1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/smp_lock.h> 28 #include <linux/capability.h> 29 #include <linux/blkdev.h> 30 #include <linux/file.h> 31 #include <linux/quotaops.h> 32 #include <linux/highmem.h> 33 #include <linux/module.h> 34 #include <linux/writeback.h> 35 #include <linux/hash.h> 36 #include <linux/suspend.h> 37 #include <linux/buffer_head.h> 38 #include <linux/bio.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/bitops.h> 42 #include <linux/mpage.h> 43 #include <linux/bit_spinlock.h> 44 45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 46 static void invalidate_bh_lrus(void); 47 48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 49 50 inline void 51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 52 { 53 bh->b_end_io = handler; 54 bh->b_private = private; 55 } 56 57 static int sync_buffer(void *word) 58 { 59 struct block_device *bd; 60 struct buffer_head *bh 61 = container_of(word, struct buffer_head, b_state); 62 63 smp_mb(); 64 bd = bh->b_bdev; 65 if (bd) 66 blk_run_address_space(bd->bd_inode->i_mapping); 67 io_schedule(); 68 return 0; 69 } 70 71 void fastcall __lock_buffer(struct buffer_head *bh) 72 { 73 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer, 74 TASK_UNINTERRUPTIBLE); 75 } 76 EXPORT_SYMBOL(__lock_buffer); 77 78 void fastcall unlock_buffer(struct buffer_head *bh) 79 { 80 clear_buffer_locked(bh); 81 smp_mb__after_clear_bit(); 82 wake_up_bit(&bh->b_state, BH_Lock); 83 } 84 85 /* 86 * Block until a buffer comes unlocked. This doesn't stop it 87 * from becoming locked again - you have to lock it yourself 88 * if you want to preserve its state. 89 */ 90 void __wait_on_buffer(struct buffer_head * bh) 91 { 92 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE); 93 } 94 95 static void 96 __clear_page_buffers(struct page *page) 97 { 98 ClearPagePrivate(page); 99 set_page_private(page, 0); 100 page_cache_release(page); 101 } 102 103 static void buffer_io_error(struct buffer_head *bh) 104 { 105 char b[BDEVNAME_SIZE]; 106 107 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 108 bdevname(bh->b_bdev, b), 109 (unsigned long long)bh->b_blocknr); 110 } 111 112 /* 113 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 114 * unlock the buffer. This is what ll_rw_block uses too. 115 */ 116 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 117 { 118 if (uptodate) { 119 set_buffer_uptodate(bh); 120 } else { 121 /* This happens, due to failed READA attempts. */ 122 clear_buffer_uptodate(bh); 123 } 124 unlock_buffer(bh); 125 put_bh(bh); 126 } 127 128 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 129 { 130 char b[BDEVNAME_SIZE]; 131 132 if (uptodate) { 133 set_buffer_uptodate(bh); 134 } else { 135 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { 136 buffer_io_error(bh); 137 printk(KERN_WARNING "lost page write due to " 138 "I/O error on %s\n", 139 bdevname(bh->b_bdev, b)); 140 } 141 set_buffer_write_io_error(bh); 142 clear_buffer_uptodate(bh); 143 } 144 unlock_buffer(bh); 145 put_bh(bh); 146 } 147 148 /* 149 * Write out and wait upon all the dirty data associated with a block 150 * device via its mapping. Does not take the superblock lock. 151 */ 152 int sync_blockdev(struct block_device *bdev) 153 { 154 int ret = 0; 155 156 if (bdev) 157 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping); 158 return ret; 159 } 160 EXPORT_SYMBOL(sync_blockdev); 161 162 static void __fsync_super(struct super_block *sb) 163 { 164 sync_inodes_sb(sb, 0); 165 DQUOT_SYNC(sb); 166 lock_super(sb); 167 if (sb->s_dirt && sb->s_op->write_super) 168 sb->s_op->write_super(sb); 169 unlock_super(sb); 170 if (sb->s_op->sync_fs) 171 sb->s_op->sync_fs(sb, 1); 172 sync_blockdev(sb->s_bdev); 173 sync_inodes_sb(sb, 1); 174 } 175 176 /* 177 * Write out and wait upon all dirty data associated with this 178 * superblock. Filesystem data as well as the underlying block 179 * device. Takes the superblock lock. 180 */ 181 int fsync_super(struct super_block *sb) 182 { 183 __fsync_super(sb); 184 return sync_blockdev(sb->s_bdev); 185 } 186 187 /* 188 * Write out and wait upon all dirty data associated with this 189 * device. Filesystem data as well as the underlying block 190 * device. Takes the superblock lock. 191 */ 192 int fsync_bdev(struct block_device *bdev) 193 { 194 struct super_block *sb = get_super(bdev); 195 if (sb) { 196 int res = fsync_super(sb); 197 drop_super(sb); 198 return res; 199 } 200 return sync_blockdev(bdev); 201 } 202 203 /** 204 * freeze_bdev -- lock a filesystem and force it into a consistent state 205 * @bdev: blockdevice to lock 206 * 207 * This takes the block device bd_mount_mutex to make sure no new mounts 208 * happen on bdev until thaw_bdev() is called. 209 * If a superblock is found on this device, we take the s_umount semaphore 210 * on it to make sure nobody unmounts until the snapshot creation is done. 211 */ 212 struct super_block *freeze_bdev(struct block_device *bdev) 213 { 214 struct super_block *sb; 215 216 mutex_lock(&bdev->bd_mount_mutex); 217 sb = get_super(bdev); 218 if (sb && !(sb->s_flags & MS_RDONLY)) { 219 sb->s_frozen = SB_FREEZE_WRITE; 220 smp_wmb(); 221 222 __fsync_super(sb); 223 224 sb->s_frozen = SB_FREEZE_TRANS; 225 smp_wmb(); 226 227 sync_blockdev(sb->s_bdev); 228 229 if (sb->s_op->write_super_lockfs) 230 sb->s_op->write_super_lockfs(sb); 231 } 232 233 sync_blockdev(bdev); 234 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */ 235 } 236 EXPORT_SYMBOL(freeze_bdev); 237 238 /** 239 * thaw_bdev -- unlock filesystem 240 * @bdev: blockdevice to unlock 241 * @sb: associated superblock 242 * 243 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 244 */ 245 void thaw_bdev(struct block_device *bdev, struct super_block *sb) 246 { 247 if (sb) { 248 BUG_ON(sb->s_bdev != bdev); 249 250 if (sb->s_op->unlockfs) 251 sb->s_op->unlockfs(sb); 252 sb->s_frozen = SB_UNFROZEN; 253 smp_wmb(); 254 wake_up(&sb->s_wait_unfrozen); 255 drop_super(sb); 256 } 257 258 mutex_unlock(&bdev->bd_mount_mutex); 259 } 260 EXPORT_SYMBOL(thaw_bdev); 261 262 /* 263 * sync everything. Start out by waking pdflush, because that writes back 264 * all queues in parallel. 265 */ 266 static void do_sync(unsigned long wait) 267 { 268 wakeup_pdflush(0); 269 sync_inodes(0); /* All mappings, inodes and their blockdevs */ 270 DQUOT_SYNC(NULL); 271 sync_supers(); /* Write the superblocks */ 272 sync_filesystems(0); /* Start syncing the filesystems */ 273 sync_filesystems(wait); /* Waitingly sync the filesystems */ 274 sync_inodes(wait); /* Mappings, inodes and blockdevs, again. */ 275 if (!wait) 276 printk("Emergency Sync complete\n"); 277 if (unlikely(laptop_mode)) 278 laptop_sync_completion(); 279 } 280 281 asmlinkage long sys_sync(void) 282 { 283 do_sync(1); 284 return 0; 285 } 286 287 void emergency_sync(void) 288 { 289 pdflush_operation(do_sync, 0); 290 } 291 292 /* 293 * Generic function to fsync a file. 294 * 295 * filp may be NULL if called via the msync of a vma. 296 */ 297 298 int file_fsync(struct file *filp, struct dentry *dentry, int datasync) 299 { 300 struct inode * inode = dentry->d_inode; 301 struct super_block * sb; 302 int ret, err; 303 304 /* sync the inode to buffers */ 305 ret = write_inode_now(inode, 0); 306 307 /* sync the superblock to buffers */ 308 sb = inode->i_sb; 309 lock_super(sb); 310 if (sb->s_op->write_super) 311 sb->s_op->write_super(sb); 312 unlock_super(sb); 313 314 /* .. finally sync the buffers to disk */ 315 err = sync_blockdev(sb->s_bdev); 316 if (!ret) 317 ret = err; 318 return ret; 319 } 320 321 long do_fsync(struct file *file, int datasync) 322 { 323 int ret; 324 int err; 325 struct address_space *mapping = file->f_mapping; 326 327 if (!file->f_op || !file->f_op->fsync) { 328 /* Why? We can still call filemap_fdatawrite */ 329 ret = -EINVAL; 330 goto out; 331 } 332 333 ret = filemap_fdatawrite(mapping); 334 335 /* 336 * We need to protect against concurrent writers, which could cause 337 * livelocks in fsync_buffers_list(). 338 */ 339 mutex_lock(&mapping->host->i_mutex); 340 err = file->f_op->fsync(file, file->f_dentry, datasync); 341 if (!ret) 342 ret = err; 343 mutex_unlock(&mapping->host->i_mutex); 344 err = filemap_fdatawait(mapping); 345 if (!ret) 346 ret = err; 347 out: 348 return ret; 349 } 350 351 static long __do_fsync(unsigned int fd, int datasync) 352 { 353 struct file *file; 354 int ret = -EBADF; 355 356 file = fget(fd); 357 if (file) { 358 ret = do_fsync(file, datasync); 359 fput(file); 360 } 361 return ret; 362 } 363 364 asmlinkage long sys_fsync(unsigned int fd) 365 { 366 return __do_fsync(fd, 0); 367 } 368 369 asmlinkage long sys_fdatasync(unsigned int fd) 370 { 371 return __do_fsync(fd, 1); 372 } 373 374 /* 375 * Various filesystems appear to want __find_get_block to be non-blocking. 376 * But it's the page lock which protects the buffers. To get around this, 377 * we get exclusion from try_to_free_buffers with the blockdev mapping's 378 * private_lock. 379 * 380 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 381 * may be quite high. This code could TryLock the page, and if that 382 * succeeds, there is no need to take private_lock. (But if 383 * private_lock is contended then so is mapping->tree_lock). 384 */ 385 static struct buffer_head * 386 __find_get_block_slow(struct block_device *bdev, sector_t block) 387 { 388 struct inode *bd_inode = bdev->bd_inode; 389 struct address_space *bd_mapping = bd_inode->i_mapping; 390 struct buffer_head *ret = NULL; 391 pgoff_t index; 392 struct buffer_head *bh; 393 struct buffer_head *head; 394 struct page *page; 395 int all_mapped = 1; 396 397 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 398 page = find_get_page(bd_mapping, index); 399 if (!page) 400 goto out; 401 402 spin_lock(&bd_mapping->private_lock); 403 if (!page_has_buffers(page)) 404 goto out_unlock; 405 head = page_buffers(page); 406 bh = head; 407 do { 408 if (bh->b_blocknr == block) { 409 ret = bh; 410 get_bh(bh); 411 goto out_unlock; 412 } 413 if (!buffer_mapped(bh)) 414 all_mapped = 0; 415 bh = bh->b_this_page; 416 } while (bh != head); 417 418 /* we might be here because some of the buffers on this page are 419 * not mapped. This is due to various races between 420 * file io on the block device and getblk. It gets dealt with 421 * elsewhere, don't buffer_error if we had some unmapped buffers 422 */ 423 if (all_mapped) { 424 printk("__find_get_block_slow() failed. " 425 "block=%llu, b_blocknr=%llu\n", 426 (unsigned long long)block, 427 (unsigned long long)bh->b_blocknr); 428 printk("b_state=0x%08lx, b_size=%zu\n", 429 bh->b_state, bh->b_size); 430 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits); 431 } 432 out_unlock: 433 spin_unlock(&bd_mapping->private_lock); 434 page_cache_release(page); 435 out: 436 return ret; 437 } 438 439 /* If invalidate_buffers() will trash dirty buffers, it means some kind 440 of fs corruption is going on. Trashing dirty data always imply losing 441 information that was supposed to be just stored on the physical layer 442 by the user. 443 444 Thus invalidate_buffers in general usage is not allwowed to trash 445 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to 446 be preserved. These buffers are simply skipped. 447 448 We also skip buffers which are still in use. For example this can 449 happen if a userspace program is reading the block device. 450 451 NOTE: In the case where the user removed a removable-media-disk even if 452 there's still dirty data not synced on disk (due a bug in the device driver 453 or due an error of the user), by not destroying the dirty buffers we could 454 generate corruption also on the next media inserted, thus a parameter is 455 necessary to handle this case in the most safe way possible (trying 456 to not corrupt also the new disk inserted with the data belonging to 457 the old now corrupted disk). Also for the ramdisk the natural thing 458 to do in order to release the ramdisk memory is to destroy dirty buffers. 