1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/capability.h> 28 #include <linux/blkdev.h> 29 #include <linux/file.h> 30 #include <linux/quotaops.h> 31 #include <linux/highmem.h> 32 #include <linux/module.h> 33 #include <linux/writeback.h> 34 #include <linux/hash.h> 35 #include <linux/suspend.h> 36 #include <linux/buffer_head.h> 37 #include <linux/task_io_accounting_ops.h> 38 #include <linux/bio.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/bitops.h> 42 #include <linux/mpage.h> 43 #include <linux/bit_spinlock.h> 44 45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 46 47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 48 49 inline void 50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 51 { 52 bh->b_end_io = handler; 53 bh->b_private = private; 54 } 55 56 static int sync_buffer(void *word) 57 { 58 struct block_device *bd; 59 struct buffer_head *bh 60 = container_of(word, struct buffer_head, b_state); 61 62 smp_mb(); 63 bd = bh->b_bdev; 64 if (bd) 65 blk_run_address_space(bd->bd_inode->i_mapping); 66 io_schedule(); 67 return 0; 68 } 69 70 void __lock_buffer(struct buffer_head *bh) 71 { 72 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer, 73 TASK_UNINTERRUPTIBLE); 74 } 75 EXPORT_SYMBOL(__lock_buffer); 76 77 void unlock_buffer(struct buffer_head *bh) 78 { 79 smp_mb__before_clear_bit(); 80 clear_buffer_locked(bh); 81 smp_mb__after_clear_bit(); 82 wake_up_bit(&bh->b_state, BH_Lock); 83 } 84 85 /* 86 * Block until a buffer comes unlocked. This doesn't stop it 87 * from becoming locked again - you have to lock it yourself 88 * if you want to preserve its state. 89 */ 90 void __wait_on_buffer(struct buffer_head * bh) 91 { 92 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE); 93 } 94 95 static void 96 __clear_page_buffers(struct page *page) 97 { 98 ClearPagePrivate(page); 99 set_page_private(page, 0); 100 page_cache_release(page); 101 } 102 103 static void buffer_io_error(struct buffer_head *bh) 104 { 105 char b[BDEVNAME_SIZE]; 106 107 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 108 bdevname(bh->b_bdev, b), 109 (unsigned long long)bh->b_blocknr); 110 } 111 112 /* 113 * End-of-IO handler helper function which does not touch the bh after 114 * unlocking it. 115 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 116 * a race there is benign: unlock_buffer() only use the bh's address for 117 * hashing after unlocking the buffer, so it doesn't actually touch the bh 118 * itself. 119 */ 120 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 121 { 122 if (uptodate) { 123 set_buffer_uptodate(bh); 124 } else { 125 /* This happens, due to failed READA attempts. */ 126 clear_buffer_uptodate(bh); 127 } 128 unlock_buffer(bh); 129 } 130 131 /* 132 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 133 * unlock the buffer. This is what ll_rw_block uses too. 134 */ 135 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 136 { 137 __end_buffer_read_notouch(bh, uptodate); 138 put_bh(bh); 139 } 140 141 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 142 { 143 char b[BDEVNAME_SIZE]; 144 145 if (uptodate) { 146 set_buffer_uptodate(bh); 147 } else { 148 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { 149 buffer_io_error(bh); 150 printk(KERN_WARNING "lost page write due to " 151 "I/O error on %s\n", 152 bdevname(bh->b_bdev, b)); 153 } 154 set_buffer_write_io_error(bh); 155 clear_buffer_uptodate(bh); 156 } 157 unlock_buffer(bh); 158 put_bh(bh); 159 } 160 161 /* 162 * Write out and wait upon all the dirty data associated with a block 163 * device via its mapping. Does not take the superblock lock. 164 */ 165 int sync_blockdev(struct block_device *bdev) 166 { 167 int ret = 0; 168 169 if (bdev) 170 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping); 171 return ret; 172 } 173 EXPORT_SYMBOL(sync_blockdev); 174 175 /* 176 * Write out and wait upon all dirty data associated with this 177 * device. Filesystem data as well as the underlying block 178 * device. Takes the superblock lock. 179 */ 180 int fsync_bdev(struct block_device *bdev) 181 { 182 struct super_block *sb = get_super(bdev); 183 if (sb) { 184 int res = fsync_super(sb); 185 drop_super(sb); 186 return res; 187 } 188 return sync_blockdev(bdev); 189 } 190 191 /** 192 * freeze_bdev -- lock a filesystem and force it into a consistent state 193 * @bdev: blockdevice to lock 194 * 195 * This takes the block device bd_mount_sem to make sure no new mounts 196 * happen on bdev until thaw_bdev() is called. 197 * If a superblock is found on this device, we take the s_umount semaphore 198 * on it to make sure nobody unmounts until the snapshot creation is done. 199 */ 200 struct super_block *freeze_bdev(struct block_device *bdev) 201 { 202 struct super_block *sb; 203 204 down(&bdev->bd_mount_sem); 205 sb = get_super(bdev); 206 if (sb && !(sb->s_flags & MS_RDONLY)) { 207 sb->s_frozen = SB_FREEZE_WRITE; 208 smp_wmb(); 209 210 __fsync_super(sb); 211 212 sb->s_frozen = SB_FREEZE_TRANS; 213 smp_wmb(); 214 215 sync_blockdev(sb->s_bdev); 216 217 if (sb->s_op->write_super_lockfs) 218 sb->s_op->write_super_lockfs(sb); 219 } 220 221 sync_blockdev(bdev); 222 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */ 223 } 224 EXPORT_SYMBOL(freeze_bdev); 225 226 /** 227 * thaw_bdev -- unlock filesystem 228 * @bdev: blockdevice to unlock 229 * @sb: associated superblock 230 * 231 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 232 */ 233 void thaw_bdev(struct block_device *bdev, struct super_block *sb) 234 { 235 if (sb) { 236 BUG_ON(sb->s_bdev != bdev); 237 238 if (sb->s_op->unlockfs) 239 sb->s_op->unlockfs(sb); 240 sb->s_frozen = SB_UNFROZEN; 241 smp_wmb(); 242 wake_up(&sb->s_wait_unfrozen); 243 drop_super(sb); 244 } 245 246 up(&bdev->bd_mount_sem); 247 } 248 EXPORT_SYMBOL(thaw_bdev); 249 250 /* 251 * Various filesystems appear to want __find_get_block to be non-blocking. 252 * But it's the page lock which protects the buffers. To get around this, 253 * we get exclusion from try_to_free_buffers with the blockdev mapping's 254 * private_lock. 255 * 256 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 257 * may be quite high. This code could TryLock the page, and if that 258 * succeeds, there is no need to take private_lock. (But if 259 * private_lock is contended then so is mapping->tree_lock). 260 */ 261 static struct buffer_head * 262 __find_get_block_slow(struct block_device *bdev, sector_t block) 263 { 264 struct inode *bd_inode = bdev->bd_inode; 265 struct address_space *bd_mapping = bd_inode->i_mapping; 266 struct buffer_head *ret = NULL; 267 pgoff_t index; 268 struct buffer_head *bh; 269 struct buffer_head *head; 270 struct page *page; 271 int all_mapped = 1; 272 273 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 274 page = find_get_page(bd_mapping, index); 275 if (!page) 276 goto out; 277 278 spin_lock(&bd_mapping->private_lock); 279 if (!page_has_buffers(page)) 280 goto out_unlock; 281 head = page_buffers(page); 282 bh = head; 283 do { 284 if (bh->b_blocknr == block) { 285 ret = bh; 286 get_bh(bh); 287 goto out_unlock; 288 } 289 if (!buffer_mapped(bh)) 290 all_mapped = 0; 291 bh = bh->b_this_page; 292 } while (bh != head); 293 294 /* we might be here because some of the buffers on this page are 295 * not mapped. This is due to various races between 296 * file io on the block device and getblk. It gets dealt with 297 * elsewhere, don't buffer_error if we had some unmapped buffers 298 */ 299 if (all_mapped) { 300 printk("__find_get_block_slow() failed. " 301 "block=%llu, b_blocknr=%llu\n", 302 (unsigned long long)block, 303 (unsigned long long)bh->b_blocknr); 304 printk("b_state=0x%08lx, b_size=%zu\n", 305 bh->b_state, bh->b_size); 306 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits); 307 } 308 out_unlock: 309 spin_unlock(&bd_mapping->private_lock); 310 page_cache_release(page); 311 out: 312 return ret; 313 } 314 315 /* If invalidate_buffers() will trash dirty buffers, it means some kind 316 of fs corruption is going on. Trashing dirty data always imply losing 317 information that was supposed to be just stored on the physical layer 318 by the user. 319 320 Thus invalidate_buffers in general usage is not allwowed to trash 321 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to 322 be preserved. These buffers are simply skipped. 323 324 We also skip buffers which are still in use. For example this can 325 happen if a userspace program is reading the block device. 326 327 NOTE: In the case where the user removed a removable-media-disk even if 328 there's still dirty data not synced on disk (due a bug in the device driver 329 or due an error of the user), by not destroying the dirty buffers we could 330 generate corruption also on the next media inserted, thus a parameter is 331 necessary to handle this case in the most safe way possible (trying 332 to not corrupt also the new disk inserted with the data belonging to 333 the old now corrupted disk). Also for the ramdisk the natural thing 334 to do in order to release the ramdisk memory is to destroy dirty buffers. 335 336 These are two special cases. Normal usage imply the device driver 337 to issue a sync on the device (without waiting I/O completion) and 338 then an invalidate_buffers call that doesn't trash dirty buffers. 339 340 For handling cache coherency with the blkdev pagecache the 'update' case 341 is been introduced. It is needed to re-read from disk any pinned 342 buffer. NOTE: re-reading from disk is destructive so we can do it only 343 when we assume nobody is changing the buffercache under our I/O and when 344 we think the disk contains more recent information than the buffercache. 345 The update == 1 pass marks the buffers we need to update, the update == 2 346 pass does the actual I/O. */ 347 void invalidate_bdev(struct block_device *bdev) 348 { 349 struct address_space *mapping = bdev->bd_inode->i_mapping; 350 351 if (mapping->nrpages == 0) 352 return; 353 354 invalidate_bh_lrus(); 355 invalidate_mapping_pages(mapping, 0, -1); 356 } 357 358 /* 359 * Kick pdflush then try to free up some ZONE_NORMAL memory. 360 */ 361 static void free_more_memory(void) 362 { 363 struct zone *zone; 364 int nid; 365 366 wakeup_pdflush(1024); 367 yield(); 368 369 for_each_online_node(nid) { 370 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS), 371 gfp_zone(GFP_NOFS), NULL, 372 &zone); 373 if (zone) 374 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, 375 GFP_NOFS); 376 } 377 } 378 379 /* 380 * I/O completion handler for block_read_full_page() - pages 381 * which come unlocked at the end of I/O. 382 */ 383 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 384 { 385 unsigned long flags; 386 struct buffer_head *first; 387 struct buffer_head *tmp; 388 struct page *page; 389 int page_uptodate = 1; 390 391 BUG_ON(!buffer_async_read(bh)); 392 393 page = bh->b_page; 394 if (uptodate) { 395 set_buffer_uptodate(bh); 396 } else { 397 clear_buffer_uptodate(bh); 398 if (printk_ratelimit()) 399 buffer_io_error(bh); 400 SetPageError(page); 401 } 402 403 /* 404 * Be _very_ careful from here on. Bad things can happen if 405 * two buffer heads end IO at almost the same time and both 406 * decide that the page is now completely done. 407 */ 408 first = page_buffers(page); 409 local_irq_save(flags); 410 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 411 clear_buffer_async_read(bh); 412 unlock_buffer(bh); 413 tmp = bh; 414 do { 415 if (!buffer_uptodate(tmp)) 416 page_uptodate = 0; 417 if (buffer_async_read(tmp)) { 418 BUG_ON(!buffer_locked(tmp)); 419 goto still_busy; 420 } 421 tmp = tmp->b_this_page; 422 } while (tmp != bh); 423 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 424 local_irq_restore(flags); 425 426 /* 427 * If none of the buffers had errors and they are all 428 * uptodate then we can set the page uptodate. 429 */ 430 if (page_uptodate && !PageError(page)) 431 SetPageUptodate(page); 432 unlock_page(page); 433 return; 434 435 still_busy: 436 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 437 local_irq_restore(flags); 438 return; 439 } 440 441 /* 442 * Completion handler for block_write_full_page() - pages which are unlocked 443 * during I/O, and which have PageWriteback cleared upon I/O completion. 