xref: /linux/fs/buffer.c (revision 0a98bf52b15dfd66da2cf666495b3f7841c7b5ab)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/iomap.h>
26 #include <linux/mm.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/cpu.h>
43 #include <linux/bitops.h>
44 #include <linux/mpage.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/pagevec.h>
47 #include <linux/sched/mm.h>
48 #include <trace/events/block.h>
49 
50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
52 			 enum rw_hint hint, struct writeback_control *wbc);
53 
54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55 
56 inline void touch_buffer(struct buffer_head *bh)
57 {
58 	trace_block_touch_buffer(bh);
59 	mark_page_accessed(bh->b_page);
60 }
61 EXPORT_SYMBOL(touch_buffer);
62 
63 void __lock_buffer(struct buffer_head *bh)
64 {
65 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
66 }
67 EXPORT_SYMBOL(__lock_buffer);
68 
69 void unlock_buffer(struct buffer_head *bh)
70 {
71 	clear_bit_unlock(BH_Lock, &bh->b_state);
72 	smp_mb__after_atomic();
73 	wake_up_bit(&bh->b_state, BH_Lock);
74 }
75 EXPORT_SYMBOL(unlock_buffer);
76 
77 /*
78  * Returns if the page has dirty or writeback buffers. If all the buffers
79  * are unlocked and clean then the PageDirty information is stale. If
80  * any of the pages are locked, it is assumed they are locked for IO.
81  */
82 void buffer_check_dirty_writeback(struct page *page,
83 				     bool *dirty, bool *writeback)
84 {
85 	struct buffer_head *head, *bh;
86 	*dirty = false;
87 	*writeback = false;
88 
89 	BUG_ON(!PageLocked(page));
90 
91 	if (!page_has_buffers(page))
92 		return;
93 
94 	if (PageWriteback(page))
95 		*writeback = true;
96 
97 	head = page_buffers(page);
98 	bh = head;
99 	do {
100 		if (buffer_locked(bh))
101 			*writeback = true;
102 
103 		if (buffer_dirty(bh))
104 			*dirty = true;
105 
106 		bh = bh->b_this_page;
107 	} while (bh != head);
108 }
109 EXPORT_SYMBOL(buffer_check_dirty_writeback);
110 
111 /*
112  * Block until a buffer comes unlocked.  This doesn't stop it
113  * from becoming locked again - you have to lock it yourself
114  * if you want to preserve its state.
115  */
116 void __wait_on_buffer(struct buffer_head * bh)
117 {
118 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
119 }
120 EXPORT_SYMBOL(__wait_on_buffer);
121 
122 static void
123 __clear_page_buffers(struct page *page)
124 {
125 	ClearPagePrivate(page);
126 	set_page_private(page, 0);
127 	put_page(page);
128 }
129 
130 static void buffer_io_error(struct buffer_head *bh, char *msg)
131 {
132 	if (!test_bit(BH_Quiet, &bh->b_state))
133 		printk_ratelimited(KERN_ERR
134 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
135 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
136 }
137 
138 /*
139  * End-of-IO handler helper function which does not touch the bh after
140  * unlocking it.
141  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
142  * a race there is benign: unlock_buffer() only use the bh's address for
143  * hashing after unlocking the buffer, so it doesn't actually touch the bh
144  * itself.
145  */
146 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
147 {
148 	if (uptodate) {
149 		set_buffer_uptodate(bh);
150 	} else {
151 		/* This happens, due to failed read-ahead attempts. */
152 		clear_buffer_uptodate(bh);
153 	}
154 	unlock_buffer(bh);
155 }
156 
157 /*
158  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
159  * unlock the buffer. This is what ll_rw_block uses too.
160  */
161 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
162 {
163 	__end_buffer_read_notouch(bh, uptodate);
164 	put_bh(bh);
165 }
166 EXPORT_SYMBOL(end_buffer_read_sync);
167 
168 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
169 {
170 	if (uptodate) {
171 		set_buffer_uptodate(bh);
172 	} else {
173 		buffer_io_error(bh, ", lost sync page write");
174 		mark_buffer_write_io_error(bh);
175 		clear_buffer_uptodate(bh);
176 	}
177 	unlock_buffer(bh);
178 	put_bh(bh);
179 }
180 EXPORT_SYMBOL(end_buffer_write_sync);
181 
182 /*
183  * Various filesystems appear to want __find_get_block to be non-blocking.
184  * But it's the page lock which protects the buffers.  To get around this,
185  * we get exclusion from try_to_free_buffers with the blockdev mapping's
186  * private_lock.
187  *
188  * Hack idea: for the blockdev mapping, private_lock contention
189  * may be quite high.  This code could TryLock the page, and if that
190  * succeeds, there is no need to take private_lock.
191  */
192 static struct buffer_head *
193 __find_get_block_slow(struct block_device *bdev, sector_t block)
194 {
195 	struct inode *bd_inode = bdev->bd_inode;
196 	struct address_space *bd_mapping = bd_inode->i_mapping;
197 	struct buffer_head *ret = NULL;
198 	pgoff_t index;
199 	struct buffer_head *bh;
200 	struct buffer_head *head;
201 	struct page *page;
202 	int all_mapped = 1;
203 
204 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
205 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
206 	if (!page)
207 		goto out;
208 
209 	spin_lock(&bd_mapping->private_lock);
210 	if (!page_has_buffers(page))
211 		goto out_unlock;
212 	head = page_buffers(page);
213 	bh = head;
214 	do {
215 		if (!buffer_mapped(bh))
216 			all_mapped = 0;
217 		else if (bh->b_blocknr == block) {
218 			ret = bh;
219 			get_bh(bh);
220 			goto out_unlock;
221 		}
222 		bh = bh->b_this_page;
223 	} while (bh != head);
224 
225 	/* we might be here because some of the buffers on this page are
226 	 * not mapped.  This is due to various races between
227 	 * file io on the block device and getblk.  It gets dealt with
228 	 * elsewhere, don't buffer_error if we had some unmapped buffers
229 	 */
230 	if (all_mapped) {
231 		printk("__find_get_block_slow() failed. "
232 			"block=%llu, b_blocknr=%llu\n",
233 			(unsigned long long)block,
234 			(unsigned long long)bh->b_blocknr);
235 		printk("b_state=0x%08lx, b_size=%zu\n",
236 			bh->b_state, bh->b_size);
237 		printk("device %pg blocksize: %d\n", bdev,
238 			1 << bd_inode->i_blkbits);
239 	}
240 out_unlock:
241 	spin_unlock(&bd_mapping->private_lock);
242 	put_page(page);
243 out:
244 	return ret;
245 }
246 
247 /*
248  * I/O completion handler for block_read_full_page() - pages
249  * which come unlocked at the end of I/O.
250  */
251 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
252 {
253 	unsigned long flags;
254 	struct buffer_head *first;
255 	struct buffer_head *tmp;
256 	struct page *page;
257 	int page_uptodate = 1;
258 
259 	BUG_ON(!buffer_async_read(bh));
260 
261 	page = bh->b_page;
262 	if (uptodate) {
263 		set_buffer_uptodate(bh);
264 	} else {
265 		clear_buffer_uptodate(bh);
266 		buffer_io_error(bh, ", async page read");
267 		SetPageError(page);
268 	}
269 
270 	/*
271 	 * Be _very_ careful from here on. Bad things can happen if
272 	 * two buffer heads end IO at almost the same time and both
273 	 * decide that the page is now completely done.
274 	 */
275 	first = page_buffers(page);
276 	local_irq_save(flags);
277 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
278 	clear_buffer_async_read(bh);
279 	unlock_buffer(bh);
280 	tmp = bh;
281 	do {
282 		if (!buffer_uptodate(tmp))
283 			page_uptodate = 0;
284 		if (buffer_async_read(tmp)) {
285 			BUG_ON(!buffer_locked(tmp));
286 			goto still_busy;
287 		}
288 		tmp = tmp->b_this_page;
289 	} while (tmp != bh);
290 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
291 	local_irq_restore(flags);
292 
293 	/*
294 	 * If none of the buffers had errors and they are all
295 	 * uptodate then we can set the page uptodate.
296 	 */
297 	if (page_uptodate && !PageError(page))
298 		SetPageUptodate(page);
299 	unlock_page(page);
300 	return;
301 
302 still_busy:
303 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
304 	local_irq_restore(flags);
305 	return;
306 }
307 
308 /*
309  * Completion handler for block_write_full_page() - pages which are unlocked
310  * during I/O, and which have PageWriteback cleared upon I/O completion.
311  */
312 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
313 {
314 	unsigned long flags;
315 	struct buffer_head *first;
316 	struct buffer_head *tmp;
317 	struct page *page;
318 
319 	BUG_ON(!buffer_async_write(bh));
320 
321 	page = bh->b_page;
322 	if (uptodate) {
323 		set_buffer_uptodate(bh);
324 	} else {
325 		buffer_io_error(bh, ", lost async page write");
326 		mark_buffer_write_io_error(bh);
327 		clear_buffer_uptodate(bh);
328 		SetPageError(page);
329 	}
330 
331 	first = page_buffers(page);
332 	local_irq_save(flags);
333 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
334 
335 	clear_buffer_async_write(bh);
336 	unlock_buffer(bh);
337 	tmp = bh->b_this_page;
338 	while (tmp != bh) {
339 		if (buffer_async_write(tmp)) {
340 			BUG_ON(!buffer_locked(tmp));
341 			goto still_busy;
342 		}
343 		tmp = tmp->b_this_page;
344 	}
345 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
346 	local_irq_restore(flags);
347 	end_page_writeback(page);
348 	return;
349 
350 still_busy:
351 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
352 	local_irq_restore(flags);
353 	return;
354 }
355 EXPORT_SYMBOL(end_buffer_async_write);
356 
357 /*
358  * If a page's buffers are under async readin (end_buffer_async_read
359  * completion) then there is a possibility that another thread of
360  * control could lock one of the buffers after it has completed
361  * but while some of the other buffers have not completed.  This
362  * locked buffer would confuse end_buffer_async_read() into not unlocking
363  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
364  * that this buffer is not under async I/O.
365  *
366  * The page comes unlocked when it has no locked buffer_async buffers
367  * left.
368  *
369  * PageLocked prevents anyone starting new async I/O reads any of
370  * the buffers.
371  *
372  * PageWriteback is used to prevent simultaneous writeout of the same
373  * page.
374  *
375  * PageLocked prevents anyone from starting writeback of a page which is
376  * under read I/O (PageWriteback is only ever set against a locked page).
377  */
378 static void mark_buffer_async_read(struct buffer_head *bh)
379 {
380 	bh->b_end_io = end_buffer_async_read;
381 	set_buffer_async_read(bh);
382 }
383 
384 static void mark_buffer_async_write_endio(struct buffer_head *bh,
385 					  bh_end_io_t *handler)
386 {
387 	bh->b_end_io = handler;
388 	set_buffer_async_write(bh);
389 }
390 
391 void mark_buffer_async_write(struct buffer_head *bh)
392 {
393 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
394 }
395 EXPORT_SYMBOL(mark_buffer_async_write);
396 
397 
398 /*
399  * fs/buffer.c contains helper functions for buffer-backed address space's
400  * fsync functions.  A common requirement for buffer-based filesystems is
401  * that certain data from the backing blockdev needs to be written out for
402  * a successful fsync().  For example, ext2 indirect blocks need to be
403  * written back and waited upon before fsync() returns.
404  *
405  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
406  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
407  * management of a list of dependent buffers at ->i_mapping->private_list.
408  *
409  * Locking is a little subtle: try_to_free_buffers() will remove buffers
410  * from their controlling inode's queue when they are being freed.  But
411  * try_to_free_buffers() will be operating against the *blockdev* mapping
412  * at the time, not against the S_ISREG file which depends on those buffers.
413  * So the locking for private_list is via the private_lock in the address_space
414  * which backs the buffers.  Which is different from the address_space
415  * against which the buffers are listed.  So for a particular address_space,
416  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
417  * mapping->private_list will always be protected by the backing blockdev's
418  * ->private_lock.
419  *
420  * Which introduces a requirement: all buffers on an address_space's
421  * ->private_list must be from the same address_space: the blockdev's.
422  *
423  * address_spaces which do not place buffers at ->private_list via these
424  * utility functions are free to use private_lock and private_list for
425  * whatever they want.  The only requirement is that list_empty(private_list)
426  * be true at clear_inode() time.
427  *
428  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
429  * filesystems should do that.  invalidate_inode_buffers() should just go
430  * BUG_ON(!list_empty).
431  *
432  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
433  * take an address_space, not an inode.  And it should be called
434  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
435  * queued up.
436  *
437  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
438  * list if it is already on a list.  Because if the buffer is on a list,
439  * it *must* already be on the right one.  If not, the filesystem is being
440  * silly.  This will save a ton of locking.  But first we have to ensure
441  * that buffers are taken *off* the old inode's list when they are freed
442  * (presumably in truncate).  That requires careful auditing of all
443  * filesystems (do it inside bforget()).  It could also be done by bringing
444  * b_inode back.
445  */
446 
447 /*
448  * The buffer's backing address_space's private_lock must be held
449  */
450 static void __remove_assoc_queue(struct buffer_head *bh)
451 {
452 	list_del_init(&bh->b_assoc_buffers);
453 	WARN_ON(!bh->b_assoc_map);
454 	bh->b_assoc_map = NULL;
455 }
456 
457 int inode_has_buffers(struct inode *inode)
458 {
459 	return !list_empty(&inode->i_data.private_list);
460 }
461 
462 /*
463  * osync is designed to support O_SYNC io.  It waits synchronously for
464  * all already-submitted IO to complete, but does not queue any new
465  * writes to the disk.
466  *
467  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
468  * you dirty the buffers, and then use osync_inode_buffers to wait for
469  * completion.  Any other dirty buffers which are not yet queued for
470  * write will not be flushed to disk by the osync.