459 460 These are two special cases. Normal usage imply the device driver 461 to issue a sync on the device (without waiting I/O completion) and 462 then an invalidate_buffers call that doesn't trash dirty buffers. 463 464 For handling cache coherency with the blkdev pagecache the 'update' case 465 is been introduced. It is needed to re-read from disk any pinned 466 buffer. NOTE: re-reading from disk is destructive so we can do it only 467 when we assume nobody is changing the buffercache under our I/O and when 468 we think the disk contains more recent information than the buffercache. 469 The update == 1 pass marks the buffers we need to update, the update == 2 470 pass does the actual I/O. */ 471 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers) 472 { 473 invalidate_bh_lrus(); 474 /* 475 * FIXME: what about destroy_dirty_buffers? 476 * We really want to use invalidate_inode_pages2() for 477 * that, but not until that's cleaned up. 478 */ 479 invalidate_inode_pages(bdev->bd_inode->i_mapping); 480 } 481 482 /* 483 * Kick pdflush then try to free up some ZONE_NORMAL memory. 484 */ 485 static void free_more_memory(void) 486 { 487 struct zone **zones; 488 pg_data_t *pgdat; 489 490 wakeup_pdflush(1024); 491 yield(); 492 493 for_each_online_pgdat(pgdat) { 494 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones; 495 if (*zones) 496 try_to_free_pages(zones, GFP_NOFS); 497 } 498 } 499 500 /* 501 * I/O completion handler for block_read_full_page() - pages 502 * which come unlocked at the end of I/O. 503 */ 504 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 505 { 506 unsigned long flags; 507 struct buffer_head *first; 508 struct buffer_head *tmp; 509 struct page *page; 510 int page_uptodate = 1; 511 512 BUG_ON(!buffer_async_read(bh)); 513 514 page = bh->b_page; 515 if (uptodate) { 516 set_buffer_uptodate(bh); 517 } else { 518 clear_buffer_uptodate(bh); 519 if (printk_ratelimit()) 520 buffer_io_error(bh); 521 SetPageError(page); 522 } 523 524 /* 525 * Be _very_ careful from here on. Bad things can happen if 526 * two buffer heads end IO at almost the same time and both 527 * decide that the page is now completely done. 528 */ 529 first = page_buffers(page); 530 local_irq_save(flags); 531 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 532 clear_buffer_async_read(bh); 533 unlock_buffer(bh); 534 tmp = bh; 535 do { 536 if (!buffer_uptodate(tmp)) 537 page_uptodate = 0; 538 if (buffer_async_read(tmp)) { 539 BUG_ON(!buffer_locked(tmp)); 540 goto still_busy; 541 } 542 tmp = tmp->b_this_page; 543 } while (tmp != bh); 544 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 545 local_irq_restore(flags); 546 547 /* 548 * If none of the buffers had errors and they are all 549 * uptodate then we can set the page uptodate. 550 */ 551 if (page_uptodate && !PageError(page)) 552 SetPageUptodate(page); 553 unlock_page(page); 554 return; 555 556 still_busy: 557 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 558 local_irq_restore(flags); 559 return; 560 } 561 562 /* 563 * Completion handler for block_write_full_page() - pages which are unlocked 564 * during I/O, and which have PageWriteback cleared upon I/O completion. 565 */ 566 static void end_buffer_async_write(struct buffer_head *bh, int uptodate) 567 { 568 char b[BDEVNAME_SIZE]; 569 unsigned long flags; 570 struct buffer_head *first; 571 struct buffer_head *tmp; 572 struct page *page; 573 574 BUG_ON(!buffer_async_write(bh)); 575 576 page = bh->b_page; 577 if (uptodate) { 578 set_buffer_uptodate(bh); 579 } else { 580 if (printk_ratelimit()) { 581 buffer_io_error(bh); 582 printk(KERN_WARNING "lost page write due to " 583 "I/O error on %s\n", 584 bdevname(bh->b_bdev, b)); 585 } 586 set_bit(AS_EIO, &page->mapping->flags); 587 clear_buffer_uptodate(bh); 588 SetPageError(page); 589 } 590 591 first = page_buffers(page); 592 local_irq_save(flags); 593 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 594 595 clear_buffer_async_write(bh); 596 unlock_buffer(bh); 597 tmp = bh->b_this_page; 598 while (tmp != bh) { 599 if (buffer_async_write(tmp)) { 600 BUG_ON(!buffer_locked(tmp)); 601 goto still_busy; 602 } 603 tmp = tmp->b_this_page; 604 } 605 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 606 local_irq_restore(flags); 607 end_page_writeback(page); 608 return; 609 610 still_busy: 611 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 612 local_irq_restore(flags); 613 return; 614 } 615 616 /* 617 * If a page's buffers are under async readin (end_buffer_async_read 618 * completion) then there is a possibility that another thread of 619 * control could lock one of the buffers after it has completed 620 * but while some of the other buffers have not completed. This 621 * locked buffer would confuse end_buffer_async_read() into not unlocking 622 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 623 * that this buffer is not under async I/O. 624 * 625 * The page comes unlocked when it has no locked buffer_async buffers 626 * left. 627 * 628 * PageLocked prevents anyone starting new async I/O reads any of 629 * the buffers. 630 * 631 * PageWriteback is used to prevent simultaneous writeout of the same 632 * page. 633 * 634 * PageLocked prevents anyone from starting writeback of a page which is 635 * under read I/O (PageWriteback is only ever set against a locked page). 636 */ 637 static void mark_buffer_async_read(struct buffer_head *bh) 638 { 639 bh->b_end_io = end_buffer_async_read; 640 set_buffer_async_read(bh); 641 } 642 643 void mark_buffer_async_write(struct buffer_head *bh) 644 { 645 bh->b_end_io = end_buffer_async_write; 646 set_buffer_async_write(bh); 647 } 648 EXPORT_SYMBOL(mark_buffer_async_write); 649 650 651 /* 652 * fs/buffer.c contains helper functions for buffer-backed address space's 653 * fsync functions. A common requirement for buffer-based filesystems is 654 * that certain data from the backing blockdev needs to be written out for 655 * a successful fsync(). For example, ext2 indirect blocks need to be 656 * written back and waited upon before fsync() returns. 657 * 658 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 659 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 660 * management of a list of dependent buffers at ->i_mapping->private_list. 661 * 662 * Locking is a little subtle: try_to_free_buffers() will remove buffers 663 * from their controlling inode's queue when they are being freed. But 664 * try_to_free_buffers() will be operating against the *blockdev* mapping 665 * at the time, not against the S_ISREG file which depends on those buffers. 666 * So the locking for private_list is via the private_lock in the address_space 667 * which backs the buffers. Which is different from the address_space 668 * against which the buffers are listed. So for a particular address_space, 669 * mapping->private_lock does *not* protect mapping->private_list! In fact, 670 * mapping->private_list will always be protected by the backing blockdev's 671 * ->private_lock. 672 * 673 * Which introduces a requirement: all buffers on an address_space's 674 * ->private_list must be from the same address_space: the blockdev's. 675 * 676 * address_spaces which do not place buffers at ->private_list via these 677 * utility functions are free to use private_lock and private_list for 678 * whatever they want. The only requirement is that list_empty(private_list) 679 * be true at clear_inode() time. 680 * 681 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 682 * filesystems should do that. invalidate_inode_buffers() should just go 683 * BUG_ON(!list_empty). 684 * 685 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 686 * take an address_space, not an inode. And it should be called 687 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 688 * queued up. 689 * 690 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 691 * list if it is already on a list. Because if the buffer is on a list, 692 * it *must* already be on the right one. If not, the filesystem is being 693 * silly. This will save a ton of locking. But first we have to ensure 694 * that buffers are taken *off* the old inode's list when they are freed 695 * (presumably in truncate). That requires careful auditing of all 696 * filesystems (do it inside bforget()). It could also be done by bringing 697 * b_inode back. 698 */ 699 700 /* 701 * The buffer's backing address_space's private_lock must be held 702 */ 703 static inline void __remove_assoc_queue(struct buffer_head *bh) 704 { 705 list_del_init(&bh->b_assoc_buffers); 706 } 707 708 int inode_has_buffers(struct inode *inode) 709 { 710 return !list_empty(&inode->i_data.private_list); 711 } 712 713 /* 714 * osync is designed to support O_SYNC io. It waits synchronously for 715 * all already-submitted IO to complete, but does not queue any new 716 * writes to the disk. 717 * 718 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 719 * you dirty the buffers, and then use osync_inode_buffers to wait for 720 * completion. Any other dirty buffers which are not yet queued for 721 * write will not be flushed to disk by the osync. 722 */ 723 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 724 { 725 struct buffer_head *bh; 726 struct list_head *p; 727 int err = 0; 728 729 spin_lock(lock); 730 repeat: 731 list_for_each_prev(p, list) { 732 bh = BH_ENTRY(p); 733 if (buffer_locked(bh)) { 734 get_bh(bh); 735 spin_unlock(lock); 736 wait_on_buffer(bh); 737 if (!buffer_uptodate(bh)) 738 err = -EIO; 739 brelse(bh); 740 spin_lock(lock); 741 goto repeat; 742 } 743 } 744 spin_unlock(lock); 745 return err; 746 } 747 748 /** 749 * sync_mapping_buffers - write out and wait upon a mapping's "associated" 750 * buffers 751 * @mapping: the mapping which wants those buffers written 752 * 753 * Starts I/O against the buffers at mapping->private_list, and waits upon 754 * that I/O. 755 * 756 * Basically, this is a convenience function for fsync(). 757 * @mapping is a file or directory which needs those buffers to be written for 758 * a successful fsync(). 759 */ 760 int sync_mapping_buffers(struct address_space *mapping) 761 { 762 struct address_space *buffer_mapping = mapping->assoc_mapping; 763 764 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 765 return 0; 766 767 return fsync_buffers_list(&buffer_mapping->private_lock, 768 &mapping->private_list); 769 } 770 EXPORT_SYMBOL(sync_mapping_buffers); 771 772 /* 773 * Called when we've recently written block `bblock', and it is known that 774 * `bblock' was for a buffer_boundary() buffer. This means that the block at 775 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 776 * dirty, schedule it for IO. So that indirects merge nicely with their data. 777 */ 778 void write_boundary_block(struct block_device *bdev, 779 sector_t bblock, unsigned blocksize) 780 { 781 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 782 if (bh) { 783 if (buffer_dirty(bh)) 784 ll_rw_block(WRITE, 1, &bh); 785 put_bh(bh); 786 } 787 } 788 789 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 790 { 791 struct address_space *mapping = inode->i_mapping; 792 struct address_space *buffer_mapping = bh->b_page->mapping; 793 794 mark_buffer_dirty(bh); 795 if (!mapping->assoc_mapping) { 796 mapping->assoc_mapping = buffer_mapping; 797 } else { 798 BUG_ON(mapping->assoc_mapping != buffer_mapping); 799 } 800 if (list_empty(&bh->b_assoc_buffers)) { 801 spin_lock(&buffer_mapping->private_lock); 802 list_move_tail(&bh->b_assoc_buffers, 803 &mapping->private_list); 804 spin_unlock(&buffer_mapping->private_lock); 805 } 806 } 807 EXPORT_SYMBOL(mark_buffer_dirty_inode); 808 809 /* 810 * Add a page to the dirty page list. 811 * 812 * It is a sad fact of life that this function is called from several places 813 * deeply under spinlocking. It may not sleep. 