1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 #include <linux/fscrypt.h> 51 52 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 53 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 54 enum rw_hint hint, struct writeback_control *wbc); 55 56 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 57 58 inline void touch_buffer(struct buffer_head *bh) 59 { 60 trace_block_touch_buffer(bh); 61 mark_page_accessed(bh->b_page); 62 } 63 EXPORT_SYMBOL(touch_buffer); 64 65 void __lock_buffer(struct buffer_head *bh) 66 { 67 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 68 } 69 EXPORT_SYMBOL(__lock_buffer); 70 71 void unlock_buffer(struct buffer_head *bh) 72 { 73 clear_bit_unlock(BH_Lock, &bh->b_state); 74 smp_mb__after_atomic(); 75 wake_up_bit(&bh->b_state, BH_Lock); 76 } 77 EXPORT_SYMBOL(unlock_buffer); 78 79 /* 80 * Returns if the page has dirty or writeback buffers. If all the buffers 81 * are unlocked and clean then the PageDirty information is stale. If 82 * any of the pages are locked, it is assumed they are locked for IO. 83 */ 84 void buffer_check_dirty_writeback(struct page *page, 85 bool *dirty, bool *writeback) 86 { 87 struct buffer_head *head, *bh; 88 *dirty = false; 89 *writeback = false; 90 91 BUG_ON(!PageLocked(page)); 92 93 if (!page_has_buffers(page)) 94 return; 95 96 if (PageWriteback(page)) 97 *writeback = true; 98 99 head = page_buffers(page); 100 bh = head; 101 do { 102 if (buffer_locked(bh)) 103 *writeback = true; 104 105 if (buffer_dirty(bh)) 106 *dirty = true; 107 108 bh = bh->b_this_page; 109 } while (bh != head); 110 } 111 EXPORT_SYMBOL(buffer_check_dirty_writeback); 112 113 /* 114 * Block until a buffer comes unlocked. This doesn't stop it 115 * from becoming locked again - you have to lock it yourself 116 * if you want to preserve its state. 117 */ 118 void __wait_on_buffer(struct buffer_head * bh) 119 { 120 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 121 } 122 EXPORT_SYMBOL(__wait_on_buffer); 123 124 static void 125 __clear_page_buffers(struct page *page) 126 { 127 ClearPagePrivate(page); 128 set_page_private(page, 0); 129 put_page(page); 130 } 131 132 static void buffer_io_error(struct buffer_head *bh, char *msg) 133 { 134 if (!test_bit(BH_Quiet, &bh->b_state)) 135 printk_ratelimited(KERN_ERR 136 "Buffer I/O error on dev %pg, logical block %llu%s\n", 137 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 138 } 139 140 /* 141 * End-of-IO handler helper function which does not touch the bh after 142 * unlocking it. 143 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 144 * a race there is benign: unlock_buffer() only use the bh's address for 145 * hashing after unlocking the buffer, so it doesn't actually touch the bh 146 * itself. 147 */ 148 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 149 { 150 if (uptodate) { 151 set_buffer_uptodate(bh); 152 } else { 153 /* This happens, due to failed read-ahead attempts. */ 154 clear_buffer_uptodate(bh); 155 } 156 unlock_buffer(bh); 157 } 158 159 /* 160 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 161 * unlock the buffer. This is what ll_rw_block uses too. 162 */ 163 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 164 { 165 __end_buffer_read_notouch(bh, uptodate); 166 put_bh(bh); 167 } 168 EXPORT_SYMBOL(end_buffer_read_sync); 169 170 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 171 { 172 if (uptodate) { 173 set_buffer_uptodate(bh); 174 } else { 175 buffer_io_error(bh, ", lost sync page write"); 176 mark_buffer_write_io_error(bh); 177 clear_buffer_uptodate(bh); 178 } 179 unlock_buffer(bh); 180 put_bh(bh); 181 } 182 EXPORT_SYMBOL(end_buffer_write_sync); 183 184 /* 185 * Various filesystems appear to want __find_get_block to be non-blocking. 186 * But it's the page lock which protects the buffers. To get around this, 187 * we get exclusion from try_to_free_buffers with the blockdev mapping's 188 * private_lock. 189 * 190 * Hack idea: for the blockdev mapping, private_lock contention 191 * may be quite high. This code could TryLock the page, and if that 192 * succeeds, there is no need to take private_lock. 193 */ 194 static struct buffer_head * 195 __find_get_block_slow(struct block_device *bdev, sector_t block) 196 { 197 struct inode *bd_inode = bdev->bd_inode; 198 struct address_space *bd_mapping = bd_inode->i_mapping; 199 struct buffer_head *ret = NULL; 200 pgoff_t index; 201 struct buffer_head *bh; 202 struct buffer_head *head; 203 struct page *page; 204 int all_mapped = 1; 205 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 206 207 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 208 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 209 if (!page) 210 goto out; 211 212 spin_lock(&bd_mapping->private_lock); 213 if (!page_has_buffers(page)) 214 goto out_unlock; 215 head = page_buffers(page); 216 bh = head; 217 do { 218 if (!buffer_mapped(bh)) 219 all_mapped = 0; 220 else if (bh->b_blocknr == block) { 221 ret = bh; 222 get_bh(bh); 223 goto out_unlock; 224 } 225 bh = bh->b_this_page; 226 } while (bh != head); 227 228 /* we might be here because some of the buffers on this page are 229 * not mapped. This is due to various races between 230 * file io on the block device and getblk. It gets dealt with 231 * elsewhere, don't buffer_error if we had some unmapped buffers 232 */ 233 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 234 if (all_mapped && __ratelimit(&last_warned)) { 235 printk("__find_get_block_slow() failed. block=%llu, " 236 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 237 "device %pg blocksize: %d\n", 238 (unsigned long long)block, 239 (unsigned long long)bh->b_blocknr, 240 bh->b_state, bh->b_size, bdev, 241 1 << bd_inode->i_blkbits); 242 } 243 out_unlock: 244 spin_unlock(&bd_mapping->private_lock); 245 put_page(page); 246 out: 247 return ret; 248 } 249 250 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 251 { 252 unsigned long flags; 253 struct buffer_head *first; 254 struct buffer_head *tmp; 255 struct page *page; 256 int page_uptodate = 1; 257 258 BUG_ON(!buffer_async_read(bh)); 259 260 page = bh->b_page; 261 if (uptodate) { 262 set_buffer_uptodate(bh); 263 } else { 264 clear_buffer_uptodate(bh); 265 buffer_io_error(bh, ", async page read"); 266 SetPageError(page); 267 } 268 269 /* 270 * Be _very_ careful from here on. Bad things can happen if 271 * two buffer heads end IO at almost the same time and both 272 * decide that the page is now completely done. 273 */ 274 first = page_buffers(page); 275 local_irq_save(flags); 276 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 277 clear_buffer_async_read(bh); 278 unlock_buffer(bh); 279 tmp = bh; 280 do { 281 if (!buffer_uptodate(tmp)) 282 page_uptodate = 0; 283 if (buffer_async_read(tmp)) { 284 BUG_ON(!buffer_locked(tmp)); 285 goto still_busy; 286 } 287 tmp = tmp->b_this_page; 288 } while (tmp != bh); 289 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 290 local_irq_restore(flags); 291 292 /* 293 * If none of the buffers had errors and they are all 294 * uptodate then we can set the page uptodate. 295 */ 296 if (page_uptodate && !PageError(page)) 297 SetPageUptodate(page); 298 unlock_page(page); 299 return; 300 301 still_busy: 302 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 303 local_irq_restore(flags); 304 return; 305 } 306 307 struct decrypt_bh_ctx { 308 struct work_struct work; 309 struct buffer_head *bh; 310 }; 311 312 static void decrypt_bh(struct work_struct *work) 313 { 314 struct decrypt_bh_ctx *ctx = 315 container_of(work, struct decrypt_bh_ctx, work); 316 struct buffer_head *bh = ctx->bh; 317 int err; 318 319 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size, 320 bh_offset(bh)); 321 end_buffer_async_read(bh, err == 0); 322 kfree(ctx); 323 } 324 325 /* 326 * I/O completion handler for block_read_full_page() - pages 327 * which come unlocked at the end of I/O. 328 */ 329 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) 330 { 331 /* Decrypt if needed */ 332 if (uptodate && IS_ENABLED(CONFIG_FS_ENCRYPTION) && 333 IS_ENCRYPTED(bh->b_page->mapping->host) && 334 S_ISREG(bh->b_page->mapping->host->i_mode)) { 335 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); 336 337 if (ctx) { 338 INIT_WORK(&ctx->work, decrypt_bh); 339 ctx->bh = bh; 340 fscrypt_enqueue_decrypt_work(&ctx->work); 341 return; 342 } 343 uptodate = 0; 344 } 345 end_buffer_async_read(bh, uptodate); 346 } 347 348 /* 349 * Completion handler for block_write_full_page() - pages which are unlocked 350 * during I/O, and which have PageWriteback cleared upon I/O completion. 351 */ 352 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 353 { 354 unsigned long flags; 355 struct buffer_head *first; 356 struct buffer_head *tmp; 357 struct page *page; 358 359 BUG_ON(!buffer_async_write(bh)); 360 361 page = bh->b_page; 362 if (uptodate) { 363 set_buffer_uptodate(bh); 364 } else { 365 buffer_io_error(bh, ", lost async page write"); 366 mark_buffer_write_io_error(bh); 367 clear_buffer_uptodate(bh); 368 SetPageError(page); 369 } 370 371 first = page_buffers(page); 372 local_irq_save(flags); 373 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 374 375 clear_buffer_async_write(bh); 376 unlock_buffer(bh); 377 tmp = bh->b_this_page; 378 while (tmp != bh) { 379 if (buffer_async_write(tmp)) { 380 BUG_ON(!buffer_locked(tmp)); 381 goto still_busy; 382 } 383 tmp = tmp->b_this_page; 384 } 385 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 386 local_irq_restore(flags); 387 end_page_writeback(page); 388 return; 389 390 still_busy: 391 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 392 local_irq_restore(flags); 393 return; 394 } 395 EXPORT_SYMBOL(end_buffer_async_write); 396 397 /* 398 * If a page's buffers are under async readin (end_buffer_async_read 399 * completion) then there is a possibility that another thread of 400 * control could lock one of the buffers after it has completed 401 * but while some of the other buffers have not completed. This 402 * locked buffer would confuse end_buffer_async_read() into not unlocking 403 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 404 * that this buffer is not under async I/O. 405 * 406 * The page comes unlocked when it has no locked buffer_async buffers 407 * left. 408 * 409 * PageLocked prevents anyone starting new async I/O reads any of 410 * the buffers. 411 * 412 * PageWriteback is used to prevent simultaneous writeout of the same 413 * page. 414 * 415 * PageLocked prevents anyone from starting writeback of a page which is 416 * under read I/O (PageWriteback is only ever set against a locked page). 417 */ 418 static void mark_buffer_async_read(struct buffer_head *bh) 419 { 420 bh->b_end_io = end_buffer_async_read_io; 421 set_buffer_async_read(bh); 422 } 423 424 static void mark_buffer_async_write_endio(struct buffer_head *bh, 425 bh_end_io_t *handler) 426 { 427 bh->b_end_io = handler; 428 set_buffer_async_write(bh); 429 } 430 431 void mark_buffer_async_write(struct buffer_head *bh) 432 { 433 mark_buffer_async_write_endio(bh, end_buffer_async_write); 434 } 435 EXPORT_SYMBOL(mark_buffer_async_write); 436 437 438 /* 439 * fs/buffer.c contains helper functions for buffer-backed address space's 440 * fsync functions. A common requirement for buffer-based filesystems is 441 * that certain data from the backing blockdev needs to be written out for 442 * a successful fsync(). For example, ext2 indirect blocks need to be 443 * written back and waited upon before fsync() returns. 444 * 445 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 446 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 447 * management of a list of dependent buffers at ->i_mapping->private_list. 448 * 449 * Locking is a little subtle: try_to_free_buffers() will remove buffers 450 * from their controlling inode's queue when they are being freed. But 451 * try_to_free_buffers() will be operating against the *blockdev* mapping 452 * at the time, not against the S_ISREG file which depends on those buffers. 453 * So the locking for private_list is via the private_lock in the address_space 454 * which backs the buffers. Which is different from the address_space 455 * against which the buffers are listed. So for a particular address_space, 456 * mapping->private_lock does *not* protect mapping->private_list! In fact, 457 * mapping->private_list will always be protected by the backing blockdev's 458 * ->private_lock. 459 * 460 * Which introduces a requirement: all buffers on an address_space's 461 * ->private_list must be from the same address_space: the blockdev's. 462 * 463 * address_spaces which do not place buffers at ->private_list via these 464 * utility functions are free to use private_lock and private_list for 465 * whatever they want. The only requirement is that list_empty(private_list) 466 * be true at clear_inode() time. 467 * 468 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 469 * filesystems should do that. invalidate_inode_buffers() should just go 470 * BUG_ON(!list_empty). 