471  */
472 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
473 {
474 	struct buffer_head *bh;
475 	struct list_head *p;
476 	int err = 0;
477 
478 	spin_lock(lock);
479 repeat:
480 	list_for_each_prev(p, list) {
481 		bh = BH_ENTRY(p);
482 		if (buffer_locked(bh)) {
483 			get_bh(bh);
484 			spin_unlock(lock);
485 			wait_on_buffer(bh);
486 			if (!buffer_uptodate(bh))
487 				err = -EIO;
488 			brelse(bh);
489 			spin_lock(lock);
490 			goto repeat;
491 		}
492 	}
493 	spin_unlock(lock);
494 	return err;
495 }
496 
497 void emergency_thaw_bdev(struct super_block *sb)
498 {
499 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
500 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
501 }
502 
503 /**
504  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
505  * @mapping: the mapping which wants those buffers written
506  *
507  * Starts I/O against the buffers at mapping->private_list, and waits upon
508  * that I/O.
509  *
510  * Basically, this is a convenience function for fsync().
511  * @mapping is a file or directory which needs those buffers to be written for
512  * a successful fsync().
513  */
514 int sync_mapping_buffers(struct address_space *mapping)
515 {
516 	struct address_space *buffer_mapping = mapping->private_data;
517 
518 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
519 		return 0;
520 
521 	return fsync_buffers_list(&buffer_mapping->private_lock,
522 					&mapping->private_list);
523 }
524 EXPORT_SYMBOL(sync_mapping_buffers);
525 
526 /*
527  * Called when we've recently written block `bblock', and it is known that
528  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
529  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
530  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
531  */
532 void write_boundary_block(struct block_device *bdev,
533 			sector_t bblock, unsigned blocksize)
534 {
535 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
536 	if (bh) {
537 		if (buffer_dirty(bh))
538 			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
539 		put_bh(bh);
540 	}
541 }
542 
543 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
544 {
545 	struct address_space *mapping = inode->i_mapping;
546 	struct address_space *buffer_mapping = bh->b_page->mapping;
547 
548 	mark_buffer_dirty(bh);
549 	if (!mapping->private_data) {
550 		mapping->private_data = buffer_mapping;
551 	} else {
552 		BUG_ON(mapping->private_data != buffer_mapping);
553 	}
554 	if (!bh->b_assoc_map) {
555 		spin_lock(&buffer_mapping->private_lock);
556 		list_move_tail(&bh->b_assoc_buffers,
557 				&mapping->private_list);
558 		bh->b_assoc_map = mapping;
559 		spin_unlock(&buffer_mapping->private_lock);
560 	}
561 }
562 EXPORT_SYMBOL(mark_buffer_dirty_inode);
563 
564 /*
565  * Mark the page dirty, and set it dirty in the page cache, and mark the inode
566  * dirty.
567  *
568  * If warn is true, then emit a warning if the page is not uptodate and has
569  * not been truncated.
570  *
571  * The caller must hold lock_page_memcg().
572  */
573 void __set_page_dirty(struct page *page, struct address_space *mapping,
574 			     int warn)
575 {
576 	unsigned long flags;
577 
578 	xa_lock_irqsave(&mapping->i_pages, flags);
579 	if (page->mapping) {	/* Race with truncate? */
580 		WARN_ON_ONCE(warn && !PageUptodate(page));
581 		account_page_dirtied(page, mapping);
582 		__xa_set_mark(&mapping->i_pages, page_index(page),
583 				PAGECACHE_TAG_DIRTY);
584 	}
585 	xa_unlock_irqrestore(&mapping->i_pages, flags);
586 }
587 EXPORT_SYMBOL_GPL(__set_page_dirty);
588 
589 /*
590  * Add a page to the dirty page list.
591  *
592  * It is a sad fact of life that this function is called from several places
593  * deeply under spinlocking.  It may not sleep.
594  *
595  * If the page has buffers, the uptodate buffers are set dirty, to preserve
596  * dirty-state coherency between the page and the buffers.  It the page does
597  * not have buffers then when they are later attached they will all be set
598  * dirty.
599  *
600  * The buffers are dirtied before the page is dirtied.  There's a small race
601  * window in which a writepage caller may see the page cleanness but not the
602  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
603  * before the buffers, a concurrent writepage caller could clear the page dirty
604  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
605  * page on the dirty page list.
606  *
607  * We use private_lock to lock against try_to_free_buffers while using the
608  * page's buffer list.  Also use this to protect against clean buffers being
609  * added to the page after it was set dirty.
610  *
611  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
612  * address_space though.
613  */
614 int __set_page_dirty_buffers(struct page *page)
615 {
616 	int newly_dirty;
617 	struct address_space *mapping = page_mapping(page);
618 
619 	if (unlikely(!mapping))
620 		return !TestSetPageDirty(page);
621 
622 	spin_lock(&mapping->private_lock);
623 	if (page_has_buffers(page)) {
624 		struct buffer_head *head = page_buffers(page);
625 		struct buffer_head *bh = head;
626 
627 		do {
628 			set_buffer_dirty(bh);
629 			bh = bh->b_this_page;
630 		} while (bh != head);
631 	}
632 	/*
633 	 * Lock out page->mem_cgroup migration to keep PageDirty
634 	 * synchronized with per-memcg dirty page counters.
635 	 */
636 	lock_page_memcg(page);
637 	newly_dirty = !TestSetPageDirty(page);
638 	spin_unlock(&mapping->private_lock);
639 
640 	if (newly_dirty)
641 		__set_page_dirty(page, mapping, 1);
642 
643 	unlock_page_memcg(page);
644 
645 	if (newly_dirty)
646 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
647 
648 	return newly_dirty;
649 }
650 EXPORT_SYMBOL(__set_page_dirty_buffers);
651 
652 /*
653  * Write out and wait upon a list of buffers.
654  *
655  * We have conflicting pressures: we want to make sure that all
656  * initially dirty buffers get waited on, but that any subsequently
657  * dirtied buffers don't.  After all, we don't want fsync to last
658  * forever if somebody is actively writing to the file.
659  *
660  * Do this in two main stages: first we copy dirty buffers to a
661  * temporary inode list, queueing the writes as we go.  Then we clean
662  * up, waiting for those writes to complete.
663  *
664  * During this second stage, any subsequent updates to the file may end
665  * up refiling the buffer on the original inode's dirty list again, so
666  * there is a chance we will end up with a buffer queued for write but
667  * not yet completed on that list.  So, as a final cleanup we go through
668  * the osync code to catch these locked, dirty buffers without requeuing
669  * any newly dirty buffers for write.
670  */
671 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
672 {
673 	struct buffer_head *bh;
674 	struct list_head tmp;
675 	struct address_space *mapping;
676 	int err = 0, err2;
677 	struct blk_plug plug;
678 
679 	INIT_LIST_HEAD(&tmp);
680 	blk_start_plug(&plug);
681 
682 	spin_lock(lock);
683 	while (!list_empty(list)) {
684 		bh = BH_ENTRY(list->next);
685 		mapping = bh->b_assoc_map;
686 		__remove_assoc_queue(bh);
687 		/* Avoid race with mark_buffer_dirty_inode() which does
688 		 * a lockless check and we rely on seeing the dirty bit */
689 		smp_mb();
690 		if (buffer_dirty(bh) || buffer_locked(bh)) {
691 			list_add(&bh->b_assoc_buffers, &tmp);
692 			bh->b_assoc_map = mapping;
693 			if (buffer_dirty(bh)) {
694 				get_bh(bh);
695 				spin_unlock(lock);
696 				/*
697 				 * Ensure any pending I/O completes so that
698 				 * write_dirty_buffer() actually writes the
699 				 * current contents - it is a noop if I/O is
700 				 * still in flight on potentially older
701 				 * contents.
702 				 */
703 				write_dirty_buffer(bh, REQ_SYNC);
704 
705 				/*
706 				 * Kick off IO for the previous mapping. Note
707 				 * that we will not run the very last mapping,
708 				 * wait_on_buffer() will do that for us
709 				 * through sync_buffer().
710 				 */
711 				brelse(bh);
712 				spin_lock(lock);
713 			}
714 		}
715 	}
716 
717 	spin_unlock(lock);
718 	blk_finish_plug(&plug);
719 	spin_lock(lock);
720 
721 	while (!list_empty(&tmp)) {
722 		bh = BH_ENTRY(tmp.prev);
723 		get_bh(bh);
724 		mapping = bh->b_assoc_map;
725 		__remove_assoc_queue(bh);
726 		/* Avoid race with mark_buffer_dirty_inode() which does
727 		 * a lockless check and we rely on seeing the dirty bit */
728 		smp_mb();
729 		if (buffer_dirty(bh)) {
730 			list_add(&bh->b_assoc_buffers,
731 				 &mapping->private_list);
732 			bh->b_assoc_map = mapping;
733 		}
734 		spin_unlock(lock);
735 		wait_on_buffer(bh);
736 		if (!buffer_uptodate(bh))
737 			err = -EIO;
738 		brelse(bh);
739 		spin_lock(lock);
740 	}
741 
742 	spin_unlock(lock);
743 	err2 = osync_buffers_list(lock, list);
744 	if (err)
745 		return err;
746 	else
747 		return err2;
748 }
749 
750 /*
751  * Invalidate any and all dirty buffers on a given inode.  We are
752  * probably unmounting the fs, but that doesn't mean we have already
753  * done a sync().  Just drop the buffers from the inode list.
754  *
755  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
756  * assumes that all the buffers are against the blockdev.  Not true
757  * for reiserfs.
758  */
759 void invalidate_inode_buffers(struct inode *inode)
760 {
761 	if (inode_has_buffers(inode)) {
762 		struct address_space *mapping = &inode->i_data;
763 		struct list_head *list = &mapping->private_list;
764 		struct address_space *buffer_mapping = mapping->private_data;
765 
766 		spin_lock(&buffer_mapping->private_lock);
767 		while (!list_empty(list))
768 			__remove_assoc_queue(BH_ENTRY(list->next));
769 		spin_unlock(&buffer_mapping->private_lock);
770 	}
771 }
772 EXPORT_SYMBOL(invalidate_inode_buffers);
773 
774 /*
775  * Remove any clean buffers from the inode's buffer list.  This is called
776  * when we're trying to free the inode itself.  Those buffers can pin it.
777  *
778  * Returns true if all buffers were removed.
779  */
780 int remove_inode_buffers(struct inode *inode)
781 {
782 	int ret = 1;
783 
784 	if (inode_has_buffers(inode)) {
785 		struct address_space *mapping = &inode->i_data;
786 		struct list_head *list = &mapping->private_list;
787 		struct address_space *buffer_mapping = mapping->private_data;
788 
789 		spin_lock(&buffer_mapping->private_lock);
790 		while (!list_empty(list)) {
791 			struct buffer_head *bh = BH_ENTRY(list->next);
792 			if (buffer_dirty(bh)) {
793 				ret = 0;
794 				break;
795 			}
796 			__remove_assoc_queue(bh);
797 		}
798 		spin_unlock(&buffer_mapping->private_lock);
799 	}
800 	return ret;
801 }
802 
803 /*
804  * Create the appropriate buffers when given a page for data area and
805  * the size of each buffer.. Use the bh->b_this_page linked list to
806  * follow the buffers created.  Return NULL if unable to create more
807  * buffers.
808  *
809  * The retry flag is used to differentiate async IO (paging, swapping)
810  * which may not fail from ordinary buffer allocations.
811  */
812 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
813 		bool retry)
814 {
815 	struct buffer_head *bh, *head;
816 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
817 	long offset;
818 	struct mem_cgroup *memcg;
819 
820 	if (retry)
821 		gfp |= __GFP_NOFAIL;
822 
823 	memcg = get_mem_cgroup_from_page(page);
824 	memalloc_use_memcg(memcg);
825 
826 	head = NULL;
827 	offset = PAGE_SIZE;
828 	while ((offset -= size) >= 0) {
829 		bh = alloc_buffer_head(gfp);
830 		if (!bh)
831 			goto no_grow;
832 
833 		bh->b_this_page = head;
834 		bh->b_blocknr = -1;
835 		head = bh;
836 
837 		bh->b_size = size;
838 
839 		/* Link the buffer to its page */
840 		set_bh_page(bh, page, offset);
841 	}
842 out:
843 	memalloc_unuse_memcg();
844 	mem_cgroup_put(memcg);
845 	return head;
846 /*
847  * In case anything failed, we just free everything we got.
848  */
849 no_grow:
850 	if (head) {
851 		do {
852 			bh = head;
853 			head = head->b_this_page;
854 			free_buffer_head(bh);
855 		} while (head);
856 	}
857 
858 	goto out;
859 }
860 EXPORT_SYMBOL_GPL(alloc_page_buffers);
861 
862 static inline void
863 link_dev_buffers(struct page *page, struct buffer_head *head)
864 {
865 	struct buffer_head *bh, *tail;
866 
867 	bh = head;
868 	do {
869 		tail = bh;
870 		bh = bh->b_this_page;
871 	} while (bh);
872 	tail->b_this_page = head;
873 	attach_page_buffers(page, head);
874 }
875 
876 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
877 {
878 	sector_t retval = ~((sector_t)0);
879 	loff_t sz = i_size_read(bdev->bd_inode);
880 
881 	if (sz) {
882 		unsigned int sizebits = blksize_bits(size);
883 		retval = (sz >> sizebits);
884 	}
885 	return retval;
886 }
887 
888 /*
889  * Initialise the state of a blockdev page's buffers.
890  */
891 static sector_t
892 init_page_buffers(struct page *page, struct block_device *bdev,
893 			sector_t block, int size)
894 {
895 	struct buffer_head *head = page_buffers(page);
896 	struct buffer_head *bh = head;
897 	int uptodate = PageUptodate(page);
898 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
899 
900 	do {
901 		if (!buffer_mapped(bh)) {
902 			bh->b_end_io = NULL;
903 			bh->b_private = NULL;
904 			bh->b_bdev = bdev;
905 			bh->b_blocknr = block;
906 			if (uptodate)
907 				set_buffer_uptodate(bh);
908 			if (block < end_block)
909 				set_buffer_mapped(bh);
910 		}
911 		block++;
912 		bh = bh->b_this_page;
913 	} while (bh != head);
914 
915 	/*
916 	 * Caller needs to validate requested block against end of device.
