1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/capability.h> 28 #include <linux/blkdev.h> 29 #include <linux/file.h> 30 #include <linux/quotaops.h> 31 #include <linux/highmem.h> 32 #include <linux/export.h> 33 #include <linux/backing-dev.h> 34 #include <linux/writeback.h> 35 #include <linux/hash.h> 36 #include <linux/suspend.h> 37 #include <linux/buffer_head.h> 38 #include <linux/task_io_accounting_ops.h> 39 #include <linux/bio.h> 40 #include <linux/notifier.h> 41 #include <linux/cpu.h> 42 #include <linux/bitops.h> 43 #include <linux/mpage.h> 44 #include <linux/bit_spinlock.h> 45 #include <trace/events/block.h> 46 47 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 48 static int submit_bh_wbc(int rw, struct buffer_head *bh, 49 unsigned long bio_flags, 50 struct writeback_control *wbc); 51 52 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 53 54 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 55 { 56 bh->b_end_io = handler; 57 bh->b_private = private; 58 } 59 EXPORT_SYMBOL(init_buffer); 60 61 inline void touch_buffer(struct buffer_head *bh) 62 { 63 trace_block_touch_buffer(bh); 64 mark_page_accessed(bh->b_page); 65 } 66 EXPORT_SYMBOL(touch_buffer); 67 68 void __lock_buffer(struct buffer_head *bh) 69 { 70 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 71 } 72 EXPORT_SYMBOL(__lock_buffer); 73 74 void unlock_buffer(struct buffer_head *bh) 75 { 76 clear_bit_unlock(BH_Lock, &bh->b_state); 77 smp_mb__after_atomic(); 78 wake_up_bit(&bh->b_state, BH_Lock); 79 } 80 EXPORT_SYMBOL(unlock_buffer); 81 82 /* 83 * Returns if the page has dirty or writeback buffers. If all the buffers 84 * are unlocked and clean then the PageDirty information is stale. If 85 * any of the pages are locked, it is assumed they are locked for IO. 86 */ 87 void buffer_check_dirty_writeback(struct page *page, 88 bool *dirty, bool *writeback) 89 { 90 struct buffer_head *head, *bh; 91 *dirty = false; 92 *writeback = false; 93 94 BUG_ON(!PageLocked(page)); 95 96 if (!page_has_buffers(page)) 97 return; 98 99 if (PageWriteback(page)) 100 *writeback = true; 101 102 head = page_buffers(page); 103 bh = head; 104 do { 105 if (buffer_locked(bh)) 106 *writeback = true; 107 108 if (buffer_dirty(bh)) 109 *dirty = true; 110 111 bh = bh->b_this_page; 112 } while (bh != head); 113 } 114 EXPORT_SYMBOL(buffer_check_dirty_writeback); 115 116 /* 117 * Block until a buffer comes unlocked. This doesn't stop it 118 * from becoming locked again - you have to lock it yourself 119 * if you want to preserve its state. 120 */ 121 void __wait_on_buffer(struct buffer_head * bh) 122 { 123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 124 } 125 EXPORT_SYMBOL(__wait_on_buffer); 126 127 static void 128 __clear_page_buffers(struct page *page) 129 { 130 ClearPagePrivate(page); 131 set_page_private(page, 0); 132 put_page(page); 133 } 134 135 static void buffer_io_error(struct buffer_head *bh, char *msg) 136 { 137 if (!test_bit(BH_Quiet, &bh->b_state)) 138 printk_ratelimited(KERN_ERR 139 "Buffer I/O error on dev %pg, logical block %llu%s\n", 140 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 141 } 142 143 /* 144 * End-of-IO handler helper function which does not touch the bh after 145 * unlocking it. 146 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 147 * a race there is benign: unlock_buffer() only use the bh's address for 148 * hashing after unlocking the buffer, so it doesn't actually touch the bh 149 * itself. 150 */ 151 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 152 { 153 if (uptodate) { 154 set_buffer_uptodate(bh); 155 } else { 156 /* This happens, due to failed READA attempts. */ 157 clear_buffer_uptodate(bh); 158 } 159 unlock_buffer(bh); 160 } 161 162 /* 163 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 164 * unlock the buffer. This is what ll_rw_block uses too. 165 */ 166 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 167 { 168 __end_buffer_read_notouch(bh, uptodate); 169 put_bh(bh); 170 } 171 EXPORT_SYMBOL(end_buffer_read_sync); 172 173 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 174 { 175 if (uptodate) { 176 set_buffer_uptodate(bh); 177 } else { 178 buffer_io_error(bh, ", lost sync page write"); 179 set_buffer_write_io_error(bh); 180 clear_buffer_uptodate(bh); 181 } 182 unlock_buffer(bh); 183 put_bh(bh); 184 } 185 EXPORT_SYMBOL(end_buffer_write_sync); 186 187 /* 188 * Various filesystems appear to want __find_get_block to be non-blocking. 189 * But it's the page lock which protects the buffers. To get around this, 190 * we get exclusion from try_to_free_buffers with the blockdev mapping's 191 * private_lock. 192 * 193 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 194 * may be quite high. This code could TryLock the page, and if that 195 * succeeds, there is no need to take private_lock. (But if 196 * private_lock is contended then so is mapping->tree_lock). 197 */ 198 static struct buffer_head * 199 __find_get_block_slow(struct block_device *bdev, sector_t block) 200 { 201 struct inode *bd_inode = bdev->bd_inode; 202 struct address_space *bd_mapping = bd_inode->i_mapping; 203 struct buffer_head *ret = NULL; 204 pgoff_t index; 205 struct buffer_head *bh; 206 struct buffer_head *head; 207 struct page *page; 208 int all_mapped = 1; 209 210 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 211 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 212 if (!page) 213 goto out; 214 215 spin_lock(&bd_mapping->private_lock); 216 if (!page_has_buffers(page)) 217 goto out_unlock; 218 head = page_buffers(page); 219 bh = head; 220 do { 221 if (!buffer_mapped(bh)) 222 all_mapped = 0; 223 else if (bh->b_blocknr == block) { 224 ret = bh; 225 get_bh(bh); 226 goto out_unlock; 227 } 228 bh = bh->b_this_page; 229 } while (bh != head); 230 231 /* we might be here because some of the buffers on this page are 232 * not mapped. This is due to various races between 233 * file io on the block device and getblk. It gets dealt with 234 * elsewhere, don't buffer_error if we had some unmapped buffers 235 */ 236 if (all_mapped) { 237 printk("__find_get_block_slow() failed. " 238 "block=%llu, b_blocknr=%llu\n", 239 (unsigned long long)block, 240 (unsigned long long)bh->b_blocknr); 241 printk("b_state=0x%08lx, b_size=%zu\n", 242 bh->b_state, bh->b_size); 243 printk("device %pg blocksize: %d\n", bdev, 244 1 << bd_inode->i_blkbits); 245 } 246 out_unlock: 247 spin_unlock(&bd_mapping->private_lock); 248 put_page(page); 249 out: 250 return ret; 251 } 252 253 /* 254 * Kick the writeback threads then try to free up some ZONE_NORMAL memory. 255 */ 256 static void free_more_memory(void) 257 { 258 struct zone *zone; 259 int nid; 260 261 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM); 262 yield(); 263 264 for_each_online_node(nid) { 265 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS), 266 gfp_zone(GFP_NOFS), NULL, 267 &zone); 268 if (zone) 269 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, 270 GFP_NOFS, NULL); 271 } 272 } 273 274 /* 275 * I/O completion handler for block_read_full_page() - pages 276 * which come unlocked at the end of I/O. 277 */ 278 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 279 { 280 unsigned long flags; 281 struct buffer_head *first; 282 struct buffer_head *tmp; 283 struct page *page; 284 int page_uptodate = 1; 285 286 BUG_ON(!buffer_async_read(bh)); 287 288 page = bh->b_page; 289 if (uptodate) { 290 set_buffer_uptodate(bh); 291 } else { 292 clear_buffer_uptodate(bh); 293 buffer_io_error(bh, ", async page read"); 294 SetPageError(page); 295 } 296 297 /* 298 * Be _very_ careful from here on. Bad things can happen if 299 * two buffer heads end IO at almost the same time and both 300 * decide that the page is now completely done. 301 */ 302 first = page_buffers(page); 303 local_irq_save(flags); 304 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 305 clear_buffer_async_read(bh); 306 unlock_buffer(bh); 307 tmp = bh; 308 do { 309 if (!buffer_uptodate(tmp)) 310 page_uptodate = 0; 311 if (buffer_async_read(tmp)) { 312 BUG_ON(!buffer_locked(tmp)); 313 goto still_busy; 314 } 315 tmp = tmp->b_this_page; 316 } while (tmp != bh); 317 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 318 local_irq_restore(flags); 319 320 /* 321 * If none of the buffers had errors and they are all 322 * uptodate then we can set the page uptodate. 323 */ 324 if (page_uptodate && !PageError(page)) 325 SetPageUptodate(page); 326 unlock_page(page); 327 return; 328 329 still_busy: 330 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 331 local_irq_restore(flags); 332 return; 333 } 334 335 /* 336 * Completion handler for block_write_full_page() - pages which are unlocked 337 * during I/O, and which have PageWriteback cleared upon I/O completion. 338 */ 339 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 340 { 341 unsigned long flags; 342 struct buffer_head *first; 343 struct buffer_head *tmp; 344 struct page *page; 345 346 BUG_ON(!buffer_async_write(bh)); 347 348 page = bh->b_page; 349 if (uptodate) { 350 set_buffer_uptodate(bh); 351 } else { 352 buffer_io_error(bh, ", lost async page write"); 353 set_bit(AS_EIO, &page->mapping->flags); 354 set_buffer_write_io_error(bh); 355 clear_buffer_uptodate(bh); 356 SetPageError(page); 357 } 358 359 first = page_buffers(page); 360 local_irq_save(flags); 361 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 362 363 clear_buffer_async_write(bh); 364 unlock_buffer(bh); 365 tmp = bh->b_this_page; 366 while (tmp != bh) { 367 if (buffer_async_write(tmp)) { 368 BUG_ON(!buffer_locked(tmp)); 369 goto still_busy; 370 } 371 tmp = tmp->b_this_page; 372 } 373 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 374 local_irq_restore(flags); 375 end_page_writeback(page); 376 return; 377 378 still_busy: 379 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 380 local_irq_restore(flags); 381 return; 382 } 383 EXPORT_SYMBOL(end_buffer_async_write); 384 385 /* 386 * If a page's buffers are under async readin (end_buffer_async_read 387 * completion) then there is a possibility that another thread of 388 * control could lock one of the buffers after it has completed 389 * but while some of the other buffers have not completed. This 390 * locked buffer would confuse end_buffer_async_read() into not unlocking 391 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 392 * that this buffer is not under async I/O. 393 * 394 * The page comes unlocked when it has no locked buffer_async buffers 395 * left. 396 * 397 * PageLocked prevents anyone starting new async I/O reads any of 398 * the buffers. 399 * 400 * PageWriteback is used to prevent simultaneous writeout of the same 401 * page. 402 * 403 * PageLocked prevents anyone from starting writeback of a page which is 404 * under read I/O (PageWriteback is only ever set against a locked page). 405 */ 406 static void mark_buffer_async_read(struct buffer_head *bh) 407 { 408 bh->b_end_io = end_buffer_async_read; 409 set_buffer_async_read(bh); 410 } 411 412 static void mark_buffer_async_write_endio(struct buffer_head *bh, 413 bh_end_io_t *handler) 414 { 415 bh->b_end_io = handler; 416 set_buffer_async_write(bh); 417 } 418 419 void mark_buffer_async_write(struct buffer_head *bh) 420 { 421 mark_buffer_async_write_endio(bh, end_buffer_async_write); 422 } 423 EXPORT_SYMBOL(mark_buffer_async_write); 424 425 426 /* 427 * fs/buffer.c contains helper functions for buffer-backed address space's 428 * fsync functions. A common requirement for buffer-based filesystems is 429 * that certain data from the backing blockdev needs to be written out for 430 * a successful fsync(). For example, ext2 indirect blocks need to be 431 * written back and waited upon before fsync() returns. 432 * 433 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 434 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 435 * management of a list of dependent buffers at ->i_mapping->private_list. 436 * 437 * Locking is a little subtle: try_to_free_buffers() will remove buffers 438 * from their controlling inode's queue when they are being freed. But 439 * try_to_free_buffers() will be operating against the *blockdev* mapping 440 * at the time, not against the S_ISREG file which depends on those buffers. 