814 * 815 * If the page has buffers, the uptodate buffers are set dirty, to preserve 816 * dirty-state coherency between the page and the buffers. It the page does 817 * not have buffers then when they are later attached they will all be set 818 * dirty. 819 * 820 * The buffers are dirtied before the page is dirtied. There's a small race 821 * window in which a writepage caller may see the page cleanness but not the 822 * buffer dirtiness. That's fine. If this code were to set the page dirty 823 * before the buffers, a concurrent writepage caller could clear the page dirty 824 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 825 * page on the dirty page list. 826 * 827 * We use private_lock to lock against try_to_free_buffers while using the 828 * page's buffer list. Also use this to protect against clean buffers being 829 * added to the page after it was set dirty. 830 * 831 * FIXME: may need to call ->reservepage here as well. That's rather up to the 832 * address_space though. 833 */ 834 int __set_page_dirty_buffers(struct page *page) 835 { 836 struct address_space * const mapping = page->mapping; 837 838 spin_lock(&mapping->private_lock); 839 if (page_has_buffers(page)) { 840 struct buffer_head *head = page_buffers(page); 841 struct buffer_head *bh = head; 842 843 do { 844 set_buffer_dirty(bh); 845 bh = bh->b_this_page; 846 } while (bh != head); 847 } 848 spin_unlock(&mapping->private_lock); 849 850 if (!TestSetPageDirty(page)) { 851 write_lock_irq(&mapping->tree_lock); 852 if (page->mapping) { /* Race with truncate? */ 853 if (mapping_cap_account_dirty(mapping)) 854 __inc_zone_page_state(page, NR_FILE_DIRTY); 855 radix_tree_tag_set(&mapping->page_tree, 856 page_index(page), 857 PAGECACHE_TAG_DIRTY); 858 } 859 write_unlock_irq(&mapping->tree_lock); 860 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 861 return 1; 862 } 863 return 0; 864 } 865 EXPORT_SYMBOL(__set_page_dirty_buffers); 866 867 /* 868 * Write out and wait upon a list of buffers. 869 * 870 * We have conflicting pressures: we want to make sure that all 871 * initially dirty buffers get waited on, but that any subsequently 872 * dirtied buffers don't. After all, we don't want fsync to last 873 * forever if somebody is actively writing to the file. 874 * 875 * Do this in two main stages: first we copy dirty buffers to a 876 * temporary inode list, queueing the writes as we go. Then we clean 877 * up, waiting for those writes to complete. 878 * 879 * During this second stage, any subsequent updates to the file may end 880 * up refiling the buffer on the original inode's dirty list again, so 881 * there is a chance we will end up with a buffer queued for write but 882 * not yet completed on that list. So, as a final cleanup we go through 883 * the osync code to catch these locked, dirty buffers without requeuing 884 * any newly dirty buffers for write. 885 */ 886 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 887 { 888 struct buffer_head *bh; 889 struct list_head tmp; 890 int err = 0, err2; 891 892 INIT_LIST_HEAD(&tmp); 893 894 spin_lock(lock); 895 while (!list_empty(list)) { 896 bh = BH_ENTRY(list->next); 897 list_del_init(&bh->b_assoc_buffers); 898 if (buffer_dirty(bh) || buffer_locked(bh)) { 899 list_add(&bh->b_assoc_buffers, &tmp); 900 if (buffer_dirty(bh)) { 901 get_bh(bh); 902 spin_unlock(lock); 903 /* 904 * Ensure any pending I/O completes so that 905 * ll_rw_block() actually writes the current 906 * contents - it is a noop if I/O is still in 907 * flight on potentially older contents. 908 */ 909 ll_rw_block(SWRITE, 1, &bh); 910 brelse(bh); 911 spin_lock(lock); 912 } 913 } 914 } 915 916 while (!list_empty(&tmp)) { 917 bh = BH_ENTRY(tmp.prev); 918 __remove_assoc_queue(bh); 919 get_bh(bh); 920 spin_unlock(lock); 921 wait_on_buffer(bh); 922 if (!buffer_uptodate(bh)) 923 err = -EIO; 924 brelse(bh); 925 spin_lock(lock); 926 } 927 928 spin_unlock(lock); 929 err2 = osync_buffers_list(lock, list); 930 if (err) 931 return err; 932 else 933 return err2; 934 } 935 936 /* 937 * Invalidate any and all dirty buffers on a given inode. We are 938 * probably unmounting the fs, but that doesn't mean we have already 939 * done a sync(). Just drop the buffers from the inode list. 940 * 941 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 942 * assumes that all the buffers are against the blockdev. Not true 943 * for reiserfs. 944 */ 945 void invalidate_inode_buffers(struct inode *inode) 946 { 947 if (inode_has_buffers(inode)) { 948 struct address_space *mapping = &inode->i_data; 949 struct list_head *list = &mapping->private_list; 950 struct address_space *buffer_mapping = mapping->assoc_mapping; 951 952 spin_lock(&buffer_mapping->private_lock); 953 while (!list_empty(list)) 954 __remove_assoc_queue(BH_ENTRY(list->next)); 955 spin_unlock(&buffer_mapping->private_lock); 956 } 957 } 958 959 /* 960 * Remove any clean buffers from the inode's buffer list. This is called 961 * when we're trying to free the inode itself. Those buffers can pin it. 962 * 963 * Returns true if all buffers were removed. 964 */ 965 int remove_inode_buffers(struct inode *inode) 966 { 967 int ret = 1; 968 969 if (inode_has_buffers(inode)) { 970 struct address_space *mapping = &inode->i_data; 971 struct list_head *list = &mapping->private_list; 972 struct address_space *buffer_mapping = mapping->assoc_mapping; 973 974 spin_lock(&buffer_mapping->private_lock); 975 while (!list_empty(list)) { 976 struct buffer_head *bh = BH_ENTRY(list->next); 977 if (buffer_dirty(bh)) { 978 ret = 0; 979 break; 980 } 981 __remove_assoc_queue(bh); 982 } 983 spin_unlock(&buffer_mapping->private_lock); 984 } 985 return ret; 986 } 987 988 /* 989 * Create the appropriate buffers when given a page for data area and 990 * the size of each buffer.. Use the bh->b_this_page linked list to 991 * follow the buffers created. Return NULL if unable to create more 992 * buffers. 993 * 994 * The retry flag is used to differentiate async IO (paging, swapping) 995 * which may not fail from ordinary buffer allocations. 996 */ 997 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 998 int retry) 999 { 1000 struct buffer_head *bh, *head; 1001 long offset; 1002 1003 try_again: 1004 head = NULL; 1005 offset = PAGE_SIZE; 1006 while ((offset -= size) >= 0) { 1007 bh = alloc_buffer_head(GFP_NOFS); 1008 if (!bh) 1009 goto no_grow; 1010 1011 bh->b_bdev = NULL; 1012 bh->b_this_page = head; 1013 bh->b_blocknr = -1; 1014 head = bh; 1015 1016 bh->b_state = 0; 1017 atomic_set(&bh->b_count, 0); 1018 bh->b_private = NULL; 1019 bh->b_size = size; 1020 1021 /* Link the buffer to its page */ 1022 set_bh_page(bh, page, offset); 1023 1024 init_buffer(bh, NULL, NULL); 1025 } 1026 return head; 1027 /* 1028 * In case anything failed, we just free everything we got. 1029 */ 1030 no_grow: 1031 if (head) { 1032 do { 1033 bh = head; 1034 head = head->b_this_page; 1035 free_buffer_head(bh); 1036 } while (head); 1037 } 1038 1039 /* 1040 * Return failure for non-async IO requests. Async IO requests 1041 * are not allowed to fail, so we have to wait until buffer heads 1042 * become available. But we don't want tasks sleeping with 1043 * partially complete buffers, so all were released above. 1044 */ 1045 if (!retry) 1046 return NULL; 1047 1048 /* We're _really_ low on memory. Now we just 1049 * wait for old buffer heads to become free due to 1050 * finishing IO. Since this is an async request and 1051 * the reserve list is empty, we're sure there are 1052 * async buffer heads in use. 1053 */ 1054 free_more_memory(); 1055 goto try_again; 1056 } 1057 EXPORT_SYMBOL_GPL(alloc_page_buffers); 1058 1059 static inline void 1060 link_dev_buffers(struct page *page, struct buffer_head *head) 1061 { 1062 struct buffer_head *bh, *tail; 1063 1064 bh = head; 1065 do { 1066 tail = bh; 1067 bh = bh->b_this_page; 1068 } while (bh); 1069 tail->b_this_page = head; 1070 attach_page_buffers(page, head); 1071 } 1072 1073 /* 1074 * Initialise the state of a blockdev page's buffers. 1075 */ 1076 static void 1077 init_page_buffers(struct page *page, struct block_device *bdev, 1078 sector_t block, int size) 1079 { 1080 struct buffer_head *head = page_buffers(page); 1081 struct buffer_head *bh = head; 1082 int uptodate = PageUptodate(page); 1083 1084 do { 1085 if (!buffer_mapped(bh)) { 1086 init_buffer(bh, NULL, NULL); 1087 bh->b_bdev = bdev; 1088 bh->b_blocknr = block; 1089 if (uptodate) 1090 set_buffer_uptodate(bh); 1091 set_buffer_mapped(bh); 1092 } 1093 block++; 1094 bh = bh->b_this_page; 1095 } while (bh != head); 1096 } 1097 1098 /* 1099 * Create the page-cache page that contains the requested block. 1100 * 1101 * This is user purely for blockdev mappings. 1102 */ 1103 static struct page * 1104 grow_dev_page(struct block_device *bdev, sector_t block, 1105 pgoff_t index, int size) 1106 { 1107 struct inode *inode = bdev->bd_inode; 1108 struct page *page; 1109 struct buffer_head *bh; 1110 1111 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 1112 if (!page) 1113 return NULL; 1114 1115 BUG_ON(!PageLocked(page)); 1116 1117 if (page_has_buffers(page)) { 1118 bh = page_buffers(page); 1119 if (bh->b_size == size) { 1120 init_page_buffers(page, bdev, block, size); 1121 return page; 1122 } 1123 if (!try_to_free_buffers(page)) 1124 goto failed; 1125 } 1126 1127 /* 1128 * Allocate some buffers for this page 1129 */ 1130 bh = alloc_page_buffers(page, size, 0); 1131 if (!bh) 1132 goto failed; 1133 1134 /* 1135 * Link the page to the buffers and initialise them. Take the 1136 * lock to be atomic wrt __find_get_block(), which does not 1137 * run under the page lock. 1138 */ 1139 spin_lock(&inode->i_mapping->private_lock); 1140 link_dev_buffers(page, bh); 1141 init_page_buffers(page, bdev, block, size); 1142 spin_unlock(&inode->i_mapping->private_lock); 1143 return page; 1144 1145 failed: 1146 BUG(); 1147 unlock_page(page); 1148 page_cache_release(page); 1149 return NULL; 1150 } 1151 1152 /* 1153 * Create buffers for the specified block device block's page. If 1154 * that page was dirty, the buffers are set dirty also. 1155 * 1156 * Except that's a bug. Attaching dirty buffers to a dirty 1157 * blockdev's page can result in filesystem corruption, because 1158 * some of those buffers may be aliases of filesystem data. 1159 * grow_dev_page() will go BUG() if this happens. 1160 */ 1161 static int 1162 grow_buffers(struct block_device *bdev, sector_t block, int size) 1163 { 1164 struct page *page; 1165 pgoff_t index; 1166 int sizebits; 1167 1168 sizebits = -1; 1169 do { 1170 sizebits++; 1171 } while ((size << sizebits) < PAGE_SIZE); 1172 1173 index = block >> sizebits; 1174 block = index << sizebits; 1175 1176 /* Create a page with the proper size buffers.. */ 1177 page = grow_dev_page(bdev, block, index, size); 1178 if (!page) 1179 return 0; 1180 unlock_page(page); 1181 page_cache_release(page); 1182 return 1; 1183 } 1184 1185 static struct buffer_head * 1186 __getblk_slow(struct block_device *bdev, sector_t block, int size) 1187 { 1188 /* Size must be multiple of hard sectorsize */ 1189 if (unlikely(size & (bdev_hardsect_size(bdev)-1) || 1190 (size < 512 || size > PAGE_SIZE))) { 1191 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1192 size); 1193 printk(KERN_ERR "hardsect size: %d\n", 1194 bdev_hardsect_size(bdev)); 1195 1196 dump_stack(); 1197 return NULL; 1198 } 1199 1200 for (;;) { 1201 struct buffer_head * bh; 1202 1203 bh = __find_get_block(bdev, block, size); 1204 if (bh) 1205 return bh; 1206 1207 if (!grow_buffers(bdev, block, size)) 1208 free_more_memory(); 1209 } 1210 } 1211 1212 /* 1213 * The relationship between dirty buffers and dirty pages: 1214 * 1215 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1216 * the page is tagged dirty in its radix tree. 1217 * 1218 * At all times, the dirtiness of the buffers represents the dirtiness of 1219 * subsections of the page. If the page has buffers, the page dirty bit is 1220 * merely a hint about the true dirty state. 