471 * 472 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 473 * take an address_space, not an inode. And it should be called 474 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 475 * queued up. 476 * 477 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 478 * list if it is already on a list. Because if the buffer is on a list, 479 * it *must* already be on the right one. If not, the filesystem is being 480 * silly. This will save a ton of locking. But first we have to ensure 481 * that buffers are taken *off* the old inode's list when they are freed 482 * (presumably in truncate). That requires careful auditing of all 483 * filesystems (do it inside bforget()). It could also be done by bringing 484 * b_inode back. 485 */ 486 487 /* 488 * The buffer's backing address_space's private_lock must be held 489 */ 490 static void __remove_assoc_queue(struct buffer_head *bh) 491 { 492 list_del_init(&bh->b_assoc_buffers); 493 WARN_ON(!bh->b_assoc_map); 494 bh->b_assoc_map = NULL; 495 } 496 497 int inode_has_buffers(struct inode *inode) 498 { 499 return !list_empty(&inode->i_data.private_list); 500 } 501 502 /* 503 * osync is designed to support O_SYNC io. It waits synchronously for 504 * all already-submitted IO to complete, but does not queue any new 505 * writes to the disk. 506 * 507 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 508 * you dirty the buffers, and then use osync_inode_buffers to wait for 509 * completion. Any other dirty buffers which are not yet queued for 510 * write will not be flushed to disk by the osync. 511 */ 512 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 513 { 514 struct buffer_head *bh; 515 struct list_head *p; 516 int err = 0; 517 518 spin_lock(lock); 519 repeat: 520 list_for_each_prev(p, list) { 521 bh = BH_ENTRY(p); 522 if (buffer_locked(bh)) { 523 get_bh(bh); 524 spin_unlock(lock); 525 wait_on_buffer(bh); 526 if (!buffer_uptodate(bh)) 527 err = -EIO; 528 brelse(bh); 529 spin_lock(lock); 530 goto repeat; 531 } 532 } 533 spin_unlock(lock); 534 return err; 535 } 536 537 void emergency_thaw_bdev(struct super_block *sb) 538 { 539 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 540 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 541 } 542 543 /** 544 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 545 * @mapping: the mapping which wants those buffers written 546 * 547 * Starts I/O against the buffers at mapping->private_list, and waits upon 548 * that I/O. 549 * 550 * Basically, this is a convenience function for fsync(). 551 * @mapping is a file or directory which needs those buffers to be written for 552 * a successful fsync(). 553 */ 554 int sync_mapping_buffers(struct address_space *mapping) 555 { 556 struct address_space *buffer_mapping = mapping->private_data; 557 558 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 559 return 0; 560 561 return fsync_buffers_list(&buffer_mapping->private_lock, 562 &mapping->private_list); 563 } 564 EXPORT_SYMBOL(sync_mapping_buffers); 565 566 /* 567 * Called when we've recently written block `bblock', and it is known that 568 * `bblock' was for a buffer_boundary() buffer. This means that the block at 569 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 570 * dirty, schedule it for IO. So that indirects merge nicely with their data. 571 */ 572 void write_boundary_block(struct block_device *bdev, 573 sector_t bblock, unsigned blocksize) 574 { 575 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 576 if (bh) { 577 if (buffer_dirty(bh)) 578 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh); 579 put_bh(bh); 580 } 581 } 582 583 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 584 { 585 struct address_space *mapping = inode->i_mapping; 586 struct address_space *buffer_mapping = bh->b_page->mapping; 587 588 mark_buffer_dirty(bh); 589 if (!mapping->private_data) { 590 mapping->private_data = buffer_mapping; 591 } else { 592 BUG_ON(mapping->private_data != buffer_mapping); 593 } 594 if (!bh->b_assoc_map) { 595 spin_lock(&buffer_mapping->private_lock); 596 list_move_tail(&bh->b_assoc_buffers, 597 &mapping->private_list); 598 bh->b_assoc_map = mapping; 599 spin_unlock(&buffer_mapping->private_lock); 600 } 601 } 602 EXPORT_SYMBOL(mark_buffer_dirty_inode); 603 604 /* 605 * Mark the page dirty, and set it dirty in the page cache, and mark the inode 606 * dirty. 607 * 608 * If warn is true, then emit a warning if the page is not uptodate and has 609 * not been truncated. 610 * 611 * The caller must hold lock_page_memcg(). 612 */ 613 void __set_page_dirty(struct page *page, struct address_space *mapping, 614 int warn) 615 { 616 unsigned long flags; 617 618 xa_lock_irqsave(&mapping->i_pages, flags); 619 if (page->mapping) { /* Race with truncate? */ 620 WARN_ON_ONCE(warn && !PageUptodate(page)); 621 account_page_dirtied(page, mapping); 622 __xa_set_mark(&mapping->i_pages, page_index(page), 623 PAGECACHE_TAG_DIRTY); 624 } 625 xa_unlock_irqrestore(&mapping->i_pages, flags); 626 } 627 EXPORT_SYMBOL_GPL(__set_page_dirty); 628 629 /* 630 * Add a page to the dirty page list. 631 * 632 * It is a sad fact of life that this function is called from several places 633 * deeply under spinlocking. It may not sleep. 634 * 635 * If the page has buffers, the uptodate buffers are set dirty, to preserve 636 * dirty-state coherency between the page and the buffers. It the page does 637 * not have buffers then when they are later attached they will all be set 638 * dirty. 639 * 640 * The buffers are dirtied before the page is dirtied. There's a small race 641 * window in which a writepage caller may see the page cleanness but not the 642 * buffer dirtiness. That's fine. If this code were to set the page dirty 643 * before the buffers, a concurrent writepage caller could clear the page dirty 644 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 645 * page on the dirty page list. 646 * 647 * We use private_lock to lock against try_to_free_buffers while using the 648 * page's buffer list. Also use this to protect against clean buffers being 649 * added to the page after it was set dirty. 650 * 651 * FIXME: may need to call ->reservepage here as well. That's rather up to the 652 * address_space though. 653 */ 654 int __set_page_dirty_buffers(struct page *page) 655 { 656 int newly_dirty; 657 struct address_space *mapping = page_mapping(page); 658 659 if (unlikely(!mapping)) 660 return !TestSetPageDirty(page); 661 662 spin_lock(&mapping->private_lock); 663 if (page_has_buffers(page)) { 664 struct buffer_head *head = page_buffers(page); 665 struct buffer_head *bh = head; 666 667 do { 668 set_buffer_dirty(bh); 669 bh = bh->b_this_page; 670 } while (bh != head); 671 } 672 /* 673 * Lock out page->mem_cgroup migration to keep PageDirty 674 * synchronized with per-memcg dirty page counters. 675 */ 676 lock_page_memcg(page); 677 newly_dirty = !TestSetPageDirty(page); 678 spin_unlock(&mapping->private_lock); 679 680 if (newly_dirty) 681 __set_page_dirty(page, mapping, 1); 682 683 unlock_page_memcg(page); 684 685 if (newly_dirty) 686 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 687 688 return newly_dirty; 689 } 690 EXPORT_SYMBOL(__set_page_dirty_buffers); 691 692 /* 693 * Write out and wait upon a list of buffers. 694 * 695 * We have conflicting pressures: we want to make sure that all 696 * initially dirty buffers get waited on, but that any subsequently 697 * dirtied buffers don't. After all, we don't want fsync to last 698 * forever if somebody is actively writing to the file. 699 * 700 * Do this in two main stages: first we copy dirty buffers to a 701 * temporary inode list, queueing the writes as we go. Then we clean 702 * up, waiting for those writes to complete. 703 * 704 * During this second stage, any subsequent updates to the file may end 705 * up refiling the buffer on the original inode's dirty list again, so 706 * there is a chance we will end up with a buffer queued for write but 707 * not yet completed on that list. So, as a final cleanup we go through 708 * the osync code to catch these locked, dirty buffers without requeuing 709 * any newly dirty buffers for write. 710 */ 711 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 712 { 713 struct buffer_head *bh; 714 struct list_head tmp; 715 struct address_space *mapping; 716 int err = 0, err2; 717 struct blk_plug plug; 718 719 INIT_LIST_HEAD(&tmp); 720 blk_start_plug(&plug); 721 722 spin_lock(lock); 723 while (!list_empty(list)) { 724 bh = BH_ENTRY(list->next); 725 mapping = bh->b_assoc_map; 726 __remove_assoc_queue(bh); 727 /* Avoid race with mark_buffer_dirty_inode() which does 728 * a lockless check and we rely on seeing the dirty bit */ 729 smp_mb(); 730 if (buffer_dirty(bh) || buffer_locked(bh)) { 731 list_add(&bh->b_assoc_buffers, &tmp); 732 bh->b_assoc_map = mapping; 733 if (buffer_dirty(bh)) { 734 get_bh(bh); 735 spin_unlock(lock); 736 /* 737 * Ensure any pending I/O completes so that 738 * write_dirty_buffer() actually writes the 739 * current contents - it is a noop if I/O is 740 * still in flight on potentially older 741 * contents. 742 */ 743 write_dirty_buffer(bh, REQ_SYNC); 744 745 /* 746 * Kick off IO for the previous mapping. Note 747 * that we will not run the very last mapping, 748 * wait_on_buffer() will do that for us 749 * through sync_buffer(). 750 */ 751 brelse(bh); 752 spin_lock(lock); 753 } 754 } 755 } 756 757 spin_unlock(lock); 758 blk_finish_plug(&plug); 759 spin_lock(lock); 760 761 while (!list_empty(&tmp)) { 762 bh = BH_ENTRY(tmp.prev); 763 get_bh(bh); 764 mapping = bh->b_assoc_map; 765 __remove_assoc_queue(bh); 766 /* Avoid race with mark_buffer_dirty_inode() which does 767 * a lockless check and we rely on seeing the dirty bit */ 768 smp_mb(); 769 if (buffer_dirty(bh)) { 770 list_add(&bh->b_assoc_buffers, 771 &mapping->private_list); 772 bh->b_assoc_map = mapping; 773 } 774 spin_unlock(lock); 775 wait_on_buffer(bh); 776 if (!buffer_uptodate(bh)) 777 err = -EIO; 778 brelse(bh); 779 spin_lock(lock); 780 } 781 782 spin_unlock(lock); 783 err2 = osync_buffers_list(lock, list); 784 if (err) 785 return err; 786 else 787 return err2; 788 } 789 790 /* 791 * Invalidate any and all dirty buffers on a given inode. We are 792 * probably unmounting the fs, but that doesn't mean we have already 793 * done a sync(). Just drop the buffers from the inode list. 794 * 795 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 796 * assumes that all the buffers are against the blockdev. Not true 797 * for reiserfs. 798 */ 799 void invalidate_inode_buffers(struct inode *inode) 800 { 801 if (inode_has_buffers(inode)) { 802 struct address_space *mapping = &inode->i_data; 803 struct list_head *list = &mapping->private_list; 804 struct address_space *buffer_mapping = mapping->private_data; 805 806 spin_lock(&buffer_mapping->private_lock); 807 while (!list_empty(list)) 808 __remove_assoc_queue(BH_ENTRY(list->next)); 809 spin_unlock(&buffer_mapping->private_lock); 810 } 811 } 812 EXPORT_SYMBOL(invalidate_inode_buffers); 813 814 /* 815 * Remove any clean buffers from the inode's buffer list. This is called 816 * when we're trying to free the inode itself. Those buffers can pin it. 817 * 818 * Returns true if all buffers were removed. 819 */ 820 int remove_inode_buffers(struct inode *inode) 821 { 822 int ret = 1; 823 824 if (inode_has_buffers(inode)) { 825 struct address_space *mapping = &inode->i_data; 826 struct list_head *list = &mapping->private_list; 827 struct address_space *buffer_mapping = mapping->private_data; 828 829 spin_lock(&buffer_mapping->private_lock); 830 while (!list_empty(list)) { 831 struct buffer_head *bh = BH_ENTRY(list->next); 832 if (buffer_dirty(bh)) { 833 ret = 0; 834 break; 835 } 836 __remove_assoc_queue(bh); 837 } 838 spin_unlock(&buffer_mapping->private_lock); 839 } 840 return ret; 841 } 842 843 /* 844 * Create the appropriate buffers when given a page for data area and 845 * the size of each buffer.. Use the bh->b_this_page linked list to 846 * follow the buffers created. Return NULL if unable to create more 847 * buffers. 848 * 849 * The retry flag is used to differentiate async IO (paging, swapping) 850 * which may not fail from ordinary buffer allocations. 