830 		unlock_page(page);
2831 		put_page(page);
2832 		return block_truncate_page(mapping, from, get_block);
2833 	}
2834 
2835 	/* Find the buffer that contains "offset" */
2836 	pos = blocksize;
2837 	while (offset >= pos) {
2838 		iblock++;
2839 		pos += blocksize;
2840 	}
2841 
2842 	map_bh.b_size = blocksize;
2843 	map_bh.b_state = 0;
2844 	err = get_block(inode, iblock, &map_bh, 0);
2845 	if (err)
2846 		goto unlock;
2847 	/* unmapped? It's a hole - nothing to do */
2848 	if (!buffer_mapped(&map_bh))
2849 		goto unlock;
2850 
2851 	/* Ok, it's mapped. Make sure it's up-to-date */
2852 	if (!PageUptodate(page)) {
2853 		err = mapping->a_ops->readpage(NULL, page);
2854 		if (err) {
2855 			put_page(page);
2856 			goto out;
2857 		}
2858 		lock_page(page);
2859 		if (!PageUptodate(page)) {
2860 			err = -EIO;
2861 			goto unlock;
2862 		}
2863 		if (page_has_buffers(page))
2864 			goto has_buffers;
2865 	}
2866 	zero_user(page, offset, length);
2867 	set_page_dirty(page);
2868 	err = 0;
2869 
2870 unlock:
2871 	unlock_page(page);
2872 	put_page(page);
2873 out:
2874 	return err;
2875 }
2876 EXPORT_SYMBOL(nobh_truncate_page);
2877 
2878 int block_truncate_page(struct address_space *mapping,
2879 			loff_t from, get_block_t *get_block)
2880 {
2881 	pgoff_t index = from >> PAGE_SHIFT;
2882 	unsigned offset = from & (PAGE_SIZE-1);
2883 	unsigned blocksize;
2884 	sector_t iblock;
2885 	unsigned length, pos;
2886 	struct inode *inode = mapping->host;
2887 	struct page *page;
2888 	struct buffer_head *bh;
2889 	int err;
2890 
2891 	blocksize = i_blocksize(inode);
2892 	length = offset & (blocksize - 1);
2893 
2894 	/* Block boundary? Nothing to do */
2895 	if (!length)
2896 		return 0;
2897 
2898 	length = blocksize - length;
2899 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2900 
2901 	page = grab_cache_page(mapping, index);
2902 	err = -ENOMEM;
2903 	if (!page)
2904 		goto out;
2905 
2906 	if (!page_has_buffers(page))
2907 		create_empty_buffers(page, blocksize, 0);
2908 
2909 	/* Find the buffer that contains "offset" */
2910 	bh = page_buffers(page);
2911 	pos = blocksize;
2912 	while (offset >= pos) {
2913 		bh = bh->b_this_page;
2914 		iblock++;
2915 		pos += blocksize;
2916 	}
2917 
2918 	err = 0;
2919 	if (!buffer_mapped(bh)) {
2920 		WARN_ON(bh->b_size != blocksize);
2921 		err = get_block(inode, iblock, bh, 0);
2922 		if (err)
2923 			goto unlock;
2924 		/* unmapped? It's a hole - nothing to do */
2925 		if (!buffer_mapped(bh))
2926 			goto unlock;
2927 	}
2928 
2929 	/* Ok, it's mapped. Make sure it's up-to-date */
2930 	if (PageUptodate(page))
2931 		set_buffer_uptodate(bh);
2932 
2933 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2934 		err = -EIO;
2935 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2936 		wait_on_buffer(bh);
2937 		/* Uhhuh. Read error. Complain and punt. */
2938 		if (!buffer_uptodate(bh))
2939 			goto unlock;
2940 	}
2941 
2942 	zero_user(page, offset, length);
2943 	mark_buffer_dirty(bh);
2944 	err = 0;
2945 
2946 unlock:
2947 	unlock_page(page);
2948 	put_page(page);
2949 out:
2950 	return err;
2951 }
2952 EXPORT_SYMBOL(block_truncate_page);
2953 
2954 /*
2955  * The generic ->writepage function for buffer-backed address_spaces
2956  */
2957 int block_write_full_page(struct page *page, get_block_t *get_block,
2958 			struct writeback_control *wbc)
2959 {
2960 	struct inode * const inode = page->mapping->host;
2961 	loff_t i_size = i_size_read(inode);
2962 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2963 	unsigned offset;
2964 
2965 	/* Is the page fully inside i_size? */
2966 	if (page->index < end_index)
2967 		return __block_write_full_page(inode, page, get_block, wbc,
2968 					       end_buffer_async_write);
2969 
2970 	/* Is the page fully outside i_size? (truncate in progress) */
2971 	offset = i_size & (PAGE_SIZE-1);
2972 	if (page->index >= end_index+1 || !offset) {
2973 		/*
2974 		 * The page may have dirty, unmapped buffers.  For example,
2975 		 * they may have been added in ext3_writepage().  Make them
2976 		 * freeable here, so the page does not leak.