441 * So the locking for private_list is via the private_lock in the address_space 442 * which backs the buffers. Which is different from the address_space 443 * against which the buffers are listed. So for a particular address_space, 444 * mapping->private_lock does *not* protect mapping->private_list! In fact, 445 * mapping->private_list will always be protected by the backing blockdev's 446 * ->private_lock. 447 * 448 * Which introduces a requirement: all buffers on an address_space's 449 * ->private_list must be from the same address_space: the blockdev's. 450 * 451 * address_spaces which do not place buffers at ->private_list via these 452 * utility functions are free to use private_lock and private_list for 453 * whatever they want. The only requirement is that list_empty(private_list) 454 * be true at clear_inode() time. 455 * 456 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 457 * filesystems should do that. invalidate_inode_buffers() should just go 458 * BUG_ON(!list_empty). 459 * 460 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 461 * take an address_space, not an inode. And it should be called 462 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 463 * queued up. 464 * 465 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 466 * list if it is already on a list. Because if the buffer is on a list, 467 * it *must* already be on the right one. If not, the filesystem is being 468 * silly. This will save a ton of locking. But first we have to ensure 469 * that buffers are taken *off* the old inode's list when they are freed 470 * (presumably in truncate). That requires careful auditing of all 471 * filesystems (do it inside bforget()). It could also be done by bringing 472 * b_inode back. 473 */ 474 475 /* 476 * The buffer's backing address_space's private_lock must be held 477 */ 478 static void __remove_assoc_queue(struct buffer_head *bh) 479 { 480 list_del_init(&bh->b_assoc_buffers); 481 WARN_ON(!bh->b_assoc_map); 482 if (buffer_write_io_error(bh)) 483 set_bit(AS_EIO, &bh->b_assoc_map->flags); 484 bh->b_assoc_map = NULL; 485 } 486 487 int inode_has_buffers(struct inode *inode) 488 { 489 return !list_empty(&inode->i_data.private_list); 490 } 491 492 /* 493 * osync is designed to support O_SYNC io. It waits synchronously for 494 * all already-submitted IO to complete, but does not queue any new 495 * writes to the disk. 496 * 497 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 498 * you dirty the buffers, and then use osync_inode_buffers to wait for 499 * completion. Any other dirty buffers which are not yet queued for 500 * write will not be flushed to disk by the osync. 501 */ 502 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 503 { 504 struct buffer_head *bh; 505 struct list_head *p; 506 int err = 0; 507 508 spin_lock(lock); 509 repeat: 510 list_for_each_prev(p, list) { 511 bh = BH_ENTRY(p); 512 if (buffer_locked(bh)) { 513 get_bh(bh); 514 spin_unlock(lock); 515 wait_on_buffer(bh); 516 if (!buffer_uptodate(bh)) 517 err = -EIO; 518 brelse(bh); 519 spin_lock(lock); 520 goto repeat; 521 } 522 } 523 spin_unlock(lock); 524 return err; 525 } 526 527 static void do_thaw_one(struct super_block *sb, void *unused) 528 { 529 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 530 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 531 } 532 533 static void do_thaw_all(struct work_struct *work) 534 { 535 iterate_supers(do_thaw_one, NULL); 536 kfree(work); 537 printk(KERN_WARNING "Emergency Thaw complete\n"); 538 } 539 540 /** 541 * emergency_thaw_all -- forcibly thaw every frozen filesystem 542 * 543 * Used for emergency unfreeze of all filesystems via SysRq 544 */ 545 void emergency_thaw_all(void) 546 { 547 struct work_struct *work; 548 549 work = kmalloc(sizeof(*work), GFP_ATOMIC); 550 if (work) { 551 INIT_WORK(work, do_thaw_all); 552 schedule_work(work); 553 } 554 } 555 556 /** 557 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 558 * @mapping: the mapping which wants those buffers written 559 * 560 * Starts I/O against the buffers at mapping->private_list, and waits upon 561 * that I/O. 562 * 563 * Basically, this is a convenience function for fsync(). 564 * @mapping is a file or directory which needs those buffers to be written for 565 * a successful fsync(). 566 */ 567 int sync_mapping_buffers(struct address_space *mapping) 568 { 569 struct address_space *buffer_mapping = mapping->private_data; 570 571 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 572 return 0; 573 574 return fsync_buffers_list(&buffer_mapping->private_lock, 575 &mapping->private_list); 576 } 577 EXPORT_SYMBOL(sync_mapping_buffers); 578 579 /* 580 * Called when we've recently written block `bblock', and it is known that 581 * `bblock' was for a buffer_boundary() buffer. This means that the block at 582 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 583 * dirty, schedule it for IO. So that indirects merge nicely with their data. 584 */ 585 void write_boundary_block(struct block_device *bdev, 586 sector_t bblock, unsigned blocksize) 587 { 588 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 589 if (bh) { 590 if (buffer_dirty(bh)) 591 ll_rw_block(WRITE, 1, &bh); 592 put_bh(bh); 593 } 594 } 595 596 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 597 { 598 struct address_space *mapping = inode->i_mapping; 599 struct address_space *buffer_mapping = bh->b_page->mapping; 600 601 mark_buffer_dirty(bh); 602 if (!mapping->private_data) { 603 mapping->private_data = buffer_mapping; 604 } else { 605 BUG_ON(mapping->private_data != buffer_mapping); 606 } 607 if (!bh->b_assoc_map) { 608 spin_lock(&buffer_mapping->private_lock); 609 list_move_tail(&bh->b_assoc_buffers, 610 &mapping->private_list); 611 bh->b_assoc_map = mapping; 612 spin_unlock(&buffer_mapping->private_lock); 613 } 614 } 615 EXPORT_SYMBOL(mark_buffer_dirty_inode); 616 617 /* 618 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 619 * dirty. 620 * 621 * If warn is true, then emit a warning if the page is not uptodate and has 622 * not been truncated. 623 * 624 * The caller must hold lock_page_memcg(). 625 */ 626 static void __set_page_dirty(struct page *page, struct address_space *mapping, 627 int warn) 628 { 629 unsigned long flags; 630 631 spin_lock_irqsave(&mapping->tree_lock, flags); 632 if (page->mapping) { /* Race with truncate? */ 633 WARN_ON_ONCE(warn && !PageUptodate(page)); 634 account_page_dirtied(page, mapping); 635 radix_tree_tag_set(&mapping->page_tree, 636 page_index(page), PAGECACHE_TAG_DIRTY); 637 } 638 spin_unlock_irqrestore(&mapping->tree_lock, flags); 639 } 640 641 /* 642 * Add a page to the dirty page list. 643 * 644 * It is a sad fact of life that this function is called from several places 645 * deeply under spinlocking. It may not sleep. 646 * 647 * If the page has buffers, the uptodate buffers are set dirty, to preserve 648 * dirty-state coherency between the page and the buffers. It the page does 649 * not have buffers then when they are later attached they will all be set 650 * dirty. 651 * 652 * The buffers are dirtied before the page is dirtied. There's a small race 653 * window in which a writepage caller may see the page cleanness but not the 654 * buffer dirtiness. That's fine. If this code were to set the page dirty 655 * before the buffers, a concurrent writepage caller could clear the page dirty 656 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 657 * page on the dirty page list. 658 * 659 * We use private_lock to lock against try_to_free_buffers while using the 660 * page's buffer list. Also use this to protect against clean buffers being 661 * added to the page after it was set dirty. 662 * 663 * FIXME: may need to call ->reservepage here as well. That's rather up to the 664 * address_space though. 665 */ 666 int __set_page_dirty_buffers(struct page *page) 667 { 668 int newly_dirty; 669 struct address_space *mapping = page_mapping(page); 670 671 if (unlikely(!mapping)) 672 return !TestSetPageDirty(page); 673 674 spin_lock(&mapping->private_lock); 675 if (page_has_buffers(page)) { 676 struct buffer_head *head = page_buffers(page); 677 struct buffer_head *bh = head; 678 679 do { 680 set_buffer_dirty(bh); 681 bh = bh->b_this_page; 682 } while (bh != head); 683 } 684 /* 685 * Lock out page->mem_cgroup migration to keep PageDirty 686 * synchronized with per-memcg dirty page counters. 687 */ 688 lock_page_memcg(page); 689 newly_dirty = !TestSetPageDirty(page); 690 spin_unlock(&mapping->private_lock); 691 692 if (newly_dirty) 693 __set_page_dirty(page, mapping, 1); 694 695 unlock_page_memcg(page); 696 697 if (newly_dirty) 698 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 699 700 return newly_dirty; 701 } 702 EXPORT_SYMBOL(__set_page_dirty_buffers); 703 704 /* 705 * Write out and wait upon a list of buffers. 706 * 707 * We have conflicting pressures: we want to make sure that all 708 * initially dirty buffers get waited on, but that any subsequently 709 * dirtied buffers don't. After all, we don't want fsync to last 710 * forever if somebody is actively writing to the file. 711 * 712 * Do this in two main stages: first we copy dirty buffers to a 713 * temporary inode list, queueing the writes as we go. Then we clean 714 * up, waiting for those writes to complete. 715 * 716 * During this second stage, any subsequent updates to the file may end 717 * up refiling the buffer on the original inode's dirty list again, so 718 * there is a chance we will end up with a buffer queued for write but 719 * not yet completed on that list. So, as a final cleanup we go through 720 * the osync code to catch these locked, dirty buffers without requeuing 721 * any newly dirty buffers for write. 722 */ 723 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 724 { 725 struct buffer_head *bh; 726 struct list_head tmp; 727 struct address_space *mapping; 728 int err = 0, err2; 729 struct blk_plug plug; 730 731 INIT_LIST_HEAD(&tmp); 732 blk_start_plug(&plug); 733 734 spin_lock(lock); 735 while (!list_empty(list)) { 736 bh = BH_ENTRY(list->next); 737 mapping = bh->b_assoc_map; 738 __remove_assoc_queue(bh); 739 /* Avoid race with mark_buffer_dirty_inode() which does 740 * a lockless check and we rely on seeing the dirty bit */ 741 smp_mb(); 742 if (buffer_dirty(bh) || buffer_locked(bh)) { 743 list_add(&bh->b_assoc_buffers, &tmp); 744 bh->b_assoc_map = mapping; 745 if (buffer_dirty(bh)) { 746 get_bh(bh); 747 spin_unlock(lock); 748 /* 749 * Ensure any pending I/O completes so that 750 * write_dirty_buffer() actually writes the 751 * current contents - it is a noop if I/O is 752 * still in flight on potentially older 753 * contents. 754 */ 755 write_dirty_buffer(bh, WRITE_SYNC); 756 757 /* 758 * Kick off IO for the previous mapping. Note 759 * that we will not run the very last mapping, 760 * wait_on_buffer() will do that for us 761 * through sync_buffer(). 762 */ 763 brelse(bh); 764 spin_lock(lock); 765 } 766 } 767 } 768 769 spin_unlock(lock); 770 blk_finish_plug(&plug); 771 spin_lock(lock); 772 773 while (!list_empty(&tmp)) { 774 bh = BH_ENTRY(tmp.prev); 775 get_bh(bh); 776 mapping = bh->b_assoc_map; 777 __remove_assoc_queue(bh); 778 /* Avoid race with mark_buffer_dirty_inode() which does 779 * a lockless check and we rely on seeing the dirty bit */ 780 smp_mb(); 781 if (buffer_dirty(bh)) { 782 list_add(&bh->b_assoc_buffers, 783 &mapping->private_list); 784 bh->b_assoc_map = mapping; 785 } 786 spin_unlock(lock); 787 wait_on_buffer(bh); 788 if (!buffer_uptodate(bh)) 789 err = -EIO; 790 brelse(bh); 791 spin_lock(lock); 792 } 793 794 spin_unlock(lock); 795 err2 = osync_buffers_list(lock, list); 796 if (err) 797 return err; 798 else 799 return err2; 800 } 801 802 /* 803 * Invalidate any and all dirty buffers on a given inode. We are 804 * probably unmounting the fs, but that doesn't mean we have already 805 * done a sync(). Just drop the buffers from the inode list. 806 * 807 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 808 * assumes that all the buffers are against the blockdev. Not true 809 * for reiserfs. 810 */ 811 void invalidate_inode_buffers(struct inode *inode) 812 { 813 if (inode_has_buffers(inode)) { 814 struct address_space *mapping = &inode->i_data; 815 struct list_head *list = &mapping->private_list; 816 struct address_space *buffer_mapping = mapping->private_data; 817 818 spin_lock(&buffer_mapping->private_lock); 819 while (!list_empty(list)) 820 __remove_assoc_queue(BH_ENTRY(list->next)); 821 spin_unlock(&buffer_mapping->private_lock); 822 } 823 } 824 EXPORT_SYMBOL(invalidate_inode_buffers); 825 826 /* 827 * Remove any clean buffers from the inode's buffer list. This is called 828 * when we're trying to free the inode itself. Those buffers can pin it. 829 * 830 * Returns true if all buffers were removed. 