xref: /linux/fs/buffer.c (revision 04c71976500352d02f60616d2b960267d8c5fe24)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48 
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 
56 static int sync_buffer(void *word)
57 {
58 	struct block_device *bd;
59 	struct buffer_head *bh
60 		= container_of(word, struct buffer_head, b_state);
61 
62 	smp_mb();
63 	bd = bh->b_bdev;
64 	if (bd)
65 		blk_run_address_space(bd->bd_inode->i_mapping);
66 	io_schedule();
67 	return 0;
68 }
69 
70 void fastcall __lock_buffer(struct buffer_head *bh)
71 {
72 	wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 							TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76 
77 void fastcall unlock_buffer(struct buffer_head *bh)
78 {
79 	smp_mb__before_clear_bit();
80 	clear_buffer_locked(bh);
81 	smp_mb__after_clear_bit();
82 	wake_up_bit(&bh->b_state, BH_Lock);
83 }
84 
85 /*
86  * Block until a buffer comes unlocked.  This doesn't stop it
87  * from becoming locked again - you have to lock it yourself
88  * if you want to preserve its state.
89  */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92 	wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93 }
94 
95 static void
96 __clear_page_buffers(struct page *page)
97 {
98 	ClearPagePrivate(page);
99 	set_page_private(page, 0);
100 	page_cache_release(page);
101 }
102 
103 static void buffer_io_error(struct buffer_head *bh)
104 {
105 	char b[BDEVNAME_SIZE];
106 
107 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108 			bdevname(bh->b_bdev, b),
109 			(unsigned long long)bh->b_blocknr);
110 }
111 
112 /*
113  * End-of-IO handler helper function which does not touch the bh after
114  * unlocking it.
115  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
116  * a race there is benign: unlock_buffer() only use the bh's address for
117  * hashing after unlocking the buffer, so it doesn't actually touch the bh
118  * itself.
119  */
120 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
121 {
122 	if (uptodate) {
123 		set_buffer_uptodate(bh);
124 	} else {
125 		/* This happens, due to failed READA attempts. */
126 		clear_buffer_uptodate(bh);
127 	}
128 	unlock_buffer(bh);
129 }
130 
131 /*
132  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
133  * unlock the buffer. This is what ll_rw_block uses too.
134  */
135 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
136 {
137 	__end_buffer_read_notouch(bh, uptodate);
138 	put_bh(bh);
139 }
140 
141 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
142 {
143 	char b[BDEVNAME_SIZE];
144 
145 	if (uptodate) {
146 		set_buffer_uptodate(bh);
147 	} else {
148 		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
149 			buffer_io_error(bh);
150 			printk(KERN_WARNING "lost page write due to "
151 					"I/O error on %s\n",
152 				       bdevname(bh->b_bdev, b));
153 		}
154 		set_buffer_write_io_error(bh);
155 		clear_buffer_uptodate(bh);
156 	}
157 	unlock_buffer(bh);
158 	put_bh(bh);
159 }
160 
161 /*
162  * Write out and wait upon all the dirty data associated with a block
163  * device via its mapping.  Does not take the superblock lock.
164  */
165 int sync_blockdev(struct block_device *bdev)
166 {
167 	int ret = 0;
168 
169 	if (bdev)
170 		ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
171 	return ret;
172 }
173 EXPORT_SYMBOL(sync_blockdev);
174 
175 /*
176  * Write out and wait upon all dirty data associated with this
177  * device.   Filesystem data as well as the underlying block
178  * device.  Takes the superblock lock.
179  */
180 int fsync_bdev(struct block_device *bdev)
181 {
182 	struct super_block *sb = get_super(bdev);
183 	if (sb) {
184 		int res = fsync_super(sb);
185 		drop_super(sb);
186 		return res;
187 	}
188 	return sync_blockdev(bdev);
189 }
190 
191 /**
192  * freeze_bdev  --  lock a filesystem and force it into a consistent state
193  * @bdev:	blockdevice to lock
194  *
195  * This takes the block device bd_mount_sem to make sure no new mounts
196  * happen on bdev until thaw_bdev() is called.
197  * If a superblock is found on this device, we take the s_umount semaphore
198  * on it to make sure nobody unmounts until the snapshot creation is done.
199  */
200 struct super_block *freeze_bdev(struct block_device *bdev)
201 {
202 	struct super_block *sb;
203 
204 	down(&bdev->bd_mount_sem);
205 	sb = get_super(bdev);
206 	if (sb && !(sb->s_flags & MS_RDONLY)) {
207 		sb->s_frozen = SB_FREEZE_WRITE;
208 		smp_wmb();
209 
210 		__fsync_super(sb);
211 
212 		sb->s_frozen = SB_FREEZE_TRANS;
213 		smp_wmb();
214 
215 		sync_blockdev(sb->s_bdev);
216 
217 		if (sb->s_op->write_super_lockfs)
218 			sb->s_op->write_super_lockfs(sb);
219 	}
220 
221 	sync_blockdev(bdev);
222 	return sb;	/* thaw_bdev releases s->s_umount and bd_mount_sem */
223 }
224 EXPORT_SYMBOL(freeze_bdev);
225 
226 /**
227  * thaw_bdev  -- unlock filesystem
228  * @bdev:	blockdevice to unlock
229  * @sb:		associated superblock
230  *
231  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
232  */
233 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
234 {
235 	if (sb) {
236 		BUG_ON(sb->s_bdev != bdev);
237 
238 		if (sb->s_op->unlockfs)
239 			sb->s_op->unlockfs(sb);
240 		sb->s_frozen = SB_UNFROZEN;
241 		smp_wmb();
242 		wake_up(&sb->s_wait_unfrozen);
243 		drop_super(sb);
244 	}
245 
246 	up(&bdev->bd_mount_sem);
247 }
248 EXPORT_SYMBOL(thaw_bdev);
249 
250 /*
251  * Various filesystems appear to want __find_get_block to be non-blocking.
252  * But it's the page lock which protects the buffers.  To get around this,
253  * we get exclusion from try_to_free_buffers with the blockdev mapping's
254  * private_lock.
255  *
256  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
257  * may be quite high.  This code could TryLock the page, and if that
258  * succeeds, there is no need to take private_lock. (But if
259  * private_lock is contended then so is mapping->tree_lock).
260  */
261 static struct buffer_head *
262 __find_get_block_slow(struct block_device *bdev, sector_t block)
263 {
264 	struct inode *bd_inode = bdev->bd_inode;
265 	struct address_space *bd_mapping = bd_inode->i_mapping;
266 	struct buffer_head *ret = NULL;
267 	pgoff_t index;
268 	struct buffer_head *bh;
269 	struct buffer_head *head;
270 	struct page *page;
271 	int all_mapped = 1;
272 
273 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
274 	page = find_get_page(bd_mapping, index);
275 	if (!page)
276 		goto out;
277 
278 	spin_lock(&bd_mapping->private_lock);
279 	if (!page_has_buffers(page))
280 		goto out_unlock;
281 	head = page_buffers(page);
282 	bh = head;
283 	do {
284 		if (bh->b_blocknr == block) {
285 			ret = bh;
286 			get_bh(bh);
287 			goto out_unlock;
288 		}
289 		if (!buffer_mapped(bh))
290 			all_mapped = 0;
291 		bh = bh->b_this_page;
292 	} while (bh != head);
293 
294 	/* we might be here because some of the buffers on this page are
295 	 * not mapped.  This is due to various races between
296 	 * file io on the block device and getblk.  It gets dealt with
297 	 * elsewhere, don't buffer_error if we had some unmapped buffers
298 	 */
299 	if (all_mapped) {
300 		printk("__find_get_block_slow() failed. "
301 			"block=%llu, b_blocknr=%llu\n",
302 			(unsigned long long)block,
303 			(unsigned long long)bh->b_blocknr);
304 		printk("b_state=0x%08lx, b_size=%zu\n",
305 			bh->b_state, bh->b_size);
306 		printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
307 	}
308 out_unlock:
309 	spin_unlock(&bd_mapping->private_lock);
310 	page_cache_release(page);
311 out:
312 	return ret;
313 }
314 
315 /* If invalidate_buffers() will trash dirty buffers, it means some kind
316    of fs corruption is going on. Trashing dirty data always imply losing
317    information that was supposed to be just stored on the physical layer
318    by the user.
319 
320    Thus invalidate_buffers in general usage is not allwowed to trash
321    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
322    be preserved.  These buffers are simply skipped.
323 
324    We also skip buffers which are still in use.  For example this can
325    happen if a userspace program is reading the block device.
326 
327    NOTE: In the case where the user removed a removable-media-disk even if
328    there's still dirty data not synced on disk (due a bug in the device driver
329    or due an error of the user), by not destroying the dirty buffers we could
330    generate corruption also on the next media inserted, thus a parameter is
331    necessary to handle this case in the most safe way possible (trying
332    to not corrupt also the new disk inserted with the data belonging to
333    the old now corrupted disk). Also for the ramdisk the natural thing
334    to do in order to release the ramdisk memory is to destroy dirty buffers.
335 
336    These are two special cases. Normal usage imply the device driver
337    to issue a sync on the device (without waiting I/O completion) and
338    then an invalidate_buffers call that doesn't trash dirty buffers.
339 
340    For handling cache coherency with the blkdev pagecache the 'update' case
341    is been introduced. It is needed to re-read from disk any pinned
342    buffer. NOTE: re-reading from disk is destructive so we can do it only
343    when we assume nobody is changing the buffercache under our I/O and when
344    we think the disk contains more recent information than the buffercache.
345    The update == 1 pass marks the buffers we need to update, the update == 2
346    pass does the actual I/O. */
347 void invalidate_bdev(struct block_device *bdev)
348 {
349 	struct address_space *mapping = bdev->bd_inode->i_mapping;
350 
351 	if (mapping->nrpages == 0)
352 		return;
353 
354 	invalidate_bh_lrus();
355 	invalidate_mapping_pages(mapping, 0, -1);
356 }
357 
358 /*
359  * Kick pdflush then try to free up some ZONE_NORMAL memory.
360  */
361 static void free_more_memory(void)
362 {
363 	struct zone **zones;
364 	pg_data_t *pgdat;
365 
366 	wakeup_pdflush(1024);
367 	yield();
368 
369 	for_each_online_pgdat(pgdat) {
370 		zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
371 		if (*zones)
372 			try_to_free_pages(zones, 0, GFP_NOFS);
373 	}
374 }
375 
376 /*
377  * I/O completion handler for block_read_full_page() - pages
378  * which come unlocked at the end of I/O.
379  */
380 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
381 {
382 	unsigned long flags;
383 	struct buffer_head *first;
384 	struct buffer_head *tmp;
385 	struct page *page;
386 	int page_uptodate = 1;
387 
388 	BUG_ON(!buffer_async_read(bh));
389 
390 	page = bh->b_page;
391 	if (uptodate) {
392 		set_buffer_uptodate(bh);
393 	} else {
394 		clear_buffer_uptodate(bh);
395 		if (printk_ratelimit())
396 			buffer_io_error(bh);
397 		SetPageError(page);
398 	}
399 
400 	/*
401 	 * Be _very_ careful from here on. Bad things can happen if
402 	 * two buffer heads end IO at almost the same time and both
403 	 * decide that the page is now completely done.
404 	 */
405 	first = page_buffers(page);
406 	local_irq_save(flags);
407 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
408 	clear_buffer_async_read(bh);
409 	unlock_buffer(bh);
410 	tmp = bh;
411 	do {
412 		if (!buffer_uptodate(tmp))
413 			page_uptodate = 0;
414 		if (buffer_async_read(tmp)) {
415 			BUG_ON(!buffer_locked(tmp));
416 			goto still_busy;
417 		}
418 		tmp = tmp->b_this_page;
419 	} while (tmp != bh);
420 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
421 	local_irq_restore(flags);
422 
423 	/*
424 	 * If none of the buffers had errors and they are all
425 	 * uptodate then we can set the page uptodate.
426 	 */
427 	if (page_uptodate && !PageError(page))
428 		SetPageUptodate(page);
429 	unlock_page(page);
430 	return;
431 
432 still_busy:
433 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
434 	local_irq_restore(flags);
435 	return;
436 }
437 
438 /*
439  * Completion handler for block_write_full_page() - pages which are unlocked
440  * during I/O, and which have PageWriteback cleared upon I/O completion.
441  */
442 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
443 {
444 	char b[BDEVNAME_SIZE];
445 	unsigned long flags;
446 	struct buffer_head *first;
447 	struct buffer_head *tmp;
448 	struct page *page;
449 
450 	BUG_ON(!buffer_async_write(bh));
451 
452 	page = bh->b_page;
453 	if (uptodate) {
454 		set_buffer_uptodate(bh);
455 	} else {
456 		if (printk_ratelimit()) {
457 			buffer_io_error(bh);
458 			printk(KERN_WARNING "lost page write due to "
459 					"I/O error on %s\n",
460 			       bdevname(bh->b_bdev, b));
461 		}
462 		set_bit(AS_EIO, &page->mapping->flags);
463 		set_buffer_write_io_error(bh);
464 		clear_buffer_uptodate(bh);
465 		SetPageError(page);
466 	}
467 
468 	first = page_buffers(page);
469 	local_irq_save(flags);
470 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
471 
472 	clear_buffer_async_write(bh);
473 	unlock_buffer(bh);
474 	tmp = bh->b_this_page;
475 	while (tmp != bh) {
476 		if (buffer_async_write(tmp)) {
477 			BUG_ON(!buffer_locked(tmp));
478 			goto still_busy;
479 		}
480 		tmp = tmp->b_this_page;
481 	}
482 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
483 	local_irq_restore(flags);
484 	end_page_writeback(page);
485 	return;
486 
487 still_busy:
488 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
489 	local_irq_restore(flags);
490 	return;
491 }
492 
493 /*
494  * If a page's buffers are under async readin (end_buffer_async_read
495  * completion) then there is a possibility that another thread of
496  * control could lock one of the buffers after it has completed
497  * but while some of the other buffers have not completed.  This
498  * locked buffer would confuse end_buffer_async_read() into not unlocking
499  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
500  * that this buffer is not under async I/O.
