xref: /linux/fs/buffer.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7 
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52 #include <linux/sched/isolation.h>
53 
54 #include "internal.h"
55 
56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
58 			  enum rw_hint hint, struct writeback_control *wbc);
59 
60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
61 
62 inline void touch_buffer(struct buffer_head *bh)
63 {
64 	trace_block_touch_buffer(bh);
65 	folio_mark_accessed(bh->b_folio);
66 }
67 EXPORT_SYMBOL(touch_buffer);
68 
69 void __lock_buffer(struct buffer_head *bh)
70 {
71 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
72 }
73 EXPORT_SYMBOL(__lock_buffer);
74 
75 void unlock_buffer(struct buffer_head *bh)
76 {
77 	clear_bit_unlock(BH_Lock, &bh->b_state);
78 	smp_mb__after_atomic();
79 	wake_up_bit(&bh->b_state, BH_Lock);
80 }
81 EXPORT_SYMBOL(unlock_buffer);
82 
83 /*
84  * Returns if the folio has dirty or writeback buffers. If all the buffers
85  * are unlocked and clean then the folio_test_dirty information is stale. If
86  * any of the buffers are locked, it is assumed they are locked for IO.
87  */
88 void buffer_check_dirty_writeback(struct folio *folio,
89 				     bool *dirty, bool *writeback)
90 {
91 	struct buffer_head *head, *bh;
92 	*dirty = false;
93 	*writeback = false;
94 
95 	BUG_ON(!folio_test_locked(folio));
96 
97 	head = folio_buffers(folio);
98 	if (!head)
99 		return;
100 
101 	if (folio_test_writeback(folio))
102 		*writeback = true;
103 
104 	bh = head;
105 	do {
106 		if (buffer_locked(bh))
107 			*writeback = true;
108 
109 		if (buffer_dirty(bh))
110 			*dirty = true;
111 
112 		bh = bh->b_this_page;
113 	} while (bh != head);
114 }
115 
116 /*
117  * Block until a buffer comes unlocked.  This doesn't stop it
118  * from becoming locked again - you have to lock it yourself
119  * if you want to preserve its state.
120  */
121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126 
127 static void buffer_io_error(struct buffer_head *bh, char *msg)
128 {
129 	if (!test_bit(BH_Quiet, &bh->b_state))
130 		printk_ratelimited(KERN_ERR
131 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
132 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133 }
134 
135 /*
136  * End-of-IO handler helper function which does not touch the bh after
137  * unlocking it.
138  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139  * a race there is benign: unlock_buffer() only use the bh's address for
140  * hashing after unlocking the buffer, so it doesn't actually touch the bh
141  * itself.
142  */
143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144 {
145 	if (uptodate) {
146 		set_buffer_uptodate(bh);
147 	} else {
148 		/* This happens, due to failed read-ahead attempts. */
149 		clear_buffer_uptodate(bh);
150 	}
151 	unlock_buffer(bh);
152 }
153 
154 /*
155  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
156  * unlock the buffer.
157  */
158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159 {
160 	__end_buffer_read_notouch(bh, uptodate);
161 	put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_read_sync);
164 
165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166 {
167 	if (uptodate) {
168 		set_buffer_uptodate(bh);
169 	} else {
170 		buffer_io_error(bh, ", lost sync page write");
171 		mark_buffer_write_io_error(bh);
172 		clear_buffer_uptodate(bh);
173 	}
174 	unlock_buffer(bh);
175 	put_bh(bh);
176 }
177 EXPORT_SYMBOL(end_buffer_write_sync);
178 
179 /*
180  * Various filesystems appear to want __find_get_block to be non-blocking.
181  * But it's the page lock which protects the buffers.  To get around this,
182  * we get exclusion from try_to_free_buffers with the blockdev mapping's
183  * i_private_lock.
184  *
185  * Hack idea: for the blockdev mapping, i_private_lock contention
186  * may be quite high.  This code could TryLock the page, and if that
187  * succeeds, there is no need to take i_private_lock.
188  */
189 static struct buffer_head *
190 __find_get_block_slow(struct block_device *bdev, sector_t block)
191 {
192 	struct address_space *bd_mapping = bdev->bd_mapping;
193 	const int blkbits = bd_mapping->host->i_blkbits;
194 	struct buffer_head *ret = NULL;
195 	pgoff_t index;
196 	struct buffer_head *bh;
197 	struct buffer_head *head;
198 	struct folio *folio;
199 	int all_mapped = 1;
200 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
201 
202 	index = ((loff_t)block << blkbits) / PAGE_SIZE;
203 	folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
204 	if (IS_ERR(folio))
205 		goto out;
206 
207 	spin_lock(&bd_mapping->i_private_lock);
208 	head = folio_buffers(folio);
209 	if (!head)
210 		goto out_unlock;
211 	bh = head;
212 	do {
213 		if (!buffer_mapped(bh))
214 			all_mapped = 0;
215 		else if (bh->b_blocknr == block) {
216 			ret = bh;
217 			get_bh(bh);
218 			goto out_unlock;
219 		}
220 		bh = bh->b_this_page;
221 	} while (bh != head);
222 
223 	/* we might be here because some of the buffers on this page are
224 	 * not mapped.  This is due to various races between
225 	 * file io on the block device and getblk.  It gets dealt with
226 	 * elsewhere, don't buffer_error if we had some unmapped buffers
227 	 */
228 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229 	if (all_mapped && __ratelimit(&last_warned)) {
230 		printk("__find_get_block_slow() failed. block=%llu, "
231 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232 		       "device %pg blocksize: %d\n",
233 		       (unsigned long long)block,
234 		       (unsigned long long)bh->b_blocknr,
235 		       bh->b_state, bh->b_size, bdev,
236 		       1 << blkbits);
237 	}
238 out_unlock:
239 	spin_unlock(&bd_mapping->i_private_lock);
240 	folio_put(folio);
241 out:
242 	return ret;
243 }
244 
245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
246 {
247 	unsigned long flags;
248 	struct buffer_head *first;
249 	struct buffer_head *tmp;
250 	struct folio *folio;
251 	int folio_uptodate = 1;
252 
253 	BUG_ON(!buffer_async_read(bh));
254 
255 	folio = bh->b_folio;
256 	if (uptodate) {
257 		set_buffer_uptodate(bh);
258 	} else {
259 		clear_buffer_uptodate(bh);
260 		buffer_io_error(bh, ", async page read");
261 		folio_set_error(folio);
262 	}
263 
264 	/*
265 	 * Be _very_ careful from here on. Bad things can happen if
266 	 * two buffer heads end IO at almost the same time and both
267 	 * decide that the page is now completely done.