1221 * 1222 * When a page is set dirty in its entirety, all its buffers are marked dirty 1223 * (if the page has buffers). 1224 * 1225 * When a buffer is marked dirty, its page is dirtied, but the page's other 1226 * buffers are not. 1227 * 1228 * Also. When blockdev buffers are explicitly read with bread(), they 1229 * individually become uptodate. But their backing page remains not 1230 * uptodate - even if all of its buffers are uptodate. A subsequent 1231 * block_read_full_page() against that page will discover all the uptodate 1232 * buffers, will set the page uptodate and will perform no I/O. 1233 */ 1234 1235 /** 1236 * mark_buffer_dirty - mark a buffer_head as needing writeout 1237 * @bh: the buffer_head to mark dirty 1238 * 1239 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1240 * backing page dirty, then tag the page as dirty in its address_space's radix 1241 * tree and then attach the address_space's inode to its superblock's dirty 1242 * inode list. 1243 * 1244 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1245 * mapping->tree_lock and the global inode_lock. 1246 */ 1247 void fastcall mark_buffer_dirty(struct buffer_head *bh) 1248 { 1249 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh)) 1250 __set_page_dirty_nobuffers(bh->b_page); 1251 } 1252 1253 /* 1254 * Decrement a buffer_head's reference count. If all buffers against a page 1255 * have zero reference count, are clean and unlocked, and if the page is clean 1256 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1257 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1258 * a page but it ends up not being freed, and buffers may later be reattached). 1259 */ 1260 void __brelse(struct buffer_head * buf) 1261 { 1262 if (atomic_read(&buf->b_count)) { 1263 put_bh(buf); 1264 return; 1265 } 1266 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1267 WARN_ON(1); 1268 } 1269 1270 /* 1271 * bforget() is like brelse(), except it discards any 1272 * potentially dirty data. 1273 */ 1274 void __bforget(struct buffer_head *bh) 1275 { 1276 clear_buffer_dirty(bh); 1277 if (!list_empty(&bh->b_assoc_buffers)) { 1278 struct address_space *buffer_mapping = bh->b_page->mapping; 1279 1280 spin_lock(&buffer_mapping->private_lock); 1281 list_del_init(&bh->b_assoc_buffers); 1282 spin_unlock(&buffer_mapping->private_lock); 1283 } 1284 __brelse(bh); 1285 } 1286 1287 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1288 { 1289 lock_buffer(bh); 1290 if (buffer_uptodate(bh)) { 1291 unlock_buffer(bh); 1292 return bh; 1293 } else { 1294 get_bh(bh); 1295 bh->b_end_io = end_buffer_read_sync; 1296 submit_bh(READ, bh); 1297 wait_on_buffer(bh); 1298 if (buffer_uptodate(bh)) 1299 return bh; 1300 } 1301 brelse(bh); 1302 return NULL; 1303 } 1304 1305 /* 1306 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1307 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1308 * refcount elevated by one when they're in an LRU. A buffer can only appear 1309 * once in a particular CPU's LRU. A single buffer can be present in multiple 1310 * CPU's LRUs at the same time. 1311 * 1312 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1313 * sb_find_get_block(). 1314 * 1315 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1316 * a local interrupt disable for that. 1317 */ 1318 1319 #define BH_LRU_SIZE 8 1320 1321 struct bh_lru { 1322 struct buffer_head *bhs[BH_LRU_SIZE]; 1323 }; 1324 1325 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1326 1327 #ifdef CONFIG_SMP 1328 #define bh_lru_lock() local_irq_disable() 1329 #define bh_lru_unlock() local_irq_enable() 1330 #else 1331 #define bh_lru_lock() preempt_disable() 1332 #define bh_lru_unlock() preempt_enable() 1333 #endif 1334 1335 static inline void check_irqs_on(void) 1336 { 1337 #ifdef irqs_disabled 1338 BUG_ON(irqs_disabled()); 1339 #endif 1340 } 1341 1342 /* 1343 * The LRU management algorithm is dopey-but-simple. Sorry. 1344 */ 1345 static void bh_lru_install(struct buffer_head *bh) 1346 { 1347 struct buffer_head *evictee = NULL; 1348 struct bh_lru *lru; 1349 1350 check_irqs_on(); 1351 bh_lru_lock(); 1352 lru = &__get_cpu_var(bh_lrus); 1353 if (lru->bhs[0] != bh) { 1354 struct buffer_head *bhs[BH_LRU_SIZE]; 1355 int in; 1356 int out = 0; 1357 1358 get_bh(bh); 1359 bhs[out++] = bh; 1360 for (in = 0; in < BH_LRU_SIZE; in++) { 1361 struct buffer_head *bh2 = lru->bhs[in]; 1362 1363 if (bh2 == bh) { 1364 __brelse(bh2); 1365 } else { 1366 if (out >= BH_LRU_SIZE) { 1367 BUG_ON(evictee != NULL); 1368 evictee = bh2; 1369 } else { 1370 bhs[out++] = bh2; 1371 } 1372 } 1373 } 1374 while (out < BH_LRU_SIZE) 1375 bhs[out++] = NULL; 1376 memcpy(lru->bhs, bhs, sizeof(bhs)); 1377 } 1378 bh_lru_unlock(); 1379 1380 if (evictee) 1381 __brelse(evictee); 1382 } 1383 1384 /* 1385 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1386 */ 1387 static struct buffer_head * 1388 lookup_bh_lru(struct block_device *bdev, sector_t block, int size) 1389 { 1390 struct buffer_head *ret = NULL; 1391 struct bh_lru *lru; 1392 int i; 1393 1394 check_irqs_on(); 1395 bh_lru_lock(); 1396 lru = &__get_cpu_var(bh_lrus); 1397 for (i = 0; i < BH_LRU_SIZE; i++) { 1398 struct buffer_head *bh = lru->bhs[i]; 1399 1400 if (bh && bh->b_bdev == bdev && 1401 bh->b_blocknr == block && bh->b_size == size) { 1402 if (i) { 1403 while (i) { 1404 lru->bhs[i] = lru->bhs[i - 1]; 1405 i--; 1406 } 1407 lru->bhs[0] = bh; 1408 } 1409 get_bh(bh); 1410 ret = bh; 1411 break; 1412 } 1413 } 1414 bh_lru_unlock(); 1415 return ret; 1416 } 1417 1418 /* 1419 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1420 * it in the LRU and mark it as accessed. If it is not present then return 1421 * NULL 1422 */ 1423 struct buffer_head * 1424 __find_get_block(struct block_device *bdev, sector_t block, int size) 1425 { 1426 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1427 1428 if (bh == NULL) { 1429 bh = __find_get_block_slow(bdev, block); 1430 if (bh) 1431 bh_lru_install(bh); 1432 } 1433 if (bh) 1434 touch_buffer(bh); 1435 return bh; 1436 } 1437 EXPORT_SYMBOL(__find_get_block); 1438 1439 /* 1440 * __getblk will locate (and, if necessary, create) the buffer_head 1441 * which corresponds to the passed block_device, block and size. The 1442 * returned buffer has its reference count incremented. 1443 * 1444 * __getblk() cannot fail - it just keeps trying. If you pass it an 1445 * illegal block number, __getblk() will happily return a buffer_head 1446 * which represents the non-existent block. Very weird. 1447 * 1448 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1449 * attempt is failing. FIXME, perhaps? 1450 */ 1451 struct buffer_head * 1452 __getblk(struct block_device *bdev, sector_t block, int size) 1453 { 1454 struct buffer_head *bh = __find_get_block(bdev, block, size); 1455 1456 might_sleep(); 1457 if (bh == NULL) 1458 bh = __getblk_slow(bdev, block, size); 1459 return bh; 1460 } 1461 EXPORT_SYMBOL(__getblk); 1462 1463 /* 1464 * Do async read-ahead on a buffer.. 1465 */ 1466 void __breadahead(struct block_device *bdev, sector_t block, int size) 1467 { 1468 struct buffer_head *bh = __getblk(bdev, block, size); 1469 if (likely(bh)) { 1470 ll_rw_block(READA, 1, &bh); 1471 brelse(bh); 1472 } 1473 } 1474 EXPORT_SYMBOL(__breadahead); 1475 1476 /** 1477 * __bread() - reads a specified block and returns the bh 1478 * @bdev: the block_device to read from 1479 * @block: number of block 1480 * @size: size (in bytes) to read 1481 * 1482 * Reads a specified block, and returns buffer head that contains it. 1483 * It returns NULL if the block was unreadable. 1484 */ 1485 struct buffer_head * 1486 __bread(struct block_device *bdev, sector_t block, int size) 1487 { 1488 struct buffer_head *bh = __getblk(bdev, block, size); 1489 1490 if (likely(bh) && !buffer_uptodate(bh)) 1491 bh = __bread_slow(bh); 1492 return bh; 1493 } 1494 EXPORT_SYMBOL(__bread); 1495 1496 /* 1497 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1498 * This doesn't race because it runs in each cpu either in irq 1499 * or with preempt disabled. 1500 */ 1501 static void invalidate_bh_lru(void *arg) 1502 { 1503 struct bh_lru *b = &get_cpu_var(bh_lrus); 1504 int i; 1505 1506 for (i = 0; i < BH_LRU_SIZE; i++) { 1507 brelse(b->bhs[i]); 1508 b->bhs[i] = NULL; 1509 } 1510 put_cpu_var(bh_lrus); 1511 } 1512 1513 static void invalidate_bh_lrus(void) 1514 { 1515 on_each_cpu(invalidate_bh_lru, NULL, 1, 1); 1516 } 1517 1518 void set_bh_page(struct buffer_head *bh, 1519 struct page *page, unsigned long offset) 1520 { 1521 bh->b_page = page; 1522 BUG_ON(offset >= PAGE_SIZE); 1523 if (PageHighMem(page)) 1524 /* 1525 * This catches illegal uses and preserves the offset: 1526 */ 1527 bh->b_data = (char *)(0 + offset); 1528 else 1529 bh->b_data = page_address(page) + offset; 1530 } 1531 EXPORT_SYMBOL(set_bh_page); 1532 1533 /* 1534 * Called when truncating a buffer on a page completely. 1535 */ 1536 static void discard_buffer(struct buffer_head * bh) 1537 { 1538 lock_buffer(bh); 1539 clear_buffer_dirty(bh); 1540 bh->b_bdev = NULL; 1541 clear_buffer_mapped(bh); 1542 clear_buffer_req(bh); 1543 clear_buffer_new(bh); 1544 clear_buffer_delay(bh); 1545 unlock_buffer(bh); 1546 } 1547 1548 /** 1549 * try_to_release_page() - release old fs-specific metadata on a page 1550 * 1551 * @page: the page which the kernel is trying to free 1552 * @gfp_mask: memory allocation flags (and I/O mode) 1553 * 1554 * The address_space is to try to release any data against the page 1555 * (presumably at page->private). If the release was successful, return `1'. 1556 * Otherwise return zero. 1557 * 1558 * The @gfp_mask argument specifies whether I/O may be performed to release 1559 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT). 1560 * 1561 * NOTE: @gfp_mask may go away, and this function may become non-blocking. 1562 */ 1563 int try_to_release_page(struct page *page, gfp_t gfp_mask) 1564 { 1565 struct address_space * const mapping = page->mapping; 1566 1567 BUG_ON(!PageLocked(page)); 1568 if (PageWriteback(page)) 1569 return 0; 1570 1571 if (mapping && mapping->a_ops->releasepage) 1572 return mapping->a_ops->releasepage(page, gfp_mask); 1573 return try_to_free_buffers(page); 1574 } 1575 EXPORT_SYMBOL(try_to_release_page); 1576 1577 /** 1578 * block_invalidatepage - invalidate part of all of a buffer-backed page 1579 * 1580 * @page: the page which is affected 1581 * @offset: the index of the truncation point 1582 * 1583 * block_invalidatepage() is called when all or part of the page has become 1584 * invalidatedby a truncate operation. 1585 * 1586 * block_invalidatepage() does not have to release all buffers, but it must 1587 * ensure that no dirty buffer is left outside @offset and that no I/O 1588 * is underway against any of the blocks which are outside the truncation 1589 * point. Because the caller is about to free (and possibly reuse) those 1590 * blocks on-disk. 1591 */ 1592 void block_invalidatepage(struct page *page, unsigned long offset) 1593 { 1594 struct buffer_head *head, *bh, *next; 1595 unsigned int curr_off = 0; 1596 1597 BUG_ON(!PageLocked(page)); 1598 if (!page_has_buffers(page)) 1599 goto out; 1600 1601 head = page_buffers(page); 1602 bh = head; 1603 do { 1604 unsigned int next_off = curr_off + bh->b_size; 1605 next = bh->b_this_page; 1606 1607 /* 1608 * is this block fully invalidated? 