xref: /linux/fs/buffer.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/smp_lock.h>
28 #include <linux/capability.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 static void invalidate_bh_lrus(void);
47 
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49 
50 inline void
51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 {
53 	bh->b_end_io = handler;
54 	bh->b_private = private;
55 }
56 
57 static int sync_buffer(void *word)
58 {
59 	struct block_device *bd;
60 	struct buffer_head *bh
61 		= container_of(word, struct buffer_head, b_state);
62 
63 	smp_mb();
64 	bd = bh->b_bdev;
65 	if (bd)
66 		blk_run_address_space(bd->bd_inode->i_mapping);
67 	io_schedule();
68 	return 0;
69 }
70 
71 void fastcall __lock_buffer(struct buffer_head *bh)
72 {
73 	wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74 							TASK_UNINTERRUPTIBLE);
75 }
76 EXPORT_SYMBOL(__lock_buffer);
77 
78 void fastcall unlock_buffer(struct buffer_head *bh)
79 {
80 	clear_buffer_locked(bh);
81 	smp_mb__after_clear_bit();
82 	wake_up_bit(&bh->b_state, BH_Lock);
83 }
84 
85 /*
86  * Block until a buffer comes unlocked.  This doesn't stop it
87  * from becoming locked again - you have to lock it yourself
88  * if you want to preserve its state.
89  */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92 	wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93 }
94 
95 static void
96 __clear_page_buffers(struct page *page)
97 {
98 	ClearPagePrivate(page);
99 	set_page_private(page, 0);
100 	page_cache_release(page);
101 }
102 
103 static void buffer_io_error(struct buffer_head *bh)
104 {
105 	char b[BDEVNAME_SIZE];
106 
107 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108 			bdevname(bh->b_bdev, b),
109 			(unsigned long long)bh->b_blocknr);
110 }
111 
112 /*
113  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
114  * unlock the buffer. This is what ll_rw_block uses too.
115  */
116 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
117 {
118 	if (uptodate) {
119 		set_buffer_uptodate(bh);
120 	} else {
121 		/* This happens, due to failed READA attempts. */
122 		clear_buffer_uptodate(bh);
123 	}
124 	unlock_buffer(bh);
125 	put_bh(bh);
126 }
127 
128 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
129 {
130 	char b[BDEVNAME_SIZE];
131 
132 	if (uptodate) {
133 		set_buffer_uptodate(bh);
134 	} else {
135 		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
136 			buffer_io_error(bh);
137 			printk(KERN_WARNING "lost page write due to "
138 					"I/O error on %s\n",
139 				       bdevname(bh->b_bdev, b));
140 		}
141 		set_buffer_write_io_error(bh);
142 		clear_buffer_uptodate(bh);
143 	}
144 	unlock_buffer(bh);
145 	put_bh(bh);
146 }
147 
148 /*
149  * Write out and wait upon all the dirty data associated with a block
150  * device via its mapping.  Does not take the superblock lock.
151  */
152 int sync_blockdev(struct block_device *bdev)
153 {
154 	int ret = 0;
155 
156 	if (bdev)
157 		ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
158 	return ret;
159 }
160 EXPORT_SYMBOL(sync_blockdev);
161 
162 static void __fsync_super(struct super_block *sb)
163 {
164 	sync_inodes_sb(sb, 0);
165 	DQUOT_SYNC(sb);
166 	lock_super(sb);
167 	if (sb->s_dirt && sb->s_op->write_super)
168 		sb->s_op->write_super(sb);
169 	unlock_super(sb);
170 	if (sb->s_op->sync_fs)
171 		sb->s_op->sync_fs(sb, 1);
172 	sync_blockdev(sb->s_bdev);
173 	sync_inodes_sb(sb, 1);
174 }
175 
176 /*
177  * Write out and wait upon all dirty data associated with this
178  * superblock.  Filesystem data as well as the underlying block
179  * device.  Takes the superblock lock.
180  */
181 int fsync_super(struct super_block *sb)
182 {
183 	__fsync_super(sb);
184 	return sync_blockdev(sb->s_bdev);
185 }
186 
187 /*
188  * Write out and wait upon all dirty data associated with this
189  * device.   Filesystem data as well as the underlying block
190  * device.  Takes the superblock lock.
191  */
192 int fsync_bdev(struct block_device *bdev)
193 {
194 	struct super_block *sb = get_super(bdev);
195 	if (sb) {
196 		int res = fsync_super(sb);
197 		drop_super(sb);
198 		return res;
199 	}
200 	return sync_blockdev(bdev);
201 }
202 
203 /**
204  * freeze_bdev  --  lock a filesystem and force it into a consistent state
205  * @bdev:	blockdevice to lock
206  *
207  * This takes the block device bd_mount_mutex to make sure no new mounts
208  * happen on bdev until thaw_bdev() is called.
209  * If a superblock is found on this device, we take the s_umount semaphore
210  * on it to make sure nobody unmounts until the snapshot creation is done.
211  */
212 struct super_block *freeze_bdev(struct block_device *bdev)
213 {
214 	struct super_block *sb;
215 
216 	mutex_lock(&bdev->bd_mount_mutex);
217 	sb = get_super(bdev);
218 	if (sb && !(sb->s_flags & MS_RDONLY)) {
219 		sb->s_frozen = SB_FREEZE_WRITE;
220 		smp_wmb();
221 
222 		__fsync_super(sb);
223 
224 		sb->s_frozen = SB_FREEZE_TRANS;
225 		smp_wmb();
226 
227 		sync_blockdev(sb->s_bdev);
228 
229 		if (sb->s_op->write_super_lockfs)
230 			sb->s_op->write_super_lockfs(sb);
231 	}
232 
233 	sync_blockdev(bdev);
234 	return sb;	/* thaw_bdev releases s->s_umount and bd_mount_sem */
235 }
236 EXPORT_SYMBOL(freeze_bdev);
237 
238 /**
239  * thaw_bdev  -- unlock filesystem
240  * @bdev:	blockdevice to unlock
241  * @sb:		associated superblock
242  *
243  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
244  */
245 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
246 {
247 	if (sb) {
248 		BUG_ON(sb->s_bdev != bdev);
249 
250 		if (sb->s_op->unlockfs)
251 			sb->s_op->unlockfs(sb);
252 		sb->s_frozen = SB_UNFROZEN;
253 		smp_wmb();
254 		wake_up(&sb->s_wait_unfrozen);
255 		drop_super(sb);
256 	}
257 
258 	mutex_unlock(&bdev->bd_mount_mutex);
259 }
260 EXPORT_SYMBOL(thaw_bdev);
261 
262 /*
263  * sync everything.  Start out by waking pdflush, because that writes back
264  * all queues in parallel.
265  */
266 static void do_sync(unsigned long wait)
267 {
268 	wakeup_pdflush(0);
269 	sync_inodes(0);		/* All mappings, inodes and their blockdevs */
270 	DQUOT_SYNC(NULL);
271 	sync_supers();		/* Write the superblocks */
272 	sync_filesystems(0);	/* Start syncing the filesystems */
273 	sync_filesystems(wait);	/* Waitingly sync the filesystems */
274 	sync_inodes(wait);	/* Mappings, inodes and blockdevs, again. */
275 	if (!wait)
276 		printk("Emergency Sync complete\n");
277 	if (unlikely(laptop_mode))
278 		laptop_sync_completion();
279 }
280 
281 asmlinkage long sys_sync(void)
282 {
283 	do_sync(1);
284 	return 0;
285 }
286 
287 void emergency_sync(void)
288 {
289 	pdflush_operation(do_sync, 0);
290 }
291 
292 /*
293  * Generic function to fsync a file.
294  *
295  * filp may be NULL if called via the msync of a vma.
296  */
297 
298 int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
299 {
300 	struct inode * inode = dentry->d_inode;
301 	struct super_block * sb;
302 	int ret, err;
303 
304 	/* sync the inode to buffers */
305 	ret = write_inode_now(inode, 0);
306 
307 	/* sync the superblock to buffers */
308 	sb = inode->i_sb;
309 	lock_super(sb);
310 	if (sb->s_op->write_super)
311 		sb->s_op->write_super(sb);
312 	unlock_super(sb);
313 
314 	/* .. finally sync the buffers to disk */
315 	err = sync_blockdev(sb->s_bdev);
316 	if (!ret)
317 		ret = err;
318 	return ret;
319 }
320 
321 long do_fsync(struct file *file, int datasync)
322 {
323 	int ret;
324 	int err;
325 	struct address_space *mapping = file->f_mapping;
326 
327 	if (!file->f_op || !file->f_op->fsync) {
328 		/* Why?  We can still call filemap_fdatawrite */
329 		ret = -EINVAL;
330 		goto out;
331 	}
332 
333 	ret = filemap_fdatawrite(mapping);
334 
335 	/*
336 	 * We need to protect against concurrent writers, which could cause
337 	 * livelocks in fsync_buffers_list().
338 	 */
339 	mutex_lock(&mapping->host->i_mutex);
340 	err = file->f_op->fsync(file, file->f_dentry, datasync);
341 	if (!ret)
342 		ret = err;
343 	mutex_unlock(&mapping->host->i_mutex);
344 	err = filemap_fdatawait(mapping);
345 	if (!ret)
346 		ret = err;
347 out:
348 	return ret;
349 }
350 
351 static long __do_fsync(unsigned int fd, int datasync)
352 {
353 	struct file *file;
354 	int ret = -EBADF;
355 
356 	file = fget(fd);
357 	if (file) {
358 		ret = do_fsync(file, datasync);
359 		fput(file);
360 	}
361 	return ret;
362 }
363 
364 asmlinkage long sys_fsync(unsigned int fd)
365 {
366 	return __do_fsync(fd, 0);
367 }
368 
369 asmlinkage long sys_fdatasync(unsigned int fd)
370 {
371 	return __do_fsync(fd, 1);
372 }
373 
374 /*
375  * Various filesystems appear to want __find_get_block to be non-blocking.
376  * But it's the page lock which protects the buffers.  To get around this,
377  * we get exclusion from try_to_free_buffers with the blockdev mapping's
378  * private_lock.
379  *
380  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
381  * may be quite high.  This code could TryLock the page, and if that
382  * succeeds, there is no need to take private_lock. (But if
383  * private_lock is contended then so is mapping->tree_lock).
384  */
385 static struct buffer_head *
386 __find_get_block_slow(struct block_device *bdev, sector_t block)
387 {
388 	struct inode *bd_inode = bdev->bd_inode;
389 	struct address_space *bd_mapping = bd_inode->i_mapping;
390 	struct buffer_head *ret = NULL;
391 	pgoff_t index;
392 	struct buffer_head *bh;
393 	struct buffer_head *head;
394 	struct page *page;
395 	int all_mapped = 1;
396 
397 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
398 	page = find_get_page(bd_mapping, index);
399 	if (!page)
400 		goto out;
401 
402 	spin_lock(&bd_mapping->private_lock);
403 	if (!page_has_buffers(page))
404 		goto out_unlock;
405 	head = page_buffers(page);
406 	bh = head;
407 	do {
408 		if (bh->b_blocknr == block) {
409 			ret = bh;
410 			get_bh(bh);
411 			goto out_unlock;
412 		}
413 		if (!buffer_mapped(bh))
414 			all_mapped = 0;
415 		bh = bh->b_this_page;
416 	} while (bh != head);
417 
418 	/* we might be here because some of the buffers on this page are
419 	 * not mapped.  This is due to various races between
420 	 * file io on the block device and getblk.  It gets dealt with
421 	 * elsewhere, don't buffer_error if we had some unmapped buffers
422 	 */
423 	if (all_mapped) {
424 		printk("__find_get_block_slow() failed. "
425 			"block=%llu, b_blocknr=%llu\n",
426 			(unsigned long long)block,
427 			(unsigned long long)bh->b_blocknr);
428 		printk("b_state=0x%08lx, b_size=%zu\n",
429 			bh->b_state, bh->b_size);
430 		printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
431 	}
432 out_unlock:
433 	spin_unlock(&bd_mapping->private_lock);
434 	page_cache_release(page);
435 out:
436 	return ret;
437 }
438 
439 /* If invalidate_buffers() will trash dirty buffers, it means some kind
440    of fs corruption is going on. Trashing dirty data always imply losing
441    information that was supposed to be just stored on the physical layer
442    by the user.
443 
444    Thus invalidate_buffers in general usage is not allwowed to trash
445    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
446    be preserved.  These buffers are simply skipped.
447 
448    We also skip buffers which are still in use.  For example this can
449    happen if a userspace program is reading the block device.
450 
451    NOTE: In the case where the user removed a removable-media-disk even if
452    there's still dirty data not synced on disk (due a bug in the device driver
453    or due an error of the user), by not destroying the dirty buffers we could
454    generate corruption also on the next media inserted, thus a parameter is
455    necessary to handle this case in the most safe way possible (trying
456    to not corrupt also the new disk inserted with the data belonging to
457    the old now corrupted disk). Also for the ramdisk the natural thing
458    to do in order to release the ramdisk memory is to destroy dirty buffers.
459 
460    These are two special cases. Normal usage imply the device driver
461    to issue a sync on the device (without waiting I/O completion) and
462    then an invalidate_buffers call that doesn't trash dirty buffers.