831 */ 832 int remove_inode_buffers(struct inode *inode) 833 { 834 int ret = 1; 835 836 if (inode_has_buffers(inode)) { 837 struct address_space *mapping = &inode->i_data; 838 struct list_head *list = &mapping->private_list; 839 struct address_space *buffer_mapping = mapping->private_data; 840 841 spin_lock(&buffer_mapping->private_lock); 842 while (!list_empty(list)) { 843 struct buffer_head *bh = BH_ENTRY(list->next); 844 if (buffer_dirty(bh)) { 845 ret = 0; 846 break; 847 } 848 __remove_assoc_queue(bh); 849 } 850 spin_unlock(&buffer_mapping->private_lock); 851 } 852 return ret; 853 } 854 855 /* 856 * Create the appropriate buffers when given a page for data area and 857 * the size of each buffer.. Use the bh->b_this_page linked list to 858 * follow the buffers created. Return NULL if unable to create more 859 * buffers. 860 * 861 * The retry flag is used to differentiate async IO (paging, swapping) 862 * which may not fail from ordinary buffer allocations. 863 */ 864 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 865 int retry) 866 { 867 struct buffer_head *bh, *head; 868 long offset; 869 870 try_again: 871 head = NULL; 872 offset = PAGE_SIZE; 873 while ((offset -= size) >= 0) { 874 bh = alloc_buffer_head(GFP_NOFS); 875 if (!bh) 876 goto no_grow; 877 878 bh->b_this_page = head; 879 bh->b_blocknr = -1; 880 head = bh; 881 882 bh->b_size = size; 883 884 /* Link the buffer to its page */ 885 set_bh_page(bh, page, offset); 886 } 887 return head; 888 /* 889 * In case anything failed, we just free everything we got. 890 */ 891 no_grow: 892 if (head) { 893 do { 894 bh = head; 895 head = head->b_this_page; 896 free_buffer_head(bh); 897 } while (head); 898 } 899 900 /* 901 * Return failure for non-async IO requests. Async IO requests 902 * are not allowed to fail, so we have to wait until buffer heads 903 * become available. But we don't want tasks sleeping with 904 * partially complete buffers, so all were released above. 905 */ 906 if (!retry) 907 return NULL; 908 909 /* We're _really_ low on memory. Now we just 910 * wait for old buffer heads to become free due to 911 * finishing IO. Since this is an async request and 912 * the reserve list is empty, we're sure there are 913 * async buffer heads in use. 914 */ 915 free_more_memory(); 916 goto try_again; 917 } 918 EXPORT_SYMBOL_GPL(alloc_page_buffers); 919 920 static inline void 921 link_dev_buffers(struct page *page, struct buffer_head *head) 922 { 923 struct buffer_head *bh, *tail; 924 925 bh = head; 926 do { 927 tail = bh; 928 bh = bh->b_this_page; 929 } while (bh); 930 tail->b_this_page = head; 931 attach_page_buffers(page, head); 932 } 933 934 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 935 { 936 sector_t retval = ~((sector_t)0); 937 loff_t sz = i_size_read(bdev->bd_inode); 938 939 if (sz) { 940 unsigned int sizebits = blksize_bits(size); 941 retval = (sz >> sizebits); 942 } 943 return retval; 944 } 945 946 /* 947 * Initialise the state of a blockdev page's buffers. 948 */ 949 static sector_t 950 init_page_buffers(struct page *page, struct block_device *bdev, 951 sector_t block, int size) 952 { 953 struct buffer_head *head = page_buffers(page); 954 struct buffer_head *bh = head; 955 int uptodate = PageUptodate(page); 956 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 957 958 do { 959 if (!buffer_mapped(bh)) { 960 init_buffer(bh, NULL, NULL); 961 bh->b_bdev = bdev; 962 bh->b_blocknr = block; 963 if (uptodate) 964 set_buffer_uptodate(bh); 965 if (block < end_block) 966 set_buffer_mapped(bh); 967 } 968 block++; 969 bh = bh->b_this_page; 970 } while (bh != head); 971 972 /* 973 * Caller needs to validate requested block against end of device. 974 */ 975 return end_block; 976 } 977 978 /* 979 * Create the page-cache page that contains the requested block. 980 * 981 * This is used purely for blockdev mappings. 982 */ 983 static int 984 grow_dev_page(struct block_device *bdev, sector_t block, 985 pgoff_t index, int size, int sizebits, gfp_t gfp) 986 { 987 struct inode *inode = bdev->bd_inode; 988 struct page *page; 989 struct buffer_head *bh; 990 sector_t end_block; 991 int ret = 0; /* Will call free_more_memory() */ 992 gfp_t gfp_mask; 993 994 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 995 996 /* 997 * XXX: __getblk_slow() can not really deal with failure and 998 * will endlessly loop on improvised global reclaim. Prefer 999 * looping in the allocator rather than here, at least that 1000 * code knows what it's doing. 1001 */ 1002 gfp_mask |= __GFP_NOFAIL; 1003 1004 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 1005 if (!page) 1006 return ret; 1007 1008 BUG_ON(!PageLocked(page)); 1009 1010 if (page_has_buffers(page)) { 1011 bh = page_buffers(page); 1012 if (bh->b_size == size) { 1013 end_block = init_page_buffers(page, bdev, 1014 (sector_t)index << sizebits, 1015 size); 1016 goto done; 1017 } 1018 if (!try_to_free_buffers(page)) 1019 goto failed; 1020 } 1021 1022 /* 1023 * Allocate some buffers for this page 1024 */ 1025 bh = alloc_page_buffers(page, size, 0); 1026 if (!bh) 1027 goto failed; 1028 1029 /* 1030 * Link the page to the buffers and initialise them. Take the 1031 * lock to be atomic wrt __find_get_block(), which does not 1032 * run under the page lock. 1033 */ 1034 spin_lock(&inode->i_mapping->private_lock); 1035 link_dev_buffers(page, bh); 1036 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 1037 size); 1038 spin_unlock(&inode->i_mapping->private_lock); 1039 done: 1040 ret = (block < end_block) ? 1 : -ENXIO; 1041 failed: 1042 unlock_page(page); 1043 put_page(page); 1044 return ret; 1045 } 1046 1047 /* 1048 * Create buffers for the specified block device block's page. If 1049 * that page was dirty, the buffers are set dirty also. 1050 */ 1051 static int 1052 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 1053 { 1054 pgoff_t index; 1055 int sizebits; 1056 1057 sizebits = -1; 1058 do { 1059 sizebits++; 1060 } while ((size << sizebits) < PAGE_SIZE); 1061 1062 index = block >> sizebits; 1063 1064 /* 1065 * Check for a block which wants to lie outside our maximum possible 1066 * pagecache index. (this comparison is done using sector_t types). 1067 */ 1068 if (unlikely(index != block >> sizebits)) { 1069 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1070 "device %pg\n", 1071 __func__, (unsigned long long)block, 1072 bdev); 1073 return -EIO; 1074 } 1075 1076 /* Create a page with the proper size buffers.. */ 1077 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1078 } 1079 1080 struct buffer_head * 1081 __getblk_slow(struct block_device *bdev, sector_t block, 1082 unsigned size, gfp_t gfp) 1083 { 1084 /* Size must be multiple of hard sectorsize */ 1085 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1086 (size < 512 || size > PAGE_SIZE))) { 1087 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1088 size); 1089 printk(KERN_ERR "logical block size: %d\n", 1090 bdev_logical_block_size(bdev)); 1091 1092 dump_stack(); 1093 return NULL; 1094 } 1095 1096 for (;;) { 1097 struct buffer_head *bh; 1098 int ret; 1099 1100 bh = __find_get_block(bdev, block, size); 1101 if (bh) 1102 return bh; 1103 1104 ret = grow_buffers(bdev, block, size, gfp); 1105 if (ret < 0) 1106 return NULL; 1107 if (ret == 0) 1108 free_more_memory(); 1109 } 1110 } 1111 EXPORT_SYMBOL(__getblk_slow); 1112 1113 /* 1114 * The relationship between dirty buffers and dirty pages: 1115 * 1116 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1117 * the page is tagged dirty in its radix tree. 1118 * 1119 * At all times, the dirtiness of the buffers represents the dirtiness of 1120 * subsections of the page. If the page has buffers, the page dirty bit is 1121 * merely a hint about the true dirty state. 1122 * 1123 * When a page is set dirty in its entirety, all its buffers are marked dirty 1124 * (if the page has buffers). 1125 * 1126 * When a buffer is marked dirty, its page is dirtied, but the page's other 1127 * buffers are not. 1128 * 1129 * Also. When blockdev buffers are explicitly read with bread(), they 1130 * individually become uptodate. But their backing page remains not 1131 * uptodate - even if all of its buffers are uptodate. A subsequent 1132 * block_read_full_page() against that page will discover all the uptodate 1133 * buffers, will set the page uptodate and will perform no I/O. 1134 */ 1135 1136 /** 1137 * mark_buffer_dirty - mark a buffer_head as needing writeout 1138 * @bh: the buffer_head to mark dirty 1139 * 1140 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1141 * backing page dirty, then tag the page as dirty in its address_space's radix 1142 * tree and then attach the address_space's inode to its superblock's dirty 1143 * inode list. 1144 * 1145 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1146 * mapping->tree_lock and mapping->host->i_lock. 1147 */ 1148 void mark_buffer_dirty(struct buffer_head *bh) 1149 { 1150 WARN_ON_ONCE(!buffer_uptodate(bh)); 1151 1152 trace_block_dirty_buffer(bh); 1153 1154 /* 1155 * Very *carefully* optimize the it-is-already-dirty case. 1156 * 1157 * Don't let the final "is it dirty" escape to before we 1158 * perhaps modified the buffer. 1159 */ 1160 if (buffer_dirty(bh)) { 1161 smp_mb(); 1162 if (buffer_dirty(bh)) 1163 return; 1164 } 1165 1166 if (!test_set_buffer_dirty(bh)) { 1167 struct page *page = bh->b_page; 1168 struct address_space *mapping = NULL; 1169 1170 lock_page_memcg(page); 1171 if (!TestSetPageDirty(page)) { 1172 mapping = page_mapping(page); 1173 if (mapping) 1174 __set_page_dirty(page, mapping, 0); 1175 } 1176 unlock_page_memcg(page); 1177 if (mapping) 1178 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1179 } 1180 } 1181 EXPORT_SYMBOL(mark_buffer_dirty); 1182 1183 /* 1184 * Decrement a buffer_head's reference count. If all buffers against a page 1185 * have zero reference count, are clean and unlocked, and if the page is clean 1186 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1187 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1188 * a page but it ends up not being freed, and buffers may later be reattached). 1189 */ 1190 void __brelse(struct buffer_head * buf) 1191 { 1192 if (atomic_read(&buf->b_count)) { 1193 put_bh(buf); 1194 return; 1195 } 1196 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1197 } 1198 EXPORT_SYMBOL(__brelse); 1199 1200 /* 1201 * bforget() is like brelse(), except it discards any 1202 * potentially dirty data. 1203 */ 1204 void __bforget(struct buffer_head *bh) 1205 { 1206 clear_buffer_dirty(bh); 1207 if (bh->b_assoc_map) { 1208 struct address_space *buffer_mapping = bh->b_page->mapping; 1209 1210 spin_lock(&buffer_mapping->private_lock); 1211 list_del_init(&bh->b_assoc_buffers); 1212 bh->b_assoc_map = NULL; 1213 spin_unlock(&buffer_mapping->private_lock); 1214 } 1215 __brelse(bh); 1216 } 1217 EXPORT_SYMBOL(__bforget); 1218 1219 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1220 { 1221 lock_buffer(bh); 1222 if (buffer_uptodate(bh)) { 1223 unlock_buffer(bh); 1224 return bh; 1225 } else { 1226 get_bh(bh); 1227 bh->b_end_io = end_buffer_read_sync; 1228 submit_bh(READ, bh); 1229 wait_on_buffer(bh); 1230 if (buffer_uptodate(bh)) 1231 return bh; 1232 } 1233 brelse(bh); 1234 return NULL; 1235 } 1236 1237 /* 1238 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1239 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1240 * refcount elevated by one when they're in an LRU. A buffer can only appear 1241 * once in a particular CPU's LRU. A single buffer can be present in multiple 1242 * CPU's LRUs at the same time. 1243 * 1244 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1245 * sb_find_get_block(). 1246 * 1247 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1248 * a local interrupt disable for that. 1249 */ 1250 1251 #define BH_LRU_SIZE 16 1252 1253 struct bh_lru { 1254 struct buffer_head *bhs[BH_LRU_SIZE]; 1255 }; 1256 1257 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1258 1259 #ifdef CONFIG_SMP 1260 #define bh_lru_lock() local_irq_disable() 1261 #define bh_lru_unlock() local_irq_enable() 1262 #else 1263 #define bh_lru_lock() preempt_disable() 1264 #define bh_lru_unlock() preempt_enable() 1265 #endif 1266 1267 static inline void check_irqs_on(void) 1268 { 1269 #ifdef irqs_disabled 1270 BUG_ON(irqs_disabled()); 1271 #endif 1272 } 1273 1274 /* 1275 * The LRU management algorithm is dopey-but-simple. Sorry. 