268 	 */
269 	first = folio_buffers(folio);
270 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
271 	clear_buffer_async_read(bh);
272 	unlock_buffer(bh);
273 	tmp = bh;
274 	do {
275 		if (!buffer_uptodate(tmp))
276 			folio_uptodate = 0;
277 		if (buffer_async_read(tmp)) {
278 			BUG_ON(!buffer_locked(tmp));
279 			goto still_busy;
280 		}
281 		tmp = tmp->b_this_page;
282 	} while (tmp != bh);
283 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
284 
285 	folio_end_read(folio, folio_uptodate);
286 	return;
287 
288 still_busy:
289 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
290 	return;
291 }
292 
293 struct postprocess_bh_ctx {
294 	struct work_struct work;
295 	struct buffer_head *bh;
296 };
297 
298 static void verify_bh(struct work_struct *work)
299 {
300 	struct postprocess_bh_ctx *ctx =
301 		container_of(work, struct postprocess_bh_ctx, work);
302 	struct buffer_head *bh = ctx->bh;
303 	bool valid;
304 
305 	valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
306 	end_buffer_async_read(bh, valid);
307 	kfree(ctx);
308 }
309 
310 static bool need_fsverity(struct buffer_head *bh)
311 {
312 	struct folio *folio = bh->b_folio;
313 	struct inode *inode = folio->mapping->host;
314 
315 	return fsverity_active(inode) &&
316 		/* needed by ext4 */
317 		folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
318 }
319 
320 static void decrypt_bh(struct work_struct *work)
321 {
322 	struct postprocess_bh_ctx *ctx =
323 		container_of(work, struct postprocess_bh_ctx, work);
324 	struct buffer_head *bh = ctx->bh;
325 	int err;
326 
327 	err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
328 					       bh_offset(bh));
329 	if (err == 0 && need_fsverity(bh)) {
330 		/*
331 		 * We use different work queues for decryption and for verity
332 		 * because verity may require reading metadata pages that need
333 		 * decryption, and we shouldn't recurse to the same workqueue.
334 		 */
335 		INIT_WORK(&ctx->work, verify_bh);
336 		fsverity_enqueue_verify_work(&ctx->work);
337 		return;
338 	}
339 	end_buffer_async_read(bh, err == 0);
340 	kfree(ctx);
341 }
342 
343 /*
344  * I/O completion handler for block_read_full_folio() - pages
345  * which come unlocked at the end of I/O.
346  */
347 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
348 {
349 	struct inode *inode = bh->b_folio->mapping->host;
350 	bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
351 	bool verify = need_fsverity(bh);
352 
353 	/* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
354 	if (uptodate && (decrypt || verify)) {
355 		struct postprocess_bh_ctx *ctx =
356 			kmalloc(sizeof(*ctx), GFP_ATOMIC);
357 
358 		if (ctx) {
359 			ctx->bh = bh;
360 			if (decrypt) {
361 				INIT_WORK(&ctx->work, decrypt_bh);
362 				fscrypt_enqueue_decrypt_work(&ctx->work);
363 			} else {
364 				INIT_WORK(&ctx->work, verify_bh);
365 				fsverity_enqueue_verify_work(&ctx->work);
366 			}
367 			return;
368 		}
369 		uptodate = 0;
370 	}
371 	end_buffer_async_read(bh, uptodate);
372 }
373 
374 /*
375  * Completion handler for block_write_full_folio() - folios which are unlocked
376  * during I/O, and which have the writeback flag cleared upon I/O completion.
377  */
378 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
379 {
380 	unsigned long flags;
381 	struct buffer_head *first;
382 	struct buffer_head *tmp;
383 	struct folio *folio;
384 
385 	BUG_ON(!buffer_async_write(bh));
386 
387 	folio = bh->b_folio;
388 	if (uptodate) {
389 		set_buffer_uptodate(bh);
390 	} else {
391 		buffer_io_error(bh, ", lost async page write");
392 		mark_buffer_write_io_error(bh);
393 		clear_buffer_uptodate(bh);
394 		folio_set_error(folio);
395 	}
396 
397 	first = folio_buffers(folio);
398 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
399 
400 	clear_buffer_async_write(bh);
401 	unlock_buffer(bh);
402 	tmp = bh->b_this_page;
403 	while (tmp != bh) {
404 		if (buffer_async_write(tmp)) {
405 			BUG_ON(!buffer_locked(tmp));
406 			goto still_busy;
407 		}
408 		tmp = tmp->b_this_page;
409 	}
410 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
411 	folio_end_writeback(folio);
412 	return;
413 
414 still_busy:
415 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
416 	return;
417 }
418 
419 /*
420  * If a page's buffers are under async readin (end_buffer_async_read
421  * completion) then there is a possibility that another thread of
422  * control could lock one of the buffers after it has completed
423  * but while some of the other buffers have not completed.  This
424  * locked buffer would confuse end_buffer_async_read() into not unlocking
425  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
426  * that this buffer is not under async I/O.
427  *
428  * The page comes unlocked when it has no locked buffer_async buffers
429  * left.
430  *
431  * PageLocked prevents anyone starting new async I/O reads any of
432  * the buffers.
433  *
434  * PageWriteback is used to prevent simultaneous writeout of the same
435  * page.
436  *
437  * PageLocked prevents anyone from starting writeback of a page which is
438  * under read I/O (PageWriteback is only ever set against a locked page).
439  */
440 static void mark_buffer_async_read(struct buffer_head *bh)
441 {
442 	bh->b_end_io = end_buffer_async_read_io;
443 	set_buffer_async_read(bh);
444 }
445 
446 static void mark_buffer_async_write_endio(struct buffer_head *bh,
447 					  bh_end_io_t *handler)
448 {
449 	bh->b_end_io = handler;
450 	set_buffer_async_write(bh);
451 }
452 
453 void mark_buffer_async_write(struct buffer_head *bh)
454 {
455 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
456 }
457 EXPORT_SYMBOL(mark_buffer_async_write);
458 
459 
460 /*
461  * fs/buffer.c contains helper functions for buffer-backed address space's
462  * fsync functions.  A common requirement for buffer-based filesystems is
463  * that certain data from the backing blockdev needs to be written out for
464  * a successful fsync().  For example, ext2 indirect blocks need to be
465  * written back and waited upon before fsync() returns.
466  *
467  * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(),
468  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
469  * management of a list of dependent buffers at ->i_mapping->i_private_list.
470  *
471  * Locking is a little subtle: try_to_free_buffers() will remove buffers
472  * from their controlling inode's queue when they are being freed.  But
473  * try_to_free_buffers() will be operating against the *blockdev* mapping
474  * at the time, not against the S_ISREG file which depends on those buffers.
475  * So the locking for i_private_list is via the i_private_lock in the address_space
476  * which backs the buffers.  Which is different from the address_space
477  * against which the buffers are listed.  So for a particular address_space,
478  * mapping->i_private_lock does *not* protect mapping->i_private_list!  In fact,
479  * mapping->i_private_list will always be protected by the backing blockdev's
480  * ->i_private_lock.
481  *
482  * Which introduces a requirement: all buffers on an address_space's
483  * ->i_private_list must be from the same address_space: the blockdev's.
484  *
485  * address_spaces which do not place buffers at ->i_private_list via these
486  * utility functions are free to use i_private_lock and i_private_list for
487  * whatever they want.  The only requirement is that list_empty(i_private_list)
488  * be true at clear_inode() time.
489  *
490  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
491  * filesystems should do that.  invalidate_inode_buffers() should just go
492  * BUG_ON(!list_empty).
493  *
494  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
495  * take an address_space, not an inode.  And it should be called
496  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
497  * queued up.