444 */ 445 static void end_buffer_async_write(struct buffer_head *bh, int uptodate) 446 { 447 char b[BDEVNAME_SIZE]; 448 unsigned long flags; 449 struct buffer_head *first; 450 struct buffer_head *tmp; 451 struct page *page; 452 453 BUG_ON(!buffer_async_write(bh)); 454 455 page = bh->b_page; 456 if (uptodate) { 457 set_buffer_uptodate(bh); 458 } else { 459 if (printk_ratelimit()) { 460 buffer_io_error(bh); 461 printk(KERN_WARNING "lost page write due to " 462 "I/O error on %s\n", 463 bdevname(bh->b_bdev, b)); 464 } 465 set_bit(AS_EIO, &page->mapping->flags); 466 set_buffer_write_io_error(bh); 467 clear_buffer_uptodate(bh); 468 SetPageError(page); 469 } 470 471 first = page_buffers(page); 472 local_irq_save(flags); 473 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 474 475 clear_buffer_async_write(bh); 476 unlock_buffer(bh); 477 tmp = bh->b_this_page; 478 while (tmp != bh) { 479 if (buffer_async_write(tmp)) { 480 BUG_ON(!buffer_locked(tmp)); 481 goto still_busy; 482 } 483 tmp = tmp->b_this_page; 484 } 485 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 486 local_irq_restore(flags); 487 end_page_writeback(page); 488 return; 489 490 still_busy: 491 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 492 local_irq_restore(flags); 493 return; 494 } 495 496 /* 497 * If a page's buffers are under async readin (end_buffer_async_read 498 * completion) then there is a possibility that another thread of 499 * control could lock one of the buffers after it has completed 500 * but while some of the other buffers have not completed. This 501 * locked buffer would confuse end_buffer_async_read() into not unlocking 502 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 503 * that this buffer is not under async I/O. 504 * 505 * The page comes unlocked when it has no locked buffer_async buffers 506 * left. 507 * 508 * PageLocked prevents anyone starting new async I/O reads any of 509 * the buffers. 510 * 511 * PageWriteback is used to prevent simultaneous writeout of the same 512 * page. 513 * 514 * PageLocked prevents anyone from starting writeback of a page which is 515 * under read I/O (PageWriteback is only ever set against a locked page). 516 */ 517 static void mark_buffer_async_read(struct buffer_head *bh) 518 { 519 bh->b_end_io = end_buffer_async_read; 520 set_buffer_async_read(bh); 521 } 522 523 void mark_buffer_async_write(struct buffer_head *bh) 524 { 525 bh->b_end_io = end_buffer_async_write; 526 set_buffer_async_write(bh); 527 } 528 EXPORT_SYMBOL(mark_buffer_async_write); 529 530 531 /* 532 * fs/buffer.c contains helper functions for buffer-backed address space's 533 * fsync functions. A common requirement for buffer-based filesystems is 534 * that certain data from the backing blockdev needs to be written out for 535 * a successful fsync(). For example, ext2 indirect blocks need to be 536 * written back and waited upon before fsync() returns. 537 * 538 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 539 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 540 * management of a list of dependent buffers at ->i_mapping->private_list. 541 * 542 * Locking is a little subtle: try_to_free_buffers() will remove buffers 543 * from their controlling inode's queue when they are being freed. But 544 * try_to_free_buffers() will be operating against the *blockdev* mapping 545 * at the time, not against the S_ISREG file which depends on those buffers. 546 * So the locking for private_list is via the private_lock in the address_space 547 * which backs the buffers. Which is different from the address_space 548 * against which the buffers are listed. So for a particular address_space, 549 * mapping->private_lock does *not* protect mapping->private_list! In fact, 550 * mapping->private_list will always be protected by the backing blockdev's 551 * ->private_lock. 552 * 553 * Which introduces a requirement: all buffers on an address_space's 554 * ->private_list must be from the same address_space: the blockdev's. 555 * 556 * address_spaces which do not place buffers at ->private_list via these 557 * utility functions are free to use private_lock and private_list for 558 * whatever they want. The only requirement is that list_empty(private_list) 559 * be true at clear_inode() time. 560 * 561 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 562 * filesystems should do that. invalidate_inode_buffers() should just go 563 * BUG_ON(!list_empty). 564 * 565 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 566 * take an address_space, not an inode. And it should be called 567 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 568 * queued up. 569 * 570 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 571 * list if it is already on a list. Because if the buffer is on a list, 572 * it *must* already be on the right one. If not, the filesystem is being 573 * silly. This will save a ton of locking. But first we have to ensure 574 * that buffers are taken *off* the old inode's list when they are freed 575 * (presumably in truncate). That requires careful auditing of all 576 * filesystems (do it inside bforget()). It could also be done by bringing 577 * b_inode back. 578 */ 579 580 /* 581 * The buffer's backing address_space's private_lock must be held 582 */ 583 static void __remove_assoc_queue(struct buffer_head *bh) 584 { 585 list_del_init(&bh->b_assoc_buffers); 586 WARN_ON(!bh->b_assoc_map); 587 if (buffer_write_io_error(bh)) 588 set_bit(AS_EIO, &bh->b_assoc_map->flags); 589 bh->b_assoc_map = NULL; 590 } 591 592 int inode_has_buffers(struct inode *inode) 593 { 594 return !list_empty(&inode->i_data.private_list); 595 } 596 597 /* 598 * osync is designed to support O_SYNC io. It waits synchronously for 599 * all already-submitted IO to complete, but does not queue any new 600 * writes to the disk. 601 * 602 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 603 * you dirty the buffers, and then use osync_inode_buffers to wait for 604 * completion. Any other dirty buffers which are not yet queued for 605 * write will not be flushed to disk by the osync. 606 */ 607 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 608 { 609 struct buffer_head *bh; 610 struct list_head *p; 611 int err = 0; 612 613 spin_lock(lock); 614 repeat: 615 list_for_each_prev(p, list) { 616 bh = BH_ENTRY(p); 617 if (buffer_locked(bh)) { 618 get_bh(bh); 619 spin_unlock(lock); 620 wait_on_buffer(bh); 621 if (!buffer_uptodate(bh)) 622 err = -EIO; 623 brelse(bh); 624 spin_lock(lock); 625 goto repeat; 626 } 627 } 628 spin_unlock(lock); 629 return err; 630 } 631 632 /** 633 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 634 * @mapping: the mapping which wants those buffers written 635 * 636 * Starts I/O against the buffers at mapping->private_list, and waits upon 637 * that I/O. 638 * 639 * Basically, this is a convenience function for fsync(). 640 * @mapping is a file or directory which needs those buffers to be written for 641 * a successful fsync(). 642 */ 643 int sync_mapping_buffers(struct address_space *mapping) 644 { 645 struct address_space *buffer_mapping = mapping->assoc_mapping; 646 647 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 648 return 0; 649 650 return fsync_buffers_list(&buffer_mapping->private_lock, 651 &mapping->private_list); 652 } 653 EXPORT_SYMBOL(sync_mapping_buffers); 654 655 /* 656 * Called when we've recently written block `bblock', and it is known that 657 * `bblock' was for a buffer_boundary() buffer. This means that the block at 658 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 659 * dirty, schedule it for IO. So that indirects merge nicely with their data. 660 */ 661 void write_boundary_block(struct block_device *bdev, 662 sector_t bblock, unsigned blocksize) 663 { 664 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 665 if (bh) { 666 if (buffer_dirty(bh)) 667 ll_rw_block(WRITE, 1, &bh); 668 put_bh(bh); 669 } 670 } 671 672 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 673 { 674 struct address_space *mapping = inode->i_mapping; 675 struct address_space *buffer_mapping = bh->b_page->mapping; 676 677 mark_buffer_dirty(bh); 678 if (!mapping->assoc_mapping) { 679 mapping->assoc_mapping = buffer_mapping; 680 } else { 681 BUG_ON(mapping->assoc_mapping != buffer_mapping); 682 } 683 if (!bh->b_assoc_map) { 684 spin_lock(&buffer_mapping->private_lock); 685 list_move_tail(&bh->b_assoc_buffers, 686 &mapping->private_list); 687 bh->b_assoc_map = mapping; 688 spin_unlock(&buffer_mapping->private_lock); 689 } 690 } 691 EXPORT_SYMBOL(mark_buffer_dirty_inode); 692 693 /* 694 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 695 * dirty. 696 * 697 * If warn is true, then emit a warning if the page is not uptodate and has 698 * not been truncated. 699 */ 700 static int __set_page_dirty(struct page *page, 701 struct address_space *mapping, int warn) 702 { 703 if (unlikely(!mapping)) 704 return !TestSetPageDirty(page); 705 706 if (TestSetPageDirty(page)) 707 return 0; 708 709 spin_lock_irq(&mapping->tree_lock); 710 if (page->mapping) { /* Race with truncate? */ 711 WARN_ON_ONCE(warn && !PageUptodate(page)); 712 713 if (mapping_cap_account_dirty(mapping)) { 714 __inc_zone_page_state(page, NR_FILE_DIRTY); 715 __inc_bdi_stat(mapping->backing_dev_info, 716 BDI_RECLAIMABLE); 717 task_io_account_write(PAGE_CACHE_SIZE); 718 } 719 radix_tree_tag_set(&mapping->page_tree, 720 page_index(page), PAGECACHE_TAG_DIRTY); 721 } 722 spin_unlock_irq(&mapping->tree_lock); 723 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 724 725 return 1; 726 } 727 728 /* 729 * Add a page to the dirty page list. 730 * 731 * It is a sad fact of life that this function is called from several places 732 * deeply under spinlocking. It may not sleep. 733 * 734 * If the page has buffers, the uptodate buffers are set dirty, to preserve 735 * dirty-state coherency between the page and the buffers. It the page does 736 * not have buffers then when they are later attached they will all be set 737 * dirty. 738 * 739 * The buffers are dirtied before the page is dirtied. There's a small race 740 * window in which a writepage caller may see the page cleanness but not the 741 * buffer dirtiness. That's fine. If this code were to set the page dirty 742 * before the buffers, a concurrent writepage caller could clear the page dirty 743 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 744 * page on the dirty page list. 745 * 746 * We use private_lock to lock against try_to_free_buffers while using the 747 * page's buffer list. Also use this to protect against clean buffers being 748 * added to the page after it was set dirty. 749 * 750 * FIXME: may need to call ->reservepage here as well. That's rather up to the 751 * address_space though. 752 */ 753 int __set_page_dirty_buffers(struct page *page) 754 { 755 struct address_space *mapping = page_mapping(page); 756 757 if (unlikely(!mapping)) 758 return !TestSetPageDirty(page); 759 760 spin_lock(&mapping->private_lock); 761 if (page_has_buffers(page)) { 762 struct buffer_head *head = page_buffers(page); 763 struct buffer_head *bh = head; 764 765 do { 766 set_buffer_dirty(bh); 767 bh = bh->b_this_page; 768 } while (bh != head); 769 } 770 spin_unlock(&mapping->private_lock); 771 772 return __set_page_dirty(page, mapping, 1); 773 } 774 EXPORT_SYMBOL(__set_page_dirty_buffers); 775 776 /* 777 * Write out and wait upon a list of buffers. 778 * 779 * We have conflicting pressures: we want to make sure that all 780 * initially dirty buffers get waited on, but that any subsequently 781 * dirtied buffers don't. After all, we don't want fsync to last 782 * forever if somebody is actively writing to the file. 783 * 784 * Do this in two main stages: first we copy dirty buffers to a 785 * temporary inode list, queueing the writes as we go. Then we clean 786 * up, waiting for those writes to complete. 787 * 788 * During this second stage, any subsequent updates to the file may end 789 * up refiling the buffer on the original inode's dirty list again, so 790 * there is a chance we will end up with a buffer queued for write but 791 * not yet completed on that list. So, as a final cleanup we go through 792 * the osync code to catch these locked, dirty buffers without requeuing 793 * any newly dirty buffers for write. 