1609 */ 1610 if (offset <= curr_off) 1611 discard_buffer(bh); 1612 curr_off = next_off; 1613 bh = next; 1614 } while (bh != head); 1615 1616 /* 1617 * We release buffers only if the entire page is being invalidated. 1618 * The get_block cached value has been unconditionally invalidated, 1619 * so real IO is not possible anymore. 1620 */ 1621 if (offset == 0) 1622 try_to_release_page(page, 0); 1623 out: 1624 return; 1625 } 1626 EXPORT_SYMBOL(block_invalidatepage); 1627 1628 void do_invalidatepage(struct page *page, unsigned long offset) 1629 { 1630 void (*invalidatepage)(struct page *, unsigned long); 1631 invalidatepage = page->mapping->a_ops->invalidatepage ? : 1632 block_invalidatepage; 1633 (*invalidatepage)(page, offset); 1634 } 1635 1636 /* 1637 * We attach and possibly dirty the buffers atomically wrt 1638 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1639 * is already excluded via the page lock. 1640 */ 1641 void create_empty_buffers(struct page *page, 1642 unsigned long blocksize, unsigned long b_state) 1643 { 1644 struct buffer_head *bh, *head, *tail; 1645 1646 head = alloc_page_buffers(page, blocksize, 1); 1647 bh = head; 1648 do { 1649 bh->b_state |= b_state; 1650 tail = bh; 1651 bh = bh->b_this_page; 1652 } while (bh); 1653 tail->b_this_page = head; 1654 1655 spin_lock(&page->mapping->private_lock); 1656 if (PageUptodate(page) || PageDirty(page)) { 1657 bh = head; 1658 do { 1659 if (PageDirty(page)) 1660 set_buffer_dirty(bh); 1661 if (PageUptodate(page)) 1662 set_buffer_uptodate(bh); 1663 bh = bh->b_this_page; 1664 } while (bh != head); 1665 } 1666 attach_page_buffers(page, head); 1667 spin_unlock(&page->mapping->private_lock); 1668 } 1669 EXPORT_SYMBOL(create_empty_buffers); 1670 1671 /* 1672 * We are taking a block for data and we don't want any output from any 1673 * buffer-cache aliases starting from return from that function and 1674 * until the moment when something will explicitly mark the buffer 1675 * dirty (hopefully that will not happen until we will free that block ;-) 1676 * We don't even need to mark it not-uptodate - nobody can expect 1677 * anything from a newly allocated buffer anyway. We used to used 1678 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1679 * don't want to mark the alias unmapped, for example - it would confuse 1680 * anyone who might pick it with bread() afterwards... 1681 * 1682 * Also.. Note that bforget() doesn't lock the buffer. So there can 1683 * be writeout I/O going on against recently-freed buffers. We don't 1684 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1685 * only if we really need to. That happens here. 1686 */ 1687 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1688 { 1689 struct buffer_head *old_bh; 1690 1691 might_sleep(); 1692 1693 old_bh = __find_get_block_slow(bdev, block); 1694 if (old_bh) { 1695 clear_buffer_dirty(old_bh); 1696 wait_on_buffer(old_bh); 1697 clear_buffer_req(old_bh); 1698 __brelse(old_bh); 1699 } 1700 } 1701 EXPORT_SYMBOL(unmap_underlying_metadata); 1702 1703 /* 1704 * NOTE! All mapped/uptodate combinations are valid: 1705 * 1706 * Mapped Uptodate Meaning 1707 * 1708 * No No "unknown" - must do get_block() 1709 * No Yes "hole" - zero-filled 1710 * Yes No "allocated" - allocated on disk, not read in 1711 * Yes Yes "valid" - allocated and up-to-date in memory. 1712 * 1713 * "Dirty" is valid only with the last case (mapped+uptodate). 1714 */ 1715 1716 /* 1717 * While block_write_full_page is writing back the dirty buffers under 1718 * the page lock, whoever dirtied the buffers may decide to clean them 1719 * again at any time. We handle that by only looking at the buffer 1720 * state inside lock_buffer(). 1721 * 1722 * If block_write_full_page() is called for regular writeback 1723 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1724 * locked buffer. This only can happen if someone has written the buffer 1725 * directly, with submit_bh(). At the address_space level PageWriteback 1726 * prevents this contention from occurring. 1727 */ 1728 static int __block_write_full_page(struct inode *inode, struct page *page, 1729 get_block_t *get_block, struct writeback_control *wbc) 1730 { 1731 int err; 1732 sector_t block; 1733 sector_t last_block; 1734 struct buffer_head *bh, *head; 1735 const unsigned blocksize = 1 << inode->i_blkbits; 1736 int nr_underway = 0; 1737 1738 BUG_ON(!PageLocked(page)); 1739 1740 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 1741 1742 if (!page_has_buffers(page)) { 1743 create_empty_buffers(page, blocksize, 1744 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1745 } 1746 1747 /* 1748 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1749 * here, and the (potentially unmapped) buffers may become dirty at 1750 * any time. If a buffer becomes dirty here after we've inspected it 1751 * then we just miss that fact, and the page stays dirty. 1752 * 1753 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1754 * handle that here by just cleaning them. 1755 */ 1756 1757 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1758 head = page_buffers(page); 1759 bh = head; 1760 1761 /* 1762 * Get all the dirty buffers mapped to disk addresses and 1763 * handle any aliases from the underlying blockdev's mapping. 1764 */ 1765 do { 1766 if (block > last_block) { 1767 /* 1768 * mapped buffers outside i_size will occur, because 1769 * this page can be outside i_size when there is a 1770 * truncate in progress. 1771 */ 1772 /* 1773 * The buffer was zeroed by block_write_full_page() 1774 */ 1775 clear_buffer_dirty(bh); 1776 set_buffer_uptodate(bh); 1777 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) { 1778 WARN_ON(bh->b_size != blocksize); 1779 err = get_block(inode, block, bh, 1); 1780 if (err) 1781 goto recover; 1782 if (buffer_new(bh)) { 1783 /* blockdev mappings never come here */ 1784 clear_buffer_new(bh); 1785 unmap_underlying_metadata(bh->b_bdev, 1786 bh->b_blocknr); 1787 } 1788 } 1789 bh = bh->b_this_page; 1790 block++; 1791 } while (bh != head); 1792 1793 do { 1794 if (!buffer_mapped(bh)) 1795 continue; 1796 /* 1797 * If it's a fully non-blocking write attempt and we cannot 1798 * lock the buffer then redirty the page. Note that this can 1799 * potentially cause a busy-wait loop from pdflush and kswapd 1800 * activity, but those code paths have their own higher-level 1801 * throttling. 1802 */ 1803 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { 1804 lock_buffer(bh); 1805 } else if (test_set_buffer_locked(bh)) { 1806 redirty_page_for_writepage(wbc, page); 1807 continue; 1808 } 1809 if (test_clear_buffer_dirty(bh)) { 1810 mark_buffer_async_write(bh); 1811 } else { 1812 unlock_buffer(bh); 1813 } 1814 } while ((bh = bh->b_this_page) != head); 1815 1816 /* 1817 * The page and its buffers are protected by PageWriteback(), so we can 1818 * drop the bh refcounts early. 1819 */ 1820 BUG_ON(PageWriteback(page)); 1821 set_page_writeback(page); 1822 1823 do { 1824 struct buffer_head *next = bh->b_this_page; 1825 if (buffer_async_write(bh)) { 1826 submit_bh(WRITE, bh); 1827 nr_underway++; 1828 } 1829 bh = next; 1830 } while (bh != head); 1831 unlock_page(page); 1832 1833 err = 0; 1834 done: 1835 if (nr_underway == 0) { 1836 /* 1837 * The page was marked dirty, but the buffers were 1838 * clean. Someone wrote them back by hand with 1839 * ll_rw_block/submit_bh. A rare case. 1840 */ 1841 int uptodate = 1; 1842 do { 1843 if (!buffer_uptodate(bh)) { 1844 uptodate = 0; 1845 break; 1846 } 1847 bh = bh->b_this_page; 1848 } while (bh != head); 1849 if (uptodate) 1850 SetPageUptodate(page); 1851 end_page_writeback(page); 1852 /* 1853 * The page and buffer_heads can be released at any time from 1854 * here on. 1855 */ 1856 wbc->pages_skipped++; /* We didn't write this page */ 1857 } 1858 return err; 1859 1860 recover: 1861 /* 1862 * ENOSPC, or some other error. We may already have added some 1863 * blocks to the file, so we need to write these out to avoid 1864 * exposing stale data. 1865 * The page is currently locked and not marked for writeback 1866 */ 1867 bh = head; 1868 /* Recovery: lock and submit the mapped buffers */ 1869 do { 1870 if (buffer_mapped(bh) && buffer_dirty(bh)) { 1871 lock_buffer(bh); 1872 mark_buffer_async_write(bh); 1873 } else { 1874 /* 1875 * The buffer may have been set dirty during 1876 * attachment to a dirty page. 1877 */ 1878 clear_buffer_dirty(bh); 1879 } 1880 } while ((bh = bh->b_this_page) != head); 1881 SetPageError(page); 1882 BUG_ON(PageWriteback(page)); 1883 set_page_writeback(page); 1884 unlock_page(page); 1885 do { 1886 struct buffer_head *next = bh->b_this_page; 1887 if (buffer_async_write(bh)) { 1888 clear_buffer_dirty(bh); 1889 submit_bh(WRITE, bh); 1890 nr_underway++; 1891 } 1892 bh = next; 1893 } while (bh != head); 1894 goto done; 1895 } 1896 1897 static int __block_prepare_write(struct inode *inode, struct page *page, 1898 unsigned from, unsigned to, get_block_t *get_block) 1899 { 1900 unsigned block_start, block_end; 1901 sector_t block; 1902 int err = 0; 1903 unsigned blocksize, bbits; 1904 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1905 1906 BUG_ON(!PageLocked(page)); 1907 BUG_ON(from > PAGE_CACHE_SIZE); 1908 BUG_ON(to > PAGE_CACHE_SIZE); 1909 BUG_ON(from > to); 1910 1911 blocksize = 1 << inode->i_blkbits; 1912 if (!page_has_buffers(page)) 1913 create_empty_buffers(page, blocksize, 0); 1914 head = page_buffers(page); 1915 1916 bbits = inode->i_blkbits; 1917 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1918 1919 for(bh = head, block_start = 0; bh != head || !block_start; 1920 block++, block_start=block_end, bh = bh->b_this_page) { 1921 block_end = block_start + blocksize; 1922 if (block_end <= from || block_start >= to) { 1923 if (PageUptodate(page)) { 1924 if (!buffer_uptodate(bh)) 1925 set_buffer_uptodate(bh); 1926 } 1927 continue; 1928 } 1929 if (buffer_new(bh)) 1930 clear_buffer_new(bh); 1931 if (!buffer_mapped(bh)) { 1932 WARN_ON(bh->b_size != blocksize); 1933 err = get_block(inode, block, bh, 1); 1934 if (err) 1935 break; 1936 if (buffer_new(bh)) { 1937 unmap_underlying_metadata(bh->b_bdev, 1938 bh->b_blocknr); 1939 if (PageUptodate(page)) { 1940 set_buffer_uptodate(bh); 1941 continue; 1942 } 1943 if (block_end > to || block_start < from) { 1944 void *kaddr; 1945 1946 kaddr = kmap_atomic(page, KM_USER0); 1947 if (block_end > to) 1948 memset(kaddr+to, 0, 1949 block_end-to); 1950 if (block_start < from) 1951 memset(kaddr+block_start, 1952 0, from-block_start); 1953 flush_dcache_page(page); 1954 kunmap_atomic(kaddr, KM_USER0); 1955 } 1956 continue; 1957 } 1958 } 1959 if (PageUptodate(page)) { 1960 if (!buffer_uptodate(bh)) 1961 set_buffer_uptodate(bh); 1962 continue; 1963 } 1964 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1965 (block_start < from || block_end > to)) { 1966 ll_rw_block(READ, 1, &bh); 1967 *wait_bh++=bh; 1968 } 1969 } 1970 /* 1971 * If we issued read requests - let them complete. 