498  *
499  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
500  * list if it is already on a list.  Because if the buffer is on a list,
501  * it *must* already be on the right one.  If not, the filesystem is being
502  * silly.  This will save a ton of locking.  But first we have to ensure
503  * that buffers are taken *off* the old inode's list when they are freed
504  * (presumably in truncate).  That requires careful auditing of all
505  * filesystems (do it inside bforget()).  It could also be done by bringing
506  * b_inode back.
507  */
508 
509 /*
510  * The buffer's backing address_space's i_private_lock must be held
511  */
512 static void __remove_assoc_queue(struct buffer_head *bh)
513 {
514 	list_del_init(&bh->b_assoc_buffers);
515 	WARN_ON(!bh->b_assoc_map);
516 	bh->b_assoc_map = NULL;
517 }
518 
519 int inode_has_buffers(struct inode *inode)
520 {
521 	return !list_empty(&inode->i_data.i_private_list);
522 }
523 
524 /*
525  * osync is designed to support O_SYNC io.  It waits synchronously for
526  * all already-submitted IO to complete, but does not queue any new
527  * writes to the disk.
528  *
529  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
530  * as you dirty the buffers, and then use osync_inode_buffers to wait for
531  * completion.  Any other dirty buffers which are not yet queued for
532  * write will not be flushed to disk by the osync.
533  */
534 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
535 {
536 	struct buffer_head *bh;
537 	struct list_head *p;
538 	int err = 0;
539 
540 	spin_lock(lock);
541 repeat:
542 	list_for_each_prev(p, list) {
543 		bh = BH_ENTRY(p);
544 		if (buffer_locked(bh)) {
545 			get_bh(bh);
546 			spin_unlock(lock);
547 			wait_on_buffer(bh);
548 			if (!buffer_uptodate(bh))
549 				err = -EIO;
550 			brelse(bh);
551 			spin_lock(lock);
552 			goto repeat;
553 		}
554 	}
555 	spin_unlock(lock);
556 	return err;
557 }
558 
559 /**
560  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
561  * @mapping: the mapping which wants those buffers written
562  *
563  * Starts I/O against the buffers at mapping->i_private_list, and waits upon
564  * that I/O.
565  *
566  * Basically, this is a convenience function for fsync().
567  * @mapping is a file or directory which needs those buffers to be written for
568  * a successful fsync().
569  */
570 int sync_mapping_buffers(struct address_space *mapping)
571 {
572 	struct address_space *buffer_mapping = mapping->i_private_data;
573 
574 	if (buffer_mapping == NULL || list_empty(&mapping->i_private_list))
575 		return 0;
576 
577 	return fsync_buffers_list(&buffer_mapping->i_private_lock,
578 					&mapping->i_private_list);
579 }
580 EXPORT_SYMBOL(sync_mapping_buffers);
581 
582 /**
583  * generic_buffers_fsync_noflush - generic buffer fsync implementation
584  * for simple filesystems with no inode lock
585  *
586  * @file:	file to synchronize
587  * @start:	start offset in bytes
588  * @end:	end offset in bytes (inclusive)
589  * @datasync:	only synchronize essential metadata if true
590  *
591  * This is a generic implementation of the fsync method for simple
592  * filesystems which track all non-inode metadata in the buffers list
593  * hanging off the address_space structure.
594  */
595 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
596 				  bool datasync)
597 {
598 	struct inode *inode = file->f_mapping->host;
599 	int err;
600 	int ret;
601 
602 	err = file_write_and_wait_range(file, start, end);
603 	if (err)
604 		return err;
605 
606 	ret = sync_mapping_buffers(inode->i_mapping);
607 	if (!(inode->i_state & I_DIRTY_ALL))
608 		goto out;
609 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
610 		goto out;
611 
612 	err = sync_inode_metadata(inode, 1);
613 	if (ret == 0)
614 		ret = err;
615 
616 out:
617 	/* check and advance again to catch errors after syncing out buffers */
618 	err = file_check_and_advance_wb_err(file);
619 	if (ret == 0)
620 		ret = err;
621 	return ret;
622 }
623 EXPORT_SYMBOL(generic_buffers_fsync_noflush);
624 
625 /**
626  * generic_buffers_fsync - generic buffer fsync implementation
627  * for simple filesystems with no inode lock
628  *
629  * @file:	file to synchronize
630  * @start:	start offset in bytes
631  * @end:	end offset in bytes (inclusive)
632  * @datasync:	only synchronize essential metadata if true
633  *
634  * This is a generic implementation of the fsync method for simple
635  * filesystems which track all non-inode metadata in the buffers list
636  * hanging off the address_space structure. This also makes sure that
637  * a device cache flush operation is called at the end.
638  */
639 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
640 			  bool datasync)
641 {
642 	struct inode *inode = file->f_mapping->host;
643 	int ret;
644 
645 	ret = generic_buffers_fsync_noflush(file, start, end, datasync);
646 	if (!ret)
647 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
648 	return ret;
649 }
650 EXPORT_SYMBOL(generic_buffers_fsync);
651 
652 /*
653  * Called when we've recently written block `bblock', and it is known that
654  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
655  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
656  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
657  */
658 void write_boundary_block(struct block_device *bdev,
659 			sector_t bblock, unsigned blocksize)
660 {
661 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
662 	if (bh) {
663 		if (buffer_dirty(bh))
664 			write_dirty_buffer(bh, 0);
665 		put_bh(bh);
666 	}
667 }
668 
669 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
670 {
671 	struct address_space *mapping = inode->i_mapping;
672 	struct address_space *buffer_mapping = bh->b_folio->mapping;
673 
674 	mark_buffer_dirty(bh);
675 	if (!mapping->i_private_data) {
676 		mapping->i_private_data = buffer_mapping;
677 	} else {
678 		BUG_ON(mapping->i_private_data != buffer_mapping);
679 	}
680 	if (!bh->b_assoc_map) {
681 		spin_lock(&buffer_mapping->i_private_lock);
682 		list_move_tail(&bh->b_assoc_buffers,
683 				&mapping->i_private_list);
684 		bh->b_assoc_map = mapping;
685 		spin_unlock(&buffer_mapping->i_private_lock);
686 	}
687 }
688 EXPORT_SYMBOL(mark_buffer_dirty_inode);
689 
690 /**
691  * block_dirty_folio - Mark a folio as dirty.
692  * @mapping: The address space containing this folio.
693  * @folio: The folio to mark dirty.
694  *
695  * Filesystems which use buffer_heads can use this function as their
696  * ->dirty_folio implementation.  Some filesystems need to do a little
697  * work before calling this function.  Filesystems which do not use
698  * buffer_heads should call filemap_dirty_folio() instead.
699  *
700  * If the folio has buffers, the uptodate buffers are set dirty, to
701  * preserve dirty-state coherency between the folio and the buffers.
702  * Buffers added to a dirty folio are created dirty.
703  *
704  * The buffers are dirtied before the folio is dirtied.  There's a small
705  * race window in which writeback may see the folio cleanness but not the
706  * buffer dirtiness.  That's fine.  If this code were to set the folio
707  * dirty before the buffers, writeback could clear the folio dirty flag,
708  * see a bunch of clean buffers and we'd end up with dirty buffers/clean
709  * folio on the dirty folio list.