851 */ 852 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 853 bool retry) 854 { 855 struct buffer_head *bh, *head; 856 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 857 long offset; 858 struct mem_cgroup *memcg; 859 860 if (retry) 861 gfp |= __GFP_NOFAIL; 862 863 memcg = get_mem_cgroup_from_page(page); 864 memalloc_use_memcg(memcg); 865 866 head = NULL; 867 offset = PAGE_SIZE; 868 while ((offset -= size) >= 0) { 869 bh = alloc_buffer_head(gfp); 870 if (!bh) 871 goto no_grow; 872 873 bh->b_this_page = head; 874 bh->b_blocknr = -1; 875 head = bh; 876 877 bh->b_size = size; 878 879 /* Link the buffer to its page */ 880 set_bh_page(bh, page, offset); 881 } 882 out: 883 memalloc_unuse_memcg(); 884 mem_cgroup_put(memcg); 885 return head; 886 /* 887 * In case anything failed, we just free everything we got. 888 */ 889 no_grow: 890 if (head) { 891 do { 892 bh = head; 893 head = head->b_this_page; 894 free_buffer_head(bh); 895 } while (head); 896 } 897 898 goto out; 899 } 900 EXPORT_SYMBOL_GPL(alloc_page_buffers); 901 902 static inline void 903 link_dev_buffers(struct page *page, struct buffer_head *head) 904 { 905 struct buffer_head *bh, *tail; 906 907 bh = head; 908 do { 909 tail = bh; 910 bh = bh->b_this_page; 911 } while (bh); 912 tail->b_this_page = head; 913 attach_page_buffers(page, head); 914 } 915 916 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 917 { 918 sector_t retval = ~((sector_t)0); 919 loff_t sz = i_size_read(bdev->bd_inode); 920 921 if (sz) { 922 unsigned int sizebits = blksize_bits(size); 923 retval = (sz >> sizebits); 924 } 925 return retval; 926 } 927 928 /* 929 * Initialise the state of a blockdev page's buffers. 930 */ 931 static sector_t 932 init_page_buffers(struct page *page, struct block_device *bdev, 933 sector_t block, int size) 934 { 935 struct buffer_head *head = page_buffers(page); 936 struct buffer_head *bh = head; 937 int uptodate = PageUptodate(page); 938 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 939 940 do { 941 if (!buffer_mapped(bh)) { 942 bh->b_end_io = NULL; 943 bh->b_private = NULL; 944 bh->b_bdev = bdev; 945 bh->b_blocknr = block; 946 if (uptodate) 947 set_buffer_uptodate(bh); 948 if (block < end_block) 949 set_buffer_mapped(bh); 950 } 951 block++; 952 bh = bh->b_this_page; 953 } while (bh != head); 954 955 /* 956 * Caller needs to validate requested block against end of device. 957 */ 958 return end_block; 959 } 960 961 /* 962 * Create the page-cache page that contains the requested block. 963 * 964 * This is used purely for blockdev mappings. 965 */ 966 static int 967 grow_dev_page(struct block_device *bdev, sector_t block, 968 pgoff_t index, int size, int sizebits, gfp_t gfp) 969 { 970 struct inode *inode = bdev->bd_inode; 971 struct page *page; 972 struct buffer_head *bh; 973 sector_t end_block; 974 int ret = 0; /* Will call free_more_memory() */ 975 gfp_t gfp_mask; 976 977 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 978 979 /* 980 * XXX: __getblk_slow() can not really deal with failure and 981 * will endlessly loop on improvised global reclaim. Prefer 982 * looping in the allocator rather than here, at least that 983 * code knows what it's doing. 984 */ 985 gfp_mask |= __GFP_NOFAIL; 986 987 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 988 989 BUG_ON(!PageLocked(page)); 990 991 if (page_has_buffers(page)) { 992 bh = page_buffers(page); 993 if (bh->b_size == size) { 994 end_block = init_page_buffers(page, bdev, 995 (sector_t)index << sizebits, 996 size); 997 goto done; 998 } 999 if (!try_to_free_buffers(page)) 1000 goto failed; 1001 } 1002 1003 /* 1004 * Allocate some buffers for this page 1005 */ 1006 bh = alloc_page_buffers(page, size, true); 1007 1008 /* 1009 * Link the page to the buffers and initialise them. Take the 1010 * lock to be atomic wrt __find_get_block(), which does not 1011 * run under the page lock. 1012 */ 1013 spin_lock(&inode->i_mapping->private_lock); 1014 link_dev_buffers(page, bh); 1015 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 1016 size); 1017 spin_unlock(&inode->i_mapping->private_lock); 1018 done: 1019 ret = (block < end_block) ? 1 : -ENXIO; 1020 failed: 1021 unlock_page(page); 1022 put_page(page); 1023 return ret; 1024 } 1025 1026 /* 1027 * Create buffers for the specified block device block's page. If 1028 * that page was dirty, the buffers are set dirty also. 1029 */ 1030 static int 1031 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 1032 { 1033 pgoff_t index; 1034 int sizebits; 1035 1036 sizebits = -1; 1037 do { 1038 sizebits++; 1039 } while ((size << sizebits) < PAGE_SIZE); 1040 1041 index = block >> sizebits; 1042 1043 /* 1044 * Check for a block which wants to lie outside our maximum possible 1045 * pagecache index. (this comparison is done using sector_t types). 1046 */ 1047 if (unlikely(index != block >> sizebits)) { 1048 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1049 "device %pg\n", 1050 __func__, (unsigned long long)block, 1051 bdev); 1052 return -EIO; 1053 } 1054 1055 /* Create a page with the proper size buffers.. */ 1056 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1057 } 1058 1059 static struct buffer_head * 1060 __getblk_slow(struct block_device *bdev, sector_t block, 1061 unsigned size, gfp_t gfp) 1062 { 1063 /* Size must be multiple of hard sectorsize */ 1064 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1065 (size < 512 || size > PAGE_SIZE))) { 1066 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1067 size); 1068 printk(KERN_ERR "logical block size: %d\n", 1069 bdev_logical_block_size(bdev)); 1070 1071 dump_stack(); 1072 return NULL; 1073 } 1074 1075 for (;;) { 1076 struct buffer_head *bh; 1077 int ret; 1078 1079 bh = __find_get_block(bdev, block, size); 1080 if (bh) 1081 return bh; 1082 1083 ret = grow_buffers(bdev, block, size, gfp); 1084 if (ret < 0) 1085 return NULL; 1086 } 1087 } 1088 1089 /* 1090 * The relationship between dirty buffers and dirty pages: 1091 * 1092 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1093 * the page is tagged dirty in the page cache. 1094 * 1095 * At all times, the dirtiness of the buffers represents the dirtiness of 1096 * subsections of the page. If the page has buffers, the page dirty bit is 1097 * merely a hint about the true dirty state. 1098 * 1099 * When a page is set dirty in its entirety, all its buffers are marked dirty 1100 * (if the page has buffers). 1101 * 1102 * When a buffer is marked dirty, its page is dirtied, but the page's other 1103 * buffers are not. 1104 * 1105 * Also. When blockdev buffers are explicitly read with bread(), they 1106 * individually become uptodate. But their backing page remains not 1107 * uptodate - even if all of its buffers are uptodate. A subsequent 1108 * block_read_full_page() against that page will discover all the uptodate 1109 * buffers, will set the page uptodate and will perform no I/O. 1110 */ 1111 1112 /** 1113 * mark_buffer_dirty - mark a buffer_head as needing writeout 1114 * @bh: the buffer_head to mark dirty 1115 * 1116 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1117 * its backing page dirty, then tag the page as dirty in the page cache 1118 * and then attach the address_space's inode to its superblock's dirty 1119 * inode list. 1120 * 1121 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1122 * i_pages lock and mapping->host->i_lock. 1123 */ 1124 void mark_buffer_dirty(struct buffer_head *bh) 1125 { 1126 WARN_ON_ONCE(!buffer_uptodate(bh)); 1127 1128 trace_block_dirty_buffer(bh); 1129 1130 /* 1131 * Very *carefully* optimize the it-is-already-dirty case. 1132 * 1133 * Don't let the final "is it dirty" escape to before we 1134 * perhaps modified the buffer. 1135 */ 1136 if (buffer_dirty(bh)) { 1137 smp_mb(); 1138 if (buffer_dirty(bh)) 1139 return; 1140 } 1141 1142 if (!test_set_buffer_dirty(bh)) { 1143 struct page *page = bh->b_page; 1144 struct address_space *mapping = NULL; 1145 1146 lock_page_memcg(page); 1147 if (!TestSetPageDirty(page)) { 1148 mapping = page_mapping(page); 1149 if (mapping) 1150 __set_page_dirty(page, mapping, 0); 1151 } 1152 unlock_page_memcg(page); 1153 if (mapping) 1154 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1155 } 1156 } 1157 EXPORT_SYMBOL(mark_buffer_dirty); 1158 1159 void mark_buffer_write_io_error(struct buffer_head *bh) 1160 { 1161 set_buffer_write_io_error(bh); 1162 /* FIXME: do we need to set this in both places? */ 1163 if (bh->b_page && bh->b_page->mapping) 1164 mapping_set_error(bh->b_page->mapping, -EIO); 1165 if (bh->b_assoc_map) 1166 mapping_set_error(bh->b_assoc_map, -EIO); 1167 } 1168 EXPORT_SYMBOL(mark_buffer_write_io_error); 1169 1170 /* 1171 * Decrement a buffer_head's reference count. If all buffers against a page 1172 * have zero reference count, are clean and unlocked, and if the page is clean 1173 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1174 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1175 * a page but it ends up not being freed, and buffers may later be reattached). 1176 */ 1177 void __brelse(struct buffer_head * buf) 1178 { 1179 if (atomic_read(&buf->b_count)) { 1180 put_bh(buf); 1181 return; 1182 } 1183 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1184 } 1185 EXPORT_SYMBOL(__brelse); 1186 1187 /* 1188 * bforget() is like brelse(), except it discards any 1189 * potentially dirty data. 1190 */ 1191 void __bforget(struct buffer_head *bh) 1192 { 1193 clear_buffer_dirty(bh); 1194 if (bh->b_assoc_map) { 1195 struct address_space *buffer_mapping = bh->b_page->mapping; 1196 1197 spin_lock(&buffer_mapping->private_lock); 1198 list_del_init(&bh->b_assoc_buffers); 1199 bh->b_assoc_map = NULL; 1200 spin_unlock(&buffer_mapping->private_lock); 1201 } 1202 __brelse(bh); 1203 } 1204 EXPORT_SYMBOL(__bforget); 1205 1206 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1207 { 1208 lock_buffer(bh); 1209 if (buffer_uptodate(bh)) { 1210 unlock_buffer(bh); 1211 return bh; 1212 } else { 1213 get_bh(bh); 1214 bh->b_end_io = end_buffer_read_sync; 1215 submit_bh(REQ_OP_READ, 0, bh); 1216 wait_on_buffer(bh); 1217 if (buffer_uptodate(bh)) 1218 return bh; 1219 } 1220 brelse(bh); 1221 return NULL; 1222 } 1223 1224 /* 1225 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1226 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1227 * refcount elevated by one when they're in an LRU. A buffer can only appear 1228 * once in a particular CPU's LRU. A single buffer can be present in multiple 1229 * CPU's LRUs at the same time. 1230 * 1231 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1232 * sb_find_get_block(). 1233 * 1234 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1235 * a local interrupt disable for that. 1236 */ 1237 1238 #define BH_LRU_SIZE 16 1239 1240 struct bh_lru { 1241 struct buffer_head *bhs[BH_LRU_SIZE]; 1242 }; 1243 1244 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1245 1246 #ifdef CONFIG_SMP 1247 #define bh_lru_lock() local_irq_disable() 1248 #define bh_lru_unlock() local_irq_enable() 1249 #else 1250 #define bh_lru_lock() preempt_disable() 1251 #define bh_lru_unlock() preempt_enable() 1252 #endif 1253 1254 static inline void check_irqs_on(void) 1255 { 1256 #ifdef irqs_disabled 1257 BUG_ON(irqs_disabled()); 1258 #endif 1259 } 1260 1261 /* 1262 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1263 * inserted at the front, and the buffer_head at the back if any is evicted. 1264 * Or, if already in the LRU it is moved to the front. 1265 */ 1266 static void bh_lru_install(struct buffer_head *bh) 1267 { 1268 struct buffer_head *evictee = bh; 1269 struct bh_lru *b; 1270 int i; 1271 1272 check_irqs_on(); 1273 bh_lru_lock(); 1274 1275 b = this_cpu_ptr(&bh_lrus); 1276 for (i = 0; i < BH_LRU_SIZE; i++) { 1277 swap(evictee, b->bhs[i]); 1278 if (evictee == bh) { 1279 bh_lru_unlock(); 1280 return; 1281 } 1282 } 1283 1284 get_bh(bh); 1285 bh_lru_unlock(); 1286 brelse(evictee); 1287 } 1288 1289 /* 1290 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1291 */ 1292 static struct buffer_head * 1293 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1294 { 1295 struct buffer_head *ret = NULL; 1296 unsigned int i; 1297 1298 check_irqs_on(); 1299 bh_lru_lock(); 1300 for (i = 0; i < BH_LRU_SIZE; i++) { 1301 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1302 1303 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1304 bh->b_size == size) { 1305 if (i) { 1306 while (i) { 1307 __this_cpu_write(bh_lrus.bhs[i], 1308 __this_cpu_read(bh_lrus.bhs[i - 1])); 1309 i--; 1310 } 1311 __this_cpu_write(bh_lrus.bhs[0], bh); 1312 } 1313 get_bh(bh); 1314 ret = bh; 1315 break; 1316 } 1317 } 1318 bh_lru_unlock(); 1319 return ret; 1320 } 1321 1322 /* 1323 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1324 * it in the LRU and mark it as accessed. If it is not present then return 1325 * NULL 1326 */ 1327 struct buffer_head * 1328 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1329 { 1330 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1331 1332 if (bh == NULL) { 1333 /* __find_get_block_slow will mark the page accessed */ 1334 bh = __find_get_block_slow(bdev, block); 1335 if (bh) 1336 bh_lru_install(bh); 1337 } else 1338 touch_buffer(bh); 1339 1340 return bh; 1341 } 1342 EXPORT_SYMBOL(__find_get_block); 1343 1344 /* 1345 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1346 * which corresponds to the passed block_device, block and size. The 1347 * returned buffer has its reference count incremented. 