xref: /linux/fs/buffer.c (revision 0a766a6b7dd9f3d15c32d724555d954dc6bb020d)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48 
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 
56 static int sync_buffer(void *word)
57 {
58 	struct block_device *bd;
59 	struct buffer_head *bh
60 		= container_of(word, struct buffer_head, b_state);
61 
62 	smp_mb();
63 	bd = bh->b_bdev;
64 	if (bd)
65 		blk_run_address_space(bd->bd_inode->i_mapping);
66 	io_schedule();
67 	return 0;
68 }
69 
70 void __lock_buffer(struct buffer_head *bh)
71 {
72 	wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 							TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76 
77 void unlock_buffer(struct buffer_head *bh)
78 {
79 	smp_mb__before_clear_bit();
80 	clear_buffer_locked(bh);
81 	smp_mb__after_clear_bit();
82 	wake_up_bit(&bh->b_state, BH_Lock);
83 }
84 
85 /*
86  * Block until a buffer comes unlocked.  This doesn't stop it
87  * from becoming locked again - you have to lock it yourself
88  * if you want to preserve its state.
89  */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92 	wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93 }
94 
95 static void
96 __clear_page_buffers(struct page *page)
97 {
98 	ClearPagePrivate(page);
99 	set_page_private(page, 0);
100 	page_cache_release(page);
101 }
102 
103 static void buffer_io_error(struct buffer_head *bh)
104 {
105 	char b[BDEVNAME_SIZE];
106 
107 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108 			bdevname(bh->b_bdev, b),
109 			(unsigned long long)bh->b_blocknr);
110 }
111 
112 /*
113  * End-of-IO handler helper function which does not touch the bh after
114  * unlocking it.
115  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
116  * a race there is benign: unlock_buffer() only use the bh's address for
117  * hashing after unlocking the buffer, so it doesn't actually touch the bh
118  * itself.
119  */
120 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
121 {
122 	if (uptodate) {
123 		set_buffer_uptodate(bh);
124 	} else {
125 		/* This happens, due to failed READA attempts. */
126 		clear_buffer_uptodate(bh);
127 	}
128 	unlock_buffer(bh);
129 }
130 
131 /*
132  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
133  * unlock the buffer. This is what ll_rw_block uses too.
134  */
135 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
136 {
137 	__end_buffer_read_notouch(bh, uptodate);
138 	put_bh(bh);
139 }
140 
141 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
142 {
143 	char b[BDEVNAME_SIZE];
144 
145 	if (uptodate) {
146 		set_buffer_uptodate(bh);
147 	} else {
148 		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
149 			buffer_io_error(bh);
150 			printk(KERN_WARNING "lost page write due to "
151 					"I/O error on %s\n",
152 				       bdevname(bh->b_bdev, b));
153 		}
154 		set_buffer_write_io_error(bh);
155 		clear_buffer_uptodate(bh);
156 	}
157 	unlock_buffer(bh);
158 	put_bh(bh);
159 }
160 
161 /*
162  * Write out and wait upon all the dirty data associated with a block
163  * device via its mapping.  Does not take the superblock lock.
164  */
165 int sync_blockdev(struct block_device *bdev)
166 {
167 	int ret = 0;
168 
169 	if (bdev)
170 		ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
171 	return ret;
172 }
173 EXPORT_SYMBOL(sync_blockdev);
174 
175 /*
176  * Write out and wait upon all dirty data associated with this
177  * device.   Filesystem data as well as the underlying block
178  * device.  Takes the superblock lock.
179  */
180 int fsync_bdev(struct block_device *bdev)
181 {
182 	struct super_block *sb = get_super(bdev);
183 	if (sb) {
184 		int res = fsync_super(sb);
185 		drop_super(sb);
186 		return res;
187 	}
188 	return sync_blockdev(bdev);
189 }
190 
191 /**
192  * freeze_bdev  --  lock a filesystem and force it into a consistent state
193  * @bdev:	blockdevice to lock
194  *
195  * This takes the block device bd_mount_sem to make sure no new mounts
196  * happen on bdev until thaw_bdev() is called.
197  * If a superblock is found on this device, we take the s_umount semaphore
198  * on it to make sure nobody unmounts until the snapshot creation is done.
199  */
200 struct super_block *freeze_bdev(struct block_device *bdev)
201 {
202 	struct super_block *sb;
203 
204 	down(&bdev->bd_mount_sem);
205 	sb = get_super(bdev);
206 	if (sb && !(sb->s_flags & MS_RDONLY)) {
207 		sb->s_frozen = SB_FREEZE_WRITE;
208 		smp_wmb();
209 
210 		__fsync_super(sb);
211 
212 		sb->s_frozen = SB_FREEZE_TRANS;
213 		smp_wmb();
214 
215 		sync_blockdev(sb->s_bdev);
216 
217 		if (sb->s_op->write_super_lockfs)
218 			sb->s_op->write_super_lockfs(sb);
219 	}
220 
221 	sync_blockdev(bdev);
222 	return sb;	/* thaw_bdev releases s->s_umount and bd_mount_sem */
223 }
224 EXPORT_SYMBOL(freeze_bdev);
225 
226 /**
227  * thaw_bdev  -- unlock filesystem
228  * @bdev:	blockdevice to unlock
229  * @sb:		associated superblock
230  *
231  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
232  */
233 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
234 {
235 	if (sb) {
236 		BUG_ON(sb->s_bdev != bdev);
237 
238 		if (sb->s_op->unlockfs)
239 			sb->s_op->unlockfs(sb);
240 		sb->s_frozen = SB_UNFROZEN;
241 		smp_wmb();
242 		wake_up(&sb->s_wait_unfrozen);
243 		drop_super(sb);
244 	}
245 
246 	up(&bdev->bd_mount_sem);
247 }
248 EXPORT_SYMBOL(thaw_bdev);
249 
250 /*
251  * Various filesystems appear to want __find_get_block to be non-blocking.
252  * But it's the page lock which protects the buffers.  To get around this,
253  * we get exclusion from try_to_free_buffers with the blockdev mapping's
254  * private_lock.
255  *
256  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
257  * may be quite high.  This code could TryLock the page, and if that
258  * succeeds, there is no need to take private_lock. (But if
259  * private_lock is contended then so is mapping->tree_lock).
260  */
261 static struct buffer_head *
262 __find_get_block_slow(struct block_device *bdev, sector_t block)
263 {
264 	struct inode *bd_inode = bdev->bd_inode;
265 	struct address_space *bd_mapping = bd_inode->i_mapping;
266 	struct buffer_head *ret = NULL;
267 	pgoff_t index;
268 	struct buffer_head *bh;
269 	struct buffer_head *head;
270 	struct page *page;
271 	int all_mapped = 1;
272 
273 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
274 	page = find_get_page(bd_mapping, index);
275 	if (!page)
276 		goto out;
277 
278 	spin_lock(&bd_mapping->private_lock);
279 	if (!page_has_buffers(page))
280 		goto out_unlock;
281 	head = page_buffers(page);
282 	bh = head;
283 	do {
284 		if (bh->b_blocknr == block) {
285 			ret = bh;
286 			get_bh(bh);
287 			goto out_unlock;
288 		}
289 		if (!buffer_mapped(bh))
290 			all_mapped = 0;
291 		bh = bh->b_this_page;
292 	} while (bh != head);
293 
294 	/* we might be here because some of the buffers on this page are
295 	 * not mapped.  This is due to various races between
296 	 * file io on the block device and getblk.  It gets dealt with
297 	 * elsewhere, don't buffer_error if we had some unmapped buffers
298 	 */
299 	if (all_mapped) {
300 		printk("__find_get_block_slow() failed. "
301 			"block=%llu, b_blocknr=%llu\n",
302 			(unsigned long long)block,
303 			(unsigned long long)bh->b_blocknr);
304 		printk("b_state=0x%08lx, b_size=%zu\n",
305 			bh->b_state, bh->b_size);
306 		printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
307 	}
308 out_unlock:
309 	spin_unlock(&bd_mapping->private_lock);
310 	page_cache_release(page);
311 out:
312 	return ret;
313 }
314 
315 /* If invalidate_buffers() will trash dirty buffers, it means some kind
316    of fs corruption is going on. Trashing dirty data always imply losing
317    information that was supposed to be just stored on the physical layer
318    by the user.
319 
320    Thus invalidate_buffers in general usage is not allwowed to trash
321    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
322    be preserved.  These buffers are simply skipped.
323 
324    We also skip buffers which are still in use.  For example this can
325    happen if a userspace program is reading the block device.
326 
327    NOTE: In the case where the user removed a removable-media-disk even if
328    there's still dirty data not synced on disk (due a bug in the device driver
329    or due an error of the user), by not destroying the dirty buffers we could
330    generate corruption also on the next media inserted, thus a parameter is
331    necessary to handle this case in the most safe way possible (trying
332    to not corrupt also the new disk inserted with the data belonging to
333    the old now corrupted disk). Also for the ramdisk the natural thing
334    to do in order to release the ramdisk memory is to destroy dirty buffers.
335 
336    These are two special cases. Normal usage imply the device driver
337    to issue a sync on the device (without waiting I/O completion) and
338    then an invalidate_buffers call that doesn't trash dirty buffers.
339 
340    For handling cache coherency with the blkdev pagecache the 'update' case
341    is been introduced. It is needed to re-read from disk any pinned
342    buffer. NOTE: re-reading from disk is destructive so we can do it only
343    when we assume nobody is changing the buffercache under our I/O and when
344    we think the disk contains more recent information than the buffercache.
345    The update == 1 pass marks the buffers we need to update, the update == 2
346    pass does the actual I/O. */
347 void invalidate_bdev(struct block_device *bdev)
348 {
349 	struct address_space *mapping = bdev->bd_inode->i_mapping;
350 
351 	if (mapping->nrpages == 0)
352 		return;
353 
354 	invalidate_bh_lrus();
355 	invalidate_mapping_pages(mapping, 0, -1);
356 }
357 
358 /*
359  * Kick pdflush then try to free up some ZONE_NORMAL memory.
360  */
361 static void free_more_memory(void)
362 {
363 	struct zone *zone;
364 	int nid;
365 
366 	wakeup_pdflush(1024);
367 	yield();
368 
369 	for_each_online_node(nid) {
370 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
371 						gfp_zone(GFP_NOFS), NULL,
372 						&zone);
373 		if (zone)
374 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
375 						GFP_NOFS);
376 	}
377 }
378 
379 /*
380  * I/O completion handler for block_read_full_page() - pages
381  * which come unlocked at the end of I/O.
382  */
383 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
384 {
385 	unsigned long flags;
386 	struct buffer_head *first;
387 	struct buffer_head *tmp;
388 	struct page *page;
389 	int page_uptodate = 1;
390 
391 	BUG_ON(!buffer_async_read(bh));
392 
393 	page = bh->b_page;
394 	if (uptodate) {
395 		set_buffer_uptodate(bh);
396 	} else {
397 		clear_buffer_uptodate(bh);
398 		if (printk_ratelimit())
399 			buffer_io_error(bh);
400 		SetPageError(page);
401 	}
402 
403 	/*
404 	 * Be _very_ careful from here on. Bad things can happen if
405 	 * two buffer heads end IO at almost the same time and both
406 	 * decide that the page is now completely done.
407 	 */
408 	first = page_buffers(page);
409 	local_irq_save(flags);
410 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
411 	clear_buffer_async_read(bh);
412 	unlock_buffer(bh);
413 	tmp = bh;
414 	do {
415 		if (!buffer_uptodate(tmp))
416 			page_uptodate = 0;
417 		if (buffer_async_read(tmp)) {
418 			BUG_ON(!buffer_locked(tmp));
419 			goto still_busy;
420 		}
421 		tmp = tmp->b_this_page;
422 	} while (tmp != bh);
423 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
424 	local_irq_restore(flags);
425 
426 	/*
427 	 * If none of the buffers had errors and they are all
428 	 * uptodate then we can set the page uptodate.
429 	 */
430 	if (page_uptodate && !PageError(page))
431 		SetPageUptodate(page);
432 	unlock_page(page);
433 	return;
434 
435 still_busy:
436 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
437 	local_irq_restore(flags);
438 	return;
439 }
440 
441 /*
442  * Completion handler for block_write_full_page() - pages which are unlocked
443  * during I/O, and which have PageWriteback cleared upon I/O completion.
444  */
445 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
446 {
447 	char b[BDEVNAME_SIZE];
448 	unsigned long flags;
449 	struct buffer_head *first;
450 	struct buffer_head *tmp;
451 	struct page *page;
452 
453 	BUG_ON(!buffer_async_write(bh));
454 
455 	page = bh->b_page;
456 	if (uptodate) {
457 		set_buffer_uptodate(bh);
458 	} else {
459 		if (printk_ratelimit()) {
460 			buffer_io_error(bh);
461 			printk(KERN_WARNING "lost page write due to "
462 					"I/O error on %s\n",
463 			       bdevname(bh->b_bdev, b));
464 		}
465 		set_bit(AS_EIO, &page->mapping->flags);
466 		set_buffer_write_io_error(bh);
467 		clear_buffer_uptodate(bh);
468 		SetPageError(page);
469 	}
470 
471 	first = page_buffers(page);
472 	local_irq_save(flags);
473 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
474 
475 	clear_buffer_async_write(bh);
476 	unlock_buffer(bh);
477 	tmp = bh->b_this_page;
478 	while (tmp != bh) {
479 		if (buffer_async_write(tmp)) {
480 			BUG_ON(!buffer_locked(tmp));
481 			goto still_busy;
482 		}
483 		tmp = tmp->b_this_page;
484 	}
485 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
486 	local_irq_restore(flags);
487 	end_page_writeback(page);
488 	return;
489 
490 still_busy:
491 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
492 	local_irq_restore(flags);
493 	return;
494 }
495 
496 /*
497  * If a page's buffers are under async readin (end_buffer_async_read
498  * completion) then there is a possibility that another thread of
499  * control could lock one of the buffers after it has completed
500  * but while some of the other buffers have not completed.  This
501  * locked buffer would confuse end_buffer_async_read() into not unlocking
502  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
503  * that this buffer is not under async I/O.