710  *
711  * We use i_private_lock to lock against try_to_free_buffers() while
712  * using the folio's buffer list.  This also prevents clean buffers
713  * being added to the folio after it was set dirty.
714  *
715  * Context: May only be called from process context.  Does not sleep.
716  * Caller must ensure that @folio cannot be truncated during this call,
717  * typically by holding the folio lock or having a page in the folio
718  * mapped and holding the page table lock.
719  *
720  * Return: True if the folio was dirtied; false if it was already dirtied.
721  */
722 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
723 {
724 	struct buffer_head *head;
725 	bool newly_dirty;
726 
727 	spin_lock(&mapping->i_private_lock);
728 	head = folio_buffers(folio);
729 	if (head) {
730 		struct buffer_head *bh = head;
731 
732 		do {
733 			set_buffer_dirty(bh);
734 			bh = bh->b_this_page;
735 		} while (bh != head);
736 	}
737 	/*
738 	 * Lock out page's memcg migration to keep PageDirty
739 	 * synchronized with per-memcg dirty page counters.
740 	 */
741 	folio_memcg_lock(folio);
742 	newly_dirty = !folio_test_set_dirty(folio);
743 	spin_unlock(&mapping->i_private_lock);
744 
745 	if (newly_dirty)
746 		__folio_mark_dirty(folio, mapping, 1);
747 
748 	folio_memcg_unlock(folio);
749 
750 	if (newly_dirty)
751 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
752 
753 	return newly_dirty;
754 }
755 EXPORT_SYMBOL(block_dirty_folio);
756 
757 /*
758  * Write out and wait upon a list of buffers.
759  *
760  * We have conflicting pressures: we want to make sure that all
761  * initially dirty buffers get waited on, but that any subsequently
762  * dirtied buffers don't.  After all, we don't want fsync to last
763  * forever if somebody is actively writing to the file.
764  *
765  * Do this in two main stages: first we copy dirty buffers to a
766  * temporary inode list, queueing the writes as we go.  Then we clean
767  * up, waiting for those writes to complete.
768  *
769  * During this second stage, any subsequent updates to the file may end
770  * up refiling the buffer on the original inode's dirty list again, so
771  * there is a chance we will end up with a buffer queued for write but
772  * not yet completed on that list.  So, as a final cleanup we go through
773  * the osync code to catch these locked, dirty buffers without requeuing
774  * any newly dirty buffers for write.
775  */
776 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
777 {
778 	struct buffer_head *bh;
779 	struct list_head tmp;
780 	struct address_space *mapping;
781 	int err = 0, err2;
782 	struct blk_plug plug;
783 
784 	INIT_LIST_HEAD(&tmp);
785 	blk_start_plug(&plug);
786 
787 	spin_lock(lock);
788 	while (!list_empty(list)) {
789 		bh = BH_ENTRY(list->next);
790 		mapping = bh->b_assoc_map;
791 		__remove_assoc_queue(bh);
792 		/* Avoid race with mark_buffer_dirty_inode() which does
793 		 * a lockless check and we rely on seeing the dirty bit */
794 		smp_mb();
795 		if (buffer_dirty(bh) || buffer_locked(bh)) {
796 			list_add(&bh->b_assoc_buffers, &tmp);
797 			bh->b_assoc_map = mapping;
798 			if (buffer_dirty(bh)) {
799 				get_bh(bh);
800 				spin_unlock(lock);
801 				/*
802 				 * Ensure any pending I/O completes so that
803 				 * write_dirty_buffer() actually writes the
804 				 * current contents - it is a noop if I/O is
805 				 * still in flight on potentially older
806 				 * contents.
807 				 */
808 				write_dirty_buffer(bh, REQ_SYNC);
809 
810 				/*
811 				 * Kick off IO for the previous mapping. Note
812 				 * that we will not run the very last mapping,
813 				 * wait_on_buffer() will do that for us
814 				 * through sync_buffer().
815 				 */
816 				brelse(bh);
817 				spin_lock(lock);
818 			}
819 		}
820 	}
821 
822 	spin_unlock(lock);
823 	blk_finish_plug(&plug);
824 	spin_lock(lock);
825 
826 	while (!list_empty(&tmp)) {
827 		bh = BH_ENTRY(tmp.prev);
828 		get_bh(bh);
829 		mapping = bh->b_assoc_map;
830 		__remove_assoc_queue(bh);
831 		/* Avoid race with mark_buffer_dirty_inode() which does
832 		 * a lockless check and we rely on seeing the dirty bit */
833 		smp_mb();
834 		if (buffer_dirty(bh)) {
835 			list_add(&bh->b_assoc_buffers,
836 				 &mapping->i_private_list);
837 			bh->b_assoc_map = mapping;
838 		}
839 		spin_unlock(lock);
840 		wait_on_buffer(bh);
841 		if (!buffer_uptodate(bh))
842 			err = -EIO;
843 		brelse(bh);
844 		spin_lock(lock);
845 	}
846 
847 	spin_unlock(lock);
848 	err2 = osync_buffers_list(lock, list);
849 	if (err)
850 		return err;
851 	else
852 		return err2;
853 }
854 
855 /*
856  * Invalidate any and all dirty buffers on a given inode.  We are
857  * probably unmounting the fs, but that doesn't mean we have already
858  * done a sync().  Just drop the buffers from the inode list.
859  *
860  * NOTE: we take the inode's blockdev's mapping's i_private_lock.  Which
861  * assumes that all the buffers are against the blockdev.  Not true
862  * for reiserfs.
863  */
864 void invalidate_inode_buffers(struct inode *inode)
865 {
866 	if (inode_has_buffers(inode)) {
867 		struct address_space *mapping = &inode->i_data;
868 		struct list_head *list = &mapping->i_private_list;
869 		struct address_space *buffer_mapping = mapping->i_private_data;
870 
871 		spin_lock(&buffer_mapping->i_private_lock);
872 		while (!list_empty(list))
873 			__remove_assoc_queue(BH_ENTRY(list->next));
874 		spin_unlock(&buffer_mapping->i_private_lock);
875 	}
876 }
877 EXPORT_SYMBOL(invalidate_inode_buffers);
878 
879 /*
880  * Remove any clean buffers from the inode's buffer list.  This is called
881  * when we're trying to free the inode itself.  Those buffers can pin it.
882  *
883  * Returns true if all buffers were removed.
884  */
885 int remove_inode_buffers(struct inode *inode)
886 {
887 	int ret = 1;
888 
889 	if (inode_has_buffers(inode)) {
890 		struct address_space *mapping = &inode->i_data;
891 		struct list_head *list = &mapping->i_private_list;
892 		struct address_space *buffer_mapping = mapping->i_private_data;
893 
894 		spin_lock(&buffer_mapping->i_private_lock);
895 		while (!list_empty(list)) {
896 			struct buffer_head *bh = BH_ENTRY(list->next);
897 			if (buffer_dirty(bh)) {
898 				ret = 0;
899 				break;
900 			}
901 			__remove_assoc_queue(bh);
902 		}
903 		spin_unlock(&buffer_mapping->i_private_lock);
904 	}
905 	return ret;
906 }
907 
908 /*
909  * Create the appropriate buffers when given a folio for data area and
910  * the size of each buffer.. Use the bh->b_this_page linked list to
911  * follow the buffers created.  Return NULL if unable to create more
912  * buffers.