1348 * 1349 * __getblk_gfp() will lock up the machine if grow_dev_page's 1350 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1351 */ 1352 struct buffer_head * 1353 __getblk_gfp(struct block_device *bdev, sector_t block, 1354 unsigned size, gfp_t gfp) 1355 { 1356 struct buffer_head *bh = __find_get_block(bdev, block, size); 1357 1358 might_sleep(); 1359 if (bh == NULL) 1360 bh = __getblk_slow(bdev, block, size, gfp); 1361 return bh; 1362 } 1363 EXPORT_SYMBOL(__getblk_gfp); 1364 1365 /* 1366 * Do async read-ahead on a buffer.. 1367 */ 1368 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1369 { 1370 struct buffer_head *bh = __getblk(bdev, block, size); 1371 if (likely(bh)) { 1372 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); 1373 brelse(bh); 1374 } 1375 } 1376 EXPORT_SYMBOL(__breadahead); 1377 1378 /** 1379 * __bread_gfp() - reads a specified block and returns the bh 1380 * @bdev: the block_device to read from 1381 * @block: number of block 1382 * @size: size (in bytes) to read 1383 * @gfp: page allocation flag 1384 * 1385 * Reads a specified block, and returns buffer head that contains it. 1386 * The page cache can be allocated from non-movable area 1387 * not to prevent page migration if you set gfp to zero. 1388 * It returns NULL if the block was unreadable. 1389 */ 1390 struct buffer_head * 1391 __bread_gfp(struct block_device *bdev, sector_t block, 1392 unsigned size, gfp_t gfp) 1393 { 1394 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1395 1396 if (likely(bh) && !buffer_uptodate(bh)) 1397 bh = __bread_slow(bh); 1398 return bh; 1399 } 1400 EXPORT_SYMBOL(__bread_gfp); 1401 1402 /* 1403 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1404 * This doesn't race because it runs in each cpu either in irq 1405 * or with preempt disabled. 1406 */ 1407 static void invalidate_bh_lru(void *arg) 1408 { 1409 struct bh_lru *b = &get_cpu_var(bh_lrus); 1410 int i; 1411 1412 for (i = 0; i < BH_LRU_SIZE; i++) { 1413 brelse(b->bhs[i]); 1414 b->bhs[i] = NULL; 1415 } 1416 put_cpu_var(bh_lrus); 1417 } 1418 1419 static bool has_bh_in_lru(int cpu, void *dummy) 1420 { 1421 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1422 int i; 1423 1424 for (i = 0; i < BH_LRU_SIZE; i++) { 1425 if (b->bhs[i]) 1426 return 1; 1427 } 1428 1429 return 0; 1430 } 1431 1432 void invalidate_bh_lrus(void) 1433 { 1434 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); 1435 } 1436 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1437 1438 void set_bh_page(struct buffer_head *bh, 1439 struct page *page, unsigned long offset) 1440 { 1441 bh->b_page = page; 1442 BUG_ON(offset >= PAGE_SIZE); 1443 if (PageHighMem(page)) 1444 /* 1445 * This catches illegal uses and preserves the offset: 1446 */ 1447 bh->b_data = (char *)(0 + offset); 1448 else 1449 bh->b_data = page_address(page) + offset; 1450 } 1451 EXPORT_SYMBOL(set_bh_page); 1452 1453 /* 1454 * Called when truncating a buffer on a page completely. 1455 */ 1456 1457 /* Bits that are cleared during an invalidate */ 1458 #define BUFFER_FLAGS_DISCARD \ 1459 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1460 1 << BH_Delay | 1 << BH_Unwritten) 1461 1462 static void discard_buffer(struct buffer_head * bh) 1463 { 1464 unsigned long b_state, b_state_old; 1465 1466 lock_buffer(bh); 1467 clear_buffer_dirty(bh); 1468 bh->b_bdev = NULL; 1469 b_state = bh->b_state; 1470 for (;;) { 1471 b_state_old = cmpxchg(&bh->b_state, b_state, 1472 (b_state & ~BUFFER_FLAGS_DISCARD)); 1473 if (b_state_old == b_state) 1474 break; 1475 b_state = b_state_old; 1476 } 1477 unlock_buffer(bh); 1478 } 1479 1480 /** 1481 * block_invalidatepage - invalidate part or all of a buffer-backed page 1482 * 1483 * @page: the page which is affected 1484 * @offset: start of the range to invalidate 1485 * @length: length of the range to invalidate 1486 * 1487 * block_invalidatepage() is called when all or part of the page has become 1488 * invalidated by a truncate operation. 1489 * 1490 * block_invalidatepage() does not have to release all buffers, but it must 1491 * ensure that no dirty buffer is left outside @offset and that no I/O 1492 * is underway against any of the blocks which are outside the truncation 1493 * point. Because the caller is about to free (and possibly reuse) those 1494 * blocks on-disk. 1495 */ 1496 void block_invalidatepage(struct page *page, unsigned int offset, 1497 unsigned int length) 1498 { 1499 struct buffer_head *head, *bh, *next; 1500 unsigned int curr_off = 0; 1501 unsigned int stop = length + offset; 1502 1503 BUG_ON(!PageLocked(page)); 1504 if (!page_has_buffers(page)) 1505 goto out; 1506 1507 /* 1508 * Check for overflow 1509 */ 1510 BUG_ON(stop > PAGE_SIZE || stop < length); 1511 1512 head = page_buffers(page); 1513 bh = head; 1514 do { 1515 unsigned int next_off = curr_off + bh->b_size; 1516 next = bh->b_this_page; 1517 1518 /* 1519 * Are we still fully in range ? 1520 */ 1521 if (next_off > stop) 1522 goto out; 1523 1524 /* 1525 * is this block fully invalidated? 1526 */ 1527 if (offset <= curr_off) 1528 discard_buffer(bh); 1529 curr_off = next_off; 1530 bh = next; 1531 } while (bh != head); 1532 1533 /* 1534 * We release buffers only if the entire page is being invalidated. 1535 * The get_block cached value has been unconditionally invalidated, 1536 * so real IO is not possible anymore. 1537 */ 1538 if (length == PAGE_SIZE) 1539 try_to_release_page(page, 0); 1540 out: 1541 return; 1542 } 1543 EXPORT_SYMBOL(block_invalidatepage); 1544 1545 1546 /* 1547 * We attach and possibly dirty the buffers atomically wrt 1548 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1549 * is already excluded via the page lock. 1550 */ 1551 void create_empty_buffers(struct page *page, 1552 unsigned long blocksize, unsigned long b_state) 1553 { 1554 struct buffer_head *bh, *head, *tail; 1555 1556 head = alloc_page_buffers(page, blocksize, true); 1557 bh = head; 1558 do { 1559 bh->b_state |= b_state; 1560 tail = bh; 1561 bh = bh->b_this_page; 1562 } while (bh); 1563 tail->b_this_page = head; 1564 1565 spin_lock(&page->mapping->private_lock); 1566 if (PageUptodate(page) || PageDirty(page)) { 1567 bh = head; 1568 do { 1569 if (PageDirty(page)) 1570 set_buffer_dirty(bh); 1571 if (PageUptodate(page)) 1572 set_buffer_uptodate(bh); 1573 bh = bh->b_this_page; 1574 } while (bh != head); 1575 } 1576 attach_page_buffers(page, head); 1577 spin_unlock(&page->mapping->private_lock); 1578 } 1579 EXPORT_SYMBOL(create_empty_buffers); 1580 1581 /** 1582 * clean_bdev_aliases: clean a range of buffers in block device 1583 * @bdev: Block device to clean buffers in 1584 * @block: Start of a range of blocks to clean 1585 * @len: Number of blocks to clean 1586 * 1587 * We are taking a range of blocks for data and we don't want writeback of any 1588 * buffer-cache aliases starting from return from this function and until the 1589 * moment when something will explicitly mark the buffer dirty (hopefully that 1590 * will not happen until we will free that block ;-) We don't even need to mark 1591 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1592 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1593 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1594 * would confuse anyone who might pick it with bread() afterwards... 1595 * 1596 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1597 * writeout I/O going on against recently-freed buffers. We don't wait on that 1598 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1599 * need to. That happens here. 1600 */ 1601 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1602 { 1603 struct inode *bd_inode = bdev->bd_inode; 1604 struct address_space *bd_mapping = bd_inode->i_mapping; 1605 struct pagevec pvec; 1606 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1607 pgoff_t end; 1608 int i, count; 1609 struct buffer_head *bh; 1610 struct buffer_head *head; 1611 1612 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1613 pagevec_init(&pvec); 1614 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) { 1615 count = pagevec_count(&pvec); 1616 for (i = 0; i < count; i++) { 1617 struct page *page = pvec.pages[i]; 1618 1619 if (!page_has_buffers(page)) 1620 continue; 1621 /* 1622 * We use page lock instead of bd_mapping->private_lock 1623 * to pin buffers here since we can afford to sleep and 1624 * it scales better than a global spinlock lock. 1625 */ 1626 lock_page(page); 1627 /* Recheck when the page is locked which pins bhs */ 1628 if (!page_has_buffers(page)) 1629 goto unlock_page; 1630 head = page_buffers(page); 1631 bh = head; 1632 do { 1633 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1634 goto next; 1635 if (bh->b_blocknr >= block + len) 1636 break; 1637 clear_buffer_dirty(bh); 1638 wait_on_buffer(bh); 1639 clear_buffer_req(bh); 1640 next: 1641 bh = bh->b_this_page; 1642 } while (bh != head); 1643 unlock_page: 1644 unlock_page(page); 1645 } 1646 pagevec_release(&pvec); 1647 cond_resched(); 1648 /* End of range already reached? */ 1649 if (index > end || !index) 1650 break; 1651 } 1652 } 1653 EXPORT_SYMBOL(clean_bdev_aliases); 1654 1655 /* 1656 * Size is a power-of-two in the range 512..PAGE_SIZE, 1657 * and the case we care about most is PAGE_SIZE. 1658 * 1659 * So this *could* possibly be written with those 1660 * constraints in mind (relevant mostly if some 1661 * architecture has a slow bit-scan instruction) 1662 */ 1663 static inline int block_size_bits(unsigned int blocksize) 1664 { 1665 return ilog2(blocksize); 1666 } 1667 1668 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1669 { 1670 BUG_ON(!PageLocked(page)); 1671 1672 if (!page_has_buffers(page)) 1673 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits), 1674 b_state); 1675 return page_buffers(page); 1676 } 1677 1678 /* 1679 * NOTE! All mapped/uptodate combinations are valid: 1680 * 1681 * Mapped Uptodate Meaning 1682 * 1683 * No No "unknown" - must do get_block() 1684 * No Yes "hole" - zero-filled 1685 * Yes No "allocated" - allocated on disk, not read in 1686 * Yes Yes "valid" - allocated and up-to-date in memory. 1687 * 1688 * "Dirty" is valid only with the last case (mapped+uptodate). 1689 */ 1690 1691 /* 1692 * While block_write_full_page is writing back the dirty buffers under 1693 * the page lock, whoever dirtied the buffers may decide to clean them 1694 * again at any time. We handle that by only looking at the buffer 1695 * state inside lock_buffer(). 1696 * 1697 * If block_write_full_page() is called for regular writeback 1698 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1699 * locked buffer. This only can happen if someone has written the buffer 1700 * directly, with submit_bh(). At the address_space level PageWriteback 1701 * prevents this contention from occurring. 1702 * 1703 * If block_write_full_page() is called with wbc->sync_mode == 1704 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1705 * causes the writes to be flagged as synchronous writes. 1706 */ 1707 int __block_write_full_page(struct inode *inode, struct page *page, 1708 get_block_t *get_block, struct writeback_control *wbc, 1709 bh_end_io_t *handler) 1710 { 1711 int err; 1712 sector_t block; 1713 sector_t last_block; 1714 struct buffer_head *bh, *head; 1715 unsigned int blocksize, bbits; 1716 int nr_underway = 0; 1717 int write_flags = wbc_to_write_flags(wbc); 1718 1719 head = create_page_buffers(page, inode, 1720 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1721 1722 /* 1723 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1724 * here, and the (potentially unmapped) buffers may become dirty at 1725 * any time. If a buffer becomes dirty here after we've inspected it 1726 * then we just miss that fact, and the page stays dirty. 1727 * 1728 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1729 * handle that here by just cleaning them. 1730 */ 1731 1732 bh = head; 1733 blocksize = bh->b_size; 1734 bbits = block_size_bits(blocksize); 1735 1736 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1737 last_block = (i_size_read(inode) - 1) >> bbits; 1738 1739 /* 1740 * Get all the dirty buffers mapped to disk addresses and 1741 * handle any aliases from the underlying blockdev's mapping. 