794 */ 795 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 796 { 797 struct buffer_head *bh; 798 struct list_head tmp; 799 struct address_space *mapping; 800 int err = 0, err2; 801 802 INIT_LIST_HEAD(&tmp); 803 804 spin_lock(lock); 805 while (!list_empty(list)) { 806 bh = BH_ENTRY(list->next); 807 mapping = bh->b_assoc_map; 808 __remove_assoc_queue(bh); 809 /* Avoid race with mark_buffer_dirty_inode() which does 810 * a lockless check and we rely on seeing the dirty bit */ 811 smp_mb(); 812 if (buffer_dirty(bh) || buffer_locked(bh)) { 813 list_add(&bh->b_assoc_buffers, &tmp); 814 bh->b_assoc_map = mapping; 815 if (buffer_dirty(bh)) { 816 get_bh(bh); 817 spin_unlock(lock); 818 /* 819 * Ensure any pending I/O completes so that 820 * ll_rw_block() actually writes the current 821 * contents - it is a noop if I/O is still in 822 * flight on potentially older contents. 823 */ 824 ll_rw_block(SWRITE_SYNC, 1, &bh); 825 brelse(bh); 826 spin_lock(lock); 827 } 828 } 829 } 830 831 while (!list_empty(&tmp)) { 832 bh = BH_ENTRY(tmp.prev); 833 get_bh(bh); 834 mapping = bh->b_assoc_map; 835 __remove_assoc_queue(bh); 836 /* Avoid race with mark_buffer_dirty_inode() which does 837 * a lockless check and we rely on seeing the dirty bit */ 838 smp_mb(); 839 if (buffer_dirty(bh)) { 840 list_add(&bh->b_assoc_buffers, 841 &mapping->private_list); 842 bh->b_assoc_map = mapping; 843 } 844 spin_unlock(lock); 845 wait_on_buffer(bh); 846 if (!buffer_uptodate(bh)) 847 err = -EIO; 848 brelse(bh); 849 spin_lock(lock); 850 } 851 852 spin_unlock(lock); 853 err2 = osync_buffers_list(lock, list); 854 if (err) 855 return err; 856 else 857 return err2; 858 } 859 860 /* 861 * Invalidate any and all dirty buffers on a given inode. We are 862 * probably unmounting the fs, but that doesn't mean we have already 863 * done a sync(). Just drop the buffers from the inode list. 864 * 865 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 866 * assumes that all the buffers are against the blockdev. Not true 867 * for reiserfs. 868 */ 869 void invalidate_inode_buffers(struct inode *inode) 870 { 871 if (inode_has_buffers(inode)) { 872 struct address_space *mapping = &inode->i_data; 873 struct list_head *list = &mapping->private_list; 874 struct address_space *buffer_mapping = mapping->assoc_mapping; 875 876 spin_lock(&buffer_mapping->private_lock); 877 while (!list_empty(list)) 878 __remove_assoc_queue(BH_ENTRY(list->next)); 879 spin_unlock(&buffer_mapping->private_lock); 880 } 881 } 882 883 /* 884 * Remove any clean buffers from the inode's buffer list. This is called 885 * when we're trying to free the inode itself. Those buffers can pin it. 886 * 887 * Returns true if all buffers were removed. 888 */ 889 int remove_inode_buffers(struct inode *inode) 890 { 891 int ret = 1; 892 893 if (inode_has_buffers(inode)) { 894 struct address_space *mapping = &inode->i_data; 895 struct list_head *list = &mapping->private_list; 896 struct address_space *buffer_mapping = mapping->assoc_mapping; 897 898 spin_lock(&buffer_mapping->private_lock); 899 while (!list_empty(list)) { 900 struct buffer_head *bh = BH_ENTRY(list->next); 901 if (buffer_dirty(bh)) { 902 ret = 0; 903 break; 904 } 905 __remove_assoc_queue(bh); 906 } 907 spin_unlock(&buffer_mapping->private_lock); 908 } 909 return ret; 910 } 911 912 /* 913 * Create the appropriate buffers when given a page for data area and 914 * the size of each buffer.. Use the bh->b_this_page linked list to 915 * follow the buffers created. Return NULL if unable to create more 916 * buffers. 917 * 918 * The retry flag is used to differentiate async IO (paging, swapping) 919 * which may not fail from ordinary buffer allocations. 920 */ 921 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 922 int retry) 923 { 924 struct buffer_head *bh, *head; 925 long offset; 926 927 try_again: 928 head = NULL; 929 offset = PAGE_SIZE; 930 while ((offset -= size) >= 0) { 931 bh = alloc_buffer_head(GFP_NOFS); 932 if (!bh) 933 goto no_grow; 934 935 bh->b_bdev = NULL; 936 bh->b_this_page = head; 937 bh->b_blocknr = -1; 938 head = bh; 939 940 bh->b_state = 0; 941 atomic_set(&bh->b_count, 0); 942 bh->b_private = NULL; 943 bh->b_size = size; 944 945 /* Link the buffer to its page */ 946 set_bh_page(bh, page, offset); 947 948 init_buffer(bh, NULL, NULL); 949 } 950 return head; 951 /* 952 * In case anything failed, we just free everything we got. 953 */ 954 no_grow: 955 if (head) { 956 do { 957 bh = head; 958 head = head->b_this_page; 959 free_buffer_head(bh); 960 } while (head); 961 } 962 963 /* 964 * Return failure for non-async IO requests. Async IO requests 965 * are not allowed to fail, so we have to wait until buffer heads 966 * become available. But we don't want tasks sleeping with 967 * partially complete buffers, so all were released above. 968 */ 969 if (!retry) 970 return NULL; 971 972 /* We're _really_ low on memory. Now we just 973 * wait for old buffer heads to become free due to 974 * finishing IO. Since this is an async request and 975 * the reserve list is empty, we're sure there are 976 * async buffer heads in use. 977 */ 978 free_more_memory(); 979 goto try_again; 980 } 981 EXPORT_SYMBOL_GPL(alloc_page_buffers); 982 983 static inline void 984 link_dev_buffers(struct page *page, struct buffer_head *head) 985 { 986 struct buffer_head *bh, *tail; 987 988 bh = head; 989 do { 990 tail = bh; 991 bh = bh->b_this_page; 992 } while (bh); 993 tail->b_this_page = head; 994 attach_page_buffers(page, head); 995 } 996 997 /* 998 * Initialise the state of a blockdev page's buffers. 999 */ 1000 static void 1001 init_page_buffers(struct page *page, struct block_device *bdev, 1002 sector_t block, int size) 1003 { 1004 struct buffer_head *head = page_buffers(page); 1005 struct buffer_head *bh = head; 1006 int uptodate = PageUptodate(page); 1007 1008 do { 1009 if (!buffer_mapped(bh)) { 1010 init_buffer(bh, NULL, NULL); 1011 bh->b_bdev = bdev; 1012 bh->b_blocknr = block; 1013 if (uptodate) 1014 set_buffer_uptodate(bh); 1015 set_buffer_mapped(bh); 1016 } 1017 block++; 1018 bh = bh->b_this_page; 1019 } while (bh != head); 1020 } 1021 1022 /* 1023 * Create the page-cache page that contains the requested block. 1024 * 1025 * This is user purely for blockdev mappings. 1026 */ 1027 static struct page * 1028 grow_dev_page(struct block_device *bdev, sector_t block, 1029 pgoff_t index, int size) 1030 { 1031 struct inode *inode = bdev->bd_inode; 1032 struct page *page; 1033 struct buffer_head *bh; 1034 1035 page = find_or_create_page(inode->i_mapping, index, 1036 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE); 1037 if (!page) 1038 return NULL; 1039 1040 BUG_ON(!PageLocked(page)); 1041 1042 if (page_has_buffers(page)) { 1043 bh = page_buffers(page); 1044 if (bh->b_size == size) { 1045 init_page_buffers(page, bdev, block, size); 1046 return page; 1047 } 1048 if (!try_to_free_buffers(page)) 1049 goto failed; 1050 } 1051 1052 /* 1053 * Allocate some buffers for this page 1054 */ 1055 bh = alloc_page_buffers(page, size, 0); 1056 if (!bh) 1057 goto failed; 1058 1059 /* 1060 * Link the page to the buffers and initialise them. Take the 1061 * lock to be atomic wrt __find_get_block(), which does not 1062 * run under the page lock. 1063 */ 1064 spin_lock(&inode->i_mapping->private_lock); 1065 link_dev_buffers(page, bh); 1066 init_page_buffers(page, bdev, block, size); 1067 spin_unlock(&inode->i_mapping->private_lock); 1068 return page; 1069 1070 failed: 1071 BUG(); 1072 unlock_page(page); 1073 page_cache_release(page); 1074 return NULL; 1075 } 1076 1077 /* 1078 * Create buffers for the specified block device block's page. If 1079 * that page was dirty, the buffers are set dirty also. 1080 */ 1081 static int 1082 grow_buffers(struct block_device *bdev, sector_t block, int size) 1083 { 1084 struct page *page; 1085 pgoff_t index; 1086 int sizebits; 1087 1088 sizebits = -1; 1089 do { 1090 sizebits++; 1091 } while ((size << sizebits) < PAGE_SIZE); 1092 1093 index = block >> sizebits; 1094 1095 /* 1096 * Check for a block which wants to lie outside our maximum possible 1097 * pagecache index. (this comparison is done using sector_t types). 1098 */ 1099 if (unlikely(index != block >> sizebits)) { 1100 char b[BDEVNAME_SIZE]; 1101 1102 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1103 "device %s\n", 1104 __func__, (unsigned long long)block, 1105 bdevname(bdev, b)); 1106 return -EIO; 1107 } 1108 block = index << sizebits; 1109 /* Create a page with the proper size buffers.. */ 1110 page = grow_dev_page(bdev, block, index, size); 1111 if (!page) 1112 return 0; 1113 unlock_page(page); 1114 page_cache_release(page); 1115 return 1; 1116 } 1117 1118 static struct buffer_head * 1119 __getblk_slow(struct block_device *bdev, sector_t block, int size) 1120 { 1121 /* Size must be multiple of hard sectorsize */ 1122 if (unlikely(size & (bdev_hardsect_size(bdev)-1) || 1123 (size < 512 || size > PAGE_SIZE))) { 1124 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1125 size); 1126 printk(KERN_ERR "hardsect size: %d\n", 1127 bdev_hardsect_size(bdev)); 1128 1129 dump_stack(); 1130 return NULL; 1131 } 1132 1133 for (;;) { 1134 struct buffer_head * bh; 1135 int ret; 1136 1137 bh = __find_get_block(bdev, block, size); 1138 if (bh) 1139 return bh; 1140 1141 ret = grow_buffers(bdev, block, size); 1142 if (ret < 0) 1143 return NULL; 1144 if (ret == 0) 1145 free_more_memory(); 1146 } 1147 } 1148 1149 /* 1150 * The relationship between dirty buffers and dirty pages: 1151 * 1152 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1153 * the page is tagged dirty in its radix tree. 1154 * 1155 * At all times, the dirtiness of the buffers represents the dirtiness of 1156 * subsections of the page. If the page has buffers, the page dirty bit is 1157 * merely a hint about the true dirty state. 1158 * 1159 * When a page is set dirty in its entirety, all its buffers are marked dirty 1160 * (if the page has buffers). 1161 * 1162 * When a buffer is marked dirty, its page is dirtied, but the page's other 1163 * buffers are not. 1164 * 1165 * Also. When blockdev buffers are explicitly read with bread(), they 1166 * individually become uptodate. But their backing page remains not 1167 * uptodate - even if all of its buffers are uptodate. A subsequent 1168 * block_read_full_page() against that page will discover all the uptodate 1169 * buffers, will set the page uptodate and will perform no I/O. 1170 */ 1171 1172 /** 1173 * mark_buffer_dirty - mark a buffer_head as needing writeout 1174 * @bh: the buffer_head to mark dirty 1175 * 1176 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1177 * backing page dirty, then tag the page as dirty in its address_space's radix 1178 * tree and then attach the address_space's inode to its superblock's dirty 1179 * inode list. 1180 * 1181 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1182 * mapping->tree_lock and the global inode_lock. 1183 */ 1184 void mark_buffer_dirty(struct buffer_head *bh) 1185 { 1186 WARN_ON_ONCE(!buffer_uptodate(bh)); 1187 1188 /* 1189 * Very *carefully* optimize the it-is-already-dirty case. 1190 * 1191 * Don't let the final "is it dirty" escape to before we 1192 * perhaps modified the buffer. 1193 */ 1194 if (buffer_dirty(bh)) { 1195 smp_mb(); 1196 if (buffer_dirty(bh)) 1197 return; 1198 } 1199 1200 if (!test_set_buffer_dirty(bh)) 1201 __set_page_dirty(bh->b_page, page_mapping(bh->b_page), 0); 1202 } 1203 1204 /* 1205 * Decrement a buffer_head's reference count. If all buffers against a page 1206 * have zero reference count, are clean and unlocked, and if the page is clean 1207 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1208 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1209 * a page but it ends up not being freed, and buffers may later be reattached). 