1972 */ 1973 while(wait_bh > wait) { 1974 wait_on_buffer(*--wait_bh); 1975 if (!buffer_uptodate(*wait_bh)) 1976 err = -EIO; 1977 } 1978 if (!err) { 1979 bh = head; 1980 do { 1981 if (buffer_new(bh)) 1982 clear_buffer_new(bh); 1983 } while ((bh = bh->b_this_page) != head); 1984 return 0; 1985 } 1986 /* Error case: */ 1987 /* 1988 * Zero out any newly allocated blocks to avoid exposing stale 1989 * data. If BH_New is set, we know that the block was newly 1990 * allocated in the above loop. 1991 */ 1992 bh = head; 1993 block_start = 0; 1994 do { 1995 block_end = block_start+blocksize; 1996 if (block_end <= from) 1997 goto next_bh; 1998 if (block_start >= to) 1999 break; 2000 if (buffer_new(bh)) { 2001 void *kaddr; 2002 2003 clear_buffer_new(bh); 2004 kaddr = kmap_atomic(page, KM_USER0); 2005 memset(kaddr+block_start, 0, bh->b_size); 2006 kunmap_atomic(kaddr, KM_USER0); 2007 set_buffer_uptodate(bh); 2008 mark_buffer_dirty(bh); 2009 } 2010 next_bh: 2011 block_start = block_end; 2012 bh = bh->b_this_page; 2013 } while (bh != head); 2014 return err; 2015 } 2016 2017 static int __block_commit_write(struct inode *inode, struct page *page, 2018 unsigned from, unsigned to) 2019 { 2020 unsigned block_start, block_end; 2021 int partial = 0; 2022 unsigned blocksize; 2023 struct buffer_head *bh, *head; 2024 2025 blocksize = 1 << inode->i_blkbits; 2026 2027 for(bh = head = page_buffers(page), block_start = 0; 2028 bh != head || !block_start; 2029 block_start=block_end, bh = bh->b_this_page) { 2030 block_end = block_start + blocksize; 2031 if (block_end <= from || block_start >= to) { 2032 if (!buffer_uptodate(bh)) 2033 partial = 1; 2034 } else { 2035 set_buffer_uptodate(bh); 2036 mark_buffer_dirty(bh); 2037 } 2038 } 2039 2040 /* 2041 * If this is a partial write which happened to make all buffers 2042 * uptodate then we can optimize away a bogus readpage() for 2043 * the next read(). Here we 'discover' whether the page went 2044 * uptodate as a result of this (potentially partial) write. 2045 */ 2046 if (!partial) 2047 SetPageUptodate(page); 2048 return 0; 2049 } 2050 2051 /* 2052 * Generic "read page" function for block devices that have the normal 2053 * get_block functionality. This is most of the block device filesystems. 2054 * Reads the page asynchronously --- the unlock_buffer() and 2055 * set/clear_buffer_uptodate() functions propagate buffer state into the 2056 * page struct once IO has completed. 2057 */ 2058 int block_read_full_page(struct page *page, get_block_t *get_block) 2059 { 2060 struct inode *inode = page->mapping->host; 2061 sector_t iblock, lblock; 2062 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2063 unsigned int blocksize; 2064 int nr, i; 2065 int fully_mapped = 1; 2066 2067 BUG_ON(!PageLocked(page)); 2068 blocksize = 1 << inode->i_blkbits; 2069 if (!page_has_buffers(page)) 2070 create_empty_buffers(page, blocksize, 0); 2071 head = page_buffers(page); 2072 2073 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2074 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits; 2075 bh = head; 2076 nr = 0; 2077 i = 0; 2078 2079 do { 2080 if (buffer_uptodate(bh)) 2081 continue; 2082 2083 if (!buffer_mapped(bh)) { 2084 int err = 0; 2085 2086 fully_mapped = 0; 2087 if (iblock < lblock) { 2088 WARN_ON(bh->b_size != blocksize); 2089 err = get_block(inode, iblock, bh, 0); 2090 if (err) 2091 SetPageError(page); 2092 } 2093 if (!buffer_mapped(bh)) { 2094 void *kaddr = kmap_atomic(page, KM_USER0); 2095 memset(kaddr + i * blocksize, 0, blocksize); 2096 flush_dcache_page(page); 2097 kunmap_atomic(kaddr, KM_USER0); 2098 if (!err) 2099 set_buffer_uptodate(bh); 2100 continue; 2101 } 2102 /* 2103 * get_block() might have updated the buffer 2104 * synchronously 2105 */ 2106 if (buffer_uptodate(bh)) 2107 continue; 2108 } 2109 arr[nr++] = bh; 2110 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2111 2112 if (fully_mapped) 2113 SetPageMappedToDisk(page); 2114 2115 if (!nr) { 2116 /* 2117 * All buffers are uptodate - we can set the page uptodate 2118 * as well. But not if get_block() returned an error. 2119 */ 2120 if (!PageError(page)) 2121 SetPageUptodate(page); 2122 unlock_page(page); 2123 return 0; 2124 } 2125 2126 /* Stage two: lock the buffers */ 2127 for (i = 0; i < nr; i++) { 2128 bh = arr[i]; 2129 lock_buffer(bh); 2130 mark_buffer_async_read(bh); 2131 } 2132 2133 /* 2134 * Stage 3: start the IO. Check for uptodateness 2135 * inside the buffer lock in case another process reading 2136 * the underlying blockdev brought it uptodate (the sct fix). 2137 */ 2138 for (i = 0; i < nr; i++) { 2139 bh = arr[i]; 2140 if (buffer_uptodate(bh)) 2141 end_buffer_async_read(bh, 1); 2142 else 2143 submit_bh(READ, bh); 2144 } 2145 return 0; 2146 } 2147 2148 /* utility function for filesystems that need to do work on expanding 2149 * truncates. Uses prepare/commit_write to allow the filesystem to 2150 * deal with the hole. 2151 */ 2152 static int __generic_cont_expand(struct inode *inode, loff_t size, 2153 pgoff_t index, unsigned int offset) 2154 { 2155 struct address_space *mapping = inode->i_mapping; 2156 struct page *page; 2157 unsigned long limit; 2158 int err; 2159 2160 err = -EFBIG; 2161 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 2162 if (limit != RLIM_INFINITY && size > (loff_t)limit) { 2163 send_sig(SIGXFSZ, current, 0); 2164 goto out; 2165 } 2166 if (size > inode->i_sb->s_maxbytes) 2167 goto out; 2168 2169 err = -ENOMEM; 2170 page = grab_cache_page(mapping, index); 2171 if (!page) 2172 goto out; 2173 err = mapping->a_ops->prepare_write(NULL, page, offset, offset); 2174 if (err) { 2175 /* 2176 * ->prepare_write() may have instantiated a few blocks 2177 * outside i_size. Trim these off again. 2178 */ 2179 unlock_page(page); 2180 page_cache_release(page); 2181 vmtruncate(inode, inode->i_size); 2182 goto out; 2183 } 2184 2185 err = mapping->a_ops->commit_write(NULL, page, offset, offset); 2186 2187 unlock_page(page); 2188 page_cache_release(page); 2189 if (err > 0) 2190 err = 0; 2191 out: 2192 return err; 2193 } 2194 2195 int generic_cont_expand(struct inode *inode, loff_t size) 2196 { 2197 pgoff_t index; 2198 unsigned int offset; 2199 2200 offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */ 2201 2202 /* ugh. in prepare/commit_write, if from==to==start of block, we 2203 ** skip the prepare. make sure we never send an offset for the start 2204 ** of a block 2205 */ 2206 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) { 2207 /* caller must handle this extra byte. */ 2208 offset++; 2209 } 2210 index = size >> PAGE_CACHE_SHIFT; 2211 2212 return __generic_cont_expand(inode, size, index, offset); 2213 } 2214 2215 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2216 { 2217 loff_t pos = size - 1; 2218 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 2219 unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1; 2220 2221 /* prepare/commit_write can handle even if from==to==start of block. */ 2222 return __generic_cont_expand(inode, size, index, offset); 2223 } 2224 2225 /* 2226 * For moronic filesystems that do not allow holes in file. 2227 * We may have to extend the file. 2228 */ 2229 2230 int cont_prepare_write(struct page *page, unsigned offset, 2231 unsigned to, get_block_t *get_block, loff_t *bytes) 2232 { 2233 struct address_space *mapping = page->mapping; 2234 struct inode *inode = mapping->host; 2235 struct page *new_page; 2236 pgoff_t pgpos; 2237 long status; 2238 unsigned zerofrom; 2239 unsigned blocksize = 1 << inode->i_blkbits; 2240 void *kaddr; 2241 2242 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) { 2243 status = -ENOMEM; 2244 new_page = grab_cache_page(mapping, pgpos); 2245 if (!new_page) 2246 goto out; 2247 /* we might sleep */ 2248 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) { 2249 unlock_page(new_page); 2250 page_cache_release(new_page); 2251 continue; 2252 } 2253 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2254 if (zerofrom & (blocksize-1)) { 2255 *bytes |= (blocksize-1); 2256 (*bytes)++; 2257 } 2258 status = __block_prepare_write(inode, new_page, zerofrom, 2259 PAGE_CACHE_SIZE, get_block); 2260 if (status) 2261 goto out_unmap; 2262 kaddr = kmap_atomic(new_page, KM_USER0); 2263 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom); 2264 flush_dcache_page(new_page); 2265 kunmap_atomic(kaddr, KM_USER0); 2266 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE); 2267 unlock_page(new_page); 2268 page_cache_release(new_page); 2269 } 2270 2271 if (page->index < pgpos) { 2272 /* completely inside the area */ 2273 zerofrom = offset; 2274 } else { 2275 /* page covers the boundary, find the boundary offset */ 2276 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2277 2278 /* if we will expand the thing last block will be filled */ 2279 if (to > zerofrom && (zerofrom & (blocksize-1))) { 2280 *bytes |= (blocksize-1); 2281 (*bytes)++; 2282 } 2283 2284 /* starting below the boundary? Nothing to zero out */ 2285 if (offset <= zerofrom) 2286 zerofrom = offset; 2287 } 2288 status = __block_prepare_write(inode, page, zerofrom, to, get_block); 2289 if (status) 2290 goto out1; 2291 if (zerofrom < offset) { 2292 kaddr = kmap_atomic(page, KM_USER0); 2293 memset(kaddr+zerofrom, 0, offset-zerofrom); 2294 flush_dcache_page(page); 2295 kunmap_atomic(kaddr, KM_USER0); 2296 __block_commit_write(inode, page, zerofrom, offset); 2297 } 2298 return 0; 2299 out1: 2300 ClearPageUptodate(page); 2301 return status; 2302 2303 out_unmap: 2304 ClearPageUptodate(new_page); 2305 unlock_page(new_page); 2306 page_cache_release(new_page); 2307 out: 2308 return status; 2309 } 2310 2311 int block_prepare_write(struct page *page, unsigned from, unsigned to, 2312 get_block_t *get_block) 2313 { 2314 struct inode *inode = page->mapping->host; 2315 int err = __block_prepare_write(inode, page, from, to, get_block); 2316 if (err) 2317 ClearPageUptodate(page); 2318 return err; 2319 } 2320 2321 int block_commit_write(struct page *page, unsigned from, unsigned to) 2322 { 2323 struct inode *inode = page->mapping->host; 2324 __block_commit_write(inode,page,from,to); 2325 return 0; 2326 } 2327 2328 int generic_commit_write(struct file *file, struct page *page, 2329 unsigned from, unsigned to) 2330 { 2331 struct inode *inode = page->mapping->host; 2332 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; 2333 __block_commit_write(inode,page,from,to); 2334 /* 2335 * No need to use i_size_read() here, the i_size 2336 * cannot change under us because we hold i_mutex. 2337 */ 2338 if (pos > inode->i_size) { 2339 i_size_write(inode, pos); 2340 mark_inode_dirty(inode); 2341 } 2342 return 0; 2343 } 2344 2345 2346 /* 2347 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed 2348 * immediately, while under the page lock. So it needs a special end_io 2349 * handler which does not touch the bh after unlocking it. 2350 * 2351 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 2352 * a race there is benign: unlock_buffer() only use the bh's address for 2353 * hashing after unlocking the buffer, so it doesn't actually touch the bh 2354 * itself. 2355 */ 2356 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2357 { 2358 if (uptodate) { 2359 set_buffer_uptodate(bh); 2360 } else { 2361 /* This happens, due to failed READA attempts. */ 2362 clear_buffer_uptodate(bh); 2363 } 2364 unlock_buffer(bh); 2365 } 2366 2367 /* 2368 * On entry, the page is fully not uptodate. 