917 	 */
918 	return end_block;
919 }
920 
921 /*
922  * Create the page-cache page that contains the requested block.
923  *
924  * This is used purely for blockdev mappings.
925  */
926 static int
927 grow_dev_page(struct block_device *bdev, sector_t block,
928 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
929 {
930 	struct inode *inode = bdev->bd_inode;
931 	struct page *page;
932 	struct buffer_head *bh;
933 	sector_t end_block;
934 	int ret = 0;		/* Will call free_more_memory() */
935 	gfp_t gfp_mask;
936 
937 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
938 
939 	/*
940 	 * XXX: __getblk_slow() can not really deal with failure and
941 	 * will endlessly loop on improvised global reclaim.  Prefer
942 	 * looping in the allocator rather than here, at least that
943 	 * code knows what it's doing.
944 	 */
945 	gfp_mask |= __GFP_NOFAIL;
946 
947 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
948 
949 	BUG_ON(!PageLocked(page));
950 
951 	if (page_has_buffers(page)) {
952 		bh = page_buffers(page);
953 		if (bh->b_size == size) {
954 			end_block = init_page_buffers(page, bdev,
955 						(sector_t)index << sizebits,
956 						size);
957 			goto done;
958 		}
959 		if (!try_to_free_buffers(page))
960 			goto failed;
961 	}
962 
963 	/*
964 	 * Allocate some buffers for this page
965 	 */
966 	bh = alloc_page_buffers(page, size, true);
967 
968 	/*
969 	 * Link the page to the buffers and initialise them.  Take the
970 	 * lock to be atomic wrt __find_get_block(), which does not
971 	 * run under the page lock.
972 	 */
973 	spin_lock(&inode->i_mapping->private_lock);
974 	link_dev_buffers(page, bh);
975 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
976 			size);
977 	spin_unlock(&inode->i_mapping->private_lock);
978 done:
979 	ret = (block < end_block) ? 1 : -ENXIO;
980 failed:
981 	unlock_page(page);
982 	put_page(page);
983 	return ret;
984 }
985 
986 /*
987  * Create buffers for the specified block device block's page.  If
988  * that page was dirty, the buffers are set dirty also.
989  */
990 static int
991 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
992 {
993 	pgoff_t index;
994 	int sizebits;
995 
996 	sizebits = -1;
997 	do {
998 		sizebits++;
999 	} while ((size << sizebits) < PAGE_SIZE);
1000 
1001 	index = block >> sizebits;
1002 
1003 	/*
1004 	 * Check for a block which wants to lie outside our maximum possible
1005 	 * pagecache index.  (this comparison is done using sector_t types).
1006 	 */
1007 	if (unlikely(index != block >> sizebits)) {
1008 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1009 			"device %pg\n",
1010 			__func__, (unsigned long long)block,
1011 			bdev);
1012 		return -EIO;
1013 	}
1014 
1015 	/* Create a page with the proper size buffers.. */
1016 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1017 }
1018 
1019 static struct buffer_head *
1020 __getblk_slow(struct block_device *bdev, sector_t block,
1021 	     unsigned size, gfp_t gfp)
1022 {
1023 	/* Size must be multiple of hard sectorsize */
1024 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1025 			(size < 512 || size > PAGE_SIZE))) {
1026 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1027 					size);
1028 		printk(KERN_ERR "logical block size: %d\n",
1029 					bdev_logical_block_size(bdev));
1030 
1031 		dump_stack();
1032 		return NULL;
1033 	}
1034 
1035 	for (;;) {
1036 		struct buffer_head *bh;
1037 		int ret;
1038 
1039 		bh = __find_get_block(bdev, block, size);
1040 		if (bh)
1041 			return bh;
1042 
1043 		ret = grow_buffers(bdev, block, size, gfp);
1044 		if (ret < 0)
1045 			return NULL;
1046 	}
1047 }
1048 
1049 /*
1050  * The relationship between dirty buffers and dirty pages:
1051  *
1052  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1053  * the page is tagged dirty in the page cache.
1054  *
1055  * At all times, the dirtiness of the buffers represents the dirtiness of
1056  * subsections of the page.  If the page has buffers, the page dirty bit is
1057  * merely a hint about the true dirty state.
1058  *
1059  * When a page is set dirty in its entirety, all its buffers are marked dirty
1060  * (if the page has buffers).
1061  *
1062  * When a buffer is marked dirty, its page is dirtied, but the page's other
1063  * buffers are not.
1064  *
1065  * Also.  When blockdev buffers are explicitly read with bread(), they
1066  * individually become uptodate.  But their backing page remains not
1067  * uptodate - even if all of its buffers are uptodate.  A subsequent
1068  * block_read_full_page() against that page will discover all the uptodate
1069  * buffers, will set the page uptodate and will perform no I/O.
1070  */
1071 
1072 /**
1073  * mark_buffer_dirty - mark a buffer_head as needing writeout
1074  * @bh: the buffer_head to mark dirty
1075  *
1076  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1077  * its backing page dirty, then tag the page as dirty in the page cache
1078  * and then attach the address_space's inode to its superblock's dirty
1079  * inode list.
1080  *
1081  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1082  * i_pages lock and mapping->host->i_lock.
1083  */
1084 void mark_buffer_dirty(struct buffer_head *bh)
1085 {
1086 	WARN_ON_ONCE(!buffer_uptodate(bh));
1087 
1088 	trace_block_dirty_buffer(bh);
1089 
1090 	/*
1091 	 * Very *carefully* optimize the it-is-already-dirty case.
1092 	 *
1093 	 * Don't let the final "is it dirty" escape to before we
1094 	 * perhaps modified the buffer.
1095 	 */
1096 	if (buffer_dirty(bh)) {
1097 		smp_mb();
1098 		if (buffer_dirty(bh))
1099 			return;
1100 	}
1101 
1102 	if (!test_set_buffer_dirty(bh)) {
1103 		struct page *page = bh->b_page;
1104 		struct address_space *mapping = NULL;
1105 
1106 		lock_page_memcg(page);
1107 		if (!TestSetPageDirty(page)) {
1108 			mapping = page_mapping(page);
1109 			if (mapping)
1110 				__set_page_dirty(page, mapping, 0);
1111 		}
1112 		unlock_page_memcg(page);
1113 		if (mapping)
1114 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1115 	}
1116 }
1117 EXPORT_SYMBOL(mark_buffer_dirty);
1118 
1119 void mark_buffer_write_io_error(struct buffer_head *bh)
1120 {
1121 	set_buffer_write_io_error(bh);
1122 	/* FIXME: do we need to set this in both places? */
1123 	if (bh->b_page && bh->b_page->mapping)
1124 		mapping_set_error(bh->b_page->mapping, -EIO);
1125 	if (bh->b_assoc_map)
1126 		mapping_set_error(bh->b_assoc_map, -EIO);
1127 }
1128 EXPORT_SYMBOL(mark_buffer_write_io_error);
1129 
1130 /*
1131  * Decrement a buffer_head's reference count.  If all buffers against a page
1132  * have zero reference count, are clean and unlocked, and if the page is clean
1133  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1134  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1135  * a page but it ends up not being freed, and buffers may later be reattached).
1136  */
1137 void __brelse(struct buffer_head * buf)
1138 {
1139 	if (atomic_read(&buf->b_count)) {
1140 		put_bh(buf);
1141 		return;
1142 	}
1143 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1144 }
1145 EXPORT_SYMBOL(__brelse);
1146 
1147 /*
1148  * bforget() is like brelse(), except it discards any
1149  * potentially dirty data.
1150  */
1151 void __bforget(struct buffer_head *bh)
1152 {
1153 	clear_buffer_dirty(bh);
1154 	if (bh->b_assoc_map) {
1155 		struct address_space *buffer_mapping = bh->b_page->mapping;
1156 
1157 		spin_lock(&buffer_mapping->private_lock);
1158 		list_del_init(&bh->b_assoc_buffers);
1159 		bh->b_assoc_map = NULL;
1160 		spin_unlock(&buffer_mapping->private_lock);
1161 	}
1162 	__brelse(bh);
1163 }
1164 EXPORT_SYMBOL(__bforget);
1165 
1166 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1167 {
1168 	lock_buffer(bh);
1169 	if (buffer_uptodate(bh)) {
1170 		unlock_buffer(bh);
1171 		return bh;
1172 	} else {
1173 		get_bh(bh);
1174 		bh->b_end_io = end_buffer_read_sync;
1175 		submit_bh(REQ_OP_READ, 0, bh);
1176 		wait_on_buffer(bh);
1177 		if (buffer_uptodate(bh))
1178 			return bh;
1179 	}
1180 	brelse(bh);
1181 	return NULL;
1182 }
1183 
1184 /*
1185  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1186  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1187  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1188  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1189  * CPU's LRUs at the same time.
1190  *
1191  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1192  * sb_find_get_block().
1193  *
1194  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1195  * a local interrupt disable for that.
1196  */
1197 
1198 #define BH_LRU_SIZE	16
1199 
1200 struct bh_lru {
1201 	struct buffer_head *bhs[BH_LRU_SIZE];
1202 };
1203 
1204 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1205 
1206 #ifdef CONFIG_SMP
1207 #define bh_lru_lock()	local_irq_disable()
1208 #define bh_lru_unlock()	local_irq_enable()
1209 #else
1210 #define bh_lru_lock()	preempt_disable()
1211 #define bh_lru_unlock()	preempt_enable()
1212 #endif
1213 
1214 static inline void check_irqs_on(void)
1215 {
1216 #ifdef irqs_disabled
1217 	BUG_ON(irqs_disabled());
1218 #endif
1219 }
1220 
1221 /*
1222  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1223  * inserted at the front, and the buffer_head at the back if any is evicted.
1224  * Or, if already in the LRU it is moved to the front.
1225  */
1226 static void bh_lru_install(struct buffer_head *bh)
1227 {
1228 	struct buffer_head *evictee = bh;
1229 	struct bh_lru *b;
1230 	int i;
1231 
1232 	check_irqs_on();
1233 	bh_lru_lock();
1234 
1235 	b = this_cpu_ptr(&bh_lrus);
1236 	for (i = 0; i < BH_LRU_SIZE; i++) {
1237 		swap(evictee, b->bhs[i]);
1238 		if (evictee == bh) {
1239 			bh_lru_unlock();
1240 			return;
1241 		}
1242 	}
1243 
1244 	get_bh(bh);
1245 	bh_lru_unlock();
1246 	brelse(evictee);
1247 }
1248 
1249 /*
1250  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1251  */
1252 static struct buffer_head *
1253 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1254 {
1255 	struct buffer_head *ret = NULL;
1256 	unsigned int i;
1257 
1258 	check_irqs_on();
1259 	bh_lru_lock();
1260 	for (i = 0; i < BH_LRU_SIZE; i++) {
1261 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1262 
1263 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1264 		    bh->b_size == size) {
1265 			if (i) {
1266 				while (i) {
1267 					__this_cpu_write(bh_lrus.bhs[i],
1268 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1269 					i--;
1270 				}
1271 				__this_cpu_write(bh_lrus.bhs[0], bh);
1272 			}
1273 			get_bh(bh);
1274 			ret = bh;
1275 			break;
1276 		}
1277 	}
1278 	bh_lru_unlock();
1279 	return ret;
1280 }
1281 
1282 /*
1283  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1284  * it in the LRU and mark it as accessed.  If it is not present then return
1285  * NULL
1286  */
1287 struct buffer_head *
1288 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1289 {
1290 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1291 
1292 	if (bh == NULL) {
1293 		/* __find_get_block_slow will mark the page accessed */
1294 		bh = __find_get_block_slow(bdev, block);
1295 		if (bh)
1296 			bh_lru_install(bh);
1297 	} else
1298 		touch_buffer(bh);
1299 
1300 	return bh;
1301 }
1302 EXPORT_SYMBOL(__find_get_block);
1303 
1304 /*
1305  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1306  * which corresponds to the passed block_device, block and size. The
1307  * returned buffer has its reference count incremented.
1308  *
1309  * __getblk_gfp() will lock up the machine if grow_dev_page's
1310  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1311  */
1312 struct buffer_head *
1313 __getblk_gfp(struct block_device *bdev, sector_t block,
1314 	     unsigned size, gfp_t gfp)
1315 {
1316 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1317 
1318 	might_sleep();
1319 	if (bh == NULL)
1320 		bh = __getblk_slow(bdev, block, size, gfp);
1321 	return bh;
1322 }
1323 EXPORT_SYMBOL(__getblk_gfp);
1324 
1325 /*
1326  * Do async read-ahead on a buffer..
1327  */
1328 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1329 {
1330 	struct buffer_head *bh = __getblk(bdev, block, size);
1331 	if (likely(bh)) {
1332 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1333 		brelse(bh);
1334 	}
1335 }
1336 EXPORT_SYMBOL(__breadahead);
1337 
1338 /**
1339  *  __bread_gfp() - reads a specified block and returns the bh
1340  *  @bdev: the block_device to read from
1341  *  @block: number of block
1342  *  @size: size (in bytes) to read
1343  *  @gfp: page allocation flag
1344  *
1345  *  Reads a specified block, and returns buffer head that contains it.
1346  *  The page cache can be allocated from non-movable area
1347  *  not to prevent page migration if you set gfp to zero.
1348  *  It returns NULL if the block was unreadable.
1349  */
1350 struct buffer_head *
1351 __bread_gfp(struct block_device *bdev, sector_t block,
1352 		   unsigned size, gfp_t gfp)
1353 {
1354 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1355 
1356 	if (likely(bh) && !buffer_uptodate(bh))
1357 		bh = __bread_slow(bh);
1358 	return bh;
1359 }
1360 EXPORT_SYMBOL(__bread_gfp);
1361 
1362 /*
1363  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1364  * This doesn't race because it runs in each cpu either in irq
1365  * or with preempt disabled.