2977 		 */
2978 		do_invalidatepage(page, 0, PAGE_SIZE);
2979 		unlock_page(page);
2980 		return 0; /* don't care */
2981 	}
2982 
2983 	/*
2984 	 * The page straddles i_size.  It must be zeroed out on each and every
2985 	 * writepage invocation because it may be mmapped.  "A file is mapped
2986 	 * in multiples of the page size.  For a file that is not a multiple of
2987 	 * the  page size, the remaining memory is zeroed when mapped, and
2988 	 * writes to that region are not written out to the file."
2989 	 */
2990 	zero_user_segment(page, offset, PAGE_SIZE);
2991 	return __block_write_full_page(inode, page, get_block, wbc,
2992 							end_buffer_async_write);
2993 }
2994 EXPORT_SYMBOL(block_write_full_page);
2995 
2996 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2997 			    get_block_t *get_block)
2998 {
2999 	struct inode *inode = mapping->host;
3000 	struct buffer_head tmp = {
3001 		.b_size = i_blocksize(inode),
3002 	};
3003 
3004 	get_block(inode, block, &tmp, 0);
3005 	return tmp.b_blocknr;
3006 }
3007 EXPORT_SYMBOL(generic_block_bmap);
3008 
3009 static void end_bio_bh_io_sync(struct bio *bio)
3010 {
3011 	struct buffer_head *bh = bio->bi_private;
3012 
3013 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
3014 		set_bit(BH_Quiet, &bh->b_state);
3015 
3016 	bh->b_end_io(bh, !bio->bi_status);
3017 	bio_put(bio);
3018 }
3019 
3020 /*
3021  * This allows us to do IO even on the odd last sectors
3022  * of a device, even if the block size is some multiple
3023  * of the physical sector size.
3024  *
3025  * We'll just truncate the bio to the size of the device,
3026  * and clear the end of the buffer head manually.
3027  *
3028  * Truly out-of-range accesses will turn into actual IO
3029  * errors, this only handles the "we need to be able to
3030  * do IO at the final sector" case.
3031  */
3032 void guard_bio_eod(int op, struct bio *bio)
3033 {
3034 	sector_t maxsector;
3035 	struct bio_vec *bvec = bio_last_bvec_all(bio);
3036 	unsigned truncated_bytes;
3037 	struct hd_struct *part;
3038 
3039 	rcu_read_lock();
3040 	part = __disk_get_part(bio->bi_disk, bio->bi_partno);
3041 	if (part)
3042 		maxsector = part_nr_sects_read(part);
3043 	else
3044 		maxsector = get_capacity(bio->bi_disk);
3045 	rcu_read_unlock();
3046 
3047 	if (!maxsector)
3048 		return;
3049 
3050 	/*
3051 	 * If the *whole* IO is past the end of the device,
3052 	 * let it through, and the IO layer will turn it into
3053 	 * an EIO.