1210 */ 1211 void __brelse(struct buffer_head * buf) 1212 { 1213 if (atomic_read(&buf->b_count)) { 1214 put_bh(buf); 1215 return; 1216 } 1217 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1218 } 1219 1220 /* 1221 * bforget() is like brelse(), except it discards any 1222 * potentially dirty data. 1223 */ 1224 void __bforget(struct buffer_head *bh) 1225 { 1226 clear_buffer_dirty(bh); 1227 if (bh->b_assoc_map) { 1228 struct address_space *buffer_mapping = bh->b_page->mapping; 1229 1230 spin_lock(&buffer_mapping->private_lock); 1231 list_del_init(&bh->b_assoc_buffers); 1232 bh->b_assoc_map = NULL; 1233 spin_unlock(&buffer_mapping->private_lock); 1234 } 1235 __brelse(bh); 1236 } 1237 1238 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1239 { 1240 lock_buffer(bh); 1241 if (buffer_uptodate(bh)) { 1242 unlock_buffer(bh); 1243 return bh; 1244 } else { 1245 get_bh(bh); 1246 bh->b_end_io = end_buffer_read_sync; 1247 submit_bh(READ, bh); 1248 wait_on_buffer(bh); 1249 if (buffer_uptodate(bh)) 1250 return bh; 1251 } 1252 brelse(bh); 1253 return NULL; 1254 } 1255 1256 /* 1257 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1258 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1259 * refcount elevated by one when they're in an LRU. A buffer can only appear 1260 * once in a particular CPU's LRU. A single buffer can be present in multiple 1261 * CPU's LRUs at the same time. 1262 * 1263 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1264 * sb_find_get_block(). 1265 * 1266 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1267 * a local interrupt disable for that. 1268 */ 1269 1270 #define BH_LRU_SIZE 8 1271 1272 struct bh_lru { 1273 struct buffer_head *bhs[BH_LRU_SIZE]; 1274 }; 1275 1276 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1277 1278 #ifdef CONFIG_SMP 1279 #define bh_lru_lock() local_irq_disable() 1280 #define bh_lru_unlock() local_irq_enable() 1281 #else 1282 #define bh_lru_lock() preempt_disable() 1283 #define bh_lru_unlock() preempt_enable() 1284 #endif 1285 1286 static inline void check_irqs_on(void) 1287 { 1288 #ifdef irqs_disabled 1289 BUG_ON(irqs_disabled()); 1290 #endif 1291 } 1292 1293 /* 1294 * The LRU management algorithm is dopey-but-simple. Sorry. 1295 */ 1296 static void bh_lru_install(struct buffer_head *bh) 1297 { 1298 struct buffer_head *evictee = NULL; 1299 struct bh_lru *lru; 1300 1301 check_irqs_on(); 1302 bh_lru_lock(); 1303 lru = &__get_cpu_var(bh_lrus); 1304 if (lru->bhs[0] != bh) { 1305 struct buffer_head *bhs[BH_LRU_SIZE]; 1306 int in; 1307 int out = 0; 1308 1309 get_bh(bh); 1310 bhs[out++] = bh; 1311 for (in = 0; in < BH_LRU_SIZE; in++) { 1312 struct buffer_head *bh2 = lru->bhs[in]; 1313 1314 if (bh2 == bh) { 1315 __brelse(bh2); 1316 } else { 1317 if (out >= BH_LRU_SIZE) { 1318 BUG_ON(evictee != NULL); 1319 evictee = bh2; 1320 } else { 1321 bhs[out++] = bh2; 1322 } 1323 } 1324 } 1325 while (out < BH_LRU_SIZE) 1326 bhs[out++] = NULL; 1327 memcpy(lru->bhs, bhs, sizeof(bhs)); 1328 } 1329 bh_lru_unlock(); 1330 1331 if (evictee) 1332 __brelse(evictee); 1333 } 1334 1335 /* 1336 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1337 */ 1338 static struct buffer_head * 1339 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1340 { 1341 struct buffer_head *ret = NULL; 1342 struct bh_lru *lru; 1343 unsigned int i; 1344 1345 check_irqs_on(); 1346 bh_lru_lock(); 1347 lru = &__get_cpu_var(bh_lrus); 1348 for (i = 0; i < BH_LRU_SIZE; i++) { 1349 struct buffer_head *bh = lru->bhs[i]; 1350 1351 if (bh && bh->b_bdev == bdev && 1352 bh->b_blocknr == block && bh->b_size == size) { 1353 if (i) { 1354 while (i) { 1355 lru->bhs[i] = lru->bhs[i - 1]; 1356 i--; 1357 } 1358 lru->bhs[0] = bh; 1359 } 1360 get_bh(bh); 1361 ret = bh; 1362 break; 1363 } 1364 } 1365 bh_lru_unlock(); 1366 return ret; 1367 } 1368 1369 /* 1370 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1371 * it in the LRU and mark it as accessed. If it is not present then return 1372 * NULL 1373 */ 1374 struct buffer_head * 1375 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1376 { 1377 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1378 1379 if (bh == NULL) { 1380 bh = __find_get_block_slow(bdev, block); 1381 if (bh) 1382 bh_lru_install(bh); 1383 } 1384 if (bh) 1385 touch_buffer(bh); 1386 return bh; 1387 } 1388 EXPORT_SYMBOL(__find_get_block); 1389 1390 /* 1391 * __getblk will locate (and, if necessary, create) the buffer_head 1392 * which corresponds to the passed block_device, block and size. The 1393 * returned buffer has its reference count incremented. 1394 * 1395 * __getblk() cannot fail - it just keeps trying. If you pass it an 1396 * illegal block number, __getblk() will happily return a buffer_head 1397 * which represents the non-existent block. Very weird. 1398 * 1399 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1400 * attempt is failing. FIXME, perhaps? 1401 */ 1402 struct buffer_head * 1403 __getblk(struct block_device *bdev, sector_t block, unsigned size) 1404 { 1405 struct buffer_head *bh = __find_get_block(bdev, block, size); 1406 1407 might_sleep(); 1408 if (bh == NULL) 1409 bh = __getblk_slow(bdev, block, size); 1410 return bh; 1411 } 1412 EXPORT_SYMBOL(__getblk); 1413 1414 /* 1415 * Do async read-ahead on a buffer.. 1416 */ 1417 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1418 { 1419 struct buffer_head *bh = __getblk(bdev, block, size); 1420 if (likely(bh)) { 1421 ll_rw_block(READA, 1, &bh); 1422 brelse(bh); 1423 } 1424 } 1425 EXPORT_SYMBOL(__breadahead); 1426 1427 /** 1428 * __bread() - reads a specified block and returns the bh 1429 * @bdev: the block_device to read from 1430 * @block: number of block 1431 * @size: size (in bytes) to read 1432 * 1433 * Reads a specified block, and returns buffer head that contains it. 1434 * It returns NULL if the block was unreadable. 1435 */ 1436 struct buffer_head * 1437 __bread(struct block_device *bdev, sector_t block, unsigned size) 1438 { 1439 struct buffer_head *bh = __getblk(bdev, block, size); 1440 1441 if (likely(bh) && !buffer_uptodate(bh)) 1442 bh = __bread_slow(bh); 1443 return bh; 1444 } 1445 EXPORT_SYMBOL(__bread); 1446 1447 /* 1448 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1449 * This doesn't race because it runs in each cpu either in irq 1450 * or with preempt disabled. 1451 */ 1452 static void invalidate_bh_lru(void *arg) 1453 { 1454 struct bh_lru *b = &get_cpu_var(bh_lrus); 1455 int i; 1456 1457 for (i = 0; i < BH_LRU_SIZE; i++) { 1458 brelse(b->bhs[i]); 1459 b->bhs[i] = NULL; 1460 } 1461 put_cpu_var(bh_lrus); 1462 } 1463 1464 void invalidate_bh_lrus(void) 1465 { 1466 on_each_cpu(invalidate_bh_lru, NULL, 1); 1467 } 1468 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1469 1470 void set_bh_page(struct buffer_head *bh, 1471 struct page *page, unsigned long offset) 1472 { 1473 bh->b_page = page; 1474 BUG_ON(offset >= PAGE_SIZE); 1475 if (PageHighMem(page)) 1476 /* 1477 * This catches illegal uses and preserves the offset: 1478 */ 1479 bh->b_data = (char *)(0 + offset); 1480 else 1481 bh->b_data = page_address(page) + offset; 1482 } 1483 EXPORT_SYMBOL(set_bh_page); 1484 1485 /* 1486 * Called when truncating a buffer on a page completely. 1487 */ 1488 static void discard_buffer(struct buffer_head * bh) 1489 { 1490 lock_buffer(bh); 1491 clear_buffer_dirty(bh); 1492 bh->b_bdev = NULL; 1493 clear_buffer_mapped(bh); 1494 clear_buffer_req(bh); 1495 clear_buffer_new(bh); 1496 clear_buffer_delay(bh); 1497 clear_buffer_unwritten(bh); 1498 unlock_buffer(bh); 1499 } 1500 1501 /** 1502 * block_invalidatepage - invalidate part of all of a buffer-backed page 1503 * 1504 * @page: the page which is affected 1505 * @offset: the index of the truncation point 1506 * 1507 * block_invalidatepage() is called when all or part of the page has become 1508 * invalidatedby a truncate operation. 1509 * 1510 * block_invalidatepage() does not have to release all buffers, but it must 1511 * ensure that no dirty buffer is left outside @offset and that no I/O 1512 * is underway against any of the blocks which are outside the truncation 1513 * point. Because the caller is about to free (and possibly reuse) those 1514 * blocks on-disk. 1515 */ 1516 void block_invalidatepage(struct page *page, unsigned long offset) 1517 { 1518 struct buffer_head *head, *bh, *next; 1519 unsigned int curr_off = 0; 1520 1521 BUG_ON(!PageLocked(page)); 1522 if (!page_has_buffers(page)) 1523 goto out; 1524 1525 head = page_buffers(page); 1526 bh = head; 1527 do { 1528 unsigned int next_off = curr_off + bh->b_size; 1529 next = bh->b_this_page; 1530 1531 /* 1532 * is this block fully invalidated? 1533 */ 1534 if (offset <= curr_off) 1535 discard_buffer(bh); 1536 curr_off = next_off; 1537 bh = next; 1538 } while (bh != head); 1539 1540 /* 1541 * We release buffers only if the entire page is being invalidated. 1542 * The get_block cached value has been unconditionally invalidated, 1543 * so real IO is not possible anymore. 1544 */ 1545 if (offset == 0) 1546 try_to_release_page(page, 0); 1547 out: 1548 return; 1549 } 1550 EXPORT_SYMBOL(block_invalidatepage); 1551 1552 /* 1553 * We attach and possibly dirty the buffers atomically wrt 1554 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1555 * is already excluded via the page lock. 1556 */ 1557 void create_empty_buffers(struct page *page, 1558 unsigned long blocksize, unsigned long b_state) 1559 { 1560 struct buffer_head *bh, *head, *tail; 1561 1562 head = alloc_page_buffers(page, blocksize, 1); 1563 bh = head; 1564 do { 1565 bh->b_state |= b_state; 1566 tail = bh; 1567 bh = bh->b_this_page; 1568 } while (bh); 1569 tail->b_this_page = head; 1570 1571 spin_lock(&page->mapping->private_lock); 1572 if (PageUptodate(page) || PageDirty(page)) { 1573 bh = head; 1574 do { 1575 if (PageDirty(page)) 1576 set_buffer_dirty(bh); 1577 if (PageUptodate(page)) 1578 set_buffer_uptodate(bh); 1579 bh = bh->b_this_page; 1580 } while (bh != head); 1581 } 1582 attach_page_buffers(page, head); 1583 spin_unlock(&page->mapping->private_lock); 1584 } 1585 EXPORT_SYMBOL(create_empty_buffers); 1586 1587 /* 1588 * We are taking a block for data and we don't want any output from any 1589 * buffer-cache aliases starting from return from that function and 1590 * until the moment when something will explicitly mark the buffer 1591 * dirty (hopefully that will not happen until we will free that block ;-) 1592 * We don't even need to mark it not-uptodate - nobody can expect 1593 * anything from a newly allocated buffer anyway. We used to used 1594 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1595 * don't want to mark the alias unmapped, for example - it would confuse 1596 * anyone who might pick it with bread() afterwards... 1597 * 1598 * Also.. Note that bforget() doesn't lock the buffer. So there can 1599 * be writeout I/O going on against recently-freed buffers. We don't 1600 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1601 * only if we really need to. That happens here. 1602 */ 1603 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1604 { 1605 struct buffer_head *old_bh; 1606 1607 might_sleep(); 1608 1609 old_bh = __find_get_block_slow(bdev, block); 1610 if (old_bh) { 1611 clear_buffer_dirty(old_bh); 1612 wait_on_buffer(old_bh); 1613 clear_buffer_req(old_bh); 1614 __brelse(old_bh); 1615 } 1616 } 1617 EXPORT_SYMBOL(unmap_underlying_metadata); 1618 1619 /* 1620 * NOTE! All mapped/uptodate combinations are valid: 1621 * 1622 * Mapped Uptodate Meaning 1623 * 1624 * No No "unknown" - must do get_block() 1625 * No Yes "hole" - zero-filled 1626 * Yes No "allocated" - allocated on disk, not read in 1627 * Yes Yes "valid" - allocated and up-to-date in memory. 1628 * 1629 * "Dirty" is valid only with the last case (mapped+uptodate). 1630 */ 1631 1632 /* 1633 * While block_write_full_page is writing back the dirty buffers under 1634 * the page lock, whoever dirtied the buffers may decide to clean them 1635 * again at any time. We handle that by only looking at the buffer 1636 * state inside lock_buffer(). 1637 * 1638 * If block_write_full_page() is called for regular writeback 1639 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1640 * locked buffer. This only can happen if someone has written the buffer 1641 * directly, with submit_bh(). At the address_space level PageWriteback 1642 * prevents this contention from occurring. 1643 */ 1644 static int __block_write_full_page(struct inode *inode, struct page *page, 1645 get_block_t *get_block, struct writeback_control *wbc) 1646 { 1647 int err; 1648 sector_t block; 1649 sector_t last_block; 1650 struct buffer_head *bh, *head; 1651 const unsigned blocksize = 1 << inode->i_blkbits; 1652 int nr_underway = 0; 1653 1654 BUG_ON(!PageLocked(page)); 1655 1656 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 1657 1658 if (!page_has_buffers(page)) { 1659 create_empty_buffers(page, blocksize, 1660 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1661 } 1662 1663 /* 1664 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1665 * here, and the (potentially unmapped) buffers may become dirty at 1666 * any time. If a buffer becomes dirty here after we've inspected it 1667 * then we just miss that fact, and the page stays dirty. 