1276 */ 1277 static void bh_lru_install(struct buffer_head *bh) 1278 { 1279 struct buffer_head *evictee = NULL; 1280 1281 check_irqs_on(); 1282 bh_lru_lock(); 1283 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) { 1284 struct buffer_head *bhs[BH_LRU_SIZE]; 1285 int in; 1286 int out = 0; 1287 1288 get_bh(bh); 1289 bhs[out++] = bh; 1290 for (in = 0; in < BH_LRU_SIZE; in++) { 1291 struct buffer_head *bh2 = 1292 __this_cpu_read(bh_lrus.bhs[in]); 1293 1294 if (bh2 == bh) { 1295 __brelse(bh2); 1296 } else { 1297 if (out >= BH_LRU_SIZE) { 1298 BUG_ON(evictee != NULL); 1299 evictee = bh2; 1300 } else { 1301 bhs[out++] = bh2; 1302 } 1303 } 1304 } 1305 while (out < BH_LRU_SIZE) 1306 bhs[out++] = NULL; 1307 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs)); 1308 } 1309 bh_lru_unlock(); 1310 1311 if (evictee) 1312 __brelse(evictee); 1313 } 1314 1315 /* 1316 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1317 */ 1318 static struct buffer_head * 1319 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1320 { 1321 struct buffer_head *ret = NULL; 1322 unsigned int i; 1323 1324 check_irqs_on(); 1325 bh_lru_lock(); 1326 for (i = 0; i < BH_LRU_SIZE; i++) { 1327 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1328 1329 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1330 bh->b_size == size) { 1331 if (i) { 1332 while (i) { 1333 __this_cpu_write(bh_lrus.bhs[i], 1334 __this_cpu_read(bh_lrus.bhs[i - 1])); 1335 i--; 1336 } 1337 __this_cpu_write(bh_lrus.bhs[0], bh); 1338 } 1339 get_bh(bh); 1340 ret = bh; 1341 break; 1342 } 1343 } 1344 bh_lru_unlock(); 1345 return ret; 1346 } 1347 1348 /* 1349 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1350 * it in the LRU and mark it as accessed. If it is not present then return 1351 * NULL 1352 */ 1353 struct buffer_head * 1354 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1355 { 1356 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1357 1358 if (bh == NULL) { 1359 /* __find_get_block_slow will mark the page accessed */ 1360 bh = __find_get_block_slow(bdev, block); 1361 if (bh) 1362 bh_lru_install(bh); 1363 } else 1364 touch_buffer(bh); 1365 1366 return bh; 1367 } 1368 EXPORT_SYMBOL(__find_get_block); 1369 1370 /* 1371 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1372 * which corresponds to the passed block_device, block and size. The 1373 * returned buffer has its reference count incremented. 1374 * 1375 * __getblk_gfp() will lock up the machine if grow_dev_page's 1376 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1377 */ 1378 struct buffer_head * 1379 __getblk_gfp(struct block_device *bdev, sector_t block, 1380 unsigned size, gfp_t gfp) 1381 { 1382 struct buffer_head *bh = __find_get_block(bdev, block, size); 1383 1384 might_sleep(); 1385 if (bh == NULL) 1386 bh = __getblk_slow(bdev, block, size, gfp); 1387 return bh; 1388 } 1389 EXPORT_SYMBOL(__getblk_gfp); 1390 1391 /* 1392 * Do async read-ahead on a buffer.. 1393 */ 1394 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1395 { 1396 struct buffer_head *bh = __getblk(bdev, block, size); 1397 if (likely(bh)) { 1398 ll_rw_block(READA, 1, &bh); 1399 brelse(bh); 1400 } 1401 } 1402 EXPORT_SYMBOL(__breadahead); 1403 1404 /** 1405 * __bread_gfp() - reads a specified block and returns the bh 1406 * @bdev: the block_device to read from 1407 * @block: number of block 1408 * @size: size (in bytes) to read 1409 * @gfp: page allocation flag 1410 * 1411 * Reads a specified block, and returns buffer head that contains it. 1412 * The page cache can be allocated from non-movable area 1413 * not to prevent page migration if you set gfp to zero. 1414 * It returns NULL if the block was unreadable. 1415 */ 1416 struct buffer_head * 1417 __bread_gfp(struct block_device *bdev, sector_t block, 1418 unsigned size, gfp_t gfp) 1419 { 1420 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1421 1422 if (likely(bh) && !buffer_uptodate(bh)) 1423 bh = __bread_slow(bh); 1424 return bh; 1425 } 1426 EXPORT_SYMBOL(__bread_gfp); 1427 1428 /* 1429 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1430 * This doesn't race because it runs in each cpu either in irq 1431 * or with preempt disabled. 1432 */ 1433 static void invalidate_bh_lru(void *arg) 1434 { 1435 struct bh_lru *b = &get_cpu_var(bh_lrus); 1436 int i; 1437 1438 for (i = 0; i < BH_LRU_SIZE; i++) { 1439 brelse(b->bhs[i]); 1440 b->bhs[i] = NULL; 1441 } 1442 put_cpu_var(bh_lrus); 1443 } 1444 1445 static bool has_bh_in_lru(int cpu, void *dummy) 1446 { 1447 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1448 int i; 1449 1450 for (i = 0; i < BH_LRU_SIZE; i++) { 1451 if (b->bhs[i]) 1452 return 1; 1453 } 1454 1455 return 0; 1456 } 1457 1458 void invalidate_bh_lrus(void) 1459 { 1460 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); 1461 } 1462 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1463 1464 void set_bh_page(struct buffer_head *bh, 1465 struct page *page, unsigned long offset) 1466 { 1467 bh->b_page = page; 1468 BUG_ON(offset >= PAGE_SIZE); 1469 if (PageHighMem(page)) 1470 /* 1471 * This catches illegal uses and preserves the offset: 1472 */ 1473 bh->b_data = (char *)(0 + offset); 1474 else 1475 bh->b_data = page_address(page) + offset; 1476 } 1477 EXPORT_SYMBOL(set_bh_page); 1478 1479 /* 1480 * Called when truncating a buffer on a page completely. 1481 */ 1482 1483 /* Bits that are cleared during an invalidate */ 1484 #define BUFFER_FLAGS_DISCARD \ 1485 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1486 1 << BH_Delay | 1 << BH_Unwritten) 1487 1488 static void discard_buffer(struct buffer_head * bh) 1489 { 1490 unsigned long b_state, b_state_old; 1491 1492 lock_buffer(bh); 1493 clear_buffer_dirty(bh); 1494 bh->b_bdev = NULL; 1495 b_state = bh->b_state; 1496 for (;;) { 1497 b_state_old = cmpxchg(&bh->b_state, b_state, 1498 (b_state & ~BUFFER_FLAGS_DISCARD)); 1499 if (b_state_old == b_state) 1500 break; 1501 b_state = b_state_old; 1502 } 1503 unlock_buffer(bh); 1504 } 1505 1506 /** 1507 * block_invalidatepage - invalidate part or all of a buffer-backed page 1508 * 1509 * @page: the page which is affected 1510 * @offset: start of the range to invalidate 1511 * @length: length of the range to invalidate 1512 * 1513 * block_invalidatepage() is called when all or part of the page has become 1514 * invalidated by a truncate operation. 1515 * 1516 * block_invalidatepage() does not have to release all buffers, but it must 1517 * ensure that no dirty buffer is left outside @offset and that no I/O 1518 * is underway against any of the blocks which are outside the truncation 1519 * point. Because the caller is about to free (and possibly reuse) those 1520 * blocks on-disk. 1521 */ 1522 void block_invalidatepage(struct page *page, unsigned int offset, 1523 unsigned int length) 1524 { 1525 struct buffer_head *head, *bh, *next; 1526 unsigned int curr_off = 0; 1527 unsigned int stop = length + offset; 1528 1529 BUG_ON(!PageLocked(page)); 1530 if (!page_has_buffers(page)) 1531 goto out; 1532 1533 /* 1534 * Check for overflow 1535 */ 1536 BUG_ON(stop > PAGE_SIZE || stop < length); 1537 1538 head = page_buffers(page); 1539 bh = head; 1540 do { 1541 unsigned int next_off = curr_off + bh->b_size; 1542 next = bh->b_this_page; 1543 1544 /* 1545 * Are we still fully in range ? 1546 */ 1547 if (next_off > stop) 1548 goto out; 1549 1550 /* 1551 * is this block fully invalidated? 1552 */ 1553 if (offset <= curr_off) 1554 discard_buffer(bh); 1555 curr_off = next_off; 1556 bh = next; 1557 } while (bh != head); 1558 1559 /* 1560 * We release buffers only if the entire page is being invalidated. 1561 * The get_block cached value has been unconditionally invalidated, 1562 * so real IO is not possible anymore. 1563 */ 1564 if (offset == 0) 1565 try_to_release_page(page, 0); 1566 out: 1567 return; 1568 } 1569 EXPORT_SYMBOL(block_invalidatepage); 1570 1571 1572 /* 1573 * We attach and possibly dirty the buffers atomically wrt 1574 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1575 * is already excluded via the page lock. 1576 */ 1577 void create_empty_buffers(struct page *page, 1578 unsigned long blocksize, unsigned long b_state) 1579 { 1580 struct buffer_head *bh, *head, *tail; 1581 1582 head = alloc_page_buffers(page, blocksize, 1); 1583 bh = head; 1584 do { 1585 bh->b_state |= b_state; 1586 tail = bh; 1587 bh = bh->b_this_page; 1588 } while (bh); 1589 tail->b_this_page = head; 1590 1591 spin_lock(&page->mapping->private_lock); 1592 if (PageUptodate(page) || PageDirty(page)) { 1593 bh = head; 1594 do { 1595 if (PageDirty(page)) 1596 set_buffer_dirty(bh); 1597 if (PageUptodate(page)) 1598 set_buffer_uptodate(bh); 1599 bh = bh->b_this_page; 1600 } while (bh != head); 1601 } 1602 attach_page_buffers(page, head); 1603 spin_unlock(&page->mapping->private_lock); 1604 } 1605 EXPORT_SYMBOL(create_empty_buffers); 1606 1607 /* 1608 * We are taking a block for data and we don't want any output from any 1609 * buffer-cache aliases starting from return from that function and 1610 * until the moment when something will explicitly mark the buffer 1611 * dirty (hopefully that will not happen until we will free that block ;-) 1612 * We don't even need to mark it not-uptodate - nobody can expect 1613 * anything from a newly allocated buffer anyway. We used to used 1614 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1615 * don't want to mark the alias unmapped, for example - it would confuse 1616 * anyone who might pick it with bread() afterwards... 1617 * 1618 * Also.. Note that bforget() doesn't lock the buffer. So there can 1619 * be writeout I/O going on against recently-freed buffers. We don't 1620 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1621 * only if we really need to. That happens here. 1622 */ 1623 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1624 { 1625 struct buffer_head *old_bh; 1626 1627 might_sleep(); 1628 1629 old_bh = __find_get_block_slow(bdev, block); 1630 if (old_bh) { 1631 clear_buffer_dirty(old_bh); 1632 wait_on_buffer(old_bh); 1633 clear_buffer_req(old_bh); 1634 __brelse(old_bh); 1635 } 1636 } 1637 EXPORT_SYMBOL(unmap_underlying_metadata); 1638 1639 /* 1640 * Size is a power-of-two in the range 512..PAGE_SIZE, 1641 * and the case we care about most is PAGE_SIZE. 1642 * 1643 * So this *could* possibly be written with those 1644 * constraints in mind (relevant mostly if some 1645 * architecture has a slow bit-scan instruction) 1646 */ 1647 static inline int block_size_bits(unsigned int blocksize) 1648 { 1649 return ilog2(blocksize); 1650 } 1651 1652 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1653 { 1654 BUG_ON(!PageLocked(page)); 1655 1656 if (!page_has_buffers(page)) 1657 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state); 1658 return page_buffers(page); 1659 } 1660 1661 /* 1662 * NOTE! All mapped/uptodate combinations are valid: 1663 * 1664 * Mapped Uptodate Meaning 1665 * 1666 * No No "unknown" - must do get_block() 1667 * No Yes "hole" - zero-filled 1668 * Yes No "allocated" - allocated on disk, not read in 1669 * Yes Yes "valid" - allocated and up-to-date in memory. 1670 * 1671 * "Dirty" is valid only with the last case (mapped+uptodate). 1672 */ 1673 1674 /* 1675 * While block_write_full_page is writing back the dirty buffers under 1676 * the page lock, whoever dirtied the buffers may decide to clean them 1677 * again at any time. We handle that by only looking at the buffer 1678 * state inside lock_buffer(). 1679 * 1680 * If block_write_full_page() is called for regular writeback 1681 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1682 * locked buffer. This only can happen if someone has written the buffer 1683 * directly, with submit_bh(). At the address_space level PageWriteback 1684 * prevents this contention from occurring. 1685 * 1686 * If block_write_full_page() is called with wbc->sync_mode == 1687 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this 1688 * causes the writes to be flagged as synchronous writes. 