501  *
502  * The page comes unlocked when it has no locked buffer_async buffers
503  * left.
504  *
505  * PageLocked prevents anyone starting new async I/O reads any of
506  * the buffers.
507  *
508  * PageWriteback is used to prevent simultaneous writeout of the same
509  * page.
510  *
511  * PageLocked prevents anyone from starting writeback of a page which is
512  * under read I/O (PageWriteback is only ever set against a locked page).
513  */
514 static void mark_buffer_async_read(struct buffer_head *bh)
515 {
516 	bh->b_end_io = end_buffer_async_read;
517 	set_buffer_async_read(bh);
518 }
519 
520 void mark_buffer_async_write(struct buffer_head *bh)
521 {
522 	bh->b_end_io = end_buffer_async_write;
523 	set_buffer_async_write(bh);
524 }
525 EXPORT_SYMBOL(mark_buffer_async_write);
526 
527 
528 /*
529  * fs/buffer.c contains helper functions for buffer-backed address space's
530  * fsync functions.  A common requirement for buffer-based filesystems is
531  * that certain data from the backing blockdev needs to be written out for
532  * a successful fsync().  For example, ext2 indirect blocks need to be
533  * written back and waited upon before fsync() returns.
534  *
535  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
536  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
537  * management of a list of dependent buffers at ->i_mapping->private_list.
538  *
539  * Locking is a little subtle: try_to_free_buffers() will remove buffers
540  * from their controlling inode's queue when they are being freed.  But
541  * try_to_free_buffers() will be operating against the *blockdev* mapping
542  * at the time, not against the S_ISREG file which depends on those buffers.
543  * So the locking for private_list is via the private_lock in the address_space
544  * which backs the buffers.  Which is different from the address_space
545  * against which the buffers are listed.  So for a particular address_space,
546  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
547  * mapping->private_list will always be protected by the backing blockdev's
548  * ->private_lock.
549  *
550  * Which introduces a requirement: all buffers on an address_space's
551  * ->private_list must be from the same address_space: the blockdev's.
552  *
553  * address_spaces which do not place buffers at ->private_list via these
554  * utility functions are free to use private_lock and private_list for
555  * whatever they want.  The only requirement is that list_empty(private_list)
556  * be true at clear_inode() time.
557  *
558  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
559  * filesystems should do that.  invalidate_inode_buffers() should just go
560  * BUG_ON(!list_empty).
561  *
562  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
563  * take an address_space, not an inode.  And it should be called
564  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
565  * queued up.
566  *
567  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
568  * list if it is already on a list.  Because if the buffer is on a list,
569  * it *must* already be on the right one.  If not, the filesystem is being
570  * silly.  This will save a ton of locking.  But first we have to ensure
571  * that buffers are taken *off* the old inode's list when they are freed
572  * (presumably in truncate).  That requires careful auditing of all
573  * filesystems (do it inside bforget()).  It could also be done by bringing
574  * b_inode back.
575  */
576 
577 /*
578  * The buffer's backing address_space's private_lock must be held
579  */
580 static inline void __remove_assoc_queue(struct buffer_head *bh)
581 {
582 	list_del_init(&bh->b_assoc_buffers);
583 	WARN_ON(!bh->b_assoc_map);
584 	if (buffer_write_io_error(bh))
585 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
586 	bh->b_assoc_map = NULL;
587 }
588 
589 int inode_has_buffers(struct inode *inode)
590 {
591 	return !list_empty(&inode->i_data.private_list);
592 }
593 
594 /*
595  * osync is designed to support O_SYNC io.  It waits synchronously for
596  * all already-submitted IO to complete, but does not queue any new
597  * writes to the disk.
598  *
599  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
600  * you dirty the buffers, and then use osync_inode_buffers to wait for
601  * completion.  Any other dirty buffers which are not yet queued for
602  * write will not be flushed to disk by the osync.
603  */
604 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
605 {
606 	struct buffer_head *bh;
607 	struct list_head *p;
608 	int err = 0;
609 
610 	spin_lock(lock);
611 repeat:
612 	list_for_each_prev(p, list) {
613 		bh = BH_ENTRY(p);
614 		if (buffer_locked(bh)) {
615 			get_bh(bh);
616 			spin_unlock(lock);
617 			wait_on_buffer(bh);
618 			if (!buffer_uptodate(bh))
619 				err = -EIO;
620 			brelse(bh);
621 			spin_lock(lock);
622 			goto repeat;
623 		}
624 	}
625 	spin_unlock(lock);
626 	return err;
627 }
628 
629 /**
630  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
631  *                        buffers
632  * @mapping: the mapping which wants those buffers written
633  *
634  * Starts I/O against the buffers at mapping->private_list, and waits upon
635  * that I/O.
636  *
637  * Basically, this is a convenience function for fsync().
638  * @mapping is a file or directory which needs those buffers to be written for
639  * a successful fsync().
640  */
641 int sync_mapping_buffers(struct address_space *mapping)
642 {
643 	struct address_space *buffer_mapping = mapping->assoc_mapping;
644 
645 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
646 		return 0;
647 
648 	return fsync_buffers_list(&buffer_mapping->private_lock,
649 					&mapping->private_list);
650 }
651 EXPORT_SYMBOL(sync_mapping_buffers);
652 
653 /*
654  * Called when we've recently written block `bblock', and it is known that
655  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
656  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
657  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
658  */
659 void write_boundary_block(struct block_device *bdev,
660 			sector_t bblock, unsigned blocksize)
661 {
662 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
663 	if (bh) {
664 		if (buffer_dirty(bh))
665 			ll_rw_block(WRITE, 1, &bh);
666 		put_bh(bh);
667 	}
668 }
669 
670 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
671 {
672 	struct address_space *mapping = inode->i_mapping;
673 	struct address_space *buffer_mapping = bh->b_page->mapping;
674 
675 	mark_buffer_dirty(bh);
676 	if (!mapping->assoc_mapping) {
677 		mapping->assoc_mapping = buffer_mapping;
678 	} else {
679 		BUG_ON(mapping->assoc_mapping != buffer_mapping);
680 	}
681 	if (list_empty(&bh->b_assoc_buffers)) {
682 		spin_lock(&buffer_mapping->private_lock);
683 		list_move_tail(&bh->b_assoc_buffers,
684 				&mapping->private_list);
685 		bh->b_assoc_map = mapping;
686 		spin_unlock(&buffer_mapping->private_lock);
687 	}
688 }
689 EXPORT_SYMBOL(mark_buffer_dirty_inode);
690 
691 /*
692  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
693  * dirty.
694  *
695  * If warn is true, then emit a warning if the page is not uptodate and has
696  * not been truncated.
697  */
698 static int __set_page_dirty(struct page *page,
699 		struct address_space *mapping, int warn)
700 {
701 	if (unlikely(!mapping))
702 		return !TestSetPageDirty(page);
703 
704 	if (TestSetPageDirty(page))
705 		return 0;
706 
707 	write_lock_irq(&mapping->tree_lock);
708 	if (page->mapping) {	/* Race with truncate? */
709 		WARN_ON_ONCE(warn && !PageUptodate(page));
710 
711 		if (mapping_cap_account_dirty(mapping)) {
712 			__inc_zone_page_state(page, NR_FILE_DIRTY);
713 			__inc_bdi_stat(mapping->backing_dev_info,
714 					BDI_RECLAIMABLE);
715 			task_io_account_write(PAGE_CACHE_SIZE);
716 		}
717 		radix_tree_tag_set(&mapping->page_tree,
718 				page_index(page), PAGECACHE_TAG_DIRTY);
719 	}
720 	write_unlock_irq(&mapping->tree_lock);
721 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
722 
723 	return 1;
724 }
725 
726 /*
727  * Add a page to the dirty page list.
728  *
729  * It is a sad fact of life that this function is called from several places
730  * deeply under spinlocking.  It may not sleep.
731  *
732  * If the page has buffers, the uptodate buffers are set dirty, to preserve
733  * dirty-state coherency between the page and the buffers.  It the page does
734  * not have buffers then when they are later attached they will all be set
735  * dirty.
736  *
737  * The buffers are dirtied before the page is dirtied.  There's a small race
738  * window in which a writepage caller may see the page cleanness but not the
739  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
740  * before the buffers, a concurrent writepage caller could clear the page dirty
741  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
742  * page on the dirty page list.
743  *
744  * We use private_lock to lock against try_to_free_buffers while using the
745  * page's buffer list.  Also use this to protect against clean buffers being
746  * added to the page after it was set dirty.
747  *
748  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
749  * address_space though.
750  */
751 int __set_page_dirty_buffers(struct page *page)
752 {
753 	struct address_space *mapping = page_mapping(page);
754 
755 	if (unlikely(!mapping))
756 		return !TestSetPageDirty(page);
757 
758 	spin_lock(&mapping->private_lock);
759 	if (page_has_buffers(page)) {
760 		struct buffer_head *head = page_buffers(page);
761 		struct buffer_head *bh = head;
762 
763 		do {
764 			set_buffer_dirty(bh);
765 			bh = bh->b_this_page;
766 		} while (bh != head);
767 	}
768 	spin_unlock(&mapping->private_lock);
769 
770 	return __set_page_dirty(page, mapping, 1);
771 }
772 EXPORT_SYMBOL(__set_page_dirty_buffers);
773 
774 /*
775  * Write out and wait upon a list of buffers.
776  *
777  * We have conflicting pressures: we want to make sure that all
778  * initially dirty buffers get waited on, but that any subsequently
779  * dirtied buffers don't.  After all, we don't want fsync to last
780  * forever if somebody is actively writing to the file.
781  *
782  * Do this in two main stages: first we copy dirty buffers to a
783  * temporary inode list, queueing the writes as we go.  Then we clean
784  * up, waiting for those writes to complete.
785  *
786  * During this second stage, any subsequent updates to the file may end
787  * up refiling the buffer on the original inode's dirty list again, so
788  * there is a chance we will end up with a buffer queued for write but
789  * not yet completed on that list.  So, as a final cleanup we go through
790  * the osync code to catch these locked, dirty buffers without requeuing
791  * any newly dirty buffers for write.
792  */
793 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
794 {
795 	struct buffer_head *bh;
796 	struct list_head tmp;
797 	int err = 0, err2;
798 
799 	INIT_LIST_HEAD(&tmp);
800 
801 	spin_lock(lock);
802 	while (!list_empty(list)) {
803 		bh = BH_ENTRY(list->next);
804 		__remove_assoc_queue(bh);
805 		if (buffer_dirty(bh) || buffer_locked(bh)) {
806 			list_add(&bh->b_assoc_buffers, &tmp);
807 			if (buffer_dirty(bh)) {
808 				get_bh(bh);
809 				spin_unlock(lock);
810 				/*
811 				 * Ensure any pending I/O completes so that
812 				 * ll_rw_block() actually writes the current
813 				 * contents - it is a noop if I/O is still in
814 				 * flight on potentially older contents.
815 				 */
816 				ll_rw_block(SWRITE, 1, &bh);
817 				brelse(bh);
818 				spin_lock(lock);
819 			}
820 		}
821 	}
822 
823 	while (!list_empty(&tmp)) {
824 		bh = BH_ENTRY(tmp.prev);
825 		list_del_init(&bh->b_assoc_buffers);
826 		get_bh(bh);
827 		spin_unlock(lock);
828 		wait_on_buffer(bh);
829 		if (!buffer_uptodate(bh))
830 			err = -EIO;
831 		brelse(bh);
832 		spin_lock(lock);
833 	}
834 
835 	spin_unlock(lock);
836 	err2 = osync_buffers_list(lock, list);
837 	if (err)
838 		return err;
839 	else
840 		return err2;
841 }
842 
843 /*
844  * Invalidate any and all dirty buffers on a given inode.  We are
845  * probably unmounting the fs, but that doesn't mean we have already
846  * done a sync().  Just drop the buffers from the inode list.
847  *
848  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
849  * assumes that all the buffers are against the blockdev.  Not true
850  * for reiserfs.
851  */
852 void invalidate_inode_buffers(struct inode *inode)
853 {
854 	if (inode_has_buffers(inode)) {
855 		struct address_space *mapping = &inode->i_data;
856 		struct list_head *list = &mapping->private_list;
857 		struct address_space *buffer_mapping = mapping->assoc_mapping;
858 
859 		spin_lock(&buffer_mapping->private_lock);
860 		while (!list_empty(list))
861 			__remove_assoc_queue(BH_ENTRY(list->next));
862 		spin_unlock(&buffer_mapping->private_lock);
863 	}
864 }
865 
866 /*
867  * Remove any clean buffers from the inode's buffer list.  This is called
868  * when we're trying to free the inode itself.  Those buffers can pin it.