463 
464    For handling cache coherency with the blkdev pagecache the 'update' case
465    is been introduced. It is needed to re-read from disk any pinned
466    buffer. NOTE: re-reading from disk is destructive so we can do it only
467    when we assume nobody is changing the buffercache under our I/O and when
468    we think the disk contains more recent information than the buffercache.
469    The update == 1 pass marks the buffers we need to update, the update == 2
470    pass does the actual I/O. */
471 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
472 {
473 	invalidate_bh_lrus();
474 	/*
475 	 * FIXME: what about destroy_dirty_buffers?
476 	 * We really want to use invalidate_inode_pages2() for
477 	 * that, but not until that's cleaned up.
478 	 */
479 	invalidate_inode_pages(bdev->bd_inode->i_mapping);
480 }
481 
482 /*
483  * Kick pdflush then try to free up some ZONE_NORMAL memory.
484  */
485 static void free_more_memory(void)
486 {
487 	struct zone **zones;
488 	pg_data_t *pgdat;
489 
490 	wakeup_pdflush(1024);
491 	yield();
492 
493 	for_each_online_pgdat(pgdat) {
494 		zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
495 		if (*zones)
496 			try_to_free_pages(zones, GFP_NOFS);
497 	}
498 }
499 
500 /*
501  * I/O completion handler for block_read_full_page() - pages
502  * which come unlocked at the end of I/O.
503  */
504 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
505 {
506 	unsigned long flags;
507 	struct buffer_head *first;
508 	struct buffer_head *tmp;
509 	struct page *page;
510 	int page_uptodate = 1;
511 
512 	BUG_ON(!buffer_async_read(bh));
513 
514 	page = bh->b_page;
515 	if (uptodate) {
516 		set_buffer_uptodate(bh);
517 	} else {
518 		clear_buffer_uptodate(bh);
519 		if (printk_ratelimit())
520 			buffer_io_error(bh);
521 		SetPageError(page);
522 	}
523 
524 	/*
525 	 * Be _very_ careful from here on. Bad things can happen if
526 	 * two buffer heads end IO at almost the same time and both
527 	 * decide that the page is now completely done.
528 	 */
529 	first = page_buffers(page);
530 	local_irq_save(flags);
531 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
532 	clear_buffer_async_read(bh);
533 	unlock_buffer(bh);
534 	tmp = bh;
535 	do {
536 		if (!buffer_uptodate(tmp))
537 			page_uptodate = 0;
538 		if (buffer_async_read(tmp)) {
539 			BUG_ON(!buffer_locked(tmp));
540 			goto still_busy;
541 		}
542 		tmp = tmp->b_this_page;
543 	} while (tmp != bh);
544 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
545 	local_irq_restore(flags);
546 
547 	/*
548 	 * If none of the buffers had errors and they are all
549 	 * uptodate then we can set the page uptodate.
550 	 */
551 	if (page_uptodate && !PageError(page))
552 		SetPageUptodate(page);
553 	unlock_page(page);
554 	return;
555 
556 still_busy:
557 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
558 	local_irq_restore(flags);
559 	return;
560 }
561 
562 /*
563  * Completion handler for block_write_full_page() - pages which are unlocked
564  * during I/O, and which have PageWriteback cleared upon I/O completion.
565  */
566 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
567 {
568 	char b[BDEVNAME_SIZE];
569 	unsigned long flags;
570 	struct buffer_head *first;
571 	struct buffer_head *tmp;
572 	struct page *page;
573 
574 	BUG_ON(!buffer_async_write(bh));
575 
576 	page = bh->b_page;
577 	if (uptodate) {
578 		set_buffer_uptodate(bh);
579 	} else {
580 		if (printk_ratelimit()) {
581 			buffer_io_error(bh);
582 			printk(KERN_WARNING "lost page write due to "
583 					"I/O error on %s\n",
584 			       bdevname(bh->b_bdev, b));
585 		}
586 		set_bit(AS_EIO, &page->mapping->flags);
587 		clear_buffer_uptodate(bh);
588 		SetPageError(page);
589 	}
590 
591 	first = page_buffers(page);
592 	local_irq_save(flags);
593 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
594 
595 	clear_buffer_async_write(bh);
596 	unlock_buffer(bh);
597 	tmp = bh->b_this_page;
598 	while (tmp != bh) {
599 		if (buffer_async_write(tmp)) {
600 			BUG_ON(!buffer_locked(tmp));
601 			goto still_busy;
602 		}
603 		tmp = tmp->b_this_page;
604 	}
605 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
606 	local_irq_restore(flags);
607 	end_page_writeback(page);
608 	return;
609 
610 still_busy:
611 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
612 	local_irq_restore(flags);
613 	return;
614 }
615 
616 /*
617  * If a page's buffers are under async readin (end_buffer_async_read
618  * completion) then there is a possibility that another thread of
619  * control could lock one of the buffers after it has completed
620  * but while some of the other buffers have not completed.  This
621  * locked buffer would confuse end_buffer_async_read() into not unlocking
622  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
623  * that this buffer is not under async I/O.
624  *
625  * The page comes unlocked when it has no locked buffer_async buffers
626  * left.
627  *
628  * PageLocked prevents anyone starting new async I/O reads any of
629  * the buffers.
630  *
631  * PageWriteback is used to prevent simultaneous writeout of the same
632  * page.
633  *
634  * PageLocked prevents anyone from starting writeback of a page which is
635  * under read I/O (PageWriteback is only ever set against a locked page).
636  */
637 static void mark_buffer_async_read(struct buffer_head *bh)
638 {
639 	bh->b_end_io = end_buffer_async_read;
640 	set_buffer_async_read(bh);
641 }
642 
643 void mark_buffer_async_write(struct buffer_head *bh)
644 {
645 	bh->b_end_io = end_buffer_async_write;
646 	set_buffer_async_write(bh);
647 }
648 EXPORT_SYMBOL(mark_buffer_async_write);
649 
650 
651 /*
652  * fs/buffer.c contains helper functions for buffer-backed address space's
653  * fsync functions.  A common requirement for buffer-based filesystems is
654  * that certain data from the backing blockdev needs to be written out for
655  * a successful fsync().  For example, ext2 indirect blocks need to be
656  * written back and waited upon before fsync() returns.
657  *
658  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
659  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
660  * management of a list of dependent buffers at ->i_mapping->private_list.
661  *
662  * Locking is a little subtle: try_to_free_buffers() will remove buffers
663  * from their controlling inode's queue when they are being freed.  But
664  * try_to_free_buffers() will be operating against the *blockdev* mapping
665  * at the time, not against the S_ISREG file which depends on those buffers.
666  * So the locking for private_list is via the private_lock in the address_space
667  * which backs the buffers.  Which is different from the address_space
668  * against which the buffers are listed.  So for a particular address_space,
669  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
670  * mapping->private_list will always be protected by the backing blockdev's
671  * ->private_lock.
672  *
673  * Which introduces a requirement: all buffers on an address_space's
674  * ->private_list must be from the same address_space: the blockdev's.
675  *
676  * address_spaces which do not place buffers at ->private_list via these
677  * utility functions are free to use private_lock and private_list for
678  * whatever they want.  The only requirement is that list_empty(private_list)
679  * be true at clear_inode() time.
680  *
681  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
682  * filesystems should do that.  invalidate_inode_buffers() should just go
683  * BUG_ON(!list_empty).
684  *
685  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
686  * take an address_space, not an inode.  And it should be called
687  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
688  * queued up.
689  *
690  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
691  * list if it is already on a list.  Because if the buffer is on a list,
692  * it *must* already be on the right one.  If not, the filesystem is being
693  * silly.  This will save a ton of locking.  But first we have to ensure
694  * that buffers are taken *off* the old inode's list when they are freed
695  * (presumably in truncate).  That requires careful auditing of all
696  * filesystems (do it inside bforget()).  It could also be done by bringing
697  * b_inode back.
698  */
699 
700 /*
701  * The buffer's backing address_space's private_lock must be held
702  */
703 static inline void __remove_assoc_queue(struct buffer_head *bh)
704 {
705 	list_del_init(&bh->b_assoc_buffers);
706 }
707 
708 int inode_has_buffers(struct inode *inode)
709 {
710 	return !list_empty(&inode->i_data.private_list);
711 }
712 
713 /*
714  * osync is designed to support O_SYNC io.  It waits synchronously for
715  * all already-submitted IO to complete, but does not queue any new
716  * writes to the disk.
717  *
718  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
719  * you dirty the buffers, and then use osync_inode_buffers to wait for
720  * completion.  Any other dirty buffers which are not yet queued for
721  * write will not be flushed to disk by the osync.
722  */
723 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
724 {
725 	struct buffer_head *bh;
726 	struct list_head *p;
727 	int err = 0;
728 
729 	spin_lock(lock);
730 repeat:
731 	list_for_each_prev(p, list) {
732 		bh = BH_ENTRY(p);
733 		if (buffer_locked(bh)) {
734 			get_bh(bh);
735 			spin_unlock(lock);
736 			wait_on_buffer(bh);
737 			if (!buffer_uptodate(bh))
738 				err = -EIO;
739 			brelse(bh);
740 			spin_lock(lock);
741 			goto repeat;
742 		}
743 	}
744 	spin_unlock(lock);
745 	return err;
746 }
747 
748 /**
749  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
750  *                        buffers
751  * @mapping: the mapping which wants those buffers written
752  *
753  * Starts I/O against the buffers at mapping->private_list, and waits upon
754  * that I/O.
755  *
756  * Basically, this is a convenience function for fsync().
757  * @mapping is a file or directory which needs those buffers to be written for
758  * a successful fsync().
759  */
760 int sync_mapping_buffers(struct address_space *mapping)
761 {
762 	struct address_space *buffer_mapping = mapping->assoc_mapping;
763 
764 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
765 		return 0;
766 
767 	return fsync_buffers_list(&buffer_mapping->private_lock,
768 					&mapping->private_list);
769 }
770 EXPORT_SYMBOL(sync_mapping_buffers);
771 
772 /*
773  * Called when we've recently written block `bblock', and it is known that
774  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
775  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
776  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
777  */
778 void write_boundary_block(struct block_device *bdev,
779 			sector_t bblock, unsigned blocksize)
780 {
781 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
782 	if (bh) {
783 		if (buffer_dirty(bh))
784 			ll_rw_block(WRITE, 1, &bh);
785 		put_bh(bh);
786 	}
787 }
788 
789 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
790 {
791 	struct address_space *mapping = inode->i_mapping;
792 	struct address_space *buffer_mapping = bh->b_page->mapping;
793 
794 	mark_buffer_dirty(bh);
795 	if (!mapping->assoc_mapping) {
796 		mapping->assoc_mapping = buffer_mapping;
797 	} else {
798 		BUG_ON(mapping->assoc_mapping != buffer_mapping);
799 	}
800 	if (list_empty(&bh->b_assoc_buffers)) {
801 		spin_lock(&buffer_mapping->private_lock);
802 		list_move_tail(&bh->b_assoc_buffers,
803 				&mapping->private_list);
804 		spin_unlock(&buffer_mapping->private_lock);
805 	}
806 }
807 EXPORT_SYMBOL(mark_buffer_dirty_inode);
808 
809 /*
810  * Add a page to the dirty page list.
811  *
812  * It is a sad fact of life that this function is called from several places
813  * deeply under spinlocking.  It may not sleep.
814  *
815  * If the page has buffers, the uptodate buffers are set dirty, to preserve
816  * dirty-state coherency between the page and the buffers.  It the page does
817  * not have buffers then when they are later attached they will all be set
818  * dirty.
819  *
820  * The buffers are dirtied before the page is dirtied.  There's a small race
821  * window in which a writepage caller may see the page cleanness but not the
822  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
823  * before the buffers, a concurrent writepage caller could clear the page dirty
824  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
825  * page on the dirty page list.
826  *
827  * We use private_lock to lock against try_to_free_buffers while using the
828  * page's buffer list.  Also use this to protect against clean buffers being
829  * added to the page after it was set dirty.
830  *
831  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
832  * address_space though.
833  */
834 int __set_page_dirty_buffers(struct page *page)
835 {
836 	struct address_space * const mapping = page->mapping;
837 
838 	spin_lock(&mapping->private_lock);
839 	if (page_has_buffers(page)) {
840 		struct buffer_head *head = page_buffers(page);
841 		struct buffer_head *bh = head;
842 
843 		do {
844 			set_buffer_dirty(bh);
845 			bh = bh->b_this_page;
846 		} while (bh != head);
847 	}
848 	spin_unlock(&mapping->private_lock);
849 
850 	if (!TestSetPageDirty(page)) {
851 		write_lock_irq(&mapping->tree_lock);
852 		if (page->mapping) {	/* Race with truncate? */
853 			if (mapping_cap_account_dirty(mapping))
854 				__inc_zone_page_state(page, NR_FILE_DIRTY);
855 			radix_tree_tag_set(&mapping->page_tree,
856 						page_index(page),
857 						PAGECACHE_TAG_DIRTY);
858 		}
859 		write_unlock_irq(&mapping->tree_lock);
860 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
861 		return 1;
862 	}
863 	return 0;
864 }
865 EXPORT_SYMBOL(__set_page_dirty_buffers);
866 
867 /*
868  * Write out and wait upon a list of buffers.