1668 * 1669 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1670 * handle that here by just cleaning them. 1671 */ 1672 1673 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1674 head = page_buffers(page); 1675 bh = head; 1676 1677 /* 1678 * Get all the dirty buffers mapped to disk addresses and 1679 * handle any aliases from the underlying blockdev's mapping. 1680 */ 1681 do { 1682 if (block > last_block) { 1683 /* 1684 * mapped buffers outside i_size will occur, because 1685 * this page can be outside i_size when there is a 1686 * truncate in progress. 1687 */ 1688 /* 1689 * The buffer was zeroed by block_write_full_page() 1690 */ 1691 clear_buffer_dirty(bh); 1692 set_buffer_uptodate(bh); 1693 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1694 buffer_dirty(bh)) { 1695 WARN_ON(bh->b_size != blocksize); 1696 err = get_block(inode, block, bh, 1); 1697 if (err) 1698 goto recover; 1699 clear_buffer_delay(bh); 1700 if (buffer_new(bh)) { 1701 /* blockdev mappings never come here */ 1702 clear_buffer_new(bh); 1703 unmap_underlying_metadata(bh->b_bdev, 1704 bh->b_blocknr); 1705 } 1706 } 1707 bh = bh->b_this_page; 1708 block++; 1709 } while (bh != head); 1710 1711 do { 1712 if (!buffer_mapped(bh)) 1713 continue; 1714 /* 1715 * If it's a fully non-blocking write attempt and we cannot 1716 * lock the buffer then redirty the page. Note that this can 1717 * potentially cause a busy-wait loop from pdflush and kswapd 1718 * activity, but those code paths have their own higher-level 1719 * throttling. 1720 */ 1721 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { 1722 lock_buffer(bh); 1723 } else if (!trylock_buffer(bh)) { 1724 redirty_page_for_writepage(wbc, page); 1725 continue; 1726 } 1727 if (test_clear_buffer_dirty(bh)) { 1728 mark_buffer_async_write(bh); 1729 } else { 1730 unlock_buffer(bh); 1731 } 1732 } while ((bh = bh->b_this_page) != head); 1733 1734 /* 1735 * The page and its buffers are protected by PageWriteback(), so we can 1736 * drop the bh refcounts early. 1737 */ 1738 BUG_ON(PageWriteback(page)); 1739 set_page_writeback(page); 1740 1741 do { 1742 struct buffer_head *next = bh->b_this_page; 1743 if (buffer_async_write(bh)) { 1744 submit_bh(WRITE, bh); 1745 nr_underway++; 1746 } 1747 bh = next; 1748 } while (bh != head); 1749 unlock_page(page); 1750 1751 err = 0; 1752 done: 1753 if (nr_underway == 0) { 1754 /* 1755 * The page was marked dirty, but the buffers were 1756 * clean. Someone wrote them back by hand with 1757 * ll_rw_block/submit_bh. A rare case. 1758 */ 1759 end_page_writeback(page); 1760 1761 /* 1762 * The page and buffer_heads can be released at any time from 1763 * here on. 1764 */ 1765 } 1766 return err; 1767 1768 recover: 1769 /* 1770 * ENOSPC, or some other error. We may already have added some 1771 * blocks to the file, so we need to write these out to avoid 1772 * exposing stale data. 1773 * The page is currently locked and not marked for writeback 1774 */ 1775 bh = head; 1776 /* Recovery: lock and submit the mapped buffers */ 1777 do { 1778 if (buffer_mapped(bh) && buffer_dirty(bh) && 1779 !buffer_delay(bh)) { 1780 lock_buffer(bh); 1781 mark_buffer_async_write(bh); 1782 } else { 1783 /* 1784 * The buffer may have been set dirty during 1785 * attachment to a dirty page. 1786 */ 1787 clear_buffer_dirty(bh); 1788 } 1789 } while ((bh = bh->b_this_page) != head); 1790 SetPageError(page); 1791 BUG_ON(PageWriteback(page)); 1792 mapping_set_error(page->mapping, err); 1793 set_page_writeback(page); 1794 do { 1795 struct buffer_head *next = bh->b_this_page; 1796 if (buffer_async_write(bh)) { 1797 clear_buffer_dirty(bh); 1798 submit_bh(WRITE, bh); 1799 nr_underway++; 1800 } 1801 bh = next; 1802 } while (bh != head); 1803 unlock_page(page); 1804 goto done; 1805 } 1806 1807 /* 1808 * If a page has any new buffers, zero them out here, and mark them uptodate 1809 * and dirty so they'll be written out (in order to prevent uninitialised 1810 * block data from leaking). And clear the new bit. 1811 */ 1812 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1813 { 1814 unsigned int block_start, block_end; 1815 struct buffer_head *head, *bh; 1816 1817 BUG_ON(!PageLocked(page)); 1818 if (!page_has_buffers(page)) 1819 return; 1820 1821 bh = head = page_buffers(page); 1822 block_start = 0; 1823 do { 1824 block_end = block_start + bh->b_size; 1825 1826 if (buffer_new(bh)) { 1827 if (block_end > from && block_start < to) { 1828 if (!PageUptodate(page)) { 1829 unsigned start, size; 1830 1831 start = max(from, block_start); 1832 size = min(to, block_end) - start; 1833 1834 zero_user(page, start, size); 1835 set_buffer_uptodate(bh); 1836 } 1837 1838 clear_buffer_new(bh); 1839 mark_buffer_dirty(bh); 1840 } 1841 } 1842 1843 block_start = block_end; 1844 bh = bh->b_this_page; 1845 } while (bh != head); 1846 } 1847 EXPORT_SYMBOL(page_zero_new_buffers); 1848 1849 static int __block_prepare_write(struct inode *inode, struct page *page, 1850 unsigned from, unsigned to, get_block_t *get_block) 1851 { 1852 unsigned block_start, block_end; 1853 sector_t block; 1854 int err = 0; 1855 unsigned blocksize, bbits; 1856 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1857 1858 BUG_ON(!PageLocked(page)); 1859 BUG_ON(from > PAGE_CACHE_SIZE); 1860 BUG_ON(to > PAGE_CACHE_SIZE); 1861 BUG_ON(from > to); 1862 1863 blocksize = 1 << inode->i_blkbits; 1864 if (!page_has_buffers(page)) 1865 create_empty_buffers(page, blocksize, 0); 1866 head = page_buffers(page); 1867 1868 bbits = inode->i_blkbits; 1869 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1870 1871 for(bh = head, block_start = 0; bh != head || !block_start; 1872 block++, block_start=block_end, bh = bh->b_this_page) { 1873 block_end = block_start + blocksize; 1874 if (block_end <= from || block_start >= to) { 1875 if (PageUptodate(page)) { 1876 if (!buffer_uptodate(bh)) 1877 set_buffer_uptodate(bh); 1878 } 1879 continue; 1880 } 1881 if (buffer_new(bh)) 1882 clear_buffer_new(bh); 1883 if (!buffer_mapped(bh)) { 1884 WARN_ON(bh->b_size != blocksize); 1885 err = get_block(inode, block, bh, 1); 1886 if (err) 1887 break; 1888 if (buffer_new(bh)) { 1889 unmap_underlying_metadata(bh->b_bdev, 1890 bh->b_blocknr); 1891 if (PageUptodate(page)) { 1892 clear_buffer_new(bh); 1893 set_buffer_uptodate(bh); 1894 mark_buffer_dirty(bh); 1895 continue; 1896 } 1897 if (block_end > to || block_start < from) 1898 zero_user_segments(page, 1899 to, block_end, 1900 block_start, from); 1901 continue; 1902 } 1903 } 1904 if (PageUptodate(page)) { 1905 if (!buffer_uptodate(bh)) 1906 set_buffer_uptodate(bh); 1907 continue; 1908 } 1909 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1910 !buffer_unwritten(bh) && 1911 (block_start < from || block_end > to)) { 1912 ll_rw_block(READ, 1, &bh); 1913 *wait_bh++=bh; 1914 } 1915 } 1916 /* 1917 * If we issued read requests - let them complete. 1918 */ 1919 while(wait_bh > wait) { 1920 wait_on_buffer(*--wait_bh); 1921 if (!buffer_uptodate(*wait_bh)) 1922 err = -EIO; 1923 } 1924 if (unlikely(err)) 1925 page_zero_new_buffers(page, from, to); 1926 return err; 1927 } 1928 1929 static int __block_commit_write(struct inode *inode, struct page *page, 1930 unsigned from, unsigned to) 1931 { 1932 unsigned block_start, block_end; 1933 int partial = 0; 1934 unsigned blocksize; 1935 struct buffer_head *bh, *head; 1936 1937 blocksize = 1 << inode->i_blkbits; 1938 1939 for(bh = head = page_buffers(page), block_start = 0; 1940 bh != head || !block_start; 1941 block_start=block_end, bh = bh->b_this_page) { 1942 block_end = block_start + blocksize; 1943 if (block_end <= from || block_start >= to) { 1944 if (!buffer_uptodate(bh)) 1945 partial = 1; 1946 } else { 1947 set_buffer_uptodate(bh); 1948 mark_buffer_dirty(bh); 1949 } 1950 clear_buffer_new(bh); 1951 } 1952 1953 /* 1954 * If this is a partial write which happened to make all buffers 1955 * uptodate then we can optimize away a bogus readpage() for 1956 * the next read(). Here we 'discover' whether the page went 1957 * uptodate as a result of this (potentially partial) write. 1958 */ 1959 if (!partial) 1960 SetPageUptodate(page); 1961 return 0; 1962 } 1963 1964 /* 1965 * block_write_begin takes care of the basic task of block allocation and 1966 * bringing partial write blocks uptodate first. 1967 * 1968 * If *pagep is not NULL, then block_write_begin uses the locked page 1969 * at *pagep rather than allocating its own. In this case, the page will 1970 * not be unlocked or deallocated on failure. 1971 */ 1972 int block_write_begin(struct file *file, struct address_space *mapping, 1973 loff_t pos, unsigned len, unsigned flags, 1974 struct page **pagep, void **fsdata, 1975 get_block_t *get_block) 1976 { 1977 struct inode *inode = mapping->host; 1978 int status = 0; 1979 struct page *page; 1980 pgoff_t index; 1981 unsigned start, end; 1982 int ownpage = 0; 1983 1984 index = pos >> PAGE_CACHE_SHIFT; 1985 start = pos & (PAGE_CACHE_SIZE - 1); 1986 end = start + len; 1987 1988 page = *pagep; 1989 if (page == NULL) { 1990 ownpage = 1; 1991 page = __grab_cache_page(mapping, index); 1992 if (!page) { 1993 status = -ENOMEM; 1994 goto out; 1995 } 1996 *pagep = page; 1997 } else 1998 BUG_ON(!PageLocked(page)); 1999 2000 status = __block_prepare_write(inode, page, start, end, get_block); 2001 if (unlikely(status)) { 2002 ClearPageUptodate(page); 2003 2004 if (ownpage) { 2005 unlock_page(page); 2006 page_cache_release(page); 2007 *pagep = NULL; 2008 2009 /* 2010 * prepare_write() may have instantiated a few blocks 2011 * outside i_size. Trim these off again. Don't need 2012 * i_size_read because we hold i_mutex. 2013 */ 2014 if (pos + len > inode->i_size) 2015 vmtruncate(inode, inode->i_size); 2016 } 2017 goto out; 2018 } 2019 2020 out: 2021 return status; 2022 } 2023 EXPORT_SYMBOL(block_write_begin); 2024 2025 int block_write_end(struct file *file, struct address_space *mapping, 2026 loff_t pos, unsigned len, unsigned copied, 2027 struct page *page, void *fsdata) 2028 { 2029 struct inode *inode = mapping->host; 2030 unsigned start; 2031 2032 start = pos & (PAGE_CACHE_SIZE - 1); 2033 2034 if (unlikely(copied < len)) { 2035 /* 2036 * The buffers that were written will now be uptodate, so we 2037 * don't have to worry about a readpage reading them and 2038 * overwriting a partial write. However if we have encountered 2039 * a short write and only partially written into a buffer, it 2040 * will not be marked uptodate, so a readpage might come in and 2041 * destroy our partial write. 2042 * 2043 * Do the simplest thing, and just treat any short write to a 2044 * non uptodate page as a zero-length write, and force the 2045 * caller to redo the whole thing. 2046 */ 2047 if (!PageUptodate(page)) 2048 copied = 0; 2049 2050 page_zero_new_buffers(page, start+copied, start+len); 2051 } 2052 flush_dcache_page(page); 2053 2054 /* This could be a short (even 0-length) commit */ 2055 __block_commit_write(inode, page, start, start+copied); 2056 2057 return copied; 2058 } 2059 EXPORT_SYMBOL(block_write_end); 2060 2061 int generic_write_end(struct file *file, struct address_space *mapping, 2062 loff_t pos, unsigned len, unsigned copied, 2063 struct page *page, void *fsdata) 2064 { 2065 struct inode *inode = mapping->host; 2066 int i_size_changed = 0; 2067 2068 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2069 2070 /* 2071 * No need to use i_size_read() here, the i_size 2072 * cannot change under us because we hold i_mutex. 2073 * 2074 * But it's important to update i_size while still holding page lock: 2075 * page writeout could otherwise come in and zero beyond i_size. 2076 */ 2077 if (pos+copied > inode->i_size) { 2078 i_size_write(inode, pos+copied); 2079 i_size_changed = 1; 2080 } 2081 2082 unlock_page(page); 2083 page_cache_release(page); 2084 2085 /* 2086 * Don't mark the inode dirty under page lock. First, it unnecessarily 2087 * makes the holding time of page lock longer. Second, it forces lock 2088 * ordering of page lock and transaction start for journaling 2089 * filesystems. 