1689 */ 1690 static int __block_write_full_page(struct inode *inode, struct page *page, 1691 get_block_t *get_block, struct writeback_control *wbc, 1692 bh_end_io_t *handler) 1693 { 1694 int err; 1695 sector_t block; 1696 sector_t last_block; 1697 struct buffer_head *bh, *head; 1698 unsigned int blocksize, bbits; 1699 int nr_underway = 0; 1700 int write_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE); 1701 1702 head = create_page_buffers(page, inode, 1703 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1704 1705 /* 1706 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1707 * here, and the (potentially unmapped) buffers may become dirty at 1708 * any time. If a buffer becomes dirty here after we've inspected it 1709 * then we just miss that fact, and the page stays dirty. 1710 * 1711 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1712 * handle that here by just cleaning them. 1713 */ 1714 1715 bh = head; 1716 blocksize = bh->b_size; 1717 bbits = block_size_bits(blocksize); 1718 1719 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1720 last_block = (i_size_read(inode) - 1) >> bbits; 1721 1722 /* 1723 * Get all the dirty buffers mapped to disk addresses and 1724 * handle any aliases from the underlying blockdev's mapping. 1725 */ 1726 do { 1727 if (block > last_block) { 1728 /* 1729 * mapped buffers outside i_size will occur, because 1730 * this page can be outside i_size when there is a 1731 * truncate in progress. 1732 */ 1733 /* 1734 * The buffer was zeroed by block_write_full_page() 1735 */ 1736 clear_buffer_dirty(bh); 1737 set_buffer_uptodate(bh); 1738 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1739 buffer_dirty(bh)) { 1740 WARN_ON(bh->b_size != blocksize); 1741 err = get_block(inode, block, bh, 1); 1742 if (err) 1743 goto recover; 1744 clear_buffer_delay(bh); 1745 if (buffer_new(bh)) { 1746 /* blockdev mappings never come here */ 1747 clear_buffer_new(bh); 1748 unmap_underlying_metadata(bh->b_bdev, 1749 bh->b_blocknr); 1750 } 1751 } 1752 bh = bh->b_this_page; 1753 block++; 1754 } while (bh != head); 1755 1756 do { 1757 if (!buffer_mapped(bh)) 1758 continue; 1759 /* 1760 * If it's a fully non-blocking write attempt and we cannot 1761 * lock the buffer then redirty the page. Note that this can 1762 * potentially cause a busy-wait loop from writeback threads 1763 * and kswapd activity, but those code paths have their own 1764 * higher-level throttling. 1765 */ 1766 if (wbc->sync_mode != WB_SYNC_NONE) { 1767 lock_buffer(bh); 1768 } else if (!trylock_buffer(bh)) { 1769 redirty_page_for_writepage(wbc, page); 1770 continue; 1771 } 1772 if (test_clear_buffer_dirty(bh)) { 1773 mark_buffer_async_write_endio(bh, handler); 1774 } else { 1775 unlock_buffer(bh); 1776 } 1777 } while ((bh = bh->b_this_page) != head); 1778 1779 /* 1780 * The page and its buffers are protected by PageWriteback(), so we can 1781 * drop the bh refcounts early. 1782 */ 1783 BUG_ON(PageWriteback(page)); 1784 set_page_writeback(page); 1785 1786 do { 1787 struct buffer_head *next = bh->b_this_page; 1788 if (buffer_async_write(bh)) { 1789 submit_bh_wbc(write_op, bh, 0, wbc); 1790 nr_underway++; 1791 } 1792 bh = next; 1793 } while (bh != head); 1794 unlock_page(page); 1795 1796 err = 0; 1797 done: 1798 if (nr_underway == 0) { 1799 /* 1800 * The page was marked dirty, but the buffers were 1801 * clean. Someone wrote them back by hand with 1802 * ll_rw_block/submit_bh. A rare case. 1803 */ 1804 end_page_writeback(page); 1805 1806 /* 1807 * The page and buffer_heads can be released at any time from 1808 * here on. 1809 */ 1810 } 1811 return err; 1812 1813 recover: 1814 /* 1815 * ENOSPC, or some other error. We may already have added some 1816 * blocks to the file, so we need to write these out to avoid 1817 * exposing stale data. 1818 * The page is currently locked and not marked for writeback 1819 */ 1820 bh = head; 1821 /* Recovery: lock and submit the mapped buffers */ 1822 do { 1823 if (buffer_mapped(bh) && buffer_dirty(bh) && 1824 !buffer_delay(bh)) { 1825 lock_buffer(bh); 1826 mark_buffer_async_write_endio(bh, handler); 1827 } else { 1828 /* 1829 * The buffer may have been set dirty during 1830 * attachment to a dirty page. 1831 */ 1832 clear_buffer_dirty(bh); 1833 } 1834 } while ((bh = bh->b_this_page) != head); 1835 SetPageError(page); 1836 BUG_ON(PageWriteback(page)); 1837 mapping_set_error(page->mapping, err); 1838 set_page_writeback(page); 1839 do { 1840 struct buffer_head *next = bh->b_this_page; 1841 if (buffer_async_write(bh)) { 1842 clear_buffer_dirty(bh); 1843 submit_bh_wbc(write_op, bh, 0, wbc); 1844 nr_underway++; 1845 } 1846 bh = next; 1847 } while (bh != head); 1848 unlock_page(page); 1849 goto done; 1850 } 1851 1852 /* 1853 * If a page has any new buffers, zero them out here, and mark them uptodate 1854 * and dirty so they'll be written out (in order to prevent uninitialised 1855 * block data from leaking). And clear the new bit. 1856 */ 1857 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1858 { 1859 unsigned int block_start, block_end; 1860 struct buffer_head *head, *bh; 1861 1862 BUG_ON(!PageLocked(page)); 1863 if (!page_has_buffers(page)) 1864 return; 1865 1866 bh = head = page_buffers(page); 1867 block_start = 0; 1868 do { 1869 block_end = block_start + bh->b_size; 1870 1871 if (buffer_new(bh)) { 1872 if (block_end > from && block_start < to) { 1873 if (!PageUptodate(page)) { 1874 unsigned start, size; 1875 1876 start = max(from, block_start); 1877 size = min(to, block_end) - start; 1878 1879 zero_user(page, start, size); 1880 set_buffer_uptodate(bh); 1881 } 1882 1883 clear_buffer_new(bh); 1884 mark_buffer_dirty(bh); 1885 } 1886 } 1887 1888 block_start = block_end; 1889 bh = bh->b_this_page; 1890 } while (bh != head); 1891 } 1892 EXPORT_SYMBOL(page_zero_new_buffers); 1893 1894 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 1895 get_block_t *get_block) 1896 { 1897 unsigned from = pos & (PAGE_SIZE - 1); 1898 unsigned to = from + len; 1899 struct inode *inode = page->mapping->host; 1900 unsigned block_start, block_end; 1901 sector_t block; 1902 int err = 0; 1903 unsigned blocksize, bbits; 1904 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1905 1906 BUG_ON(!PageLocked(page)); 1907 BUG_ON(from > PAGE_SIZE); 1908 BUG_ON(to > PAGE_SIZE); 1909 BUG_ON(from > to); 1910 1911 head = create_page_buffers(page, inode, 0); 1912 blocksize = head->b_size; 1913 bbits = block_size_bits(blocksize); 1914 1915 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1916 1917 for(bh = head, block_start = 0; bh != head || !block_start; 1918 block++, block_start=block_end, bh = bh->b_this_page) { 1919 block_end = block_start + blocksize; 1920 if (block_end <= from || block_start >= to) { 1921 if (PageUptodate(page)) { 1922 if (!buffer_uptodate(bh)) 1923 set_buffer_uptodate(bh); 1924 } 1925 continue; 1926 } 1927 if (buffer_new(bh)) 1928 clear_buffer_new(bh); 1929 if (!buffer_mapped(bh)) { 1930 WARN_ON(bh->b_size != blocksize); 1931 err = get_block(inode, block, bh, 1); 1932 if (err) 1933 break; 1934 if (buffer_new(bh)) { 1935 unmap_underlying_metadata(bh->b_bdev, 1936 bh->b_blocknr); 1937 if (PageUptodate(page)) { 1938 clear_buffer_new(bh); 1939 set_buffer_uptodate(bh); 1940 mark_buffer_dirty(bh); 1941 continue; 1942 } 1943 if (block_end > to || block_start < from) 1944 zero_user_segments(page, 1945 to, block_end, 1946 block_start, from); 1947 continue; 1948 } 1949 } 1950 if (PageUptodate(page)) { 1951 if (!buffer_uptodate(bh)) 1952 set_buffer_uptodate(bh); 1953 continue; 1954 } 1955 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1956 !buffer_unwritten(bh) && 1957 (block_start < from || block_end > to)) { 1958 ll_rw_block(READ, 1, &bh); 1959 *wait_bh++=bh; 1960 } 1961 } 1962 /* 1963 * If we issued read requests - let them complete. 1964 */ 1965 while(wait_bh > wait) { 1966 wait_on_buffer(*--wait_bh); 1967 if (!buffer_uptodate(*wait_bh)) 1968 err = -EIO; 1969 } 1970 if (unlikely(err)) 1971 page_zero_new_buffers(page, from, to); 1972 return err; 1973 } 1974 EXPORT_SYMBOL(__block_write_begin); 1975 1976 static int __block_commit_write(struct inode *inode, struct page *page, 1977 unsigned from, unsigned to) 1978 { 1979 unsigned block_start, block_end; 1980 int partial = 0; 1981 unsigned blocksize; 1982 struct buffer_head *bh, *head; 1983 1984 bh = head = page_buffers(page); 1985 blocksize = bh->b_size; 1986 1987 block_start = 0; 1988 do { 1989 block_end = block_start + blocksize; 1990 if (block_end <= from || block_start >= to) { 1991 if (!buffer_uptodate(bh)) 1992 partial = 1; 1993 } else { 1994 set_buffer_uptodate(bh); 1995 mark_buffer_dirty(bh); 1996 } 1997 clear_buffer_new(bh); 1998 1999 block_start = block_end; 2000 bh = bh->b_this_page; 2001 } while (bh != head); 2002 2003 /* 2004 * If this is a partial write which happened to make all buffers 2005 * uptodate then we can optimize away a bogus readpage() for 2006 * the next read(). Here we 'discover' whether the page went 2007 * uptodate as a result of this (potentially partial) write. 2008 */ 2009 if (!partial) 2010 SetPageUptodate(page); 2011 return 0; 2012 } 2013 2014 /* 2015 * block_write_begin takes care of the basic task of block allocation and 2016 * bringing partial write blocks uptodate first. 2017 * 2018 * The filesystem needs to handle block truncation upon failure. 2019 */ 2020 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2021 unsigned flags, struct page **pagep, get_block_t *get_block) 2022 { 2023 pgoff_t index = pos >> PAGE_SHIFT; 2024 struct page *page; 2025 int status; 2026 2027 page = grab_cache_page_write_begin(mapping, index, flags); 2028 if (!page) 2029 return -ENOMEM; 2030 2031 status = __block_write_begin(page, pos, len, get_block); 2032 if (unlikely(status)) { 2033 unlock_page(page); 2034 put_page(page); 2035 page = NULL; 2036 } 2037 2038 *pagep = page; 2039 return status; 2040 } 2041 EXPORT_SYMBOL(block_write_begin); 2042 2043 int block_write_end(struct file *file, struct address_space *mapping, 2044 loff_t pos, unsigned len, unsigned copied, 2045 struct page *page, void *fsdata) 2046 { 2047 struct inode *inode = mapping->host; 2048 unsigned start; 2049 2050 start = pos & (PAGE_SIZE - 1); 2051 2052 if (unlikely(copied < len)) { 2053 /* 2054 * The buffers that were written will now be uptodate, so we 2055 * don't have to worry about a readpage reading them and 2056 * overwriting a partial write. However if we have encountered 2057 * a short write and only partially written into a buffer, it 2058 * will not be marked uptodate, so a readpage might come in and 2059 * destroy our partial write. 2060 * 2061 * Do the simplest thing, and just treat any short write to a 2062 * non uptodate page as a zero-length write, and force the 2063 * caller to redo the whole thing. 2064 */ 2065 if (!PageUptodate(page)) 2066 copied = 0; 2067 2068 page_zero_new_buffers(page, start+copied, start+len); 2069 } 2070 flush_dcache_page(page); 2071 2072 /* This could be a short (even 0-length) commit */ 2073 __block_commit_write(inode, page, start, start+copied); 2074 2075 return copied; 2076 } 2077 EXPORT_SYMBOL(block_write_end); 2078 2079 int generic_write_end(struct file *file, struct address_space *mapping, 2080 loff_t pos, unsigned len, unsigned copied, 2081 struct page *page, void *fsdata) 2082 { 2083 struct inode *inode = mapping->host; 2084 loff_t old_size = inode->i_size; 2085 int i_size_changed = 0; 2086 2087 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2088 2089 /* 2090 * No need to use i_size_read() here, the i_size 2091 * cannot change under us because we hold i_mutex. 2092 * 2093 * But it's important to update i_size while still holding page lock: 2094 * page writeout could otherwise come in and zero beyond i_size. 2095 */ 2096 if (pos+copied > inode->i_size) { 2097 i_size_write(inode, pos+copied); 2098 i_size_changed = 1; 2099 } 2100 2101 unlock_page(page); 2102 put_page(page); 2103 2104 if (old_size < pos) 2105 pagecache_isize_extended(inode, old_size, pos); 2106 /* 2107 * Don't mark the inode dirty under page lock. First, it unnecessarily 2108 * makes the holding time of page lock longer. Second, it forces lock 2109 * ordering of page lock and transaction start for journaling 2110 * filesystems. 2111 */ 2112 if (i_size_changed) 2113 mark_inode_dirty(inode); 2114 2115 return copied; 2116 } 2117 EXPORT_SYMBOL(generic_write_end); 2118 2119 /* 2120 * block_is_partially_uptodate checks whether buffers within a page are 2121 * uptodate or not. 2122 * 2123 * Returns true if all buffers which correspond to a file portion 2124 * we want to read are uptodate. 