1366  */
1367 static void invalidate_bh_lru(void *arg)
1368 {
1369 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1370 	int i;
1371 
1372 	for (i = 0; i < BH_LRU_SIZE; i++) {
1373 		brelse(b->bhs[i]);
1374 		b->bhs[i] = NULL;
1375 	}
1376 	put_cpu_var(bh_lrus);
1377 }
1378 
1379 static bool has_bh_in_lru(int cpu, void *dummy)
1380 {
1381 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1382 	int i;
1383 
1384 	for (i = 0; i < BH_LRU_SIZE; i++) {
1385 		if (b->bhs[i])
1386 			return 1;
1387 	}
1388 
1389 	return 0;
1390 }
1391 
1392 void invalidate_bh_lrus(void)
1393 {
1394 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1395 }
1396 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1397 
1398 void set_bh_page(struct buffer_head *bh,
1399 		struct page *page, unsigned long offset)
1400 {
1401 	bh->b_page = page;
1402 	BUG_ON(offset >= PAGE_SIZE);
1403 	if (PageHighMem(page))
1404 		/*
1405 		 * This catches illegal uses and preserves the offset:
1406 		 */
1407 		bh->b_data = (char *)(0 + offset);
1408 	else
1409 		bh->b_data = page_address(page) + offset;
1410 }
1411 EXPORT_SYMBOL(set_bh_page);
1412 
1413 /*
1414  * Called when truncating a buffer on a page completely.
1415  */
1416 
1417 /* Bits that are cleared during an invalidate */
1418 #define BUFFER_FLAGS_DISCARD \
1419 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1420 	 1 << BH_Delay | 1 << BH_Unwritten)
1421 
1422 static void discard_buffer(struct buffer_head * bh)
1423 {
1424 	unsigned long b_state, b_state_old;
1425 
1426 	lock_buffer(bh);
1427 	clear_buffer_dirty(bh);
1428 	bh->b_bdev = NULL;
1429 	b_state = bh->b_state;
1430 	for (;;) {
1431 		b_state_old = cmpxchg(&bh->b_state, b_state,
1432 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1433 		if (b_state_old == b_state)
1434 			break;
1435 		b_state = b_state_old;
1436 	}
1437 	unlock_buffer(bh);
1438 }
1439 
1440 /**
1441  * block_invalidatepage - invalidate part or all of a buffer-backed page
1442  *
1443  * @page: the page which is affected
1444  * @offset: start of the range to invalidate
1445  * @length: length of the range to invalidate
1446  *
1447  * block_invalidatepage() is called when all or part of the page has become
1448  * invalidated by a truncate operation.
1449  *
1450  * block_invalidatepage() does not have to release all buffers, but it must
1451  * ensure that no dirty buffer is left outside @offset and that no I/O
1452  * is underway against any of the blocks which are outside the truncation
1453  * point.  Because the caller is about to free (and possibly reuse) those
1454  * blocks on-disk.
1455  */
1456 void block_invalidatepage(struct page *page, unsigned int offset,
1457 			  unsigned int length)
1458 {
1459 	struct buffer_head *head, *bh, *next;
1460 	unsigned int curr_off = 0;
1461 	unsigned int stop = length + offset;
1462 
1463 	BUG_ON(!PageLocked(page));
1464 	if (!page_has_buffers(page))
1465 		goto out;
1466 
1467 	/*
1468 	 * Check for overflow
1469 	 */
1470 	BUG_ON(stop > PAGE_SIZE || stop < length);
1471 
1472 	head = page_buffers(page);
1473 	bh = head;
1474 	do {
1475 		unsigned int next_off = curr_off + bh->b_size;
1476 		next = bh->b_this_page;
1477 
1478 		/*
1479 		 * Are we still fully in range ?
1480 		 */
1481 		if (next_off > stop)
1482 			goto out;
1483 
1484 		/*
1485 		 * is this block fully invalidated?
1486 		 */
1487 		if (offset <= curr_off)
1488 			discard_buffer(bh);
1489 		curr_off = next_off;
1490 		bh = next;
1491 	} while (bh != head);
1492 
1493 	/*
1494 	 * We release buffers only if the entire page is being invalidated.
1495 	 * The get_block cached value has been unconditionally invalidated,
1496 	 * so real IO is not possible anymore.
1497 	 */
1498 	if (length == PAGE_SIZE)
1499 		try_to_release_page(page, 0);
1500 out:
1501 	return;
1502 }
1503 EXPORT_SYMBOL(block_invalidatepage);
1504 
1505 
1506 /*
1507  * We attach and possibly dirty the buffers atomically wrt
1508  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1509  * is already excluded via the page lock.
1510  */
1511 void create_empty_buffers(struct page *page,
1512 			unsigned long blocksize, unsigned long b_state)
1513 {
1514 	struct buffer_head *bh, *head, *tail;
1515 
1516 	head = alloc_page_buffers(page, blocksize, true);
1517 	bh = head;
1518 	do {
1519 		bh->b_state |= b_state;
1520 		tail = bh;
1521 		bh = bh->b_this_page;
1522 	} while (bh);
1523 	tail->b_this_page = head;
1524 
1525 	spin_lock(&page->mapping->private_lock);
1526 	if (PageUptodate(page) || PageDirty(page)) {
1527 		bh = head;
1528 		do {
1529 			if (PageDirty(page))
1530 				set_buffer_dirty(bh);
1531 			if (PageUptodate(page))
1532 				set_buffer_uptodate(bh);
1533 			bh = bh->b_this_page;
1534 		} while (bh != head);
1535 	}
1536 	attach_page_buffers(page, head);
1537 	spin_unlock(&page->mapping->private_lock);
1538 }
1539 EXPORT_SYMBOL(create_empty_buffers);
1540 
1541 /**
1542  * clean_bdev_aliases: clean a range of buffers in block device
1543  * @bdev: Block device to clean buffers in
1544  * @block: Start of a range of blocks to clean
1545  * @len: Number of blocks to clean
1546  *
1547  * We are taking a range of blocks for data and we don't want writeback of any
1548  * buffer-cache aliases starting from return from this function and until the
1549  * moment when something will explicitly mark the buffer dirty (hopefully that
1550  * will not happen until we will free that block ;-) We don't even need to mark
1551  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1552  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1553  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1554  * would confuse anyone who might pick it with bread() afterwards...
1555  *
1556  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1557  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1558  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1559  * need to.  That happens here.
1560  */
1561 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1562 {
1563 	struct inode *bd_inode = bdev->bd_inode;
1564 	struct address_space *bd_mapping = bd_inode->i_mapping;
1565 	struct pagevec pvec;
1566 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1567 	pgoff_t end;
1568 	int i, count;
1569 	struct buffer_head *bh;
1570 	struct buffer_head *head;
1571 
1572 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1573 	pagevec_init(&pvec);
1574 	while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1575 		count = pagevec_count(&pvec);
1576 		for (i = 0; i < count; i++) {
1577 			struct page *page = pvec.pages[i];
1578 
1579 			if (!page_has_buffers(page))
1580 				continue;
1581 			/*
1582 			 * We use page lock instead of bd_mapping->private_lock
1583 			 * to pin buffers here since we can afford to sleep and
1584 			 * it scales better than a global spinlock lock.
1585 			 */
1586 			lock_page(page);
1587 			/* Recheck when the page is locked which pins bhs */
1588 			if (!page_has_buffers(page))
1589 				goto unlock_page;
1590 			head = page_buffers(page);
1591 			bh = head;
1592 			do {
1593 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1594 					goto next;
1595 				if (bh->b_blocknr >= block + len)
1596 					break;
1597 				clear_buffer_dirty(bh);
1598 				wait_on_buffer(bh);
1599 				clear_buffer_req(bh);
1600 next:
1601 				bh = bh->b_this_page;
1602 			} while (bh != head);
1603 unlock_page:
1604 			unlock_page(page);
1605 		}
1606 		pagevec_release(&pvec);
1607 		cond_resched();
1608 		/* End of range already reached? */
1609 		if (index > end || !index)
1610 			break;
1611 	}
1612 }
1613 EXPORT_SYMBOL(clean_bdev_aliases);
1614 
1615 /*
1616  * Size is a power-of-two in the range 512..PAGE_SIZE,
1617  * and the case we care about most is PAGE_SIZE.
1618  *
1619  * So this *could* possibly be written with those
1620  * constraints in mind (relevant mostly if some
1621  * architecture has a slow bit-scan instruction)
1622  */
1623 static inline int block_size_bits(unsigned int blocksize)
1624 {
1625 	return ilog2(blocksize);
1626 }
1627 
1628 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1629 {
1630 	BUG_ON(!PageLocked(page));
1631 
1632 	if (!page_has_buffers(page))
1633 		create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1634 				     b_state);
1635 	return page_buffers(page);
1636 }
1637 
1638 /*
1639  * NOTE! All mapped/uptodate combinations are valid:
1640  *
1641  *	Mapped	Uptodate	Meaning
1642  *
1643  *	No	No		"unknown" - must do get_block()
1644  *	No	Yes		"hole" - zero-filled
1645  *	Yes	No		"allocated" - allocated on disk, not read in
1646  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1647  *
1648  * "Dirty" is valid only with the last case (mapped+uptodate).
1649  */
1650 
1651 /*
1652  * While block_write_full_page is writing back the dirty buffers under
1653  * the page lock, whoever dirtied the buffers may decide to clean them
1654  * again at any time.  We handle that by only looking at the buffer
1655  * state inside lock_buffer().
1656  *
1657  * If block_write_full_page() is called for regular writeback
1658  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1659  * locked buffer.   This only can happen if someone has written the buffer
1660  * directly, with submit_bh().  At the address_space level PageWriteback
1661  * prevents this contention from occurring.
1662  *
1663  * If block_write_full_page() is called with wbc->sync_mode ==
1664  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1665  * causes the writes to be flagged as synchronous writes.
1666  */
1667 int __block_write_full_page(struct inode *inode, struct page *page,
1668 			get_block_t *get_block, struct writeback_control *wbc,
1669 			bh_end_io_t *handler)
1670 {
1671 	int err;
1672 	sector_t block;
1673 	sector_t last_block;
1674 	struct buffer_head *bh, *head;
1675 	unsigned int blocksize, bbits;
1676 	int nr_underway = 0;
1677 	int write_flags = wbc_to_write_flags(wbc);
1678 
1679 	head = create_page_buffers(page, inode,
1680 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1681 
1682 	/*
1683 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1684 	 * here, and the (potentially unmapped) buffers may become dirty at
1685 	 * any time.  If a buffer becomes dirty here after we've inspected it
1686 	 * then we just miss that fact, and the page stays dirty.
1687 	 *
1688 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1689 	 * handle that here by just cleaning them.
1690 	 */
1691 
1692 	bh = head;
1693 	blocksize = bh->b_size;
1694 	bbits = block_size_bits(blocksize);
1695 
1696 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1697 	last_block = (i_size_read(inode) - 1) >> bbits;
1698 
1699 	/*
1700 	 * Get all the dirty buffers mapped to disk addresses and
1701 	 * handle any aliases from the underlying blockdev's mapping.
1702 	 */
1703 	do {
1704 		if (block > last_block) {
1705 			/*
1706 			 * mapped buffers outside i_size will occur, because
1707 			 * this page can be outside i_size when there is a
1708 			 * truncate in progress.
1709 			 */
1710 			/*
1711 			 * The buffer was zeroed by block_write_full_page()
1712 			 */
1713 			clear_buffer_dirty(bh);
1714 			set_buffer_uptodate(bh);
1715 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1716 			   buffer_dirty(bh)) {
1717 			WARN_ON(bh->b_size != blocksize);
1718 			err = get_block(inode, block, bh, 1);
1719 			if (err)
1720 				goto recover;
1721 			clear_buffer_delay(bh);
1722 			if (buffer_new(bh)) {
1723 				/* blockdev mappings never come here */
1724 				clear_buffer_new(bh);
1725 				clean_bdev_bh_alias(bh);
1726 			}
1727 		}
1728 		bh = bh->b_this_page;
1729 		block++;
1730 	} while (bh != head);
1731 
1732 	do {
1733 		if (!buffer_mapped(bh))
1734 			continue;
1735 		/*
1736 		 * If it's a fully non-blocking write attempt and we cannot
1737 		 * lock the buffer then redirty the page.  Note that this can
1738 		 * potentially cause a busy-wait loop from writeback threads
1739 		 * and kswapd activity, but those code paths have their own
1740 		 * higher-level throttling.
1741 		 */
1742 		if (wbc->sync_mode != WB_SYNC_NONE) {
1743 			lock_buffer(bh);
1744 		} else if (!trylock_buffer(bh)) {
1745 			redirty_page_for_writepage(wbc, page);
1746 			continue;
1747 		}
1748 		if (test_clear_buffer_dirty(bh)) {
1749 			mark_buffer_async_write_endio(bh, handler);
1750 		} else {
1751 			unlock_buffer(bh);
1752 		}
1753 	} while ((bh = bh->b_this_page) != head);
1754 
1755 	/*
1756 	 * The page and its buffers are protected by PageWriteback(), so we can
1757 	 * drop the bh refcounts early.
1758 	 */
1759 	BUG_ON(PageWriteback(page));
1760 	set_page_writeback(page);
1761 
1762 	do {
1763 		struct buffer_head *next = bh->b_this_page;
1764 		if (buffer_async_write(bh)) {
1765 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1766 					inode->i_write_hint, wbc);
1767 			nr_underway++;
1768 		}
1769 		bh = next;
1770 	} while (bh != head);
1771 	unlock_page(page);
1772 
1773 	err = 0;
1774 done:
1775 	if (nr_underway == 0) {
1776 		/*
1777 		 * The page was marked dirty, but the buffers were
1778 		 * clean.  Someone wrote them back by hand with
1779 		 * ll_rw_block/submit_bh.  A rare case.
1780 		 */
1781 		end_page_writeback(page);
1782 
1783 		/*
1784 		 * The page and buffer_heads can be released at any time from
1785 		 * here on.