2090 */ 2091 if (i_size_changed) 2092 mark_inode_dirty(inode); 2093 2094 return copied; 2095 } 2096 EXPORT_SYMBOL(generic_write_end); 2097 2098 /* 2099 * block_is_partially_uptodate checks whether buffers within a page are 2100 * uptodate or not. 2101 * 2102 * Returns true if all buffers which correspond to a file portion 2103 * we want to read are uptodate. 2104 */ 2105 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc, 2106 unsigned long from) 2107 { 2108 struct inode *inode = page->mapping->host; 2109 unsigned block_start, block_end, blocksize; 2110 unsigned to; 2111 struct buffer_head *bh, *head; 2112 int ret = 1; 2113 2114 if (!page_has_buffers(page)) 2115 return 0; 2116 2117 blocksize = 1 << inode->i_blkbits; 2118 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count); 2119 to = from + to; 2120 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize) 2121 return 0; 2122 2123 head = page_buffers(page); 2124 bh = head; 2125 block_start = 0; 2126 do { 2127 block_end = block_start + blocksize; 2128 if (block_end > from && block_start < to) { 2129 if (!buffer_uptodate(bh)) { 2130 ret = 0; 2131 break; 2132 } 2133 if (block_end >= to) 2134 break; 2135 } 2136 block_start = block_end; 2137 bh = bh->b_this_page; 2138 } while (bh != head); 2139 2140 return ret; 2141 } 2142 EXPORT_SYMBOL(block_is_partially_uptodate); 2143 2144 /* 2145 * Generic "read page" function for block devices that have the normal 2146 * get_block functionality. This is most of the block device filesystems. 2147 * Reads the page asynchronously --- the unlock_buffer() and 2148 * set/clear_buffer_uptodate() functions propagate buffer state into the 2149 * page struct once IO has completed. 2150 */ 2151 int block_read_full_page(struct page *page, get_block_t *get_block) 2152 { 2153 struct inode *inode = page->mapping->host; 2154 sector_t iblock, lblock; 2155 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2156 unsigned int blocksize; 2157 int nr, i; 2158 int fully_mapped = 1; 2159 2160 BUG_ON(!PageLocked(page)); 2161 blocksize = 1 << inode->i_blkbits; 2162 if (!page_has_buffers(page)) 2163 create_empty_buffers(page, blocksize, 0); 2164 head = page_buffers(page); 2165 2166 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2167 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits; 2168 bh = head; 2169 nr = 0; 2170 i = 0; 2171 2172 do { 2173 if (buffer_uptodate(bh)) 2174 continue; 2175 2176 if (!buffer_mapped(bh)) { 2177 int err = 0; 2178 2179 fully_mapped = 0; 2180 if (iblock < lblock) { 2181 WARN_ON(bh->b_size != blocksize); 2182 err = get_block(inode, iblock, bh, 0); 2183 if (err) 2184 SetPageError(page); 2185 } 2186 if (!buffer_mapped(bh)) { 2187 zero_user(page, i * blocksize, blocksize); 2188 if (!err) 2189 set_buffer_uptodate(bh); 2190 continue; 2191 } 2192 /* 2193 * get_block() might have updated the buffer 2194 * synchronously 2195 */ 2196 if (buffer_uptodate(bh)) 2197 continue; 2198 } 2199 arr[nr++] = bh; 2200 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2201 2202 if (fully_mapped) 2203 SetPageMappedToDisk(page); 2204 2205 if (!nr) { 2206 /* 2207 * All buffers are uptodate - we can set the page uptodate 2208 * as well. But not if get_block() returned an error. 2209 */ 2210 if (!PageError(page)) 2211 SetPageUptodate(page); 2212 unlock_page(page); 2213 return 0; 2214 } 2215 2216 /* Stage two: lock the buffers */ 2217 for (i = 0; i < nr; i++) { 2218 bh = arr[i]; 2219 lock_buffer(bh); 2220 mark_buffer_async_read(bh); 2221 } 2222 2223 /* 2224 * Stage 3: start the IO. Check for uptodateness 2225 * inside the buffer lock in case another process reading 2226 * the underlying blockdev brought it uptodate (the sct fix). 2227 */ 2228 for (i = 0; i < nr; i++) { 2229 bh = arr[i]; 2230 if (buffer_uptodate(bh)) 2231 end_buffer_async_read(bh, 1); 2232 else 2233 submit_bh(READ, bh); 2234 } 2235 return 0; 2236 } 2237 2238 /* utility function for filesystems that need to do work on expanding 2239 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2240 * deal with the hole. 2241 */ 2242 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2243 { 2244 struct address_space *mapping = inode->i_mapping; 2245 struct page *page; 2246 void *fsdata; 2247 unsigned long limit; 2248 int err; 2249 2250 err = -EFBIG; 2251 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 2252 if (limit != RLIM_INFINITY && size > (loff_t)limit) { 2253 send_sig(SIGXFSZ, current, 0); 2254 goto out; 2255 } 2256 if (size > inode->i_sb->s_maxbytes) 2257 goto out; 2258 2259 err = pagecache_write_begin(NULL, mapping, size, 0, 2260 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2261 &page, &fsdata); 2262 if (err) 2263 goto out; 2264 2265 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2266 BUG_ON(err > 0); 2267 2268 out: 2269 return err; 2270 } 2271 2272 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2273 loff_t pos, loff_t *bytes) 2274 { 2275 struct inode *inode = mapping->host; 2276 unsigned blocksize = 1 << inode->i_blkbits; 2277 struct page *page; 2278 void *fsdata; 2279 pgoff_t index, curidx; 2280 loff_t curpos; 2281 unsigned zerofrom, offset, len; 2282 int err = 0; 2283 2284 index = pos >> PAGE_CACHE_SHIFT; 2285 offset = pos & ~PAGE_CACHE_MASK; 2286 2287 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { 2288 zerofrom = curpos & ~PAGE_CACHE_MASK; 2289 if (zerofrom & (blocksize-1)) { 2290 *bytes |= (blocksize-1); 2291 (*bytes)++; 2292 } 2293 len = PAGE_CACHE_SIZE - zerofrom; 2294 2295 err = pagecache_write_begin(file, mapping, curpos, len, 2296 AOP_FLAG_UNINTERRUPTIBLE, 2297 &page, &fsdata); 2298 if (err) 2299 goto out; 2300 zero_user(page, zerofrom, len); 2301 err = pagecache_write_end(file, mapping, curpos, len, len, 2302 page, fsdata); 2303 if (err < 0) 2304 goto out; 2305 BUG_ON(err != len); 2306 err = 0; 2307 2308 balance_dirty_pages_ratelimited(mapping); 2309 } 2310 2311 /* page covers the boundary, find the boundary offset */ 2312 if (index == curidx) { 2313 zerofrom = curpos & ~PAGE_CACHE_MASK; 2314 /* if we will expand the thing last block will be filled */ 2315 if (offset <= zerofrom) { 2316 goto out; 2317 } 2318 if (zerofrom & (blocksize-1)) { 2319 *bytes |= (blocksize-1); 2320 (*bytes)++; 2321 } 2322 len = offset - zerofrom; 2323 2324 err = pagecache_write_begin(file, mapping, curpos, len, 2325 AOP_FLAG_UNINTERRUPTIBLE, 2326 &page, &fsdata); 2327 if (err) 2328 goto out; 2329 zero_user(page, zerofrom, len); 2330 err = pagecache_write_end(file, mapping, curpos, len, len, 2331 page, fsdata); 2332 if (err < 0) 2333 goto out; 2334 BUG_ON(err != len); 2335 err = 0; 2336 } 2337 out: 2338 return err; 2339 } 2340 2341 /* 2342 * For moronic filesystems that do not allow holes in file. 2343 * We may have to extend the file. 2344 */ 2345 int cont_write_begin(struct file *file, struct address_space *mapping, 2346 loff_t pos, unsigned len, unsigned flags, 2347 struct page **pagep, void **fsdata, 2348 get_block_t *get_block, loff_t *bytes) 2349 { 2350 struct inode *inode = mapping->host; 2351 unsigned blocksize = 1 << inode->i_blkbits; 2352 unsigned zerofrom; 2353 int err; 2354 2355 err = cont_expand_zero(file, mapping, pos, bytes); 2356 if (err) 2357 goto out; 2358 2359 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2360 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2361 *bytes |= (blocksize-1); 2362 (*bytes)++; 2363 } 2364 2365 *pagep = NULL; 2366 err = block_write_begin(file, mapping, pos, len, 2367 flags, pagep, fsdata, get_block); 2368 out: 2369 return err; 2370 } 2371 2372 int block_prepare_write(struct page *page, unsigned from, unsigned to, 2373 get_block_t *get_block) 2374 { 2375 struct inode *inode = page->mapping->host; 2376 int err = __block_prepare_write(inode, page, from, to, get_block); 2377 if (err) 2378 ClearPageUptodate(page); 2379 return err; 2380 } 2381 2382 int block_commit_write(struct page *page, unsigned from, unsigned to) 2383 { 2384 struct inode *inode = page->mapping->host; 2385 __block_commit_write(inode,page,from,to); 2386 return 0; 2387 } 2388 2389 /* 2390 * block_page_mkwrite() is not allowed to change the file size as it gets 2391 * called from a page fault handler when a page is first dirtied. Hence we must 2392 * be careful to check for EOF conditions here. We set the page up correctly 2393 * for a written page which means we get ENOSPC checking when writing into 2394 * holes and correct delalloc and unwritten extent mapping on filesystems that 2395 * support these features. 2396 * 2397 * We are not allowed to take the i_mutex here so we have to play games to 2398 * protect against truncate races as the page could now be beyond EOF. Because 2399 * vmtruncate() writes the inode size before removing pages, once we have the 2400 * page lock we can determine safely if the page is beyond EOF. If it is not 2401 * beyond EOF, then the page is guaranteed safe against truncation until we 2402 * unlock the page. 2403 */ 2404 int 2405 block_page_mkwrite(struct vm_area_struct *vma, struct page *page, 2406 get_block_t get_block) 2407 { 2408 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 2409 unsigned long end; 2410 loff_t size; 2411 int ret = -EINVAL; 2412 2413 lock_page(page); 2414 size = i_size_read(inode); 2415 if ((page->mapping != inode->i_mapping) || 2416 (page_offset(page) > size)) { 2417 /* page got truncated out from underneath us */ 2418 goto out_unlock; 2419 } 2420 2421 /* page is wholly or partially inside EOF */ 2422 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) 2423 end = size & ~PAGE_CACHE_MASK; 2424 else 2425 end = PAGE_CACHE_SIZE; 2426 2427 ret = block_prepare_write(page, 0, end, get_block); 2428 if (!ret) 2429 ret = block_commit_write(page, 0, end); 2430 2431 out_unlock: 2432 unlock_page(page); 2433 return ret; 2434 } 2435 2436 /* 2437 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2438 * immediately, while under the page lock. So it needs a special end_io 2439 * handler which does not touch the bh after unlocking it. 2440 */ 2441 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2442 { 2443 __end_buffer_read_notouch(bh, uptodate); 2444 } 2445 2446 /* 2447 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2448 * the page (converting it to circular linked list and taking care of page 2449 * dirty races). 2450 */ 2451 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2452 { 2453 struct buffer_head *bh; 2454 2455 BUG_ON(!PageLocked(page)); 2456 2457 spin_lock(&page->mapping->private_lock); 2458 bh = head; 2459 do { 2460 if (PageDirty(page)) 2461 set_buffer_dirty(bh); 2462 if (!bh->b_this_page) 2463 bh->b_this_page = head; 2464 bh = bh->b_this_page; 2465 } while (bh != head); 2466 attach_page_buffers(page, head); 2467 spin_unlock(&page->mapping->private_lock); 2468 } 2469 2470 /* 2471 * On entry, the page is fully not uptodate. 2472 * On exit the page is fully uptodate in the areas outside (from,to) 2473 */ 2474 int nobh_write_begin(struct file *file, struct address_space *mapping, 2475 loff_t pos, unsigned len, unsigned flags, 2476 struct page **pagep, void **fsdata, 2477 get_block_t *get_block) 2478 { 2479 struct inode *inode = mapping->host; 2480 const unsigned blkbits = inode->i_blkbits; 2481 const unsigned blocksize = 1 << blkbits; 2482 struct buffer_head *head, *bh; 2483 struct page *page; 2484 pgoff_t index; 2485 unsigned from, to; 2486 unsigned block_in_page; 2487 unsigned block_start, block_end; 2488 sector_t block_in_file; 2489 int nr_reads = 0; 2490 int ret = 0; 2491 int is_mapped_to_disk = 1; 2492 2493 index = pos >> PAGE_CACHE_SHIFT; 2494 from = pos & (PAGE_CACHE_SIZE - 1); 2495 to = from + len; 2496 2497 page = __grab_cache_page(mapping, index); 2498 if (!page) 2499 return -ENOMEM; 2500 *pagep = page; 2501 *fsdata = NULL; 2502 2503 if (page_has_buffers(page)) { 2504 unlock_page(page); 2505 page_cache_release(page); 2506 *pagep = NULL; 2507 return block_write_begin(file, mapping, pos, len, flags, pagep, 2508 fsdata, get_block); 2509 } 2510 2511 if (PageMappedToDisk(page)) 2512 return 0; 2513 2514 /* 2515 * Allocate buffers so that we can keep track of state, and potentially 2516 * attach them to the page if an error occurs. In the common case of 2517 * no error, they will just be freed again without ever being attached 2518 * to the page (which is all OK, because we're under the page lock). 