504  *
505  * The page comes unlocked when it has no locked buffer_async buffers
506  * left.
507  *
508  * PageLocked prevents anyone starting new async I/O reads any of
509  * the buffers.
510  *
511  * PageWriteback is used to prevent simultaneous writeout of the same
512  * page.
513  *
514  * PageLocked prevents anyone from starting writeback of a page which is
515  * under read I/O (PageWriteback is only ever set against a locked page).
516  */
517 static void mark_buffer_async_read(struct buffer_head *bh)
518 {
519 	bh->b_end_io = end_buffer_async_read;
520 	set_buffer_async_read(bh);
521 }
522 
523 void mark_buffer_async_write(struct buffer_head *bh)
524 {
525 	bh->b_end_io = end_buffer_async_write;
526 	set_buffer_async_write(bh);
527 }
528 EXPORT_SYMBOL(mark_buffer_async_write);
529 
530 
531 /*
532  * fs/buffer.c contains helper functions for buffer-backed address space's
533  * fsync functions.  A common requirement for buffer-based filesystems is
534  * that certain data from the backing blockdev needs to be written out for
535  * a successful fsync().  For example, ext2 indirect blocks need to be
536  * written back and waited upon before fsync() returns.
537  *
538  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
539  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
540  * management of a list of dependent buffers at ->i_mapping->private_list.
541  *
542  * Locking is a little subtle: try_to_free_buffers() will remove buffers
543  * from their controlling inode's queue when they are being freed.  But
544  * try_to_free_buffers() will be operating against the *blockdev* mapping
545  * at the time, not against the S_ISREG file which depends on those buffers.
546  * So the locking for private_list is via the private_lock in the address_space
547  * which backs the buffers.  Which is different from the address_space
548  * against which the buffers are listed.  So for a particular address_space,
549  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
550  * mapping->private_list will always be protected by the backing blockdev's
551  * ->private_lock.
552  *
553  * Which introduces a requirement: all buffers on an address_space's
554  * ->private_list must be from the same address_space: the blockdev's.
555  *
556  * address_spaces which do not place buffers at ->private_list via these
557  * utility functions are free to use private_lock and private_list for
558  * whatever they want.  The only requirement is that list_empty(private_list)
559  * be true at clear_inode() time.
560  *
561  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
562  * filesystems should do that.  invalidate_inode_buffers() should just go
563  * BUG_ON(!list_empty).
564  *
565  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
566  * take an address_space, not an inode.  And it should be called
567  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
568  * queued up.
569  *
570  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
571  * list if it is already on a list.  Because if the buffer is on a list,
572  * it *must* already be on the right one.  If not, the filesystem is being
573  * silly.  This will save a ton of locking.  But first we have to ensure
574  * that buffers are taken *off* the old inode's list when they are freed
575  * (presumably in truncate).  That requires careful auditing of all
576  * filesystems (do it inside bforget()).  It could also be done by bringing
577  * b_inode back.
578  */
579 
580 /*
581  * The buffer's backing address_space's private_lock must be held
582  */
583 static void __remove_assoc_queue(struct buffer_head *bh)
584 {
585 	list_del_init(&bh->b_assoc_buffers);
586 	WARN_ON(!bh->b_assoc_map);
587 	if (buffer_write_io_error(bh))
588 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
589 	bh->b_assoc_map = NULL;
590 }
591 
592 int inode_has_buffers(struct inode *inode)
593 {
594 	return !list_empty(&inode->i_data.private_list);
595 }
596 
597 /*
598  * osync is designed to support O_SYNC io.  It waits synchronously for
599  * all already-submitted IO to complete, but does not queue any new
600  * writes to the disk.
601  *
602  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
603  * you dirty the buffers, and then use osync_inode_buffers to wait for
604  * completion.  Any other dirty buffers which are not yet queued for
605  * write will not be flushed to disk by the osync.
606  */
607 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
608 {
609 	struct buffer_head *bh;
610 	struct list_head *p;
611 	int err = 0;
612 
613 	spin_lock(lock);
614 repeat:
615 	list_for_each_prev(p, list) {
616 		bh = BH_ENTRY(p);
617 		if (buffer_locked(bh)) {
618 			get_bh(bh);
619 			spin_unlock(lock);
620 			wait_on_buffer(bh);
621 			if (!buffer_uptodate(bh))
622 				err = -EIO;
623 			brelse(bh);
624 			spin_lock(lock);
625 			goto repeat;
626 		}
627 	}
628 	spin_unlock(lock);
629 	return err;
630 }
631 
632 /**
633  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
634  * @mapping: the mapping which wants those buffers written
635  *
636  * Starts I/O against the buffers at mapping->private_list, and waits upon
637  * that I/O.
638  *
639  * Basically, this is a convenience function for fsync().
640  * @mapping is a file or directory which needs those buffers to be written for
641  * a successful fsync().
642  */
643 int sync_mapping_buffers(struct address_space *mapping)
644 {
645 	struct address_space *buffer_mapping = mapping->assoc_mapping;
646 
647 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
648 		return 0;
649 
650 	return fsync_buffers_list(&buffer_mapping->private_lock,
651 					&mapping->private_list);
652 }
653 EXPORT_SYMBOL(sync_mapping_buffers);
654 
655 /*
656  * Called when we've recently written block `bblock', and it is known that
657  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
658  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
659  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
660  */
661 void write_boundary_block(struct block_device *bdev,
662 			sector_t bblock, unsigned blocksize)
663 {
664 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
665 	if (bh) {
666 		if (buffer_dirty(bh))
667 			ll_rw_block(WRITE, 1, &bh);
668 		put_bh(bh);
669 	}
670 }
671 
672 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
673 {
674 	struct address_space *mapping = inode->i_mapping;
675 	struct address_space *buffer_mapping = bh->b_page->mapping;
676 
677 	mark_buffer_dirty(bh);
678 	if (!mapping->assoc_mapping) {
679 		mapping->assoc_mapping = buffer_mapping;
680 	} else {
681 		BUG_ON(mapping->assoc_mapping != buffer_mapping);
682 	}
683 	if (!bh->b_assoc_map) {
684 		spin_lock(&buffer_mapping->private_lock);
685 		list_move_tail(&bh->b_assoc_buffers,
686 				&mapping->private_list);
687 		bh->b_assoc_map = mapping;
688 		spin_unlock(&buffer_mapping->private_lock);
689 	}
690 }
691 EXPORT_SYMBOL(mark_buffer_dirty_inode);
692 
693 /*
694  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
695  * dirty.
696  *
697  * If warn is true, then emit a warning if the page is not uptodate and has
698  * not been truncated.
699  */
700 static int __set_page_dirty(struct page *page,
701 		struct address_space *mapping, int warn)
702 {
703 	if (unlikely(!mapping))
704 		return !TestSetPageDirty(page);
705 
706 	if (TestSetPageDirty(page))
707 		return 0;
708 
709 	spin_lock_irq(&mapping->tree_lock);
710 	if (page->mapping) {	/* Race with truncate? */
711 		WARN_ON_ONCE(warn && !PageUptodate(page));
712 
713 		if (mapping_cap_account_dirty(mapping)) {
714 			__inc_zone_page_state(page, NR_FILE_DIRTY);
715 			__inc_bdi_stat(mapping->backing_dev_info,
716 					BDI_RECLAIMABLE);
717 			task_io_account_write(PAGE_CACHE_SIZE);
718 		}
719 		radix_tree_tag_set(&mapping->page_tree,
720 				page_index(page), PAGECACHE_TAG_DIRTY);
721 	}
722 	spin_unlock_irq(&mapping->tree_lock);
723 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
724 
725 	return 1;
726 }
727 
728 /*
729  * Add a page to the dirty page list.
730  *
731  * It is a sad fact of life that this function is called from several places
732  * deeply under spinlocking.  It may not sleep.
733  *
734  * If the page has buffers, the uptodate buffers are set dirty, to preserve
735  * dirty-state coherency between the page and the buffers.  It the page does
736  * not have buffers then when they are later attached they will all be set
737  * dirty.
738  *
739  * The buffers are dirtied before the page is dirtied.  There's a small race
740  * window in which a writepage caller may see the page cleanness but not the
741  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
742  * before the buffers, a concurrent writepage caller could clear the page dirty
743  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
744  * page on the dirty page list.
745  *
746  * We use private_lock to lock against try_to_free_buffers while using the
747  * page's buffer list.  Also use this to protect against clean buffers being
748  * added to the page after it was set dirty.
749  *
750  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
751  * address_space though.
752  */
753 int __set_page_dirty_buffers(struct page *page)
754 {
755 	struct address_space *mapping = page_mapping(page);
756 
757 	if (unlikely(!mapping))
758 		return !TestSetPageDirty(page);
759 
760 	spin_lock(&mapping->private_lock);
761 	if (page_has_buffers(page)) {
762 		struct buffer_head *head = page_buffers(page);
763 		struct buffer_head *bh = head;
764 
765 		do {
766 			set_buffer_dirty(bh);
767 			bh = bh->b_this_page;
768 		} while (bh != head);
769 	}
770 	spin_unlock(&mapping->private_lock);
771 
772 	return __set_page_dirty(page, mapping, 1);
773 }
774 EXPORT_SYMBOL(__set_page_dirty_buffers);
775 
776 /*
777  * Write out and wait upon a list of buffers.
778  *
779  * We have conflicting pressures: we want to make sure that all
780  * initially dirty buffers get waited on, but that any subsequently
781  * dirtied buffers don't.  After all, we don't want fsync to last
782  * forever if somebody is actively writing to the file.
783  *
784  * Do this in two main stages: first we copy dirty buffers to a
785  * temporary inode list, queueing the writes as we go.  Then we clean
786  * up, waiting for those writes to complete.
787  *
788  * During this second stage, any subsequent updates to the file may end
789  * up refiling the buffer on the original inode's dirty list again, so
790  * there is a chance we will end up with a buffer queued for write but
791  * not yet completed on that list.  So, as a final cleanup we go through
792  * the osync code to catch these locked, dirty buffers without requeuing
793  * any newly dirty buffers for write.
794  */
795 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
796 {
797 	struct buffer_head *bh;
798 	struct list_head tmp;
799 	struct address_space *mapping;
800 	int err = 0, err2;
801 
802 	INIT_LIST_HEAD(&tmp);
803 
804 	spin_lock(lock);
805 	while (!list_empty(list)) {
806 		bh = BH_ENTRY(list->next);
807 		mapping = bh->b_assoc_map;
808 		__remove_assoc_queue(bh);
809 		/* Avoid race with mark_buffer_dirty_inode() which does
810 		 * a lockless check and we rely on seeing the dirty bit */
811 		smp_mb();
812 		if (buffer_dirty(bh) || buffer_locked(bh)) {
813 			list_add(&bh->b_assoc_buffers, &tmp);
814 			bh->b_assoc_map = mapping;
815 			if (buffer_dirty(bh)) {
816 				get_bh(bh);
817 				spin_unlock(lock);
818 				/*
819 				 * Ensure any pending I/O completes so that
820 				 * ll_rw_block() actually writes the current
821 				 * contents - it is a noop if I/O is still in
822 				 * flight on potentially older contents.
823 				 */
824 				ll_rw_block(SWRITE_SYNC, 1, &bh);
825 				brelse(bh);
826 				spin_lock(lock);
827 			}
828 		}
829 	}
830 
831 	while (!list_empty(&tmp)) {
832 		bh = BH_ENTRY(tmp.prev);
833 		get_bh(bh);
834 		mapping = bh->b_assoc_map;
835 		__remove_assoc_queue(bh);
836 		/* Avoid race with mark_buffer_dirty_inode() which does
837 		 * a lockless check and we rely on seeing the dirty bit */
838 		smp_mb();
839 		if (buffer_dirty(bh)) {
840 			list_add(&bh->b_assoc_buffers,
841 				 &mapping->private_list);
842 			bh->b_assoc_map = mapping;
843 		}
844 		spin_unlock(lock);
845 		wait_on_buffer(bh);
846 		if (!buffer_uptodate(bh))
847 			err = -EIO;
848 		brelse(bh);
849 		spin_lock(lock);
850 	}
851 
852 	spin_unlock(lock);
853 	err2 = osync_buffers_list(lock, list);
854 	if (err)
855 		return err;
856 	else
857 		return err2;
858 }
859 
860 /*
861  * Invalidate any and all dirty buffers on a given inode.  We are
862  * probably unmounting the fs, but that doesn't mean we have already
863  * done a sync().  Just drop the buffers from the inode list.
864  *
865  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
866  * assumes that all the buffers are against the blockdev.  Not true
867  * for reiserfs.
868  */
869 void invalidate_inode_buffers(struct inode *inode)
870 {
871 	if (inode_has_buffers(inode)) {
872 		struct address_space *mapping = &inode->i_data;
873 		struct list_head *list = &mapping->private_list;
874 		struct address_space *buffer_mapping = mapping->assoc_mapping;
875 
876 		spin_lock(&buffer_mapping->private_lock);
877 		while (!list_empty(list))
878 			__remove_assoc_queue(BH_ENTRY(list->next));
879 		spin_unlock(&buffer_mapping->private_lock);
880 	}
881 }
882 
883 /*
884  * Remove any clean buffers from the inode's buffer list.  This is called
885  * when we're trying to free the inode itself.  Those buffers can pin it.
886  *
887  * Returns true if all buffers were removed.