2369 * On exit the page is fully uptodate in the areas outside (from,to) 2370 */ 2371 int nobh_prepare_write(struct page *page, unsigned from, unsigned to, 2372 get_block_t *get_block) 2373 { 2374 struct inode *inode = page->mapping->host; 2375 const unsigned blkbits = inode->i_blkbits; 2376 const unsigned blocksize = 1 << blkbits; 2377 struct buffer_head map_bh; 2378 struct buffer_head *read_bh[MAX_BUF_PER_PAGE]; 2379 unsigned block_in_page; 2380 unsigned block_start; 2381 sector_t block_in_file; 2382 char *kaddr; 2383 int nr_reads = 0; 2384 int i; 2385 int ret = 0; 2386 int is_mapped_to_disk = 1; 2387 int dirtied_it = 0; 2388 2389 if (PageMappedToDisk(page)) 2390 return 0; 2391 2392 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2393 map_bh.b_page = page; 2394 2395 /* 2396 * We loop across all blocks in the page, whether or not they are 2397 * part of the affected region. This is so we can discover if the 2398 * page is fully mapped-to-disk. 2399 */ 2400 for (block_start = 0, block_in_page = 0; 2401 block_start < PAGE_CACHE_SIZE; 2402 block_in_page++, block_start += blocksize) { 2403 unsigned block_end = block_start + blocksize; 2404 int create; 2405 2406 map_bh.b_state = 0; 2407 create = 1; 2408 if (block_start >= to) 2409 create = 0; 2410 map_bh.b_size = blocksize; 2411 ret = get_block(inode, block_in_file + block_in_page, 2412 &map_bh, create); 2413 if (ret) 2414 goto failed; 2415 if (!buffer_mapped(&map_bh)) 2416 is_mapped_to_disk = 0; 2417 if (buffer_new(&map_bh)) 2418 unmap_underlying_metadata(map_bh.b_bdev, 2419 map_bh.b_blocknr); 2420 if (PageUptodate(page)) 2421 continue; 2422 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) { 2423 kaddr = kmap_atomic(page, KM_USER0); 2424 if (block_start < from) { 2425 memset(kaddr+block_start, 0, from-block_start); 2426 dirtied_it = 1; 2427 } 2428 if (block_end > to) { 2429 memset(kaddr + to, 0, block_end - to); 2430 dirtied_it = 1; 2431 } 2432 flush_dcache_page(page); 2433 kunmap_atomic(kaddr, KM_USER0); 2434 continue; 2435 } 2436 if (buffer_uptodate(&map_bh)) 2437 continue; /* reiserfs does this */ 2438 if (block_start < from || block_end > to) { 2439 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS); 2440 2441 if (!bh) { 2442 ret = -ENOMEM; 2443 goto failed; 2444 } 2445 bh->b_state = map_bh.b_state; 2446 atomic_set(&bh->b_count, 0); 2447 bh->b_this_page = NULL; 2448 bh->b_page = page; 2449 bh->b_blocknr = map_bh.b_blocknr; 2450 bh->b_size = blocksize; 2451 bh->b_data = (char *)(long)block_start; 2452 bh->b_bdev = map_bh.b_bdev; 2453 bh->b_private = NULL; 2454 read_bh[nr_reads++] = bh; 2455 } 2456 } 2457 2458 if (nr_reads) { 2459 struct buffer_head *bh; 2460 2461 /* 2462 * The page is locked, so these buffers are protected from 2463 * any VM or truncate activity. Hence we don't need to care 2464 * for the buffer_head refcounts. 2465 */ 2466 for (i = 0; i < nr_reads; i++) { 2467 bh = read_bh[i]; 2468 lock_buffer(bh); 2469 bh->b_end_io = end_buffer_read_nobh; 2470 submit_bh(READ, bh); 2471 } 2472 for (i = 0; i < nr_reads; i++) { 2473 bh = read_bh[i]; 2474 wait_on_buffer(bh); 2475 if (!buffer_uptodate(bh)) 2476 ret = -EIO; 2477 free_buffer_head(bh); 2478 read_bh[i] = NULL; 2479 } 2480 if (ret) 2481 goto failed; 2482 } 2483 2484 if (is_mapped_to_disk) 2485 SetPageMappedToDisk(page); 2486 SetPageUptodate(page); 2487 2488 /* 2489 * Setting the page dirty here isn't necessary for the prepare_write 2490 * function - commit_write will do that. But if/when this function is 2491 * used within the pagefault handler to ensure that all mmapped pages 2492 * have backing space in the filesystem, we will need to dirty the page 2493 * if its contents were altered. 2494 */ 2495 if (dirtied_it) 2496 set_page_dirty(page); 2497 2498 return 0; 2499 2500 failed: 2501 for (i = 0; i < nr_reads; i++) { 2502 if (read_bh[i]) 2503 free_buffer_head(read_bh[i]); 2504 } 2505 2506 /* 2507 * Error recovery is pretty slack. Clear the page and mark it dirty 2508 * so we'll later zero out any blocks which _were_ allocated. 2509 */ 2510 kaddr = kmap_atomic(page, KM_USER0); 2511 memset(kaddr, 0, PAGE_CACHE_SIZE); 2512 kunmap_atomic(kaddr, KM_USER0); 2513 SetPageUptodate(page); 2514 set_page_dirty(page); 2515 return ret; 2516 } 2517 EXPORT_SYMBOL(nobh_prepare_write); 2518 2519 int nobh_commit_write(struct file *file, struct page *page, 2520 unsigned from, unsigned to) 2521 { 2522 struct inode *inode = page->mapping->host; 2523 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; 2524 2525 set_page_dirty(page); 2526 if (pos > inode->i_size) { 2527 i_size_write(inode, pos); 2528 mark_inode_dirty(inode); 2529 } 2530 return 0; 2531 } 2532 EXPORT_SYMBOL(nobh_commit_write); 2533 2534 /* 2535 * nobh_writepage() - based on block_full_write_page() except 2536 * that it tries to operate without attaching bufferheads to 2537 * the page. 2538 */ 2539 int nobh_writepage(struct page *page, get_block_t *get_block, 2540 struct writeback_control *wbc) 2541 { 2542 struct inode * const inode = page->mapping->host; 2543 loff_t i_size = i_size_read(inode); 2544 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2545 unsigned offset; 2546 void *kaddr; 2547 int ret; 2548 2549 /* Is the page fully inside i_size? */ 2550 if (page->index < end_index) 2551 goto out; 2552 2553 /* Is the page fully outside i_size? (truncate in progress) */ 2554 offset = i_size & (PAGE_CACHE_SIZE-1); 2555 if (page->index >= end_index+1 || !offset) { 2556 /* 2557 * The page may have dirty, unmapped buffers. For example, 2558 * they may have been added in ext3_writepage(). Make them 2559 * freeable here, so the page does not leak. 2560 */ 2561 #if 0 2562 /* Not really sure about this - do we need this ? */ 2563 if (page->mapping->a_ops->invalidatepage) 2564 page->mapping->a_ops->invalidatepage(page, offset); 2565 #endif 2566 unlock_page(page); 2567 return 0; /* don't care */ 2568 } 2569 2570 /* 2571 * The page straddles i_size. It must be zeroed out on each and every 2572 * writepage invocation because it may be mmapped. "A file is mapped 2573 * in multiples of the page size. For a file that is not a multiple of 2574 * the page size, the remaining memory is zeroed when mapped, and 2575 * writes to that region are not written out to the file." 2576 */ 2577 kaddr = kmap_atomic(page, KM_USER0); 2578 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2579 flush_dcache_page(page); 2580 kunmap_atomic(kaddr, KM_USER0); 2581 out: 2582 ret = mpage_writepage(page, get_block, wbc); 2583 if (ret == -EAGAIN) 2584 ret = __block_write_full_page(inode, page, get_block, wbc); 2585 return ret; 2586 } 2587 EXPORT_SYMBOL(nobh_writepage); 2588 2589 /* 2590 * This function assumes that ->prepare_write() uses nobh_prepare_write(). 2591 */ 2592 int nobh_truncate_page(struct address_space *mapping, loff_t from) 2593 { 2594 struct inode *inode = mapping->host; 2595 unsigned blocksize = 1 << inode->i_blkbits; 2596 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2597 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2598 unsigned to; 2599 struct page *page; 2600 const struct address_space_operations *a_ops = mapping->a_ops; 2601 char *kaddr; 2602 int ret = 0; 2603 2604 if ((offset & (blocksize - 1)) == 0) 2605 goto out; 2606 2607 ret = -ENOMEM; 2608 page = grab_cache_page(mapping, index); 2609 if (!page) 2610 goto out; 2611 2612 to = (offset + blocksize) & ~(blocksize - 1); 2613 ret = a_ops->prepare_write(NULL, page, offset, to); 2614 if (ret == 0) { 2615 kaddr = kmap_atomic(page, KM_USER0); 2616 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2617 flush_dcache_page(page); 2618 kunmap_atomic(kaddr, KM_USER0); 2619 set_page_dirty(page); 2620 } 2621 unlock_page(page); 2622 page_cache_release(page); 2623 out: 2624 return ret; 2625 } 2626 EXPORT_SYMBOL(nobh_truncate_page); 2627 2628 int block_truncate_page(struct address_space *mapping, 2629 loff_t from, get_block_t *get_block) 2630 { 2631 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2632 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2633 unsigned blocksize; 2634 sector_t iblock; 2635 unsigned length, pos; 2636 struct inode *inode = mapping->host; 2637 struct page *page; 2638 struct buffer_head *bh; 2639 void *kaddr; 2640 int err; 2641 2642 blocksize = 1 << inode->i_blkbits; 2643 length = offset & (blocksize - 1); 2644 2645 /* Block boundary? Nothing to do */ 2646 if (!length) 2647 return 0; 2648 2649 length = blocksize - length; 2650 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2651 2652 page = grab_cache_page(mapping, index); 2653 err = -ENOMEM; 2654 if (!page) 2655 goto out; 2656 2657 if (!page_has_buffers(page)) 2658 create_empty_buffers(page, blocksize, 0); 2659 2660 /* Find the buffer that contains "offset" */ 2661 bh = page_buffers(page); 2662 pos = blocksize; 2663 while (offset >= pos) { 2664 bh = bh->b_this_page; 2665 iblock++; 2666 pos += blocksize; 2667 } 2668 2669 err = 0; 2670 if (!buffer_mapped(bh)) { 2671 WARN_ON(bh->b_size != blocksize); 2672 err = get_block(inode, iblock, bh, 0); 2673 if (err) 2674 goto unlock; 2675 /* unmapped? It's a hole - nothing to do */ 2676 if (!buffer_mapped(bh)) 2677 goto unlock; 2678 } 2679 2680 /* Ok, it's mapped. Make sure it's up-to-date */ 2681 if (PageUptodate(page)) 2682 set_buffer_uptodate(bh); 2683 2684 if (!buffer_uptodate(bh) && !buffer_delay(bh)) { 2685 err = -EIO; 2686 ll_rw_block(READ, 1, &bh); 2687 wait_on_buffer(bh); 2688 /* Uhhuh. Read error. Complain and punt. */ 2689 if (!buffer_uptodate(bh)) 2690 goto unlock; 2691 } 2692 2693 kaddr = kmap_atomic(page, KM_USER0); 2694 memset(kaddr + offset, 0, length); 2695 flush_dcache_page(page); 2696 kunmap_atomic(kaddr, KM_USER0); 2697 2698 mark_buffer_dirty(bh); 2699 err = 0; 2700 2701 unlock: 2702 unlock_page(page); 2703 page_cache_release(page); 2704 out: 2705 return err; 2706 } 2707 2708 /* 2709 * The generic ->writepage function for buffer-backed address_spaces 2710 */ 2711 int block_write_full_page(struct page *page, get_block_t *get_block, 2712 struct writeback_control *wbc) 2713 { 2714 struct inode * const inode = page->mapping->host; 2715 loff_t i_size = i_size_read(inode); 2716 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2717 unsigned offset; 2718 void *kaddr; 2719 2720 /* Is the page fully inside i_size? */ 2721 if (page->index < end_index) 2722 return __block_write_full_page(inode, page, get_block, wbc); 2723 2724 /* Is the page fully outside i_size? (truncate in progress) */ 2725 offset = i_size & (PAGE_CACHE_SIZE-1); 2726 if (page->index >= end_index+1 || !offset) { 2727 /* 2728 * The page may have dirty, unmapped buffers. For example, 2729 * they may have been added in ext3_writepage(). Make them 2730 * freeable here, so the page does not leak. 2731 */ 2732 do_invalidatepage(page, 0); 2733 unlock_page(page); 2734 return 0; /* don't care */ 2735 } 2736 2737 /* 2738 * The page straddles i_size. It must be zeroed out on each and every 2739 * writepage invokation because it may be mmapped. "A file is mapped 2740 * in multiples of the page size. For a file that is not a multiple of 2741 * the page size, the remaining memory is zeroed when mapped, and 2742 * writes to that region are not written out to the file." 2743 */ 2744 kaddr = kmap_atomic(page, KM_USER0); 2745 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2746 flush_dcache_page(page); 2747 kunmap_atomic(kaddr, KM_USER0); 2748 return __block_write_full_page(inode, page, get_block, wbc); 2749 } 2750 2751 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2752 get_block_t *get_block) 2753 { 2754 struct buffer_head tmp; 2755 struct inode *inode = mapping->host; 2756 tmp.b_state = 0; 2757 tmp.b_blocknr = 0; 2758 tmp.b_size = 1 << inode->i_blkbits; 2759 get_block(inode, block, &tmp, 0); 2760 return tmp.b_blocknr; 2761 } 2762 2763 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err) 2764 { 2765 struct buffer_head *bh = bio->bi_private; 2766 2767 if (bio->bi_size) 2768 return 1; 2769 2770 if (err == -EOPNOTSUPP) { 2771 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2772 set_bit(BH_Eopnotsupp, &bh->b_state); 2773 } 2774 2775 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2776 bio_put(bio); 2777 return 0; 2778 } 2779 2780 int submit_bh(int rw, struct buffer_head * bh) 2781 { 2782 struct bio *bio; 2783 int ret = 0; 2784 2785 BUG_ON(!buffer_locked(bh)); 2786 BUG_ON(!buffer_mapped(bh)); 2787 BUG_ON(!bh->b_end_io); 2788 2789 if (buffer_ordered(bh) && (rw == WRITE)) 2790 rw = WRITE_BARRIER; 2791 2792 /* 2793 * Only clear out a write error when rewriting, should this 2794 * include WRITE_SYNC as well? 2795 */ 2796 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER)) 2797 clear_buffer_write_io_error(bh); 2798 2799 /* 2800 * from here on down, it's all bio -- do the initial mapping, 2801 * submit_bio -> generic_make_request may further map this bio around 2802 */ 2803 bio = bio_alloc(GFP_NOIO, 1); 2804 2805 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2806 bio->bi_bdev = bh->b_bdev; 2807 bio->bi_io_vec[0].bv_page = bh->b_page; 2808 bio->bi_io_vec[0].bv_len = bh->b_size; 2809 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 2810 2811 bio->bi_vcnt = 1; 2812 bio->bi_idx = 0; 2813 bio->bi_size = bh->b_size; 2814 2815 bio->bi_end_io = end_bio_bh_io_sync; 2816 bio->bi_private = bh; 2817 2818 bio_get(bio); 2819 submit_bio(rw, bio); 2820 2821 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2822 ret = -EOPNOTSUPP; 2823 2824 bio_put(bio); 2825 return ret; 2826 } 2827 2828 /** 2829 * ll_rw_block: low-level access to block devices (DEPRECATED) 2830 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead) 2831 * @nr: number of &struct buffer_heads in the array 2832 * @bhs: array of pointers to &struct buffer_head 2833 * 2834 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 2835 * requests an I/O operation on them, either a %READ or a %WRITE. The third 2836 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers 2837 * are sent to disk. The fourth %READA option is described in the documentation 2838 * for generic_make_request() which ll_rw_block() calls. 