869  *
870  * We have conflicting pressures: we want to make sure that all
871  * initially dirty buffers get waited on, but that any subsequently
872  * dirtied buffers don't.  After all, we don't want fsync to last
873  * forever if somebody is actively writing to the file.
874  *
875  * Do this in two main stages: first we copy dirty buffers to a
876  * temporary inode list, queueing the writes as we go.  Then we clean
877  * up, waiting for those writes to complete.
878  *
879  * During this second stage, any subsequent updates to the file may end
880  * up refiling the buffer on the original inode's dirty list again, so
881  * there is a chance we will end up with a buffer queued for write but
882  * not yet completed on that list.  So, as a final cleanup we go through
883  * the osync code to catch these locked, dirty buffers without requeuing
884  * any newly dirty buffers for write.
885  */
886 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
887 {
888 	struct buffer_head *bh;
889 	struct list_head tmp;
890 	int err = 0, err2;
891 
892 	INIT_LIST_HEAD(&tmp);
893 
894 	spin_lock(lock);
895 	while (!list_empty(list)) {
896 		bh = BH_ENTRY(list->next);
897 		list_del_init(&bh->b_assoc_buffers);
898 		if (buffer_dirty(bh) || buffer_locked(bh)) {
899 			list_add(&bh->b_assoc_buffers, &tmp);
900 			if (buffer_dirty(bh)) {
901 				get_bh(bh);
902 				spin_unlock(lock);
903 				/*
904 				 * Ensure any pending I/O completes so that
905 				 * ll_rw_block() actually writes the current
906 				 * contents - it is a noop if I/O is still in
907 				 * flight on potentially older contents.
908 				 */
909 				ll_rw_block(SWRITE, 1, &bh);
910 				brelse(bh);
911 				spin_lock(lock);
912 			}
913 		}
914 	}
915 
916 	while (!list_empty(&tmp)) {
917 		bh = BH_ENTRY(tmp.prev);
918 		__remove_assoc_queue(bh);
919 		get_bh(bh);
920 		spin_unlock(lock);
921 		wait_on_buffer(bh);
922 		if (!buffer_uptodate(bh))
923 			err = -EIO;
924 		brelse(bh);
925 		spin_lock(lock);
926 	}
927 
928 	spin_unlock(lock);
929 	err2 = osync_buffers_list(lock, list);
930 	if (err)
931 		return err;
932 	else
933 		return err2;
934 }
935 
936 /*
937  * Invalidate any and all dirty buffers on a given inode.  We are
938  * probably unmounting the fs, but that doesn't mean we have already
939  * done a sync().  Just drop the buffers from the inode list.
940  *
941  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
942  * assumes that all the buffers are against the blockdev.  Not true
943  * for reiserfs.
944  */
945 void invalidate_inode_buffers(struct inode *inode)
946 {
947 	if (inode_has_buffers(inode)) {
948 		struct address_space *mapping = &inode->i_data;
949 		struct list_head *list = &mapping->private_list;
950 		struct address_space *buffer_mapping = mapping->assoc_mapping;
951 
952 		spin_lock(&buffer_mapping->private_lock);
953 		while (!list_empty(list))
954 			__remove_assoc_queue(BH_ENTRY(list->next));
955 		spin_unlock(&buffer_mapping->private_lock);
956 	}
957 }
958 
959 /*
960  * Remove any clean buffers from the inode's buffer list.  This is called
961  * when we're trying to free the inode itself.  Those buffers can pin it.
962  *
963  * Returns true if all buffers were removed.
964  */
965 int remove_inode_buffers(struct inode *inode)
966 {
967 	int ret = 1;
968 
969 	if (inode_has_buffers(inode)) {
970 		struct address_space *mapping = &inode->i_data;
971 		struct list_head *list = &mapping->private_list;
972 		struct address_space *buffer_mapping = mapping->assoc_mapping;
973 
974 		spin_lock(&buffer_mapping->private_lock);
975 		while (!list_empty(list)) {
976 			struct buffer_head *bh = BH_ENTRY(list->next);
977 			if (buffer_dirty(bh)) {
978 				ret = 0;
979 				break;
980 			}
981 			__remove_assoc_queue(bh);
982 		}
983 		spin_unlock(&buffer_mapping->private_lock);
984 	}
985 	return ret;
986 }
987 
988 /*
989  * Create the appropriate buffers when given a page for data area and
990  * the size of each buffer.. Use the bh->b_this_page linked list to
991  * follow the buffers created.  Return NULL if unable to create more
992  * buffers.
993  *
994  * The retry flag is used to differentiate async IO (paging, swapping)
995  * which may not fail from ordinary buffer allocations.
996  */
997 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
998 		int retry)
999 {
1000 	struct buffer_head *bh, *head;
1001 	long offset;
1002 
1003 try_again:
1004 	head = NULL;
1005 	offset = PAGE_SIZE;
1006 	while ((offset -= size) >= 0) {
1007 		bh = alloc_buffer_head(GFP_NOFS);
1008 		if (!bh)
1009 			goto no_grow;
1010 
1011 		bh->b_bdev = NULL;
1012 		bh->b_this_page = head;
1013 		bh->b_blocknr = -1;
1014 		head = bh;
1015 
1016 		bh->b_state = 0;
1017 		atomic_set(&bh->b_count, 0);
1018 		bh->b_private = NULL;
1019 		bh->b_size = size;
1020 
1021 		/* Link the buffer to its page */
1022 		set_bh_page(bh, page, offset);
1023 
1024 		init_buffer(bh, NULL, NULL);
1025 	}
1026 	return head;
1027 /*
1028  * In case anything failed, we just free everything we got.
1029  */
1030 no_grow:
1031 	if (head) {
1032 		do {
1033 			bh = head;
1034 			head = head->b_this_page;
1035 			free_buffer_head(bh);
1036 		} while (head);
1037 	}
1038 
1039 	/*
1040 	 * Return failure for non-async IO requests.  Async IO requests
1041 	 * are not allowed to fail, so we have to wait until buffer heads
1042 	 * become available.  But we don't want tasks sleeping with
1043 	 * partially complete buffers, so all were released above.
1044 	 */
1045 	if (!retry)
1046 		return NULL;
1047 
1048 	/* We're _really_ low on memory. Now we just
1049 	 * wait for old buffer heads to become free due to
1050 	 * finishing IO.  Since this is an async request and
1051 	 * the reserve list is empty, we're sure there are
1052 	 * async buffer heads in use.
1053 	 */
1054 	free_more_memory();
1055 	goto try_again;
1056 }
1057 EXPORT_SYMBOL_GPL(alloc_page_buffers);
1058 
1059 static inline void
1060 link_dev_buffers(struct page *page, struct buffer_head *head)
1061 {
1062 	struct buffer_head *bh, *tail;
1063 
1064 	bh = head;
1065 	do {
1066 		tail = bh;
1067 		bh = bh->b_this_page;
1068 	} while (bh);
1069 	tail->b_this_page = head;
1070 	attach_page_buffers(page, head);
1071 }
1072 
1073 /*
1074  * Initialise the state of a blockdev page's buffers.
1075  */
1076 static void
1077 init_page_buffers(struct page *page, struct block_device *bdev,
1078 			sector_t block, int size)
1079 {
1080 	struct buffer_head *head = page_buffers(page);
1081 	struct buffer_head *bh = head;
1082 	int uptodate = PageUptodate(page);
1083 
1084 	do {
1085 		if (!buffer_mapped(bh)) {
1086 			init_buffer(bh, NULL, NULL);
1087 			bh->b_bdev = bdev;
1088 			bh->b_blocknr = block;
1089 			if (uptodate)
1090 				set_buffer_uptodate(bh);
1091 			set_buffer_mapped(bh);
1092 		}
1093 		block++;
1094 		bh = bh->b_this_page;
1095 	} while (bh != head);
1096 }
1097 
1098 /*
1099  * Create the page-cache page that contains the requested block.
1100  *
1101  * This is user purely for blockdev mappings.
1102  */
1103 static struct page *
1104 grow_dev_page(struct block_device *bdev, sector_t block,
1105 		pgoff_t index, int size)
1106 {
1107 	struct inode *inode = bdev->bd_inode;
1108 	struct page *page;
1109 	struct buffer_head *bh;
1110 
1111 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
1112 	if (!page)
1113 		return NULL;
1114 
1115 	BUG_ON(!PageLocked(page));
1116 
1117 	if (page_has_buffers(page)) {
1118 		bh = page_buffers(page);
1119 		if (bh->b_size == size) {
1120 			init_page_buffers(page, bdev, block, size);
1121 			return page;
1122 		}
1123 		if (!try_to_free_buffers(page))
1124 			goto failed;
1125 	}
1126 
1127 	/*
1128 	 * Allocate some buffers for this page
1129 	 */
1130 	bh = alloc_page_buffers(page, size, 0);
1131 	if (!bh)
1132 		goto failed;
1133 
1134 	/*
1135 	 * Link the page to the buffers and initialise them.  Take the
1136 	 * lock to be atomic wrt __find_get_block(), which does not
1137 	 * run under the page lock.
1138 	 */
1139 	spin_lock(&inode->i_mapping->private_lock);
1140 	link_dev_buffers(page, bh);
1141 	init_page_buffers(page, bdev, block, size);
1142 	spin_unlock(&inode->i_mapping->private_lock);
1143 	return page;
1144 
1145 failed:
1146 	BUG();
1147 	unlock_page(page);
1148 	page_cache_release(page);
1149 	return NULL;
1150 }
1151 
1152 /*
1153  * Create buffers for the specified block device block's page.  If
1154  * that page was dirty, the buffers are set dirty also.
1155  *
1156  * Except that's a bug.  Attaching dirty buffers to a dirty
1157  * blockdev's page can result in filesystem corruption, because
1158  * some of those buffers may be aliases of filesystem data.
1159  * grow_dev_page() will go BUG() if this happens.
1160  */
1161 static int
1162 grow_buffers(struct block_device *bdev, sector_t block, int size)
1163 {
1164 	struct page *page;
1165 	pgoff_t index;
1166 	int sizebits;
1167 
1168 	sizebits = -1;
1169 	do {
1170 		sizebits++;
1171 	} while ((size << sizebits) < PAGE_SIZE);
1172 
1173 	index = block >> sizebits;
1174 	block = index << sizebits;
1175 
1176 	/* Create a page with the proper size buffers.. */
1177 	page = grow_dev_page(bdev, block, index, size);
1178 	if (!page)
1179 		return 0;
1180 	unlock_page(page);
1181 	page_cache_release(page);
1182 	return 1;
1183 }
1184 
1185 static struct buffer_head *
1186 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1187 {
1188 	/* Size must be multiple of hard sectorsize */
1189 	if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1190 			(size < 512 || size > PAGE_SIZE))) {
1191 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1192 					size);
1193 		printk(KERN_ERR "hardsect size: %d\n",
1194 					bdev_hardsect_size(bdev));
1195 
1196 		dump_stack();
1197 		return NULL;
1198 	}
1199 
1200 	for (;;) {
1201 		struct buffer_head * bh;
1202 
1203 		bh = __find_get_block(bdev, block, size);
1204 		if (bh)
1205 			return bh;
1206 
1207 		if (!grow_buffers(bdev, block, size))
1208 			free_more_memory();
1209 	}
1210 }
1211 
1212 /*
1213  * The relationship between dirty buffers and dirty pages:
1214  *
1215  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1216  * the page is tagged dirty in its radix tree.
1217  *
1218  * At all times, the dirtiness of the buffers represents the dirtiness of
1219  * subsections of the page.  If the page has buffers, the page dirty bit is
1220  * merely a hint about the true dirty state.
1221  *
1222  * When a page is set dirty in its entirety, all its buffers are marked dirty
1223  * (if the page has buffers).
1224  *
1225  * When a buffer is marked dirty, its page is dirtied, but the page's other
1226  * buffers are not.
1227  *
1228  * Also.  When blockdev buffers are explicitly read with bread(), they
1229  * individually become uptodate.  But their backing page remains not
1230  * uptodate - even if all of its buffers are uptodate.  A subsequent
1231  * block_read_full_page() against that page will discover all the uptodate
1232  * buffers, will set the page uptodate and will perform no I/O.
1233  */
1234 
1235 /**
1236  * mark_buffer_dirty - mark a buffer_head as needing writeout
1237  * @bh: the buffer_head to mark dirty
1238  *
1239  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1240  * backing page dirty, then tag the page as dirty in its address_space's radix
1241  * tree and then attach the address_space's inode to its superblock's dirty
1242  * inode list.
1243  *
1244  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1245  * mapping->tree_lock and the global inode_lock.
1246  */
1247 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1248 {
1249 	if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1250 		__set_page_dirty_nobuffers(bh->b_page);
1251 }
1252 
1253 /*
1254  * Decrement a buffer_head's reference count.  If all buffers against a page
1255  * have zero reference count, are clean and unlocked, and if the page is clean
1256  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1257  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1258  * a page but it ends up not being freed, and buffers may later be reattached).