888  */
889 int remove_inode_buffers(struct inode *inode)
890 {
891 	int ret = 1;
892 
893 	if (inode_has_buffers(inode)) {
894 		struct address_space *mapping = &inode->i_data;
895 		struct list_head *list = &mapping->private_list;
896 		struct address_space *buffer_mapping = mapping->assoc_mapping;
897 
898 		spin_lock(&buffer_mapping->private_lock);
899 		while (!list_empty(list)) {
900 			struct buffer_head *bh = BH_ENTRY(list->next);
901 			if (buffer_dirty(bh)) {
902 				ret = 0;
903 				break;
904 			}
905 			__remove_assoc_queue(bh);
906 		}
907 		spin_unlock(&buffer_mapping->private_lock);
908 	}
909 	return ret;
910 }
911 
912 /*
913  * Create the appropriate buffers when given a page for data area and
914  * the size of each buffer.. Use the bh->b_this_page linked list to
915  * follow the buffers created.  Return NULL if unable to create more
916  * buffers.
917  *
918  * The retry flag is used to differentiate async IO (paging, swapping)
919  * which may not fail from ordinary buffer allocations.
920  */
921 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
922 		int retry)
923 {
924 	struct buffer_head *bh, *head;
925 	long offset;
926 
927 try_again:
928 	head = NULL;
929 	offset = PAGE_SIZE;
930 	while ((offset -= size) >= 0) {
931 		bh = alloc_buffer_head(GFP_NOFS);
932 		if (!bh)
933 			goto no_grow;
934 
935 		bh->b_bdev = NULL;
936 		bh->b_this_page = head;
937 		bh->b_blocknr = -1;
938 		head = bh;
939 
940 		bh->b_state = 0;
941 		atomic_set(&bh->b_count, 0);
942 		bh->b_private = NULL;
943 		bh->b_size = size;
944 
945 		/* Link the buffer to its page */
946 		set_bh_page(bh, page, offset);
947 
948 		init_buffer(bh, NULL, NULL);
949 	}
950 	return head;
951 /*
952  * In case anything failed, we just free everything we got.
953  */
954 no_grow:
955 	if (head) {
956 		do {
957 			bh = head;
958 			head = head->b_this_page;
959 			free_buffer_head(bh);
960 		} while (head);
961 	}
962 
963 	/*
964 	 * Return failure for non-async IO requests.  Async IO requests
965 	 * are not allowed to fail, so we have to wait until buffer heads
966 	 * become available.  But we don't want tasks sleeping with
967 	 * partially complete buffers, so all were released above.
968 	 */
969 	if (!retry)
970 		return NULL;
971 
972 	/* We're _really_ low on memory. Now we just
973 	 * wait for old buffer heads to become free due to
974 	 * finishing IO.  Since this is an async request and
975 	 * the reserve list is empty, we're sure there are
976 	 * async buffer heads in use.
977 	 */
978 	free_more_memory();
979 	goto try_again;
980 }
981 EXPORT_SYMBOL_GPL(alloc_page_buffers);
982 
983 static inline void
984 link_dev_buffers(struct page *page, struct buffer_head *head)
985 {
986 	struct buffer_head *bh, *tail;
987 
988 	bh = head;
989 	do {
990 		tail = bh;
991 		bh = bh->b_this_page;
992 	} while (bh);
993 	tail->b_this_page = head;
994 	attach_page_buffers(page, head);
995 }
996 
997 /*
998  * Initialise the state of a blockdev page's buffers.
999  */
1000 static void
1001 init_page_buffers(struct page *page, struct block_device *bdev,
1002 			sector_t block, int size)
1003 {
1004 	struct buffer_head *head = page_buffers(page);
1005 	struct buffer_head *bh = head;
1006 	int uptodate = PageUptodate(page);
1007 
1008 	do {
1009 		if (!buffer_mapped(bh)) {
1010 			init_buffer(bh, NULL, NULL);
1011 			bh->b_bdev = bdev;
1012 			bh->b_blocknr = block;
1013 			if (uptodate)
1014 				set_buffer_uptodate(bh);
1015 			set_buffer_mapped(bh);
1016 		}
1017 		block++;
1018 		bh = bh->b_this_page;
1019 	} while (bh != head);
1020 }
1021 
1022 /*
1023  * Create the page-cache page that contains the requested block.
1024  *
1025  * This is user purely for blockdev mappings.
1026  */
1027 static struct page *
1028 grow_dev_page(struct block_device *bdev, sector_t block,
1029 		pgoff_t index, int size)
1030 {
1031 	struct inode *inode = bdev->bd_inode;
1032 	struct page *page;
1033 	struct buffer_head *bh;
1034 
1035 	page = find_or_create_page(inode->i_mapping, index,
1036 		(mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1037 	if (!page)
1038 		return NULL;
1039 
1040 	BUG_ON(!PageLocked(page));
1041 
1042 	if (page_has_buffers(page)) {
1043 		bh = page_buffers(page);
1044 		if (bh->b_size == size) {
1045 			init_page_buffers(page, bdev, block, size);
1046 			return page;
1047 		}
1048 		if (!try_to_free_buffers(page))
1049 			goto failed;
1050 	}
1051 
1052 	/*
1053 	 * Allocate some buffers for this page
1054 	 */
1055 	bh = alloc_page_buffers(page, size, 0);
1056 	if (!bh)
1057 		goto failed;
1058 
1059 	/*
1060 	 * Link the page to the buffers and initialise them.  Take the
1061 	 * lock to be atomic wrt __find_get_block(), which does not
1062 	 * run under the page lock.
1063 	 */
1064 	spin_lock(&inode->i_mapping->private_lock);
1065 	link_dev_buffers(page, bh);
1066 	init_page_buffers(page, bdev, block, size);
1067 	spin_unlock(&inode->i_mapping->private_lock);
1068 	return page;
1069 
1070 failed:
1071 	BUG();
1072 	unlock_page(page);
1073 	page_cache_release(page);
1074 	return NULL;
1075 }
1076 
1077 /*
1078  * Create buffers for the specified block device block's page.  If
1079  * that page was dirty, the buffers are set dirty also.
1080  */
1081 static int
1082 grow_buffers(struct block_device *bdev, sector_t block, int size)
1083 {
1084 	struct page *page;
1085 	pgoff_t index;
1086 	int sizebits;
1087 
1088 	sizebits = -1;
1089 	do {
1090 		sizebits++;
1091 	} while ((size << sizebits) < PAGE_SIZE);
1092 
1093 	index = block >> sizebits;
1094 
1095 	/*
1096 	 * Check for a block which wants to lie outside our maximum possible
1097 	 * pagecache index.  (this comparison is done using sector_t types).
1098 	 */
1099 	if (unlikely(index != block >> sizebits)) {
1100 		char b[BDEVNAME_SIZE];
1101 
1102 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1103 			"device %s\n",
1104 			__func__, (unsigned long long)block,
1105 			bdevname(bdev, b));
1106 		return -EIO;
1107 	}
1108 	block = index << sizebits;
1109 	/* Create a page with the proper size buffers.. */
1110 	page = grow_dev_page(bdev, block, index, size);
1111 	if (!page)
1112 		return 0;
1113 	unlock_page(page);
1114 	page_cache_release(page);
1115 	return 1;
1116 }
1117 
1118 static struct buffer_head *
1119 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1120 {
1121 	/* Size must be multiple of hard sectorsize */
1122 	if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1123 			(size < 512 || size > PAGE_SIZE))) {
1124 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1125 					size);
1126 		printk(KERN_ERR "hardsect size: %d\n",
1127 					bdev_hardsect_size(bdev));
1128 
1129 		dump_stack();
1130 		return NULL;
1131 	}
1132 
1133 	for (;;) {
1134 		struct buffer_head * bh;
1135 		int ret;
1136 
1137 		bh = __find_get_block(bdev, block, size);
1138 		if (bh)
1139 			return bh;
1140 
1141 		ret = grow_buffers(bdev, block, size);
1142 		if (ret < 0)
1143 			return NULL;
1144 		if (ret == 0)
1145 			free_more_memory();
1146 	}
1147 }
1148 
1149 /*
1150  * The relationship between dirty buffers and dirty pages:
1151  *
1152  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1153  * the page is tagged dirty in its radix tree.
1154  *
1155  * At all times, the dirtiness of the buffers represents the dirtiness of
1156  * subsections of the page.  If the page has buffers, the page dirty bit is
1157  * merely a hint about the true dirty state.
1158  *
1159  * When a page is set dirty in its entirety, all its buffers are marked dirty
1160  * (if the page has buffers).
1161  *
1162  * When a buffer is marked dirty, its page is dirtied, but the page's other
1163  * buffers are not.
1164  *
1165  * Also.  When blockdev buffers are explicitly read with bread(), they
1166  * individually become uptodate.  But their backing page remains not
1167  * uptodate - even if all of its buffers are uptodate.  A subsequent
1168  * block_read_full_page() against that page will discover all the uptodate
1169  * buffers, will set the page uptodate and will perform no I/O.
1170  */
1171 
1172 /**
1173  * mark_buffer_dirty - mark a buffer_head as needing writeout
1174  * @bh: the buffer_head to mark dirty
1175  *
1176  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1177  * backing page dirty, then tag the page as dirty in its address_space's radix
1178  * tree and then attach the address_space's inode to its superblock's dirty
1179  * inode list.
1180  *
1181  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1182  * mapping->tree_lock and the global inode_lock.
1183  */
1184 void mark_buffer_dirty(struct buffer_head *bh)
1185 {
1186 	WARN_ON_ONCE(!buffer_uptodate(bh));
1187 
1188 	/*
1189 	 * Very *carefully* optimize the it-is-already-dirty case.
1190 	 *
1191 	 * Don't let the final "is it dirty" escape to before we
1192 	 * perhaps modified the buffer.
1193 	 */
1194 	if (buffer_dirty(bh)) {
1195 		smp_mb();
1196 		if (buffer_dirty(bh))
1197 			return;
1198 	}
1199 
1200 	if (!test_set_buffer_dirty(bh))
1201 		__set_page_dirty(bh->b_page, page_mapping(bh->b_page), 0);
1202 }
1203 
1204 /*
1205  * Decrement a buffer_head's reference count.  If all buffers against a page
1206  * have zero reference count, are clean and unlocked, and if the page is clean
1207  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1208  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1209  * a page but it ends up not being freed, and buffers may later be reattached).
1210  */
1211 void __brelse(struct buffer_head * buf)
1212 {
1213 	if (atomic_read(&buf->b_count)) {
1214 		put_bh(buf);
1215 		return;
1216 	}
1217 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1218 }
1219 
1220 /*
1221  * bforget() is like brelse(), except it discards any
1222  * potentially dirty data.
1223  */
1224 void __bforget(struct buffer_head *bh)
1225 {
1226 	clear_buffer_dirty(bh);
1227 	if (bh->b_assoc_map) {
1228 		struct address_space *buffer_mapping = bh->b_page->mapping;
1229 
1230 		spin_lock(&buffer_mapping->private_lock);
1231 		list_del_init(&bh->b_assoc_buffers);
1232 		bh->b_assoc_map = NULL;
1233 		spin_unlock(&buffer_mapping->private_lock);
1234 	}
1235 	__brelse(bh);
1236 }
1237 
1238 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1239 {
1240 	lock_buffer(bh);
1241 	if (buffer_uptodate(bh)) {
1242 		unlock_buffer(bh);
1243 		return bh;
1244 	} else {
1245 		get_bh(bh);
1246 		bh->b_end_io = end_buffer_read_sync;
1247 		submit_bh(READ, bh);
1248 		wait_on_buffer(bh);
1249 		if (buffer_uptodate(bh))
1250 			return bh;
1251 	}
1252 	brelse(bh);
1253 	return NULL;
1254 }
1255 
1256 /*
1257  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1258  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1259  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1260  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1261  * CPU's LRUs at the same time.
1262  *
1263  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1264  * sb_find_get_block().
1265  *
1266  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1267  * a local interrupt disable for that.
1268  */
1269 
1270 #define BH_LRU_SIZE	8
1271 
1272 struct bh_lru {
1273 	struct buffer_head *bhs[BH_LRU_SIZE];
1274 };
1275 
1276 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1277 
1278 #ifdef CONFIG_SMP
1279 #define bh_lru_lock()	local_irq_disable()
1280 #define bh_lru_unlock()	local_irq_enable()
1281 #else
1282 #define bh_lru_lock()	preempt_disable()
1283 #define bh_lru_unlock()	preempt_enable()
1284 #endif
1285 
1286 static inline void check_irqs_on(void)
1287 {
1288 #ifdef irqs_disabled
1289 	BUG_ON(irqs_disabled());
1290 #endif
1291 }
1292 
1293 /*
1294  * The LRU management algorithm is dopey-but-simple.  Sorry.