913  *
914  * The retry flag is used to differentiate async IO (paging, swapping)
915  * which may not fail from ordinary buffer allocations.
916  */
917 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
918 					gfp_t gfp)
919 {
920 	struct buffer_head *bh, *head;
921 	long offset;
922 	struct mem_cgroup *memcg, *old_memcg;
923 
924 	/* The folio lock pins the memcg */
925 	memcg = folio_memcg(folio);
926 	old_memcg = set_active_memcg(memcg);
927 
928 	head = NULL;
929 	offset = folio_size(folio);
930 	while ((offset -= size) >= 0) {
931 		bh = alloc_buffer_head(gfp);
932 		if (!bh)
933 			goto no_grow;
934 
935 		bh->b_this_page = head;
936 		bh->b_blocknr = -1;
937 		head = bh;
938 
939 		bh->b_size = size;
940 
941 		/* Link the buffer to its folio */
942 		folio_set_bh(bh, folio, offset);
943 	}
944 out:
945 	set_active_memcg(old_memcg);
946 	return head;
947 /*
948  * In case anything failed, we just free everything we got.
949  */
950 no_grow:
951 	if (head) {
952 		do {
953 			bh = head;
954 			head = head->b_this_page;
955 			free_buffer_head(bh);
956 		} while (head);
957 	}
958 
959 	goto out;
960 }
961 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
962 
963 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
964 				       bool retry)
965 {
966 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
967 	if (retry)
968 		gfp |= __GFP_NOFAIL;
969 
970 	return folio_alloc_buffers(page_folio(page), size, gfp);
971 }
972 EXPORT_SYMBOL_GPL(alloc_page_buffers);
973 
974 static inline void link_dev_buffers(struct folio *folio,
975 		struct buffer_head *head)
976 {
977 	struct buffer_head *bh, *tail;
978 
979 	bh = head;
980 	do {
981 		tail = bh;
982 		bh = bh->b_this_page;
983 	} while (bh);
984 	tail->b_this_page = head;
985 	folio_attach_private(folio, head);
986 }
987 
988 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
989 {
990 	sector_t retval = ~((sector_t)0);
991 	loff_t sz = bdev_nr_bytes(bdev);
992 
993 	if (sz) {
994 		unsigned int sizebits = blksize_bits(size);
995 		retval = (sz >> sizebits);
996 	}
997 	return retval;
998 }
999 
1000 /*
1001  * Initialise the state of a blockdev folio's buffers.
1002  */
1003 static sector_t folio_init_buffers(struct folio *folio,
1004 		struct block_device *bdev, unsigned size)
1005 {
1006 	struct buffer_head *head = folio_buffers(folio);
1007 	struct buffer_head *bh = head;
1008 	bool uptodate = folio_test_uptodate(folio);
1009 	sector_t block = div_u64(folio_pos(folio), size);
1010 	sector_t end_block = blkdev_max_block(bdev, size);
1011 
1012 	do {
1013 		if (!buffer_mapped(bh)) {
1014 			bh->b_end_io = NULL;
1015 			bh->b_private = NULL;
1016 			bh->b_bdev = bdev;
1017 			bh->b_blocknr = block;
1018 			if (uptodate)
1019 				set_buffer_uptodate(bh);
1020 			if (block < end_block)
1021 				set_buffer_mapped(bh);
1022 		}
1023 		block++;
1024 		bh = bh->b_this_page;
1025 	} while (bh != head);
1026 
1027 	/*
1028 	 * Caller needs to validate requested block against end of device.
1029 	 */
1030 	return end_block;
1031 }
1032 
1033 /*
1034  * Create the page-cache folio that contains the requested block.
1035  *
1036  * This is used purely for blockdev mappings.
1037  *
1038  * Returns false if we have a failure which cannot be cured by retrying
1039  * without sleeping.  Returns true if we succeeded, or the caller should retry.
1040  */
1041 static bool grow_dev_folio(struct block_device *bdev, sector_t block,
1042 		pgoff_t index, unsigned size, gfp_t gfp)
1043 {
1044 	struct address_space *mapping = bdev->bd_mapping;
1045 	struct folio *folio;
1046 	struct buffer_head *bh;
1047 	sector_t end_block = 0;
1048 
1049 	folio = __filemap_get_folio(mapping, index,
1050 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1051 	if (IS_ERR(folio))
1052 		return false;
1053 
1054 	bh = folio_buffers(folio);
1055 	if (bh) {
1056 		if (bh->b_size == size) {
1057 			end_block = folio_init_buffers(folio, bdev, size);
1058 			goto unlock;
1059 		}
1060 
1061 		/*
1062 		 * Retrying may succeed; for example the folio may finish
1063 		 * writeback, or buffers may be cleaned.  This should not
1064 		 * happen very often; maybe we have old buffers attached to
1065 		 * this blockdev's page cache and we're trying to change
1066 		 * the block size?
1067 		 */
1068 		if (!try_to_free_buffers(folio)) {
1069 			end_block = ~0ULL;
1070 			goto unlock;
1071 		}
1072 	}
1073 
1074 	bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT);
1075 	if (!bh)
1076 		goto unlock;
1077 
1078 	/*
1079 	 * Link the folio to the buffers and initialise them.  Take the
1080 	 * lock to be atomic wrt __find_get_block(), which does not
1081 	 * run under the folio lock.
1082 	 */
1083 	spin_lock(&mapping->i_private_lock);
1084 	link_dev_buffers(folio, bh);
1085 	end_block = folio_init_buffers(folio, bdev, size);
1086 	spin_unlock(&mapping->i_private_lock);
1087 unlock:
1088 	folio_unlock(folio);
1089 	folio_put(folio);
1090 	return block < end_block;
1091 }
1092 
1093 /*
1094  * Create buffers for the specified block device block's folio.  If
1095  * that folio was dirty, the buffers are set dirty also.  Returns false
1096  * if we've hit a permanent error.
1097  */
1098 static bool grow_buffers(struct block_device *bdev, sector_t block,
1099 		unsigned size, gfp_t gfp)
1100 {
1101 	loff_t pos;
1102 
1103 	/*
1104 	 * Check for a block which lies outside our maximum possible
1105 	 * pagecache index.
1106 	 */
1107 	if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) {
1108 		printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n",
1109 			__func__, (unsigned long long)block,
1110 			bdev);
1111 		return false;
1112 	}
1113 
1114 	/* Create a folio with the proper size buffers */
1115 	return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp);
1116 }
1117 
1118 static struct buffer_head *
1119 __getblk_slow(struct block_device *bdev, sector_t block,
1120 	     unsigned size, gfp_t gfp)
1121 {
1122 	/* Size must be multiple of hard sectorsize */
1123 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1124 			(size < 512 || size > PAGE_SIZE))) {
1125 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1126 					size);
1127 		printk(KERN_ERR "logical block size: %d\n",
1128 					bdev_logical_block_size(bdev));
1129 
1130 		dump_stack();
1131 		return NULL;
1132 	}
1133 
1134 	for (;;) {
1135 		struct buffer_head *bh;
1136 
1137 		bh = __find_get_block(bdev, block, size);
1138 		if (bh)
1139 			return bh;
1140 
1141 		if (!grow_buffers(bdev, block, size, gfp))
1142 			return NULL;
1143 	}
1144 }
1145 
1146 /*
1147  * The relationship between dirty buffers and dirty pages:
1148  *
1149  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1150  * the page is tagged dirty in the page cache.