2519 * 2520 * Be careful: the buffer linked list is a NULL terminated one, rather 2521 * than the circular one we're used to. 2522 */ 2523 head = alloc_page_buffers(page, blocksize, 0); 2524 if (!head) { 2525 ret = -ENOMEM; 2526 goto out_release; 2527 } 2528 2529 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2530 2531 /* 2532 * We loop across all blocks in the page, whether or not they are 2533 * part of the affected region. This is so we can discover if the 2534 * page is fully mapped-to-disk. 2535 */ 2536 for (block_start = 0, block_in_page = 0, bh = head; 2537 block_start < PAGE_CACHE_SIZE; 2538 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2539 int create; 2540 2541 block_end = block_start + blocksize; 2542 bh->b_state = 0; 2543 create = 1; 2544 if (block_start >= to) 2545 create = 0; 2546 ret = get_block(inode, block_in_file + block_in_page, 2547 bh, create); 2548 if (ret) 2549 goto failed; 2550 if (!buffer_mapped(bh)) 2551 is_mapped_to_disk = 0; 2552 if (buffer_new(bh)) 2553 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 2554 if (PageUptodate(page)) { 2555 set_buffer_uptodate(bh); 2556 continue; 2557 } 2558 if (buffer_new(bh) || !buffer_mapped(bh)) { 2559 zero_user_segments(page, block_start, from, 2560 to, block_end); 2561 continue; 2562 } 2563 if (buffer_uptodate(bh)) 2564 continue; /* reiserfs does this */ 2565 if (block_start < from || block_end > to) { 2566 lock_buffer(bh); 2567 bh->b_end_io = end_buffer_read_nobh; 2568 submit_bh(READ, bh); 2569 nr_reads++; 2570 } 2571 } 2572 2573 if (nr_reads) { 2574 /* 2575 * The page is locked, so these buffers are protected from 2576 * any VM or truncate activity. Hence we don't need to care 2577 * for the buffer_head refcounts. 2578 */ 2579 for (bh = head; bh; bh = bh->b_this_page) { 2580 wait_on_buffer(bh); 2581 if (!buffer_uptodate(bh)) 2582 ret = -EIO; 2583 } 2584 if (ret) 2585 goto failed; 2586 } 2587 2588 if (is_mapped_to_disk) 2589 SetPageMappedToDisk(page); 2590 2591 *fsdata = head; /* to be released by nobh_write_end */ 2592 2593 return 0; 2594 2595 failed: 2596 BUG_ON(!ret); 2597 /* 2598 * Error recovery is a bit difficult. We need to zero out blocks that 2599 * were newly allocated, and dirty them to ensure they get written out. 2600 * Buffers need to be attached to the page at this point, otherwise 2601 * the handling of potential IO errors during writeout would be hard 2602 * (could try doing synchronous writeout, but what if that fails too?) 2603 */ 2604 attach_nobh_buffers(page, head); 2605 page_zero_new_buffers(page, from, to); 2606 2607 out_release: 2608 unlock_page(page); 2609 page_cache_release(page); 2610 *pagep = NULL; 2611 2612 if (pos + len > inode->i_size) 2613 vmtruncate(inode, inode->i_size); 2614 2615 return ret; 2616 } 2617 EXPORT_SYMBOL(nobh_write_begin); 2618 2619 int nobh_write_end(struct file *file, struct address_space *mapping, 2620 loff_t pos, unsigned len, unsigned copied, 2621 struct page *page, void *fsdata) 2622 { 2623 struct inode *inode = page->mapping->host; 2624 struct buffer_head *head = fsdata; 2625 struct buffer_head *bh; 2626 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2627 2628 if (unlikely(copied < len) && !page_has_buffers(page)) 2629 attach_nobh_buffers(page, head); 2630 if (page_has_buffers(page)) 2631 return generic_write_end(file, mapping, pos, len, 2632 copied, page, fsdata); 2633 2634 SetPageUptodate(page); 2635 set_page_dirty(page); 2636 if (pos+copied > inode->i_size) { 2637 i_size_write(inode, pos+copied); 2638 mark_inode_dirty(inode); 2639 } 2640 2641 unlock_page(page); 2642 page_cache_release(page); 2643 2644 while (head) { 2645 bh = head; 2646 head = head->b_this_page; 2647 free_buffer_head(bh); 2648 } 2649 2650 return copied; 2651 } 2652 EXPORT_SYMBOL(nobh_write_end); 2653 2654 /* 2655 * nobh_writepage() - based on block_full_write_page() except 2656 * that it tries to operate without attaching bufferheads to 2657 * the page. 2658 */ 2659 int nobh_writepage(struct page *page, get_block_t *get_block, 2660 struct writeback_control *wbc) 2661 { 2662 struct inode * const inode = page->mapping->host; 2663 loff_t i_size = i_size_read(inode); 2664 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2665 unsigned offset; 2666 int ret; 2667 2668 /* Is the page fully inside i_size? */ 2669 if (page->index < end_index) 2670 goto out; 2671 2672 /* Is the page fully outside i_size? (truncate in progress) */ 2673 offset = i_size & (PAGE_CACHE_SIZE-1); 2674 if (page->index >= end_index+1 || !offset) { 2675 /* 2676 * The page may have dirty, unmapped buffers. For example, 2677 * they may have been added in ext3_writepage(). Make them 2678 * freeable here, so the page does not leak. 2679 */ 2680 #if 0 2681 /* Not really sure about this - do we need this ? */ 2682 if (page->mapping->a_ops->invalidatepage) 2683 page->mapping->a_ops->invalidatepage(page, offset); 2684 #endif 2685 unlock_page(page); 2686 return 0; /* don't care */ 2687 } 2688 2689 /* 2690 * The page straddles i_size. It must be zeroed out on each and every 2691 * writepage invocation because it may be mmapped. "A file is mapped 2692 * in multiples of the page size. For a file that is not a multiple of 2693 * the page size, the remaining memory is zeroed when mapped, and 2694 * writes to that region are not written out to the file." 2695 */ 2696 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2697 out: 2698 ret = mpage_writepage(page, get_block, wbc); 2699 if (ret == -EAGAIN) 2700 ret = __block_write_full_page(inode, page, get_block, wbc); 2701 return ret; 2702 } 2703 EXPORT_SYMBOL(nobh_writepage); 2704 2705 int nobh_truncate_page(struct address_space *mapping, 2706 loff_t from, get_block_t *get_block) 2707 { 2708 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2709 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2710 unsigned blocksize; 2711 sector_t iblock; 2712 unsigned length, pos; 2713 struct inode *inode = mapping->host; 2714 struct page *page; 2715 struct buffer_head map_bh; 2716 int err; 2717 2718 blocksize = 1 << inode->i_blkbits; 2719 length = offset & (blocksize - 1); 2720 2721 /* Block boundary? Nothing to do */ 2722 if (!length) 2723 return 0; 2724 2725 length = blocksize - length; 2726 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2727 2728 page = grab_cache_page(mapping, index); 2729 err = -ENOMEM; 2730 if (!page) 2731 goto out; 2732 2733 if (page_has_buffers(page)) { 2734 has_buffers: 2735 unlock_page(page); 2736 page_cache_release(page); 2737 return block_truncate_page(mapping, from, get_block); 2738 } 2739 2740 /* Find the buffer that contains "offset" */ 2741 pos = blocksize; 2742 while (offset >= pos) { 2743 iblock++; 2744 pos += blocksize; 2745 } 2746 2747 err = get_block(inode, iblock, &map_bh, 0); 2748 if (err) 2749 goto unlock; 2750 /* unmapped? It's a hole - nothing to do */ 2751 if (!buffer_mapped(&map_bh)) 2752 goto unlock; 2753 2754 /* Ok, it's mapped. Make sure it's up-to-date */ 2755 if (!PageUptodate(page)) { 2756 err = mapping->a_ops->readpage(NULL, page); 2757 if (err) { 2758 page_cache_release(page); 2759 goto out; 2760 } 2761 lock_page(page); 2762 if (!PageUptodate(page)) { 2763 err = -EIO; 2764 goto unlock; 2765 } 2766 if (page_has_buffers(page)) 2767 goto has_buffers; 2768 } 2769 zero_user(page, offset, length); 2770 set_page_dirty(page); 2771 err = 0; 2772 2773 unlock: 2774 unlock_page(page); 2775 page_cache_release(page); 2776 out: 2777 return err; 2778 } 2779 EXPORT_SYMBOL(nobh_truncate_page); 2780 2781 int block_truncate_page(struct address_space *mapping, 2782 loff_t from, get_block_t *get_block) 2783 { 2784 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2785 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2786 unsigned blocksize; 2787 sector_t iblock; 2788 unsigned length, pos; 2789 struct inode *inode = mapping->host; 2790 struct page *page; 2791 struct buffer_head *bh; 2792 int err; 2793 2794 blocksize = 1 << inode->i_blkbits; 2795 length = offset & (blocksize - 1); 2796 2797 /* Block boundary? Nothing to do */ 2798 if (!length) 2799 return 0; 2800 2801 length = blocksize - length; 2802 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2803 2804 page = grab_cache_page(mapping, index); 2805 err = -ENOMEM; 2806 if (!page) 2807 goto out; 2808 2809 if (!page_has_buffers(page)) 2810 create_empty_buffers(page, blocksize, 0); 2811 2812 /* Find the buffer that contains "offset" */ 2813 bh = page_buffers(page); 2814 pos = blocksize; 2815 while (offset >= pos) { 2816 bh = bh->b_this_page; 2817 iblock++; 2818 pos += blocksize; 2819 } 2820 2821 err = 0; 2822 if (!buffer_mapped(bh)) { 2823 WARN_ON(bh->b_size != blocksize); 2824 err = get_block(inode, iblock, bh, 0); 2825 if (err) 2826 goto unlock; 2827 /* unmapped? It's a hole - nothing to do */ 2828 if (!buffer_mapped(bh)) 2829 goto unlock; 2830 } 2831 2832 /* Ok, it's mapped. Make sure it's up-to-date */ 2833 if (PageUptodate(page)) 2834 set_buffer_uptodate(bh); 2835 2836 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2837 err = -EIO; 2838 ll_rw_block(READ, 1, &bh); 2839 wait_on_buffer(bh); 2840 /* Uhhuh. Read error. Complain and punt. */ 2841 if (!buffer_uptodate(bh)) 2842 goto unlock; 2843 } 2844 2845 zero_user(page, offset, length); 2846 mark_buffer_dirty(bh); 2847 err = 0; 2848 2849 unlock: 2850 unlock_page(page); 2851 page_cache_release(page); 2852 out: 2853 return err; 2854 } 2855 2856 /* 2857 * The generic ->writepage function for buffer-backed address_spaces 2858 */ 2859 int block_write_full_page(struct page *page, get_block_t *get_block, 2860 struct writeback_control *wbc) 2861 { 2862 struct inode * const inode = page->mapping->host; 2863 loff_t i_size = i_size_read(inode); 2864 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2865 unsigned offset; 2866 2867 /* Is the page fully inside i_size? */ 2868 if (page->index < end_index) 2869 return __block_write_full_page(inode, page, get_block, wbc); 2870 2871 /* Is the page fully outside i_size? (truncate in progress) */ 2872 offset = i_size & (PAGE_CACHE_SIZE-1); 2873 if (page->index >= end_index+1 || !offset) { 2874 /* 2875 * The page may have dirty, unmapped buffers. For example, 2876 * they may have been added in ext3_writepage(). Make them 2877 * freeable here, so the page does not leak. 2878 */ 2879 do_invalidatepage(page, 0); 2880 unlock_page(page); 2881 return 0; /* don't care */ 2882 } 2883 2884 /* 2885 * The page straddles i_size. It must be zeroed out on each and every 2886 * writepage invokation because it may be mmapped. "A file is mapped 2887 * in multiples of the page size. For a file that is not a multiple of 2888 * the page size, the remaining memory is zeroed when mapped, and 2889 * writes to that region are not written out to the file." 2890 */ 2891 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2892 return __block_write_full_page(inode, page, get_block, wbc); 2893 } 2894 2895 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2896 get_block_t *get_block) 2897 { 2898 struct buffer_head tmp; 2899 struct inode *inode = mapping->host; 2900 tmp.b_state = 0; 2901 tmp.b_blocknr = 0; 2902 tmp.b_size = 1 << inode->i_blkbits; 2903 get_block(inode, block, &tmp, 0); 2904 return tmp.b_blocknr; 2905 } 2906 2907 static void end_bio_bh_io_sync(struct bio *bio, int err) 2908 { 2909 struct buffer_head *bh = bio->bi_private; 2910 2911 if (err == -EOPNOTSUPP) { 2912 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2913 set_bit(BH_Eopnotsupp, &bh->b_state); 2914 } 2915 2916 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2917 bio_put(bio); 2918 } 2919 2920 int submit_bh(int rw, struct buffer_head * bh) 2921 { 2922 struct bio *bio; 2923 int ret = 0; 2924 2925 BUG_ON(!buffer_locked(bh)); 2926 BUG_ON(!buffer_mapped(bh)); 2927 BUG_ON(!bh->b_end_io); 2928 2929 if (buffer_ordered(bh) && (rw == WRITE)) 2930 rw = WRITE_BARRIER; 2931 2932 /* 2933 * Only clear out a write error when rewriting, should this 2934 * include WRITE_SYNC as well? 2935 */ 2936 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER)) 2937 clear_buffer_write_io_error(bh); 2938 2939 /* 2940 * from here on down, it's all bio -- do the initial mapping, 2941 * submit_bio -> generic_make_request may further map this bio around 2942 */ 2943 bio = bio_alloc(GFP_NOIO, 1); 2944 2945 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2946 bio->bi_bdev = bh->b_bdev; 2947 bio->bi_io_vec[0].bv_page = bh->b_page; 2948 bio->bi_io_vec[0].bv_len = bh->b_size; 2949 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 2950 2951 bio->bi_vcnt = 1; 2952 bio->bi_idx = 0; 2953 bio->bi_size = bh->b_size; 2954 2955 bio->bi_end_io = end_bio_bh_io_sync; 2956 bio->bi_private = bh; 2957 2958 bio_get(bio); 2959 submit_bio(rw, bio); 2960 2961 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2962 ret = -EOPNOTSUPP; 2963 2964 bio_put(bio); 2965 return ret; 2966 } 2967 2968 /** 2969 * ll_rw_block: low-level access to block devices (DEPRECATED) 2970 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead) 2971 * @nr: number of &struct buffer_heads in the array 2972 * @bhs: array of pointers to &struct buffer_head 2973 * 2974 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 2975 * requests an I/O operation on them, either a %READ or a %WRITE. The third 2976 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers 2977 * are sent to disk. The fourth %READA option is described in the documentation 2978 * for generic_make_request() which ll_rw_block() calls. 