1742 */ 1743 do { 1744 if (block > last_block) { 1745 /* 1746 * mapped buffers outside i_size will occur, because 1747 * this page can be outside i_size when there is a 1748 * truncate in progress. 1749 */ 1750 /* 1751 * The buffer was zeroed by block_write_full_page() 1752 */ 1753 clear_buffer_dirty(bh); 1754 set_buffer_uptodate(bh); 1755 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1756 buffer_dirty(bh)) { 1757 WARN_ON(bh->b_size != blocksize); 1758 err = get_block(inode, block, bh, 1); 1759 if (err) 1760 goto recover; 1761 clear_buffer_delay(bh); 1762 if (buffer_new(bh)) { 1763 /* blockdev mappings never come here */ 1764 clear_buffer_new(bh); 1765 clean_bdev_bh_alias(bh); 1766 } 1767 } 1768 bh = bh->b_this_page; 1769 block++; 1770 } while (bh != head); 1771 1772 do { 1773 if (!buffer_mapped(bh)) 1774 continue; 1775 /* 1776 * If it's a fully non-blocking write attempt and we cannot 1777 * lock the buffer then redirty the page. Note that this can 1778 * potentially cause a busy-wait loop from writeback threads 1779 * and kswapd activity, but those code paths have their own 1780 * higher-level throttling. 1781 */ 1782 if (wbc->sync_mode != WB_SYNC_NONE) { 1783 lock_buffer(bh); 1784 } else if (!trylock_buffer(bh)) { 1785 redirty_page_for_writepage(wbc, page); 1786 continue; 1787 } 1788 if (test_clear_buffer_dirty(bh)) { 1789 mark_buffer_async_write_endio(bh, handler); 1790 } else { 1791 unlock_buffer(bh); 1792 } 1793 } while ((bh = bh->b_this_page) != head); 1794 1795 /* 1796 * The page and its buffers are protected by PageWriteback(), so we can 1797 * drop the bh refcounts early. 1798 */ 1799 BUG_ON(PageWriteback(page)); 1800 set_page_writeback(page); 1801 1802 do { 1803 struct buffer_head *next = bh->b_this_page; 1804 if (buffer_async_write(bh)) { 1805 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1806 inode->i_write_hint, wbc); 1807 nr_underway++; 1808 } 1809 bh = next; 1810 } while (bh != head); 1811 unlock_page(page); 1812 1813 err = 0; 1814 done: 1815 if (nr_underway == 0) { 1816 /* 1817 * The page was marked dirty, but the buffers were 1818 * clean. Someone wrote them back by hand with 1819 * ll_rw_block/submit_bh. A rare case. 1820 */ 1821 end_page_writeback(page); 1822 1823 /* 1824 * The page and buffer_heads can be released at any time from 1825 * here on. 1826 */ 1827 } 1828 return err; 1829 1830 recover: 1831 /* 1832 * ENOSPC, or some other error. We may already have added some 1833 * blocks to the file, so we need to write these out to avoid 1834 * exposing stale data. 1835 * The page is currently locked and not marked for writeback 1836 */ 1837 bh = head; 1838 /* Recovery: lock and submit the mapped buffers */ 1839 do { 1840 if (buffer_mapped(bh) && buffer_dirty(bh) && 1841 !buffer_delay(bh)) { 1842 lock_buffer(bh); 1843 mark_buffer_async_write_endio(bh, handler); 1844 } else { 1845 /* 1846 * The buffer may have been set dirty during 1847 * attachment to a dirty page. 1848 */ 1849 clear_buffer_dirty(bh); 1850 } 1851 } while ((bh = bh->b_this_page) != head); 1852 SetPageError(page); 1853 BUG_ON(PageWriteback(page)); 1854 mapping_set_error(page->mapping, err); 1855 set_page_writeback(page); 1856 do { 1857 struct buffer_head *next = bh->b_this_page; 1858 if (buffer_async_write(bh)) { 1859 clear_buffer_dirty(bh); 1860 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1861 inode->i_write_hint, wbc); 1862 nr_underway++; 1863 } 1864 bh = next; 1865 } while (bh != head); 1866 unlock_page(page); 1867 goto done; 1868 } 1869 EXPORT_SYMBOL(__block_write_full_page); 1870 1871 /* 1872 * If a page has any new buffers, zero them out here, and mark them uptodate 1873 * and dirty so they'll be written out (in order to prevent uninitialised 1874 * block data from leaking). And clear the new bit. 1875 */ 1876 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1877 { 1878 unsigned int block_start, block_end; 1879 struct buffer_head *head, *bh; 1880 1881 BUG_ON(!PageLocked(page)); 1882 if (!page_has_buffers(page)) 1883 return; 1884 1885 bh = head = page_buffers(page); 1886 block_start = 0; 1887 do { 1888 block_end = block_start + bh->b_size; 1889 1890 if (buffer_new(bh)) { 1891 if (block_end > from && block_start < to) { 1892 if (!PageUptodate(page)) { 1893 unsigned start, size; 1894 1895 start = max(from, block_start); 1896 size = min(to, block_end) - start; 1897 1898 zero_user(page, start, size); 1899 set_buffer_uptodate(bh); 1900 } 1901 1902 clear_buffer_new(bh); 1903 mark_buffer_dirty(bh); 1904 } 1905 } 1906 1907 block_start = block_end; 1908 bh = bh->b_this_page; 1909 } while (bh != head); 1910 } 1911 EXPORT_SYMBOL(page_zero_new_buffers); 1912 1913 static void 1914 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 1915 struct iomap *iomap) 1916 { 1917 loff_t offset = block << inode->i_blkbits; 1918 1919 bh->b_bdev = iomap->bdev; 1920 1921 /* 1922 * Block points to offset in file we need to map, iomap contains 1923 * the offset at which the map starts. If the map ends before the 1924 * current block, then do not map the buffer and let the caller 1925 * handle it. 1926 */ 1927 BUG_ON(offset >= iomap->offset + iomap->length); 1928 1929 switch (iomap->type) { 1930 case IOMAP_HOLE: 1931 /* 1932 * If the buffer is not up to date or beyond the current EOF, 1933 * we need to mark it as new to ensure sub-block zeroing is 1934 * executed if necessary. 1935 */ 1936 if (!buffer_uptodate(bh) || 1937 (offset >= i_size_read(inode))) 1938 set_buffer_new(bh); 1939 break; 1940 case IOMAP_DELALLOC: 1941 if (!buffer_uptodate(bh) || 1942 (offset >= i_size_read(inode))) 1943 set_buffer_new(bh); 1944 set_buffer_uptodate(bh); 1945 set_buffer_mapped(bh); 1946 set_buffer_delay(bh); 1947 break; 1948 case IOMAP_UNWRITTEN: 1949 /* 1950 * For unwritten regions, we always need to ensure that regions 1951 * in the block we are not writing to are zeroed. Mark the 1952 * buffer as new to ensure this. 1953 */ 1954 set_buffer_new(bh); 1955 set_buffer_unwritten(bh); 1956 /* FALLTHRU */ 1957 case IOMAP_MAPPED: 1958 if ((iomap->flags & IOMAP_F_NEW) || 1959 offset >= i_size_read(inode)) 1960 set_buffer_new(bh); 1961 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 1962 inode->i_blkbits; 1963 set_buffer_mapped(bh); 1964 break; 1965 } 1966 } 1967 1968 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len, 1969 get_block_t *get_block, struct iomap *iomap) 1970 { 1971 unsigned from = pos & (PAGE_SIZE - 1); 1972 unsigned to = from + len; 1973 struct inode *inode = page->mapping->host; 1974 unsigned block_start, block_end; 1975 sector_t block; 1976 int err = 0; 1977 unsigned blocksize, bbits; 1978 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1979 1980 BUG_ON(!PageLocked(page)); 1981 BUG_ON(from > PAGE_SIZE); 1982 BUG_ON(to > PAGE_SIZE); 1983 BUG_ON(from > to); 1984 1985 head = create_page_buffers(page, inode, 0); 1986 blocksize = head->b_size; 1987 bbits = block_size_bits(blocksize); 1988 1989 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1990 1991 for(bh = head, block_start = 0; bh != head || !block_start; 1992 block++, block_start=block_end, bh = bh->b_this_page) { 1993 block_end = block_start + blocksize; 1994 if (block_end <= from || block_start >= to) { 1995 if (PageUptodate(page)) { 1996 if (!buffer_uptodate(bh)) 1997 set_buffer_uptodate(bh); 1998 } 1999 continue; 2000 } 2001 if (buffer_new(bh)) 2002 clear_buffer_new(bh); 2003 if (!buffer_mapped(bh)) { 2004 WARN_ON(bh->b_size != blocksize); 2005 if (get_block) { 2006 err = get_block(inode, block, bh, 1); 2007 if (err) 2008 break; 2009 } else { 2010 iomap_to_bh(inode, block, bh, iomap); 2011 } 2012 2013 if (buffer_new(bh)) { 2014 clean_bdev_bh_alias(bh); 2015 if (PageUptodate(page)) { 2016 clear_buffer_new(bh); 2017 set_buffer_uptodate(bh); 2018 mark_buffer_dirty(bh); 2019 continue; 2020 } 2021 if (block_end > to || block_start < from) 2022 zero_user_segments(page, 2023 to, block_end, 2024 block_start, from); 2025 continue; 2026 } 2027 } 2028 if (PageUptodate(page)) { 2029 if (!buffer_uptodate(bh)) 2030 set_buffer_uptodate(bh); 2031 continue; 2032 } 2033 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2034 !buffer_unwritten(bh) && 2035 (block_start < from || block_end > to)) { 2036 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2037 *wait_bh++=bh; 2038 } 2039 } 2040 /* 2041 * If we issued read requests - let them complete. 2042 */ 2043 while(wait_bh > wait) { 2044 wait_on_buffer(*--wait_bh); 2045 if (!buffer_uptodate(*wait_bh)) 2046 err = -EIO; 2047 } 2048 if (unlikely(err)) 2049 page_zero_new_buffers(page, from, to); 2050 return err; 2051 } 2052 2053 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2054 get_block_t *get_block) 2055 { 2056 return __block_write_begin_int(page, pos, len, get_block, NULL); 2057 } 2058 EXPORT_SYMBOL(__block_write_begin); 2059 2060 static int __block_commit_write(struct inode *inode, struct page *page, 2061 unsigned from, unsigned to) 2062 { 2063 unsigned block_start, block_end; 2064 int partial = 0; 2065 unsigned blocksize; 2066 struct buffer_head *bh, *head; 2067 2068 bh = head = page_buffers(page); 2069 blocksize = bh->b_size; 2070 2071 block_start = 0; 2072 do { 2073 block_end = block_start + blocksize; 2074 if (block_end <= from || block_start >= to) { 2075 if (!buffer_uptodate(bh)) 2076 partial = 1; 2077 } else { 2078 set_buffer_uptodate(bh); 2079 mark_buffer_dirty(bh); 2080 } 2081 clear_buffer_new(bh); 2082 2083 block_start = block_end; 2084 bh = bh->b_this_page; 2085 } while (bh != head); 2086 2087 /* 2088 * If this is a partial write which happened to make all buffers 2089 * uptodate then we can optimize away a bogus readpage() for 2090 * the next read(). Here we 'discover' whether the page went 2091 * uptodate as a result of this (potentially partial) write. 2092 */ 2093 if (!partial) 2094 SetPageUptodate(page); 2095 return 0; 2096 } 2097 2098 /* 2099 * block_write_begin takes care of the basic task of block allocation and 2100 * bringing partial write blocks uptodate first. 2101 * 2102 * The filesystem needs to handle block truncation upon failure. 2103 */ 2104 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2105 unsigned flags, struct page **pagep, get_block_t *get_block) 2106 { 2107 pgoff_t index = pos >> PAGE_SHIFT; 2108 struct page *page; 2109 int status; 2110 2111 page = grab_cache_page_write_begin(mapping, index, flags); 2112 if (!page) 2113 return -ENOMEM; 2114 2115 status = __block_write_begin(page, pos, len, get_block); 2116 if (unlikely(status)) { 2117 unlock_page(page); 2118 put_page(page); 2119 page = NULL; 2120 } 2121 2122 *pagep = page; 2123 return status; 2124 } 2125 EXPORT_SYMBOL(block_write_begin); 2126 2127 int block_write_end(struct file *file, struct address_space *mapping, 2128 loff_t pos, unsigned len, unsigned copied, 2129 struct page *page, void *fsdata) 2130 { 2131 struct inode *inode = mapping->host; 2132 unsigned start; 2133 2134 start = pos & (PAGE_SIZE - 1); 2135 2136 if (unlikely(copied < len)) { 2137 /* 2138 * The buffers that were written will now be uptodate, so we 2139 * don't have to worry about a readpage reading them and 2140 * overwriting a partial write. However if we have encountered 2141 * a short write and only partially written into a buffer, it 2142 * will not be marked uptodate, so a readpage might come in and 2143 * destroy our partial write. 2144 * 2145 * Do the simplest thing, and just treat any short write to a 2146 * non uptodate page as a zero-length write, and force the 2147 * caller to redo the whole thing. 2148 */ 2149 if (!PageUptodate(page)) 2150 copied = 0; 2151 2152 page_zero_new_buffers(page, start+copied, start+len); 2153 } 2154 flush_dcache_page(page); 2155 2156 /* This could be a short (even 0-length) commit */ 2157 __block_commit_write(inode, page, start, start+copied); 2158 2159 return copied; 2160 } 2161 EXPORT_SYMBOL(block_write_end); 2162 2163 int generic_write_end(struct file *file, struct address_space *mapping, 2164 loff_t pos, unsigned len, unsigned copied, 2165 struct page *page, void *fsdata) 2166 { 2167 struct inode *inode = mapping->host; 2168 loff_t old_size = inode->i_size; 2169 bool i_size_changed = false; 2170 2171 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2172 2173 /* 2174 * No need to use i_size_read() here, the i_size cannot change under us 2175 * because we hold i_rwsem. 