2125 */ 2126 int block_is_partially_uptodate(struct page *page, unsigned long from, 2127 unsigned long count) 2128 { 2129 unsigned block_start, block_end, blocksize; 2130 unsigned to; 2131 struct buffer_head *bh, *head; 2132 int ret = 1; 2133 2134 if (!page_has_buffers(page)) 2135 return 0; 2136 2137 head = page_buffers(page); 2138 blocksize = head->b_size; 2139 to = min_t(unsigned, PAGE_SIZE - from, count); 2140 to = from + to; 2141 if (from < blocksize && to > PAGE_SIZE - blocksize) 2142 return 0; 2143 2144 bh = head; 2145 block_start = 0; 2146 do { 2147 block_end = block_start + blocksize; 2148 if (block_end > from && block_start < to) { 2149 if (!buffer_uptodate(bh)) { 2150 ret = 0; 2151 break; 2152 } 2153 if (block_end >= to) 2154 break; 2155 } 2156 block_start = block_end; 2157 bh = bh->b_this_page; 2158 } while (bh != head); 2159 2160 return ret; 2161 } 2162 EXPORT_SYMBOL(block_is_partially_uptodate); 2163 2164 /* 2165 * Generic "read page" function for block devices that have the normal 2166 * get_block functionality. This is most of the block device filesystems. 2167 * Reads the page asynchronously --- the unlock_buffer() and 2168 * set/clear_buffer_uptodate() functions propagate buffer state into the 2169 * page struct once IO has completed. 2170 */ 2171 int block_read_full_page(struct page *page, get_block_t *get_block) 2172 { 2173 struct inode *inode = page->mapping->host; 2174 sector_t iblock, lblock; 2175 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2176 unsigned int blocksize, bbits; 2177 int nr, i; 2178 int fully_mapped = 1; 2179 2180 head = create_page_buffers(page, inode, 0); 2181 blocksize = head->b_size; 2182 bbits = block_size_bits(blocksize); 2183 2184 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits); 2185 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2186 bh = head; 2187 nr = 0; 2188 i = 0; 2189 2190 do { 2191 if (buffer_uptodate(bh)) 2192 continue; 2193 2194 if (!buffer_mapped(bh)) { 2195 int err = 0; 2196 2197 fully_mapped = 0; 2198 if (iblock < lblock) { 2199 WARN_ON(bh->b_size != blocksize); 2200 err = get_block(inode, iblock, bh, 0); 2201 if (err) 2202 SetPageError(page); 2203 } 2204 if (!buffer_mapped(bh)) { 2205 zero_user(page, i * blocksize, blocksize); 2206 if (!err) 2207 set_buffer_uptodate(bh); 2208 continue; 2209 } 2210 /* 2211 * get_block() might have updated the buffer 2212 * synchronously 2213 */ 2214 if (buffer_uptodate(bh)) 2215 continue; 2216 } 2217 arr[nr++] = bh; 2218 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2219 2220 if (fully_mapped) 2221 SetPageMappedToDisk(page); 2222 2223 if (!nr) { 2224 /* 2225 * All buffers are uptodate - we can set the page uptodate 2226 * as well. But not if get_block() returned an error. 2227 */ 2228 if (!PageError(page)) 2229 SetPageUptodate(page); 2230 unlock_page(page); 2231 return 0; 2232 } 2233 2234 /* Stage two: lock the buffers */ 2235 for (i = 0; i < nr; i++) { 2236 bh = arr[i]; 2237 lock_buffer(bh); 2238 mark_buffer_async_read(bh); 2239 } 2240 2241 /* 2242 * Stage 3: start the IO. Check for uptodateness 2243 * inside the buffer lock in case another process reading 2244 * the underlying blockdev brought it uptodate (the sct fix). 2245 */ 2246 for (i = 0; i < nr; i++) { 2247 bh = arr[i]; 2248 if (buffer_uptodate(bh)) 2249 end_buffer_async_read(bh, 1); 2250 else 2251 submit_bh(READ, bh); 2252 } 2253 return 0; 2254 } 2255 EXPORT_SYMBOL(block_read_full_page); 2256 2257 /* utility function for filesystems that need to do work on expanding 2258 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2259 * deal with the hole. 2260 */ 2261 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2262 { 2263 struct address_space *mapping = inode->i_mapping; 2264 struct page *page; 2265 void *fsdata; 2266 int err; 2267 2268 err = inode_newsize_ok(inode, size); 2269 if (err) 2270 goto out; 2271 2272 err = pagecache_write_begin(NULL, mapping, size, 0, 2273 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2274 &page, &fsdata); 2275 if (err) 2276 goto out; 2277 2278 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2279 BUG_ON(err > 0); 2280 2281 out: 2282 return err; 2283 } 2284 EXPORT_SYMBOL(generic_cont_expand_simple); 2285 2286 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2287 loff_t pos, loff_t *bytes) 2288 { 2289 struct inode *inode = mapping->host; 2290 unsigned blocksize = 1 << inode->i_blkbits; 2291 struct page *page; 2292 void *fsdata; 2293 pgoff_t index, curidx; 2294 loff_t curpos; 2295 unsigned zerofrom, offset, len; 2296 int err = 0; 2297 2298 index = pos >> PAGE_SHIFT; 2299 offset = pos & ~PAGE_MASK; 2300 2301 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2302 zerofrom = curpos & ~PAGE_MASK; 2303 if (zerofrom & (blocksize-1)) { 2304 *bytes |= (blocksize-1); 2305 (*bytes)++; 2306 } 2307 len = PAGE_SIZE - zerofrom; 2308 2309 err = pagecache_write_begin(file, mapping, curpos, len, 2310 AOP_FLAG_UNINTERRUPTIBLE, 2311 &page, &fsdata); 2312 if (err) 2313 goto out; 2314 zero_user(page, zerofrom, len); 2315 err = pagecache_write_end(file, mapping, curpos, len, len, 2316 page, fsdata); 2317 if (err < 0) 2318 goto out; 2319 BUG_ON(err != len); 2320 err = 0; 2321 2322 balance_dirty_pages_ratelimited(mapping); 2323 2324 if (unlikely(fatal_signal_pending(current))) { 2325 err = -EINTR; 2326 goto out; 2327 } 2328 } 2329 2330 /* page covers the boundary, find the boundary offset */ 2331 if (index == curidx) { 2332 zerofrom = curpos & ~PAGE_MASK; 2333 /* if we will expand the thing last block will be filled */ 2334 if (offset <= zerofrom) { 2335 goto out; 2336 } 2337 if (zerofrom & (blocksize-1)) { 2338 *bytes |= (blocksize-1); 2339 (*bytes)++; 2340 } 2341 len = offset - zerofrom; 2342 2343 err = pagecache_write_begin(file, mapping, curpos, len, 2344 AOP_FLAG_UNINTERRUPTIBLE, 2345 &page, &fsdata); 2346 if (err) 2347 goto out; 2348 zero_user(page, zerofrom, len); 2349 err = pagecache_write_end(file, mapping, curpos, len, len, 2350 page, fsdata); 2351 if (err < 0) 2352 goto out; 2353 BUG_ON(err != len); 2354 err = 0; 2355 } 2356 out: 2357 return err; 2358 } 2359 2360 /* 2361 * For moronic filesystems that do not allow holes in file. 2362 * We may have to extend the file. 2363 */ 2364 int cont_write_begin(struct file *file, struct address_space *mapping, 2365 loff_t pos, unsigned len, unsigned flags, 2366 struct page **pagep, void **fsdata, 2367 get_block_t *get_block, loff_t *bytes) 2368 { 2369 struct inode *inode = mapping->host; 2370 unsigned blocksize = 1 << inode->i_blkbits; 2371 unsigned zerofrom; 2372 int err; 2373 2374 err = cont_expand_zero(file, mapping, pos, bytes); 2375 if (err) 2376 return err; 2377 2378 zerofrom = *bytes & ~PAGE_MASK; 2379 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2380 *bytes |= (blocksize-1); 2381 (*bytes)++; 2382 } 2383 2384 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2385 } 2386 EXPORT_SYMBOL(cont_write_begin); 2387 2388 int block_commit_write(struct page *page, unsigned from, unsigned to) 2389 { 2390 struct inode *inode = page->mapping->host; 2391 __block_commit_write(inode,page,from,to); 2392 return 0; 2393 } 2394 EXPORT_SYMBOL(block_commit_write); 2395 2396 /* 2397 * block_page_mkwrite() is not allowed to change the file size as it gets 2398 * called from a page fault handler when a page is first dirtied. Hence we must 2399 * be careful to check for EOF conditions here. We set the page up correctly 2400 * for a written page which means we get ENOSPC checking when writing into 2401 * holes and correct delalloc and unwritten extent mapping on filesystems that 2402 * support these features. 2403 * 2404 * We are not allowed to take the i_mutex here so we have to play games to 2405 * protect against truncate races as the page could now be beyond EOF. Because 2406 * truncate writes the inode size before removing pages, once we have the 2407 * page lock we can determine safely if the page is beyond EOF. If it is not 2408 * beyond EOF, then the page is guaranteed safe against truncation until we 2409 * unlock the page. 2410 * 2411 * Direct callers of this function should protect against filesystem freezing 2412 * using sb_start_pagefault() - sb_end_pagefault() functions. 2413 */ 2414 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2415 get_block_t get_block) 2416 { 2417 struct page *page = vmf->page; 2418 struct inode *inode = file_inode(vma->vm_file); 2419 unsigned long end; 2420 loff_t size; 2421 int ret; 2422 2423 lock_page(page); 2424 size = i_size_read(inode); 2425 if ((page->mapping != inode->i_mapping) || 2426 (page_offset(page) > size)) { 2427 /* We overload EFAULT to mean page got truncated */ 2428 ret = -EFAULT; 2429 goto out_unlock; 2430 } 2431 2432 /* page is wholly or partially inside EOF */ 2433 if (((page->index + 1) << PAGE_SHIFT) > size) 2434 end = size & ~PAGE_MASK; 2435 else 2436 end = PAGE_SIZE; 2437 2438 ret = __block_write_begin(page, 0, end, get_block); 2439 if (!ret) 2440 ret = block_commit_write(page, 0, end); 2441 2442 if (unlikely(ret < 0)) 2443 goto out_unlock; 2444 set_page_dirty(page); 2445 wait_for_stable_page(page); 2446 return 0; 2447 out_unlock: 2448 unlock_page(page); 2449 return ret; 2450 } 2451 EXPORT_SYMBOL(block_page_mkwrite); 2452 2453 /* 2454 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2455 * immediately, while under the page lock. So it needs a special end_io 2456 * handler which does not touch the bh after unlocking it. 2457 */ 2458 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2459 { 2460 __end_buffer_read_notouch(bh, uptodate); 2461 } 2462 2463 /* 2464 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2465 * the page (converting it to circular linked list and taking care of page 2466 * dirty races). 2467 */ 2468 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2469 { 2470 struct buffer_head *bh; 2471 2472 BUG_ON(!PageLocked(page)); 2473 2474 spin_lock(&page->mapping->private_lock); 2475 bh = head; 2476 do { 2477 if (PageDirty(page)) 2478 set_buffer_dirty(bh); 2479 if (!bh->b_this_page) 2480 bh->b_this_page = head; 2481 bh = bh->b_this_page; 2482 } while (bh != head); 2483 attach_page_buffers(page, head); 2484 spin_unlock(&page->mapping->private_lock); 2485 } 2486 2487 /* 2488 * On entry, the page is fully not uptodate. 2489 * On exit the page is fully uptodate in the areas outside (from,to) 2490 * The filesystem needs to handle block truncation upon failure. 2491 */ 2492 int nobh_write_begin(struct address_space *mapping, 2493 loff_t pos, unsigned len, unsigned flags, 2494 struct page **pagep, void **fsdata, 2495 get_block_t *get_block) 2496 { 2497 struct inode *inode = mapping->host; 2498 const unsigned blkbits = inode->i_blkbits; 2499 const unsigned blocksize = 1 << blkbits; 2500 struct buffer_head *head, *bh; 2501 struct page *page; 2502 pgoff_t index; 2503 unsigned from, to; 2504 unsigned block_in_page; 2505 unsigned block_start, block_end; 2506 sector_t block_in_file; 2507 int nr_reads = 0; 2508 int ret = 0; 2509 int is_mapped_to_disk = 1; 2510 2511 index = pos >> PAGE_SHIFT; 2512 from = pos & (PAGE_SIZE - 1); 2513 to = from + len; 2514 2515 page = grab_cache_page_write_begin(mapping, index, flags); 2516 if (!page) 2517 return -ENOMEM; 2518 *pagep = page; 2519 *fsdata = NULL; 2520 2521 if (page_has_buffers(page)) { 2522 ret = __block_write_begin(page, pos, len, get_block); 2523 if (unlikely(ret)) 2524 goto out_release; 2525 return ret; 2526 } 2527 2528 if (PageMappedToDisk(page)) 2529 return 0; 2530 2531 /* 2532 * Allocate buffers so that we can keep track of state, and potentially 2533 * attach them to the page if an error occurs. In the common case of 2534 * no error, they will just be freed again without ever being attached 2535 * to the page (which is all OK, because we're under the page lock). 