1295  */
1296 static void bh_lru_install(struct buffer_head *bh)
1297 {
1298 	struct buffer_head *evictee = NULL;
1299 	struct bh_lru *lru;
1300 
1301 	check_irqs_on();
1302 	bh_lru_lock();
1303 	lru = &__get_cpu_var(bh_lrus);
1304 	if (lru->bhs[0] != bh) {
1305 		struct buffer_head *bhs[BH_LRU_SIZE];
1306 		int in;
1307 		int out = 0;
1308 
1309 		get_bh(bh);
1310 		bhs[out++] = bh;
1311 		for (in = 0; in < BH_LRU_SIZE; in++) {
1312 			struct buffer_head *bh2 = lru->bhs[in];
1313 
1314 			if (bh2 == bh) {
1315 				__brelse(bh2);
1316 			} else {
1317 				if (out >= BH_LRU_SIZE) {
1318 					BUG_ON(evictee != NULL);
1319 					evictee = bh2;
1320 				} else {
1321 					bhs[out++] = bh2;
1322 				}
1323 			}
1324 		}
1325 		while (out < BH_LRU_SIZE)
1326 			bhs[out++] = NULL;
1327 		memcpy(lru->bhs, bhs, sizeof(bhs));
1328 	}
1329 	bh_lru_unlock();
1330 
1331 	if (evictee)
1332 		__brelse(evictee);
1333 }
1334 
1335 /*
1336  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1337  */
1338 static struct buffer_head *
1339 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1340 {
1341 	struct buffer_head *ret = NULL;
1342 	struct bh_lru *lru;
1343 	unsigned int i;
1344 
1345 	check_irqs_on();
1346 	bh_lru_lock();
1347 	lru = &__get_cpu_var(bh_lrus);
1348 	for (i = 0; i < BH_LRU_SIZE; i++) {
1349 		struct buffer_head *bh = lru->bhs[i];
1350 
1351 		if (bh && bh->b_bdev == bdev &&
1352 				bh->b_blocknr == block && bh->b_size == size) {
1353 			if (i) {
1354 				while (i) {
1355 					lru->bhs[i] = lru->bhs[i - 1];
1356 					i--;
1357 				}
1358 				lru->bhs[0] = bh;
1359 			}
1360 			get_bh(bh);
1361 			ret = bh;
1362 			break;
1363 		}
1364 	}
1365 	bh_lru_unlock();
1366 	return ret;
1367 }
1368 
1369 /*
1370  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1371  * it in the LRU and mark it as accessed.  If it is not present then return
1372  * NULL
1373  */
1374 struct buffer_head *
1375 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1376 {
1377 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1378 
1379 	if (bh == NULL) {
1380 		bh = __find_get_block_slow(bdev, block);
1381 		if (bh)
1382 			bh_lru_install(bh);
1383 	}
1384 	if (bh)
1385 		touch_buffer(bh);
1386 	return bh;
1387 }
1388 EXPORT_SYMBOL(__find_get_block);
1389 
1390 /*
1391  * __getblk will locate (and, if necessary, create) the buffer_head
1392  * which corresponds to the passed block_device, block and size. The
1393  * returned buffer has its reference count incremented.
1394  *
1395  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1396  * illegal block number, __getblk() will happily return a buffer_head
1397  * which represents the non-existent block.  Very weird.
1398  *
1399  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1400  * attempt is failing.  FIXME, perhaps?
1401  */
1402 struct buffer_head *
1403 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1404 {
1405 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1406 
1407 	might_sleep();
1408 	if (bh == NULL)
1409 		bh = __getblk_slow(bdev, block, size);
1410 	return bh;
1411 }
1412 EXPORT_SYMBOL(__getblk);
1413 
1414 /*
1415  * Do async read-ahead on a buffer..
1416  */
1417 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1418 {
1419 	struct buffer_head *bh = __getblk(bdev, block, size);
1420 	if (likely(bh)) {
1421 		ll_rw_block(READA, 1, &bh);
1422 		brelse(bh);
1423 	}
1424 }
1425 EXPORT_SYMBOL(__breadahead);
1426 
1427 /**
1428  *  __bread() - reads a specified block and returns the bh
1429  *  @bdev: the block_device to read from
1430  *  @block: number of block
1431  *  @size: size (in bytes) to read
1432  *
1433  *  Reads a specified block, and returns buffer head that contains it.
1434  *  It returns NULL if the block was unreadable.
1435  */
1436 struct buffer_head *
1437 __bread(struct block_device *bdev, sector_t block, unsigned size)
1438 {
1439 	struct buffer_head *bh = __getblk(bdev, block, size);
1440 
1441 	if (likely(bh) && !buffer_uptodate(bh))
1442 		bh = __bread_slow(bh);
1443 	return bh;
1444 }
1445 EXPORT_SYMBOL(__bread);
1446 
1447 /*
1448  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1449  * This doesn't race because it runs in each cpu either in irq
1450  * or with preempt disabled.
1451  */
1452 static void invalidate_bh_lru(void *arg)
1453 {
1454 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1455 	int i;
1456 
1457 	for (i = 0; i < BH_LRU_SIZE; i++) {
1458 		brelse(b->bhs[i]);
1459 		b->bhs[i] = NULL;
1460 	}
1461 	put_cpu_var(bh_lrus);
1462 }
1463 
1464 void invalidate_bh_lrus(void)
1465 {
1466 	on_each_cpu(invalidate_bh_lru, NULL, 1);
1467 }
1468 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1469 
1470 void set_bh_page(struct buffer_head *bh,
1471 		struct page *page, unsigned long offset)
1472 {
1473 	bh->b_page = page;
1474 	BUG_ON(offset >= PAGE_SIZE);
1475 	if (PageHighMem(page))
1476 		/*
1477 		 * This catches illegal uses and preserves the offset:
1478 		 */
1479 		bh->b_data = (char *)(0 + offset);
1480 	else
1481 		bh->b_data = page_address(page) + offset;
1482 }
1483 EXPORT_SYMBOL(set_bh_page);
1484 
1485 /*
1486  * Called when truncating a buffer on a page completely.
1487  */
1488 static void discard_buffer(struct buffer_head * bh)
1489 {
1490 	lock_buffer(bh);
1491 	clear_buffer_dirty(bh);
1492 	bh->b_bdev = NULL;
1493 	clear_buffer_mapped(bh);
1494 	clear_buffer_req(bh);
1495 	clear_buffer_new(bh);
1496 	clear_buffer_delay(bh);
1497 	clear_buffer_unwritten(bh);
1498 	unlock_buffer(bh);
1499 }
1500 
1501 /**
1502  * block_invalidatepage - invalidate part of all of a buffer-backed page
1503  *
1504  * @page: the page which is affected
1505  * @offset: the index of the truncation point
1506  *
1507  * block_invalidatepage() is called when all or part of the page has become
1508  * invalidatedby a truncate operation.
1509  *
1510  * block_invalidatepage() does not have to release all buffers, but it must
1511  * ensure that no dirty buffer is left outside @offset and that no I/O
1512  * is underway against any of the blocks which are outside the truncation
1513  * point.  Because the caller is about to free (and possibly reuse) those
1514  * blocks on-disk.
1515  */
1516 void block_invalidatepage(struct page *page, unsigned long offset)
1517 {
1518 	struct buffer_head *head, *bh, *next;
1519 	unsigned int curr_off = 0;
1520 
1521 	BUG_ON(!PageLocked(page));
1522 	if (!page_has_buffers(page))
1523 		goto out;
1524 
1525 	head = page_buffers(page);
1526 	bh = head;
1527 	do {
1528 		unsigned int next_off = curr_off + bh->b_size;
1529 		next = bh->b_this_page;
1530 
1531 		/*
1532 		 * is this block fully invalidated?
1533 		 */
1534 		if (offset <= curr_off)
1535 			discard_buffer(bh);
1536 		curr_off = next_off;
1537 		bh = next;
1538 	} while (bh != head);
1539 
1540 	/*
1541 	 * We release buffers only if the entire page is being invalidated.
1542 	 * The get_block cached value has been unconditionally invalidated,
1543 	 * so real IO is not possible anymore.
1544 	 */
1545 	if (offset == 0)
1546 		try_to_release_page(page, 0);
1547 out:
1548 	return;
1549 }
1550 EXPORT_SYMBOL(block_invalidatepage);
1551 
1552 /*
1553  * We attach and possibly dirty the buffers atomically wrt
1554  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1555  * is already excluded via the page lock.
1556  */
1557 void create_empty_buffers(struct page *page,
1558 			unsigned long blocksize, unsigned long b_state)
1559 {
1560 	struct buffer_head *bh, *head, *tail;
1561 
1562 	head = alloc_page_buffers(page, blocksize, 1);
1563 	bh = head;
1564 	do {
1565 		bh->b_state |= b_state;
1566 		tail = bh;
1567 		bh = bh->b_this_page;
1568 	} while (bh);
1569 	tail->b_this_page = head;
1570 
1571 	spin_lock(&page->mapping->private_lock);
1572 	if (PageUptodate(page) || PageDirty(page)) {
1573 		bh = head;
1574 		do {
1575 			if (PageDirty(page))
1576 				set_buffer_dirty(bh);
1577 			if (PageUptodate(page))
1578 				set_buffer_uptodate(bh);
1579 			bh = bh->b_this_page;
1580 		} while (bh != head);
1581 	}
1582 	attach_page_buffers(page, head);
1583 	spin_unlock(&page->mapping->private_lock);
1584 }
1585 EXPORT_SYMBOL(create_empty_buffers);
1586 
1587 /*
1588  * We are taking a block for data and we don't want any output from any
1589  * buffer-cache aliases starting from return from that function and
1590  * until the moment when something will explicitly mark the buffer
1591  * dirty (hopefully that will not happen until we will free that block ;-)
1592  * We don't even need to mark it not-uptodate - nobody can expect
1593  * anything from a newly allocated buffer anyway. We used to used
1594  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1595  * don't want to mark the alias unmapped, for example - it would confuse
1596  * anyone who might pick it with bread() afterwards...
1597  *
1598  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1599  * be writeout I/O going on against recently-freed buffers.  We don't
1600  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1601  * only if we really need to.  That happens here.
1602  */
1603 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1604 {
1605 	struct buffer_head *old_bh;
1606 
1607 	might_sleep();
1608 
1609 	old_bh = __find_get_block_slow(bdev, block);
1610 	if (old_bh) {
1611 		clear_buffer_dirty(old_bh);
1612 		wait_on_buffer(old_bh);
1613 		clear_buffer_req(old_bh);
1614 		__brelse(old_bh);
1615 	}
1616 }
1617 EXPORT_SYMBOL(unmap_underlying_metadata);
1618 
1619 /*
1620  * NOTE! All mapped/uptodate combinations are valid:
1621  *
1622  *	Mapped	Uptodate	Meaning
1623  *
1624  *	No	No		"unknown" - must do get_block()
1625  *	No	Yes		"hole" - zero-filled
1626  *	Yes	No		"allocated" - allocated on disk, not read in
1627  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1628  *
1629  * "Dirty" is valid only with the last case (mapped+uptodate).
1630  */
1631 
1632 /*
1633  * While block_write_full_page is writing back the dirty buffers under
1634  * the page lock, whoever dirtied the buffers may decide to clean them
1635  * again at any time.  We handle that by only looking at the buffer
1636  * state inside lock_buffer().
1637  *
1638  * If block_write_full_page() is called for regular writeback
1639  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1640  * locked buffer.   This only can happen if someone has written the buffer
1641  * directly, with submit_bh().  At the address_space level PageWriteback
1642  * prevents this contention from occurring.
1643  */
1644 static int __block_write_full_page(struct inode *inode, struct page *page,
1645 			get_block_t *get_block, struct writeback_control *wbc)
1646 {
1647 	int err;
1648 	sector_t block;
1649 	sector_t last_block;
1650 	struct buffer_head *bh, *head;
1651 	const unsigned blocksize = 1 << inode->i_blkbits;
1652 	int nr_underway = 0;
1653 
1654 	BUG_ON(!PageLocked(page));
1655 
1656 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1657 
1658 	if (!page_has_buffers(page)) {
1659 		create_empty_buffers(page, blocksize,
1660 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1661 	}
1662 
1663 	/*
1664 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1665 	 * here, and the (potentially unmapped) buffers may become dirty at
1666 	 * any time.  If a buffer becomes dirty here after we've inspected it
1667 	 * then we just miss that fact, and the page stays dirty.
1668 	 *
1669 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1670 	 * handle that here by just cleaning them.
1671 	 */
1672 
1673 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1674 	head = page_buffers(page);
1675 	bh = head;
1676 
1677 	/*
1678 	 * Get all the dirty buffers mapped to disk addresses and
1679 	 * handle any aliases from the underlying blockdev's mapping.
1680 	 */
1681 	do {
1682 		if (block > last_block) {
1683 			/*
1684 			 * mapped buffers outside i_size will occur, because
1685 			 * this page can be outside i_size when there is a
1686 			 * truncate in progress.
1687 			 */
1688 			/*
1689 			 * The buffer was zeroed by block_write_full_page()
1690 			 */
1691 			clear_buffer_dirty(bh);
1692 			set_buffer_uptodate(bh);
1693 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1694 			   buffer_dirty(bh)) {
1695 			WARN_ON(bh->b_size != blocksize);
1696 			err = get_block(inode, block, bh, 1);
1697 			if (err)
1698 				goto recover;
1699 			clear_buffer_delay(bh);
1700 			if (buffer_new(bh)) {
1701 				/* blockdev mappings never come here */
1702 				clear_buffer_new(bh);
1703 				unmap_underlying_metadata(bh->b_bdev,
1704 							bh->b_blocknr);
1705 			}
1706 		}
1707 		bh = bh->b_this_page;
1708 		block++;
1709 	} while (bh != head);
1710 
1711 	do {
1712 		if (!buffer_mapped(bh))
1713 			continue;
1714 		/*
1715 		 * If it's a fully non-blocking write attempt and we cannot
1716 		 * lock the buffer then redirty the page.  Note that this can
1717 		 * potentially cause a busy-wait loop from pdflush and kswapd
1718 		 * activity, but those code paths have their own higher-level
1719 		 * throttling.
1720 		 */
1721 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1722 			lock_buffer(bh);
1723 		} else if (!trylock_buffer(bh)) {
1724 			redirty_page_for_writepage(wbc, page);
1725 			continue;
1726 		}
1727 		if (test_clear_buffer_dirty(bh)) {
1728 			mark_buffer_async_write(bh);
1729 		} else {
1730 			unlock_buffer(bh);
1731 		}
1732 	} while ((bh = bh->b_this_page) != head);
1733 
1734 	/*
1735 	 * The page and its buffers are protected by PageWriteback(), so we can
1736 	 * drop the bh refcounts early.