2176 * 2177 * But it's important to update i_size while still holding page lock: 2178 * page writeout could otherwise come in and zero beyond i_size. 2179 */ 2180 if (pos + copied > inode->i_size) { 2181 i_size_write(inode, pos + copied); 2182 i_size_changed = true; 2183 } 2184 2185 unlock_page(page); 2186 put_page(page); 2187 2188 if (old_size < pos) 2189 pagecache_isize_extended(inode, old_size, pos); 2190 /* 2191 * Don't mark the inode dirty under page lock. First, it unnecessarily 2192 * makes the holding time of page lock longer. Second, it forces lock 2193 * ordering of page lock and transaction start for journaling 2194 * filesystems. 2195 */ 2196 if (i_size_changed) 2197 mark_inode_dirty(inode); 2198 return copied; 2199 } 2200 EXPORT_SYMBOL(generic_write_end); 2201 2202 /* 2203 * block_is_partially_uptodate checks whether buffers within a page are 2204 * uptodate or not. 2205 * 2206 * Returns true if all buffers which correspond to a file portion 2207 * we want to read are uptodate. 2208 */ 2209 int block_is_partially_uptodate(struct page *page, unsigned long from, 2210 unsigned long count) 2211 { 2212 unsigned block_start, block_end, blocksize; 2213 unsigned to; 2214 struct buffer_head *bh, *head; 2215 int ret = 1; 2216 2217 if (!page_has_buffers(page)) 2218 return 0; 2219 2220 head = page_buffers(page); 2221 blocksize = head->b_size; 2222 to = min_t(unsigned, PAGE_SIZE - from, count); 2223 to = from + to; 2224 if (from < blocksize && to > PAGE_SIZE - blocksize) 2225 return 0; 2226 2227 bh = head; 2228 block_start = 0; 2229 do { 2230 block_end = block_start + blocksize; 2231 if (block_end > from && block_start < to) { 2232 if (!buffer_uptodate(bh)) { 2233 ret = 0; 2234 break; 2235 } 2236 if (block_end >= to) 2237 break; 2238 } 2239 block_start = block_end; 2240 bh = bh->b_this_page; 2241 } while (bh != head); 2242 2243 return ret; 2244 } 2245 EXPORT_SYMBOL(block_is_partially_uptodate); 2246 2247 /* 2248 * Generic "read page" function for block devices that have the normal 2249 * get_block functionality. This is most of the block device filesystems. 2250 * Reads the page asynchronously --- the unlock_buffer() and 2251 * set/clear_buffer_uptodate() functions propagate buffer state into the 2252 * page struct once IO has completed. 2253 */ 2254 int block_read_full_page(struct page *page, get_block_t *get_block) 2255 { 2256 struct inode *inode = page->mapping->host; 2257 sector_t iblock, lblock; 2258 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2259 unsigned int blocksize, bbits; 2260 int nr, i; 2261 int fully_mapped = 1; 2262 2263 head = create_page_buffers(page, inode, 0); 2264 blocksize = head->b_size; 2265 bbits = block_size_bits(blocksize); 2266 2267 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits); 2268 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2269 bh = head; 2270 nr = 0; 2271 i = 0; 2272 2273 do { 2274 if (buffer_uptodate(bh)) 2275 continue; 2276 2277 if (!buffer_mapped(bh)) { 2278 int err = 0; 2279 2280 fully_mapped = 0; 2281 if (iblock < lblock) { 2282 WARN_ON(bh->b_size != blocksize); 2283 err = get_block(inode, iblock, bh, 0); 2284 if (err) 2285 SetPageError(page); 2286 } 2287 if (!buffer_mapped(bh)) { 2288 zero_user(page, i * blocksize, blocksize); 2289 if (!err) 2290 set_buffer_uptodate(bh); 2291 continue; 2292 } 2293 /* 2294 * get_block() might have updated the buffer 2295 * synchronously 2296 */ 2297 if (buffer_uptodate(bh)) 2298 continue; 2299 } 2300 arr[nr++] = bh; 2301 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2302 2303 if (fully_mapped) 2304 SetPageMappedToDisk(page); 2305 2306 if (!nr) { 2307 /* 2308 * All buffers are uptodate - we can set the page uptodate 2309 * as well. But not if get_block() returned an error. 2310 */ 2311 if (!PageError(page)) 2312 SetPageUptodate(page); 2313 unlock_page(page); 2314 return 0; 2315 } 2316 2317 /* Stage two: lock the buffers */ 2318 for (i = 0; i < nr; i++) { 2319 bh = arr[i]; 2320 lock_buffer(bh); 2321 mark_buffer_async_read(bh); 2322 } 2323 2324 /* 2325 * Stage 3: start the IO. Check for uptodateness 2326 * inside the buffer lock in case another process reading 2327 * the underlying blockdev brought it uptodate (the sct fix). 2328 */ 2329 for (i = 0; i < nr; i++) { 2330 bh = arr[i]; 2331 if (buffer_uptodate(bh)) 2332 end_buffer_async_read(bh, 1); 2333 else 2334 submit_bh(REQ_OP_READ, 0, bh); 2335 } 2336 return 0; 2337 } 2338 EXPORT_SYMBOL(block_read_full_page); 2339 2340 /* utility function for filesystems that need to do work on expanding 2341 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2342 * deal with the hole. 2343 */ 2344 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2345 { 2346 struct address_space *mapping = inode->i_mapping; 2347 struct page *page; 2348 void *fsdata; 2349 int err; 2350 2351 err = inode_newsize_ok(inode, size); 2352 if (err) 2353 goto out; 2354 2355 err = pagecache_write_begin(NULL, mapping, size, 0, 2356 AOP_FLAG_CONT_EXPAND, &page, &fsdata); 2357 if (err) 2358 goto out; 2359 2360 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2361 BUG_ON(err > 0); 2362 2363 out: 2364 return err; 2365 } 2366 EXPORT_SYMBOL(generic_cont_expand_simple); 2367 2368 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2369 loff_t pos, loff_t *bytes) 2370 { 2371 struct inode *inode = mapping->host; 2372 unsigned int blocksize = i_blocksize(inode); 2373 struct page *page; 2374 void *fsdata; 2375 pgoff_t index, curidx; 2376 loff_t curpos; 2377 unsigned zerofrom, offset, len; 2378 int err = 0; 2379 2380 index = pos >> PAGE_SHIFT; 2381 offset = pos & ~PAGE_MASK; 2382 2383 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2384 zerofrom = curpos & ~PAGE_MASK; 2385 if (zerofrom & (blocksize-1)) { 2386 *bytes |= (blocksize-1); 2387 (*bytes)++; 2388 } 2389 len = PAGE_SIZE - zerofrom; 2390 2391 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2392 &page, &fsdata); 2393 if (err) 2394 goto out; 2395 zero_user(page, zerofrom, len); 2396 err = pagecache_write_end(file, mapping, curpos, len, len, 2397 page, fsdata); 2398 if (err < 0) 2399 goto out; 2400 BUG_ON(err != len); 2401 err = 0; 2402 2403 balance_dirty_pages_ratelimited(mapping); 2404 2405 if (fatal_signal_pending(current)) { 2406 err = -EINTR; 2407 goto out; 2408 } 2409 } 2410 2411 /* page covers the boundary, find the boundary offset */ 2412 if (index == curidx) { 2413 zerofrom = curpos & ~PAGE_MASK; 2414 /* if we will expand the thing last block will be filled */ 2415 if (offset <= zerofrom) { 2416 goto out; 2417 } 2418 if (zerofrom & (blocksize-1)) { 2419 *bytes |= (blocksize-1); 2420 (*bytes)++; 2421 } 2422 len = offset - zerofrom; 2423 2424 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2425 &page, &fsdata); 2426 if (err) 2427 goto out; 2428 zero_user(page, zerofrom, len); 2429 err = pagecache_write_end(file, mapping, curpos, len, len, 2430 page, fsdata); 2431 if (err < 0) 2432 goto out; 2433 BUG_ON(err != len); 2434 err = 0; 2435 } 2436 out: 2437 return err; 2438 } 2439 2440 /* 2441 * For moronic filesystems that do not allow holes in file. 2442 * We may have to extend the file. 2443 */ 2444 int cont_write_begin(struct file *file, struct address_space *mapping, 2445 loff_t pos, unsigned len, unsigned flags, 2446 struct page **pagep, void **fsdata, 2447 get_block_t *get_block, loff_t *bytes) 2448 { 2449 struct inode *inode = mapping->host; 2450 unsigned int blocksize = i_blocksize(inode); 2451 unsigned int zerofrom; 2452 int err; 2453 2454 err = cont_expand_zero(file, mapping, pos, bytes); 2455 if (err) 2456 return err; 2457 2458 zerofrom = *bytes & ~PAGE_MASK; 2459 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2460 *bytes |= (blocksize-1); 2461 (*bytes)++; 2462 } 2463 2464 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2465 } 2466 EXPORT_SYMBOL(cont_write_begin); 2467 2468 int block_commit_write(struct page *page, unsigned from, unsigned to) 2469 { 2470 struct inode *inode = page->mapping->host; 2471 __block_commit_write(inode,page,from,to); 2472 return 0; 2473 } 2474 EXPORT_SYMBOL(block_commit_write); 2475 2476 /* 2477 * block_page_mkwrite() is not allowed to change the file size as it gets 2478 * called from a page fault handler when a page is first dirtied. Hence we must 2479 * be careful to check for EOF conditions here. We set the page up correctly 2480 * for a written page which means we get ENOSPC checking when writing into 2481 * holes and correct delalloc and unwritten extent mapping on filesystems that 2482 * support these features. 2483 * 2484 * We are not allowed to take the i_mutex here so we have to play games to 2485 * protect against truncate races as the page could now be beyond EOF. Because 2486 * truncate writes the inode size before removing pages, once we have the 2487 * page lock we can determine safely if the page is beyond EOF. If it is not 2488 * beyond EOF, then the page is guaranteed safe against truncation until we 2489 * unlock the page. 2490 * 2491 * Direct callers of this function should protect against filesystem freezing 2492 * using sb_start_pagefault() - sb_end_pagefault() functions. 2493 */ 2494 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2495 get_block_t get_block) 2496 { 2497 struct page *page = vmf->page; 2498 struct inode *inode = file_inode(vma->vm_file); 2499 unsigned long end; 2500 loff_t size; 2501 int ret; 2502 2503 lock_page(page); 2504 size = i_size_read(inode); 2505 if ((page->mapping != inode->i_mapping) || 2506 (page_offset(page) > size)) { 2507 /* We overload EFAULT to mean page got truncated */ 2508 ret = -EFAULT; 2509 goto out_unlock; 2510 } 2511 2512 /* page is wholly or partially inside EOF */ 2513 if (((page->index + 1) << PAGE_SHIFT) > size) 2514 end = size & ~PAGE_MASK; 2515 else 2516 end = PAGE_SIZE; 2517 2518 ret = __block_write_begin(page, 0, end, get_block); 2519 if (!ret) 2520 ret = block_commit_write(page, 0, end); 2521 2522 if (unlikely(ret < 0)) 2523 goto out_unlock; 2524 set_page_dirty(page); 2525 wait_for_stable_page(page); 2526 return 0; 2527 out_unlock: 2528 unlock_page(page); 2529 return ret; 2530 } 2531 EXPORT_SYMBOL(block_page_mkwrite); 2532 2533 /* 2534 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2535 * immediately, while under the page lock. So it needs a special end_io 2536 * handler which does not touch the bh after unlocking it. 2537 */ 2538 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2539 { 2540 __end_buffer_read_notouch(bh, uptodate); 2541 } 2542 2543 /* 2544 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2545 * the page (converting it to circular linked list and taking care of page 2546 * dirty races). 2547 */ 2548 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2549 { 2550 struct buffer_head *bh; 2551 2552 BUG_ON(!PageLocked(page)); 2553 2554 spin_lock(&page->mapping->private_lock); 2555 bh = head; 2556 do { 2557 if (PageDirty(page)) 2558 set_buffer_dirty(bh); 2559 if (!bh->b_this_page) 2560 bh->b_this_page = head; 2561 bh = bh->b_this_page; 2562 } while (bh != head); 2563 attach_page_buffers(page, head); 2564 spin_unlock(&page->mapping->private_lock); 2565 } 2566 2567 /* 2568 * On entry, the page is fully not uptodate. 2569 * On exit the page is fully uptodate in the areas outside (from,to) 2570 * The filesystem needs to handle block truncation upon failure. 2571 */ 2572 int nobh_write_begin(struct address_space *mapping, 2573 loff_t pos, unsigned len, unsigned flags, 2574 struct page **pagep, void **fsdata, 2575 get_block_t *get_block) 2576 { 2577 struct inode *inode = mapping->host; 2578 const unsigned blkbits = inode->i_blkbits; 2579 const unsigned blocksize = 1 << blkbits; 2580 struct buffer_head *head, *bh; 2581 struct page *page; 2582 pgoff_t index; 2583 unsigned from, to; 2584 unsigned block_in_page; 2585 unsigned block_start, block_end; 2586 sector_t block_in_file; 2587 int nr_reads = 0; 2588 int ret = 0; 2589 int is_mapped_to_disk = 1; 2590 2591 index = pos >> PAGE_SHIFT; 2592 from = pos & (PAGE_SIZE - 1); 2593 to = from + len; 2594 2595 page = grab_cache_page_write_begin(mapping, index, flags); 2596 if (!page) 2597 return -ENOMEM; 2598 *pagep = page; 2599 *fsdata = NULL; 2600 2601 if (page_has_buffers(page)) { 2602 ret = __block_write_begin(page, pos, len, get_block); 2603 if (unlikely(ret)) 2604 goto out_release; 2605 return ret; 2606 } 2607 2608 if (PageMappedToDisk(page)) 2609 return 0; 2610 2611 /* 2612 * Allocate buffers so that we can keep track of state, and potentially 2613 * attach them to the page if an error occurs. In the common case of 2614 * no error, they will just be freed again without ever being attached 2615 * to the page (which is all OK, because we're under the page lock). 