1786 		 */
1787 	}
1788 	return err;
1789 
1790 recover:
1791 	/*
1792 	 * ENOSPC, or some other error.  We may already have added some
1793 	 * blocks to the file, so we need to write these out to avoid
1794 	 * exposing stale data.
1795 	 * The page is currently locked and not marked for writeback
1796 	 */
1797 	bh = head;
1798 	/* Recovery: lock and submit the mapped buffers */
1799 	do {
1800 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1801 		    !buffer_delay(bh)) {
1802 			lock_buffer(bh);
1803 			mark_buffer_async_write_endio(bh, handler);
1804 		} else {
1805 			/*
1806 			 * The buffer may have been set dirty during
1807 			 * attachment to a dirty page.
1808 			 */
1809 			clear_buffer_dirty(bh);
1810 		}
1811 	} while ((bh = bh->b_this_page) != head);
1812 	SetPageError(page);
1813 	BUG_ON(PageWriteback(page));
1814 	mapping_set_error(page->mapping, err);
1815 	set_page_writeback(page);
1816 	do {
1817 		struct buffer_head *next = bh->b_this_page;
1818 		if (buffer_async_write(bh)) {
1819 			clear_buffer_dirty(bh);
1820 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1821 					inode->i_write_hint, wbc);
1822 			nr_underway++;
1823 		}
1824 		bh = next;
1825 	} while (bh != head);
1826 	unlock_page(page);
1827 	goto done;
1828 }
1829 EXPORT_SYMBOL(__block_write_full_page);
1830 
1831 /*
1832  * If a page has any new buffers, zero them out here, and mark them uptodate
1833  * and dirty so they'll be written out (in order to prevent uninitialised
1834  * block data from leaking). And clear the new bit.
1835  */
1836 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1837 {
1838 	unsigned int block_start, block_end;
1839 	struct buffer_head *head, *bh;
1840 
1841 	BUG_ON(!PageLocked(page));
1842 	if (!page_has_buffers(page))
1843 		return;
1844 
1845 	bh = head = page_buffers(page);
1846 	block_start = 0;
1847 	do {
1848 		block_end = block_start + bh->b_size;
1849 
1850 		if (buffer_new(bh)) {
1851 			if (block_end > from && block_start < to) {
1852 				if (!PageUptodate(page)) {
1853 					unsigned start, size;
1854 
1855 					start = max(from, block_start);
1856 					size = min(to, block_end) - start;
1857 
1858 					zero_user(page, start, size);
1859 					set_buffer_uptodate(bh);
1860 				}
1861 
1862 				clear_buffer_new(bh);
1863 				mark_buffer_dirty(bh);
1864 			}
1865 		}
1866 
1867 		block_start = block_end;
1868 		bh = bh->b_this_page;
1869 	} while (bh != head);
1870 }
1871 EXPORT_SYMBOL(page_zero_new_buffers);
1872 
1873 static void
1874 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1875 		struct iomap *iomap)
1876 {
1877 	loff_t offset = block << inode->i_blkbits;
1878 
1879 	bh->b_bdev = iomap->bdev;
1880 
1881 	/*
1882 	 * Block points to offset in file we need to map, iomap contains
1883 	 * the offset at which the map starts. If the map ends before the
1884 	 * current block, then do not map the buffer and let the caller
1885 	 * handle it.
1886 	 */
1887 	BUG_ON(offset >= iomap->offset + iomap->length);
1888 
1889 	switch (iomap->type) {
1890 	case IOMAP_HOLE:
1891 		/*
1892 		 * If the buffer is not up to date or beyond the current EOF,
1893 		 * we need to mark it as new to ensure sub-block zeroing is
1894 		 * executed if necessary.
1895 		 */
1896 		if (!buffer_uptodate(bh) ||
1897 		    (offset >= i_size_read(inode)))
1898 			set_buffer_new(bh);
1899 		break;
1900 	case IOMAP_DELALLOC:
1901 		if (!buffer_uptodate(bh) ||
1902 		    (offset >= i_size_read(inode)))
1903 			set_buffer_new(bh);
1904 		set_buffer_uptodate(bh);
1905 		set_buffer_mapped(bh);
1906 		set_buffer_delay(bh);
1907 		break;
1908 	case IOMAP_UNWRITTEN:
1909 		/*
1910 		 * For unwritten regions, we always need to ensure that regions
1911 		 * in the block we are not writing to are zeroed. Mark the
1912 		 * buffer as new to ensure this.
1913 		 */
1914 		set_buffer_new(bh);
1915 		set_buffer_unwritten(bh);
1916 		/* FALLTHRU */
1917 	case IOMAP_MAPPED:
1918 		if ((iomap->flags & IOMAP_F_NEW) ||
1919 		    offset >= i_size_read(inode))
1920 			set_buffer_new(bh);
1921 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1922 				inode->i_blkbits;
1923 		set_buffer_mapped(bh);
1924 		break;
1925 	}
1926 }
1927 
1928 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1929 		get_block_t *get_block, struct iomap *iomap)
1930 {
1931 	unsigned from = pos & (PAGE_SIZE - 1);
1932 	unsigned to = from + len;
1933 	struct inode *inode = page->mapping->host;
1934 	unsigned block_start, block_end;
1935 	sector_t block;
1936 	int err = 0;
1937 	unsigned blocksize, bbits;
1938 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1939 
1940 	BUG_ON(!PageLocked(page));
1941 	BUG_ON(from > PAGE_SIZE);
1942 	BUG_ON(to > PAGE_SIZE);
1943 	BUG_ON(from > to);
1944 
1945 	head = create_page_buffers(page, inode, 0);
1946 	blocksize = head->b_size;
1947 	bbits = block_size_bits(blocksize);
1948 
1949 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1950 
1951 	for(bh = head, block_start = 0; bh != head || !block_start;
1952 	    block++, block_start=block_end, bh = bh->b_this_page) {
1953 		block_end = block_start + blocksize;
1954 		if (block_end <= from || block_start >= to) {
1955 			if (PageUptodate(page)) {
1956 				if (!buffer_uptodate(bh))
1957 					set_buffer_uptodate(bh);
1958 			}
1959 			continue;
1960 		}
1961 		if (buffer_new(bh))
1962 			clear_buffer_new(bh);
1963 		if (!buffer_mapped(bh)) {
1964 			WARN_ON(bh->b_size != blocksize);
1965 			if (get_block) {
1966 				err = get_block(inode, block, bh, 1);
1967 				if (err)
1968 					break;
1969 			} else {
1970 				iomap_to_bh(inode, block, bh, iomap);
1971 			}
1972 
1973 			if (buffer_new(bh)) {
1974 				clean_bdev_bh_alias(bh);
1975 				if (PageUptodate(page)) {
1976 					clear_buffer_new(bh);
1977 					set_buffer_uptodate(bh);
1978 					mark_buffer_dirty(bh);
1979 					continue;
1980 				}
1981 				if (block_end > to || block_start < from)
1982 					zero_user_segments(page,
1983 						to, block_end,
1984 						block_start, from);
1985 				continue;
1986 			}
1987 		}
1988 		if (PageUptodate(page)) {
1989 			if (!buffer_uptodate(bh))
1990 				set_buffer_uptodate(bh);
1991 			continue;
1992 		}
1993 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1994 		    !buffer_unwritten(bh) &&
1995 		     (block_start < from || block_end > to)) {
1996 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1997 			*wait_bh++=bh;
1998 		}
1999 	}
2000 	/*
2001 	 * If we issued read requests - let them complete.
2002 	 */
2003 	while(wait_bh > wait) {
2004 		wait_on_buffer(*--wait_bh);
2005 		if (!buffer_uptodate(*wait_bh))
2006 			err = -EIO;
2007 	}
2008 	if (unlikely(err))
2009 		page_zero_new_buffers(page, from, to);
2010 	return err;
2011 }
2012 
2013 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2014 		get_block_t *get_block)
2015 {
2016 	return __block_write_begin_int(page, pos, len, get_block, NULL);
2017 }
2018 EXPORT_SYMBOL(__block_write_begin);
2019 
2020 static int __block_commit_write(struct inode *inode, struct page *page,
2021 		unsigned from, unsigned to)
2022 {
2023 	unsigned block_start, block_end;
2024 	int partial = 0;
2025 	unsigned blocksize;
2026 	struct buffer_head *bh, *head;
2027 
2028 	bh = head = page_buffers(page);
2029 	blocksize = bh->b_size;
2030 
2031 	block_start = 0;
2032 	do {
2033 		block_end = block_start + blocksize;
2034 		if (block_end <= from || block_start >= to) {
2035 			if (!buffer_uptodate(bh))
2036 				partial = 1;
2037 		} else {
2038 			set_buffer_uptodate(bh);
2039 			mark_buffer_dirty(bh);
2040 		}
2041 		clear_buffer_new(bh);
2042 
2043 		block_start = block_end;
2044 		bh = bh->b_this_page;
2045 	} while (bh != head);
2046 
2047 	/*
2048 	 * If this is a partial write which happened to make all buffers
2049 	 * uptodate then we can optimize away a bogus readpage() for
2050 	 * the next read(). Here we 'discover' whether the page went
2051 	 * uptodate as a result of this (potentially partial) write.
2052 	 */
2053 	if (!partial)
2054 		SetPageUptodate(page);
2055 	return 0;
2056 }
2057 
2058 /*
2059  * block_write_begin takes care of the basic task of block allocation and
2060  * bringing partial write blocks uptodate first.
2061  *
2062  * The filesystem needs to handle block truncation upon failure.
2063  */
2064 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2065 		unsigned flags, struct page **pagep, get_block_t *get_block)
2066 {
2067 	pgoff_t index = pos >> PAGE_SHIFT;
2068 	struct page *page;
2069 	int status;
2070 
2071 	page = grab_cache_page_write_begin(mapping, index, flags);
2072 	if (!page)
2073 		return -ENOMEM;
2074 
2075 	status = __block_write_begin(page, pos, len, get_block);
2076 	if (unlikely(status)) {
2077 		unlock_page(page);
2078 		put_page(page);
2079 		page = NULL;
2080 	}
2081 
2082 	*pagep = page;
2083 	return status;
2084 }
2085 EXPORT_SYMBOL(block_write_begin);
2086 
2087 int __generic_write_end(struct inode *inode, loff_t pos, unsigned copied,
2088 		struct page *page)
2089 {
2090 	loff_t old_size = inode->i_size;
2091 	bool i_size_changed = false;
2092 
2093 	/*
2094 	 * No need to use i_size_read() here, the i_size cannot change under us
2095 	 * because we hold i_rwsem.
2096 	 *
2097 	 * But it's important to update i_size while still holding page lock:
2098 	 * page writeout could otherwise come in and zero beyond i_size.
2099 	 */
2100 	if (pos + copied > inode->i_size) {
2101 		i_size_write(inode, pos + copied);
2102 		i_size_changed = true;
2103 	}
2104 
2105 	unlock_page(page);
2106 	put_page(page);
2107 
2108 	if (old_size < pos)
2109 		pagecache_isize_extended(inode, old_size, pos);
2110 	/*
2111 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2112 	 * makes the holding time of page lock longer. Second, it forces lock
2113 	 * ordering of page lock and transaction start for journaling
2114 	 * filesystems.
2115 	 */
2116 	if (i_size_changed)
2117 		mark_inode_dirty(inode);
2118 	return copied;
2119 }
2120 
2121 int block_write_end(struct file *file, struct address_space *mapping,
2122 			loff_t pos, unsigned len, unsigned copied,
2123 			struct page *page, void *fsdata)
2124 {
2125 	struct inode *inode = mapping->host;
2126 	unsigned start;
2127 
2128 	start = pos & (PAGE_SIZE - 1);
2129 
2130 	if (unlikely(copied < len)) {
2131 		/*
2132 		 * The buffers that were written will now be uptodate, so we
2133 		 * don't have to worry about a readpage reading them and
2134 		 * overwriting a partial write. However if we have encountered
2135 		 * a short write and only partially written into a buffer, it
2136 		 * will not be marked uptodate, so a readpage might come in and
2137 		 * destroy our partial write.
2138 		 *
2139 		 * Do the simplest thing, and just treat any short write to a
2140 		 * non uptodate page as a zero-length write, and force the
2141 		 * caller to redo the whole thing.
2142 		 */
2143 		if (!PageUptodate(page))
2144 			copied = 0;
2145 
2146 		page_zero_new_buffers(page, start+copied, start+len);
2147 	}
2148 	flush_dcache_page(page);
2149 
2150 	/* This could be a short (even 0-length) commit */
2151 	__block_commit_write(inode, page, start, start+copied);
2152 
2153 	return copied;
2154 }
2155 EXPORT_SYMBOL(block_write_end);
2156 
2157 int generic_write_end(struct file *file, struct address_space *mapping,
2158 			loff_t pos, unsigned len, unsigned copied,
2159 			struct page *page, void *fsdata)
2160 {
2161 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2162 	return __generic_write_end(mapping->host, pos, copied, page);
2163 }
2164 EXPORT_SYMBOL(generic_write_end);
2165 
2166 /*
2167  * block_is_partially_uptodate checks whether buffers within a page are
2168  * uptodate or not.
2169  *
2170  * Returns true if all buffers which correspond to a file portion
2171  * we want to read are uptodate.
2172  */
2173 int block_is_partially_uptodate(struct page *page, unsigned long from,
2174 					unsigned long count)
2175 {
2176 	unsigned block_start, block_end, blocksize;
2177 	unsigned to;
2178 	struct buffer_head *bh, *head;
2179 	int ret = 1;
2180 
2181 	if (!page_has_buffers(page))
2182 		return 0;
2183 
2184 	head = page_buffers(page);
2185 	blocksize = head->b_size;
2186 	to = min_t(unsigned, PAGE_SIZE - from, count);
2187 	to = from + to;
2188 	if (from < blocksize && to > PAGE_SIZE - blocksize)
2189 		return 0;
2190 
2191 	bh = head;
2192 	block_start = 0;
2193 	do {
2194 		block_end = block_start + blocksize;
2195 		if (block_end > from && block_start < to) {
2196 			if (!buffer_uptodate(bh)) {
2197 				ret = 0;
2198 				break;
2199 			}
2200 			if (block_end >= to)
2201 				break;
2202 		}
2203 		block_start = block_end;
2204 		bh = bh->b_this_page;
2205 	} while (bh != head);
2206 
2207 	return ret;
2208 }
2209 EXPORT_SYMBOL(block_is_partially_uptodate);
2210 
2211 /*
2212  * Generic "read page" function for block devices that have the normal
2213  * get_block functionality. This is most of the block device filesystems.