1737 	 */
1738 	BUG_ON(PageWriteback(page));
1739 	set_page_writeback(page);
1740 
1741 	do {
1742 		struct buffer_head *next = bh->b_this_page;
1743 		if (buffer_async_write(bh)) {
1744 			submit_bh(WRITE, bh);
1745 			nr_underway++;
1746 		}
1747 		bh = next;
1748 	} while (bh != head);
1749 	unlock_page(page);
1750 
1751 	err = 0;
1752 done:
1753 	if (nr_underway == 0) {
1754 		/*
1755 		 * The page was marked dirty, but the buffers were
1756 		 * clean.  Someone wrote them back by hand with
1757 		 * ll_rw_block/submit_bh.  A rare case.
1758 		 */
1759 		end_page_writeback(page);
1760 
1761 		/*
1762 		 * The page and buffer_heads can be released at any time from
1763 		 * here on.
1764 		 */
1765 	}
1766 	return err;
1767 
1768 recover:
1769 	/*
1770 	 * ENOSPC, or some other error.  We may already have added some
1771 	 * blocks to the file, so we need to write these out to avoid
1772 	 * exposing stale data.
1773 	 * The page is currently locked and not marked for writeback
1774 	 */
1775 	bh = head;
1776 	/* Recovery: lock and submit the mapped buffers */
1777 	do {
1778 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1779 		    !buffer_delay(bh)) {
1780 			lock_buffer(bh);
1781 			mark_buffer_async_write(bh);
1782 		} else {
1783 			/*
1784 			 * The buffer may have been set dirty during
1785 			 * attachment to a dirty page.
1786 			 */
1787 			clear_buffer_dirty(bh);
1788 		}
1789 	} while ((bh = bh->b_this_page) != head);
1790 	SetPageError(page);
1791 	BUG_ON(PageWriteback(page));
1792 	mapping_set_error(page->mapping, err);
1793 	set_page_writeback(page);
1794 	do {
1795 		struct buffer_head *next = bh->b_this_page;
1796 		if (buffer_async_write(bh)) {
1797 			clear_buffer_dirty(bh);
1798 			submit_bh(WRITE, bh);
1799 			nr_underway++;
1800 		}
1801 		bh = next;
1802 	} while (bh != head);
1803 	unlock_page(page);
1804 	goto done;
1805 }
1806 
1807 /*
1808  * If a page has any new buffers, zero them out here, and mark them uptodate
1809  * and dirty so they'll be written out (in order to prevent uninitialised
1810  * block data from leaking). And clear the new bit.
1811  */
1812 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1813 {
1814 	unsigned int block_start, block_end;
1815 	struct buffer_head *head, *bh;
1816 
1817 	BUG_ON(!PageLocked(page));
1818 	if (!page_has_buffers(page))
1819 		return;
1820 
1821 	bh = head = page_buffers(page);
1822 	block_start = 0;
1823 	do {
1824 		block_end = block_start + bh->b_size;
1825 
1826 		if (buffer_new(bh)) {
1827 			if (block_end > from && block_start < to) {
1828 				if (!PageUptodate(page)) {
1829 					unsigned start, size;
1830 
1831 					start = max(from, block_start);
1832 					size = min(to, block_end) - start;
1833 
1834 					zero_user(page, start, size);
1835 					set_buffer_uptodate(bh);
1836 				}
1837 
1838 				clear_buffer_new(bh);
1839 				mark_buffer_dirty(bh);
1840 			}
1841 		}
1842 
1843 		block_start = block_end;
1844 		bh = bh->b_this_page;
1845 	} while (bh != head);
1846 }
1847 EXPORT_SYMBOL(page_zero_new_buffers);
1848 
1849 static int __block_prepare_write(struct inode *inode, struct page *page,
1850 		unsigned from, unsigned to, get_block_t *get_block)
1851 {
1852 	unsigned block_start, block_end;
1853 	sector_t block;
1854 	int err = 0;
1855 	unsigned blocksize, bbits;
1856 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1857 
1858 	BUG_ON(!PageLocked(page));
1859 	BUG_ON(from > PAGE_CACHE_SIZE);
1860 	BUG_ON(to > PAGE_CACHE_SIZE);
1861 	BUG_ON(from > to);
1862 
1863 	blocksize = 1 << inode->i_blkbits;
1864 	if (!page_has_buffers(page))
1865 		create_empty_buffers(page, blocksize, 0);
1866 	head = page_buffers(page);
1867 
1868 	bbits = inode->i_blkbits;
1869 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1870 
1871 	for(bh = head, block_start = 0; bh != head || !block_start;
1872 	    block++, block_start=block_end, bh = bh->b_this_page) {
1873 		block_end = block_start + blocksize;
1874 		if (block_end <= from || block_start >= to) {
1875 			if (PageUptodate(page)) {
1876 				if (!buffer_uptodate(bh))
1877 					set_buffer_uptodate(bh);
1878 			}
1879 			continue;
1880 		}
1881 		if (buffer_new(bh))
1882 			clear_buffer_new(bh);
1883 		if (!buffer_mapped(bh)) {
1884 			WARN_ON(bh->b_size != blocksize);
1885 			err = get_block(inode, block, bh, 1);
1886 			if (err)
1887 				break;
1888 			if (buffer_new(bh)) {
1889 				unmap_underlying_metadata(bh->b_bdev,
1890 							bh->b_blocknr);
1891 				if (PageUptodate(page)) {
1892 					clear_buffer_new(bh);
1893 					set_buffer_uptodate(bh);
1894 					mark_buffer_dirty(bh);
1895 					continue;
1896 				}
1897 				if (block_end > to || block_start < from)
1898 					zero_user_segments(page,
1899 						to, block_end,
1900 						block_start, from);
1901 				continue;
1902 			}
1903 		}
1904 		if (PageUptodate(page)) {
1905 			if (!buffer_uptodate(bh))
1906 				set_buffer_uptodate(bh);
1907 			continue;
1908 		}
1909 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1910 		    !buffer_unwritten(bh) &&
1911 		     (block_start < from || block_end > to)) {
1912 			ll_rw_block(READ, 1, &bh);
1913 			*wait_bh++=bh;
1914 		}
1915 	}
1916 	/*
1917 	 * If we issued read requests - let them complete.
1918 	 */
1919 	while(wait_bh > wait) {
1920 		wait_on_buffer(*--wait_bh);
1921 		if (!buffer_uptodate(*wait_bh))
1922 			err = -EIO;
1923 	}
1924 	if (unlikely(err))
1925 		page_zero_new_buffers(page, from, to);
1926 	return err;
1927 }
1928 
1929 static int __block_commit_write(struct inode *inode, struct page *page,
1930 		unsigned from, unsigned to)
1931 {
1932 	unsigned block_start, block_end;
1933 	int partial = 0;
1934 	unsigned blocksize;
1935 	struct buffer_head *bh, *head;
1936 
1937 	blocksize = 1 << inode->i_blkbits;
1938 
1939 	for(bh = head = page_buffers(page), block_start = 0;
1940 	    bh != head || !block_start;
1941 	    block_start=block_end, bh = bh->b_this_page) {
1942 		block_end = block_start + blocksize;
1943 		if (block_end <= from || block_start >= to) {
1944 			if (!buffer_uptodate(bh))
1945 				partial = 1;
1946 		} else {
1947 			set_buffer_uptodate(bh);
1948 			mark_buffer_dirty(bh);
1949 		}
1950 		clear_buffer_new(bh);
1951 	}
1952 
1953 	/*
1954 	 * If this is a partial write which happened to make all buffers
1955 	 * uptodate then we can optimize away a bogus readpage() for
1956 	 * the next read(). Here we 'discover' whether the page went
1957 	 * uptodate as a result of this (potentially partial) write.
1958 	 */
1959 	if (!partial)
1960 		SetPageUptodate(page);
1961 	return 0;
1962 }
1963 
1964 /*
1965  * block_write_begin takes care of the basic task of block allocation and
1966  * bringing partial write blocks uptodate first.
1967  *
1968  * If *pagep is not NULL, then block_write_begin uses the locked page
1969  * at *pagep rather than allocating its own. In this case, the page will
1970  * not be unlocked or deallocated on failure.
1971  */
1972 int block_write_begin(struct file *file, struct address_space *mapping,
1973 			loff_t pos, unsigned len, unsigned flags,
1974 			struct page **pagep, void **fsdata,
1975 			get_block_t *get_block)
1976 {
1977 	struct inode *inode = mapping->host;
1978 	int status = 0;
1979 	struct page *page;
1980 	pgoff_t index;
1981 	unsigned start, end;
1982 	int ownpage = 0;
1983 
1984 	index = pos >> PAGE_CACHE_SHIFT;
1985 	start = pos & (PAGE_CACHE_SIZE - 1);
1986 	end = start + len;
1987 
1988 	page = *pagep;
1989 	if (page == NULL) {
1990 		ownpage = 1;
1991 		page = __grab_cache_page(mapping, index);
1992 		if (!page) {
1993 			status = -ENOMEM;
1994 			goto out;
1995 		}
1996 		*pagep = page;
1997 	} else
1998 		BUG_ON(!PageLocked(page));
1999 
2000 	status = __block_prepare_write(inode, page, start, end, get_block);
2001 	if (unlikely(status)) {
2002 		ClearPageUptodate(page);
2003 
2004 		if (ownpage) {
2005 			unlock_page(page);
2006 			page_cache_release(page);
2007 			*pagep = NULL;
2008 
2009 			/*
2010 			 * prepare_write() may have instantiated a few blocks
2011 			 * outside i_size.  Trim these off again. Don't need
2012 			 * i_size_read because we hold i_mutex.
2013 			 */
2014 			if (pos + len > inode->i_size)
2015 				vmtruncate(inode, inode->i_size);
2016 		}
2017 		goto out;
2018 	}
2019 
2020 out:
2021 	return status;
2022 }
2023 EXPORT_SYMBOL(block_write_begin);
2024 
2025 int block_write_end(struct file *file, struct address_space *mapping,
2026 			loff_t pos, unsigned len, unsigned copied,
2027 			struct page *page, void *fsdata)
2028 {
2029 	struct inode *inode = mapping->host;
2030 	unsigned start;
2031 
2032 	start = pos & (PAGE_CACHE_SIZE - 1);
2033 
2034 	if (unlikely(copied < len)) {
2035 		/*
2036 		 * The buffers that were written will now be uptodate, so we
2037 		 * don't have to worry about a readpage reading them and
2038 		 * overwriting a partial write. However if we have encountered
2039 		 * a short write and only partially written into a buffer, it
2040 		 * will not be marked uptodate, so a readpage might come in and
2041 		 * destroy our partial write.
2042 		 *
2043 		 * Do the simplest thing, and just treat any short write to a
2044 		 * non uptodate page as a zero-length write, and force the
2045 		 * caller to redo the whole thing.
2046 		 */
2047 		if (!PageUptodate(page))
2048 			copied = 0;
2049 
2050 		page_zero_new_buffers(page, start+copied, start+len);
2051 	}
2052 	flush_dcache_page(page);
2053 
2054 	/* This could be a short (even 0-length) commit */
2055 	__block_commit_write(inode, page, start, start+copied);
2056 
2057 	return copied;
2058 }
2059 EXPORT_SYMBOL(block_write_end);
2060 
2061 int generic_write_end(struct file *file, struct address_space *mapping,
2062 			loff_t pos, unsigned len, unsigned copied,
2063 			struct page *page, void *fsdata)
2064 {
2065 	struct inode *inode = mapping->host;
2066 	int i_size_changed = 0;
2067 
2068 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2069 
2070 	/*
2071 	 * No need to use i_size_read() here, the i_size
2072 	 * cannot change under us because we hold i_mutex.
2073 	 *
2074 	 * But it's important to update i_size while still holding page lock:
2075 	 * page writeout could otherwise come in and zero beyond i_size.
2076 	 */
2077 	if (pos+copied > inode->i_size) {
2078 		i_size_write(inode, pos+copied);
2079 		i_size_changed = 1;
2080 	}
2081 
2082 	unlock_page(page);
2083 	page_cache_release(page);
2084 
2085 	/*
2086 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2087 	 * makes the holding time of page lock longer. Second, it forces lock
2088 	 * ordering of page lock and transaction start for journaling
2089 	 * filesystems.
2090 	 */
2091 	if (i_size_changed)
2092 		mark_inode_dirty(inode);
2093 
2094 	return copied;
2095 }
2096 EXPORT_SYMBOL(generic_write_end);
2097 
2098 /*
2099  * block_is_partially_uptodate checks whether buffers within a page are
2100  * uptodate or not.
2101  *
2102  * Returns true if all buffers which correspond to a file portion
2103  * we want to read are uptodate.
2104  */
2105 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2106 					unsigned long from)
2107 {
2108 	struct inode *inode = page->mapping->host;
2109 	unsigned block_start, block_end, blocksize;
2110 	unsigned to;
2111 	struct buffer_head *bh, *head;
2112 	int ret = 1;
2113 
2114 	if (!page_has_buffers(page))
2115 		return 0;
2116 
2117 	blocksize = 1 << inode->i_blkbits;
2118 	to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2119 	to = from + to;
2120 	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2121 		return 0;
2122 
2123 	head = page_buffers(page);
2124 	bh = head;
2125 	block_start = 0;
2126 	do {
2127 		block_end = block_start + blocksize;
2128 		if (block_end > from && block_start < to) {
2129 			if (!buffer_uptodate(bh)) {
2130 				ret = 0;
2131 				break;
2132 			}
2133 			if (block_end >= to)
2134 				break;
2135 		}
2136 		block_start = block_end;
2137 		bh = bh->b_this_page;
2138 	} while (bh != head);
2139 
2140 	return ret;
2141 }
2142 EXPORT_SYMBOL(block_is_partially_uptodate);
2143 
2144 /*
2145  * Generic "read page" function for block devices that have the normal
2146  * get_block functionality. This is most of the block device filesystems.