869  *
870  * Returns true if all buffers were removed.
871  */
872 int remove_inode_buffers(struct inode *inode)
873 {
874 	int ret = 1;
875 
876 	if (inode_has_buffers(inode)) {
877 		struct address_space *mapping = &inode->i_data;
878 		struct list_head *list = &mapping->private_list;
879 		struct address_space *buffer_mapping = mapping->assoc_mapping;
880 
881 		spin_lock(&buffer_mapping->private_lock);
882 		while (!list_empty(list)) {
883 			struct buffer_head *bh = BH_ENTRY(list->next);
884 			if (buffer_dirty(bh)) {
885 				ret = 0;
886 				break;
887 			}
888 			__remove_assoc_queue(bh);
889 		}
890 		spin_unlock(&buffer_mapping->private_lock);
891 	}
892 	return ret;
893 }
894 
895 /*
896  * Create the appropriate buffers when given a page for data area and
897  * the size of each buffer.. Use the bh->b_this_page linked list to
898  * follow the buffers created.  Return NULL if unable to create more
899  * buffers.
900  *
901  * The retry flag is used to differentiate async IO (paging, swapping)
902  * which may not fail from ordinary buffer allocations.
903  */
904 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
905 		int retry)
906 {
907 	struct buffer_head *bh, *head;
908 	long offset;
909 
910 try_again:
911 	head = NULL;
912 	offset = PAGE_SIZE;
913 	while ((offset -= size) >= 0) {
914 		bh = alloc_buffer_head(GFP_NOFS);
915 		if (!bh)
916 			goto no_grow;
917 
918 		bh->b_bdev = NULL;
919 		bh->b_this_page = head;
920 		bh->b_blocknr = -1;
921 		head = bh;
922 
923 		bh->b_state = 0;
924 		atomic_set(&bh->b_count, 0);
925 		bh->b_private = NULL;
926 		bh->b_size = size;
927 
928 		/* Link the buffer to its page */
929 		set_bh_page(bh, page, offset);
930 
931 		init_buffer(bh, NULL, NULL);
932 	}
933 	return head;
934 /*
935  * In case anything failed, we just free everything we got.
936  */
937 no_grow:
938 	if (head) {
939 		do {
940 			bh = head;
941 			head = head->b_this_page;
942 			free_buffer_head(bh);
943 		} while (head);
944 	}
945 
946 	/*
947 	 * Return failure for non-async IO requests.  Async IO requests
948 	 * are not allowed to fail, so we have to wait until buffer heads
949 	 * become available.  But we don't want tasks sleeping with
950 	 * partially complete buffers, so all were released above.
951 	 */
952 	if (!retry)
953 		return NULL;
954 
955 	/* We're _really_ low on memory. Now we just
956 	 * wait for old buffer heads to become free due to
957 	 * finishing IO.  Since this is an async request and
958 	 * the reserve list is empty, we're sure there are
959 	 * async buffer heads in use.
960 	 */
961 	free_more_memory();
962 	goto try_again;
963 }
964 EXPORT_SYMBOL_GPL(alloc_page_buffers);
965 
966 static inline void
967 link_dev_buffers(struct page *page, struct buffer_head *head)
968 {
969 	struct buffer_head *bh, *tail;
970 
971 	bh = head;
972 	do {
973 		tail = bh;
974 		bh = bh->b_this_page;
975 	} while (bh);
976 	tail->b_this_page = head;
977 	attach_page_buffers(page, head);
978 }
979 
980 /*
981  * Initialise the state of a blockdev page's buffers.
982  */
983 static void
984 init_page_buffers(struct page *page, struct block_device *bdev,
985 			sector_t block, int size)
986 {
987 	struct buffer_head *head = page_buffers(page);
988 	struct buffer_head *bh = head;
989 	int uptodate = PageUptodate(page);
990 
991 	do {
992 		if (!buffer_mapped(bh)) {
993 			init_buffer(bh, NULL, NULL);
994 			bh->b_bdev = bdev;
995 			bh->b_blocknr = block;
996 			if (uptodate)
997 				set_buffer_uptodate(bh);
998 			set_buffer_mapped(bh);
999 		}
1000 		block++;
1001 		bh = bh->b_this_page;
1002 	} while (bh != head);
1003 }
1004 
1005 /*
1006  * Create the page-cache page that contains the requested block.
1007  *
1008  * This is user purely for blockdev mappings.
1009  */
1010 static struct page *
1011 grow_dev_page(struct block_device *bdev, sector_t block,
1012 		pgoff_t index, int size)
1013 {
1014 	struct inode *inode = bdev->bd_inode;
1015 	struct page *page;
1016 	struct buffer_head *bh;
1017 
1018 	page = find_or_create_page(inode->i_mapping, index,
1019 		(mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1020 	if (!page)
1021 		return NULL;
1022 
1023 	BUG_ON(!PageLocked(page));
1024 
1025 	if (page_has_buffers(page)) {
1026 		bh = page_buffers(page);
1027 		if (bh->b_size == size) {
1028 			init_page_buffers(page, bdev, block, size);
1029 			return page;
1030 		}
1031 		if (!try_to_free_buffers(page))
1032 			goto failed;
1033 	}
1034 
1035 	/*
1036 	 * Allocate some buffers for this page
1037 	 */
1038 	bh = alloc_page_buffers(page, size, 0);
1039 	if (!bh)
1040 		goto failed;
1041 
1042 	/*
1043 	 * Link the page to the buffers and initialise them.  Take the
1044 	 * lock to be atomic wrt __find_get_block(), which does not
1045 	 * run under the page lock.
1046 	 */
1047 	spin_lock(&inode->i_mapping->private_lock);
1048 	link_dev_buffers(page, bh);
1049 	init_page_buffers(page, bdev, block, size);
1050 	spin_unlock(&inode->i_mapping->private_lock);
1051 	return page;
1052 
1053 failed:
1054 	BUG();
1055 	unlock_page(page);
1056 	page_cache_release(page);
1057 	return NULL;
1058 }
1059 
1060 /*
1061  * Create buffers for the specified block device block's page.  If
1062  * that page was dirty, the buffers are set dirty also.
1063  */
1064 static int
1065 grow_buffers(struct block_device *bdev, sector_t block, int size)
1066 {
1067 	struct page *page;
1068 	pgoff_t index;
1069 	int sizebits;
1070 
1071 	sizebits = -1;
1072 	do {
1073 		sizebits++;
1074 	} while ((size << sizebits) < PAGE_SIZE);
1075 
1076 	index = block >> sizebits;
1077 
1078 	/*
1079 	 * Check for a block which wants to lie outside our maximum possible
1080 	 * pagecache index.  (this comparison is done using sector_t types).
1081 	 */
1082 	if (unlikely(index != block >> sizebits)) {
1083 		char b[BDEVNAME_SIZE];
1084 
1085 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1086 			"device %s\n",
1087 			__FUNCTION__, (unsigned long long)block,
1088 			bdevname(bdev, b));
1089 		return -EIO;
1090 	}
1091 	block = index << sizebits;
1092 	/* Create a page with the proper size buffers.. */
1093 	page = grow_dev_page(bdev, block, index, size);
1094 	if (!page)
1095 		return 0;
1096 	unlock_page(page);
1097 	page_cache_release(page);
1098 	return 1;
1099 }
1100 
1101 static struct buffer_head *
1102 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1103 {
1104 	/* Size must be multiple of hard sectorsize */
1105 	if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1106 			(size < 512 || size > PAGE_SIZE))) {
1107 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1108 					size);
1109 		printk(KERN_ERR "hardsect size: %d\n",
1110 					bdev_hardsect_size(bdev));
1111 
1112 		dump_stack();
1113 		return NULL;
1114 	}
1115 
1116 	for (;;) {
1117 		struct buffer_head * bh;
1118 		int ret;
1119 
1120 		bh = __find_get_block(bdev, block, size);
1121 		if (bh)
1122 			return bh;
1123 
1124 		ret = grow_buffers(bdev, block, size);
1125 		if (ret < 0)
1126 			return NULL;
1127 		if (ret == 0)
1128 			free_more_memory();
1129 	}
1130 }
1131 
1132 /*
1133  * The relationship between dirty buffers and dirty pages:
1134  *
1135  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1136  * the page is tagged dirty in its radix tree.
1137  *
1138  * At all times, the dirtiness of the buffers represents the dirtiness of
1139  * subsections of the page.  If the page has buffers, the page dirty bit is
1140  * merely a hint about the true dirty state.
1141  *
1142  * When a page is set dirty in its entirety, all its buffers are marked dirty
1143  * (if the page has buffers).
1144  *
1145  * When a buffer is marked dirty, its page is dirtied, but the page's other
1146  * buffers are not.
1147  *
1148  * Also.  When blockdev buffers are explicitly read with bread(), they
1149  * individually become uptodate.  But their backing page remains not
1150  * uptodate - even if all of its buffers are uptodate.  A subsequent
1151  * block_read_full_page() against that page will discover all the uptodate
1152  * buffers, will set the page uptodate and will perform no I/O.
1153  */
1154 
1155 /**
1156  * mark_buffer_dirty - mark a buffer_head as needing writeout
1157  * @bh: the buffer_head to mark dirty
1158  *
1159  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1160  * backing page dirty, then tag the page as dirty in its address_space's radix
1161  * tree and then attach the address_space's inode to its superblock's dirty
1162  * inode list.
1163  *
1164  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1165  * mapping->tree_lock and the global inode_lock.
1166  */
1167 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1168 {
1169 	WARN_ON_ONCE(!buffer_uptodate(bh));
1170 	if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1171 		__set_page_dirty(bh->b_page, page_mapping(bh->b_page), 0);
1172 }
1173 
1174 /*
1175  * Decrement a buffer_head's reference count.  If all buffers against a page
1176  * have zero reference count, are clean and unlocked, and if the page is clean
1177  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1178  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1179  * a page but it ends up not being freed, and buffers may later be reattached).
1180  */
1181 void __brelse(struct buffer_head * buf)
1182 {
1183 	if (atomic_read(&buf->b_count)) {
1184 		put_bh(buf);
1185 		return;
1186 	}
1187 	printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1188 	WARN_ON(1);
1189 }
1190 
1191 /*
1192  * bforget() is like brelse(), except it discards any
1193  * potentially dirty data.
1194  */
1195 void __bforget(struct buffer_head *bh)
1196 {
1197 	clear_buffer_dirty(bh);
1198 	if (!list_empty(&bh->b_assoc_buffers)) {
1199 		struct address_space *buffer_mapping = bh->b_page->mapping;
1200 
1201 		spin_lock(&buffer_mapping->private_lock);
1202 		list_del_init(&bh->b_assoc_buffers);
1203 		bh->b_assoc_map = NULL;
1204 		spin_unlock(&buffer_mapping->private_lock);
1205 	}
1206 	__brelse(bh);
1207 }
1208 
1209 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1210 {
1211 	lock_buffer(bh);
1212 	if (buffer_uptodate(bh)) {
1213 		unlock_buffer(bh);
1214 		return bh;
1215 	} else {
1216 		get_bh(bh);
1217 		bh->b_end_io = end_buffer_read_sync;
1218 		submit_bh(READ, bh);
1219 		wait_on_buffer(bh);
1220 		if (buffer_uptodate(bh))
1221 			return bh;
1222 	}
1223 	brelse(bh);
1224 	return NULL;
1225 }
1226 
1227 /*
1228  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1229  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1230  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1231  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1232  * CPU's LRUs at the same time.
1233  *
1234  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1235  * sb_find_get_block().
1236  *
1237  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1238  * a local interrupt disable for that.
1239  */
1240 
1241 #define BH_LRU_SIZE	8
1242 
1243 struct bh_lru {
1244 	struct buffer_head *bhs[BH_LRU_SIZE];
1245 };
1246 
1247 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1248 
1249 #ifdef CONFIG_SMP
1250 #define bh_lru_lock()	local_irq_disable()
1251 #define bh_lru_unlock()	local_irq_enable()
1252 #else
1253 #define bh_lru_lock()	preempt_disable()
1254 #define bh_lru_unlock()	preempt_enable()
1255 #endif
1256 
1257 static inline void check_irqs_on(void)
1258 {
1259 #ifdef irqs_disabled
1260 	BUG_ON(irqs_disabled());
1261 #endif
1262 }
1263 
1264 /*
1265  * The LRU management algorithm is dopey-but-simple.  Sorry.