2214  * Reads the page asynchronously --- the unlock_buffer() and
2215  * set/clear_buffer_uptodate() functions propagate buffer state into the
2216  * page struct once IO has completed.
2217  */
2218 int block_read_full_page(struct page *page, get_block_t *get_block)
2219 {
2220 	struct inode *inode = page->mapping->host;
2221 	sector_t iblock, lblock;
2222 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2223 	unsigned int blocksize, bbits;
2224 	int nr, i;
2225 	int fully_mapped = 1;
2226 
2227 	head = create_page_buffers(page, inode, 0);
2228 	blocksize = head->b_size;
2229 	bbits = block_size_bits(blocksize);
2230 
2231 	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2232 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2233 	bh = head;
2234 	nr = 0;
2235 	i = 0;
2236 
2237 	do {
2238 		if (buffer_uptodate(bh))
2239 			continue;
2240 
2241 		if (!buffer_mapped(bh)) {
2242 			int err = 0;
2243 
2244 			fully_mapped = 0;
2245 			if (iblock < lblock) {
2246 				WARN_ON(bh->b_size != blocksize);
2247 				err = get_block(inode, iblock, bh, 0);
2248 				if (err)
2249 					SetPageError(page);
2250 			}
2251 			if (!buffer_mapped(bh)) {
2252 				zero_user(page, i * blocksize, blocksize);
2253 				if (!err)
2254 					set_buffer_uptodate(bh);
2255 				continue;
2256 			}
2257 			/*
2258 			 * get_block() might have updated the buffer
2259 			 * synchronously
2260 			 */
2261 			if (buffer_uptodate(bh))
2262 				continue;
2263 		}
2264 		arr[nr++] = bh;
2265 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2266 
2267 	if (fully_mapped)
2268 		SetPageMappedToDisk(page);
2269 
2270 	if (!nr) {
2271 		/*
2272 		 * All buffers are uptodate - we can set the page uptodate
2273 		 * as well. But not if get_block() returned an error.
2274 		 */
2275 		if (!PageError(page))
2276 			SetPageUptodate(page);
2277 		unlock_page(page);
2278 		return 0;
2279 	}
2280 
2281 	/* Stage two: lock the buffers */
2282 	for (i = 0; i < nr; i++) {
2283 		bh = arr[i];
2284 		lock_buffer(bh);
2285 		mark_buffer_async_read(bh);
2286 	}
2287 
2288 	/*
2289 	 * Stage 3: start the IO.  Check for uptodateness
2290 	 * inside the buffer lock in case another process reading
2291 	 * the underlying blockdev brought it uptodate (the sct fix).
2292 	 */
2293 	for (i = 0; i < nr; i++) {
2294 		bh = arr[i];
2295 		if (buffer_uptodate(bh))
2296 			end_buffer_async_read(bh, 1);
2297 		else
2298 			submit_bh(REQ_OP_READ, 0, bh);
2299 	}
2300 	return 0;
2301 }
2302 EXPORT_SYMBOL(block_read_full_page);
2303 
2304 /* utility function for filesystems that need to do work on expanding
2305  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2306  * deal with the hole.
2307  */
2308 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2309 {
2310 	struct address_space *mapping = inode->i_mapping;
2311 	struct page *page;
2312 	void *fsdata;
2313 	int err;
2314 
2315 	err = inode_newsize_ok(inode, size);
2316 	if (err)
2317 		goto out;
2318 
2319 	err = pagecache_write_begin(NULL, mapping, size, 0,
2320 				    AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2321 	if (err)
2322 		goto out;
2323 
2324 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2325 	BUG_ON(err > 0);
2326 
2327 out:
2328 	return err;
2329 }
2330 EXPORT_SYMBOL(generic_cont_expand_simple);
2331 
2332 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2333 			    loff_t pos, loff_t *bytes)
2334 {
2335 	struct inode *inode = mapping->host;
2336 	unsigned int blocksize = i_blocksize(inode);
2337 	struct page *page;
2338 	void *fsdata;
2339 	pgoff_t index, curidx;
2340 	loff_t curpos;
2341 	unsigned zerofrom, offset, len;
2342 	int err = 0;
2343 
2344 	index = pos >> PAGE_SHIFT;
2345 	offset = pos & ~PAGE_MASK;
2346 
2347 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2348 		zerofrom = curpos & ~PAGE_MASK;
2349 		if (zerofrom & (blocksize-1)) {
2350 			*bytes |= (blocksize-1);
2351 			(*bytes)++;
2352 		}
2353 		len = PAGE_SIZE - zerofrom;
2354 
2355 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2356 					    &page, &fsdata);
2357 		if (err)
2358 			goto out;
2359 		zero_user(page, zerofrom, len);
2360 		err = pagecache_write_end(file, mapping, curpos, len, len,
2361 						page, fsdata);
2362 		if (err < 0)
2363 			goto out;
2364 		BUG_ON(err != len);
2365 		err = 0;
2366 
2367 		balance_dirty_pages_ratelimited(mapping);
2368 
2369 		if (unlikely(fatal_signal_pending(current))) {
2370 			err = -EINTR;
2371 			goto out;
2372 		}
2373 	}
2374 
2375 	/* page covers the boundary, find the boundary offset */
2376 	if (index == curidx) {
2377 		zerofrom = curpos & ~PAGE_MASK;
2378 		/* if we will expand the thing last block will be filled */
2379 		if (offset <= zerofrom) {
2380 			goto out;
2381 		}
2382 		if (zerofrom & (blocksize-1)) {
2383 			*bytes |= (blocksize-1);
2384 			(*bytes)++;
2385 		}
2386 		len = offset - zerofrom;
2387 
2388 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2389 					    &page, &fsdata);
2390 		if (err)
2391 			goto out;
2392 		zero_user(page, zerofrom, len);
2393 		err = pagecache_write_end(file, mapping, curpos, len, len,
2394 						page, fsdata);
2395 		if (err < 0)
2396 			goto out;
2397 		BUG_ON(err != len);
2398 		err = 0;
2399 	}
2400 out:
2401 	return err;
2402 }
2403 
2404 /*
2405  * For moronic filesystems that do not allow holes in file.
2406  * We may have to extend the file.
2407  */
2408 int cont_write_begin(struct file *file, struct address_space *mapping,
2409 			loff_t pos, unsigned len, unsigned flags,
2410 			struct page **pagep, void **fsdata,
2411 			get_block_t *get_block, loff_t *bytes)
2412 {
2413 	struct inode *inode = mapping->host;
2414 	unsigned int blocksize = i_blocksize(inode);
2415 	unsigned int zerofrom;
2416 	int err;
2417 
2418 	err = cont_expand_zero(file, mapping, pos, bytes);
2419 	if (err)
2420 		return err;
2421 
2422 	zerofrom = *bytes & ~PAGE_MASK;
2423 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2424 		*bytes |= (blocksize-1);
2425 		(*bytes)++;
2426 	}
2427 
2428 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2429 }
2430 EXPORT_SYMBOL(cont_write_begin);
2431 
2432 int block_commit_write(struct page *page, unsigned from, unsigned to)
2433 {
2434 	struct inode *inode = page->mapping->host;
2435 	__block_commit_write(inode,page,from,to);
2436 	return 0;
2437 }
2438 EXPORT_SYMBOL(block_commit_write);
2439 
2440 /*
2441  * block_page_mkwrite() is not allowed to change the file size as it gets
2442  * called from a page fault handler when a page is first dirtied. Hence we must
2443  * be careful to check for EOF conditions here. We set the page up correctly
2444  * for a written page which means we get ENOSPC checking when writing into
2445  * holes and correct delalloc and unwritten extent mapping on filesystems that
2446  * support these features.
2447  *
2448  * We are not allowed to take the i_mutex here so we have to play games to
2449  * protect against truncate races as the page could now be beyond EOF.  Because
2450  * truncate writes the inode size before removing pages, once we have the
2451  * page lock we can determine safely if the page is beyond EOF. If it is not
2452  * beyond EOF, then the page is guaranteed safe against truncation until we
2453  * unlock the page.
2454  *
2455  * Direct callers of this function should protect against filesystem freezing
2456  * using sb_start_pagefault() - sb_end_pagefault() functions.
2457  */
2458 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2459 			 get_block_t get_block)
2460 {
2461 	struct page *page = vmf->page;
2462 	struct inode *inode = file_inode(vma->vm_file);
2463 	unsigned long end;
2464 	loff_t size;
2465 	int ret;
2466 
2467 	lock_page(page);
2468 	size = i_size_read(inode);
2469 	if ((page->mapping != inode->i_mapping) ||
2470 	    (page_offset(page) > size)) {
2471 		/* We overload EFAULT to mean page got truncated */
2472 		ret = -EFAULT;
2473 		goto out_unlock;
2474 	}
2475 
2476 	/* page is wholly or partially inside EOF */
2477 	if (((page->index + 1) << PAGE_SHIFT) > size)
2478 		end = size & ~PAGE_MASK;
2479 	else
2480 		end = PAGE_SIZE;
2481 
2482 	ret = __block_write_begin(page, 0, end, get_block);
2483 	if (!ret)
2484 		ret = block_commit_write(page, 0, end);
2485 
2486 	if (unlikely(ret < 0))
2487 		goto out_unlock;
2488 	set_page_dirty(page);
2489 	wait_for_stable_page(page);
2490 	return 0;
2491 out_unlock:
2492 	unlock_page(page);
2493 	return ret;
2494 }
2495 EXPORT_SYMBOL(block_page_mkwrite);
2496 
2497 /*
2498  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2499  * immediately, while under the page lock.  So it needs a special end_io
2500  * handler which does not touch the bh after unlocking it.
2501  */
2502 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2503 {
2504 	__end_buffer_read_notouch(bh, uptodate);
2505 }
2506 
2507 /*
2508  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2509  * the page (converting it to circular linked list and taking care of page
2510  * dirty races).
2511  */
2512 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2513 {
2514 	struct buffer_head *bh;
2515 
2516 	BUG_ON(!PageLocked(page));
2517 
2518 	spin_lock(&page->mapping->private_lock);
2519 	bh = head;
2520 	do {
2521 		if (PageDirty(page))
2522 			set_buffer_dirty(bh);
2523 		if (!bh->b_this_page)
2524 			bh->b_this_page = head;
2525 		bh = bh->b_this_page;
2526 	} while (bh != head);
2527 	attach_page_buffers(page, head);
2528 	spin_unlock(&page->mapping->private_lock);
2529 }
2530 
2531 /*
2532  * On entry, the page is fully not uptodate.
2533  * On exit the page is fully uptodate in the areas outside (from,to)
2534  * The filesystem needs to handle block truncation upon failure.
2535  */
2536 int nobh_write_begin(struct address_space *mapping,
2537 			loff_t pos, unsigned len, unsigned flags,
2538 			struct page **pagep, void **fsdata,
2539 			get_block_t *get_block)
2540 {
2541 	struct inode *inode = mapping->host;
2542 	const unsigned blkbits = inode->i_blkbits;
2543 	const unsigned blocksize = 1 << blkbits;
2544 	struct buffer_head *head, *bh;
2545 	struct page *page;
2546 	pgoff_t index;
2547 	unsigned from, to;
2548 	unsigned block_in_page;
2549 	unsigned block_start, block_end;
2550 	sector_t block_in_file;
2551 	int nr_reads = 0;
2552 	int ret = 0;
2553 	int is_mapped_to_disk = 1;
2554 
2555 	index = pos >> PAGE_SHIFT;
2556 	from = pos & (PAGE_SIZE - 1);
2557 	to = from + len;
2558 
2559 	page = grab_cache_page_write_begin(mapping, index, flags);
2560 	if (!page)
2561 		return -ENOMEM;
2562 	*pagep = page;
2563 	*fsdata = NULL;
2564 
2565 	if (page_has_buffers(page)) {
2566 		ret = __block_write_begin(page, pos, len, get_block);
2567 		if (unlikely(ret))
2568 			goto out_release;
2569 		return ret;
2570 	}
2571 
2572 	if (PageMappedToDisk(page))
2573 		return 0;
2574 
2575 	/*
2576 	 * Allocate buffers so that we can keep track of state, and potentially
2577 	 * attach them to the page if an error occurs. In the common case of
2578 	 * no error, they will just be freed again without ever being attached
2579 	 * to the page (which is all OK, because we're under the page lock).
2580 	 *
2581 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2582 	 * than the circular one we're used to.
2583 	 */
2584 	head = alloc_page_buffers(page, blocksize, false);
2585 	if (!head) {
2586 		ret = -ENOMEM;
2587 		goto out_release;
2588 	}
2589 
2590 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2591 
2592 	/*
2593 	 * We loop across all blocks in the page, whether or not they are
2594 	 * part of the affected region.  This is so we can discover if the
2595 	 * page is fully mapped-to-disk.
2596 	 */
2597 	for (block_start = 0, block_in_page = 0, bh = head;
2598 		  block_start < PAGE_SIZE;
2599 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2600 		int create;
2601 
2602 		block_end = block_start + blocksize;
2603 		bh->b_state = 0;
2604 		create = 1;
2605 		if (block_start >= to)
2606 			create = 0;
2607 		ret = get_block(inode, block_in_file + block_in_page,
2608 					bh, create);
2609 		if (ret)
2610 			goto failed;
2611 		if (!buffer_mapped(bh))
2612 			is_mapped_to_disk = 0;
2613 		if (buffer_new(bh))
2614 			clean_bdev_bh_alias(bh);
2615 		if (PageUptodate(page)) {
2616 			set_buffer_uptodate(bh);
2617 			continue;
2618 		}
2619 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2620 			zero_user_segments(page, block_start, from,
2621 							to, block_end);
2622 			continue;
2623 		}
2624 		if (buffer_uptodate(bh))
2625 			continue;	/* reiserfs does this */
2626 		if (block_start < from || block_end > to) {
2627 			lock_buffer(bh);
2628 			bh->b_end_io = end_buffer_read_nobh;
2629 			submit_bh(REQ_OP_READ, 0, bh);
2630 			nr_reads++;
2631 		}
2632 	}
2633 
2634 	if (nr_reads) {
2635 		/*
2636 		 * The page is locked, so these buffers are protected from
2637 		 * any VM or truncate activity.  Hence we don't need to care
2638 		 * for the buffer_head refcounts.