1259  */
1260 void __brelse(struct buffer_head * buf)
1261 {
1262 	if (atomic_read(&buf->b_count)) {
1263 		put_bh(buf);
1264 		return;
1265 	}
1266 	printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1267 	WARN_ON(1);
1268 }
1269 
1270 /*
1271  * bforget() is like brelse(), except it discards any
1272  * potentially dirty data.
1273  */
1274 void __bforget(struct buffer_head *bh)
1275 {
1276 	clear_buffer_dirty(bh);
1277 	if (!list_empty(&bh->b_assoc_buffers)) {
1278 		struct address_space *buffer_mapping = bh->b_page->mapping;
1279 
1280 		spin_lock(&buffer_mapping->private_lock);
1281 		list_del_init(&bh->b_assoc_buffers);
1282 		spin_unlock(&buffer_mapping->private_lock);
1283 	}
1284 	__brelse(bh);
1285 }
1286 
1287 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1288 {
1289 	lock_buffer(bh);
1290 	if (buffer_uptodate(bh)) {
1291 		unlock_buffer(bh);
1292 		return bh;
1293 	} else {
1294 		get_bh(bh);
1295 		bh->b_end_io = end_buffer_read_sync;
1296 		submit_bh(READ, bh);
1297 		wait_on_buffer(bh);
1298 		if (buffer_uptodate(bh))
1299 			return bh;
1300 	}
1301 	brelse(bh);
1302 	return NULL;
1303 }
1304 
1305 /*
1306  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1307  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1308  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1309  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1310  * CPU's LRUs at the same time.
1311  *
1312  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1313  * sb_find_get_block().
1314  *
1315  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1316  * a local interrupt disable for that.
1317  */
1318 
1319 #define BH_LRU_SIZE	8
1320 
1321 struct bh_lru {
1322 	struct buffer_head *bhs[BH_LRU_SIZE];
1323 };
1324 
1325 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1326 
1327 #ifdef CONFIG_SMP
1328 #define bh_lru_lock()	local_irq_disable()
1329 #define bh_lru_unlock()	local_irq_enable()
1330 #else
1331 #define bh_lru_lock()	preempt_disable()
1332 #define bh_lru_unlock()	preempt_enable()
1333 #endif
1334 
1335 static inline void check_irqs_on(void)
1336 {
1337 #ifdef irqs_disabled
1338 	BUG_ON(irqs_disabled());
1339 #endif
1340 }
1341 
1342 /*
1343  * The LRU management algorithm is dopey-but-simple.  Sorry.
1344  */
1345 static void bh_lru_install(struct buffer_head *bh)
1346 {
1347 	struct buffer_head *evictee = NULL;
1348 	struct bh_lru *lru;
1349 
1350 	check_irqs_on();
1351 	bh_lru_lock();
1352 	lru = &__get_cpu_var(bh_lrus);
1353 	if (lru->bhs[0] != bh) {
1354 		struct buffer_head *bhs[BH_LRU_SIZE];
1355 		int in;
1356 		int out = 0;
1357 
1358 		get_bh(bh);
1359 		bhs[out++] = bh;
1360 		for (in = 0; in < BH_LRU_SIZE; in++) {
1361 			struct buffer_head *bh2 = lru->bhs[in];
1362 
1363 			if (bh2 == bh) {
1364 				__brelse(bh2);
1365 			} else {
1366 				if (out >= BH_LRU_SIZE) {
1367 					BUG_ON(evictee != NULL);
1368 					evictee = bh2;
1369 				} else {
1370 					bhs[out++] = bh2;
1371 				}
1372 			}
1373 		}
1374 		while (out < BH_LRU_SIZE)
1375 			bhs[out++] = NULL;
1376 		memcpy(lru->bhs, bhs, sizeof(bhs));
1377 	}
1378 	bh_lru_unlock();
1379 
1380 	if (evictee)
1381 		__brelse(evictee);
1382 }
1383 
1384 /*
1385  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1386  */
1387 static struct buffer_head *
1388 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1389 {
1390 	struct buffer_head *ret = NULL;
1391 	struct bh_lru *lru;
1392 	int i;
1393 
1394 	check_irqs_on();
1395 	bh_lru_lock();
1396 	lru = &__get_cpu_var(bh_lrus);
1397 	for (i = 0; i < BH_LRU_SIZE; i++) {
1398 		struct buffer_head *bh = lru->bhs[i];
1399 
1400 		if (bh && bh->b_bdev == bdev &&
1401 				bh->b_blocknr == block && bh->b_size == size) {
1402 			if (i) {
1403 				while (i) {
1404 					lru->bhs[i] = lru->bhs[i - 1];
1405 					i--;
1406 				}
1407 				lru->bhs[0] = bh;
1408 			}
1409 			get_bh(bh);
1410 			ret = bh;
1411 			break;
1412 		}
1413 	}
1414 	bh_lru_unlock();
1415 	return ret;
1416 }
1417 
1418 /*
1419  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1420  * it in the LRU and mark it as accessed.  If it is not present then return
1421  * NULL
1422  */
1423 struct buffer_head *
1424 __find_get_block(struct block_device *bdev, sector_t block, int size)
1425 {
1426 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1427 
1428 	if (bh == NULL) {
1429 		bh = __find_get_block_slow(bdev, block);
1430 		if (bh)
1431 			bh_lru_install(bh);
1432 	}
1433 	if (bh)
1434 		touch_buffer(bh);
1435 	return bh;
1436 }
1437 EXPORT_SYMBOL(__find_get_block);
1438 
1439 /*
1440  * __getblk will locate (and, if necessary, create) the buffer_head
1441  * which corresponds to the passed block_device, block and size. The
1442  * returned buffer has its reference count incremented.
1443  *
1444  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1445  * illegal block number, __getblk() will happily return a buffer_head
1446  * which represents the non-existent block.  Very weird.
1447  *
1448  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1449  * attempt is failing.  FIXME, perhaps?
1450  */
1451 struct buffer_head *
1452 __getblk(struct block_device *bdev, sector_t block, int size)
1453 {
1454 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1455 
1456 	might_sleep();
1457 	if (bh == NULL)
1458 		bh = __getblk_slow(bdev, block, size);
1459 	return bh;
1460 }
1461 EXPORT_SYMBOL(__getblk);
1462 
1463 /*
1464  * Do async read-ahead on a buffer..
1465  */
1466 void __breadahead(struct block_device *bdev, sector_t block, int size)
1467 {
1468 	struct buffer_head *bh = __getblk(bdev, block, size);
1469 	if (likely(bh)) {
1470 		ll_rw_block(READA, 1, &bh);
1471 		brelse(bh);
1472 	}
1473 }
1474 EXPORT_SYMBOL(__breadahead);
1475 
1476 /**
1477  *  __bread() - reads a specified block and returns the bh
1478  *  @bdev: the block_device to read from
1479  *  @block: number of block
1480  *  @size: size (in bytes) to read
1481  *
1482  *  Reads a specified block, and returns buffer head that contains it.
1483  *  It returns NULL if the block was unreadable.
1484  */
1485 struct buffer_head *
1486 __bread(struct block_device *bdev, sector_t block, int size)
1487 {
1488 	struct buffer_head *bh = __getblk(bdev, block, size);
1489 
1490 	if (likely(bh) && !buffer_uptodate(bh))
1491 		bh = __bread_slow(bh);
1492 	return bh;
1493 }
1494 EXPORT_SYMBOL(__bread);
1495 
1496 /*
1497  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1498  * This doesn't race because it runs in each cpu either in irq
1499  * or with preempt disabled.
1500  */
1501 static void invalidate_bh_lru(void *arg)
1502 {
1503 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1504 	int i;
1505 
1506 	for (i = 0; i < BH_LRU_SIZE; i++) {
1507 		brelse(b->bhs[i]);
1508 		b->bhs[i] = NULL;
1509 	}
1510 	put_cpu_var(bh_lrus);
1511 }
1512 
1513 static void invalidate_bh_lrus(void)
1514 {
1515 	on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1516 }
1517 
1518 void set_bh_page(struct buffer_head *bh,
1519 		struct page *page, unsigned long offset)
1520 {
1521 	bh->b_page = page;
1522 	BUG_ON(offset >= PAGE_SIZE);
1523 	if (PageHighMem(page))
1524 		/*
1525 		 * This catches illegal uses and preserves the offset:
1526 		 */
1527 		bh->b_data = (char *)(0 + offset);
1528 	else
1529 		bh->b_data = page_address(page) + offset;
1530 }
1531 EXPORT_SYMBOL(set_bh_page);
1532 
1533 /*
1534  * Called when truncating a buffer on a page completely.
1535  */
1536 static void discard_buffer(struct buffer_head * bh)
1537 {
1538 	lock_buffer(bh);
1539 	clear_buffer_dirty(bh);
1540 	bh->b_bdev = NULL;
1541 	clear_buffer_mapped(bh);
1542 	clear_buffer_req(bh);
1543 	clear_buffer_new(bh);
1544 	clear_buffer_delay(bh);
1545 	unlock_buffer(bh);
1546 }
1547 
1548 /**
1549  * try_to_release_page() - release old fs-specific metadata on a page
1550  *
1551  * @page: the page which the kernel is trying to free
1552  * @gfp_mask: memory allocation flags (and I/O mode)
1553  *
1554  * The address_space is to try to release any data against the page
1555  * (presumably at page->private).  If the release was successful, return `1'.
1556  * Otherwise return zero.
1557  *
1558  * The @gfp_mask argument specifies whether I/O may be performed to release
1559  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1560  *
1561  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1562  */
1563 int try_to_release_page(struct page *page, gfp_t gfp_mask)
1564 {
1565 	struct address_space * const mapping = page->mapping;
1566 
1567 	BUG_ON(!PageLocked(page));
1568 	if (PageWriteback(page))
1569 		return 0;
1570 
1571 	if (mapping && mapping->a_ops->releasepage)
1572 		return mapping->a_ops->releasepage(page, gfp_mask);
1573 	return try_to_free_buffers(page);
1574 }
1575 EXPORT_SYMBOL(try_to_release_page);
1576 
1577 /**
1578  * block_invalidatepage - invalidate part of all of a buffer-backed page
1579  *
1580  * @page: the page which is affected
1581  * @offset: the index of the truncation point
1582  *
1583  * block_invalidatepage() is called when all or part of the page has become
1584  * invalidatedby a truncate operation.
1585  *
1586  * block_invalidatepage() does not have to release all buffers, but it must
1587  * ensure that no dirty buffer is left outside @offset and that no I/O
1588  * is underway against any of the blocks which are outside the truncation
1589  * point.  Because the caller is about to free (and possibly reuse) those
1590  * blocks on-disk.
1591  */
1592 void block_invalidatepage(struct page *page, unsigned long offset)
1593 {
1594 	struct buffer_head *head, *bh, *next;
1595 	unsigned int curr_off = 0;
1596 
1597 	BUG_ON(!PageLocked(page));
1598 	if (!page_has_buffers(page))
1599 		goto out;
1600 
1601 	head = page_buffers(page);
1602 	bh = head;
1603 	do {
1604 		unsigned int next_off = curr_off + bh->b_size;
1605 		next = bh->b_this_page;
1606 
1607 		/*
1608 		 * is this block fully invalidated?
1609 		 */
1610 		if (offset <= curr_off)
1611 			discard_buffer(bh);
1612 		curr_off = next_off;
1613 		bh = next;
1614 	} while (bh != head);
1615 
1616 	/*
1617 	 * We release buffers only if the entire page is being invalidated.
1618 	 * The get_block cached value has been unconditionally invalidated,
1619 	 * so real IO is not possible anymore.
1620 	 */
1621 	if (offset == 0)
1622 		try_to_release_page(page, 0);
1623 out:
1624 	return;
1625 }
1626 EXPORT_SYMBOL(block_invalidatepage);
1627 
1628 void do_invalidatepage(struct page *page, unsigned long offset)
1629 {
1630 	void (*invalidatepage)(struct page *, unsigned long);
1631 	invalidatepage = page->mapping->a_ops->invalidatepage ? :
1632 		block_invalidatepage;
1633 	(*invalidatepage)(page, offset);
1634 }
1635 
1636 /*
1637  * We attach and possibly dirty the buffers atomically wrt
1638  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1639  * is already excluded via the page lock.
1640  */
1641 void create_empty_buffers(struct page *page,
1642 			unsigned long blocksize, unsigned long b_state)
1643 {
1644 	struct buffer_head *bh, *head, *tail;
1645 
1646 	head = alloc_page_buffers(page, blocksize, 1);
1647 	bh = head;
1648 	do {
1649 		bh->b_state |= b_state;
1650 		tail = bh;
1651 		bh = bh->b_this_page;
1652 	} while (bh);
1653 	tail->b_this_page = head;
1654 
1655 	spin_lock(&page->mapping->private_lock);
1656 	if (PageUptodate(page) || PageDirty(page)) {
1657 		bh = head;
1658 		do {
1659 			if (PageDirty(page))
1660 				set_buffer_dirty(bh);
1661 			if (PageUptodate(page))
1662 				set_buffer_uptodate(bh);
1663 			bh = bh->b_this_page;
1664 		} while (bh != head);
1665 	}
1666 	attach_page_buffers(page, head);
1667 	spin_unlock(&page->mapping->private_lock);
1668 }
1669 EXPORT_SYMBOL(create_empty_buffers);
1670 
1671 /*
1672  * We are taking a block for data and we don't want any output from any
1673  * buffer-cache aliases starting from return from that function and
1674  * until the moment when something will explicitly mark the buffer
1675  * dirty (hopefully that will not happen until we will free that block ;-)
1676  * We don't even need to mark it not-uptodate - nobody can expect
1677  * anything from a newly allocated buffer anyway. We used to used
1678  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1679  * don't want to mark the alias unmapped, for example - it would confuse
1680  * anyone who might pick it with bread() afterwards...