2147  * Reads the page asynchronously --- the unlock_buffer() and
2148  * set/clear_buffer_uptodate() functions propagate buffer state into the
2149  * page struct once IO has completed.
2150  */
2151 int block_read_full_page(struct page *page, get_block_t *get_block)
2152 {
2153 	struct inode *inode = page->mapping->host;
2154 	sector_t iblock, lblock;
2155 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2156 	unsigned int blocksize;
2157 	int nr, i;
2158 	int fully_mapped = 1;
2159 
2160 	BUG_ON(!PageLocked(page));
2161 	blocksize = 1 << inode->i_blkbits;
2162 	if (!page_has_buffers(page))
2163 		create_empty_buffers(page, blocksize, 0);
2164 	head = page_buffers(page);
2165 
2166 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2167 	lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2168 	bh = head;
2169 	nr = 0;
2170 	i = 0;
2171 
2172 	do {
2173 		if (buffer_uptodate(bh))
2174 			continue;
2175 
2176 		if (!buffer_mapped(bh)) {
2177 			int err = 0;
2178 
2179 			fully_mapped = 0;
2180 			if (iblock < lblock) {
2181 				WARN_ON(bh->b_size != blocksize);
2182 				err = get_block(inode, iblock, bh, 0);
2183 				if (err)
2184 					SetPageError(page);
2185 			}
2186 			if (!buffer_mapped(bh)) {
2187 				zero_user(page, i * blocksize, blocksize);
2188 				if (!err)
2189 					set_buffer_uptodate(bh);
2190 				continue;
2191 			}
2192 			/*
2193 			 * get_block() might have updated the buffer
2194 			 * synchronously
2195 			 */
2196 			if (buffer_uptodate(bh))
2197 				continue;
2198 		}
2199 		arr[nr++] = bh;
2200 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2201 
2202 	if (fully_mapped)
2203 		SetPageMappedToDisk(page);
2204 
2205 	if (!nr) {
2206 		/*
2207 		 * All buffers are uptodate - we can set the page uptodate
2208 		 * as well. But not if get_block() returned an error.
2209 		 */
2210 		if (!PageError(page))
2211 			SetPageUptodate(page);
2212 		unlock_page(page);
2213 		return 0;
2214 	}
2215 
2216 	/* Stage two: lock the buffers */
2217 	for (i = 0; i < nr; i++) {
2218 		bh = arr[i];
2219 		lock_buffer(bh);
2220 		mark_buffer_async_read(bh);
2221 	}
2222 
2223 	/*
2224 	 * Stage 3: start the IO.  Check for uptodateness
2225 	 * inside the buffer lock in case another process reading
2226 	 * the underlying blockdev brought it uptodate (the sct fix).
2227 	 */
2228 	for (i = 0; i < nr; i++) {
2229 		bh = arr[i];
2230 		if (buffer_uptodate(bh))
2231 			end_buffer_async_read(bh, 1);
2232 		else
2233 			submit_bh(READ, bh);
2234 	}
2235 	return 0;
2236 }
2237 
2238 /* utility function for filesystems that need to do work on expanding
2239  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2240  * deal with the hole.
2241  */
2242 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2243 {
2244 	struct address_space *mapping = inode->i_mapping;
2245 	struct page *page;
2246 	void *fsdata;
2247 	unsigned long limit;
2248 	int err;
2249 
2250 	err = -EFBIG;
2251         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2252 	if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2253 		send_sig(SIGXFSZ, current, 0);
2254 		goto out;
2255 	}
2256 	if (size > inode->i_sb->s_maxbytes)
2257 		goto out;
2258 
2259 	err = pagecache_write_begin(NULL, mapping, size, 0,
2260 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2261 				&page, &fsdata);
2262 	if (err)
2263 		goto out;
2264 
2265 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2266 	BUG_ON(err > 0);
2267 
2268 out:
2269 	return err;
2270 }
2271 
2272 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2273 			    loff_t pos, loff_t *bytes)
2274 {
2275 	struct inode *inode = mapping->host;
2276 	unsigned blocksize = 1 << inode->i_blkbits;
2277 	struct page *page;
2278 	void *fsdata;
2279 	pgoff_t index, curidx;
2280 	loff_t curpos;
2281 	unsigned zerofrom, offset, len;
2282 	int err = 0;
2283 
2284 	index = pos >> PAGE_CACHE_SHIFT;
2285 	offset = pos & ~PAGE_CACHE_MASK;
2286 
2287 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2288 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2289 		if (zerofrom & (blocksize-1)) {
2290 			*bytes |= (blocksize-1);
2291 			(*bytes)++;
2292 		}
2293 		len = PAGE_CACHE_SIZE - zerofrom;
2294 
2295 		err = pagecache_write_begin(file, mapping, curpos, len,
2296 						AOP_FLAG_UNINTERRUPTIBLE,
2297 						&page, &fsdata);
2298 		if (err)
2299 			goto out;
2300 		zero_user(page, zerofrom, len);
2301 		err = pagecache_write_end(file, mapping, curpos, len, len,
2302 						page, fsdata);
2303 		if (err < 0)
2304 			goto out;
2305 		BUG_ON(err != len);
2306 		err = 0;
2307 
2308 		balance_dirty_pages_ratelimited(mapping);
2309 	}
2310 
2311 	/* page covers the boundary, find the boundary offset */
2312 	if (index == curidx) {
2313 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2314 		/* if we will expand the thing last block will be filled */
2315 		if (offset <= zerofrom) {
2316 			goto out;
2317 		}
2318 		if (zerofrom & (blocksize-1)) {
2319 			*bytes |= (blocksize-1);
2320 			(*bytes)++;
2321 		}
2322 		len = offset - zerofrom;
2323 
2324 		err = pagecache_write_begin(file, mapping, curpos, len,
2325 						AOP_FLAG_UNINTERRUPTIBLE,
2326 						&page, &fsdata);
2327 		if (err)
2328 			goto out;
2329 		zero_user(page, zerofrom, len);
2330 		err = pagecache_write_end(file, mapping, curpos, len, len,
2331 						page, fsdata);
2332 		if (err < 0)
2333 			goto out;
2334 		BUG_ON(err != len);
2335 		err = 0;
2336 	}
2337 out:
2338 	return err;
2339 }
2340 
2341 /*
2342  * For moronic filesystems that do not allow holes in file.
2343  * We may have to extend the file.
2344  */
2345 int cont_write_begin(struct file *file, struct address_space *mapping,
2346 			loff_t pos, unsigned len, unsigned flags,
2347 			struct page **pagep, void **fsdata,
2348 			get_block_t *get_block, loff_t *bytes)
2349 {
2350 	struct inode *inode = mapping->host;
2351 	unsigned blocksize = 1 << inode->i_blkbits;
2352 	unsigned zerofrom;
2353 	int err;
2354 
2355 	err = cont_expand_zero(file, mapping, pos, bytes);
2356 	if (err)
2357 		goto out;
2358 
2359 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2360 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2361 		*bytes |= (blocksize-1);
2362 		(*bytes)++;
2363 	}
2364 
2365 	*pagep = NULL;
2366 	err = block_write_begin(file, mapping, pos, len,
2367 				flags, pagep, fsdata, get_block);
2368 out:
2369 	return err;
2370 }
2371 
2372 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2373 			get_block_t *get_block)
2374 {
2375 	struct inode *inode = page->mapping->host;
2376 	int err = __block_prepare_write(inode, page, from, to, get_block);
2377 	if (err)
2378 		ClearPageUptodate(page);
2379 	return err;
2380 }
2381 
2382 int block_commit_write(struct page *page, unsigned from, unsigned to)
2383 {
2384 	struct inode *inode = page->mapping->host;
2385 	__block_commit_write(inode,page,from,to);
2386 	return 0;
2387 }
2388 
2389 /*
2390  * block_page_mkwrite() is not allowed to change the file size as it gets
2391  * called from a page fault handler when a page is first dirtied. Hence we must
2392  * be careful to check for EOF conditions here. We set the page up correctly
2393  * for a written page which means we get ENOSPC checking when writing into
2394  * holes and correct delalloc and unwritten extent mapping on filesystems that
2395  * support these features.
2396  *
2397  * We are not allowed to take the i_mutex here so we have to play games to
2398  * protect against truncate races as the page could now be beyond EOF.  Because
2399  * vmtruncate() writes the inode size before removing pages, once we have the
2400  * page lock we can determine safely if the page is beyond EOF. If it is not
2401  * beyond EOF, then the page is guaranteed safe against truncation until we
2402  * unlock the page.
2403  */
2404 int
2405 block_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2406 		   get_block_t get_block)
2407 {
2408 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2409 	unsigned long end;
2410 	loff_t size;
2411 	int ret = -EINVAL;
2412 
2413 	lock_page(page);
2414 	size = i_size_read(inode);
2415 	if ((page->mapping != inode->i_mapping) ||
2416 	    (page_offset(page) > size)) {
2417 		/* page got truncated out from underneath us */
2418 		goto out_unlock;
2419 	}
2420 
2421 	/* page is wholly or partially inside EOF */
2422 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2423 		end = size & ~PAGE_CACHE_MASK;
2424 	else
2425 		end = PAGE_CACHE_SIZE;
2426 
2427 	ret = block_prepare_write(page, 0, end, get_block);
2428 	if (!ret)
2429 		ret = block_commit_write(page, 0, end);
2430 
2431 out_unlock:
2432 	unlock_page(page);
2433 	return ret;
2434 }
2435 
2436 /*
2437  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2438  * immediately, while under the page lock.  So it needs a special end_io
2439  * handler which does not touch the bh after unlocking it.
2440  */
2441 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2442 {
2443 	__end_buffer_read_notouch(bh, uptodate);
2444 }
2445 
2446 /*
2447  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2448  * the page (converting it to circular linked list and taking care of page
2449  * dirty races).
2450  */
2451 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2452 {
2453 	struct buffer_head *bh;
2454 
2455 	BUG_ON(!PageLocked(page));
2456 
2457 	spin_lock(&page->mapping->private_lock);
2458 	bh = head;
2459 	do {
2460 		if (PageDirty(page))
2461 			set_buffer_dirty(bh);
2462 		if (!bh->b_this_page)
2463 			bh->b_this_page = head;
2464 		bh = bh->b_this_page;
2465 	} while (bh != head);
2466 	attach_page_buffers(page, head);
2467 	spin_unlock(&page->mapping->private_lock);
2468 }
2469 
2470 /*
2471  * On entry, the page is fully not uptodate.
2472  * On exit the page is fully uptodate in the areas outside (from,to)
2473  */
2474 int nobh_write_begin(struct file *file, struct address_space *mapping,
2475 			loff_t pos, unsigned len, unsigned flags,
2476 			struct page **pagep, void **fsdata,
2477 			get_block_t *get_block)
2478 {
2479 	struct inode *inode = mapping->host;
2480 	const unsigned blkbits = inode->i_blkbits;
2481 	const unsigned blocksize = 1 << blkbits;
2482 	struct buffer_head *head, *bh;
2483 	struct page *page;
2484 	pgoff_t index;
2485 	unsigned from, to;
2486 	unsigned block_in_page;
2487 	unsigned block_start, block_end;
2488 	sector_t block_in_file;
2489 	int nr_reads = 0;
2490 	int ret = 0;
2491 	int is_mapped_to_disk = 1;
2492 
2493 	index = pos >> PAGE_CACHE_SHIFT;
2494 	from = pos & (PAGE_CACHE_SIZE - 1);
2495 	to = from + len;
2496 
2497 	page = __grab_cache_page(mapping, index);
2498 	if (!page)
2499 		return -ENOMEM;
2500 	*pagep = page;
2501 	*fsdata = NULL;
2502 
2503 	if (page_has_buffers(page)) {
2504 		unlock_page(page);
2505 		page_cache_release(page);
2506 		*pagep = NULL;
2507 		return block_write_begin(file, mapping, pos, len, flags, pagep,
2508 					fsdata, get_block);
2509 	}
2510 
2511 	if (PageMappedToDisk(page))
2512 		return 0;
2513 
2514 	/*
2515 	 * Allocate buffers so that we can keep track of state, and potentially
2516 	 * attach them to the page if an error occurs. In the common case of
2517 	 * no error, they will just be freed again without ever being attached
2518 	 * to the page (which is all OK, because we're under the page lock).
2519 	 *
2520 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2521 	 * than the circular one we're used to.
2522 	 */
2523 	head = alloc_page_buffers(page, blocksize, 0);
2524 	if (!head) {
2525 		ret = -ENOMEM;
2526 		goto out_release;
2527 	}
2528 
2529 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2530 
2531 	/*
2532 	 * We loop across all blocks in the page, whether or not they are
2533 	 * part of the affected region.  This is so we can discover if the
2534 	 * page is fully mapped-to-disk.
2535 	 */
2536 	for (block_start = 0, block_in_page = 0, bh = head;
2537 		  block_start < PAGE_CACHE_SIZE;
2538 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2539 		int create;
2540 
2541 		block_end = block_start + blocksize;
2542 		bh->b_state = 0;
2543 		create = 1;
2544 		if (block_start >= to)
2545 			create = 0;
2546 		ret = get_block(inode, block_in_file + block_in_page,
2547 					bh, create);
2548 		if (ret)
2549 			goto failed;
2550 		if (!buffer_mapped(bh))
2551 			is_mapped_to_disk = 0;
2552 		if (buffer_new(bh))
2553 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2554 		if (PageUptodate(page)) {
2555 			set_buffer_uptodate(bh);
2556 			continue;
2557 		}
2558 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2559 			zero_user_segments(page, block_start, from,
2560 							to, block_end);
2561 			continue;
2562 		}
2563 		if (buffer_uptodate(bh))
2564 			continue;	/* reiserfs does this */
2565 		if (block_start < from || block_end > to) {
2566 			lock_buffer(bh);
2567 			bh->b_end_io = end_buffer_read_nobh;
2568 			submit_bh(READ, bh);
2569 			nr_reads++;
2570 		}
2571 	}
2572 
2573 	if (nr_reads) {
2574 		/*
2575 		 * The page is locked, so these buffers are protected from
2576 		 * any VM or truncate activity.  Hence we don't need to care
2577 		 * for the buffer_head refcounts.