2639 		 */
2640 		for (bh = head; bh; bh = bh->b_this_page) {
2641 			wait_on_buffer(bh);
2642 			if (!buffer_uptodate(bh))
2643 				ret = -EIO;
2644 		}
2645 		if (ret)
2646 			goto failed;
2647 	}
2648 
2649 	if (is_mapped_to_disk)
2650 		SetPageMappedToDisk(page);
2651 
2652 	*fsdata = head; /* to be released by nobh_write_end */
2653 
2654 	return 0;
2655 
2656 failed:
2657 	BUG_ON(!ret);
2658 	/*
2659 	 * Error recovery is a bit difficult. We need to zero out blocks that
2660 	 * were newly allocated, and dirty them to ensure they get written out.
2661 	 * Buffers need to be attached to the page at this point, otherwise
2662 	 * the handling of potential IO errors during writeout would be hard
2663 	 * (could try doing synchronous writeout, but what if that fails too?)
2664 	 */
2665 	attach_nobh_buffers(page, head);
2666 	page_zero_new_buffers(page, from, to);
2667 
2668 out_release:
2669 	unlock_page(page);
2670 	put_page(page);
2671 	*pagep = NULL;
2672 
2673 	return ret;
2674 }
2675 EXPORT_SYMBOL(nobh_write_begin);
2676 
2677 int nobh_write_end(struct file *file, struct address_space *mapping,
2678 			loff_t pos, unsigned len, unsigned copied,
2679 			struct page *page, void *fsdata)
2680 {
2681 	struct inode *inode = page->mapping->host;
2682 	struct buffer_head *head = fsdata;
2683 	struct buffer_head *bh;
2684 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2685 
2686 	if (unlikely(copied < len) && head)
2687 		attach_nobh_buffers(page, head);
2688 	if (page_has_buffers(page))
2689 		return generic_write_end(file, mapping, pos, len,
2690 					copied, page, fsdata);
2691 
2692 	SetPageUptodate(page);
2693 	set_page_dirty(page);
2694 	if (pos+copied > inode->i_size) {
2695 		i_size_write(inode, pos+copied);
2696 		mark_inode_dirty(inode);
2697 	}
2698 
2699 	unlock_page(page);
2700 	put_page(page);
2701 
2702 	while (head) {
2703 		bh = head;
2704 		head = head->b_this_page;
2705 		free_buffer_head(bh);
2706 	}
2707 
2708 	return copied;
2709 }
2710 EXPORT_SYMBOL(nobh_write_end);
2711 
2712 /*
2713  * nobh_writepage() - based on block_full_write_page() except
2714  * that it tries to operate without attaching bufferheads to
2715  * the page.
2716  */
2717 int nobh_writepage(struct page *page, get_block_t *get_block,
2718 			struct writeback_control *wbc)
2719 {
2720 	struct inode * const inode = page->mapping->host;
2721 	loff_t i_size = i_size_read(inode);
2722 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2723 	unsigned offset;
2724 	int ret;
2725 
2726 	/* Is the page fully inside i_size? */
2727 	if (page->index < end_index)
2728 		goto out;
2729 
2730 	/* Is the page fully outside i_size? (truncate in progress) */
2731 	offset = i_size & (PAGE_SIZE-1);
2732 	if (page->index >= end_index+1 || !offset) {
2733 		/*
2734 		 * The page may have dirty, unmapped buffers.  For example,
2735 		 * they may have been added in ext3_writepage().  Make them
2736 		 * freeable here, so the page does not leak.
2737 		 */
2738 #if 0
2739 		/* Not really sure about this  - do we need this ? */
2740 		if (page->mapping->a_ops->invalidatepage)
2741 			page->mapping->a_ops->invalidatepage(page, offset);
2742 #endif
2743 		unlock_page(page);
2744 		return 0; /* don't care */
2745 	}
2746 
2747 	/*
2748 	 * The page straddles i_size.  It must be zeroed out on each and every
2749 	 * writepage invocation because it may be mmapped.  "A file is mapped
2750 	 * in multiples of the page size.  For a file that is not a multiple of
2751 	 * the  page size, the remaining memory is zeroed when mapped, and
2752 	 * writes to that region are not written out to the file."
2753 	 */
2754 	zero_user_segment(page, offset, PAGE_SIZE);
2755 out:
2756 	ret = mpage_writepage(page, get_block, wbc);
2757 	if (ret == -EAGAIN)
2758 		ret = __block_write_full_page(inode, page, get_block, wbc,
2759 					      end_buffer_async_write);
2760 	return ret;
2761 }
2762 EXPORT_SYMBOL(nobh_writepage);
2763 
2764 int nobh_truncate_page(struct address_space *mapping,
2765 			loff_t from, get_block_t *get_block)
2766 {
2767 	pgoff_t index = from >> PAGE_SHIFT;
2768 	unsigned offset = from & (PAGE_SIZE-1);
2769 	unsigned blocksize;
2770 	sector_t iblock;
2771 	unsigned length, pos;
2772 	struct inode *inode = mapping->host;
2773 	struct page *page;
2774 	struct buffer_head map_bh;
2775 	int err;
2776 
2777 	blocksize = i_blocksize(inode);
2778 	length = offset & (blocksize - 1);
2779 
2780 	/* Block boundary? Nothing to do */
2781 	if (!length)
2782 		return 0;
2783 
2784 	length = blocksize - length;
2785 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2786 
2787 	page = grab_cache_page(mapping, index);
2788 	err = -ENOMEM;
2789 	if (!page)
2790 		goto out;
2791 
2792 	if (page_has_buffers(page)) {
2793 has_buffers:
2794 		unlock_page(page);
2795 		put_page(page);
2796 		return block_truncate_page(mapping, from, get_block);
2797 	}
2798 
2799 	/* Find the buffer that contains "offset" */
2800 	pos = blocksize;
2801 	while (offset >= pos) {
2802 		iblock++;
2803 		pos += blocksize;
2804 	}
2805 
2806 	map_bh.b_size = blocksize;
2807 	map_bh.b_state = 0;
2808 	err = get_block(inode, iblock, &map_bh, 0);
2809 	if (err)
2810 		goto unlock;
2811 	/* unmapped? It's a hole - nothing to do */
2812 	if (!buffer_mapped(&map_bh))
2813 		goto unlock;
2814 
2815 	/* Ok, it's mapped. Make sure it's up-to-date */
2816 	if (!PageUptodate(page)) {
2817 		err = mapping->a_ops->readpage(NULL, page);
2818 		if (err) {
2819 			put_page(page);
2820 			goto out;
2821 		}
2822 		lock_page(page);
2823 		if (!PageUptodate(page)) {
2824 			err = -EIO;
2825 			goto unlock;
2826 		}
2827 		if (page_has_buffers(page))
2828 			goto has_buffers;
2829 	}
2830 	zero_user(page, offset, length);
2831 	set_page_dirty(page);
2832 	err = 0;
2833 
2834 unlock:
2835 	unlock_page(page);
2836 	put_page(page);
2837 out:
2838 	return err;
2839 }
2840 EXPORT_SYMBOL(nobh_truncate_page);
2841 
2842 int block_truncate_page(struct address_space *mapping,
2843 			loff_t from, get_block_t *get_block)
2844 {
2845 	pgoff_t index = from >> PAGE_SHIFT;
2846 	unsigned offset = from & (PAGE_SIZE-1);
2847 	unsigned blocksize;
2848 	sector_t iblock;
2849 	unsigned length, pos;
2850 	struct inode *inode = mapping->host;
2851 	struct page *page;
2852 	struct buffer_head *bh;
2853 	int err;
2854 
2855 	blocksize = i_blocksize(inode);
2856 	length = offset & (blocksize - 1);
2857 
2858 	/* Block boundary? Nothing to do */
2859 	if (!length)
2860 		return 0;
2861 
2862 	length = blocksize - length;
2863 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2864 
2865 	page = grab_cache_page(mapping, index);
2866 	err = -ENOMEM;
2867 	if (!page)
2868 		goto out;
2869 
2870 	if (!page_has_buffers(page))
2871 		create_empty_buffers(page, blocksize, 0);
2872 
2873 	/* Find the buffer that contains "offset" */
2874 	bh = page_buffers(page);
2875 	pos = blocksize;
2876 	while (offset >= pos) {
2877 		bh = bh->b_this_page;
2878 		iblock++;
2879 		pos += blocksize;
2880 	}
2881 
2882 	err = 0;
2883 	if (!buffer_mapped(bh)) {
2884 		WARN_ON(bh->b_size != blocksize);
2885 		err = get_block(inode, iblock, bh, 0);
2886 		if (err)
2887 			goto unlock;
2888 		/* unmapped? It's a hole - nothing to do */
2889 		if (!buffer_mapped(bh))
2890 			goto unlock;
2891 	}
2892 
2893 	/* Ok, it's mapped. Make sure it's up-to-date */
2894 	if (PageUptodate(page))
2895 		set_buffer_uptodate(bh);
2896 
2897 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2898 		err = -EIO;
2899 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2900 		wait_on_buffer(bh);
2901 		/* Uhhuh. Read error. Complain and punt. */
2902 		if (!buffer_uptodate(bh))
2903 			goto unlock;
2904 	}
2905 
2906 	zero_user(page, offset, length);
2907 	mark_buffer_dirty(bh);
2908 	err = 0;
2909 
2910 unlock:
2911 	unlock_page(page);
2912 	put_page(page);
2913 out:
2914 	return err;
2915 }
2916 EXPORT_SYMBOL(block_truncate_page);
2917 
2918 /*
2919  * The generic ->writepage function for buffer-backed address_spaces
2920  */
2921 int block_write_full_page(struct page *page, get_block_t *get_block,
2922 			struct writeback_control *wbc)
2923 {
2924 	struct inode * const inode = page->mapping->host;
2925 	loff_t i_size = i_size_read(inode);
2926 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2927 	unsigned offset;
2928 
2929 	/* Is the page fully inside i_size? */
2930 	if (page->index < end_index)
2931 		return __block_write_full_page(inode, page, get_block, wbc,
2932 					       end_buffer_async_write);
2933 
2934 	/* Is the page fully outside i_size? (truncate in progress) */
2935 	offset = i_size & (PAGE_SIZE-1);
2936 	if (page->index >= end_index+1 || !offset) {
2937 		/*
2938 		 * The page may have dirty, unmapped buffers.  For example,
2939 		 * they may have been added in ext3_writepage().  Make them
2940 		 * freeable here, so the page does not leak.
2941 		 */
2942 		do_invalidatepage(page, 0, PAGE_SIZE);
2943 		unlock_page(page);
2944 		return 0; /* don't care */
2945 	}
2946 
2947 	/*
2948 	 * The page straddles i_size.  It must be zeroed out on each and every
2949 	 * writepage invocation because it may be mmapped.  "A file is mapped
2950 	 * in multiples of the page size.  For a file that is not a multiple of
2951 	 * the  page size, the remaining memory is zeroed when mapped, and
2952 	 * writes to that region are not written out to the file."
2953 	 */
2954 	zero_user_segment(page, offset, PAGE_SIZE);
2955 	return __block_write_full_page(inode, page, get_block, wbc,
2956 							end_buffer_async_write);
2957 }
2958 EXPORT_SYMBOL(block_write_full_page);
2959 
2960 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2961 			    get_block_t *get_block)
2962 {
2963 	struct inode *inode = mapping->host;
2964 	struct buffer_head tmp = {
2965 		.b_size = i_blocksize(inode),
2966 	};
2967 
2968 	get_block(inode, block, &tmp, 0);
2969 	return tmp.b_blocknr;
2970 }
2971 EXPORT_SYMBOL(generic_block_bmap);
2972 
2973 static void end_bio_bh_io_sync(struct bio *bio)
2974 {
2975 	struct buffer_head *bh = bio->bi_private;
2976 
2977 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2978 		set_bit(BH_Quiet, &bh->b_state);
2979 
2980 	bh->b_end_io(bh, !bio->bi_status);
2981 	bio_put(bio);
2982 }
2983 
2984 /*
2985  * This allows us to do IO even on the odd last sectors
2986  * of a device, even if the block size is some multiple
2987  * of the physical sector size.
2988  *
2989  * We'll just truncate the bio to the size of the device,
2990  * and clear the end of the buffer head manually.
2991  *
2992  * Truly out-of-range accesses will turn into actual IO
2993  * errors, this only handles the "we need to be able to
2994  * do IO at the final sector" case.
2995  */
2996 void guard_bio_eod(int op, struct bio *bio)
2997 {
2998 	sector_t maxsector;
2999 	struct bio_vec *bvec = bio_last_bvec_all(bio);
3000 	unsigned truncated_bytes;
3001 	struct hd_struct *part;
3002 
3003 	rcu_read_lock();
3004 	part = __disk_get_part(bio->bi_disk, bio->bi_partno);
3005 	if (part)
3006 		maxsector = part_nr_sects_read(part);
3007 	else
3008 		maxsector = get_capacity(bio->bi_disk);
3009 	rcu_read_unlock();
3010 
3011 	if (!maxsector)
3012 		return;
3013 
3014 	/*
3015 	 * If the *whole* IO is past the end of the device,
3016 	 * let it through, and the IO layer will turn it into
3017 	 * an EIO.