1681  *
1682  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1683  * be writeout I/O going on against recently-freed buffers.  We don't
1684  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1685  * only if we really need to.  That happens here.
1686  */
1687 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1688 {
1689 	struct buffer_head *old_bh;
1690 
1691 	might_sleep();
1692 
1693 	old_bh = __find_get_block_slow(bdev, block);
1694 	if (old_bh) {
1695 		clear_buffer_dirty(old_bh);
1696 		wait_on_buffer(old_bh);
1697 		clear_buffer_req(old_bh);
1698 		__brelse(old_bh);
1699 	}
1700 }
1701 EXPORT_SYMBOL(unmap_underlying_metadata);
1702 
1703 /*
1704  * NOTE! All mapped/uptodate combinations are valid:
1705  *
1706  *	Mapped	Uptodate	Meaning
1707  *
1708  *	No	No		"unknown" - must do get_block()
1709  *	No	Yes		"hole" - zero-filled
1710  *	Yes	No		"allocated" - allocated on disk, not read in
1711  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1712  *
1713  * "Dirty" is valid only with the last case (mapped+uptodate).
1714  */
1715 
1716 /*
1717  * While block_write_full_page is writing back the dirty buffers under
1718  * the page lock, whoever dirtied the buffers may decide to clean them
1719  * again at any time.  We handle that by only looking at the buffer
1720  * state inside lock_buffer().
1721  *
1722  * If block_write_full_page() is called for regular writeback
1723  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1724  * locked buffer.   This only can happen if someone has written the buffer
1725  * directly, with submit_bh().  At the address_space level PageWriteback
1726  * prevents this contention from occurring.
1727  */
1728 static int __block_write_full_page(struct inode *inode, struct page *page,
1729 			get_block_t *get_block, struct writeback_control *wbc)
1730 {
1731 	int err;
1732 	sector_t block;
1733 	sector_t last_block;
1734 	struct buffer_head *bh, *head;
1735 	const unsigned blocksize = 1 << inode->i_blkbits;
1736 	int nr_underway = 0;
1737 
1738 	BUG_ON(!PageLocked(page));
1739 
1740 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1741 
1742 	if (!page_has_buffers(page)) {
1743 		create_empty_buffers(page, blocksize,
1744 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1745 	}
1746 
1747 	/*
1748 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1749 	 * here, and the (potentially unmapped) buffers may become dirty at
1750 	 * any time.  If a buffer becomes dirty here after we've inspected it
1751 	 * then we just miss that fact, and the page stays dirty.
1752 	 *
1753 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1754 	 * handle that here by just cleaning them.
1755 	 */
1756 
1757 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1758 	head = page_buffers(page);
1759 	bh = head;
1760 
1761 	/*
1762 	 * Get all the dirty buffers mapped to disk addresses and
1763 	 * handle any aliases from the underlying blockdev's mapping.
1764 	 */
1765 	do {
1766 		if (block > last_block) {
1767 			/*
1768 			 * mapped buffers outside i_size will occur, because
1769 			 * this page can be outside i_size when there is a
1770 			 * truncate in progress.
1771 			 */
1772 			/*
1773 			 * The buffer was zeroed by block_write_full_page()
1774 			 */
1775 			clear_buffer_dirty(bh);
1776 			set_buffer_uptodate(bh);
1777 		} else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1778 			WARN_ON(bh->b_size != blocksize);
1779 			err = get_block(inode, block, bh, 1);
1780 			if (err)
1781 				goto recover;
1782 			if (buffer_new(bh)) {
1783 				/* blockdev mappings never come here */
1784 				clear_buffer_new(bh);
1785 				unmap_underlying_metadata(bh->b_bdev,
1786 							bh->b_blocknr);
1787 			}
1788 		}
1789 		bh = bh->b_this_page;
1790 		block++;
1791 	} while (bh != head);
1792 
1793 	do {
1794 		if (!buffer_mapped(bh))
1795 			continue;
1796 		/*
1797 		 * If it's a fully non-blocking write attempt and we cannot
1798 		 * lock the buffer then redirty the page.  Note that this can
1799 		 * potentially cause a busy-wait loop from pdflush and kswapd
1800 		 * activity, but those code paths have their own higher-level
1801 		 * throttling.
1802 		 */
1803 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1804 			lock_buffer(bh);
1805 		} else if (test_set_buffer_locked(bh)) {
1806 			redirty_page_for_writepage(wbc, page);
1807 			continue;
1808 		}
1809 		if (test_clear_buffer_dirty(bh)) {
1810 			mark_buffer_async_write(bh);
1811 		} else {
1812 			unlock_buffer(bh);
1813 		}
1814 	} while ((bh = bh->b_this_page) != head);
1815 
1816 	/*
1817 	 * The page and its buffers are protected by PageWriteback(), so we can
1818 	 * drop the bh refcounts early.
1819 	 */
1820 	BUG_ON(PageWriteback(page));
1821 	set_page_writeback(page);
1822 
1823 	do {
1824 		struct buffer_head *next = bh->b_this_page;
1825 		if (buffer_async_write(bh)) {
1826 			submit_bh(WRITE, bh);
1827 			nr_underway++;
1828 		}
1829 		bh = next;
1830 	} while (bh != head);
1831 	unlock_page(page);
1832 
1833 	err = 0;
1834 done:
1835 	if (nr_underway == 0) {
1836 		/*
1837 		 * The page was marked dirty, but the buffers were
1838 		 * clean.  Someone wrote them back by hand with
1839 		 * ll_rw_block/submit_bh.  A rare case.
1840 		 */
1841 		int uptodate = 1;
1842 		do {
1843 			if (!buffer_uptodate(bh)) {
1844 				uptodate = 0;
1845 				break;
1846 			}
1847 			bh = bh->b_this_page;
1848 		} while (bh != head);
1849 		if (uptodate)
1850 			SetPageUptodate(page);
1851 		end_page_writeback(page);
1852 		/*
1853 		 * The page and buffer_heads can be released at any time from
1854 		 * here on.
1855 		 */
1856 		wbc->pages_skipped++;	/* We didn't write this page */
1857 	}
1858 	return err;
1859 
1860 recover:
1861 	/*
1862 	 * ENOSPC, or some other error.  We may already have added some
1863 	 * blocks to the file, so we need to write these out to avoid
1864 	 * exposing stale data.
1865 	 * The page is currently locked and not marked for writeback
1866 	 */
1867 	bh = head;
1868 	/* Recovery: lock and submit the mapped buffers */
1869 	do {
1870 		if (buffer_mapped(bh) && buffer_dirty(bh)) {
1871 			lock_buffer(bh);
1872 			mark_buffer_async_write(bh);
1873 		} else {
1874 			/*
1875 			 * The buffer may have been set dirty during
1876 			 * attachment to a dirty page.
1877 			 */
1878 			clear_buffer_dirty(bh);
1879 		}
1880 	} while ((bh = bh->b_this_page) != head);
1881 	SetPageError(page);
1882 	BUG_ON(PageWriteback(page));
1883 	set_page_writeback(page);
1884 	unlock_page(page);
1885 	do {
1886 		struct buffer_head *next = bh->b_this_page;
1887 		if (buffer_async_write(bh)) {
1888 			clear_buffer_dirty(bh);
1889 			submit_bh(WRITE, bh);
1890 			nr_underway++;
1891 		}
1892 		bh = next;
1893 	} while (bh != head);
1894 	goto done;
1895 }
1896 
1897 static int __block_prepare_write(struct inode *inode, struct page *page,
1898 		unsigned from, unsigned to, get_block_t *get_block)
1899 {
1900 	unsigned block_start, block_end;
1901 	sector_t block;
1902 	int err = 0;
1903 	unsigned blocksize, bbits;
1904 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1905 
1906 	BUG_ON(!PageLocked(page));
1907 	BUG_ON(from > PAGE_CACHE_SIZE);
1908 	BUG_ON(to > PAGE_CACHE_SIZE);
1909 	BUG_ON(from > to);
1910 
1911 	blocksize = 1 << inode->i_blkbits;
1912 	if (!page_has_buffers(page))
1913 		create_empty_buffers(page, blocksize, 0);
1914 	head = page_buffers(page);
1915 
1916 	bbits = inode->i_blkbits;
1917 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1918 
1919 	for(bh = head, block_start = 0; bh != head || !block_start;
1920 	    block++, block_start=block_end, bh = bh->b_this_page) {
1921 		block_end = block_start + blocksize;
1922 		if (block_end <= from || block_start >= to) {
1923 			if (PageUptodate(page)) {
1924 				if (!buffer_uptodate(bh))
1925 					set_buffer_uptodate(bh);
1926 			}
1927 			continue;
1928 		}
1929 		if (buffer_new(bh))
1930 			clear_buffer_new(bh);
1931 		if (!buffer_mapped(bh)) {
1932 			WARN_ON(bh->b_size != blocksize);
1933 			err = get_block(inode, block, bh, 1);
1934 			if (err)
1935 				break;
1936 			if (buffer_new(bh)) {
1937 				unmap_underlying_metadata(bh->b_bdev,
1938 							bh->b_blocknr);
1939 				if (PageUptodate(page)) {
1940 					set_buffer_uptodate(bh);
1941 					continue;
1942 				}
1943 				if (block_end > to || block_start < from) {
1944 					void *kaddr;
1945 
1946 					kaddr = kmap_atomic(page, KM_USER0);
1947 					if (block_end > to)
1948 						memset(kaddr+to, 0,
1949 							block_end-to);
1950 					if (block_start < from)
1951 						memset(kaddr+block_start,
1952 							0, from-block_start);
1953 					flush_dcache_page(page);
1954 					kunmap_atomic(kaddr, KM_USER0);
1955 				}
1956 				continue;
1957 			}
1958 		}
1959 		if (PageUptodate(page)) {
1960 			if (!buffer_uptodate(bh))
1961 				set_buffer_uptodate(bh);
1962 			continue;
1963 		}
1964 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1965 		     (block_start < from || block_end > to)) {
1966 			ll_rw_block(READ, 1, &bh);
1967 			*wait_bh++=bh;
1968 		}
1969 	}
1970 	/*
1971 	 * If we issued read requests - let them complete.
1972 	 */
1973 	while(wait_bh > wait) {
1974 		wait_on_buffer(*--wait_bh);
1975 		if (!buffer_uptodate(*wait_bh))
1976 			err = -EIO;
1977 	}
1978 	if (!err) {
1979 		bh = head;
1980 		do {
1981 			if (buffer_new(bh))
1982 				clear_buffer_new(bh);
1983 		} while ((bh = bh->b_this_page) != head);
1984 		return 0;
1985 	}
1986 	/* Error case: */
1987 	/*
1988 	 * Zero out any newly allocated blocks to avoid exposing stale
1989 	 * data.  If BH_New is set, we know that the block was newly
1990 	 * allocated in the above loop.
1991 	 */
1992 	bh = head;
1993 	block_start = 0;
1994 	do {
1995 		block_end = block_start+blocksize;
1996 		if (block_end <= from)
1997 			goto next_bh;
1998 		if (block_start >= to)
1999 			break;
2000 		if (buffer_new(bh)) {
2001 			void *kaddr;
2002 
2003 			clear_buffer_new(bh);
2004 			kaddr = kmap_atomic(page, KM_USER0);
2005 			memset(kaddr+block_start, 0, bh->b_size);
2006 			kunmap_atomic(kaddr, KM_USER0);
2007 			set_buffer_uptodate(bh);
2008 			mark_buffer_dirty(bh);
2009 		}
2010 next_bh:
2011 		block_start = block_end;
2012 		bh = bh->b_this_page;
2013 	} while (bh != head);
2014 	return err;
2015 }
2016 
2017 static int __block_commit_write(struct inode *inode, struct page *page,
2018 		unsigned from, unsigned to)
2019 {
2020 	unsigned block_start, block_end;
2021 	int partial = 0;
2022 	unsigned blocksize;
2023 	struct buffer_head *bh, *head;
2024 
2025 	blocksize = 1 << inode->i_blkbits;
2026 
2027 	for(bh = head = page_buffers(page), block_start = 0;
2028 	    bh != head || !block_start;
2029 	    block_start=block_end, bh = bh->b_this_page) {
2030 		block_end = block_start + blocksize;
2031 		if (block_end <= from || block_start >= to) {
2032 			if (!buffer_uptodate(bh))
2033 				partial = 1;
2034 		} else {
2035 			set_buffer_uptodate(bh);
2036 			mark_buffer_dirty(bh);
2037 		}
2038 	}
2039 
2040 	/*
2041 	 * If this is a partial write which happened to make all buffers
2042 	 * uptodate then we can optimize away a bogus readpage() for
2043 	 * the next read(). Here we 'discover' whether the page went
2044 	 * uptodate as a result of this (potentially partial) write.