3054 	 */
3055 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3056 		return;
3057 
3058 	maxsector -= bio->bi_iter.bi_sector;
3059 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3060 		return;
3061 
3062 	/* Uhhuh. We've got a bio that straddles the device size! */
3063 	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3064 
3065 	/*
3066 	 * The bio contains more than one segment which spans EOD, just return
3067 	 * and let IO layer turn it into an EIO
3068 	 */
3069 	if (truncated_bytes > bvec->bv_len)
3070 		return;
3071 
3072 	/* Truncate the bio.. */
3073 	bio->bi_iter.bi_size -= truncated_bytes;
3074 	bvec->bv_len -= truncated_bytes;
3075 
3076 	/* ..and clear the end of the buffer for reads */
3077 	if (op == REQ_OP_READ) {
3078 		struct bio_vec bv;
3079 
3080 		mp_bvec_last_segment(bvec, &bv);
3081 		zero_user(bv.bv_page, bv.bv_offset + bv.bv_len,
3082 				truncated_bytes);
3083 	}
3084 }
3085 
3086 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3087 			 enum rw_hint write_hint, struct writeback_control *wbc)
3088 {
3089 	struct bio *bio;
3090 
3091 	BUG_ON(!buffer_locked(bh));
3092 	BUG_ON(!buffer_mapped(bh));
3093 	BUG_ON(!bh->b_end_io);
3094 	BUG_ON(buffer_delay(bh));
3095 	BUG_ON(buffer_unwritten(bh));
3096 
3097 	/*
3098 	 * Only clear out a write error when rewriting
3099 	 */
3100 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3101 		clear_buffer_write_io_error(bh);
3102 
3103 	/*
3104 	 * from here on down, it's all bio -- do the initial mapping,
3105 	 * submit_bio -> generic_make_request may further map this bio around
3106 	 */
3107 	bio = bio_alloc(GFP_NOIO, 1);
3108 
3109 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3110 	bio_set_dev(bio, bh->b_bdev);
3111 	bio->bi_write_hint = write_hint;
3112 
3113 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3114 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3115 
3116 	bio->bi_end_io = end_bio_bh_io_sync;
3117 	bio->bi_private = bh;
3118 
3119 	/* Take care of bh's that straddle the end of the device */
3120 	guard_bio_eod(op, bio);
3121 
3122 	if (buffer_meta(bh))
3123 		op_flags |= REQ_META;
3124 	if (buffer_prio(bh))
3125 		op_flags |= REQ_PRIO;
3126 	bio_set_op_attrs(bio, op, op_flags);
3127 
3128 	if (wbc) {
3129 		wbc_init_bio(wbc, bio);
3130 		wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3131 	}
3132 
3133 	submit_bio(bio);
3134 	return 0;
3135 }
3136 
3137 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3138 {
3139 	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3140 }
3141 EXPORT_SYMBOL(submit_bh);
3142 
3143 /**
3144  * ll_rw_block: low-level access to block devices (DEPRECATED)
3145  * @op: whether to %READ or %WRITE
3146  * @op_flags: req_flag_bits
3147  * @nr: number of &struct buffer_heads in the array
3148  * @bhs: array of pointers to &struct buffer_head
3149  *
3150  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3151  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3152  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3153  * %REQ_RAHEAD.
3154  *
3155  * This function drops any buffer that it cannot get a lock on (with the
3156  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3157  * request, and any buffer that appears to be up-to-date when doing read
3158  * request.  Further it marks as clean buffers that are processed for
3159  * writing (the buffer cache won't assume that they are actually clean
3160  * until the buffer gets unlocked).
3161  *
3162  * ll_rw_block sets b_end_io to simple completion handler that marks
3163  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3164  * any waiters.
3165  *
3166  * All of the buffers must be for the same device, and must also be a
3167  * multiple of the current approved size for the device.
3168  */
3169 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3170 {
3171 	int i;
3172 
3173 	for (i = 0; i < nr; i++) {
3174 		struct buffer_head *bh = bhs[i];
3175 
3176 		if (!trylock_buffer(bh))
3177 			continue;
3178 		if (op == WRITE) {
3179 			if (test_clear_buffer_dirty(bh)) {
3180 				bh->b_end_io = end_buffer_write_sync;
3181 				get_bh(bh);
3182 				submit_bh(op, op_flags, bh);
3183 				continue;
3184 			}
3185 		} else {
3186 			if (!buffer_uptodate(bh)) {
3187 				bh->b_end_io = end_buffer_read_sync;
3188 				get_bh(bh);
3189 				submit_bh(op, op_flags, bh);
3190 				continue;
3191 			}
3192 		}
3193 		unlock_buffer(bh);
3194 	}
3195 }
3196 EXPORT_SYMBOL(ll_rw_block);
3197 
3198 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3199 {
3200 	lock_buffer(bh);
3201 	if (!test_clear_buffer_dirty(bh)) {
3202 		unlock_buffer(bh);
3203 		return;
3204 	}
3205 	bh->b_end_io = end_buffer_write_sync;
3206 	get_bh(bh);
3207 	submit_bh(REQ_OP_WRITE, op_flags, bh);
3208 }
3209 EXPORT_SYMBOL(write_dirty_buffer);
3210 
3211 /*
3212  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3213  * and then start new I/O and then wait upon it.  The caller must have a ref on
3214  * the buffer_head.