2536 * 2537 * Be careful: the buffer linked list is a NULL terminated one, rather 2538 * than the circular one we're used to. 2539 */ 2540 head = alloc_page_buffers(page, blocksize, 0); 2541 if (!head) { 2542 ret = -ENOMEM; 2543 goto out_release; 2544 } 2545 2546 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 2547 2548 /* 2549 * We loop across all blocks in the page, whether or not they are 2550 * part of the affected region. This is so we can discover if the 2551 * page is fully mapped-to-disk. 2552 */ 2553 for (block_start = 0, block_in_page = 0, bh = head; 2554 block_start < PAGE_SIZE; 2555 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2556 int create; 2557 2558 block_end = block_start + blocksize; 2559 bh->b_state = 0; 2560 create = 1; 2561 if (block_start >= to) 2562 create = 0; 2563 ret = get_block(inode, block_in_file + block_in_page, 2564 bh, create); 2565 if (ret) 2566 goto failed; 2567 if (!buffer_mapped(bh)) 2568 is_mapped_to_disk = 0; 2569 if (buffer_new(bh)) 2570 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 2571 if (PageUptodate(page)) { 2572 set_buffer_uptodate(bh); 2573 continue; 2574 } 2575 if (buffer_new(bh) || !buffer_mapped(bh)) { 2576 zero_user_segments(page, block_start, from, 2577 to, block_end); 2578 continue; 2579 } 2580 if (buffer_uptodate(bh)) 2581 continue; /* reiserfs does this */ 2582 if (block_start < from || block_end > to) { 2583 lock_buffer(bh); 2584 bh->b_end_io = end_buffer_read_nobh; 2585 submit_bh(READ, bh); 2586 nr_reads++; 2587 } 2588 } 2589 2590 if (nr_reads) { 2591 /* 2592 * The page is locked, so these buffers are protected from 2593 * any VM or truncate activity. Hence we don't need to care 2594 * for the buffer_head refcounts. 2595 */ 2596 for (bh = head; bh; bh = bh->b_this_page) { 2597 wait_on_buffer(bh); 2598 if (!buffer_uptodate(bh)) 2599 ret = -EIO; 2600 } 2601 if (ret) 2602 goto failed; 2603 } 2604 2605 if (is_mapped_to_disk) 2606 SetPageMappedToDisk(page); 2607 2608 *fsdata = head; /* to be released by nobh_write_end */ 2609 2610 return 0; 2611 2612 failed: 2613 BUG_ON(!ret); 2614 /* 2615 * Error recovery is a bit difficult. We need to zero out blocks that 2616 * were newly allocated, and dirty them to ensure they get written out. 2617 * Buffers need to be attached to the page at this point, otherwise 2618 * the handling of potential IO errors during writeout would be hard 2619 * (could try doing synchronous writeout, but what if that fails too?) 2620 */ 2621 attach_nobh_buffers(page, head); 2622 page_zero_new_buffers(page, from, to); 2623 2624 out_release: 2625 unlock_page(page); 2626 put_page(page); 2627 *pagep = NULL; 2628 2629 return ret; 2630 } 2631 EXPORT_SYMBOL(nobh_write_begin); 2632 2633 int nobh_write_end(struct file *file, struct address_space *mapping, 2634 loff_t pos, unsigned len, unsigned copied, 2635 struct page *page, void *fsdata) 2636 { 2637 struct inode *inode = page->mapping->host; 2638 struct buffer_head *head = fsdata; 2639 struct buffer_head *bh; 2640 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2641 2642 if (unlikely(copied < len) && head) 2643 attach_nobh_buffers(page, head); 2644 if (page_has_buffers(page)) 2645 return generic_write_end(file, mapping, pos, len, 2646 copied, page, fsdata); 2647 2648 SetPageUptodate(page); 2649 set_page_dirty(page); 2650 if (pos+copied > inode->i_size) { 2651 i_size_write(inode, pos+copied); 2652 mark_inode_dirty(inode); 2653 } 2654 2655 unlock_page(page); 2656 put_page(page); 2657 2658 while (head) { 2659 bh = head; 2660 head = head->b_this_page; 2661 free_buffer_head(bh); 2662 } 2663 2664 return copied; 2665 } 2666 EXPORT_SYMBOL(nobh_write_end); 2667 2668 /* 2669 * nobh_writepage() - based on block_full_write_page() except 2670 * that it tries to operate without attaching bufferheads to 2671 * the page. 2672 */ 2673 int nobh_writepage(struct page *page, get_block_t *get_block, 2674 struct writeback_control *wbc) 2675 { 2676 struct inode * const inode = page->mapping->host; 2677 loff_t i_size = i_size_read(inode); 2678 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2679 unsigned offset; 2680 int ret; 2681 2682 /* Is the page fully inside i_size? */ 2683 if (page->index < end_index) 2684 goto out; 2685 2686 /* Is the page fully outside i_size? (truncate in progress) */ 2687 offset = i_size & (PAGE_SIZE-1); 2688 if (page->index >= end_index+1 || !offset) { 2689 /* 2690 * The page may have dirty, unmapped buffers. For example, 2691 * they may have been added in ext3_writepage(). Make them 2692 * freeable here, so the page does not leak. 2693 */ 2694 #if 0 2695 /* Not really sure about this - do we need this ? */ 2696 if (page->mapping->a_ops->invalidatepage) 2697 page->mapping->a_ops->invalidatepage(page, offset); 2698 #endif 2699 unlock_page(page); 2700 return 0; /* don't care */ 2701 } 2702 2703 /* 2704 * The page straddles i_size. It must be zeroed out on each and every 2705 * writepage invocation because it may be mmapped. "A file is mapped 2706 * in multiples of the page size. For a file that is not a multiple of 2707 * the page size, the remaining memory is zeroed when mapped, and 2708 * writes to that region are not written out to the file." 2709 */ 2710 zero_user_segment(page, offset, PAGE_SIZE); 2711 out: 2712 ret = mpage_writepage(page, get_block, wbc); 2713 if (ret == -EAGAIN) 2714 ret = __block_write_full_page(inode, page, get_block, wbc, 2715 end_buffer_async_write); 2716 return ret; 2717 } 2718 EXPORT_SYMBOL(nobh_writepage); 2719 2720 int nobh_truncate_page(struct address_space *mapping, 2721 loff_t from, get_block_t *get_block) 2722 { 2723 pgoff_t index = from >> PAGE_SHIFT; 2724 unsigned offset = from & (PAGE_SIZE-1); 2725 unsigned blocksize; 2726 sector_t iblock; 2727 unsigned length, pos; 2728 struct inode *inode = mapping->host; 2729 struct page *page; 2730 struct buffer_head map_bh; 2731 int err; 2732 2733 blocksize = 1 << inode->i_blkbits; 2734 length = offset & (blocksize - 1); 2735 2736 /* Block boundary? Nothing to do */ 2737 if (!length) 2738 return 0; 2739 2740 length = blocksize - length; 2741 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2742 2743 page = grab_cache_page(mapping, index); 2744 err = -ENOMEM; 2745 if (!page) 2746 goto out; 2747 2748 if (page_has_buffers(page)) { 2749 has_buffers: 2750 unlock_page(page); 2751 put_page(page); 2752 return block_truncate_page(mapping, from, get_block); 2753 } 2754 2755 /* Find the buffer that contains "offset" */ 2756 pos = blocksize; 2757 while (offset >= pos) { 2758 iblock++; 2759 pos += blocksize; 2760 } 2761 2762 map_bh.b_size = blocksize; 2763 map_bh.b_state = 0; 2764 err = get_block(inode, iblock, &map_bh, 0); 2765 if (err) 2766 goto unlock; 2767 /* unmapped? It's a hole - nothing to do */ 2768 if (!buffer_mapped(&map_bh)) 2769 goto unlock; 2770 2771 /* Ok, it's mapped. Make sure it's up-to-date */ 2772 if (!PageUptodate(page)) { 2773 err = mapping->a_ops->readpage(NULL, page); 2774 if (err) { 2775 put_page(page); 2776 goto out; 2777 } 2778 lock_page(page); 2779 if (!PageUptodate(page)) { 2780 err = -EIO; 2781 goto unlock; 2782 } 2783 if (page_has_buffers(page)) 2784 goto has_buffers; 2785 } 2786 zero_user(page, offset, length); 2787 set_page_dirty(page); 2788 err = 0; 2789 2790 unlock: 2791 unlock_page(page); 2792 put_page(page); 2793 out: 2794 return err; 2795 } 2796 EXPORT_SYMBOL(nobh_truncate_page); 2797 2798 int block_truncate_page(struct address_space *mapping, 2799 loff_t from, get_block_t *get_block) 2800 { 2801 pgoff_t index = from >> PAGE_SHIFT; 2802 unsigned offset = from & (PAGE_SIZE-1); 2803 unsigned blocksize; 2804 sector_t iblock; 2805 unsigned length, pos; 2806 struct inode *inode = mapping->host; 2807 struct page *page; 2808 struct buffer_head *bh; 2809 int err; 2810 2811 blocksize = 1 << inode->i_blkbits; 2812 length = offset & (blocksize - 1); 2813 2814 /* Block boundary? Nothing to do */ 2815 if (!length) 2816 return 0; 2817 2818 length = blocksize - length; 2819 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2820 2821 page = grab_cache_page(mapping, index); 2822 err = -ENOMEM; 2823 if (!page) 2824 goto out; 2825 2826 if (!page_has_buffers(page)) 2827 create_empty_buffers(page, blocksize, 0); 2828 2829 /* Find the buffer that contains "offset" */ 2830 bh = page_buffers(page); 2831 pos = blocksize; 2832 while (offset >= pos) { 2833 bh = bh->b_this_page; 2834 iblock++; 2835 pos += blocksize; 2836 } 2837 2838 err = 0; 2839 if (!buffer_mapped(bh)) { 2840 WARN_ON(bh->b_size != blocksize); 2841 err = get_block(inode, iblock, bh, 0); 2842 if (err) 2843 goto unlock; 2844 /* unmapped? It's a hole - nothing to do */ 2845 if (!buffer_mapped(bh)) 2846 goto unlock; 2847 } 2848 2849 /* Ok, it's mapped. Make sure it's up-to-date */ 2850 if (PageUptodate(page)) 2851 set_buffer_uptodate(bh); 2852 2853 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2854 err = -EIO; 2855 ll_rw_block(READ, 1, &bh); 2856 wait_on_buffer(bh); 2857 /* Uhhuh. Read error. Complain and punt. */ 2858 if (!buffer_uptodate(bh)) 2859 goto unlock; 2860 } 2861 2862 zero_user(page, offset, length); 2863 mark_buffer_dirty(bh); 2864 err = 0; 2865 2866 unlock: 2867 unlock_page(page); 2868 put_page(page); 2869 out: 2870 return err; 2871 } 2872 EXPORT_SYMBOL(block_truncate_page); 2873 2874 /* 2875 * The generic ->writepage function for buffer-backed address_spaces 2876 */ 2877 int block_write_full_page(struct page *page, get_block_t *get_block, 2878 struct writeback_control *wbc) 2879 { 2880 struct inode * const inode = page->mapping->host; 2881 loff_t i_size = i_size_read(inode); 2882 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2883 unsigned offset; 2884 2885 /* Is the page fully inside i_size? */ 2886 if (page->index < end_index) 2887 return __block_write_full_page(inode, page, get_block, wbc, 2888 end_buffer_async_write); 2889 2890 /* Is the page fully outside i_size? (truncate in progress) */ 2891 offset = i_size & (PAGE_SIZE-1); 2892 if (page->index >= end_index+1 || !offset) { 2893 /* 2894 * The page may have dirty, unmapped buffers. For example, 2895 * they may have been added in ext3_writepage(). Make them 2896 * freeable here, so the page does not leak. 2897 */ 2898 do_invalidatepage(page, 0, PAGE_SIZE); 2899 unlock_page(page); 2900 return 0; /* don't care */ 2901 } 2902 2903 /* 2904 * The page straddles i_size. It must be zeroed out on each and every 2905 * writepage invocation because it may be mmapped. "A file is mapped 2906 * in multiples of the page size. For a file that is not a multiple of 2907 * the page size, the remaining memory is zeroed when mapped, and 2908 * writes to that region are not written out to the file." 2909 */ 2910 zero_user_segment(page, offset, PAGE_SIZE); 2911 return __block_write_full_page(inode, page, get_block, wbc, 2912 end_buffer_async_write); 2913 } 2914 EXPORT_SYMBOL(block_write_full_page); 2915 2916 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2917 get_block_t *get_block) 2918 { 2919 struct buffer_head tmp; 2920 struct inode *inode = mapping->host; 2921 tmp.b_state = 0; 2922 tmp.b_blocknr = 0; 2923 tmp.b_size = 1 << inode->i_blkbits; 2924 get_block(inode, block, &tmp, 0); 2925 return tmp.b_blocknr; 2926 } 2927 EXPORT_SYMBOL(generic_block_bmap); 2928 2929 static void end_bio_bh_io_sync(struct bio *bio) 2930 { 2931 struct buffer_head *bh = bio->bi_private; 2932 2933 if (unlikely(bio_flagged(bio, BIO_QUIET))) 2934 set_bit(BH_Quiet, &bh->b_state); 2935 2936 bh->b_end_io(bh, !bio->bi_error); 2937 bio_put(bio); 2938 } 2939 2940 /* 2941 * This allows us to do IO even on the odd last sectors 2942 * of a device, even if the block size is some multiple 2943 * of the physical sector size. 2944 * 2945 * We'll just truncate the bio to the size of the device, 2946 * and clear the end of the buffer head manually. 