2045 	 */
2046 	if (!partial)
2047 		SetPageUptodate(page);
2048 	return 0;
2049 }
2050 
2051 /*
2052  * Generic "read page" function for block devices that have the normal
2053  * get_block functionality. This is most of the block device filesystems.
2054  * Reads the page asynchronously --- the unlock_buffer() and
2055  * set/clear_buffer_uptodate() functions propagate buffer state into the
2056  * page struct once IO has completed.
2057  */
2058 int block_read_full_page(struct page *page, get_block_t *get_block)
2059 {
2060 	struct inode *inode = page->mapping->host;
2061 	sector_t iblock, lblock;
2062 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2063 	unsigned int blocksize;
2064 	int nr, i;
2065 	int fully_mapped = 1;
2066 
2067 	BUG_ON(!PageLocked(page));
2068 	blocksize = 1 << inode->i_blkbits;
2069 	if (!page_has_buffers(page))
2070 		create_empty_buffers(page, blocksize, 0);
2071 	head = page_buffers(page);
2072 
2073 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2074 	lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2075 	bh = head;
2076 	nr = 0;
2077 	i = 0;
2078 
2079 	do {
2080 		if (buffer_uptodate(bh))
2081 			continue;
2082 
2083 		if (!buffer_mapped(bh)) {
2084 			int err = 0;
2085 
2086 			fully_mapped = 0;
2087 			if (iblock < lblock) {
2088 				WARN_ON(bh->b_size != blocksize);
2089 				err = get_block(inode, iblock, bh, 0);
2090 				if (err)
2091 					SetPageError(page);
2092 			}
2093 			if (!buffer_mapped(bh)) {
2094 				void *kaddr = kmap_atomic(page, KM_USER0);
2095 				memset(kaddr + i * blocksize, 0, blocksize);
2096 				flush_dcache_page(page);
2097 				kunmap_atomic(kaddr, KM_USER0);
2098 				if (!err)
2099 					set_buffer_uptodate(bh);
2100 				continue;
2101 			}
2102 			/*
2103 			 * get_block() might have updated the buffer
2104 			 * synchronously
2105 			 */
2106 			if (buffer_uptodate(bh))
2107 				continue;
2108 		}
2109 		arr[nr++] = bh;
2110 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2111 
2112 	if (fully_mapped)
2113 		SetPageMappedToDisk(page);
2114 
2115 	if (!nr) {
2116 		/*
2117 		 * All buffers are uptodate - we can set the page uptodate
2118 		 * as well. But not if get_block() returned an error.
2119 		 */
2120 		if (!PageError(page))
2121 			SetPageUptodate(page);
2122 		unlock_page(page);
2123 		return 0;
2124 	}
2125 
2126 	/* Stage two: lock the buffers */
2127 	for (i = 0; i < nr; i++) {
2128 		bh = arr[i];
2129 		lock_buffer(bh);
2130 		mark_buffer_async_read(bh);
2131 	}
2132 
2133 	/*
2134 	 * Stage 3: start the IO.  Check for uptodateness
2135 	 * inside the buffer lock in case another process reading
2136 	 * the underlying blockdev brought it uptodate (the sct fix).
2137 	 */
2138 	for (i = 0; i < nr; i++) {
2139 		bh = arr[i];
2140 		if (buffer_uptodate(bh))
2141 			end_buffer_async_read(bh, 1);
2142 		else
2143 			submit_bh(READ, bh);
2144 	}
2145 	return 0;
2146 }
2147 
2148 /* utility function for filesystems that need to do work on expanding
2149  * truncates.  Uses prepare/commit_write to allow the filesystem to
2150  * deal with the hole.
2151  */
2152 static int __generic_cont_expand(struct inode *inode, loff_t size,
2153 				 pgoff_t index, unsigned int offset)
2154 {
2155 	struct address_space *mapping = inode->i_mapping;
2156 	struct page *page;
2157 	unsigned long limit;
2158 	int err;
2159 
2160 	err = -EFBIG;
2161         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2162 	if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2163 		send_sig(SIGXFSZ, current, 0);
2164 		goto out;
2165 	}
2166 	if (size > inode->i_sb->s_maxbytes)
2167 		goto out;
2168 
2169 	err = -ENOMEM;
2170 	page = grab_cache_page(mapping, index);
2171 	if (!page)
2172 		goto out;
2173 	err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2174 	if (err) {
2175 		/*
2176 		 * ->prepare_write() may have instantiated a few blocks
2177 		 * outside i_size.  Trim these off again.
2178 		 */
2179 		unlock_page(page);
2180 		page_cache_release(page);
2181 		vmtruncate(inode, inode->i_size);
2182 		goto out;
2183 	}
2184 
2185 	err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2186 
2187 	unlock_page(page);
2188 	page_cache_release(page);
2189 	if (err > 0)
2190 		err = 0;
2191 out:
2192 	return err;
2193 }
2194 
2195 int generic_cont_expand(struct inode *inode, loff_t size)
2196 {
2197 	pgoff_t index;
2198 	unsigned int offset;
2199 
2200 	offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2201 
2202 	/* ugh.  in prepare/commit_write, if from==to==start of block, we
2203 	** skip the prepare.  make sure we never send an offset for the start
2204 	** of a block
2205 	*/
2206 	if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2207 		/* caller must handle this extra byte. */
2208 		offset++;
2209 	}
2210 	index = size >> PAGE_CACHE_SHIFT;
2211 
2212 	return __generic_cont_expand(inode, size, index, offset);
2213 }
2214 
2215 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2216 {
2217 	loff_t pos = size - 1;
2218 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2219 	unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2220 
2221 	/* prepare/commit_write can handle even if from==to==start of block. */
2222 	return __generic_cont_expand(inode, size, index, offset);
2223 }
2224 
2225 /*
2226  * For moronic filesystems that do not allow holes in file.
2227  * We may have to extend the file.
2228  */
2229 
2230 int cont_prepare_write(struct page *page, unsigned offset,
2231 		unsigned to, get_block_t *get_block, loff_t *bytes)
2232 {
2233 	struct address_space *mapping = page->mapping;
2234 	struct inode *inode = mapping->host;
2235 	struct page *new_page;
2236 	pgoff_t pgpos;
2237 	long status;
2238 	unsigned zerofrom;
2239 	unsigned blocksize = 1 << inode->i_blkbits;
2240 	void *kaddr;
2241 
2242 	while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2243 		status = -ENOMEM;
2244 		new_page = grab_cache_page(mapping, pgpos);
2245 		if (!new_page)
2246 			goto out;
2247 		/* we might sleep */
2248 		if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2249 			unlock_page(new_page);
2250 			page_cache_release(new_page);
2251 			continue;
2252 		}
2253 		zerofrom = *bytes & ~PAGE_CACHE_MASK;
2254 		if (zerofrom & (blocksize-1)) {
2255 			*bytes |= (blocksize-1);
2256 			(*bytes)++;
2257 		}
2258 		status = __block_prepare_write(inode, new_page, zerofrom,
2259 						PAGE_CACHE_SIZE, get_block);
2260 		if (status)
2261 			goto out_unmap;
2262 		kaddr = kmap_atomic(new_page, KM_USER0);
2263 		memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2264 		flush_dcache_page(new_page);
2265 		kunmap_atomic(kaddr, KM_USER0);
2266 		generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2267 		unlock_page(new_page);
2268 		page_cache_release(new_page);
2269 	}
2270 
2271 	if (page->index < pgpos) {
2272 		/* completely inside the area */
2273 		zerofrom = offset;
2274 	} else {
2275 		/* page covers the boundary, find the boundary offset */
2276 		zerofrom = *bytes & ~PAGE_CACHE_MASK;
2277 
2278 		/* if we will expand the thing last block will be filled */
2279 		if (to > zerofrom && (zerofrom & (blocksize-1))) {
2280 			*bytes |= (blocksize-1);
2281 			(*bytes)++;
2282 		}
2283 
2284 		/* starting below the boundary? Nothing to zero out */
2285 		if (offset <= zerofrom)
2286 			zerofrom = offset;
2287 	}
2288 	status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2289 	if (status)
2290 		goto out1;
2291 	if (zerofrom < offset) {
2292 		kaddr = kmap_atomic(page, KM_USER0);
2293 		memset(kaddr+zerofrom, 0, offset-zerofrom);
2294 		flush_dcache_page(page);
2295 		kunmap_atomic(kaddr, KM_USER0);
2296 		__block_commit_write(inode, page, zerofrom, offset);
2297 	}
2298 	return 0;
2299 out1:
2300 	ClearPageUptodate(page);
2301 	return status;
2302 
2303 out_unmap:
2304 	ClearPageUptodate(new_page);
2305 	unlock_page(new_page);
2306 	page_cache_release(new_page);
2307 out:
2308 	return status;
2309 }
2310 
2311 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2312 			get_block_t *get_block)
2313 {
2314 	struct inode *inode = page->mapping->host;
2315 	int err = __block_prepare_write(inode, page, from, to, get_block);
2316 	if (err)
2317 		ClearPageUptodate(page);
2318 	return err;
2319 }
2320 
2321 int block_commit_write(struct page *page, unsigned from, unsigned to)
2322 {
2323 	struct inode *inode = page->mapping->host;
2324 	__block_commit_write(inode,page,from,to);
2325 	return 0;
2326 }
2327 
2328 int generic_commit_write(struct file *file, struct page *page,
2329 		unsigned from, unsigned to)
2330 {
2331 	struct inode *inode = page->mapping->host;
2332 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2333 	__block_commit_write(inode,page,from,to);
2334 	/*
2335 	 * No need to use i_size_read() here, the i_size
2336 	 * cannot change under us because we hold i_mutex.
2337 	 */
2338 	if (pos > inode->i_size) {
2339 		i_size_write(inode, pos);
2340 		mark_inode_dirty(inode);
2341 	}
2342 	return 0;
2343 }
2344 
2345 
2346 /*
2347  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2348  * immediately, while under the page lock.  So it needs a special end_io
2349  * handler which does not touch the bh after unlocking it.
2350  *
2351  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2352  * a race there is benign: unlock_buffer() only use the bh's address for
2353  * hashing after unlocking the buffer, so it doesn't actually touch the bh
2354  * itself.
2355  */
2356 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2357 {
2358 	if (uptodate) {
2359 		set_buffer_uptodate(bh);
2360 	} else {
2361 		/* This happens, due to failed READA attempts. */
2362 		clear_buffer_uptodate(bh);
2363 	}
2364 	unlock_buffer(bh);
2365 }
2366 
2367 /*
2368  * On entry, the page is fully not uptodate.
2369  * On exit the page is fully uptodate in the areas outside (from,to)
2370  */
2371 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2372 			get_block_t *get_block)
2373 {
2374 	struct inode *inode = page->mapping->host;
2375 	const unsigned blkbits = inode->i_blkbits;
2376 	const unsigned blocksize = 1 << blkbits;
2377 	struct buffer_head map_bh;
2378 	struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2379 	unsigned block_in_page;
2380 	unsigned block_start;
2381 	sector_t block_in_file;
2382 	char *kaddr;
2383 	int nr_reads = 0;
2384 	int i;
2385 	int ret = 0;
2386 	int is_mapped_to_disk = 1;
2387 	int dirtied_it = 0;
2388 
2389 	if (PageMappedToDisk(page))
2390 		return 0;
2391 
2392 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2393 	map_bh.b_page = page;
2394 
2395 	/*
2396 	 * We loop across all blocks in the page, whether or not they are
2397 	 * part of the affected region.  This is so we can discover if the
2398 	 * page is fully mapped-to-disk.
2399 	 */
2400 	for (block_start = 0, block_in_page = 0;
2401 		  block_start < PAGE_CACHE_SIZE;
2402 		  block_in_page++, block_start += blocksize) {
2403 		unsigned block_end = block_start + blocksize;
2404 		int create;
2405 
2406 		map_bh.b_state = 0;
2407 		create = 1;
2408 		if (block_start >= to)
2409 			create = 0;
2410 		map_bh.b_size = blocksize;
2411 		ret = get_block(inode, block_in_file + block_in_page,
2412 					&map_bh, create);
2413 		if (ret)
2414 			goto failed;
2415 		if (!buffer_mapped(&map_bh))
2416 			is_mapped_to_disk = 0;
2417 		if (buffer_new(&map_bh))
2418 			unmap_underlying_metadata(map_bh.b_bdev,
2419 							map_bh.b_blocknr);
2420 		if (PageUptodate(page))
2421 			continue;
2422 		if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2423 			kaddr = kmap_atomic(page, KM_USER0);
2424 			if (block_start < from) {
2425 				memset(kaddr+block_start, 0, from-block_start);
2426 				dirtied_it = 1;
2427 			}
2428 			if (block_end > to) {
2429 				memset(kaddr + to, 0, block_end - to);
2430 				dirtied_it = 1;
2431 			}
2432 			flush_dcache_page(page);
2433 			kunmap_atomic(kaddr, KM_USER0);
2434 			continue;
2435 		}
2436 		if (buffer_uptodate(&map_bh))
2437 			continue;	/* reiserfs does this */
2438 		if (block_start < from || block_end > to) {
2439 			struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2440 
2441 			if (!bh) {
2442 				ret = -ENOMEM;
2443 				goto failed;
2444 			}
2445 			bh->b_state = map_bh.b_state;
2446 			atomic_set(&bh->b_count, 0);
2447 			bh->b_this_page = NULL;
2448 			bh->b_page = page;
2449 			bh->b_blocknr = map_bh.b_blocknr;
2450 			bh->b_size = blocksize;
2451 			bh->b_data = (char *)(long)block_start;
2452 			bh->b_bdev = map_bh.b_bdev;
2453 			bh->b_private = NULL;
2454 			read_bh[nr_reads++] = bh;
2455 		}
2456 	}
2457 
2458 	if (nr_reads) {
2459 		struct buffer_head *bh;
2460 
2461 		/*
2462 		 * The page is locked, so these buffers are protected from
2463 		 * any VM or truncate activity.  Hence we don't need to care
2464 		 * for the buffer_head refcounts.