1151  *
1152  * At all times, the dirtiness of the buffers represents the dirtiness of
1153  * subsections of the page.  If the page has buffers, the page dirty bit is
1154  * merely a hint about the true dirty state.
1155  *
1156  * When a page is set dirty in its entirety, all its buffers are marked dirty
1157  * (if the page has buffers).
1158  *
1159  * When a buffer is marked dirty, its page is dirtied, but the page's other
1160  * buffers are not.
1161  *
1162  * Also.  When blockdev buffers are explicitly read with bread(), they
1163  * individually become uptodate.  But their backing page remains not
1164  * uptodate - even if all of its buffers are uptodate.  A subsequent
1165  * block_read_full_folio() against that folio will discover all the uptodate
1166  * buffers, will set the folio uptodate and will perform no I/O.
1167  */
1168 
1169 /**
1170  * mark_buffer_dirty - mark a buffer_head as needing writeout
1171  * @bh: the buffer_head to mark dirty
1172  *
1173  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1174  * its backing page dirty, then tag the page as dirty in the page cache
1175  * and then attach the address_space's inode to its superblock's dirty
1176  * inode list.
1177  *
1178  * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->i_private_lock,
1179  * i_pages lock and mapping->host->i_lock.
1180  */
1181 void mark_buffer_dirty(struct buffer_head *bh)
1182 {
1183 	WARN_ON_ONCE(!buffer_uptodate(bh));
1184 
1185 	trace_block_dirty_buffer(bh);
1186 
1187 	/*
1188 	 * Very *carefully* optimize the it-is-already-dirty case.
1189 	 *
1190 	 * Don't let the final "is it dirty" escape to before we
1191 	 * perhaps modified the buffer.
1192 	 */
1193 	if (buffer_dirty(bh)) {
1194 		smp_mb();
1195 		if (buffer_dirty(bh))
1196 			return;
1197 	}
1198 
1199 	if (!test_set_buffer_dirty(bh)) {
1200 		struct folio *folio = bh->b_folio;
1201 		struct address_space *mapping = NULL;
1202 
1203 		folio_memcg_lock(folio);
1204 		if (!folio_test_set_dirty(folio)) {
1205 			mapping = folio->mapping;
1206 			if (mapping)
1207 				__folio_mark_dirty(folio, mapping, 0);
1208 		}
1209 		folio_memcg_unlock(folio);
1210 		if (mapping)
1211 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1212 	}
1213 }
1214 EXPORT_SYMBOL(mark_buffer_dirty);
1215 
1216 void mark_buffer_write_io_error(struct buffer_head *bh)
1217 {
1218 	set_buffer_write_io_error(bh);
1219 	/* FIXME: do we need to set this in both places? */
1220 	if (bh->b_folio && bh->b_folio->mapping)
1221 		mapping_set_error(bh->b_folio->mapping, -EIO);
1222 	if (bh->b_assoc_map) {
1223 		mapping_set_error(bh->b_assoc_map, -EIO);
1224 		errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO);
1225 	}
1226 }
1227 EXPORT_SYMBOL(mark_buffer_write_io_error);
1228 
1229 /**
1230  * __brelse - Release a buffer.
1231  * @bh: The buffer to release.
1232  *
1233  * This variant of brelse() can be called if @bh is guaranteed to not be NULL.
1234  */
1235 void __brelse(struct buffer_head *bh)
1236 {
1237 	if (atomic_read(&bh->b_count)) {
1238 		put_bh(bh);
1239 		return;
1240 	}
1241 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1242 }
1243 EXPORT_SYMBOL(__brelse);
1244 
1245 /**
1246  * __bforget - Discard any dirty data in a buffer.
1247  * @bh: The buffer to forget.
1248  *
1249  * This variant of bforget() can be called if @bh is guaranteed to not
1250  * be NULL.
1251  */
1252 void __bforget(struct buffer_head *bh)
1253 {
1254 	clear_buffer_dirty(bh);
1255 	if (bh->b_assoc_map) {
1256 		struct address_space *buffer_mapping = bh->b_folio->mapping;
1257 
1258 		spin_lock(&buffer_mapping->i_private_lock);
1259 		list_del_init(&bh->b_assoc_buffers);
1260 		bh->b_assoc_map = NULL;
1261 		spin_unlock(&buffer_mapping->i_private_lock);
1262 	}
1263 	__brelse(bh);
1264 }
1265 EXPORT_SYMBOL(__bforget);
1266 
1267 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1268 {
1269 	lock_buffer(bh);
1270 	if (buffer_uptodate(bh)) {
1271 		unlock_buffer(bh);
1272 		return bh;
1273 	} else {
1274 		get_bh(bh);
1275 		bh->b_end_io = end_buffer_read_sync;
1276 		submit_bh(REQ_OP_READ, bh);
1277 		wait_on_buffer(bh);
1278 		if (buffer_uptodate(bh))
1279 			return bh;
1280 	}
1281 	brelse(bh);
1282 	return NULL;
1283 }
1284 
1285 /*
1286  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1287  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1288  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1289  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1290  * CPU's LRUs at the same time.
1291  *
1292  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1293  * sb_find_get_block().
1294  *
1295  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1296  * a local interrupt disable for that.
1297  */
1298 
1299 #define BH_LRU_SIZE	16
1300 
1301 struct bh_lru {
1302 	struct buffer_head *bhs[BH_LRU_SIZE];
1303 };
1304 
1305 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1306 
1307 #ifdef CONFIG_SMP
1308 #define bh_lru_lock()	local_irq_disable()
1309 #define bh_lru_unlock()	local_irq_enable()
1310 #else
1311 #define bh_lru_lock()	preempt_disable()
1312 #define bh_lru_unlock()	preempt_enable()
1313 #endif
1314 
1315 static inline void check_irqs_on(void)
1316 {
1317 #ifdef irqs_disabled
1318 	BUG_ON(irqs_disabled());
1319 #endif
1320 }
1321 
1322 /*
1323  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1324  * inserted at the front, and the buffer_head at the back if any is evicted.
1325  * Or, if already in the LRU it is moved to the front.
1326  */
1327 static void bh_lru_install(struct buffer_head *bh)
1328 {
1329 	struct buffer_head *evictee = bh;
1330 	struct bh_lru *b;
1331 	int i;
1332 
1333 	check_irqs_on();
1334 	bh_lru_lock();
1335 
1336 	/*
1337 	 * the refcount of buffer_head in bh_lru prevents dropping the
1338 	 * attached page(i.e., try_to_free_buffers) so it could cause
1339 	 * failing page migration.
1340 	 * Skip putting upcoming bh into bh_lru until migration is done.