1266  */
1267 static void bh_lru_install(struct buffer_head *bh)
1268 {
1269 	struct buffer_head *evictee = NULL;
1270 	struct bh_lru *lru;
1271 
1272 	check_irqs_on();
1273 	bh_lru_lock();
1274 	lru = &__get_cpu_var(bh_lrus);
1275 	if (lru->bhs[0] != bh) {
1276 		struct buffer_head *bhs[BH_LRU_SIZE];
1277 		int in;
1278 		int out = 0;
1279 
1280 		get_bh(bh);
1281 		bhs[out++] = bh;
1282 		for (in = 0; in < BH_LRU_SIZE; in++) {
1283 			struct buffer_head *bh2 = lru->bhs[in];
1284 
1285 			if (bh2 == bh) {
1286 				__brelse(bh2);
1287 			} else {
1288 				if (out >= BH_LRU_SIZE) {
1289 					BUG_ON(evictee != NULL);
1290 					evictee = bh2;
1291 				} else {
1292 					bhs[out++] = bh2;
1293 				}
1294 			}
1295 		}
1296 		while (out < BH_LRU_SIZE)
1297 			bhs[out++] = NULL;
1298 		memcpy(lru->bhs, bhs, sizeof(bhs));
1299 	}
1300 	bh_lru_unlock();
1301 
1302 	if (evictee)
1303 		__brelse(evictee);
1304 }
1305 
1306 /*
1307  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1308  */
1309 static struct buffer_head *
1310 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1311 {
1312 	struct buffer_head *ret = NULL;
1313 	struct bh_lru *lru;
1314 	unsigned int i;
1315 
1316 	check_irqs_on();
1317 	bh_lru_lock();
1318 	lru = &__get_cpu_var(bh_lrus);
1319 	for (i = 0; i < BH_LRU_SIZE; i++) {
1320 		struct buffer_head *bh = lru->bhs[i];
1321 
1322 		if (bh && bh->b_bdev == bdev &&
1323 				bh->b_blocknr == block && bh->b_size == size) {
1324 			if (i) {
1325 				while (i) {
1326 					lru->bhs[i] = lru->bhs[i - 1];
1327 					i--;
1328 				}
1329 				lru->bhs[0] = bh;
1330 			}
1331 			get_bh(bh);
1332 			ret = bh;
1333 			break;
1334 		}
1335 	}
1336 	bh_lru_unlock();
1337 	return ret;
1338 }
1339 
1340 /*
1341  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1342  * it in the LRU and mark it as accessed.  If it is not present then return
1343  * NULL
1344  */
1345 struct buffer_head *
1346 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1347 {
1348 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1349 
1350 	if (bh == NULL) {
1351 		bh = __find_get_block_slow(bdev, block);
1352 		if (bh)
1353 			bh_lru_install(bh);
1354 	}
1355 	if (bh)
1356 		touch_buffer(bh);
1357 	return bh;
1358 }
1359 EXPORT_SYMBOL(__find_get_block);
1360 
1361 /*
1362  * __getblk will locate (and, if necessary, create) the buffer_head
1363  * which corresponds to the passed block_device, block and size. The
1364  * returned buffer has its reference count incremented.
1365  *
1366  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1367  * illegal block number, __getblk() will happily return a buffer_head
1368  * which represents the non-existent block.  Very weird.
1369  *
1370  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1371  * attempt is failing.  FIXME, perhaps?
1372  */
1373 struct buffer_head *
1374 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1375 {
1376 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1377 
1378 	might_sleep();
1379 	if (bh == NULL)
1380 		bh = __getblk_slow(bdev, block, size);
1381 	return bh;
1382 }
1383 EXPORT_SYMBOL(__getblk);
1384 
1385 /*
1386  * Do async read-ahead on a buffer..
1387  */
1388 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1389 {
1390 	struct buffer_head *bh = __getblk(bdev, block, size);
1391 	if (likely(bh)) {
1392 		ll_rw_block(READA, 1, &bh);
1393 		brelse(bh);
1394 	}
1395 }
1396 EXPORT_SYMBOL(__breadahead);
1397 
1398 /**
1399  *  __bread() - reads a specified block and returns the bh
1400  *  @bdev: the block_device to read from
1401  *  @block: number of block
1402  *  @size: size (in bytes) to read
1403  *
1404  *  Reads a specified block, and returns buffer head that contains it.
1405  *  It returns NULL if the block was unreadable.
1406  */
1407 struct buffer_head *
1408 __bread(struct block_device *bdev, sector_t block, unsigned size)
1409 {
1410 	struct buffer_head *bh = __getblk(bdev, block, size);
1411 
1412 	if (likely(bh) && !buffer_uptodate(bh))
1413 		bh = __bread_slow(bh);
1414 	return bh;
1415 }
1416 EXPORT_SYMBOL(__bread);
1417 
1418 /*
1419  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1420  * This doesn't race because it runs in each cpu either in irq
1421  * or with preempt disabled.
1422  */
1423 static void invalidate_bh_lru(void *arg)
1424 {
1425 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1426 	int i;
1427 
1428 	for (i = 0; i < BH_LRU_SIZE; i++) {
1429 		brelse(b->bhs[i]);
1430 		b->bhs[i] = NULL;
1431 	}
1432 	put_cpu_var(bh_lrus);
1433 }
1434 
1435 void invalidate_bh_lrus(void)
1436 {
1437 	on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1438 }
1439 
1440 void set_bh_page(struct buffer_head *bh,
1441 		struct page *page, unsigned long offset)
1442 {
1443 	bh->b_page = page;
1444 	BUG_ON(offset >= PAGE_SIZE);
1445 	if (PageHighMem(page))
1446 		/*
1447 		 * This catches illegal uses and preserves the offset:
1448 		 */
1449 		bh->b_data = (char *)(0 + offset);
1450 	else
1451 		bh->b_data = page_address(page) + offset;
1452 }
1453 EXPORT_SYMBOL(set_bh_page);
1454 
1455 /*
1456  * Called when truncating a buffer on a page completely.
1457  */
1458 static void discard_buffer(struct buffer_head * bh)
1459 {
1460 	lock_buffer(bh);
1461 	clear_buffer_dirty(bh);
1462 	bh->b_bdev = NULL;
1463 	clear_buffer_mapped(bh);
1464 	clear_buffer_req(bh);
1465 	clear_buffer_new(bh);
1466 	clear_buffer_delay(bh);
1467 	clear_buffer_unwritten(bh);
1468 	unlock_buffer(bh);
1469 }
1470 
1471 /**
1472  * block_invalidatepage - invalidate part of all of a buffer-backed page
1473  *
1474  * @page: the page which is affected
1475  * @offset: the index of the truncation point
1476  *
1477  * block_invalidatepage() is called when all or part of the page has become
1478  * invalidatedby a truncate operation.
1479  *
1480  * block_invalidatepage() does not have to release all buffers, but it must
1481  * ensure that no dirty buffer is left outside @offset and that no I/O
1482  * is underway against any of the blocks which are outside the truncation
1483  * point.  Because the caller is about to free (and possibly reuse) those
1484  * blocks on-disk.
1485  */
1486 void block_invalidatepage(struct page *page, unsigned long offset)
1487 {
1488 	struct buffer_head *head, *bh, *next;
1489 	unsigned int curr_off = 0;
1490 
1491 	BUG_ON(!PageLocked(page));
1492 	if (!page_has_buffers(page))
1493 		goto out;
1494 
1495 	head = page_buffers(page);
1496 	bh = head;
1497 	do {
1498 		unsigned int next_off = curr_off + bh->b_size;
1499 		next = bh->b_this_page;
1500 
1501 		/*
1502 		 * is this block fully invalidated?
1503 		 */
1504 		if (offset <= curr_off)
1505 			discard_buffer(bh);
1506 		curr_off = next_off;
1507 		bh = next;
1508 	} while (bh != head);
1509 
1510 	/*
1511 	 * We release buffers only if the entire page is being invalidated.
1512 	 * The get_block cached value has been unconditionally invalidated,
1513 	 * so real IO is not possible anymore.
1514 	 */
1515 	if (offset == 0)
1516 		try_to_release_page(page, 0);
1517 out:
1518 	return;
1519 }
1520 EXPORT_SYMBOL(block_invalidatepage);
1521 
1522 /*
1523  * We attach and possibly dirty the buffers atomically wrt
1524  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1525  * is already excluded via the page lock.
1526  */
1527 void create_empty_buffers(struct page *page,
1528 			unsigned long blocksize, unsigned long b_state)
1529 {
1530 	struct buffer_head *bh, *head, *tail;
1531 
1532 	head = alloc_page_buffers(page, blocksize, 1);
1533 	bh = head;
1534 	do {
1535 		bh->b_state |= b_state;
1536 		tail = bh;
1537 		bh = bh->b_this_page;
1538 	} while (bh);
1539 	tail->b_this_page = head;
1540 
1541 	spin_lock(&page->mapping->private_lock);
1542 	if (PageUptodate(page) || PageDirty(page)) {
1543 		bh = head;
1544 		do {
1545 			if (PageDirty(page))
1546 				set_buffer_dirty(bh);
1547 			if (PageUptodate(page))
1548 				set_buffer_uptodate(bh);
1549 			bh = bh->b_this_page;
1550 		} while (bh != head);
1551 	}
1552 	attach_page_buffers(page, head);
1553 	spin_unlock(&page->mapping->private_lock);
1554 }
1555 EXPORT_SYMBOL(create_empty_buffers);
1556 
1557 /*
1558  * We are taking a block for data and we don't want any output from any
1559  * buffer-cache aliases starting from return from that function and
1560  * until the moment when something will explicitly mark the buffer
1561  * dirty (hopefully that will not happen until we will free that block ;-)
1562  * We don't even need to mark it not-uptodate - nobody can expect
1563  * anything from a newly allocated buffer anyway. We used to used
1564  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1565  * don't want to mark the alias unmapped, for example - it would confuse
1566  * anyone who might pick it with bread() afterwards...
1567  *
1568  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1569  * be writeout I/O going on against recently-freed buffers.  We don't
1570  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1571  * only if we really need to.  That happens here.
1572  */
1573 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1574 {
1575 	struct buffer_head *old_bh;
1576 
1577 	might_sleep();
1578 
1579 	old_bh = __find_get_block_slow(bdev, block);
1580 	if (old_bh) {
1581 		clear_buffer_dirty(old_bh);
1582 		wait_on_buffer(old_bh);
1583 		clear_buffer_req(old_bh);
1584 		__brelse(old_bh);
1585 	}
1586 }
1587 EXPORT_SYMBOL(unmap_underlying_metadata);
1588 
1589 /*
1590  * NOTE! All mapped/uptodate combinations are valid:
1591  *
1592  *	Mapped	Uptodate	Meaning
1593  *
1594  *	No	No		"unknown" - must do get_block()
1595  *	No	Yes		"hole" - zero-filled
1596  *	Yes	No		"allocated" - allocated on disk, not read in
1597  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1598  *
1599  * "Dirty" is valid only with the last case (mapped+uptodate).
1600  */
1601 
1602 /*
1603  * While block_write_full_page is writing back the dirty buffers under
1604  * the page lock, whoever dirtied the buffers may decide to clean them
1605  * again at any time.  We handle that by only looking at the buffer
1606  * state inside lock_buffer().
1607  *
1608  * If block_write_full_page() is called for regular writeback
1609  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1610  * locked buffer.   This only can happen if someone has written the buffer
1611  * directly, with submit_bh().  At the address_space level PageWriteback
1612  * prevents this contention from occurring.
1613  */
1614 static int __block_write_full_page(struct inode *inode, struct page *page,
1615 			get_block_t *get_block, struct writeback_control *wbc)
1616 {
1617 	int err;
1618 	sector_t block;
1619 	sector_t last_block;
1620 	struct buffer_head *bh, *head;
1621 	const unsigned blocksize = 1 << inode->i_blkbits;
1622 	int nr_underway = 0;
1623 
1624 	BUG_ON(!PageLocked(page));
1625 
1626 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1627 
1628 	if (!page_has_buffers(page)) {
1629 		create_empty_buffers(page, blocksize,
1630 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1631 	}
1632 
1633 	/*
1634 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1635 	 * here, and the (potentially unmapped) buffers may become dirty at
1636 	 * any time.  If a buffer becomes dirty here after we've inspected it
1637 	 * then we just miss that fact, and the page stays dirty.
1638 	 *
1639 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1640 	 * handle that here by just cleaning them.
1641 	 */
1642 
1643 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1644 	head = page_buffers(page);
1645 	bh = head;
1646 
1647 	/*
1648 	 * Get all the dirty buffers mapped to disk addresses and
1649 	 * handle any aliases from the underlying blockdev's mapping.
1650 	 */
1651 	do {
1652 		if (block > last_block) {
1653 			/*
1654 			 * mapped buffers outside i_size will occur, because
1655 			 * this page can be outside i_size when there is a
1656 			 * truncate in progress.
1657 			 */
1658 			/*
1659 			 * The buffer was zeroed by block_write_full_page()
1660 			 */
1661 			clear_buffer_dirty(bh);
1662 			set_buffer_uptodate(bh);
1663 		} else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1664 			WARN_ON(bh->b_size != blocksize);
1665 			err = get_block(inode, block, bh, 1);
1666 			if (err)
1667 				goto recover;
1668 			if (buffer_new(bh)) {
1669 				/* blockdev mappings never come here */
1670 				clear_buffer_new(bh);
1671 				unmap_underlying_metadata(bh->b_bdev,
1672 							bh->b_blocknr);
1673 			}
1674 		}
1675 		bh = bh->b_this_page;
1676 		block++;
1677 	} while (bh != head);
1678 
1679 	do {
1680 		if (!buffer_mapped(bh))
1681 			continue;
1682 		/*
1683 		 * If it's a fully non-blocking write attempt and we cannot
1684 		 * lock the buffer then redirty the page.  Note that this can
1685 		 * potentially cause a busy-wait loop from pdflush and kswapd
1686 		 * activity, but those code paths have their own higher-level
1687 		 * throttling.
1688 		 */
1689 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1690 			lock_buffer(bh);
1691 		} else if (test_set_buffer_locked(bh)) {
1692 			redirty_page_for_writepage(wbc, page);
1693 			continue;
1694 		}
1695 		if (test_clear_buffer_dirty(bh)) {
1696 			mark_buffer_async_write(bh);
1697 		} else {
1698 			unlock_buffer(bh);
1699 		}
1700 	} while ((bh = bh->b_this_page) != head);
1701 
1702 	/*
1703 	 * The page and its buffers are protected by PageWriteback(), so we can
1704 	 * drop the bh refcounts early.