2465 		 */
2466 		for (i = 0; i < nr_reads; i++) {
2467 			bh = read_bh[i];
2468 			lock_buffer(bh);
2469 			bh->b_end_io = end_buffer_read_nobh;
2470 			submit_bh(READ, bh);
2471 		}
2472 		for (i = 0; i < nr_reads; i++) {
2473 			bh = read_bh[i];
2474 			wait_on_buffer(bh);
2475 			if (!buffer_uptodate(bh))
2476 				ret = -EIO;
2477 			free_buffer_head(bh);
2478 			read_bh[i] = NULL;
2479 		}
2480 		if (ret)
2481 			goto failed;
2482 	}
2483 
2484 	if (is_mapped_to_disk)
2485 		SetPageMappedToDisk(page);
2486 	SetPageUptodate(page);
2487 
2488 	/*
2489 	 * Setting the page dirty here isn't necessary for the prepare_write
2490 	 * function - commit_write will do that.  But if/when this function is
2491 	 * used within the pagefault handler to ensure that all mmapped pages
2492 	 * have backing space in the filesystem, we will need to dirty the page
2493 	 * if its contents were altered.
2494 	 */
2495 	if (dirtied_it)
2496 		set_page_dirty(page);
2497 
2498 	return 0;
2499 
2500 failed:
2501 	for (i = 0; i < nr_reads; i++) {
2502 		if (read_bh[i])
2503 			free_buffer_head(read_bh[i]);
2504 	}
2505 
2506 	/*
2507 	 * Error recovery is pretty slack.  Clear the page and mark it dirty
2508 	 * so we'll later zero out any blocks which _were_ allocated.
2509 	 */
2510 	kaddr = kmap_atomic(page, KM_USER0);
2511 	memset(kaddr, 0, PAGE_CACHE_SIZE);
2512 	kunmap_atomic(kaddr, KM_USER0);
2513 	SetPageUptodate(page);
2514 	set_page_dirty(page);
2515 	return ret;
2516 }
2517 EXPORT_SYMBOL(nobh_prepare_write);
2518 
2519 int nobh_commit_write(struct file *file, struct page *page,
2520 		unsigned from, unsigned to)
2521 {
2522 	struct inode *inode = page->mapping->host;
2523 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2524 
2525 	set_page_dirty(page);
2526 	if (pos > inode->i_size) {
2527 		i_size_write(inode, pos);
2528 		mark_inode_dirty(inode);
2529 	}
2530 	return 0;
2531 }
2532 EXPORT_SYMBOL(nobh_commit_write);
2533 
2534 /*
2535  * nobh_writepage() - based on block_full_write_page() except
2536  * that it tries to operate without attaching bufferheads to
2537  * the page.
2538  */
2539 int nobh_writepage(struct page *page, get_block_t *get_block,
2540 			struct writeback_control *wbc)
2541 {
2542 	struct inode * const inode = page->mapping->host;
2543 	loff_t i_size = i_size_read(inode);
2544 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2545 	unsigned offset;
2546 	void *kaddr;
2547 	int ret;
2548 
2549 	/* Is the page fully inside i_size? */
2550 	if (page->index < end_index)
2551 		goto out;
2552 
2553 	/* Is the page fully outside i_size? (truncate in progress) */
2554 	offset = i_size & (PAGE_CACHE_SIZE-1);
2555 	if (page->index >= end_index+1 || !offset) {
2556 		/*
2557 		 * The page may have dirty, unmapped buffers.  For example,
2558 		 * they may have been added in ext3_writepage().  Make them
2559 		 * freeable here, so the page does not leak.
2560 		 */
2561 #if 0
2562 		/* Not really sure about this  - do we need this ? */
2563 		if (page->mapping->a_ops->invalidatepage)
2564 			page->mapping->a_ops->invalidatepage(page, offset);
2565 #endif
2566 		unlock_page(page);
2567 		return 0; /* don't care */
2568 	}
2569 
2570 	/*
2571 	 * The page straddles i_size.  It must be zeroed out on each and every
2572 	 * writepage invocation because it may be mmapped.  "A file is mapped
2573 	 * in multiples of the page size.  For a file that is not a multiple of
2574 	 * the  page size, the remaining memory is zeroed when mapped, and
2575 	 * writes to that region are not written out to the file."
2576 	 */
2577 	kaddr = kmap_atomic(page, KM_USER0);
2578 	memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2579 	flush_dcache_page(page);
2580 	kunmap_atomic(kaddr, KM_USER0);
2581 out:
2582 	ret = mpage_writepage(page, get_block, wbc);
2583 	if (ret == -EAGAIN)
2584 		ret = __block_write_full_page(inode, page, get_block, wbc);
2585 	return ret;
2586 }
2587 EXPORT_SYMBOL(nobh_writepage);
2588 
2589 /*
2590  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2591  */
2592 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2593 {
2594 	struct inode *inode = mapping->host;
2595 	unsigned blocksize = 1 << inode->i_blkbits;
2596 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2597 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2598 	unsigned to;
2599 	struct page *page;
2600 	const struct address_space_operations *a_ops = mapping->a_ops;
2601 	char *kaddr;
2602 	int ret = 0;
2603 
2604 	if ((offset & (blocksize - 1)) == 0)
2605 		goto out;
2606 
2607 	ret = -ENOMEM;
2608 	page = grab_cache_page(mapping, index);
2609 	if (!page)
2610 		goto out;
2611 
2612 	to = (offset + blocksize) & ~(blocksize - 1);
2613 	ret = a_ops->prepare_write(NULL, page, offset, to);
2614 	if (ret == 0) {
2615 		kaddr = kmap_atomic(page, KM_USER0);
2616 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2617 		flush_dcache_page(page);
2618 		kunmap_atomic(kaddr, KM_USER0);
2619 		set_page_dirty(page);
2620 	}
2621 	unlock_page(page);
2622 	page_cache_release(page);
2623 out:
2624 	return ret;
2625 }
2626 EXPORT_SYMBOL(nobh_truncate_page);
2627 
2628 int block_truncate_page(struct address_space *mapping,
2629 			loff_t from, get_block_t *get_block)
2630 {
2631 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2632 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2633 	unsigned blocksize;
2634 	sector_t iblock;
2635 	unsigned length, pos;
2636 	struct inode *inode = mapping->host;
2637 	struct page *page;
2638 	struct buffer_head *bh;
2639 	void *kaddr;
2640 	int err;
2641 
2642 	blocksize = 1 << inode->i_blkbits;
2643 	length = offset & (blocksize - 1);
2644 
2645 	/* Block boundary? Nothing to do */
2646 	if (!length)
2647 		return 0;
2648 
2649 	length = blocksize - length;
2650 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2651 
2652 	page = grab_cache_page(mapping, index);
2653 	err = -ENOMEM;
2654 	if (!page)
2655 		goto out;
2656 
2657 	if (!page_has_buffers(page))
2658 		create_empty_buffers(page, blocksize, 0);
2659 
2660 	/* Find the buffer that contains "offset" */
2661 	bh = page_buffers(page);
2662 	pos = blocksize;
2663 	while (offset >= pos) {
2664 		bh = bh->b_this_page;
2665 		iblock++;
2666 		pos += blocksize;
2667 	}
2668 
2669 	err = 0;
2670 	if (!buffer_mapped(bh)) {
2671 		WARN_ON(bh->b_size != blocksize);
2672 		err = get_block(inode, iblock, bh, 0);
2673 		if (err)
2674 			goto unlock;
2675 		/* unmapped? It's a hole - nothing to do */
2676 		if (!buffer_mapped(bh))
2677 			goto unlock;
2678 	}
2679 
2680 	/* Ok, it's mapped. Make sure it's up-to-date */
2681 	if (PageUptodate(page))
2682 		set_buffer_uptodate(bh);
2683 
2684 	if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2685 		err = -EIO;
2686 		ll_rw_block(READ, 1, &bh);
2687 		wait_on_buffer(bh);
2688 		/* Uhhuh. Read error. Complain and punt. */
2689 		if (!buffer_uptodate(bh))
2690 			goto unlock;
2691 	}
2692 
2693 	kaddr = kmap_atomic(page, KM_USER0);
2694 	memset(kaddr + offset, 0, length);
2695 	flush_dcache_page(page);
2696 	kunmap_atomic(kaddr, KM_USER0);
2697 
2698 	mark_buffer_dirty(bh);
2699 	err = 0;
2700 
2701 unlock:
2702 	unlock_page(page);
2703 	page_cache_release(page);
2704 out:
2705 	return err;
2706 }
2707 
2708 /*
2709  * The generic ->writepage function for buffer-backed address_spaces
2710  */
2711 int block_write_full_page(struct page *page, get_block_t *get_block,
2712 			struct writeback_control *wbc)
2713 {
2714 	struct inode * const inode = page->mapping->host;
2715 	loff_t i_size = i_size_read(inode);
2716 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2717 	unsigned offset;
2718 	void *kaddr;
2719 
2720 	/* Is the page fully inside i_size? */
2721 	if (page->index < end_index)
2722 		return __block_write_full_page(inode, page, get_block, wbc);
2723 
2724 	/* Is the page fully outside i_size? (truncate in progress) */
2725 	offset = i_size & (PAGE_CACHE_SIZE-1);
2726 	if (page->index >= end_index+1 || !offset) {
2727 		/*
2728 		 * The page may have dirty, unmapped buffers.  For example,
2729 		 * they may have been added in ext3_writepage().  Make them
2730 		 * freeable here, so the page does not leak.
2731 		 */
2732 		do_invalidatepage(page, 0);
2733 		unlock_page(page);
2734 		return 0; /* don't care */
2735 	}
2736 
2737 	/*
2738 	 * The page straddles i_size.  It must be zeroed out on each and every
2739 	 * writepage invokation because it may be mmapped.  "A file is mapped
2740 	 * in multiples of the page size.  For a file that is not a multiple of
2741 	 * the  page size, the remaining memory is zeroed when mapped, and
2742 	 * writes to that region are not written out to the file."
2743 	 */
2744 	kaddr = kmap_atomic(page, KM_USER0);
2745 	memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2746 	flush_dcache_page(page);
2747 	kunmap_atomic(kaddr, KM_USER0);
2748 	return __block_write_full_page(inode, page, get_block, wbc);
2749 }
2750 
2751 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2752 			    get_block_t *get_block)
2753 {
2754 	struct buffer_head tmp;
2755 	struct inode *inode = mapping->host;
2756 	tmp.b_state = 0;
2757 	tmp.b_blocknr = 0;
2758 	tmp.b_size = 1 << inode->i_blkbits;
2759 	get_block(inode, block, &tmp, 0);
2760 	return tmp.b_blocknr;
2761 }
2762 
2763 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2764 {
2765 	struct buffer_head *bh = bio->bi_private;
2766 
2767 	if (bio->bi_size)
2768 		return 1;
2769 
2770 	if (err == -EOPNOTSUPP) {
2771 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2772 		set_bit(BH_Eopnotsupp, &bh->b_state);
2773 	}
2774 
2775 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2776 	bio_put(bio);
2777 	return 0;
2778 }
2779 
2780 int submit_bh(int rw, struct buffer_head * bh)
2781 {
2782 	struct bio *bio;
2783 	int ret = 0;
2784 
2785 	BUG_ON(!buffer_locked(bh));
2786 	BUG_ON(!buffer_mapped(bh));
2787 	BUG_ON(!bh->b_end_io);
2788 
2789 	if (buffer_ordered(bh) && (rw == WRITE))
2790 		rw = WRITE_BARRIER;
2791 
2792 	/*
2793 	 * Only clear out a write error when rewriting, should this
2794 	 * include WRITE_SYNC as well?