3018 	 */
3019 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3020 		return;
3021 
3022 	maxsector -= bio->bi_iter.bi_sector;
3023 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3024 		return;
3025 
3026 	/* Uhhuh. We've got a bio that straddles the device size! */
3027 	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3028 
3029 	/* Truncate the bio.. */
3030 	bio->bi_iter.bi_size -= truncated_bytes;
3031 	bvec->bv_len -= truncated_bytes;
3032 
3033 	/* ..and clear the end of the buffer for reads */
3034 	if (op == REQ_OP_READ) {
3035 		zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3036 				truncated_bytes);
3037 	}
3038 }
3039 
3040 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3041 			 enum rw_hint write_hint, struct writeback_control *wbc)
3042 {
3043 	struct bio *bio;
3044 
3045 	BUG_ON(!buffer_locked(bh));
3046 	BUG_ON(!buffer_mapped(bh));
3047 	BUG_ON(!bh->b_end_io);
3048 	BUG_ON(buffer_delay(bh));
3049 	BUG_ON(buffer_unwritten(bh));
3050 
3051 	/*
3052 	 * Only clear out a write error when rewriting
3053 	 */
3054 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3055 		clear_buffer_write_io_error(bh);
3056 
3057 	/*
3058 	 * from here on down, it's all bio -- do the initial mapping,
3059 	 * submit_bio -> generic_make_request may further map this bio around
3060 	 */
3061 	bio = bio_alloc(GFP_NOIO, 1);
3062 
3063 	if (wbc) {
3064 		wbc_init_bio(wbc, bio);
3065 		wbc_account_io(wbc, bh->b_page, bh->b_size);
3066 	}
3067 
3068 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3069 	bio_set_dev(bio, bh->b_bdev);
3070 	bio->bi_write_hint = write_hint;
3071 
3072 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3073 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3074 
3075 	bio->bi_end_io = end_bio_bh_io_sync;
3076 	bio->bi_private = bh;
3077 
3078 	/* Take care of bh's that straddle the end of the device */
3079 	guard_bio_eod(op, bio);
3080 
3081 	if (buffer_meta(bh))
3082 		op_flags |= REQ_META;
3083 	if (buffer_prio(bh))
3084 		op_flags |= REQ_PRIO;
3085 	bio_set_op_attrs(bio, op, op_flags);
3086 
3087 	submit_bio(bio);
3088 	return 0;
3089 }
3090 
3091 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3092 {
3093 	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3094 }
3095 EXPORT_SYMBOL(submit_bh);
3096 
3097 /**
3098  * ll_rw_block: low-level access to block devices (DEPRECATED)
3099  * @op: whether to %READ or %WRITE
3100  * @op_flags: req_flag_bits
3101  * @nr: number of &struct buffer_heads in the array
3102  * @bhs: array of pointers to &struct buffer_head
3103  *
3104  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3105  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3106  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3107  * %REQ_RAHEAD.
3108  *
3109  * This function drops any buffer that it cannot get a lock on (with the
3110  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3111  * request, and any buffer that appears to be up-to-date when doing read
3112  * request.  Further it marks as clean buffers that are processed for
3113  * writing (the buffer cache won't assume that they are actually clean
3114  * until the buffer gets unlocked).
3115  *
3116  * ll_rw_block sets b_end_io to simple completion handler that marks
3117  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3118  * any waiters.
3119  *
3120  * All of the buffers must be for the same device, and must also be a
3121  * multiple of the current approved size for the device.
3122  */
3123 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3124 {
3125 	int i;
3126 
3127 	for (i = 0; i < nr; i++) {
3128 		struct buffer_head *bh = bhs[i];
3129 
3130 		if (!trylock_buffer(bh))
3131 			continue;
3132 		if (op == WRITE) {
3133 			if (test_clear_buffer_dirty(bh)) {
3134 				bh->b_end_io = end_buffer_write_sync;
3135 				get_bh(bh);
3136 				submit_bh(op, op_flags, bh);
3137 				continue;
3138 			}
3139 		} else {
3140 			if (!buffer_uptodate(bh)) {
3141 				bh->b_end_io = end_buffer_read_sync;
3142 				get_bh(bh);
3143 				submit_bh(op, op_flags, bh);
3144 				continue;
3145 			}
3146 		}
3147 		unlock_buffer(bh);
3148 	}
3149 }
3150 EXPORT_SYMBOL(ll_rw_block);
3151 
3152 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3153 {
3154 	lock_buffer(bh);
3155 	if (!test_clear_buffer_dirty(bh)) {
3156 		unlock_buffer(bh);
3157 		return;
3158 	}
3159 	bh->b_end_io = end_buffer_write_sync;
3160 	get_bh(bh);
3161 	submit_bh(REQ_OP_WRITE, op_flags, bh);
3162 }
3163 EXPORT_SYMBOL(write_dirty_buffer);
3164 
3165 /*
3166  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3167  * and then start new I/O and then wait upon it.  The caller must have a ref on
3168  * the buffer_head.
3169  */
3170 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3171 {
3172 	int ret = 0;
3173 
3174 	WARN_ON(atomic_read(&bh->b_count) < 1);
3175 	lock_buffer(bh);
3176 	if (test_clear_buffer_dirty(bh)) {
3177 		get_bh(bh);
3178 		bh->b_end_io = end_buffer_write_sync;
3179 		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3180 		wait_on_buffer(bh);
3181 		if (!ret && !buffer_uptodate(bh))
3182 			ret = -EIO;
3183 	} else {
3184 		unlock_buffer(bh);
3185 	}
3186 	return ret;
3187 }
3188 EXPORT_SYMBOL(__sync_dirty_buffer);
3189 
3190 int sync_dirty_buffer(struct buffer_head *bh)
3191 {
3192 	return __sync_dirty_buffer(bh, REQ_SYNC);
3193 }
3194 EXPORT_SYMBOL(sync_dirty_buffer);
3195 
3196 /*
3197  * try_to_free_buffers() checks if all the buffers on this particular page
3198  * are unused, and releases them if so.
3199  *
3200  * Exclusion against try_to_free_buffers may be obtained by either
3201  * locking the page or by holding its mapping's private_lock.
3202  *
3203  * If the page is dirty but all the buffers are clean then we need to
3204  * be sure to mark the page clean as well.  This is because the page
3205  * may be against a block device, and a later reattachment of buffers
3206  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3207  * filesystem data on the same device.
3208  *
3209  * The same applies to regular filesystem pages: if all the buffers are
3210  * clean then we set the page clean and proceed.  To do that, we require
3211  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3212  * private_lock.
3213  *
3214  * try_to_free_buffers() is non-blocking.
3215  */
3216 static inline int buffer_busy(struct buffer_head *bh)
3217 {
3218 	return atomic_read(&bh->b_count) |
3219 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3220 }
3221 
3222 static int
3223 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3224 {
3225 	struct buffer_head *head = page_buffers(page);
3226 	struct buffer_head *bh;
3227 
3228 	bh = head;
3229 	do {
3230 		if (buffer_busy(bh))
3231 			goto failed;
3232 		bh = bh->b_this_page;
3233 	} while (bh != head);
3234 
3235 	do {
3236 		struct buffer_head *next = bh->b_this_page;
3237 
3238 		if (bh->b_assoc_map)
3239 			__remove_assoc_queue(bh);
3240 		bh = next;
3241 	} while (bh != head);
3242 	*buffers_to_free = head;
3243 	__clear_page_buffers(page);
3244 	return 1;
3245 failed:
3246 	return 0;
3247 }
3248 
3249 int try_to_free_buffers(struct page *page)
3250 {
3251 	struct address_space * const mapping = page->mapping;
3252 	struct buffer_head *buffers_to_free = NULL;
3253 	int ret = 0;
3254 
3255 	BUG_ON(!PageLocked(page));
3256 	if (PageWriteback(page))
3257 		return 0;
3258 
3259 	if (mapping == NULL) {		/* can this still happen? */
3260 		ret = drop_buffers(page, &buffers_to_free);
3261 		goto out;
3262 	}
3263 
3264 	spin_lock(&mapping->private_lock);
3265 	ret = drop_buffers(page, &buffers_to_free);
3266 
3267 	/*
3268 	 * If the filesystem writes its buffers by hand (eg ext3)
3269 	 * then we can have clean buffers against a dirty page.  We
3270 	 * clean the page here; otherwise the VM will never notice
3271 	 * that the filesystem did any IO at all.
3272 	 *
3273 	 * Also, during truncate, discard_buffer will have marked all
3274 	 * the page's buffers clean.  We discover that here and clean
3275 	 * the page also.
3276 	 *
3277 	 * private_lock must be held over this entire operation in order
3278 	 * to synchronise against __set_page_dirty_buffers and prevent the
3279 	 * dirty bit from being lost.
3280 	 */
3281 	if (ret)
3282 		cancel_dirty_page(page);
3283 	spin_unlock(&mapping->private_lock);
3284 out:
3285 	if (buffers_to_free) {
3286 		struct buffer_head *bh = buffers_to_free;
3287 
3288 		do {
3289 			struct buffer_head *next = bh->b_this_page;
3290 			free_buffer_head(bh);
3291 			bh = next;
3292 		} while (bh != buffers_to_free);
3293 	}
3294 	return ret;
3295 }
3296 EXPORT_SYMBOL(try_to_free_buffers);
3297 
3298 /*
3299  * There are no bdflush tunables left.  But distributions are
3300  * still running obsolete flush daemons, so we terminate them here.
3301  *
3302  * Use of bdflush() is deprecated and will be removed in a future kernel.
3303  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3304  */
3305 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3306 {
3307 	static int msg_count;
3308 
3309 	if (!capable(CAP_SYS_ADMIN))
3310 		return -EPERM;
3311 
3312 	if (msg_count < 5) {
3313 		msg_count++;
3314 		printk(KERN_INFO
3315 			"warning: process `%s' used the obsolete bdflush"
3316 			" system call\n", current->comm);
3317 		printk(KERN_INFO "Fix your initscripts?\n");
3318 	}
3319 
3320 	if (func == 1)
3321 		do_exit(0);
3322 	return 0;
3323 }
3324 
3325 /*
3326  * Buffer-head allocation
3327  */
3328 static struct kmem_cache *bh_cachep __read_mostly;
3329 
3330 /*
3331  * Once the number of bh's in the machine exceeds this level, we start
3332  * stripping them in writeback.
3333  */
3334 static unsigned long max_buffer_heads;
3335 
3336 int buffer_heads_over_limit;
3337 
3338 struct bh_accounting {
3339 	int nr;			/* Number of live bh's */
3340 	int ratelimit;		/* Limit cacheline bouncing */
3341 };
3342 
3343 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3344 
3345 static void recalc_bh_state(void)
3346 {
3347 	int i;
3348 	int tot = 0;
3349 
3350 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3351 		return;
3352 	__this_cpu_write(bh_accounting.ratelimit, 0);
3353 	for_each_online_cpu(i)
3354 		tot += per_cpu(bh_accounting, i).nr;
3355 	buffer_heads_over_limit = (tot > max_buffer_heads);
3356 }
3357 
3358 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3359 {
3360 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3361 	if (ret) {
3362 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3363 		preempt_disable();
3364 		__this_cpu_inc(bh_accounting.nr);
3365 		recalc_bh_state();
3366 		preempt_enable();
3367 	}
3368 	return ret;
3369 }
3370 EXPORT_SYMBOL(alloc_buffer_head);
3371 
3372 void free_buffer_head(struct buffer_head *bh)
3373 {
3374 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3375 	kmem_cache_free(bh_cachep, bh);
3376 	preempt_disable();
3377 	__this_cpu_dec(bh_accounting.nr);
3378 	recalc_bh_state();
3379 	preempt_enable();
3380 }
3381 EXPORT_SYMBOL(free_buffer_head);
3382 
3383 static int buffer_exit_cpu_dead(unsigned int cpu)
3384 {
3385 	int i;
3386 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3387 
3388 	for (i = 0; i < BH_LRU_SIZE; i++) {
3389 		brelse(b->bhs[i]);
3390 		b->bhs[i] = NULL;
3391 	}
3392 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3393 	per_cpu(bh_accounting, cpu).nr = 0;
3394 	return 0;
3395 }
3396 
3397 /**
3398  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3399  * @bh: struct buffer_head
3400  *
3401  * Return true if the buffer is up-to-date and false,
3402  * with the buffer locked, if not.
3403  */
3404 int bh_uptodate_or_lock(struct buffer_head *bh)
3405 {
3406 	if (!buffer_uptodate(bh)) {
3407 		lock_buffer(bh);
3408 		if (!buffer_uptodate(bh))
3409 			return 0;
3410 		unlock_buffer(bh);
3411 	}
3412 	return 1;
3413 }
3414 EXPORT_SYMBOL(bh_uptodate_or_lock);
3415 
3416 /**
3417  * bh_submit_read - Submit a locked buffer for reading
3418  * @bh: struct buffer_head
3419  *
3420  * Returns zero on success and -EIO on error.
3421  */
3422 int bh_submit_read(struct buffer_head *bh)
3423 {
3424 	BUG_ON(!buffer_locked(bh));
3425 
3426 	if (buffer_uptodate(bh)) {
3427 		unlock_buffer(bh);
3428 		return 0;
3429 	}
3430 
3431 	get_bh(bh);
3432 	bh->b_end_io = end_buffer_read_sync;
3433 	submit_bh(REQ_OP_READ, 0, bh);
3434 	wait_on_buffer(bh);
3435 	if (buffer_uptodate(bh))
3436 		return 0;
3437 	return -EIO;
3438 }
3439 EXPORT_SYMBOL(bh_submit_read);
3440 
3441 void __init buffer_init(void)
3442 {
3443 	unsigned long nrpages;
3444 	int ret;
3445 
3446 	bh_cachep = kmem_cache_create("buffer_head",
3447 			sizeof(struct buffer_head), 0,
3448 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3449 				SLAB_MEM_SPREAD),
3450 				NULL);
3451 
3452 	/*
3453 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3454 	 */
3455 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3456 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3457 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3458 					NULL, buffer_exit_cpu_dead);
3459 	WARN_ON(ret < 0);
3460 }
3461