2616 * 2617 * Be careful: the buffer linked list is a NULL terminated one, rather 2618 * than the circular one we're used to. 2619 */ 2620 head = alloc_page_buffers(page, blocksize, false); 2621 if (!head) { 2622 ret = -ENOMEM; 2623 goto out_release; 2624 } 2625 2626 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 2627 2628 /* 2629 * We loop across all blocks in the page, whether or not they are 2630 * part of the affected region. This is so we can discover if the 2631 * page is fully mapped-to-disk. 2632 */ 2633 for (block_start = 0, block_in_page = 0, bh = head; 2634 block_start < PAGE_SIZE; 2635 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2636 int create; 2637 2638 block_end = block_start + blocksize; 2639 bh->b_state = 0; 2640 create = 1; 2641 if (block_start >= to) 2642 create = 0; 2643 ret = get_block(inode, block_in_file + block_in_page, 2644 bh, create); 2645 if (ret) 2646 goto failed; 2647 if (!buffer_mapped(bh)) 2648 is_mapped_to_disk = 0; 2649 if (buffer_new(bh)) 2650 clean_bdev_bh_alias(bh); 2651 if (PageUptodate(page)) { 2652 set_buffer_uptodate(bh); 2653 continue; 2654 } 2655 if (buffer_new(bh) || !buffer_mapped(bh)) { 2656 zero_user_segments(page, block_start, from, 2657 to, block_end); 2658 continue; 2659 } 2660 if (buffer_uptodate(bh)) 2661 continue; /* reiserfs does this */ 2662 if (block_start < from || block_end > to) { 2663 lock_buffer(bh); 2664 bh->b_end_io = end_buffer_read_nobh; 2665 submit_bh(REQ_OP_READ, 0, bh); 2666 nr_reads++; 2667 } 2668 } 2669 2670 if (nr_reads) { 2671 /* 2672 * The page is locked, so these buffers are protected from 2673 * any VM or truncate activity. Hence we don't need to care 2674 * for the buffer_head refcounts. 2675 */ 2676 for (bh = head; bh; bh = bh->b_this_page) { 2677 wait_on_buffer(bh); 2678 if (!buffer_uptodate(bh)) 2679 ret = -EIO; 2680 } 2681 if (ret) 2682 goto failed; 2683 } 2684 2685 if (is_mapped_to_disk) 2686 SetPageMappedToDisk(page); 2687 2688 *fsdata = head; /* to be released by nobh_write_end */ 2689 2690 return 0; 2691 2692 failed: 2693 BUG_ON(!ret); 2694 /* 2695 * Error recovery is a bit difficult. We need to zero out blocks that 2696 * were newly allocated, and dirty them to ensure they get written out. 2697 * Buffers need to be attached to the page at this point, otherwise 2698 * the handling of potential IO errors during writeout would be hard 2699 * (could try doing synchronous writeout, but what if that fails too?) 2700 */ 2701 attach_nobh_buffers(page, head); 2702 page_zero_new_buffers(page, from, to); 2703 2704 out_release: 2705 unlock_page(page); 2706 put_page(page); 2707 *pagep = NULL; 2708 2709 return ret; 2710 } 2711 EXPORT_SYMBOL(nobh_write_begin); 2712 2713 int nobh_write_end(struct file *file, struct address_space *mapping, 2714 loff_t pos, unsigned len, unsigned copied, 2715 struct page *page, void *fsdata) 2716 { 2717 struct inode *inode = page->mapping->host; 2718 struct buffer_head *head = fsdata; 2719 struct buffer_head *bh; 2720 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2721 2722 if (unlikely(copied < len) && head) 2723 attach_nobh_buffers(page, head); 2724 if (page_has_buffers(page)) 2725 return generic_write_end(file, mapping, pos, len, 2726 copied, page, fsdata); 2727 2728 SetPageUptodate(page); 2729 set_page_dirty(page); 2730 if (pos+copied > inode->i_size) { 2731 i_size_write(inode, pos+copied); 2732 mark_inode_dirty(inode); 2733 } 2734 2735 unlock_page(page); 2736 put_page(page); 2737 2738 while (head) { 2739 bh = head; 2740 head = head->b_this_page; 2741 free_buffer_head(bh); 2742 } 2743 2744 return copied; 2745 } 2746 EXPORT_SYMBOL(nobh_write_end); 2747 2748 /* 2749 * nobh_writepage() - based on block_full_write_page() except 2750 * that it tries to operate without attaching bufferheads to 2751 * the page. 2752 */ 2753 int nobh_writepage(struct page *page, get_block_t *get_block, 2754 struct writeback_control *wbc) 2755 { 2756 struct inode * const inode = page->mapping->host; 2757 loff_t i_size = i_size_read(inode); 2758 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2759 unsigned offset; 2760 int ret; 2761 2762 /* Is the page fully inside i_size? */ 2763 if (page->index < end_index) 2764 goto out; 2765 2766 /* Is the page fully outside i_size? (truncate in progress) */ 2767 offset = i_size & (PAGE_SIZE-1); 2768 if (page->index >= end_index+1 || !offset) { 2769 /* 2770 * The page may have dirty, unmapped buffers. For example, 2771 * they may have been added in ext3_writepage(). Make them 2772 * freeable here, so the page does not leak. 2773 */ 2774 #if 0 2775 /* Not really sure about this - do we need this ? */ 2776 if (page->mapping->a_ops->invalidatepage) 2777 page->mapping->a_ops->invalidatepage(page, offset); 2778 #endif 2779 unlock_page(page); 2780 return 0; /* don't care */ 2781 } 2782 2783 /* 2784 * The page straddles i_size. It must be zeroed out on each and every 2785 * writepage invocation because it may be mmapped. "A file is mapped 2786 * in multiples of the page size. For a file that is not a multiple of 2787 * the page size, the remaining memory is zeroed when mapped, and 2788 * writes to that region are not written out to the file." 2789 */ 2790 zero_user_segment(page, offset, PAGE_SIZE); 2791 out: 2792 ret = mpage_writepage(page, get_block, wbc); 2793 if (ret == -EAGAIN) 2794 ret = __block_write_full_page(inode, page, get_block, wbc, 2795 end_buffer_async_write); 2796 return ret; 2797 } 2798 EXPORT_SYMBOL(nobh_writepage); 2799 2800 int nobh_truncate_page(struct address_space *mapping, 2801 loff_t from, get_block_t *get_block) 2802 { 2803 pgoff_t index = from >> PAGE_SHIFT; 2804 unsigned offset = from & (PAGE_SIZE-1); 2805 unsigned blocksize; 2806 sector_t iblock; 2807 unsigned length, pos; 2808 struct inode *inode = mapping->host; 2809 struct page *page; 2810 struct buffer_head map_bh; 2811 int err; 2812 2813 blocksize = i_blocksize(inode); 2814 length = offset & (blocksize - 1); 2815 2816 /* Block boundary? Nothing to do */ 2817 if (!length) 2818 return 0; 2819 2820 length = blocksize - length; 2821 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2822 2823 page = grab_cache_page(mapping, index); 2824 err = -ENOMEM; 2825 if (!page) 2826 goto out; 2827 2828 if (page_has_buffers(page)) { 2829 has_buffers: 2830 unlock_page(page); 2831 put_page(page); 2832 return block_truncate_page(mapping, from, get_block); 2833 } 2834 2835 /* Find the buffer that contains "offset" */ 2836 pos = blocksize; 2837 while (offset >= pos) { 2838 iblock++; 2839 pos += blocksize; 2840 } 2841 2842 map_bh.b_size = blocksize; 2843 map_bh.b_state = 0; 2844 err = get_block(inode, iblock, &map_bh, 0); 2845 if (err) 2846 goto unlock; 2847 /* unmapped? It's a hole - nothing to do */ 2848 if (!buffer_mapped(&map_bh)) 2849 goto unlock; 2850 2851 /* Ok, it's mapped. Make sure it's up-to-date */ 2852 if (!PageUptodate(page)) { 2853 err = mapping->a_ops->readpage(NULL, page); 2854 if (err) { 2855 put_page(page); 2856 goto out; 2857 } 2858 lock_page(page); 2859 if (!PageUptodate(page)) { 2860 err = -EIO; 2861 goto unlock; 2862 } 2863 if (page_has_buffers(page)) 2864 goto has_buffers; 2865 } 2866 zero_user(page, offset, length); 2867 set_page_dirty(page); 2868 err = 0; 2869 2870 unlock: 2871 unlock_page(page); 2872 put_page(page); 2873 out: 2874 return err; 2875 } 2876 EXPORT_SYMBOL(nobh_truncate_page); 2877 2878 int block_truncate_page(struct address_space *mapping, 2879 loff_t from, get_block_t *get_block) 2880 { 2881 pgoff_t index = from >> PAGE_SHIFT; 2882 unsigned offset = from & (PAGE_SIZE-1); 2883 unsigned blocksize; 2884 sector_t iblock; 2885 unsigned length, pos; 2886 struct inode *inode = mapping->host; 2887 struct page *page; 2888 struct buffer_head *bh; 2889 int err; 2890 2891 blocksize = i_blocksize(inode); 2892 length = offset & (blocksize - 1); 2893 2894 /* Block boundary? Nothing to do */ 2895 if (!length) 2896 return 0; 2897 2898 length = blocksize - length; 2899 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2900 2901 page = grab_cache_page(mapping, index); 2902 err = -ENOMEM; 2903 if (!page) 2904 goto out; 2905 2906 if (!page_has_buffers(page)) 2907 create_empty_buffers(page, blocksize, 0); 2908 2909 /* Find the buffer that contains "offset" */ 2910 bh = page_buffers(page); 2911 pos = blocksize; 2912 while (offset >= pos) { 2913 bh = bh->b_this_page; 2914 iblock++; 2915 pos += blocksize; 2916 } 2917 2918 err = 0; 2919 if (!buffer_mapped(bh)) { 2920 WARN_ON(bh->b_size != blocksize); 2921 err = get_block(inode, iblock, bh, 0); 2922 if (err) 2923 goto unlock; 2924 /* unmapped? It's a hole - nothing to do */ 2925 if (!buffer_mapped(bh)) 2926 goto unlock; 2927 } 2928 2929 /* Ok, it's mapped. Make sure it's up-to-date */ 2930 if (PageUptodate(page)) 2931 set_buffer_uptodate(bh); 2932 2933 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2934 err = -EIO; 2935 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2936 wait_on_buffer(bh); 2937 /* Uhhuh. Read error. Complain and punt. */ 2938 if (!buffer_uptodate(bh)) 2939 goto unlock; 2940 } 2941 2942 zero_user(page, offset, length); 2943 mark_buffer_dirty(bh); 2944 err = 0; 2945 2946 unlock: 2947 unlock_page(page); 2948 put_page(page); 2949 out: 2950 return err; 2951 } 2952 EXPORT_SYMBOL(block_truncate_page); 2953 2954 /* 2955 * The generic ->writepage function for buffer-backed address_spaces 2956 */ 2957 int block_write_full_page(struct page *page, get_block_t *get_block, 2958 struct writeback_control *wbc) 2959 { 2960 struct inode * const inode = page->mapping->host; 2961 loff_t i_size = i_size_read(inode); 2962 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2963 unsigned offset; 2964 2965 /* Is the page fully inside i_size? */ 2966 if (page->index < end_index) 2967 return __block_write_full_page(inode, page, get_block, wbc, 2968 end_buffer_async_write); 2969 2970 /* Is the page fully outside i_size? (truncate in progress) */ 2971 offset = i_size & (PAGE_SIZE-1); 2972 if (page->index >= end_index+1 || !offset) { 2973 /* 2974 * The page may have dirty, unmapped buffers. For example, 2975 * they may have been added in ext3_writepage(). Make them 2976 * freeable here, so the page does not leak. 2977 */ 2978 do_invalidatepage(page, 0, PAGE_SIZE); 2979 unlock_page(page); 2980 return 0; /* don't care */ 2981 } 2982 2983 /* 2984 * The page straddles i_size. It must be zeroed out on each and every 2985 * writepage invocation because it may be mmapped. "A file is mapped 2986 * in multiples of the page size. For a file that is not a multiple of 2987 * the page size, the remaining memory is zeroed when mapped, and 2988 * writes to that region are not written out to the file." 2989 */ 2990 zero_user_segment(page, offset, PAGE_SIZE); 2991 return __block_write_full_page(inode, page, get_block, wbc, 2992 end_buffer_async_write); 2993 } 2994 EXPORT_SYMBOL(block_write_full_page); 2995 2996 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2997 get_block_t *get_block) 2998 { 2999 struct inode *inode = mapping->host; 3000 struct buffer_head tmp = { 3001 .b_size = i_blocksize(inode), 3002 }; 3003 3004 get_block(inode, block, &tmp, 0); 3005 return tmp.b_blocknr; 3006 } 3007 EXPORT_SYMBOL(generic_block_bmap); 3008 3009 static void end_bio_bh_io_sync(struct bio *bio) 3010 { 3011 struct buffer_head *bh = bio->bi_private; 3012 3013 if (unlikely(bio_flagged(bio, BIO_QUIET))) 3014 set_bit(BH_Quiet, &bh->b_state); 3015 3016 bh->b_end_io(bh, !bio->bi_status); 3017 bio_put(bio); 3018 } 3019 3020 /* 3021 * This allows us to do IO even on the odd last sectors 3022 * of a device, even if the block size is some multiple 3023 * of the physical sector size. 3024 * 3025 * We'll just truncate the bio to the size of the device, 3026 * and clear the end of the buffer head manually. 