1705 	 */
1706 	BUG_ON(PageWriteback(page));
1707 	set_page_writeback(page);
1708 
1709 	do {
1710 		struct buffer_head *next = bh->b_this_page;
1711 		if (buffer_async_write(bh)) {
1712 			submit_bh(WRITE, bh);
1713 			nr_underway++;
1714 		}
1715 		bh = next;
1716 	} while (bh != head);
1717 	unlock_page(page);
1718 
1719 	err = 0;
1720 done:
1721 	if (nr_underway == 0) {
1722 		/*
1723 		 * The page was marked dirty, but the buffers were
1724 		 * clean.  Someone wrote them back by hand with
1725 		 * ll_rw_block/submit_bh.  A rare case.
1726 		 */
1727 		end_page_writeback(page);
1728 
1729 		/*
1730 		 * The page and buffer_heads can be released at any time from
1731 		 * here on.
1732 		 */
1733 		wbc->pages_skipped++;	/* We didn't write this page */
1734 	}
1735 	return err;
1736 
1737 recover:
1738 	/*
1739 	 * ENOSPC, or some other error.  We may already have added some
1740 	 * blocks to the file, so we need to write these out to avoid
1741 	 * exposing stale data.
1742 	 * The page is currently locked and not marked for writeback
1743 	 */
1744 	bh = head;
1745 	/* Recovery: lock and submit the mapped buffers */
1746 	do {
1747 		if (buffer_mapped(bh) && buffer_dirty(bh)) {
1748 			lock_buffer(bh);
1749 			mark_buffer_async_write(bh);
1750 		} else {
1751 			/*
1752 			 * The buffer may have been set dirty during
1753 			 * attachment to a dirty page.
1754 			 */
1755 			clear_buffer_dirty(bh);
1756 		}
1757 	} while ((bh = bh->b_this_page) != head);
1758 	SetPageError(page);
1759 	BUG_ON(PageWriteback(page));
1760 	mapping_set_error(page->mapping, err);
1761 	set_page_writeback(page);
1762 	do {
1763 		struct buffer_head *next = bh->b_this_page;
1764 		if (buffer_async_write(bh)) {
1765 			clear_buffer_dirty(bh);
1766 			submit_bh(WRITE, bh);
1767 			nr_underway++;
1768 		}
1769 		bh = next;
1770 	} while (bh != head);
1771 	unlock_page(page);
1772 	goto done;
1773 }
1774 
1775 /*
1776  * If a page has any new buffers, zero them out here, and mark them uptodate
1777  * and dirty so they'll be written out (in order to prevent uninitialised
1778  * block data from leaking). And clear the new bit.
1779  */
1780 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1781 {
1782 	unsigned int block_start, block_end;
1783 	struct buffer_head *head, *bh;
1784 
1785 	BUG_ON(!PageLocked(page));
1786 	if (!page_has_buffers(page))
1787 		return;
1788 
1789 	bh = head = page_buffers(page);
1790 	block_start = 0;
1791 	do {
1792 		block_end = block_start + bh->b_size;
1793 
1794 		if (buffer_new(bh)) {
1795 			if (block_end > from && block_start < to) {
1796 				if (!PageUptodate(page)) {
1797 					unsigned start, size;
1798 
1799 					start = max(from, block_start);
1800 					size = min(to, block_end) - start;
1801 
1802 					zero_user_page(page, start, size, KM_USER0);
1803 					set_buffer_uptodate(bh);
1804 				}
1805 
1806 				clear_buffer_new(bh);
1807 				mark_buffer_dirty(bh);
1808 			}
1809 		}
1810 
1811 		block_start = block_end;
1812 		bh = bh->b_this_page;
1813 	} while (bh != head);
1814 }
1815 EXPORT_SYMBOL(page_zero_new_buffers);
1816 
1817 static int __block_prepare_write(struct inode *inode, struct page *page,
1818 		unsigned from, unsigned to, get_block_t *get_block)
1819 {
1820 	unsigned block_start, block_end;
1821 	sector_t block;
1822 	int err = 0;
1823 	unsigned blocksize, bbits;
1824 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1825 
1826 	BUG_ON(!PageLocked(page));
1827 	BUG_ON(from > PAGE_CACHE_SIZE);
1828 	BUG_ON(to > PAGE_CACHE_SIZE);
1829 	BUG_ON(from > to);
1830 
1831 	blocksize = 1 << inode->i_blkbits;
1832 	if (!page_has_buffers(page))
1833 		create_empty_buffers(page, blocksize, 0);
1834 	head = page_buffers(page);
1835 
1836 	bbits = inode->i_blkbits;
1837 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1838 
1839 	for(bh = head, block_start = 0; bh != head || !block_start;
1840 	    block++, block_start=block_end, bh = bh->b_this_page) {
1841 		block_end = block_start + blocksize;
1842 		if (block_end <= from || block_start >= to) {
1843 			if (PageUptodate(page)) {
1844 				if (!buffer_uptodate(bh))
1845 					set_buffer_uptodate(bh);
1846 			}
1847 			continue;
1848 		}
1849 		if (buffer_new(bh))
1850 			clear_buffer_new(bh);
1851 		if (!buffer_mapped(bh)) {
1852 			WARN_ON(bh->b_size != blocksize);
1853 			err = get_block(inode, block, bh, 1);
1854 			if (err)
1855 				break;
1856 			if (buffer_new(bh)) {
1857 				unmap_underlying_metadata(bh->b_bdev,
1858 							bh->b_blocknr);
1859 				if (PageUptodate(page)) {
1860 					clear_buffer_new(bh);
1861 					set_buffer_uptodate(bh);
1862 					mark_buffer_dirty(bh);
1863 					continue;
1864 				}
1865 				if (block_end > to || block_start < from) {
1866 					void *kaddr;
1867 
1868 					kaddr = kmap_atomic(page, KM_USER0);
1869 					if (block_end > to)
1870 						memset(kaddr+to, 0,
1871 							block_end-to);
1872 					if (block_start < from)
1873 						memset(kaddr+block_start,
1874 							0, from-block_start);
1875 					flush_dcache_page(page);
1876 					kunmap_atomic(kaddr, KM_USER0);
1877 				}
1878 				continue;
1879 			}
1880 		}
1881 		if (PageUptodate(page)) {
1882 			if (!buffer_uptodate(bh))
1883 				set_buffer_uptodate(bh);
1884 			continue;
1885 		}
1886 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1887 		    !buffer_unwritten(bh) &&
1888 		     (block_start < from || block_end > to)) {
1889 			ll_rw_block(READ, 1, &bh);
1890 			*wait_bh++=bh;
1891 		}
1892 	}
1893 	/*
1894 	 * If we issued read requests - let them complete.
1895 	 */
1896 	while(wait_bh > wait) {
1897 		wait_on_buffer(*--wait_bh);
1898 		if (!buffer_uptodate(*wait_bh))
1899 			err = -EIO;
1900 	}
1901 	if (unlikely(err))
1902 		page_zero_new_buffers(page, from, to);
1903 	return err;
1904 }
1905 
1906 static int __block_commit_write(struct inode *inode, struct page *page,
1907 		unsigned from, unsigned to)
1908 {
1909 	unsigned block_start, block_end;
1910 	int partial = 0;
1911 	unsigned blocksize;
1912 	struct buffer_head *bh, *head;
1913 
1914 	blocksize = 1 << inode->i_blkbits;
1915 
1916 	for(bh = head = page_buffers(page), block_start = 0;
1917 	    bh != head || !block_start;
1918 	    block_start=block_end, bh = bh->b_this_page) {
1919 		block_end = block_start + blocksize;
1920 		if (block_end <= from || block_start >= to) {
1921 			if (!buffer_uptodate(bh))
1922 				partial = 1;
1923 		} else {
1924 			set_buffer_uptodate(bh);
1925 			mark_buffer_dirty(bh);
1926 		}
1927 		clear_buffer_new(bh);
1928 	}
1929 
1930 	/*
1931 	 * If this is a partial write which happened to make all buffers
1932 	 * uptodate then we can optimize away a bogus readpage() for
1933 	 * the next read(). Here we 'discover' whether the page went
1934 	 * uptodate as a result of this (potentially partial) write.
1935 	 */
1936 	if (!partial)
1937 		SetPageUptodate(page);
1938 	return 0;
1939 }
1940 
1941 /*
1942  * block_write_begin takes care of the basic task of block allocation and
1943  * bringing partial write blocks uptodate first.
1944  *
1945  * If *pagep is not NULL, then block_write_begin uses the locked page
1946  * at *pagep rather than allocating its own. In this case, the page will
1947  * not be unlocked or deallocated on failure.
1948  */
1949 int block_write_begin(struct file *file, struct address_space *mapping,
1950 			loff_t pos, unsigned len, unsigned flags,
1951 			struct page **pagep, void **fsdata,
1952 			get_block_t *get_block)
1953 {
1954 	struct inode *inode = mapping->host;
1955 	int status = 0;
1956 	struct page *page;
1957 	pgoff_t index;
1958 	unsigned start, end;
1959 	int ownpage = 0;
1960 
1961 	index = pos >> PAGE_CACHE_SHIFT;
1962 	start = pos & (PAGE_CACHE_SIZE - 1);
1963 	end = start + len;
1964 
1965 	page = *pagep;
1966 	if (page == NULL) {
1967 		ownpage = 1;
1968 		page = __grab_cache_page(mapping, index);
1969 		if (!page) {
1970 			status = -ENOMEM;
1971 			goto out;
1972 		}
1973 		*pagep = page;
1974 	} else
1975 		BUG_ON(!PageLocked(page));
1976 
1977 	status = __block_prepare_write(inode, page, start, end, get_block);
1978 	if (unlikely(status)) {
1979 		ClearPageUptodate(page);
1980 
1981 		if (ownpage) {
1982 			unlock_page(page);
1983 			page_cache_release(page);
1984 			*pagep = NULL;
1985 
1986 			/*
1987 			 * prepare_write() may have instantiated a few blocks
1988 			 * outside i_size.  Trim these off again. Don't need
1989 			 * i_size_read because we hold i_mutex.
1990 			 */
1991 			if (pos + len > inode->i_size)
1992 				vmtruncate(inode, inode->i_size);
1993 		}
1994 		goto out;
1995 	}
1996 
1997 out:
1998 	return status;
1999 }
2000 EXPORT_SYMBOL(block_write_begin);
2001 
2002 int block_write_end(struct file *file, struct address_space *mapping,
2003 			loff_t pos, unsigned len, unsigned copied,
2004 			struct page *page, void *fsdata)
2005 {
2006 	struct inode *inode = mapping->host;
2007 	unsigned start;
2008 
2009 	start = pos & (PAGE_CACHE_SIZE - 1);
2010 
2011 	if (unlikely(copied < len)) {
2012 		/*
2013 		 * The buffers that were written will now be uptodate, so we
2014 		 * don't have to worry about a readpage reading them and
2015 		 * overwriting a partial write. However if we have encountered
2016 		 * a short write and only partially written into a buffer, it
2017 		 * will not be marked uptodate, so a readpage might come in and
2018 		 * destroy our partial write.
2019 		 *
2020 		 * Do the simplest thing, and just treat any short write to a
2021 		 * non uptodate page as a zero-length write, and force the
2022 		 * caller to redo the whole thing.
2023 		 */
2024 		if (!PageUptodate(page))
2025 			copied = 0;
2026 
2027 		page_zero_new_buffers(page, start+copied, start+len);
2028 	}
2029 	flush_dcache_page(page);
2030 
2031 	/* This could be a short (even 0-length) commit */
2032 	__block_commit_write(inode, page, start, start+copied);
2033 
2034 	return copied;
2035 }
2036 EXPORT_SYMBOL(block_write_end);
2037 
2038 int generic_write_end(struct file *file, struct address_space *mapping,
2039 			loff_t pos, unsigned len, unsigned copied,
2040 			struct page *page, void *fsdata)
2041 {
2042 	struct inode *inode = mapping->host;
2043 
2044 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2045 
2046 	/*
2047 	 * No need to use i_size_read() here, the i_size
2048 	 * cannot change under us because we hold i_mutex.
2049 	 *
2050 	 * But it's important to update i_size while still holding page lock:
2051 	 * page writeout could otherwise come in and zero beyond i_size.
2052 	 */
2053 	if (pos+copied > inode->i_size) {
2054 		i_size_write(inode, pos+copied);
2055 		mark_inode_dirty(inode);
2056 	}
2057 
2058 	unlock_page(page);
2059 	page_cache_release(page);
2060 
2061 	return copied;
2062 }
2063 EXPORT_SYMBOL(generic_write_end);
2064 
2065 /*
2066  * Generic "read page" function for block devices that have the normal
2067  * get_block functionality. This is most of the block device filesystems.
2068  * Reads the page asynchronously --- the unlock_buffer() and
2069  * set/clear_buffer_uptodate() functions propagate buffer state into the
2070  * page struct once IO has completed.