3215  */
3216 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3217 {
3218 	int ret = 0;
3219 
3220 	WARN_ON(atomic_read(&bh->b_count) < 1);
3221 	lock_buffer(bh);
3222 	if (test_clear_buffer_dirty(bh)) {
3223 		get_bh(bh);
3224 		bh->b_end_io = end_buffer_write_sync;
3225 		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3226 		wait_on_buffer(bh);
3227 		if (!ret && !buffer_uptodate(bh))
3228 			ret = -EIO;
3229 	} else {
3230 		unlock_buffer(bh);
3231 	}
3232 	return ret;
3233 }
3234 EXPORT_SYMBOL(__sync_dirty_buffer);
3235 
3236 int sync_dirty_buffer(struct buffer_head *bh)
3237 {
3238 	return __sync_dirty_buffer(bh, REQ_SYNC);
3239 }
3240 EXPORT_SYMBOL(sync_dirty_buffer);
3241 
3242 /*
3243  * try_to_free_buffers() checks if all the buffers on this particular page
3244  * are unused, and releases them if so.
3245  *
3246  * Exclusion against try_to_free_buffers may be obtained by either
3247  * locking the page or by holding its mapping's private_lock.
3248  *
3249  * If the page is dirty but all the buffers are clean then we need to
3250  * be sure to mark the page clean as well.  This is because the page
3251  * may be against a block device, and a later reattachment of buffers
3252  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3253  * filesystem data on the same device.
3254  *
3255  * The same applies to regular filesystem pages: if all the buffers are
3256  * clean then we set the page clean and proceed.  To do that, we require
3257  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3258  * private_lock.
3259  *
3260  * try_to_free_buffers() is non-blocking.
3261  */
3262 static inline int buffer_busy(struct buffer_head *bh)
3263 {
3264 	return atomic_read(&bh->b_count) |
3265 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3266 }
3267 
3268 static int
3269 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3270 {
3271 	struct buffer_head *head = page_buffers(page);
3272 	struct buffer_head *bh;
3273 
3274 	bh = head;
3275 	do {
3276 		if (buffer_busy(bh))
3277 			goto failed;
3278 		bh = bh->b_this_page;
3279 	} while (bh != head);
3280 
3281 	do {
3282 		struct buffer_head *next = bh->b_this_page;
3283 
3284 		if (bh->b_assoc_map)
3285 			__remove_assoc_queue(bh);
3286 		bh = next;
3287 	} while (bh != head);
3288 	*buffers_to_free = head;
3289 	__clear_page_buffers(page);
3290 	return 1;
3291 failed:
3292 	return 0;
3293 }
3294 
3295 int try_to_free_buffers(struct page *page)
3296 {
3297 	struct address_space * const mapping = page->mapping;
3298 	struct buffer_head *buffers_to_free = NULL;
3299 	int ret = 0;
3300 
3301 	BUG_ON(!PageLocked(page));
3302 	if (PageWriteback(page))
3303 		return 0;
3304 
3305 	if (mapping == NULL) {		/* can this still happen? */
3306 		ret = drop_buffers(page, &buffers_to_free);
3307 		goto out;
3308 	}
3309 
3310 	spin_lock(&mapping->private_lock);
3311 	ret = drop_buffers(page, &buffers_to_free);
3312 
3313 	/*
3314 	 * If the filesystem writes its buffers by hand (eg ext3)
3315 	 * then we can have clean buffers against a dirty page.  We
3316 	 * clean the page here; otherwise the VM will never notice
3317 	 * that the filesystem did any IO at all.
3318 	 *
3319 	 * Also, during truncate, discard_buffer will have marked all
3320 	 * the page's buffers clean.  We discover that here and clean
3321 	 * the page also.
3322 	 *
3323 	 * private_lock must be held over this entire operation in order
3324 	 * to synchronise against __set_page_dirty_buffers and prevent the
3325 	 * dirty bit from being lost.
3326 	 */
3327 	if (ret)
3328 		cancel_dirty_page(page);
3329 	spin_unlock(&mapping->private_lock);
3330 out:
3331 	if (buffers_to_free) {
3332 		struct buffer_head *bh = buffers_to_free;
3333 
3334 		do {
3335 			struct buffer_head *next = bh->b_this_page;
3336 			free_buffer_head(bh);
3337 			bh = next;
3338 		} while (bh != buffers_to_free);
3339 	}
3340 	return ret;
3341 }
3342 EXPORT_SYMBOL(try_to_free_buffers);
3343 
3344 /*
3345  * There are no bdflush tunables left.  But distributions are
3346  * still running obsolete flush daemons, so we terminate them here.
3347  *
3348  * Use of bdflush() is deprecated and will be removed in a future kernel.