3027 * 3028 * Truly out-of-range accesses will turn into actual IO 3029 * errors, this only handles the "we need to be able to 3030 * do IO at the final sector" case. 3031 */ 3032 void guard_bio_eod(int op, struct bio *bio) 3033 { 3034 sector_t maxsector; 3035 struct bio_vec *bvec = bio_last_bvec_all(bio); 3036 unsigned truncated_bytes; 3037 struct hd_struct *part; 3038 3039 rcu_read_lock(); 3040 part = __disk_get_part(bio->bi_disk, bio->bi_partno); 3041 if (part) 3042 maxsector = part_nr_sects_read(part); 3043 else 3044 maxsector = get_capacity(bio->bi_disk); 3045 rcu_read_unlock(); 3046 3047 if (!maxsector) 3048 return; 3049 3050 /* 3051 * If the *whole* IO is past the end of the device, 3052 * let it through, and the IO layer will turn it into 3053 * an EIO. 3054 */ 3055 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 3056 return; 3057 3058 maxsector -= bio->bi_iter.bi_sector; 3059 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 3060 return; 3061 3062 /* Uhhuh. We've got a bio that straddles the device size! */ 3063 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9); 3064 3065 /* 3066 * The bio contains more than one segment which spans EOD, just return 3067 * and let IO layer turn it into an EIO 3068 */ 3069 if (truncated_bytes > bvec->bv_len) 3070 return; 3071 3072 /* Truncate the bio.. */ 3073 bio->bi_iter.bi_size -= truncated_bytes; 3074 bvec->bv_len -= truncated_bytes; 3075 3076 /* ..and clear the end of the buffer for reads */ 3077 if (op == REQ_OP_READ) { 3078 struct bio_vec bv; 3079 3080 mp_bvec_last_segment(bvec, &bv); 3081 zero_user(bv.bv_page, bv.bv_offset + bv.bv_len, 3082 truncated_bytes); 3083 } 3084 } 3085 3086 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 3087 enum rw_hint write_hint, struct writeback_control *wbc) 3088 { 3089 struct bio *bio; 3090 3091 BUG_ON(!buffer_locked(bh)); 3092 BUG_ON(!buffer_mapped(bh)); 3093 BUG_ON(!bh->b_end_io); 3094 BUG_ON(buffer_delay(bh)); 3095 BUG_ON(buffer_unwritten(bh)); 3096 3097 /* 3098 * Only clear out a write error when rewriting 3099 */ 3100 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 3101 clear_buffer_write_io_error(bh); 3102 3103 /* 3104 * from here on down, it's all bio -- do the initial mapping, 3105 * submit_bio -> generic_make_request may further map this bio around 3106 */ 3107 bio = bio_alloc(GFP_NOIO, 1); 3108 3109 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 3110 bio_set_dev(bio, bh->b_bdev); 3111 bio->bi_write_hint = write_hint; 3112 3113 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 3114 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 3115 3116 bio->bi_end_io = end_bio_bh_io_sync; 3117 bio->bi_private = bh; 3118 3119 /* Take care of bh's that straddle the end of the device */ 3120 guard_bio_eod(op, bio); 3121 3122 if (buffer_meta(bh)) 3123 op_flags |= REQ_META; 3124 if (buffer_prio(bh)) 3125 op_flags |= REQ_PRIO; 3126 bio_set_op_attrs(bio, op, op_flags); 3127 3128 if (wbc) { 3129 wbc_init_bio(wbc, bio); 3130 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size); 3131 } 3132 3133 submit_bio(bio); 3134 return 0; 3135 } 3136 3137 int submit_bh(int op, int op_flags, struct buffer_head *bh) 3138 { 3139 return submit_bh_wbc(op, op_flags, bh, 0, NULL); 3140 } 3141 EXPORT_SYMBOL(submit_bh); 3142 3143 /** 3144 * ll_rw_block: low-level access to block devices (DEPRECATED) 3145 * @op: whether to %READ or %WRITE 3146 * @op_flags: req_flag_bits 3147 * @nr: number of &struct buffer_heads in the array 3148 * @bhs: array of pointers to &struct buffer_head 3149 * 3150 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3151 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE. 3152 * @op_flags contains flags modifying the detailed I/O behavior, most notably 3153 * %REQ_RAHEAD. 3154 * 3155 * This function drops any buffer that it cannot get a lock on (with the 3156 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3157 * request, and any buffer that appears to be up-to-date when doing read 3158 * request. Further it marks as clean buffers that are processed for 3159 * writing (the buffer cache won't assume that they are actually clean 3160 * until the buffer gets unlocked). 3161 * 3162 * ll_rw_block sets b_end_io to simple completion handler that marks 3163 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes 3164 * any waiters. 3165 * 3166 * All of the buffers must be for the same device, and must also be a 3167 * multiple of the current approved size for the device. 3168 */ 3169 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[]) 3170 { 3171 int i; 3172 3173 for (i = 0; i < nr; i++) { 3174 struct buffer_head *bh = bhs[i]; 3175 3176 if (!trylock_buffer(bh)) 3177 continue; 3178 if (op == WRITE) { 3179 if (test_clear_buffer_dirty(bh)) { 3180 bh->b_end_io = end_buffer_write_sync; 3181 get_bh(bh); 3182 submit_bh(op, op_flags, bh); 3183 continue; 3184 } 3185 } else { 3186 if (!buffer_uptodate(bh)) { 3187 bh->b_end_io = end_buffer_read_sync; 3188 get_bh(bh); 3189 submit_bh(op, op_flags, bh); 3190 continue; 3191 } 3192 } 3193 unlock_buffer(bh); 3194 } 3195 } 3196 EXPORT_SYMBOL(ll_rw_block); 3197 3198 void write_dirty_buffer(struct buffer_head *bh, int op_flags) 3199 { 3200 lock_buffer(bh); 3201 if (!test_clear_buffer_dirty(bh)) { 3202 unlock_buffer(bh); 3203 return; 3204 } 3205 bh->b_end_io = end_buffer_write_sync; 3206 get_bh(bh); 3207 submit_bh(REQ_OP_WRITE, op_flags, bh); 3208 } 3209 EXPORT_SYMBOL(write_dirty_buffer); 3210 3211 /* 3212 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3213 * and then start new I/O and then wait upon it. The caller must have a ref on 3214 * the buffer_head. 3215 */ 3216 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags) 3217 { 3218 int ret = 0; 3219 3220 WARN_ON(atomic_read(&bh->b_count) < 1); 3221 lock_buffer(bh); 3222 if (test_clear_buffer_dirty(bh)) { 3223 get_bh(bh); 3224 bh->b_end_io = end_buffer_write_sync; 3225 ret = submit_bh(REQ_OP_WRITE, op_flags, bh); 3226 wait_on_buffer(bh); 3227 if (!ret && !buffer_uptodate(bh)) 3228 ret = -EIO; 3229 } else { 3230 unlock_buffer(bh); 3231 } 3232 return ret; 3233 } 3234 EXPORT_SYMBOL(__sync_dirty_buffer); 3235 3236 int sync_dirty_buffer(struct buffer_head *bh) 3237 { 3238 return __sync_dirty_buffer(bh, REQ_SYNC); 3239 } 3240 EXPORT_SYMBOL(sync_dirty_buffer); 3241 3242 /* 3243 * try_to_free_buffers() checks if all the buffers on this particular page 3244 * are unused, and releases them if so. 3245 * 3246 * Exclusion against try_to_free_buffers may be obtained by either 3247 * locking the page or by holding its mapping's private_lock. 3248 * 3249 * If the page is dirty but all the buffers are clean then we need to 3250 * be sure to mark the page clean as well. This is because the page 3251 * may be against a block device, and a later reattachment of buffers 3252 * to a dirty page will set *all* buffers dirty. Which would corrupt 3253 * filesystem data on the same device. 3254 * 3255 * The same applies to regular filesystem pages: if all the buffers are 3256 * clean then we set the page clean and proceed. To do that, we require 3257 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3258 * private_lock. 3259 * 3260 * try_to_free_buffers() is non-blocking. 3261 */ 3262 static inline int buffer_busy(struct buffer_head *bh) 3263 { 3264 return atomic_read(&bh->b_count) | 3265 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3266 } 3267 3268 static int 3269 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3270 { 3271 struct buffer_head *head = page_buffers(page); 3272 struct buffer_head *bh; 3273 3274 bh = head; 3275 do { 3276 if (buffer_busy(bh)) 3277 goto failed; 3278 bh = bh->b_this_page; 3279 } while (bh != head); 3280 3281 do { 3282 struct buffer_head *next = bh->b_this_page; 3283 3284 if (bh->b_assoc_map) 3285 __remove_assoc_queue(bh); 3286 bh = next; 3287 } while (bh != head); 3288 *buffers_to_free = head; 3289 __clear_page_buffers(page); 3290 return 1; 3291 failed: 3292 return 0; 3293 } 3294 3295 int try_to_free_buffers(struct page *page) 3296 { 3297 struct address_space * const mapping = page->mapping; 3298 struct buffer_head *buffers_to_free = NULL; 3299 int ret = 0; 3300 3301 BUG_ON(!PageLocked(page)); 3302 if (PageWriteback(page)) 3303 return 0; 3304 3305 if (mapping == NULL) { /* can this still happen? */ 3306 ret = drop_buffers(page, &buffers_to_free); 3307 goto out; 3308 } 3309 3310 spin_lock(&mapping->private_lock); 3311 ret = drop_buffers(page, &buffers_to_free); 3312 3313 /* 3314 * If the filesystem writes its buffers by hand (eg ext3) 3315 * then we can have clean buffers against a dirty page. We 3316 * clean the page here; otherwise the VM will never notice 3317 * that the filesystem did any IO at all. 3318 * 3319 * Also, during truncate, discard_buffer will have marked all 3320 * the page's buffers clean. We discover that here and clean 3321 * the page also. 3322 * 3323 * private_lock must be held over this entire operation in order 3324 * to synchronise against __set_page_dirty_buffers and prevent the 3325 * dirty bit from being lost. 3326 */ 3327 if (ret) 3328 cancel_dirty_page(page); 3329 spin_unlock(&mapping->private_lock); 3330 out: 3331 if (buffers_to_free) { 3332 struct buffer_head *bh = buffers_to_free; 3333 3334 do { 3335 struct buffer_head *next = bh->b_this_page; 3336 free_buffer_head(bh); 3337 bh = next; 3338 } while (bh != buffers_to_free); 3339 } 3340 return ret; 3341 } 3342 EXPORT_SYMBOL(try_to_free_buffers); 3343 3344 /* 3345 * There are no bdflush tunables left. But distributions are 3346 * still running obsolete flush daemons, so we terminate them here. 3347 * 3348 * Use of bdflush() is deprecated and will be removed in a future kernel. 3349 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3350 */ 3351 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3352 { 3353 static int msg_count; 3354 3355 if (!capable(CAP_SYS_ADMIN)) 3356 return -EPERM; 3357 3358 if (msg_count < 5) { 3359 msg_count++; 3360 printk(KERN_INFO 3361 "warning: process `%s' used the obsolete bdflush" 3362 " system call\n", current->comm); 3363 printk(KERN_INFO "Fix your initscripts?\n"); 3364 } 3365 3366 if (func == 1) 3367 do_exit(0); 3368 return 0; 3369 } 3370 3371 /* 3372 * Buffer-head allocation 3373 */ 3374 static struct kmem_cache *bh_cachep __read_mostly; 3375 3376 /* 3377 * Once the number of bh's in the machine exceeds this level, we start 3378 * stripping them in writeback. 3379 */ 3380 static unsigned long max_buffer_heads; 3381 3382 int buffer_heads_over_limit; 3383 3384 struct bh_accounting { 3385 int nr; /* Number of live bh's */ 3386 int ratelimit; /* Limit cacheline bouncing */ 3387 }; 3388 3389 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3390 3391 static void recalc_bh_state(void) 3392 { 3393 int i; 3394 int tot = 0; 3395 3396 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3397 return; 3398 __this_cpu_write(bh_accounting.ratelimit, 0); 3399 for_each_online_cpu(i) 3400 tot += per_cpu(bh_accounting, i).nr; 3401 buffer_heads_over_limit = (tot > max_buffer_heads); 3402 } 3403 3404 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3405 { 3406 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3407 if (ret) { 3408 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3409 preempt_disable(); 3410 __this_cpu_inc(bh_accounting.nr); 3411 recalc_bh_state(); 3412 preempt_enable(); 3413 } 3414 return ret; 3415 } 3416 EXPORT_SYMBOL(alloc_buffer_head); 3417 3418 void free_buffer_head(struct buffer_head *bh) 3419 { 3420 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3421 kmem_cache_free(bh_cachep, bh); 3422 preempt_disable(); 3423 __this_cpu_dec(bh_accounting.nr); 3424 recalc_bh_state(); 3425 preempt_enable(); 3426 } 3427 EXPORT_SYMBOL(free_buffer_head); 3428 3429 static int buffer_exit_cpu_dead(unsigned int cpu) 3430 { 3431 int i; 3432 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3433 3434 for (i = 0; i < BH_LRU_SIZE; i++) { 3435 brelse(b->bhs[i]); 3436 b->bhs[i] = NULL; 3437 } 3438 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3439 per_cpu(bh_accounting, cpu).nr = 0; 3440 return 0; 3441 } 3442 3443 /** 3444 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3445 * @bh: struct buffer_head 3446 * 3447 * Return true if the buffer is up-to-date and false, 3448 * with the buffer locked, if not. 3449 */ 3450 int bh_uptodate_or_lock(struct buffer_head *bh) 3451 { 3452 if (!buffer_uptodate(bh)) { 3453 lock_buffer(bh); 3454 if (!buffer_uptodate(bh)) 3455 return 0; 3456 unlock_buffer(bh); 3457 } 3458 return 1; 3459 } 3460 EXPORT_SYMBOL(bh_uptodate_or_lock); 3461 3462 /** 3463 * bh_submit_read - Submit a locked buffer for reading 3464 * @bh: struct buffer_head 3465 * 3466 * Returns zero on success and -EIO on error. 3467 */ 3468 int bh_submit_read(struct buffer_head *bh) 3469 { 3470 BUG_ON(!buffer_locked(bh)); 3471 3472 if (buffer_uptodate(bh)) { 3473 unlock_buffer(bh); 3474 return 0; 3475 } 3476 3477 get_bh(bh); 3478 bh->b_end_io = end_buffer_read_sync; 3479 submit_bh(REQ_OP_READ, 0, bh); 3480 wait_on_buffer(bh); 3481 if (buffer_uptodate(bh)) 3482 return 0; 3483 return -EIO; 3484 } 3485 EXPORT_SYMBOL(bh_submit_read); 3486 3487 void __init buffer_init(void) 3488 { 3489 unsigned long nrpages; 3490 int ret; 3491 3492 bh_cachep = kmem_cache_create("buffer_head", 3493 sizeof(struct buffer_head), 0, 3494 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3495 SLAB_MEM_SPREAD), 3496 NULL); 3497 3498 /* 3499 * Limit the bh occupancy to 10% of ZONE_NORMAL 3500 */ 3501 nrpages = (nr_free_buffer_pages() * 10) / 100; 3502 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3503 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3504 NULL, buffer_exit_cpu_dead); 3505 WARN_ON(ret < 0); 3506 } 3507