2071  */
2072 int block_read_full_page(struct page *page, get_block_t *get_block)
2073 {
2074 	struct inode *inode = page->mapping->host;
2075 	sector_t iblock, lblock;
2076 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2077 	unsigned int blocksize;
2078 	int nr, i;
2079 	int fully_mapped = 1;
2080 
2081 	BUG_ON(!PageLocked(page));
2082 	blocksize = 1 << inode->i_blkbits;
2083 	if (!page_has_buffers(page))
2084 		create_empty_buffers(page, blocksize, 0);
2085 	head = page_buffers(page);
2086 
2087 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2088 	lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2089 	bh = head;
2090 	nr = 0;
2091 	i = 0;
2092 
2093 	do {
2094 		if (buffer_uptodate(bh))
2095 			continue;
2096 
2097 		if (!buffer_mapped(bh)) {
2098 			int err = 0;
2099 
2100 			fully_mapped = 0;
2101 			if (iblock < lblock) {
2102 				WARN_ON(bh->b_size != blocksize);
2103 				err = get_block(inode, iblock, bh, 0);
2104 				if (err)
2105 					SetPageError(page);
2106 			}
2107 			if (!buffer_mapped(bh)) {
2108 				zero_user_page(page, i * blocksize, blocksize,
2109 						KM_USER0);
2110 				if (!err)
2111 					set_buffer_uptodate(bh);
2112 				continue;
2113 			}
2114 			/*
2115 			 * get_block() might have updated the buffer
2116 			 * synchronously
2117 			 */
2118 			if (buffer_uptodate(bh))
2119 				continue;
2120 		}
2121 		arr[nr++] = bh;
2122 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2123 
2124 	if (fully_mapped)
2125 		SetPageMappedToDisk(page);
2126 
2127 	if (!nr) {
2128 		/*
2129 		 * All buffers are uptodate - we can set the page uptodate
2130 		 * as well. But not if get_block() returned an error.
2131 		 */
2132 		if (!PageError(page))
2133 			SetPageUptodate(page);
2134 		unlock_page(page);
2135 		return 0;
2136 	}
2137 
2138 	/* Stage two: lock the buffers */
2139 	for (i = 0; i < nr; i++) {
2140 		bh = arr[i];
2141 		lock_buffer(bh);
2142 		mark_buffer_async_read(bh);
2143 	}
2144 
2145 	/*
2146 	 * Stage 3: start the IO.  Check for uptodateness
2147 	 * inside the buffer lock in case another process reading
2148 	 * the underlying blockdev brought it uptodate (the sct fix).
2149 	 */
2150 	for (i = 0; i < nr; i++) {
2151 		bh = arr[i];
2152 		if (buffer_uptodate(bh))
2153 			end_buffer_async_read(bh, 1);
2154 		else
2155 			submit_bh(READ, bh);
2156 	}
2157 	return 0;
2158 }
2159 
2160 /* utility function for filesystems that need to do work on expanding
2161  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2162  * deal with the hole.
2163  */
2164 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2165 {
2166 	struct address_space *mapping = inode->i_mapping;
2167 	struct page *page;
2168 	void *fsdata;
2169 	unsigned long limit;
2170 	int err;
2171 
2172 	err = -EFBIG;
2173         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2174 	if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2175 		send_sig(SIGXFSZ, current, 0);
2176 		goto out;
2177 	}
2178 	if (size > inode->i_sb->s_maxbytes)
2179 		goto out;
2180 
2181 	err = pagecache_write_begin(NULL, mapping, size, 0,
2182 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2183 				&page, &fsdata);
2184 	if (err)
2185 		goto out;
2186 
2187 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2188 	BUG_ON(err > 0);
2189 
2190 out:
2191 	return err;
2192 }
2193 
2194 int cont_expand_zero(struct file *file, struct address_space *mapping,
2195 			loff_t pos, loff_t *bytes)
2196 {
2197 	struct inode *inode = mapping->host;
2198 	unsigned blocksize = 1 << inode->i_blkbits;
2199 	struct page *page;
2200 	void *fsdata;
2201 	pgoff_t index, curidx;
2202 	loff_t curpos;
2203 	unsigned zerofrom, offset, len;
2204 	int err = 0;
2205 
2206 	index = pos >> PAGE_CACHE_SHIFT;
2207 	offset = pos & ~PAGE_CACHE_MASK;
2208 
2209 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2210 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2211 		if (zerofrom & (blocksize-1)) {
2212 			*bytes |= (blocksize-1);
2213 			(*bytes)++;
2214 		}
2215 		len = PAGE_CACHE_SIZE - zerofrom;
2216 
2217 		err = pagecache_write_begin(file, mapping, curpos, len,
2218 						AOP_FLAG_UNINTERRUPTIBLE,
2219 						&page, &fsdata);
2220 		if (err)
2221 			goto out;
2222 		zero_user_page(page, zerofrom, len, KM_USER0);
2223 		err = pagecache_write_end(file, mapping, curpos, len, len,
2224 						page, fsdata);
2225 		if (err < 0)
2226 			goto out;
2227 		BUG_ON(err != len);
2228 		err = 0;
2229 	}
2230 
2231 	/* page covers the boundary, find the boundary offset */
2232 	if (index == curidx) {
2233 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2234 		/* if we will expand the thing last block will be filled */
2235 		if (offset <= zerofrom) {
2236 			goto out;
2237 		}
2238 		if (zerofrom & (blocksize-1)) {
2239 			*bytes |= (blocksize-1);
2240 			(*bytes)++;
2241 		}
2242 		len = offset - zerofrom;
2243 
2244 		err = pagecache_write_begin(file, mapping, curpos, len,
2245 						AOP_FLAG_UNINTERRUPTIBLE,
2246 						&page, &fsdata);
2247 		if (err)
2248 			goto out;
2249 		zero_user_page(page, zerofrom, len, KM_USER0);
2250 		err = pagecache_write_end(file, mapping, curpos, len, len,
2251 						page, fsdata);
2252 		if (err < 0)
2253 			goto out;
2254 		BUG_ON(err != len);
2255 		err = 0;
2256 	}
2257 out:
2258 	return err;
2259 }
2260 
2261 /*
2262  * For moronic filesystems that do not allow holes in file.
2263  * We may have to extend the file.
2264  */
2265 int cont_write_begin(struct file *file, struct address_space *mapping,
2266 			loff_t pos, unsigned len, unsigned flags,
2267 			struct page **pagep, void **fsdata,
2268 			get_block_t *get_block, loff_t *bytes)
2269 {
2270 	struct inode *inode = mapping->host;
2271 	unsigned blocksize = 1 << inode->i_blkbits;
2272 	unsigned zerofrom;
2273 	int err;
2274 
2275 	err = cont_expand_zero(file, mapping, pos, bytes);
2276 	if (err)
2277 		goto out;
2278 
2279 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2280 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2281 		*bytes |= (blocksize-1);
2282 		(*bytes)++;
2283 	}
2284 
2285 	*pagep = NULL;
2286 	err = block_write_begin(file, mapping, pos, len,
2287 				flags, pagep, fsdata, get_block);
2288 out:
2289 	return err;
2290 }
2291 
2292 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2293 			get_block_t *get_block)
2294 {
2295 	struct inode *inode = page->mapping->host;
2296 	int err = __block_prepare_write(inode, page, from, to, get_block);
2297 	if (err)
2298 		ClearPageUptodate(page);
2299 	return err;
2300 }
2301 
2302 int block_commit_write(struct page *page, unsigned from, unsigned to)
2303 {
2304 	struct inode *inode = page->mapping->host;
2305 	__block_commit_write(inode,page,from,to);
2306 	return 0;
2307 }
2308 
2309 int generic_commit_write(struct file *file, struct page *page,
2310 		unsigned from, unsigned to)
2311 {
2312 	struct inode *inode = page->mapping->host;
2313 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2314 	__block_commit_write(inode,page,from,to);
2315 	/*
2316 	 * No need to use i_size_read() here, the i_size
2317 	 * cannot change under us because we hold i_mutex.
2318 	 */
2319 	if (pos > inode->i_size) {
2320 		i_size_write(inode, pos);
2321 		mark_inode_dirty(inode);
2322 	}
2323 	return 0;
2324 }
2325 
2326 /*
2327  * block_page_mkwrite() is not allowed to change the file size as it gets
2328  * called from a page fault handler when a page is first dirtied. Hence we must
2329  * be careful to check for EOF conditions here. We set the page up correctly
2330  * for a written page which means we get ENOSPC checking when writing into
2331  * holes and correct delalloc and unwritten extent mapping on filesystems that
2332  * support these features.
2333  *
2334  * We are not allowed to take the i_mutex here so we have to play games to
2335  * protect against truncate races as the page could now be beyond EOF.  Because
2336  * vmtruncate() writes the inode size before removing pages, once we have the
2337  * page lock we can determine safely if the page is beyond EOF. If it is not
2338  * beyond EOF, then the page is guaranteed safe against truncation until we
2339  * unlock the page.
2340  */
2341 int
2342 block_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2343 		   get_block_t get_block)
2344 {
2345 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2346 	unsigned long end;
2347 	loff_t size;
2348 	int ret = -EINVAL;
2349 
2350 	lock_page(page);
2351 	size = i_size_read(inode);
2352 	if ((page->mapping != inode->i_mapping) ||
2353 	    (page_offset(page) > size)) {
2354 		/* page got truncated out from underneath us */
2355 		goto out_unlock;
2356 	}
2357 
2358 	/* page is wholly or partially inside EOF */
2359 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2360 		end = size & ~PAGE_CACHE_MASK;
2361 	else
2362 		end = PAGE_CACHE_SIZE;
2363 
2364 	ret = block_prepare_write(page, 0, end, get_block);
2365 	if (!ret)
2366 		ret = block_commit_write(page, 0, end);
2367 
2368 out_unlock:
2369 	unlock_page(page);
2370 	return ret;
2371 }
2372 
2373 /*
2374  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2375  * immediately, while under the page lock.  So it needs a special end_io
2376  * handler which does not touch the bh after unlocking it.
2377  */
2378 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2379 {
2380 	__end_buffer_read_notouch(bh, uptodate);
2381 }
2382 
2383 /*
2384  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2385  * the page (converting it to circular linked list and taking care of page
2386  * dirty races).
2387  */
2388 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2389 {
2390 	struct buffer_head *bh;
2391 
2392 	BUG_ON(!PageLocked(page));
2393 
2394 	spin_lock(&page->mapping->private_lock);
2395 	bh = head;
2396 	do {
2397 		if (PageDirty(page))
2398 			set_buffer_dirty(bh);
2399 		if (!bh->b_this_page)
2400 			bh->b_this_page = head;
2401 		bh = bh->b_this_page;
2402 	} while (bh != head);
2403 	attach_page_buffers(page, head);
2404 	spin_unlock(&page->mapping->private_lock);
2405 }
2406 
2407 /*
2408  * On entry, the page is fully not uptodate.
2409  * On exit the page is fully uptodate in the areas outside (from,to)
2410  */
2411 int nobh_write_begin(struct file *file, struct address_space *mapping,
2412 			loff_t pos, unsigned len, unsigned flags,
2413 			struct page **pagep, void **fsdata,
2414 			get_block_t *get_block)
2415 {
2416 	struct inode *inode = mapping->host;
2417 	const unsigned blkbits = inode->i_blkbits;
2418 	const unsigned blocksize = 1 << blkbits;
2419 	struct buffer_head *head, *bh;
2420 	struct page *page;
2421 	pgoff_t index;
2422 	unsigned from, to;
2423 	unsigned block_in_page;
2424 	unsigned block_start, block_end;
2425 	sector_t block_in_file;
2426 	char *kaddr;
2427 	int nr_reads = 0;
2428 	int ret = 0;
2429 	int is_mapped_to_disk = 1;
2430 
2431 	index = pos >> PAGE_CACHE_SHIFT;
2432 	from = pos & (PAGE_CACHE_SIZE - 1);
2433 	to = from + len;
2434 
2435 	page = __grab_cache_page(mapping, index);
2436 	if (!page)
2437 		return -ENOMEM;
2438 	*pagep = page;
2439 	*fsdata = NULL;
2440 
2441 	if (page_has_buffers(page)) {
2442 		unlock_page(page);
2443 		page_cache_release(page);
2444 		*pagep = NULL;
2445 		return block_write_begin(file, mapping, pos, len, flags, pagep,
2446 					fsdata, get_block);
2447 	}
2448 
2449 	if (PageMappedToDisk(page))
2450 		return 0;
2451 
2452 	/*
2453 	 * Allocate buffers so that we can keep track of state, and potentially
2454 	 * attach them to the page if an error occurs. In the common case of
2455 	 * no error, they will just be freed again without ever being attached
2456 	 * to the page (which is all OK, because we're under the page lock).
2457 	 *
2458 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2459 	 * than the circular one we're used to.
2460 	 */
2461 	head = alloc_page_buffers(page, blocksize, 0);
2462 	if (!head) {
2463 		ret = -ENOMEM;
2464 		goto out_release;
2465 	}
2466 
2467 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2468 
2469 	/*
2470 	 * We loop across all blocks in the page, whether or not they are
2471 	 * part of the affected region.  This is so we can discover if the
2472 	 * page is fully mapped-to-disk.