2578 		 */
2579 		for (bh = head; bh; bh = bh->b_this_page) {
2580 			wait_on_buffer(bh);
2581 			if (!buffer_uptodate(bh))
2582 				ret = -EIO;
2583 		}
2584 		if (ret)
2585 			goto failed;
2586 	}
2587 
2588 	if (is_mapped_to_disk)
2589 		SetPageMappedToDisk(page);
2590 
2591 	*fsdata = head; /* to be released by nobh_write_end */
2592 
2593 	return 0;
2594 
2595 failed:
2596 	BUG_ON(!ret);
2597 	/*
2598 	 * Error recovery is a bit difficult. We need to zero out blocks that
2599 	 * were newly allocated, and dirty them to ensure they get written out.
2600 	 * Buffers need to be attached to the page at this point, otherwise
2601 	 * the handling of potential IO errors during writeout would be hard
2602 	 * (could try doing synchronous writeout, but what if that fails too?)
2603 	 */
2604 	attach_nobh_buffers(page, head);
2605 	page_zero_new_buffers(page, from, to);
2606 
2607 out_release:
2608 	unlock_page(page);
2609 	page_cache_release(page);
2610 	*pagep = NULL;
2611 
2612 	if (pos + len > inode->i_size)
2613 		vmtruncate(inode, inode->i_size);
2614 
2615 	return ret;
2616 }
2617 EXPORT_SYMBOL(nobh_write_begin);
2618 
2619 int nobh_write_end(struct file *file, struct address_space *mapping,
2620 			loff_t pos, unsigned len, unsigned copied,
2621 			struct page *page, void *fsdata)
2622 {
2623 	struct inode *inode = page->mapping->host;
2624 	struct buffer_head *head = fsdata;
2625 	struct buffer_head *bh;
2626 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2627 
2628 	if (unlikely(copied < len) && !page_has_buffers(page))
2629 		attach_nobh_buffers(page, head);
2630 	if (page_has_buffers(page))
2631 		return generic_write_end(file, mapping, pos, len,
2632 					copied, page, fsdata);
2633 
2634 	SetPageUptodate(page);
2635 	set_page_dirty(page);
2636 	if (pos+copied > inode->i_size) {
2637 		i_size_write(inode, pos+copied);
2638 		mark_inode_dirty(inode);
2639 	}
2640 
2641 	unlock_page(page);
2642 	page_cache_release(page);
2643 
2644 	while (head) {
2645 		bh = head;
2646 		head = head->b_this_page;
2647 		free_buffer_head(bh);
2648 	}
2649 
2650 	return copied;
2651 }
2652 EXPORT_SYMBOL(nobh_write_end);
2653 
2654 /*
2655  * nobh_writepage() - based on block_full_write_page() except
2656  * that it tries to operate without attaching bufferheads to
2657  * the page.
2658  */
2659 int nobh_writepage(struct page *page, get_block_t *get_block,
2660 			struct writeback_control *wbc)
2661 {
2662 	struct inode * const inode = page->mapping->host;
2663 	loff_t i_size = i_size_read(inode);
2664 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2665 	unsigned offset;
2666 	int ret;
2667 
2668 	/* Is the page fully inside i_size? */
2669 	if (page->index < end_index)
2670 		goto out;
2671 
2672 	/* Is the page fully outside i_size? (truncate in progress) */
2673 	offset = i_size & (PAGE_CACHE_SIZE-1);
2674 	if (page->index >= end_index+1 || !offset) {
2675 		/*
2676 		 * The page may have dirty, unmapped buffers.  For example,
2677 		 * they may have been added in ext3_writepage().  Make them
2678 		 * freeable here, so the page does not leak.
2679 		 */
2680 #if 0
2681 		/* Not really sure about this  - do we need this ? */
2682 		if (page->mapping->a_ops->invalidatepage)
2683 			page->mapping->a_ops->invalidatepage(page, offset);
2684 #endif
2685 		unlock_page(page);
2686 		return 0; /* don't care */
2687 	}
2688 
2689 	/*
2690 	 * The page straddles i_size.  It must be zeroed out on each and every
2691 	 * writepage invocation because it may be mmapped.  "A file is mapped
2692 	 * in multiples of the page size.  For a file that is not a multiple of
2693 	 * the  page size, the remaining memory is zeroed when mapped, and
2694 	 * writes to that region are not written out to the file."
2695 	 */
2696 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2697 out:
2698 	ret = mpage_writepage(page, get_block, wbc);
2699 	if (ret == -EAGAIN)
2700 		ret = __block_write_full_page(inode, page, get_block, wbc);
2701 	return ret;
2702 }
2703 EXPORT_SYMBOL(nobh_writepage);
2704 
2705 int nobh_truncate_page(struct address_space *mapping,
2706 			loff_t from, get_block_t *get_block)
2707 {
2708 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2709 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2710 	unsigned blocksize;
2711 	sector_t iblock;
2712 	unsigned length, pos;
2713 	struct inode *inode = mapping->host;
2714 	struct page *page;
2715 	struct buffer_head map_bh;
2716 	int err;
2717 
2718 	blocksize = 1 << inode->i_blkbits;
2719 	length = offset & (blocksize - 1);
2720 
2721 	/* Block boundary? Nothing to do */
2722 	if (!length)
2723 		return 0;
2724 
2725 	length = blocksize - length;
2726 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2727 
2728 	page = grab_cache_page(mapping, index);
2729 	err = -ENOMEM;
2730 	if (!page)
2731 		goto out;
2732 
2733 	if (page_has_buffers(page)) {
2734 has_buffers:
2735 		unlock_page(page);
2736 		page_cache_release(page);
2737 		return block_truncate_page(mapping, from, get_block);
2738 	}
2739 
2740 	/* Find the buffer that contains "offset" */
2741 	pos = blocksize;
2742 	while (offset >= pos) {
2743 		iblock++;
2744 		pos += blocksize;
2745 	}
2746 
2747 	err = get_block(inode, iblock, &map_bh, 0);
2748 	if (err)
2749 		goto unlock;
2750 	/* unmapped? It's a hole - nothing to do */
2751 	if (!buffer_mapped(&map_bh))
2752 		goto unlock;
2753 
2754 	/* Ok, it's mapped. Make sure it's up-to-date */
2755 	if (!PageUptodate(page)) {
2756 		err = mapping->a_ops->readpage(NULL, page);
2757 		if (err) {
2758 			page_cache_release(page);
2759 			goto out;
2760 		}
2761 		lock_page(page);
2762 		if (!PageUptodate(page)) {
2763 			err = -EIO;
2764 			goto unlock;
2765 		}
2766 		if (page_has_buffers(page))
2767 			goto has_buffers;
2768 	}
2769 	zero_user(page, offset, length);
2770 	set_page_dirty(page);
2771 	err = 0;
2772 
2773 unlock:
2774 	unlock_page(page);
2775 	page_cache_release(page);
2776 out:
2777 	return err;
2778 }
2779 EXPORT_SYMBOL(nobh_truncate_page);
2780 
2781 int block_truncate_page(struct address_space *mapping,
2782 			loff_t from, get_block_t *get_block)
2783 {
2784 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2785 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2786 	unsigned blocksize;
2787 	sector_t iblock;
2788 	unsigned length, pos;
2789 	struct inode *inode = mapping->host;
2790 	struct page *page;
2791 	struct buffer_head *bh;
2792 	int err;
2793 
2794 	blocksize = 1 << inode->i_blkbits;
2795 	length = offset & (blocksize - 1);
2796 
2797 	/* Block boundary? Nothing to do */
2798 	if (!length)
2799 		return 0;
2800 
2801 	length = blocksize - length;
2802 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2803 
2804 	page = grab_cache_page(mapping, index);
2805 	err = -ENOMEM;
2806 	if (!page)
2807 		goto out;
2808 
2809 	if (!page_has_buffers(page))
2810 		create_empty_buffers(page, blocksize, 0);
2811 
2812 	/* Find the buffer that contains "offset" */
2813 	bh = page_buffers(page);
2814 	pos = blocksize;
2815 	while (offset >= pos) {
2816 		bh = bh->b_this_page;
2817 		iblock++;
2818 		pos += blocksize;
2819 	}
2820 
2821 	err = 0;
2822 	if (!buffer_mapped(bh)) {
2823 		WARN_ON(bh->b_size != blocksize);
2824 		err = get_block(inode, iblock, bh, 0);
2825 		if (err)
2826 			goto unlock;
2827 		/* unmapped? It's a hole - nothing to do */
2828 		if (!buffer_mapped(bh))
2829 			goto unlock;
2830 	}
2831 
2832 	/* Ok, it's mapped. Make sure it's up-to-date */
2833 	if (PageUptodate(page))
2834 		set_buffer_uptodate(bh);
2835 
2836 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2837 		err = -EIO;
2838 		ll_rw_block(READ, 1, &bh);
2839 		wait_on_buffer(bh);
2840 		/* Uhhuh. Read error. Complain and punt. */
2841 		if (!buffer_uptodate(bh))
2842 			goto unlock;
2843 	}
2844 
2845 	zero_user(page, offset, length);
2846 	mark_buffer_dirty(bh);
2847 	err = 0;
2848 
2849 unlock:
2850 	unlock_page(page);
2851 	page_cache_release(page);
2852 out:
2853 	return err;
2854 }
2855 
2856 /*
2857  * The generic ->writepage function for buffer-backed address_spaces
2858  */
2859 int block_write_full_page(struct page *page, get_block_t *get_block,
2860 			struct writeback_control *wbc)
2861 {
2862 	struct inode * const inode = page->mapping->host;
2863 	loff_t i_size = i_size_read(inode);
2864 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2865 	unsigned offset;
2866 
2867 	/* Is the page fully inside i_size? */
2868 	if (page->index < end_index)
2869 		return __block_write_full_page(inode, page, get_block, wbc);
2870 
2871 	/* Is the page fully outside i_size? (truncate in progress) */
2872 	offset = i_size & (PAGE_CACHE_SIZE-1);
2873 	if (page->index >= end_index+1 || !offset) {
2874 		/*
2875 		 * The page may have dirty, unmapped buffers.  For example,
2876 		 * they may have been added in ext3_writepage().  Make them
2877 		 * freeable here, so the page does not leak.
2878 		 */
2879 		do_invalidatepage(page, 0);
2880 		unlock_page(page);
2881 		return 0; /* don't care */
2882 	}
2883 
2884 	/*
2885 	 * The page straddles i_size.  It must be zeroed out on each and every
2886 	 * writepage invokation because it may be mmapped.  "A file is mapped
2887 	 * in multiples of the page size.  For a file that is not a multiple of
2888 	 * the  page size, the remaining memory is zeroed when mapped, and
2889 	 * writes to that region are not written out to the file."
2890 	 */
2891 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2892 	return __block_write_full_page(inode, page, get_block, wbc);
2893 }
2894 
2895 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2896 			    get_block_t *get_block)
2897 {
2898 	struct buffer_head tmp;
2899 	struct inode *inode = mapping->host;
2900 	tmp.b_state = 0;
2901 	tmp.b_blocknr = 0;
2902 	tmp.b_size = 1 << inode->i_blkbits;
2903 	get_block(inode, block, &tmp, 0);
2904 	return tmp.b_blocknr;
2905 }
2906 
2907 static void end_bio_bh_io_sync(struct bio *bio, int err)
2908 {
2909 	struct buffer_head *bh = bio->bi_private;
2910 
2911 	if (err == -EOPNOTSUPP) {
2912 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2913 		set_bit(BH_Eopnotsupp, &bh->b_state);
2914 	}
2915 
2916 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2917 	bio_put(bio);
2918 }
2919 
2920 int submit_bh(int rw, struct buffer_head * bh)
2921 {
2922 	struct bio *bio;
2923 	int ret = 0;
2924 
2925 	BUG_ON(!buffer_locked(bh));
2926 	BUG_ON(!buffer_mapped(bh));
2927 	BUG_ON(!bh->b_end_io);
2928 
2929 	if (buffer_ordered(bh) && (rw == WRITE))
2930 		rw = WRITE_BARRIER;
2931 
2932 	/*
2933 	 * Only clear out a write error when rewriting, should this
2934 	 * include WRITE_SYNC as well?
2935 	 */
2936 	if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2937 		clear_buffer_write_io_error(bh);
2938 
2939 	/*
2940 	 * from here on down, it's all bio -- do the initial mapping,
2941 	 * submit_bio -> generic_make_request may further map this bio around
2942 	 */
2943 	bio = bio_alloc(GFP_NOIO, 1);
2944 
2945 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2946 	bio->bi_bdev = bh->b_bdev;
2947 	bio->bi_io_vec[0].bv_page = bh->b_page;
2948 	bio->bi_io_vec[0].bv_len = bh->b_size;
2949 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2950 
2951 	bio->bi_vcnt = 1;
2952 	bio->bi_idx = 0;
2953 	bio->bi_size = bh->b_size;
2954 
2955 	bio->bi_end_io = end_bio_bh_io_sync;
2956 	bio->bi_private = bh;
2957 
2958 	bio_get(bio);
2959 	submit_bio(rw, bio);
2960 
2961 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2962 		ret = -EOPNOTSUPP;
2963 
2964 	bio_put(bio);
2965 	return ret;
2966 }
2967 
2968 /**
2969  * ll_rw_block: low-level access to block devices (DEPRECATED)
2970  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2971  * @nr: number of &struct buffer_heads in the array
2972  * @bhs: array of pointers to &struct buffer_head
2973  *
2974  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2975  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2976  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2977  * are sent to disk. The fourth %READA option is described in the documentation
2978  * for generic_make_request() which ll_rw_block() calls.