1341 	 */
1342 	if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
1343 		bh_lru_unlock();
1344 		return;
1345 	}
1346 
1347 	b = this_cpu_ptr(&bh_lrus);
1348 	for (i = 0; i < BH_LRU_SIZE; i++) {
1349 		swap(evictee, b->bhs[i]);
1350 		if (evictee == bh) {
1351 			bh_lru_unlock();
1352 			return;
1353 		}
1354 	}
1355 
1356 	get_bh(bh);
1357 	bh_lru_unlock();
1358 	brelse(evictee);
1359 }
1360 
1361 /*
1362  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1363  */
1364 static struct buffer_head *
1365 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1366 {
1367 	struct buffer_head *ret = NULL;
1368 	unsigned int i;
1369 
1370 	check_irqs_on();
1371 	bh_lru_lock();
1372 	if (cpu_is_isolated(smp_processor_id())) {
1373 		bh_lru_unlock();
1374 		return NULL;
1375 	}
1376 	for (i = 0; i < BH_LRU_SIZE; i++) {
1377 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1378 
1379 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1380 		    bh->b_size == size) {
1381 			if (i) {
1382 				while (i) {
1383 					__this_cpu_write(bh_lrus.bhs[i],
1384 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1385 					i--;
1386 				}
1387 				__this_cpu_write(bh_lrus.bhs[0], bh);
1388 			}
1389 			get_bh(bh);
1390 			ret = bh;
1391 			break;
1392 		}
1393 	}
1394 	bh_lru_unlock();
1395 	return ret;
1396 }
1397 
1398 /*
1399  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1400  * it in the LRU and mark it as accessed.  If it is not present then return
1401  * NULL
1402  */
1403 struct buffer_head *
1404 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1405 {
1406 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1407 
1408 	if (bh == NULL) {
1409 		/* __find_get_block_slow will mark the page accessed */
1410 		bh = __find_get_block_slow(bdev, block);
1411 		if (bh)
1412 			bh_lru_install(bh);
1413 	} else
1414 		touch_buffer(bh);
1415 
1416 	return bh;
1417 }
1418 EXPORT_SYMBOL(__find_get_block);
1419 
1420 /**
1421  * bdev_getblk - Get a buffer_head in a block device's buffer cache.
1422  * @bdev: The block device.
1423  * @block: The block number.
1424  * @size: The size of buffer_heads for this @bdev.
1425  * @gfp: The memory allocation flags to use.
1426  *
1427  * The returned buffer head has its reference count incremented, but is
1428  * not locked.  The caller should call brelse() when it has finished
1429  * with the buffer.  The buffer may not be uptodate.  If needed, the
1430  * caller can bring it uptodate either by reading it or overwriting it.
1431  *
1432  * Return: The buffer head, or NULL if memory could not be allocated.
1433  */
1434 struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block,
1435 		unsigned size, gfp_t gfp)
1436 {
1437 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1438 
1439 	might_alloc(gfp);
1440 	if (bh)
1441 		return bh;
1442 
1443 	return __getblk_slow(bdev, block, size, gfp);
1444 }
1445 EXPORT_SYMBOL(bdev_getblk);
1446 
1447 /*
1448  * Do async read-ahead on a buffer..
1449  */
1450 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1451 {
1452 	struct buffer_head *bh = bdev_getblk(bdev, block, size,
1453 			GFP_NOWAIT | __GFP_MOVABLE);
1454 
1455 	if (likely(bh)) {
1456 		bh_readahead(bh, REQ_RAHEAD);
1457 		brelse(bh);
1458 	}
1459 }
1460 EXPORT_SYMBOL(__breadahead);
1461 
1462 /**
1463  * __bread_gfp() - Read a block.
1464  * @bdev: The block device to read from.
1465  * @block: Block number in units of block size.
1466  * @size: The block size of this device in bytes.
1467  * @gfp: Not page allocation flags; see below.
1468  *
1469  * You are not expected to call this function.  You should use one of
1470  * sb_bread(), sb_bread_unmovable() or __bread().
1471  *
1472  * Read a specified block, and return the buffer head that refers to it.
1473  * If @gfp is 0, the memory will be allocated using the block device's
1474  * default GFP flags.  If @gfp is __GFP_MOVABLE, the memory may be
1475  * allocated from a movable area.  Do not pass in a complete set of
1476  * GFP flags.
1477  *
1478  * The returned buffer head has its refcount increased.  The caller should
1479  * call brelse() when it has finished with the buffer.
1480  *
1481  * Context: May sleep waiting for I/O.
1482  * Return: NULL if the block was unreadable.
1483  */
1484 struct buffer_head *__bread_gfp(struct block_device *bdev, sector_t block,
1485 		unsigned size, gfp_t gfp)
1486 {
1487 	struct buffer_head *bh;
1488 
1489 	gfp |= mapping_gfp_constraint(bdev->bd_mapping, ~__GFP_FS);
1490 
1491 	/*
1492 	 * Prefer looping in the allocator rather than here, at least that
1493 	 * code knows what it's doing.
1494 	 */
1495 	gfp |= __GFP_NOFAIL;
1496 
1497 	bh = bdev_getblk(bdev, block, size, gfp);
1498 
1499 	if (likely(bh) && !buffer_uptodate(bh))
1500 		bh = __bread_slow(bh);
1501 	return bh;
1502 }
1503 EXPORT_SYMBOL(__bread_gfp);
1504 
1505 static void __invalidate_bh_lrus(struct bh_lru *b)
1506 {
1507 	int i;
1508 
1509 	for (i = 0; i < BH_LRU_SIZE; i++) {
1510 		brelse(b->bhs[i]);
1511 		b->bhs[i] = NULL;
1512 	}
1513 }
1514 /*
1515  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1516  * This doesn't race because it runs in each cpu either in irq
1517  * or with preempt disabled.
1518  */
1519 static void invalidate_bh_lru(void *arg)
1520 {
1521 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1522 
1523 	__invalidate_bh_lrus(b);
1524 	put_cpu_var(bh_lrus);
1525 }
1526 
1527 bool has_bh_in_lru(int cpu, void *dummy)
1528 {
1529 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1530 	int i;
1531 
1532 	for (i = 0; i < BH_LRU_SIZE; i++) {
1533 		if (b->bhs[i])
1534 			return true;
1535 	}
1536 
1537 	return false;
1538 }
1539 
1540 void invalidate_bh_lrus(void)
1541 {
1542 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1543 }
1544 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1545 
1546 /*
1547  * It's called from workqueue context so we need a bh_lru_lock to close
1548  * the race with preemption/irq.
1549  */
1550 void invalidate_bh_lrus_cpu(void)
1551 {
1552 	struct bh_lru *b;
1553 
1554 	bh_lru_lock();
1555 	b = this_cpu_ptr(&bh_lrus);
1556 	__invalidate_bh_lrus(b);
1557 	bh_lru_unlock();
1558 }
1559 
1560 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1561 		  unsigned long offset)
1562 {
1563 	bh->b_folio = folio;
1564 	BUG_ON(offset >= folio_size(folio));
1565 	if (folio_test_highmem(folio))
1566 		/*
1567 		 * This catches illegal uses and preserves the offset:
1568 		 */
1569 		bh->b_data = (char *)(0 + offset);
1570 	else
1571 		bh->b_data = folio_address(folio) + offset;
1572 }
1573 EXPORT_SYMBOL(folio_set_bh);
1574 
1575 /*
1576  * Called when truncating a buffer on a page completely.