3349  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3350  */
3351 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3352 {
3353 	static int msg_count;
3354 
3355 	if (!capable(CAP_SYS_ADMIN))
3356 		return -EPERM;
3357 
3358 	if (msg_count < 5) {
3359 		msg_count++;
3360 		printk(KERN_INFO
3361 			"warning: process `%s' used the obsolete bdflush"
3362 			" system call\n", current->comm);
3363 		printk(KERN_INFO "Fix your initscripts?\n");
3364 	}
3365 
3366 	if (func == 1)
3367 		do_exit(0);
3368 	return 0;
3369 }
3370 
3371 /*
3372  * Buffer-head allocation
3373  */
3374 static struct kmem_cache *bh_cachep __read_mostly;
3375 
3376 /*
3377  * Once the number of bh's in the machine exceeds this level, we start
3378  * stripping them in writeback.
3379  */
3380 static unsigned long max_buffer_heads;
3381 
3382 int buffer_heads_over_limit;
3383 
3384 struct bh_accounting {
3385 	int nr;			/* Number of live bh's */
3386 	int ratelimit;		/* Limit cacheline bouncing */
3387 };
3388 
3389 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3390 
3391 static void recalc_bh_state(void)
3392 {
3393 	int i;
3394 	int tot = 0;
3395 
3396 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3397 		return;
3398 	__this_cpu_write(bh_accounting.ratelimit, 0);
3399 	for_each_online_cpu(i)
3400 		tot += per_cpu(bh_accounting, i).nr;
3401 	buffer_heads_over_limit = (tot > max_buffer_heads);
3402 }
3403 
3404 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3405 {
3406 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3407 	if (ret) {
3408 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3409 		preempt_disable();
3410 		__this_cpu_inc(bh_accounting.nr);
3411 		recalc_bh_state();
3412 		preempt_enable();
3413 	}
3414 	return ret;
3415 }
3416 EXPORT_SYMBOL(alloc_buffer_head);
3417 
3418 void free_buffer_head(struct buffer_head *bh)
3419 {
3420 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3421 	kmem_cache_free(bh_cachep, bh);
3422 	preempt_disable();
3423 	__this_cpu_dec(bh_accounting.nr);
3424 	recalc_bh_state();
3425 	preempt_enable();
3426 }
3427 EXPORT_SYMBOL(free_buffer_head);
3428 
3429 static int buffer_exit_cpu_dead(unsigned int cpu)
3430 {
3431 	int i;
3432 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3433 
3434 	for (i = 0; i < BH_LRU_SIZE; i++) {
3435 		brelse(b->bhs[i]);
3436 		b->bhs[i] = NULL;
3437 	}
3438 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3439 	per_cpu(bh_accounting, cpu).nr = 0;
3440 	return 0;
3441 }
3442 
3443 /**
3444  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3445  * @bh: struct buffer_head
3446  *
3447  * Return true if the buffer is up-to-date and false,
3448  * with the buffer locked, if not.
3449  */
3450 int bh_uptodate_or_lock(struct buffer_head *bh)
3451 {
3452 	if (!buffer_uptodate(bh)) {
3453 		lock_buffer(bh);
3454 		if (!buffer_uptodate(bh))
3455 			return 0;
3456 		unlock_buffer(bh);
3457 	}
3458 	return 1;
3459 }
3460 EXPORT_SYMBOL(bh_uptodate_or_lock);
3461 
3462 /**
3463  * bh_submit_read - Submit a locked buffer for reading
3464  * @bh: struct buffer_head
3465  *
3466  * Returns zero on success and -EIO on error.
3467  */
3468 int bh_submit_read(struct buffer_head *bh)
3469 {
3470 	BUG_ON(!buffer_locked(bh));
3471 
3472 	if (buffer_uptodate(bh)) {
3473 		unlock_buffer(bh);
3474 		return 0;
3475 	}
3476 
3477 	get_bh(bh);
3478 	bh->b_end_io = end_buffer_read_sync;
3479 	submit_bh(REQ_OP_READ, 0, bh);
3480 	wait_on_buffer(bh);
3481 	if (buffer_uptodate(bh))
3482 		return 0;
3483 	return -EIO;
3484 }
3485 EXPORT_SYMBOL(bh_submit_read);
3486 
3487 void __init buffer_init(void)
3488 {
3489 	unsigned long nrpages;
3490 	int ret;
3491 
3492 	bh_cachep = kmem_cache_create("buffer_head",
3493 			sizeof(struct buffer_head), 0,
3494 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3495 				SLAB_MEM_SPREAD),
3496 				NULL);
3497 
3498 	/*
3499 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3500 	 */
3501 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3502 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3503 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3504 					NULL, buffer_exit_cpu_dead);
3505 	WARN_ON(ret < 0);
3506 }
3507