2947 * 2948 * Truly out-of-range accesses will turn into actual IO 2949 * errors, this only handles the "we need to be able to 2950 * do IO at the final sector" case. 2951 */ 2952 void guard_bio_eod(int rw, struct bio *bio) 2953 { 2954 sector_t maxsector; 2955 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 2956 unsigned truncated_bytes; 2957 2958 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 2959 if (!maxsector) 2960 return; 2961 2962 /* 2963 * If the *whole* IO is past the end of the device, 2964 * let it through, and the IO layer will turn it into 2965 * an EIO. 2966 */ 2967 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 2968 return; 2969 2970 maxsector -= bio->bi_iter.bi_sector; 2971 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 2972 return; 2973 2974 /* Uhhuh. We've got a bio that straddles the device size! */ 2975 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9); 2976 2977 /* Truncate the bio.. */ 2978 bio->bi_iter.bi_size -= truncated_bytes; 2979 bvec->bv_len -= truncated_bytes; 2980 2981 /* ..and clear the end of the buffer for reads */ 2982 if ((rw & RW_MASK) == READ) { 2983 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len, 2984 truncated_bytes); 2985 } 2986 } 2987 2988 static int submit_bh_wbc(int rw, struct buffer_head *bh, 2989 unsigned long bio_flags, struct writeback_control *wbc) 2990 { 2991 struct bio *bio; 2992 2993 BUG_ON(!buffer_locked(bh)); 2994 BUG_ON(!buffer_mapped(bh)); 2995 BUG_ON(!bh->b_end_io); 2996 BUG_ON(buffer_delay(bh)); 2997 BUG_ON(buffer_unwritten(bh)); 2998 2999 /* 3000 * Only clear out a write error when rewriting 3001 */ 3002 if (test_set_buffer_req(bh) && (rw & WRITE)) 3003 clear_buffer_write_io_error(bh); 3004 3005 /* 3006 * from here on down, it's all bio -- do the initial mapping, 3007 * submit_bio -> generic_make_request may further map this bio around 3008 */ 3009 bio = bio_alloc(GFP_NOIO, 1); 3010 3011 if (wbc) { 3012 wbc_init_bio(wbc, bio); 3013 wbc_account_io(wbc, bh->b_page, bh->b_size); 3014 } 3015 3016 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 3017 bio->bi_bdev = bh->b_bdev; 3018 3019 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 3020 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 3021 3022 bio->bi_end_io = end_bio_bh_io_sync; 3023 bio->bi_private = bh; 3024 bio->bi_flags |= bio_flags; 3025 3026 /* Take care of bh's that straddle the end of the device */ 3027 guard_bio_eod(rw, bio); 3028 3029 if (buffer_meta(bh)) 3030 rw |= REQ_META; 3031 if (buffer_prio(bh)) 3032 rw |= REQ_PRIO; 3033 3034 submit_bio(rw, bio); 3035 return 0; 3036 } 3037 3038 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags) 3039 { 3040 return submit_bh_wbc(rw, bh, bio_flags, NULL); 3041 } 3042 EXPORT_SYMBOL_GPL(_submit_bh); 3043 3044 int submit_bh(int rw, struct buffer_head *bh) 3045 { 3046 return submit_bh_wbc(rw, bh, 0, NULL); 3047 } 3048 EXPORT_SYMBOL(submit_bh); 3049 3050 /** 3051 * ll_rw_block: low-level access to block devices (DEPRECATED) 3052 * @rw: whether to %READ or %WRITE or maybe %READA (readahead) 3053 * @nr: number of &struct buffer_heads in the array 3054 * @bhs: array of pointers to &struct buffer_head 3055 * 3056 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3057 * requests an I/O operation on them, either a %READ or a %WRITE. The third 3058 * %READA option is described in the documentation for generic_make_request() 3059 * which ll_rw_block() calls. 3060 * 3061 * This function drops any buffer that it cannot get a lock on (with the 3062 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3063 * request, and any buffer that appears to be up-to-date when doing read 3064 * request. Further it marks as clean buffers that are processed for 3065 * writing (the buffer cache won't assume that they are actually clean 3066 * until the buffer gets unlocked). 3067 * 3068 * ll_rw_block sets b_end_io to simple completion handler that marks 3069 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes 3070 * any waiters. 3071 * 3072 * All of the buffers must be for the same device, and must also be a 3073 * multiple of the current approved size for the device. 3074 */ 3075 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 3076 { 3077 int i; 3078 3079 for (i = 0; i < nr; i++) { 3080 struct buffer_head *bh = bhs[i]; 3081 3082 if (!trylock_buffer(bh)) 3083 continue; 3084 if (rw == WRITE) { 3085 if (test_clear_buffer_dirty(bh)) { 3086 bh->b_end_io = end_buffer_write_sync; 3087 get_bh(bh); 3088 submit_bh(WRITE, bh); 3089 continue; 3090 } 3091 } else { 3092 if (!buffer_uptodate(bh)) { 3093 bh->b_end_io = end_buffer_read_sync; 3094 get_bh(bh); 3095 submit_bh(rw, bh); 3096 continue; 3097 } 3098 } 3099 unlock_buffer(bh); 3100 } 3101 } 3102 EXPORT_SYMBOL(ll_rw_block); 3103 3104 void write_dirty_buffer(struct buffer_head *bh, int rw) 3105 { 3106 lock_buffer(bh); 3107 if (!test_clear_buffer_dirty(bh)) { 3108 unlock_buffer(bh); 3109 return; 3110 } 3111 bh->b_end_io = end_buffer_write_sync; 3112 get_bh(bh); 3113 submit_bh(rw, bh); 3114 } 3115 EXPORT_SYMBOL(write_dirty_buffer); 3116 3117 /* 3118 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3119 * and then start new I/O and then wait upon it. The caller must have a ref on 3120 * the buffer_head. 3121 */ 3122 int __sync_dirty_buffer(struct buffer_head *bh, int rw) 3123 { 3124 int ret = 0; 3125 3126 WARN_ON(atomic_read(&bh->b_count) < 1); 3127 lock_buffer(bh); 3128 if (test_clear_buffer_dirty(bh)) { 3129 get_bh(bh); 3130 bh->b_end_io = end_buffer_write_sync; 3131 ret = submit_bh(rw, bh); 3132 wait_on_buffer(bh); 3133 if (!ret && !buffer_uptodate(bh)) 3134 ret = -EIO; 3135 } else { 3136 unlock_buffer(bh); 3137 } 3138 return ret; 3139 } 3140 EXPORT_SYMBOL(__sync_dirty_buffer); 3141 3142 int sync_dirty_buffer(struct buffer_head *bh) 3143 { 3144 return __sync_dirty_buffer(bh, WRITE_SYNC); 3145 } 3146 EXPORT_SYMBOL(sync_dirty_buffer); 3147 3148 /* 3149 * try_to_free_buffers() checks if all the buffers on this particular page 3150 * are unused, and releases them if so. 3151 * 3152 * Exclusion against try_to_free_buffers may be obtained by either 3153 * locking the page or by holding its mapping's private_lock. 3154 * 3155 * If the page is dirty but all the buffers are clean then we need to 3156 * be sure to mark the page clean as well. This is because the page 3157 * may be against a block device, and a later reattachment of buffers 3158 * to a dirty page will set *all* buffers dirty. Which would corrupt 3159 * filesystem data on the same device. 3160 * 3161 * The same applies to regular filesystem pages: if all the buffers are 3162 * clean then we set the page clean and proceed. To do that, we require 3163 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3164 * private_lock. 3165 * 3166 * try_to_free_buffers() is non-blocking. 3167 */ 3168 static inline int buffer_busy(struct buffer_head *bh) 3169 { 3170 return atomic_read(&bh->b_count) | 3171 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3172 } 3173 3174 static int 3175 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3176 { 3177 struct buffer_head *head = page_buffers(page); 3178 struct buffer_head *bh; 3179 3180 bh = head; 3181 do { 3182 if (buffer_write_io_error(bh) && page->mapping) 3183 set_bit(AS_EIO, &page->mapping->flags); 3184 if (buffer_busy(bh)) 3185 goto failed; 3186 bh = bh->b_this_page; 3187 } while (bh != head); 3188 3189 do { 3190 struct buffer_head *next = bh->b_this_page; 3191 3192 if (bh->b_assoc_map) 3193 __remove_assoc_queue(bh); 3194 bh = next; 3195 } while (bh != head); 3196 *buffers_to_free = head; 3197 __clear_page_buffers(page); 3198 return 1; 3199 failed: 3200 return 0; 3201 } 3202 3203 int try_to_free_buffers(struct page *page) 3204 { 3205 struct address_space * const mapping = page->mapping; 3206 struct buffer_head *buffers_to_free = NULL; 3207 int ret = 0; 3208 3209 BUG_ON(!PageLocked(page)); 3210 if (PageWriteback(page)) 3211 return 0; 3212 3213 if (mapping == NULL) { /* can this still happen? */ 3214 ret = drop_buffers(page, &buffers_to_free); 3215 goto out; 3216 } 3217 3218 spin_lock(&mapping->private_lock); 3219 ret = drop_buffers(page, &buffers_to_free); 3220 3221 /* 3222 * If the filesystem writes its buffers by hand (eg ext3) 3223 * then we can have clean buffers against a dirty page. We 3224 * clean the page here; otherwise the VM will never notice 3225 * that the filesystem did any IO at all. 3226 * 3227 * Also, during truncate, discard_buffer will have marked all 3228 * the page's buffers clean. We discover that here and clean 3229 * the page also. 3230 * 3231 * private_lock must be held over this entire operation in order 3232 * to synchronise against __set_page_dirty_buffers and prevent the 3233 * dirty bit from being lost. 3234 */ 3235 if (ret) 3236 cancel_dirty_page(page); 3237 spin_unlock(&mapping->private_lock); 3238 out: 3239 if (buffers_to_free) { 3240 struct buffer_head *bh = buffers_to_free; 3241 3242 do { 3243 struct buffer_head *next = bh->b_this_page; 3244 free_buffer_head(bh); 3245 bh = next; 3246 } while (bh != buffers_to_free); 3247 } 3248 return ret; 3249 } 3250 EXPORT_SYMBOL(try_to_free_buffers); 3251 3252 /* 3253 * There are no bdflush tunables left. But distributions are 3254 * still running obsolete flush daemons, so we terminate them here. 3255 * 3256 * Use of bdflush() is deprecated and will be removed in a future kernel. 3257 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3258 */ 3259 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3260 { 3261 static int msg_count; 3262 3263 if (!capable(CAP_SYS_ADMIN)) 3264 return -EPERM; 3265 3266 if (msg_count < 5) { 3267 msg_count++; 3268 printk(KERN_INFO 3269 "warning: process `%s' used the obsolete bdflush" 3270 " system call\n", current->comm); 3271 printk(KERN_INFO "Fix your initscripts?\n"); 3272 } 3273 3274 if (func == 1) 3275 do_exit(0); 3276 return 0; 3277 } 3278 3279 /* 3280 * Buffer-head allocation 3281 */ 3282 static struct kmem_cache *bh_cachep __read_mostly; 3283 3284 /* 3285 * Once the number of bh's in the machine exceeds this level, we start 3286 * stripping them in writeback. 3287 */ 3288 static unsigned long max_buffer_heads; 3289 3290 int buffer_heads_over_limit; 3291 3292 struct bh_accounting { 3293 int nr; /* Number of live bh's */ 3294 int ratelimit; /* Limit cacheline bouncing */ 3295 }; 3296 3297 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3298 3299 static void recalc_bh_state(void) 3300 { 3301 int i; 3302 int tot = 0; 3303 3304 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3305 return; 3306 __this_cpu_write(bh_accounting.ratelimit, 0); 3307 for_each_online_cpu(i) 3308 tot += per_cpu(bh_accounting, i).nr; 3309 buffer_heads_over_limit = (tot > max_buffer_heads); 3310 } 3311 3312 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3313 { 3314 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3315 if (ret) { 3316 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3317 preempt_disable(); 3318 __this_cpu_inc(bh_accounting.nr); 3319 recalc_bh_state(); 3320 preempt_enable(); 3321 } 3322 return ret; 3323 } 3324 EXPORT_SYMBOL(alloc_buffer_head); 3325 3326 void free_buffer_head(struct buffer_head *bh) 3327 { 3328 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3329 kmem_cache_free(bh_cachep, bh); 3330 preempt_disable(); 3331 __this_cpu_dec(bh_accounting.nr); 3332 recalc_bh_state(); 3333 preempt_enable(); 3334 } 3335 EXPORT_SYMBOL(free_buffer_head); 3336 3337 static void buffer_exit_cpu(int cpu) 3338 { 3339 int i; 3340 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3341 3342 for (i = 0; i < BH_LRU_SIZE; i++) { 3343 brelse(b->bhs[i]); 3344 b->bhs[i] = NULL; 3345 } 3346 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3347 per_cpu(bh_accounting, cpu).nr = 0; 3348 } 3349 3350 static int buffer_cpu_notify(struct notifier_block *self, 3351 unsigned long action, void *hcpu) 3352 { 3353 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 3354 buffer_exit_cpu((unsigned long)hcpu); 3355 return NOTIFY_OK; 3356 } 3357 3358 /** 3359 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3360 * @bh: struct buffer_head 3361 * 3362 * Return true if the buffer is up-to-date and false, 3363 * with the buffer locked, if not. 3364 */ 3365 int bh_uptodate_or_lock(struct buffer_head *bh) 3366 { 3367 if (!buffer_uptodate(bh)) { 3368 lock_buffer(bh); 3369 if (!buffer_uptodate(bh)) 3370 return 0; 3371 unlock_buffer(bh); 3372 } 3373 return 1; 3374 } 3375 EXPORT_SYMBOL(bh_uptodate_or_lock); 3376 3377 /** 3378 * bh_submit_read - Submit a locked buffer for reading 3379 * @bh: struct buffer_head 3380 * 3381 * Returns zero on success and -EIO on error. 3382 */ 3383 int bh_submit_read(struct buffer_head *bh) 3384 { 3385 BUG_ON(!buffer_locked(bh)); 3386 3387 if (buffer_uptodate(bh)) { 3388 unlock_buffer(bh); 3389 return 0; 3390 } 3391 3392 get_bh(bh); 3393 bh->b_end_io = end_buffer_read_sync; 3394 submit_bh(READ, bh); 3395 wait_on_buffer(bh); 3396 if (buffer_uptodate(bh)) 3397 return 0; 3398 return -EIO; 3399 } 3400 EXPORT_SYMBOL(bh_submit_read); 3401 3402 void __init buffer_init(void) 3403 { 3404 unsigned long nrpages; 3405 3406 bh_cachep = kmem_cache_create("buffer_head", 3407 sizeof(struct buffer_head), 0, 3408 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3409 SLAB_MEM_SPREAD), 3410 NULL); 3411 3412 /* 3413 * Limit the bh occupancy to 10% of ZONE_NORMAL 3414 */ 3415 nrpages = (nr_free_buffer_pages() * 10) / 100; 3416 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3417 hotcpu_notifier(buffer_cpu_notify, 0); 3418 } 3419