2473 	 */
2474 	for (block_start = 0, block_in_page = 0, bh = head;
2475 		  block_start < PAGE_CACHE_SIZE;
2476 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2477 		int create;
2478 
2479 		block_end = block_start + blocksize;
2480 		bh->b_state = 0;
2481 		create = 1;
2482 		if (block_start >= to)
2483 			create = 0;
2484 		ret = get_block(inode, block_in_file + block_in_page,
2485 					bh, create);
2486 		if (ret)
2487 			goto failed;
2488 		if (!buffer_mapped(bh))
2489 			is_mapped_to_disk = 0;
2490 		if (buffer_new(bh))
2491 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2492 		if (PageUptodate(page)) {
2493 			set_buffer_uptodate(bh);
2494 			continue;
2495 		}
2496 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2497 			kaddr = kmap_atomic(page, KM_USER0);
2498 			if (block_start < from)
2499 				memset(kaddr+block_start, 0, from-block_start);
2500 			if (block_end > to)
2501 				memset(kaddr + to, 0, block_end - to);
2502 			flush_dcache_page(page);
2503 			kunmap_atomic(kaddr, KM_USER0);
2504 			continue;
2505 		}
2506 		if (buffer_uptodate(bh))
2507 			continue;	/* reiserfs does this */
2508 		if (block_start < from || block_end > to) {
2509 			lock_buffer(bh);
2510 			bh->b_end_io = end_buffer_read_nobh;
2511 			submit_bh(READ, bh);
2512 			nr_reads++;
2513 		}
2514 	}
2515 
2516 	if (nr_reads) {
2517 		/*
2518 		 * The page is locked, so these buffers are protected from
2519 		 * any VM or truncate activity.  Hence we don't need to care
2520 		 * for the buffer_head refcounts.
2521 		 */
2522 		for (bh = head; bh; bh = bh->b_this_page) {
2523 			wait_on_buffer(bh);
2524 			if (!buffer_uptodate(bh))
2525 				ret = -EIO;
2526 		}
2527 		if (ret)
2528 			goto failed;
2529 	}
2530 
2531 	if (is_mapped_to_disk)
2532 		SetPageMappedToDisk(page);
2533 
2534 	*fsdata = head; /* to be released by nobh_write_end */
2535 
2536 	return 0;
2537 
2538 failed:
2539 	BUG_ON(!ret);
2540 	/*
2541 	 * Error recovery is a bit difficult. We need to zero out blocks that
2542 	 * were newly allocated, and dirty them to ensure they get written out.
2543 	 * Buffers need to be attached to the page at this point, otherwise
2544 	 * the handling of potential IO errors during writeout would be hard
2545 	 * (could try doing synchronous writeout, but what if that fails too?)
2546 	 */
2547 	attach_nobh_buffers(page, head);
2548 	page_zero_new_buffers(page, from, to);
2549 
2550 out_release:
2551 	unlock_page(page);
2552 	page_cache_release(page);
2553 	*pagep = NULL;
2554 
2555 	if (pos + len > inode->i_size)
2556 		vmtruncate(inode, inode->i_size);
2557 
2558 	return ret;
2559 }
2560 EXPORT_SYMBOL(nobh_write_begin);
2561 
2562 int nobh_write_end(struct file *file, struct address_space *mapping,
2563 			loff_t pos, unsigned len, unsigned copied,
2564 			struct page *page, void *fsdata)
2565 {
2566 	struct inode *inode = page->mapping->host;
2567 	struct buffer_head *head = NULL;
2568 	struct buffer_head *bh;
2569 
2570 	if (!PageMappedToDisk(page)) {
2571 		if (unlikely(copied < len) && !page_has_buffers(page))
2572 			attach_nobh_buffers(page, head);
2573 		if (page_has_buffers(page))
2574 			return generic_write_end(file, mapping, pos, len,
2575 						copied, page, fsdata);
2576 	}
2577 
2578 	SetPageUptodate(page);
2579 	set_page_dirty(page);
2580 	if (pos+copied > inode->i_size) {
2581 		i_size_write(inode, pos+copied);
2582 		mark_inode_dirty(inode);
2583 	}
2584 
2585 	unlock_page(page);
2586 	page_cache_release(page);
2587 
2588 	head = fsdata;
2589 	while (head) {
2590 		bh = head;
2591 		head = head->b_this_page;
2592 		free_buffer_head(bh);
2593 	}
2594 
2595 	return copied;
2596 }
2597 EXPORT_SYMBOL(nobh_write_end);
2598 
2599 /*
2600  * nobh_writepage() - based on block_full_write_page() except
2601  * that it tries to operate without attaching bufferheads to
2602  * the page.
2603  */
2604 int nobh_writepage(struct page *page, get_block_t *get_block,
2605 			struct writeback_control *wbc)
2606 {
2607 	struct inode * const inode = page->mapping->host;
2608 	loff_t i_size = i_size_read(inode);
2609 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2610 	unsigned offset;
2611 	int ret;
2612 
2613 	/* Is the page fully inside i_size? */
2614 	if (page->index < end_index)
2615 		goto out;
2616 
2617 	/* Is the page fully outside i_size? (truncate in progress) */
2618 	offset = i_size & (PAGE_CACHE_SIZE-1);
2619 	if (page->index >= end_index+1 || !offset) {
2620 		/*
2621 		 * The page may have dirty, unmapped buffers.  For example,
2622 		 * they may have been added in ext3_writepage().  Make them
2623 		 * freeable here, so the page does not leak.
2624 		 */
2625 #if 0
2626 		/* Not really sure about this  - do we need this ? */
2627 		if (page->mapping->a_ops->invalidatepage)
2628 			page->mapping->a_ops->invalidatepage(page, offset);
2629 #endif
2630 		unlock_page(page);
2631 		return 0; /* don't care */
2632 	}
2633 
2634 	/*
2635 	 * The page straddles i_size.  It must be zeroed out on each and every
2636 	 * writepage invocation because it may be mmapped.  "A file is mapped
2637 	 * in multiples of the page size.  For a file that is not a multiple of
2638 	 * the  page size, the remaining memory is zeroed when mapped, and
2639 	 * writes to that region are not written out to the file."
2640 	 */
2641 	zero_user_page(page, offset, PAGE_CACHE_SIZE - offset, KM_USER0);
2642 out:
2643 	ret = mpage_writepage(page, get_block, wbc);
2644 	if (ret == -EAGAIN)
2645 		ret = __block_write_full_page(inode, page, get_block, wbc);
2646 	return ret;
2647 }
2648 EXPORT_SYMBOL(nobh_writepage);
2649 
2650 int nobh_truncate_page(struct address_space *mapping,
2651 			loff_t from, get_block_t *get_block)
2652 {
2653 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2654 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2655 	unsigned blocksize;
2656 	sector_t iblock;
2657 	unsigned length, pos;
2658 	struct inode *inode = mapping->host;
2659 	struct page *page;
2660 	struct buffer_head map_bh;
2661 	int err;
2662 
2663 	blocksize = 1 << inode->i_blkbits;
2664 	length = offset & (blocksize - 1);
2665 
2666 	/* Block boundary? Nothing to do */
2667 	if (!length)
2668 		return 0;
2669 
2670 	length = blocksize - length;
2671 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2672 
2673 	page = grab_cache_page(mapping, index);
2674 	err = -ENOMEM;
2675 	if (!page)
2676 		goto out;
2677 
2678 	if (page_has_buffers(page)) {
2679 has_buffers:
2680 		unlock_page(page);
2681 		page_cache_release(page);
2682 		return block_truncate_page(mapping, from, get_block);
2683 	}
2684 
2685 	/* Find the buffer that contains "offset" */
2686 	pos = blocksize;
2687 	while (offset >= pos) {
2688 		iblock++;
2689 		pos += blocksize;
2690 	}
2691 
2692 	err = get_block(inode, iblock, &map_bh, 0);
2693 	if (err)
2694 		goto unlock;
2695 	/* unmapped? It's a hole - nothing to do */
2696 	if (!buffer_mapped(&map_bh))
2697 		goto unlock;
2698 
2699 	/* Ok, it's mapped. Make sure it's up-to-date */
2700 	if (!PageUptodate(page)) {
2701 		err = mapping->a_ops->readpage(NULL, page);
2702 		if (err) {
2703 			page_cache_release(page);
2704 			goto out;
2705 		}
2706 		lock_page(page);
2707 		if (!PageUptodate(page)) {
2708 			err = -EIO;
2709 			goto unlock;
2710 		}
2711 		if (page_has_buffers(page))
2712 			goto has_buffers;
2713 	}
2714 	zero_user_page(page, offset, length, KM_USER0);
2715 	set_page_dirty(page);
2716 	err = 0;
2717 
2718 unlock:
2719 	unlock_page(page);
2720 	page_cache_release(page);
2721 out:
2722 	return err;
2723 }
2724 EXPORT_SYMBOL(nobh_truncate_page);
2725 
2726 int block_truncate_page(struct address_space *mapping,
2727 			loff_t from, get_block_t *get_block)
2728 {
2729 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2730 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2731 	unsigned blocksize;
2732 	sector_t iblock;
2733 	unsigned length, pos;
2734 	struct inode *inode = mapping->host;
2735 	struct page *page;
2736 	struct buffer_head *bh;
2737 	int err;
2738 
2739 	blocksize = 1 << inode->i_blkbits;
2740 	length = offset & (blocksize - 1);
2741 
2742 	/* Block boundary? Nothing to do */
2743 	if (!length)
2744 		return 0;
2745 
2746 	length = blocksize - length;
2747 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2748 
2749 	page = grab_cache_page(mapping, index);
2750 	err = -ENOMEM;
2751 	if (!page)
2752 		goto out;
2753 
2754 	if (!page_has_buffers(page))
2755 		create_empty_buffers(page, blocksize, 0);
2756 
2757 	/* Find the buffer that contains "offset" */
2758 	bh = page_buffers(page);
2759 	pos = blocksize;
2760 	while (offset >= pos) {
2761 		bh = bh->b_this_page;
2762 		iblock++;
2763 		pos += blocksize;
2764 	}
2765 
2766 	err = 0;
2767 	if (!buffer_mapped(bh)) {
2768 		WARN_ON(bh->b_size != blocksize);
2769 		err = get_block(inode, iblock, bh, 0);
2770 		if (err)
2771 			goto unlock;
2772 		/* unmapped? It's a hole - nothing to do */
2773 		if (!buffer_mapped(bh))
2774 			goto unlock;
2775 	}
2776 
2777 	/* Ok, it's mapped. Make sure it's up-to-date */
2778 	if (PageUptodate(page))
2779 		set_buffer_uptodate(bh);
2780 
2781 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2782 		err = -EIO;
2783 		ll_rw_block(READ, 1, &bh);
2784 		wait_on_buffer(bh);
2785 		/* Uhhuh. Read error. Complain and punt. */
2786 		if (!buffer_uptodate(bh))
2787 			goto unlock;
2788 	}
2789 
2790 	zero_user_page(page, offset, length, KM_USER0);
2791 	mark_buffer_dirty(bh);
2792 	err = 0;
2793 
2794 unlock:
2795 	unlock_page(page);
2796 	page_cache_release(page);
2797 out:
2798 	return err;
2799 }
2800 
2801 /*
2802  * The generic ->writepage function for buffer-backed address_spaces
2803  */
2804 int block_write_full_page(struct page *page, get_block_t *get_block,
2805 			struct writeback_control *wbc)
2806 {
2807 	struct inode * const inode = page->mapping->host;
2808 	loff_t i_size = i_size_read(inode);
2809 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2810 	unsigned offset;
2811 
2812 	/* Is the page fully inside i_size? */
2813 	if (page->index < end_index)
2814 		return __block_write_full_page(inode, page, get_block, wbc);
2815 
2816 	/* Is the page fully outside i_size? (truncate in progress) */
2817 	offset = i_size & (PAGE_CACHE_SIZE-1);
2818 	if (page->index >= end_index+1 || !offset) {
2819 		/*
2820 		 * The page may have dirty, unmapped buffers.  For example,
2821 		 * they may have been added in ext3_writepage().  Make them
2822 		 * freeable here, so the page does not leak.
2823 		 */
2824 		do_invalidatepage(page, 0);
2825 		unlock_page(page);
2826 		return 0; /* don't care */
2827 	}
2828 
2829 	/*
2830 	 * The page straddles i_size.  It must be zeroed out on each and every
2831 	 * writepage invokation because it may be mmapped.  "A file is mapped
2832 	 * in multiples of the page size.  For a file that is not a multiple of
2833 	 * the  page size, the remaining memory is zeroed when mapped, and
2834 	 * writes to that region are not written out to the file."
2835 	 */
2836 	zero_user_page(page, offset, PAGE_CACHE_SIZE - offset, KM_USER0);
2837 	return __block_write_full_page(inode, page, get_block, wbc);
2838 }
2839 
2840 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2841 			    get_block_t *get_block)
2842 {
2843 	struct buffer_head tmp;
2844 	struct inode *inode = mapping->host;
2845 	tmp.b_state = 0;
2846 	tmp.b_blocknr = 0;
2847 	tmp.b_size = 1 << inode->i_blkbits;
2848 	get_block(inode, block, &tmp, 0);
2849 	return tmp.b_blocknr;
2850 }
2851 
2852 static void end_bio_bh_io_sync(struct bio *bio, int err)
2853 {
2854 	struct buffer_head *bh = bio->bi_private;
2855 
2856 	if (err == -EOPNOTSUPP) {
2857 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2858 		set_bit(BH_Eopnotsupp, &bh->b_state);
2859 	}
2860 
2861 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2862 	bio_put(bio);
2863 }
2864 
2865 int submit_bh(int rw, struct buffer_head * bh)
2866 {
2867 	struct bio *bio;
2868 	int ret = 0;
2869 
2870 	BUG_ON(!buffer_locked(bh));
2871 	BUG_ON(!buffer_mapped(bh));
2872 	BUG_ON(!bh->b_end_io);
2873 
2874 	if (buffer_ordered(bh) && (rw == WRITE))
2875 		rw = WRITE_BARRIER;
2876 
2877 	/*
2878 	 * Only clear out a write error when rewriting, should this
2879 	 * include WRITE_SYNC as well?