2839 * 2840 * This function drops any buffer that it cannot get a lock on (with the 2841 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be 2842 * clean when doing a write request, and any buffer that appears to be 2843 * up-to-date when doing read request. Further it marks as clean buffers that 2844 * are processed for writing (the buffer cache won't assume that they are 2845 * actually clean until the buffer gets unlocked). 2846 * 2847 * ll_rw_block sets b_end_io to simple completion handler that marks 2848 * the buffer up-to-date (if approriate), unlocks the buffer and wakes 2849 * any waiters. 2850 * 2851 * All of the buffers must be for the same device, and must also be a 2852 * multiple of the current approved size for the device. 2853 */ 2854 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 2855 { 2856 int i; 2857 2858 for (i = 0; i < nr; i++) { 2859 struct buffer_head *bh = bhs[i]; 2860 2861 if (rw == SWRITE) 2862 lock_buffer(bh); 2863 else if (test_set_buffer_locked(bh)) 2864 continue; 2865 2866 if (rw == WRITE || rw == SWRITE) { 2867 if (test_clear_buffer_dirty(bh)) { 2868 bh->b_end_io = end_buffer_write_sync; 2869 get_bh(bh); 2870 submit_bh(WRITE, bh); 2871 continue; 2872 } 2873 } else { 2874 if (!buffer_uptodate(bh)) { 2875 bh->b_end_io = end_buffer_read_sync; 2876 get_bh(bh); 2877 submit_bh(rw, bh); 2878 continue; 2879 } 2880 } 2881 unlock_buffer(bh); 2882 } 2883 } 2884 2885 /* 2886 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2887 * and then start new I/O and then wait upon it. The caller must have a ref on 2888 * the buffer_head. 2889 */ 2890 int sync_dirty_buffer(struct buffer_head *bh) 2891 { 2892 int ret = 0; 2893 2894 WARN_ON(atomic_read(&bh->b_count) < 1); 2895 lock_buffer(bh); 2896 if (test_clear_buffer_dirty(bh)) { 2897 get_bh(bh); 2898 bh->b_end_io = end_buffer_write_sync; 2899 ret = submit_bh(WRITE, bh); 2900 wait_on_buffer(bh); 2901 if (buffer_eopnotsupp(bh)) { 2902 clear_buffer_eopnotsupp(bh); 2903 ret = -EOPNOTSUPP; 2904 } 2905 if (!ret && !buffer_uptodate(bh)) 2906 ret = -EIO; 2907 } else { 2908 unlock_buffer(bh); 2909 } 2910 return ret; 2911 } 2912 2913 /* 2914 * try_to_free_buffers() checks if all the buffers on this particular page 2915 * are unused, and releases them if so. 2916 * 2917 * Exclusion against try_to_free_buffers may be obtained by either 2918 * locking the page or by holding its mapping's private_lock. 2919 * 2920 * If the page is dirty but all the buffers are clean then we need to 2921 * be sure to mark the page clean as well. This is because the page 2922 * may be against a block device, and a later reattachment of buffers 2923 * to a dirty page will set *all* buffers dirty. Which would corrupt 2924 * filesystem data on the same device. 2925 * 2926 * The same applies to regular filesystem pages: if all the buffers are 2927 * clean then we set the page clean and proceed. To do that, we require 2928 * total exclusion from __set_page_dirty_buffers(). That is obtained with 2929 * private_lock. 2930 * 2931 * try_to_free_buffers() is non-blocking. 2932 */ 2933 static inline int buffer_busy(struct buffer_head *bh) 2934 { 2935 return atomic_read(&bh->b_count) | 2936 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 2937 } 2938 2939 static int 2940 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 2941 { 2942 struct buffer_head *head = page_buffers(page); 2943 struct buffer_head *bh; 2944 2945 bh = head; 2946 do { 2947 if (buffer_write_io_error(bh) && page->mapping) 2948 set_bit(AS_EIO, &page->mapping->flags); 2949 if (buffer_busy(bh)) 2950 goto failed; 2951 bh = bh->b_this_page; 2952 } while (bh != head); 2953 2954 do { 2955 struct buffer_head *next = bh->b_this_page; 2956 2957 if (!list_empty(&bh->b_assoc_buffers)) 2958 __remove_assoc_queue(bh); 2959 bh = next; 2960 } while (bh != head); 2961 *buffers_to_free = head; 2962 __clear_page_buffers(page); 2963 return 1; 2964 failed: 2965 return 0; 2966 } 2967 2968 int try_to_free_buffers(struct page *page) 2969 { 2970 struct address_space * const mapping = page->mapping; 2971 struct buffer_head *buffers_to_free = NULL; 2972 int ret = 0; 2973 2974 BUG_ON(!PageLocked(page)); 2975 if (PageWriteback(page)) 2976 return 0; 2977 2978 if (mapping == NULL) { /* can this still happen? */ 2979 ret = drop_buffers(page, &buffers_to_free); 2980 goto out; 2981 } 2982 2983 spin_lock(&mapping->private_lock); 2984 ret = drop_buffers(page, &buffers_to_free); 2985 if (ret) { 2986 /* 2987 * If the filesystem writes its buffers by hand (eg ext3) 2988 * then we can have clean buffers against a dirty page. We 2989 * clean the page here; otherwise later reattachment of buffers 2990 * could encounter a non-uptodate page, which is unresolvable. 2991 * This only applies in the rare case where try_to_free_buffers 2992 * succeeds but the page is not freed. 2993 */ 2994 clear_page_dirty(page); 2995 } 2996 spin_unlock(&mapping->private_lock); 2997 out: 2998 if (buffers_to_free) { 2999 struct buffer_head *bh = buffers_to_free; 3000 3001 do { 3002 struct buffer_head *next = bh->b_this_page; 3003 free_buffer_head(bh); 3004 bh = next; 3005 } while (bh != buffers_to_free); 3006 } 3007 return ret; 3008 } 3009 EXPORT_SYMBOL(try_to_free_buffers); 3010 3011 void block_sync_page(struct page *page) 3012 { 3013 struct address_space *mapping; 3014 3015 smp_mb(); 3016 mapping = page_mapping(page); 3017 if (mapping) 3018 blk_run_backing_dev(mapping->backing_dev_info, page); 3019 } 3020 3021 /* 3022 * There are no bdflush tunables left. But distributions are 3023 * still running obsolete flush daemons, so we terminate them here. 3024 * 3025 * Use of bdflush() is deprecated and will be removed in a future kernel. 3026 * The `pdflush' kernel threads fully replace bdflush daemons and this call. 3027 */ 3028 asmlinkage long sys_bdflush(int func, long data) 3029 { 3030 static int msg_count; 3031 3032 if (!capable(CAP_SYS_ADMIN)) 3033 return -EPERM; 3034 3035 if (msg_count < 5) { 3036 msg_count++; 3037 printk(KERN_INFO 3038 "warning: process `%s' used the obsolete bdflush" 3039 " system call\n", current->comm); 3040 printk(KERN_INFO "Fix your initscripts?\n"); 3041 } 3042 3043 if (func == 1) 3044 do_exit(0); 3045 return 0; 3046 } 3047 3048 /* 3049 * Buffer-head allocation 3050 */ 3051 static kmem_cache_t *bh_cachep; 3052 3053 /* 3054 * Once the number of bh's in the machine exceeds this level, we start 3055 * stripping them in writeback. 3056 */ 3057 static int max_buffer_heads; 3058 3059 int buffer_heads_over_limit; 3060 3061 struct bh_accounting { 3062 int nr; /* Number of live bh's */ 3063 int ratelimit; /* Limit cacheline bouncing */ 3064 }; 3065 3066 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3067 3068 static void recalc_bh_state(void) 3069 { 3070 int i; 3071 int tot = 0; 3072 3073 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096) 3074 return; 3075 __get_cpu_var(bh_accounting).ratelimit = 0; 3076 for_each_online_cpu(i) 3077 tot += per_cpu(bh_accounting, i).nr; 3078 buffer_heads_over_limit = (tot > max_buffer_heads); 3079 } 3080 3081 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3082 { 3083 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags); 3084 if (ret) { 3085 get_cpu_var(bh_accounting).nr++; 3086 recalc_bh_state(); 3087 put_cpu_var(bh_accounting); 3088 } 3089 return ret; 3090 } 3091 EXPORT_SYMBOL(alloc_buffer_head); 3092 3093 void free_buffer_head(struct buffer_head *bh) 3094 { 3095 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3096 kmem_cache_free(bh_cachep, bh); 3097 get_cpu_var(bh_accounting).nr--; 3098 recalc_bh_state(); 3099 put_cpu_var(bh_accounting); 3100 } 3101 EXPORT_SYMBOL(free_buffer_head); 3102 3103 static void 3104 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags) 3105 { 3106 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 3107 SLAB_CTOR_CONSTRUCTOR) { 3108 struct buffer_head * bh = (struct buffer_head *)data; 3109 3110 memset(bh, 0, sizeof(*bh)); 3111 INIT_LIST_HEAD(&bh->b_assoc_buffers); 3112 } 3113 } 3114 3115 #ifdef CONFIG_HOTPLUG_CPU 3116 static void buffer_exit_cpu(int cpu) 3117 { 3118 int i; 3119 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3120 3121 for (i = 0; i < BH_LRU_SIZE; i++) { 3122 brelse(b->bhs[i]); 3123 b->bhs[i] = NULL; 3124 } 3125 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr; 3126 per_cpu(bh_accounting, cpu).nr = 0; 3127 put_cpu_var(bh_accounting); 3128 } 3129 3130 static int buffer_cpu_notify(struct notifier_block *self, 3131 unsigned long action, void *hcpu) 3132 { 3133 if (action == CPU_DEAD) 3134 buffer_exit_cpu((unsigned long)hcpu); 3135 return NOTIFY_OK; 3136 } 3137 #endif /* CONFIG_HOTPLUG_CPU */ 3138 3139 void __init buffer_init(void) 3140 { 3141 int nrpages; 3142 3143 bh_cachep = kmem_cache_create("buffer_head", 3144 sizeof(struct buffer_head), 0, 3145 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3146 SLAB_MEM_SPREAD), 3147 init_buffer_head, 3148 NULL); 3149 3150 /* 3151 * Limit the bh occupancy to 10% of ZONE_NORMAL 3152 */ 3153 nrpages = (nr_free_buffer_pages() * 10) / 100; 3154 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3155 hotcpu_notifier(buffer_cpu_notify, 0); 3156 } 3157 3158 EXPORT_SYMBOL(__bforget); 3159 EXPORT_SYMBOL(__brelse); 3160 EXPORT_SYMBOL(__wait_on_buffer); 3161 EXPORT_SYMBOL(block_commit_write); 3162 EXPORT_SYMBOL(block_prepare_write); 3163 EXPORT_SYMBOL(block_read_full_page); 3164 EXPORT_SYMBOL(block_sync_page); 3165 EXPORT_SYMBOL(block_truncate_page); 3166 EXPORT_SYMBOL(block_write_full_page); 3167 EXPORT_SYMBOL(cont_prepare_write); 3168 EXPORT_SYMBOL(end_buffer_read_sync); 3169 EXPORT_SYMBOL(end_buffer_write_sync); 3170 EXPORT_SYMBOL(file_fsync); 3171 EXPORT_SYMBOL(fsync_bdev); 3172 EXPORT_SYMBOL(generic_block_bmap); 3173 EXPORT_SYMBOL(generic_commit_write); 3174 EXPORT_SYMBOL(generic_cont_expand); 3175 EXPORT_SYMBOL(generic_cont_expand_simple); 3176 EXPORT_SYMBOL(init_buffer); 3177 EXPORT_SYMBOL(invalidate_bdev); 3178 EXPORT_SYMBOL(ll_rw_block); 3179 EXPORT_SYMBOL(mark_buffer_dirty); 3180 EXPORT_SYMBOL(submit_bh); 3181 EXPORT_SYMBOL(sync_dirty_buffer); 3182 EXPORT_SYMBOL(unlock_buffer); 3183