2979 * 2980 * This function drops any buffer that it cannot get a lock on (with the 2981 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be 2982 * clean when doing a write request, and any buffer that appears to be 2983 * up-to-date when doing read request. Further it marks as clean buffers that 2984 * are processed for writing (the buffer cache won't assume that they are 2985 * actually clean until the buffer gets unlocked). 2986 * 2987 * ll_rw_block sets b_end_io to simple completion handler that marks 2988 * the buffer up-to-date (if approriate), unlocks the buffer and wakes 2989 * any waiters. 2990 * 2991 * All of the buffers must be for the same device, and must also be a 2992 * multiple of the current approved size for the device. 2993 */ 2994 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 2995 { 2996 int i; 2997 2998 for (i = 0; i < nr; i++) { 2999 struct buffer_head *bh = bhs[i]; 3000 3001 if (rw == SWRITE || rw == SWRITE_SYNC) 3002 lock_buffer(bh); 3003 else if (!trylock_buffer(bh)) 3004 continue; 3005 3006 if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC) { 3007 if (test_clear_buffer_dirty(bh)) { 3008 bh->b_end_io = end_buffer_write_sync; 3009 get_bh(bh); 3010 if (rw == SWRITE_SYNC) 3011 submit_bh(WRITE_SYNC, bh); 3012 else 3013 submit_bh(WRITE, bh); 3014 continue; 3015 } 3016 } else { 3017 if (!buffer_uptodate(bh)) { 3018 bh->b_end_io = end_buffer_read_sync; 3019 get_bh(bh); 3020 submit_bh(rw, bh); 3021 continue; 3022 } 3023 } 3024 unlock_buffer(bh); 3025 } 3026 } 3027 3028 /* 3029 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3030 * and then start new I/O and then wait upon it. The caller must have a ref on 3031 * the buffer_head. 3032 */ 3033 int sync_dirty_buffer(struct buffer_head *bh) 3034 { 3035 int ret = 0; 3036 3037 WARN_ON(atomic_read(&bh->b_count) < 1); 3038 lock_buffer(bh); 3039 if (test_clear_buffer_dirty(bh)) { 3040 get_bh(bh); 3041 bh->b_end_io = end_buffer_write_sync; 3042 ret = submit_bh(WRITE_SYNC, bh); 3043 wait_on_buffer(bh); 3044 if (buffer_eopnotsupp(bh)) { 3045 clear_buffer_eopnotsupp(bh); 3046 ret = -EOPNOTSUPP; 3047 } 3048 if (!ret && !buffer_uptodate(bh)) 3049 ret = -EIO; 3050 } else { 3051 unlock_buffer(bh); 3052 } 3053 return ret; 3054 } 3055 3056 /* 3057 * try_to_free_buffers() checks if all the buffers on this particular page 3058 * are unused, and releases them if so. 3059 * 3060 * Exclusion against try_to_free_buffers may be obtained by either 3061 * locking the page or by holding its mapping's private_lock. 3062 * 3063 * If the page is dirty but all the buffers are clean then we need to 3064 * be sure to mark the page clean as well. This is because the page 3065 * may be against a block device, and a later reattachment of buffers 3066 * to a dirty page will set *all* buffers dirty. Which would corrupt 3067 * filesystem data on the same device. 3068 * 3069 * The same applies to regular filesystem pages: if all the buffers are 3070 * clean then we set the page clean and proceed. To do that, we require 3071 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3072 * private_lock. 3073 * 3074 * try_to_free_buffers() is non-blocking. 3075 */ 3076 static inline int buffer_busy(struct buffer_head *bh) 3077 { 3078 return atomic_read(&bh->b_count) | 3079 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3080 } 3081 3082 static int 3083 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3084 { 3085 struct buffer_head *head = page_buffers(page); 3086 struct buffer_head *bh; 3087 3088 bh = head; 3089 do { 3090 if (buffer_write_io_error(bh) && page->mapping) 3091 set_bit(AS_EIO, &page->mapping->flags); 3092 if (buffer_busy(bh)) 3093 goto failed; 3094 bh = bh->b_this_page; 3095 } while (bh != head); 3096 3097 do { 3098 struct buffer_head *next = bh->b_this_page; 3099 3100 if (bh->b_assoc_map) 3101 __remove_assoc_queue(bh); 3102 bh = next; 3103 } while (bh != head); 3104 *buffers_to_free = head; 3105 __clear_page_buffers(page); 3106 return 1; 3107 failed: 3108 return 0; 3109 } 3110 3111 int try_to_free_buffers(struct page *page) 3112 { 3113 struct address_space * const mapping = page->mapping; 3114 struct buffer_head *buffers_to_free = NULL; 3115 int ret = 0; 3116 3117 BUG_ON(!PageLocked(page)); 3118 if (PageWriteback(page)) 3119 return 0; 3120 3121 if (mapping == NULL) { /* can this still happen? */ 3122 ret = drop_buffers(page, &buffers_to_free); 3123 goto out; 3124 } 3125 3126 spin_lock(&mapping->private_lock); 3127 ret = drop_buffers(page, &buffers_to_free); 3128 3129 /* 3130 * If the filesystem writes its buffers by hand (eg ext3) 3131 * then we can have clean buffers against a dirty page. We 3132 * clean the page here; otherwise the VM will never notice 3133 * that the filesystem did any IO at all. 3134 * 3135 * Also, during truncate, discard_buffer will have marked all 3136 * the page's buffers clean. We discover that here and clean 3137 * the page also. 3138 * 3139 * private_lock must be held over this entire operation in order 3140 * to synchronise against __set_page_dirty_buffers and prevent the 3141 * dirty bit from being lost. 3142 */ 3143 if (ret) 3144 cancel_dirty_page(page, PAGE_CACHE_SIZE); 3145 spin_unlock(&mapping->private_lock); 3146 out: 3147 if (buffers_to_free) { 3148 struct buffer_head *bh = buffers_to_free; 3149 3150 do { 3151 struct buffer_head *next = bh->b_this_page; 3152 free_buffer_head(bh); 3153 bh = next; 3154 } while (bh != buffers_to_free); 3155 } 3156 return ret; 3157 } 3158 EXPORT_SYMBOL(try_to_free_buffers); 3159 3160 void block_sync_page(struct page *page) 3161 { 3162 struct address_space *mapping; 3163 3164 smp_mb(); 3165 mapping = page_mapping(page); 3166 if (mapping) 3167 blk_run_backing_dev(mapping->backing_dev_info, page); 3168 } 3169 3170 /* 3171 * There are no bdflush tunables left. But distributions are 3172 * still running obsolete flush daemons, so we terminate them here. 3173 * 3174 * Use of bdflush() is deprecated and will be removed in a future kernel. 3175 * The `pdflush' kernel threads fully replace bdflush daemons and this call. 3176 */ 3177 asmlinkage long sys_bdflush(int func, long data) 3178 { 3179 static int msg_count; 3180 3181 if (!capable(CAP_SYS_ADMIN)) 3182 return -EPERM; 3183 3184 if (msg_count < 5) { 3185 msg_count++; 3186 printk(KERN_INFO 3187 "warning: process `%s' used the obsolete bdflush" 3188 " system call\n", current->comm); 3189 printk(KERN_INFO "Fix your initscripts?\n"); 3190 } 3191 3192 if (func == 1) 3193 do_exit(0); 3194 return 0; 3195 } 3196 3197 /* 3198 * Buffer-head allocation 3199 */ 3200 static struct kmem_cache *bh_cachep; 3201 3202 /* 3203 * Once the number of bh's in the machine exceeds this level, we start 3204 * stripping them in writeback. 3205 */ 3206 static int max_buffer_heads; 3207 3208 int buffer_heads_over_limit; 3209 3210 struct bh_accounting { 3211 int nr; /* Number of live bh's */ 3212 int ratelimit; /* Limit cacheline bouncing */ 3213 }; 3214 3215 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3216 3217 static void recalc_bh_state(void) 3218 { 3219 int i; 3220 int tot = 0; 3221 3222 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096) 3223 return; 3224 __get_cpu_var(bh_accounting).ratelimit = 0; 3225 for_each_online_cpu(i) 3226 tot += per_cpu(bh_accounting, i).nr; 3227 buffer_heads_over_limit = (tot > max_buffer_heads); 3228 } 3229 3230 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3231 { 3232 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags); 3233 if (ret) { 3234 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3235 get_cpu_var(bh_accounting).nr++; 3236 recalc_bh_state(); 3237 put_cpu_var(bh_accounting); 3238 } 3239 return ret; 3240 } 3241 EXPORT_SYMBOL(alloc_buffer_head); 3242 3243 void free_buffer_head(struct buffer_head *bh) 3244 { 3245 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3246 kmem_cache_free(bh_cachep, bh); 3247 get_cpu_var(bh_accounting).nr--; 3248 recalc_bh_state(); 3249 put_cpu_var(bh_accounting); 3250 } 3251 EXPORT_SYMBOL(free_buffer_head); 3252 3253 static void buffer_exit_cpu(int cpu) 3254 { 3255 int i; 3256 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3257 3258 for (i = 0; i < BH_LRU_SIZE; i++) { 3259 brelse(b->bhs[i]); 3260 b->bhs[i] = NULL; 3261 } 3262 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr; 3263 per_cpu(bh_accounting, cpu).nr = 0; 3264 put_cpu_var(bh_accounting); 3265 } 3266 3267 static int buffer_cpu_notify(struct notifier_block *self, 3268 unsigned long action, void *hcpu) 3269 { 3270 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 3271 buffer_exit_cpu((unsigned long)hcpu); 3272 return NOTIFY_OK; 3273 } 3274 3275 /** 3276 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3277 * @bh: struct buffer_head 3278 * 3279 * Return true if the buffer is up-to-date and false, 3280 * with the buffer locked, if not. 3281 */ 3282 int bh_uptodate_or_lock(struct buffer_head *bh) 3283 { 3284 if (!buffer_uptodate(bh)) { 3285 lock_buffer(bh); 3286 if (!buffer_uptodate(bh)) 3287 return 0; 3288 unlock_buffer(bh); 3289 } 3290 return 1; 3291 } 3292 EXPORT_SYMBOL(bh_uptodate_or_lock); 3293 3294 /** 3295 * bh_submit_read - Submit a locked buffer for reading 3296 * @bh: struct buffer_head 3297 * 3298 * Returns zero on success and -EIO on error. 3299 */ 3300 int bh_submit_read(struct buffer_head *bh) 3301 { 3302 BUG_ON(!buffer_locked(bh)); 3303 3304 if (buffer_uptodate(bh)) { 3305 unlock_buffer(bh); 3306 return 0; 3307 } 3308 3309 get_bh(bh); 3310 bh->b_end_io = end_buffer_read_sync; 3311 submit_bh(READ, bh); 3312 wait_on_buffer(bh); 3313 if (buffer_uptodate(bh)) 3314 return 0; 3315 return -EIO; 3316 } 3317 EXPORT_SYMBOL(bh_submit_read); 3318 3319 static void 3320 init_buffer_head(void *data) 3321 { 3322 struct buffer_head *bh = data; 3323 3324 memset(bh, 0, sizeof(*bh)); 3325 INIT_LIST_HEAD(&bh->b_assoc_buffers); 3326 } 3327 3328 void __init buffer_init(void) 3329 { 3330 int nrpages; 3331 3332 bh_cachep = kmem_cache_create("buffer_head", 3333 sizeof(struct buffer_head), 0, 3334 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3335 SLAB_MEM_SPREAD), 3336 init_buffer_head); 3337 3338 /* 3339 * Limit the bh occupancy to 10% of ZONE_NORMAL 3340 */ 3341 nrpages = (nr_free_buffer_pages() * 10) / 100; 3342 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3343 hotcpu_notifier(buffer_cpu_notify, 0); 3344 } 3345 3346 EXPORT_SYMBOL(__bforget); 3347 EXPORT_SYMBOL(__brelse); 3348 EXPORT_SYMBOL(__wait_on_buffer); 3349 EXPORT_SYMBOL(block_commit_write); 3350 EXPORT_SYMBOL(block_prepare_write); 3351 EXPORT_SYMBOL(block_page_mkwrite); 3352 EXPORT_SYMBOL(block_read_full_page); 3353 EXPORT_SYMBOL(block_sync_page); 3354 EXPORT_SYMBOL(block_truncate_page); 3355 EXPORT_SYMBOL(block_write_full_page); 3356 EXPORT_SYMBOL(cont_write_begin); 3357 EXPORT_SYMBOL(end_buffer_read_sync); 3358 EXPORT_SYMBOL(end_buffer_write_sync); 3359 EXPORT_SYMBOL(file_fsync); 3360 EXPORT_SYMBOL(fsync_bdev); 3361 EXPORT_SYMBOL(generic_block_bmap); 3362 EXPORT_SYMBOL(generic_cont_expand_simple); 3363 EXPORT_SYMBOL(init_buffer); 3364 EXPORT_SYMBOL(invalidate_bdev); 3365 EXPORT_SYMBOL(ll_rw_block); 3366 EXPORT_SYMBOL(mark_buffer_dirty); 3367 EXPORT_SYMBOL(submit_bh); 3368 EXPORT_SYMBOL(sync_dirty_buffer); 3369 EXPORT_SYMBOL(unlock_buffer); 3370