2880 	 */
2881 	if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2882 		clear_buffer_write_io_error(bh);
2883 
2884 	/*
2885 	 * from here on down, it's all bio -- do the initial mapping,
2886 	 * submit_bio -> generic_make_request may further map this bio around
2887 	 */
2888 	bio = bio_alloc(GFP_NOIO, 1);
2889 
2890 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2891 	bio->bi_bdev = bh->b_bdev;
2892 	bio->bi_io_vec[0].bv_page = bh->b_page;
2893 	bio->bi_io_vec[0].bv_len = bh->b_size;
2894 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2895 
2896 	bio->bi_vcnt = 1;
2897 	bio->bi_idx = 0;
2898 	bio->bi_size = bh->b_size;
2899 
2900 	bio->bi_end_io = end_bio_bh_io_sync;
2901 	bio->bi_private = bh;
2902 
2903 	bio_get(bio);
2904 	submit_bio(rw, bio);
2905 
2906 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2907 		ret = -EOPNOTSUPP;
2908 
2909 	bio_put(bio);
2910 	return ret;
2911 }
2912 
2913 /**
2914  * ll_rw_block: low-level access to block devices (DEPRECATED)
2915  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2916  * @nr: number of &struct buffer_heads in the array
2917  * @bhs: array of pointers to &struct buffer_head
2918  *
2919  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2920  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2921  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2922  * are sent to disk. The fourth %READA option is described in the documentation
2923  * for generic_make_request() which ll_rw_block() calls.
2924  *
2925  * This function drops any buffer that it cannot get a lock on (with the
2926  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2927  * clean when doing a write request, and any buffer that appears to be
2928  * up-to-date when doing read request.  Further it marks as clean buffers that
2929  * are processed for writing (the buffer cache won't assume that they are
2930  * actually clean until the buffer gets unlocked).
2931  *
2932  * ll_rw_block sets b_end_io to simple completion handler that marks
2933  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2934  * any waiters.
2935  *
2936  * All of the buffers must be for the same device, and must also be a
2937  * multiple of the current approved size for the device.
2938  */
2939 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2940 {
2941 	int i;
2942 
2943 	for (i = 0; i < nr; i++) {
2944 		struct buffer_head *bh = bhs[i];
2945 
2946 		if (rw == SWRITE)
2947 			lock_buffer(bh);
2948 		else if (test_set_buffer_locked(bh))
2949 			continue;
2950 
2951 		if (rw == WRITE || rw == SWRITE) {
2952 			if (test_clear_buffer_dirty(bh)) {
2953 				bh->b_end_io = end_buffer_write_sync;
2954 				get_bh(bh);
2955 				submit_bh(WRITE, bh);
2956 				continue;
2957 			}
2958 		} else {
2959 			if (!buffer_uptodate(bh)) {
2960 				bh->b_end_io = end_buffer_read_sync;
2961 				get_bh(bh);
2962 				submit_bh(rw, bh);
2963 				continue;
2964 			}
2965 		}
2966 		unlock_buffer(bh);
2967 	}
2968 }
2969 
2970 /*
2971  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2972  * and then start new I/O and then wait upon it.  The caller must have a ref on
2973  * the buffer_head.
2974  */
2975 int sync_dirty_buffer(struct buffer_head *bh)
2976 {
2977 	int ret = 0;
2978 
2979 	WARN_ON(atomic_read(&bh->b_count) < 1);
2980 	lock_buffer(bh);
2981 	if (test_clear_buffer_dirty(bh)) {
2982 		get_bh(bh);
2983 		bh->b_end_io = end_buffer_write_sync;
2984 		ret = submit_bh(WRITE, bh);
2985 		wait_on_buffer(bh);
2986 		if (buffer_eopnotsupp(bh)) {
2987 			clear_buffer_eopnotsupp(bh);
2988 			ret = -EOPNOTSUPP;
2989 		}
2990 		if (!ret && !buffer_uptodate(bh))
2991 			ret = -EIO;
2992 	} else {
2993 		unlock_buffer(bh);
2994 	}
2995 	return ret;
2996 }
2997 
2998 /*
2999  * try_to_free_buffers() checks if all the buffers on this particular page
3000  * are unused, and releases them if so.
3001  *
3002  * Exclusion against try_to_free_buffers may be obtained by either
3003  * locking the page or by holding its mapping's private_lock.
3004  *
3005  * If the page is dirty but all the buffers are clean then we need to
3006  * be sure to mark the page clean as well.  This is because the page
3007  * may be against a block device, and a later reattachment of buffers
3008  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3009  * filesystem data on the same device.
3010  *
3011  * The same applies to regular filesystem pages: if all the buffers are
3012  * clean then we set the page clean and proceed.  To do that, we require
3013  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3014  * private_lock.
3015  *
3016  * try_to_free_buffers() is non-blocking.
3017  */
3018 static inline int buffer_busy(struct buffer_head *bh)
3019 {
3020 	return atomic_read(&bh->b_count) |
3021 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3022 }
3023 
3024 static int
3025 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3026 {
3027 	struct buffer_head *head = page_buffers(page);
3028 	struct buffer_head *bh;
3029 
3030 	bh = head;
3031 	do {
3032 		if (buffer_write_io_error(bh) && page->mapping)
3033 			set_bit(AS_EIO, &page->mapping->flags);
3034 		if (buffer_busy(bh))
3035 			goto failed;
3036 		bh = bh->b_this_page;
3037 	} while (bh != head);
3038 
3039 	do {
3040 		struct buffer_head *next = bh->b_this_page;
3041 
3042 		if (!list_empty(&bh->b_assoc_buffers))
3043 			__remove_assoc_queue(bh);
3044 		bh = next;
3045 	} while (bh != head);
3046 	*buffers_to_free = head;
3047 	__clear_page_buffers(page);
3048 	return 1;
3049 failed:
3050 	return 0;
3051 }
3052 
3053 int try_to_free_buffers(struct page *page)
3054 {
3055 	struct address_space * const mapping = page->mapping;
3056 	struct buffer_head *buffers_to_free = NULL;
3057 	int ret = 0;
3058 
3059 	BUG_ON(!PageLocked(page));
3060 	if (PageWriteback(page))
3061 		return 0;
3062 
3063 	if (mapping == NULL) {		/* can this still happen? */
3064 		ret = drop_buffers(page, &buffers_to_free);
3065 		goto out;
3066 	}
3067 
3068 	spin_lock(&mapping->private_lock);
3069 	ret = drop_buffers(page, &buffers_to_free);
3070 
3071 	/*
3072 	 * If the filesystem writes its buffers by hand (eg ext3)
3073 	 * then we can have clean buffers against a dirty page.  We
3074 	 * clean the page here; otherwise the VM will never notice
3075 	 * that the filesystem did any IO at all.
3076 	 *
3077 	 * Also, during truncate, discard_buffer will have marked all
3078 	 * the page's buffers clean.  We discover that here and clean
3079 	 * the page also.
3080 	 *
3081 	 * private_lock must be held over this entire operation in order
3082 	 * to synchronise against __set_page_dirty_buffers and prevent the
3083 	 * dirty bit from being lost.
3084 	 */
3085 	if (ret)
3086 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3087 	spin_unlock(&mapping->private_lock);
3088 out:
3089 	if (buffers_to_free) {
3090 		struct buffer_head *bh = buffers_to_free;
3091 
3092 		do {
3093 			struct buffer_head *next = bh->b_this_page;
3094 			free_buffer_head(bh);
3095 			bh = next;
3096 		} while (bh != buffers_to_free);
3097 	}
3098 	return ret;
3099 }
3100 EXPORT_SYMBOL(try_to_free_buffers);
3101 
3102 void block_sync_page(struct page *page)
3103 {
3104 	struct address_space *mapping;
3105 
3106 	smp_mb();
3107 	mapping = page_mapping(page);
3108 	if (mapping)
3109 		blk_run_backing_dev(mapping->backing_dev_info, page);
3110 }
3111 
3112 /*
3113  * There are no bdflush tunables left.  But distributions are
3114  * still running obsolete flush daemons, so we terminate them here.
3115  *
3116  * Use of bdflush() is deprecated and will be removed in a future kernel.
3117  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3118  */
3119 asmlinkage long sys_bdflush(int func, long data)
3120 {
3121 	static int msg_count;
3122 
3123 	if (!capable(CAP_SYS_ADMIN))
3124 		return -EPERM;
3125 
3126 	if (msg_count < 5) {
3127 		msg_count++;
3128 		printk(KERN_INFO
3129 			"warning: process `%s' used the obsolete bdflush"
3130 			" system call\n", current->comm);
3131 		printk(KERN_INFO "Fix your initscripts?\n");
3132 	}
3133 
3134 	if (func == 1)
3135 		do_exit(0);
3136 	return 0;
3137 }
3138 
3139 /*
3140  * Buffer-head allocation
3141  */
3142 static struct kmem_cache *bh_cachep;
3143 
3144 /*
3145  * Once the number of bh's in the machine exceeds this level, we start
3146  * stripping them in writeback.
3147  */
3148 static int max_buffer_heads;
3149 
3150 int buffer_heads_over_limit;
3151 
3152 struct bh_accounting {
3153 	int nr;			/* Number of live bh's */
3154 	int ratelimit;		/* Limit cacheline bouncing */
3155 };
3156 
3157 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3158 
3159 static void recalc_bh_state(void)
3160 {
3161 	int i;
3162 	int tot = 0;
3163 
3164 	if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3165 		return;
3166 	__get_cpu_var(bh_accounting).ratelimit = 0;
3167 	for_each_online_cpu(i)
3168 		tot += per_cpu(bh_accounting, i).nr;
3169 	buffer_heads_over_limit = (tot > max_buffer_heads);
3170 }
3171 
3172 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3173 {
3174 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep,
3175 				set_migrateflags(gfp_flags, __GFP_RECLAIMABLE));
3176 	if (ret) {
3177 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3178 		get_cpu_var(bh_accounting).nr++;
3179 		recalc_bh_state();
3180 		put_cpu_var(bh_accounting);
3181 	}
3182 	return ret;
3183 }
3184 EXPORT_SYMBOL(alloc_buffer_head);
3185 
3186 void free_buffer_head(struct buffer_head *bh)
3187 {
3188 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3189 	kmem_cache_free(bh_cachep, bh);
3190 	get_cpu_var(bh_accounting).nr--;
3191 	recalc_bh_state();
3192 	put_cpu_var(bh_accounting);
3193 }
3194 EXPORT_SYMBOL(free_buffer_head);
3195 
3196 static void buffer_exit_cpu(int cpu)
3197 {
3198 	int i;
3199 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3200 
3201 	for (i = 0; i < BH_LRU_SIZE; i++) {
3202 		brelse(b->bhs[i]);
3203 		b->bhs[i] = NULL;
3204 	}
3205 	get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3206 	per_cpu(bh_accounting, cpu).nr = 0;
3207 	put_cpu_var(bh_accounting);
3208 }
3209 
3210 static int buffer_cpu_notify(struct notifier_block *self,
3211 			      unsigned long action, void *hcpu)
3212 {
3213 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3214 		buffer_exit_cpu((unsigned long)hcpu);
3215 	return NOTIFY_OK;
3216 }
3217 
3218 void __init buffer_init(void)
3219 {
3220 	int nrpages;
3221 
3222 	bh_cachep = KMEM_CACHE(buffer_head,
3223 			SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3224 
3225 	/*
3226 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3227 	 */
3228 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3229 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3230 	hotcpu_notifier(buffer_cpu_notify, 0);
3231 }
3232 
3233 EXPORT_SYMBOL(__bforget);
3234 EXPORT_SYMBOL(__brelse);
3235 EXPORT_SYMBOL(__wait_on_buffer);
3236 EXPORT_SYMBOL(block_commit_write);
3237 EXPORT_SYMBOL(block_prepare_write);
3238 EXPORT_SYMBOL(block_page_mkwrite);
3239 EXPORT_SYMBOL(block_read_full_page);
3240 EXPORT_SYMBOL(block_sync_page);
3241 EXPORT_SYMBOL(block_truncate_page);
3242 EXPORT_SYMBOL(block_write_full_page);
3243 EXPORT_SYMBOL(cont_write_begin);
3244 EXPORT_SYMBOL(end_buffer_read_sync);
3245 EXPORT_SYMBOL(end_buffer_write_sync);
3246 EXPORT_SYMBOL(file_fsync);
3247 EXPORT_SYMBOL(fsync_bdev);
3248 EXPORT_SYMBOL(generic_block_bmap);
3249 EXPORT_SYMBOL(generic_commit_write);
3250 EXPORT_SYMBOL(generic_cont_expand_simple);
3251 EXPORT_SYMBOL(init_buffer);
3252 EXPORT_SYMBOL(invalidate_bdev);
3253 EXPORT_SYMBOL(ll_rw_block);
3254 EXPORT_SYMBOL(mark_buffer_dirty);
3255 EXPORT_SYMBOL(submit_bh);
3256 EXPORT_SYMBOL(sync_dirty_buffer);
3257 EXPORT_SYMBOL(unlock_buffer);
3258