2979  *
2980  * This function drops any buffer that it cannot get a lock on (with the
2981  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2982  * clean when doing a write request, and any buffer that appears to be
2983  * up-to-date when doing read request.  Further it marks as clean buffers that
2984  * are processed for writing (the buffer cache won't assume that they are
2985  * actually clean until the buffer gets unlocked).
2986  *
2987  * ll_rw_block sets b_end_io to simple completion handler that marks
2988  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2989  * any waiters.
2990  *
2991  * All of the buffers must be for the same device, and must also be a
2992  * multiple of the current approved size for the device.
2993  */
2994 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2995 {
2996 	int i;
2997 
2998 	for (i = 0; i < nr; i++) {
2999 		struct buffer_head *bh = bhs[i];
3000 
3001 		if (rw == SWRITE || rw == SWRITE_SYNC)
3002 			lock_buffer(bh);
3003 		else if (!trylock_buffer(bh))
3004 			continue;
3005 
3006 		if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC) {
3007 			if (test_clear_buffer_dirty(bh)) {
3008 				bh->b_end_io = end_buffer_write_sync;
3009 				get_bh(bh);
3010 				if (rw == SWRITE_SYNC)
3011 					submit_bh(WRITE_SYNC, bh);
3012 				else
3013 					submit_bh(WRITE, bh);
3014 				continue;
3015 			}
3016 		} else {
3017 			if (!buffer_uptodate(bh)) {
3018 				bh->b_end_io = end_buffer_read_sync;
3019 				get_bh(bh);
3020 				submit_bh(rw, bh);
3021 				continue;
3022 			}
3023 		}
3024 		unlock_buffer(bh);
3025 	}
3026 }
3027 
3028 /*
3029  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3030  * and then start new I/O and then wait upon it.  The caller must have a ref on
3031  * the buffer_head.
3032  */
3033 int sync_dirty_buffer(struct buffer_head *bh)
3034 {
3035 	int ret = 0;
3036 
3037 	WARN_ON(atomic_read(&bh->b_count) < 1);
3038 	lock_buffer(bh);
3039 	if (test_clear_buffer_dirty(bh)) {
3040 		get_bh(bh);
3041 		bh->b_end_io = end_buffer_write_sync;
3042 		ret = submit_bh(WRITE_SYNC, bh);
3043 		wait_on_buffer(bh);
3044 		if (buffer_eopnotsupp(bh)) {
3045 			clear_buffer_eopnotsupp(bh);
3046 			ret = -EOPNOTSUPP;
3047 		}
3048 		if (!ret && !buffer_uptodate(bh))
3049 			ret = -EIO;
3050 	} else {
3051 		unlock_buffer(bh);
3052 	}
3053 	return ret;
3054 }
3055 
3056 /*
3057  * try_to_free_buffers() checks if all the buffers on this particular page
3058  * are unused, and releases them if so.
3059  *
3060  * Exclusion against try_to_free_buffers may be obtained by either
3061  * locking the page or by holding its mapping's private_lock.
3062  *
3063  * If the page is dirty but all the buffers are clean then we need to
3064  * be sure to mark the page clean as well.  This is because the page
3065  * may be against a block device, and a later reattachment of buffers
3066  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3067  * filesystem data on the same device.
3068  *
3069  * The same applies to regular filesystem pages: if all the buffers are
3070  * clean then we set the page clean and proceed.  To do that, we require
3071  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3072  * private_lock.
3073  *
3074  * try_to_free_buffers() is non-blocking.
3075  */
3076 static inline int buffer_busy(struct buffer_head *bh)
3077 {
3078 	return atomic_read(&bh->b_count) |
3079 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3080 }
3081 
3082 static int
3083 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3084 {
3085 	struct buffer_head *head = page_buffers(page);
3086 	struct buffer_head *bh;
3087 
3088 	bh = head;
3089 	do {
3090 		if (buffer_write_io_error(bh) && page->mapping)
3091 			set_bit(AS_EIO, &page->mapping->flags);
3092 		if (buffer_busy(bh))
3093 			goto failed;
3094 		bh = bh->b_this_page;
3095 	} while (bh != head);
3096 
3097 	do {
3098 		struct buffer_head *next = bh->b_this_page;
3099 
3100 		if (bh->b_assoc_map)
3101 			__remove_assoc_queue(bh);
3102 		bh = next;
3103 	} while (bh != head);
3104 	*buffers_to_free = head;
3105 	__clear_page_buffers(page);
3106 	return 1;
3107 failed:
3108 	return 0;
3109 }
3110 
3111 int try_to_free_buffers(struct page *page)
3112 {
3113 	struct address_space * const mapping = page->mapping;
3114 	struct buffer_head *buffers_to_free = NULL;
3115 	int ret = 0;
3116 
3117 	BUG_ON(!PageLocked(page));
3118 	if (PageWriteback(page))
3119 		return 0;
3120 
3121 	if (mapping == NULL) {		/* can this still happen? */
3122 		ret = drop_buffers(page, &buffers_to_free);
3123 		goto out;
3124 	}
3125 
3126 	spin_lock(&mapping->private_lock);
3127 	ret = drop_buffers(page, &buffers_to_free);
3128 
3129 	/*
3130 	 * If the filesystem writes its buffers by hand (eg ext3)
3131 	 * then we can have clean buffers against a dirty page.  We
3132 	 * clean the page here; otherwise the VM will never notice
3133 	 * that the filesystem did any IO at all.
3134 	 *
3135 	 * Also, during truncate, discard_buffer will have marked all
3136 	 * the page's buffers clean.  We discover that here and clean
3137 	 * the page also.
3138 	 *
3139 	 * private_lock must be held over this entire operation in order
3140 	 * to synchronise against __set_page_dirty_buffers and prevent the
3141 	 * dirty bit from being lost.
3142 	 */
3143 	if (ret)
3144 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3145 	spin_unlock(&mapping->private_lock);
3146 out:
3147 	if (buffers_to_free) {
3148 		struct buffer_head *bh = buffers_to_free;
3149 
3150 		do {
3151 			struct buffer_head *next = bh->b_this_page;
3152 			free_buffer_head(bh);
3153 			bh = next;
3154 		} while (bh != buffers_to_free);
3155 	}
3156 	return ret;
3157 }
3158 EXPORT_SYMBOL(try_to_free_buffers);
3159 
3160 void block_sync_page(struct page *page)
3161 {
3162 	struct address_space *mapping;
3163 
3164 	smp_mb();
3165 	mapping = page_mapping(page);
3166 	if (mapping)
3167 		blk_run_backing_dev(mapping->backing_dev_info, page);
3168 }
3169 
3170 /*
3171  * There are no bdflush tunables left.  But distributions are
3172  * still running obsolete flush daemons, so we terminate them here.
3173  *
3174  * Use of bdflush() is deprecated and will be removed in a future kernel.
3175  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3176  */
3177 asmlinkage long sys_bdflush(int func, long data)
3178 {
3179 	static int msg_count;
3180 
3181 	if (!capable(CAP_SYS_ADMIN))
3182 		return -EPERM;
3183 
3184 	if (msg_count < 5) {
3185 		msg_count++;
3186 		printk(KERN_INFO
3187 			"warning: process `%s' used the obsolete bdflush"
3188 			" system call\n", current->comm);
3189 		printk(KERN_INFO "Fix your initscripts?\n");
3190 	}
3191 
3192 	if (func == 1)
3193 		do_exit(0);
3194 	return 0;
3195 }
3196 
3197 /*
3198  * Buffer-head allocation
3199  */
3200 static struct kmem_cache *bh_cachep;
3201 
3202 /*
3203  * Once the number of bh's in the machine exceeds this level, we start
3204  * stripping them in writeback.
3205  */
3206 static int max_buffer_heads;
3207 
3208 int buffer_heads_over_limit;
3209 
3210 struct bh_accounting {
3211 	int nr;			/* Number of live bh's */
3212 	int ratelimit;		/* Limit cacheline bouncing */
3213 };
3214 
3215 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3216 
3217 static void recalc_bh_state(void)
3218 {
3219 	int i;
3220 	int tot = 0;
3221 
3222 	if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3223 		return;
3224 	__get_cpu_var(bh_accounting).ratelimit = 0;
3225 	for_each_online_cpu(i)
3226 		tot += per_cpu(bh_accounting, i).nr;
3227 	buffer_heads_over_limit = (tot > max_buffer_heads);
3228 }
3229 
3230 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3231 {
3232 	struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3233 	if (ret) {
3234 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3235 		get_cpu_var(bh_accounting).nr++;
3236 		recalc_bh_state();
3237 		put_cpu_var(bh_accounting);
3238 	}
3239 	return ret;
3240 }
3241 EXPORT_SYMBOL(alloc_buffer_head);
3242 
3243 void free_buffer_head(struct buffer_head *bh)
3244 {
3245 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3246 	kmem_cache_free(bh_cachep, bh);
3247 	get_cpu_var(bh_accounting).nr--;
3248 	recalc_bh_state();
3249 	put_cpu_var(bh_accounting);
3250 }
3251 EXPORT_SYMBOL(free_buffer_head);
3252 
3253 static void buffer_exit_cpu(int cpu)
3254 {
3255 	int i;
3256 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3257 
3258 	for (i = 0; i < BH_LRU_SIZE; i++) {
3259 		brelse(b->bhs[i]);
3260 		b->bhs[i] = NULL;
3261 	}
3262 	get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3263 	per_cpu(bh_accounting, cpu).nr = 0;
3264 	put_cpu_var(bh_accounting);
3265 }
3266 
3267 static int buffer_cpu_notify(struct notifier_block *self,
3268 			      unsigned long action, void *hcpu)
3269 {
3270 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3271 		buffer_exit_cpu((unsigned long)hcpu);
3272 	return NOTIFY_OK;
3273 }
3274 
3275 /**
3276  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3277  * @bh: struct buffer_head
3278  *
3279  * Return true if the buffer is up-to-date and false,
3280  * with the buffer locked, if not.
3281  */
3282 int bh_uptodate_or_lock(struct buffer_head *bh)
3283 {
3284 	if (!buffer_uptodate(bh)) {
3285 		lock_buffer(bh);
3286 		if (!buffer_uptodate(bh))
3287 			return 0;
3288 		unlock_buffer(bh);
3289 	}
3290 	return 1;
3291 }
3292 EXPORT_SYMBOL(bh_uptodate_or_lock);
3293 
3294 /**
3295  * bh_submit_read - Submit a locked buffer for reading
3296  * @bh: struct buffer_head
3297  *
3298  * Returns zero on success and -EIO on error.
3299  */
3300 int bh_submit_read(struct buffer_head *bh)
3301 {
3302 	BUG_ON(!buffer_locked(bh));
3303 
3304 	if (buffer_uptodate(bh)) {
3305 		unlock_buffer(bh);
3306 		return 0;
3307 	}
3308 
3309 	get_bh(bh);
3310 	bh->b_end_io = end_buffer_read_sync;
3311 	submit_bh(READ, bh);
3312 	wait_on_buffer(bh);
3313 	if (buffer_uptodate(bh))
3314 		return 0;
3315 	return -EIO;
3316 }
3317 EXPORT_SYMBOL(bh_submit_read);
3318 
3319 static void
3320 init_buffer_head(void *data)
3321 {
3322 	struct buffer_head *bh = data;
3323 
3324 	memset(bh, 0, sizeof(*bh));
3325 	INIT_LIST_HEAD(&bh->b_assoc_buffers);
3326 }
3327 
3328 void __init buffer_init(void)
3329 {
3330 	int nrpages;
3331 
3332 	bh_cachep = kmem_cache_create("buffer_head",
3333 			sizeof(struct buffer_head), 0,
3334 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3335 				SLAB_MEM_SPREAD),
3336 				init_buffer_head);
3337 
3338 	/*
3339 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3340 	 */
3341 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3342 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3343 	hotcpu_notifier(buffer_cpu_notify, 0);
3344 }
3345 
3346 EXPORT_SYMBOL(__bforget);
3347 EXPORT_SYMBOL(__brelse);
3348 EXPORT_SYMBOL(__wait_on_buffer);
3349 EXPORT_SYMBOL(block_commit_write);
3350 EXPORT_SYMBOL(block_prepare_write);
3351 EXPORT_SYMBOL(block_page_mkwrite);
3352 EXPORT_SYMBOL(block_read_full_page);
3353 EXPORT_SYMBOL(block_sync_page);
3354 EXPORT_SYMBOL(block_truncate_page);
3355 EXPORT_SYMBOL(block_write_full_page);
3356 EXPORT_SYMBOL(cont_write_begin);
3357 EXPORT_SYMBOL(end_buffer_read_sync);
3358 EXPORT_SYMBOL(end_buffer_write_sync);
3359 EXPORT_SYMBOL(file_fsync);
3360 EXPORT_SYMBOL(fsync_bdev);
3361 EXPORT_SYMBOL(generic_block_bmap);
3362 EXPORT_SYMBOL(generic_cont_expand_simple);
3363 EXPORT_SYMBOL(init_buffer);
3364 EXPORT_SYMBOL(invalidate_bdev);
3365 EXPORT_SYMBOL(ll_rw_block);
3366 EXPORT_SYMBOL(mark_buffer_dirty);
3367 EXPORT_SYMBOL(submit_bh);
3368 EXPORT_SYMBOL(sync_dirty_buffer);
3369 EXPORT_SYMBOL(unlock_buffer);
3370