2795 	 */
2796 	if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2797 		clear_buffer_write_io_error(bh);
2798 
2799 	/*
2800 	 * from here on down, it's all bio -- do the initial mapping,
2801 	 * submit_bio -> generic_make_request may further map this bio around
2802 	 */
2803 	bio = bio_alloc(GFP_NOIO, 1);
2804 
2805 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2806 	bio->bi_bdev = bh->b_bdev;
2807 	bio->bi_io_vec[0].bv_page = bh->b_page;
2808 	bio->bi_io_vec[0].bv_len = bh->b_size;
2809 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2810 
2811 	bio->bi_vcnt = 1;
2812 	bio->bi_idx = 0;
2813 	bio->bi_size = bh->b_size;
2814 
2815 	bio->bi_end_io = end_bio_bh_io_sync;
2816 	bio->bi_private = bh;
2817 
2818 	bio_get(bio);
2819 	submit_bio(rw, bio);
2820 
2821 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2822 		ret = -EOPNOTSUPP;
2823 
2824 	bio_put(bio);
2825 	return ret;
2826 }
2827 
2828 /**
2829  * ll_rw_block: low-level access to block devices (DEPRECATED)
2830  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2831  * @nr: number of &struct buffer_heads in the array
2832  * @bhs: array of pointers to &struct buffer_head
2833  *
2834  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2835  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2836  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2837  * are sent to disk. The fourth %READA option is described in the documentation
2838  * for generic_make_request() which ll_rw_block() calls.
2839  *
2840  * This function drops any buffer that it cannot get a lock on (with the
2841  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2842  * clean when doing a write request, and any buffer that appears to be
2843  * up-to-date when doing read request.  Further it marks as clean buffers that
2844  * are processed for writing (the buffer cache won't assume that they are
2845  * actually clean until the buffer gets unlocked).
2846  *
2847  * ll_rw_block sets b_end_io to simple completion handler that marks
2848  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2849  * any waiters.
2850  *
2851  * All of the buffers must be for the same device, and must also be a
2852  * multiple of the current approved size for the device.
2853  */
2854 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2855 {
2856 	int i;
2857 
2858 	for (i = 0; i < nr; i++) {
2859 		struct buffer_head *bh = bhs[i];
2860 
2861 		if (rw == SWRITE)
2862 			lock_buffer(bh);
2863 		else if (test_set_buffer_locked(bh))
2864 			continue;
2865 
2866 		if (rw == WRITE || rw == SWRITE) {
2867 			if (test_clear_buffer_dirty(bh)) {
2868 				bh->b_end_io = end_buffer_write_sync;
2869 				get_bh(bh);
2870 				submit_bh(WRITE, bh);
2871 				continue;
2872 			}
2873 		} else {
2874 			if (!buffer_uptodate(bh)) {
2875 				bh->b_end_io = end_buffer_read_sync;
2876 				get_bh(bh);
2877 				submit_bh(rw, bh);
2878 				continue;
2879 			}
2880 		}
2881 		unlock_buffer(bh);
2882 	}
2883 }
2884 
2885 /*
2886  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2887  * and then start new I/O and then wait upon it.  The caller must have a ref on
2888  * the buffer_head.
2889  */
2890 int sync_dirty_buffer(struct buffer_head *bh)
2891 {
2892 	int ret = 0;
2893 
2894 	WARN_ON(atomic_read(&bh->b_count) < 1);
2895 	lock_buffer(bh);
2896 	if (test_clear_buffer_dirty(bh)) {
2897 		get_bh(bh);
2898 		bh->b_end_io = end_buffer_write_sync;
2899 		ret = submit_bh(WRITE, bh);
2900 		wait_on_buffer(bh);
2901 		if (buffer_eopnotsupp(bh)) {
2902 			clear_buffer_eopnotsupp(bh);
2903 			ret = -EOPNOTSUPP;
2904 		}
2905 		if (!ret && !buffer_uptodate(bh))
2906 			ret = -EIO;
2907 	} else {
2908 		unlock_buffer(bh);
2909 	}
2910 	return ret;
2911 }
2912 
2913 /*
2914  * try_to_free_buffers() checks if all the buffers on this particular page
2915  * are unused, and releases them if so.
2916  *
2917  * Exclusion against try_to_free_buffers may be obtained by either
2918  * locking the page or by holding its mapping's private_lock.
2919  *
2920  * If the page is dirty but all the buffers are clean then we need to
2921  * be sure to mark the page clean as well.  This is because the page
2922  * may be against a block device, and a later reattachment of buffers
2923  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2924  * filesystem data on the same device.
2925  *
2926  * The same applies to regular filesystem pages: if all the buffers are
2927  * clean then we set the page clean and proceed.  To do that, we require
2928  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2929  * private_lock.
2930  *
2931  * try_to_free_buffers() is non-blocking.
2932  */
2933 static inline int buffer_busy(struct buffer_head *bh)
2934 {
2935 	return atomic_read(&bh->b_count) |
2936 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2937 }
2938 
2939 static int
2940 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2941 {
2942 	struct buffer_head *head = page_buffers(page);
2943 	struct buffer_head *bh;
2944 
2945 	bh = head;
2946 	do {
2947 		if (buffer_write_io_error(bh) && page->mapping)
2948 			set_bit(AS_EIO, &page->mapping->flags);
2949 		if (buffer_busy(bh))
2950 			goto failed;
2951 		bh = bh->b_this_page;
2952 	} while (bh != head);
2953 
2954 	do {
2955 		struct buffer_head *next = bh->b_this_page;
2956 
2957 		if (!list_empty(&bh->b_assoc_buffers))
2958 			__remove_assoc_queue(bh);
2959 		bh = next;
2960 	} while (bh != head);
2961 	*buffers_to_free = head;
2962 	__clear_page_buffers(page);
2963 	return 1;
2964 failed:
2965 	return 0;
2966 }
2967 
2968 int try_to_free_buffers(struct page *page)
2969 {
2970 	struct address_space * const mapping = page->mapping;
2971 	struct buffer_head *buffers_to_free = NULL;
2972 	int ret = 0;
2973 
2974 	BUG_ON(!PageLocked(page));
2975 	if (PageWriteback(page))
2976 		return 0;
2977 
2978 	if (mapping == NULL) {		/* can this still happen? */
2979 		ret = drop_buffers(page, &buffers_to_free);
2980 		goto out;
2981 	}
2982 
2983 	spin_lock(&mapping->private_lock);
2984 	ret = drop_buffers(page, &buffers_to_free);
2985 	if (ret) {
2986 		/*
2987 		 * If the filesystem writes its buffers by hand (eg ext3)
2988 		 * then we can have clean buffers against a dirty page.  We
2989 		 * clean the page here; otherwise later reattachment of buffers
2990 		 * could encounter a non-uptodate page, which is unresolvable.
2991 		 * This only applies in the rare case where try_to_free_buffers
2992 		 * succeeds but the page is not freed.
2993 		 */
2994 		clear_page_dirty(page);
2995 	}
2996 	spin_unlock(&mapping->private_lock);
2997 out:
2998 	if (buffers_to_free) {
2999 		struct buffer_head *bh = buffers_to_free;
3000 
3001 		do {
3002 			struct buffer_head *next = bh->b_this_page;
3003 			free_buffer_head(bh);
3004 			bh = next;
3005 		} while (bh != buffers_to_free);
3006 	}
3007 	return ret;
3008 }
3009 EXPORT_SYMBOL(try_to_free_buffers);
3010 
3011 void block_sync_page(struct page *page)
3012 {
3013 	struct address_space *mapping;
3014 
3015 	smp_mb();
3016 	mapping = page_mapping(page);
3017 	if (mapping)
3018 		blk_run_backing_dev(mapping->backing_dev_info, page);
3019 }
3020 
3021 /*
3022  * There are no bdflush tunables left.  But distributions are
3023  * still running obsolete flush daemons, so we terminate them here.
3024  *
3025  * Use of bdflush() is deprecated and will be removed in a future kernel.
3026  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3027  */
3028 asmlinkage long sys_bdflush(int func, long data)
3029 {
3030 	static int msg_count;
3031 
3032 	if (!capable(CAP_SYS_ADMIN))
3033 		return -EPERM;
3034 
3035 	if (msg_count < 5) {
3036 		msg_count++;
3037 		printk(KERN_INFO
3038 			"warning: process `%s' used the obsolete bdflush"
3039 			" system call\n", current->comm);
3040 		printk(KERN_INFO "Fix your initscripts?\n");
3041 	}
3042 
3043 	if (func == 1)
3044 		do_exit(0);
3045 	return 0;
3046 }
3047 
3048 /*
3049  * Buffer-head allocation
3050  */
3051 static kmem_cache_t *bh_cachep;
3052 
3053 /*
3054  * Once the number of bh's in the machine exceeds this level, we start
3055  * stripping them in writeback.
3056  */
3057 static int max_buffer_heads;
3058 
3059 int buffer_heads_over_limit;
3060 
3061 struct bh_accounting {
3062 	int nr;			/* Number of live bh's */
3063 	int ratelimit;		/* Limit cacheline bouncing */
3064 };
3065 
3066 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3067 
3068 static void recalc_bh_state(void)
3069 {
3070 	int i;
3071 	int tot = 0;
3072 
3073 	if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3074 		return;
3075 	__get_cpu_var(bh_accounting).ratelimit = 0;
3076 	for_each_online_cpu(i)
3077 		tot += per_cpu(bh_accounting, i).nr;
3078 	buffer_heads_over_limit = (tot > max_buffer_heads);
3079 }
3080 
3081 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3082 {
3083 	struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3084 	if (ret) {
3085 		get_cpu_var(bh_accounting).nr++;
3086 		recalc_bh_state();
3087 		put_cpu_var(bh_accounting);
3088 	}
3089 	return ret;
3090 }
3091 EXPORT_SYMBOL(alloc_buffer_head);
3092 
3093 void free_buffer_head(struct buffer_head *bh)
3094 {
3095 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3096 	kmem_cache_free(bh_cachep, bh);
3097 	get_cpu_var(bh_accounting).nr--;
3098 	recalc_bh_state();
3099 	put_cpu_var(bh_accounting);
3100 }
3101 EXPORT_SYMBOL(free_buffer_head);
3102 
3103 static void
3104 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
3105 {
3106 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3107 			    SLAB_CTOR_CONSTRUCTOR) {
3108 		struct buffer_head * bh = (struct buffer_head *)data;
3109 
3110 		memset(bh, 0, sizeof(*bh));
3111 		INIT_LIST_HEAD(&bh->b_assoc_buffers);
3112 	}
3113 }
3114 
3115 #ifdef CONFIG_HOTPLUG_CPU
3116 static void buffer_exit_cpu(int cpu)
3117 {
3118 	int i;
3119 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3120 
3121 	for (i = 0; i < BH_LRU_SIZE; i++) {
3122 		brelse(b->bhs[i]);
3123 		b->bhs[i] = NULL;
3124 	}
3125 	get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3126 	per_cpu(bh_accounting, cpu).nr = 0;
3127 	put_cpu_var(bh_accounting);
3128 }
3129 
3130 static int buffer_cpu_notify(struct notifier_block *self,
3131 			      unsigned long action, void *hcpu)
3132 {
3133 	if (action == CPU_DEAD)
3134 		buffer_exit_cpu((unsigned long)hcpu);
3135 	return NOTIFY_OK;
3136 }
3137 #endif /* CONFIG_HOTPLUG_CPU */
3138 
3139 void __init buffer_init(void)
3140 {
3141 	int nrpages;
3142 
3143 	bh_cachep = kmem_cache_create("buffer_head",
3144 					sizeof(struct buffer_head), 0,
3145 					(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3146 					SLAB_MEM_SPREAD),
3147 					init_buffer_head,
3148 					NULL);
3149 
3150 	/*
3151 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3152 	 */
3153 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3154 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3155 	hotcpu_notifier(buffer_cpu_notify, 0);
3156 }
3157 
3158 EXPORT_SYMBOL(__bforget);
3159 EXPORT_SYMBOL(__brelse);
3160 EXPORT_SYMBOL(__wait_on_buffer);
3161 EXPORT_SYMBOL(block_commit_write);
3162 EXPORT_SYMBOL(block_prepare_write);
3163 EXPORT_SYMBOL(block_read_full_page);
3164 EXPORT_SYMBOL(block_sync_page);
3165 EXPORT_SYMBOL(block_truncate_page);
3166 EXPORT_SYMBOL(block_write_full_page);
3167 EXPORT_SYMBOL(cont_prepare_write);
3168 EXPORT_SYMBOL(end_buffer_read_sync);
3169 EXPORT_SYMBOL(end_buffer_write_sync);
3170 EXPORT_SYMBOL(file_fsync);
3171 EXPORT_SYMBOL(fsync_bdev);
3172 EXPORT_SYMBOL(generic_block_bmap);
3173 EXPORT_SYMBOL(generic_commit_write);
3174 EXPORT_SYMBOL(generic_cont_expand);
3175 EXPORT_SYMBOL(generic_cont_expand_simple);
3176 EXPORT_SYMBOL(init_buffer);
3177 EXPORT_SYMBOL(invalidate_bdev);
3178 EXPORT_SYMBOL(ll_rw_block);
3179 EXPORT_SYMBOL(mark_buffer_dirty);
3180 EXPORT_SYMBOL(submit_bh);
3181 EXPORT_SYMBOL(sync_dirty_buffer);
3182 EXPORT_SYMBOL(unlock_buffer);
3183