1577  */
1578 
1579 /* Bits that are cleared during an invalidate */
1580 #define BUFFER_FLAGS_DISCARD \
1581 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1582 	 1 << BH_Delay | 1 << BH_Unwritten)
1583 
1584 static void discard_buffer(struct buffer_head * bh)
1585 {
1586 	unsigned long b_state;
1587 
1588 	lock_buffer(bh);
1589 	clear_buffer_dirty(bh);
1590 	bh->b_bdev = NULL;
1591 	b_state = READ_ONCE(bh->b_state);
1592 	do {
1593 	} while (!try_cmpxchg(&bh->b_state, &b_state,
1594 			      b_state & ~BUFFER_FLAGS_DISCARD));
1595 	unlock_buffer(bh);
1596 }
1597 
1598 /**
1599  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1600  * @folio: The folio which is affected.
1601  * @offset: start of the range to invalidate
1602  * @length: length of the range to invalidate
1603  *
1604  * block_invalidate_folio() is called when all or part of the folio has been
1605  * invalidated by a truncate operation.
1606  *
1607  * block_invalidate_folio() does not have to release all buffers, but it must
1608  * ensure that no dirty buffer is left outside @offset and that no I/O
1609  * is underway against any of the blocks which are outside the truncation
1610  * point.  Because the caller is about to free (and possibly reuse) those
1611  * blocks on-disk.
1612  */
1613 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1614 {
1615 	struct buffer_head *head, *bh, *next;
1616 	size_t curr_off = 0;
1617 	size_t stop = length + offset;
1618 
1619 	BUG_ON(!folio_test_locked(folio));
1620 
1621 	/*
1622 	 * Check for overflow
1623 	 */
1624 	BUG_ON(stop > folio_size(folio) || stop < length);
1625 
1626 	head = folio_buffers(folio);
1627 	if (!head)
1628 		return;
1629 
1630 	bh = head;
1631 	do {
1632 		size_t next_off = curr_off + bh->b_size;
1633 		next = bh->b_this_page;
1634 
1635 		/*
1636 		 * Are we still fully in range ?
1637 		 */
1638 		if (next_off > stop)
1639 			goto out;
1640 
1641 		/*
1642 		 * is this block fully invalidated?
1643 		 */
1644 		if (offset <= curr_off)
1645 			discard_buffer(bh);
1646 		curr_off = next_off;
1647 		bh = next;
1648 	} while (bh != head);
1649 
1650 	/*
1651 	 * We release buffers only if the entire folio is being invalidated.
1652 	 * The get_block cached value has been unconditionally invalidated,
1653 	 * so real IO is not possible anymore.
1654 	 */
1655 	if (length == folio_size(folio))
1656 		filemap_release_folio(folio, 0);
1657 out:
1658 	return;
1659 }
1660 EXPORT_SYMBOL(block_invalidate_folio);
1661 
1662 /*
1663  * We attach and possibly dirty the buffers atomically wrt
1664  * block_dirty_folio() via i_private_lock.  try_to_free_buffers
1665  * is already excluded via the folio lock.
1666  */
1667 struct buffer_head *create_empty_buffers(struct folio *folio,
1668 		unsigned long blocksize, unsigned long b_state)
1669 {
1670 	struct buffer_head *bh, *head, *tail;
1671 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL;
1672 
1673 	head = folio_alloc_buffers(folio, blocksize, gfp);
1674 	bh = head;
1675 	do {
1676 		bh->b_state |= b_state;
1677 		tail = bh;
1678 		bh = bh->b_this_page;
1679 	} while (bh);
1680 	tail->b_this_page = head;
1681 
1682 	spin_lock(&folio->mapping->i_private_lock);
1683 	if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1684 		bh = head;
1685 		do {
1686 			if (folio_test_dirty(folio))
1687 				set_buffer_dirty(bh);
1688 			if (folio_test_uptodate(folio))
1689 				set_buffer_uptodate(bh);
1690 			bh = bh->b_this_page;
1691 		} while (bh != head);
1692 	}
1693 	folio_attach_private(folio, head);
1694 	spin_unlock(&folio->mapping->i_private_lock);
1695 
1696 	return head;
1697 }
1698 EXPORT_SYMBOL(create_empty_buffers);
1699 
1700 /**
1701  * clean_bdev_aliases: clean a range of buffers in block device
1702  * @bdev: Block device to clean buffers in
1703  * @block: Start of a range of blocks to clean
1704  * @len: Number of blocks to clean
1705  *
1706  * We are taking a range of blocks for data and we don't want writeback of any
1707  * buffer-cache aliases starting from return from this function and until the
1708  * moment when something will explicitly mark the buffer dirty (hopefully that
1709  * will not happen until we will free that block ;-) We don't even need to mark
1710  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1711  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1712  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1713  * would confuse anyone who might pick it with bread() afterwards...
1714  *
1715  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1716  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1717  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1718  * need to.  That happens here.
1719  */
1720 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1721 {
1722 	struct address_space *bd_mapping = bdev->bd_mapping;
1723 	const int blkbits = bd_mapping->host->i_blkbits;
1724 	struct folio_batch fbatch;
1725 	pgoff_t index = ((loff_t)block << blkbits) / PAGE_SIZE;
1726 	pgoff_t end;
1727 	int i, count;
1728 	struct buffer_head *bh;
1729 	struct buffer_head *head;
1730 
1731 	end = ((loff_t)(block + len - 1) << blkbits) / PAGE_SIZE;
1732 	folio_batch_init(&fbatch);
1733 	while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1734 		count = folio_batch_count(&fbatch);
1735 		for (i = 0; i < count; i++) {
1736 			struct folio *folio = fbatch.folios[i];
1737 
1738 			if (!folio_buffers(folio))
1739 				continue;
1740 			/*
1741 			 * We use folio lock instead of bd_mapping->i_private_lock
1742 			 * to pin buffers here since we can afford to sleep and
1743 			 * it scales better than a global spinlock lock.
1744 			 */
1745 			folio_lock(folio);
1746 			/* Recheck when the folio is locked which pins bhs */
1747 			head = folio_buffers(folio);
1748 			if (!head)
1749 				goto unlock_page;
1750 			bh = head;
1751 			do {
1752 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1753 					goto next;
1754 				if (bh->b_blocknr >= block + len)
1755 					break;
1756 				clear_buffer_dirty(bh);
1757 				wait_on_buffer(bh);
1758 				clear_buffer_req(bh);
1759 next:
1760 				bh = bh->b_this_page;
1761 			} while (bh != head);
1762 unlock_page:
1763 			folio_unlock(folio);
1764 		}
1765 		folio_batch_release(&fbatch);
1766 		cond_resched();
1767 		/* End of range already reached? */
1768 		if (index > end || !index)
1769 			break;
1770 	}
1771 }
1772 EXPORT_SYMBOL(clean_bdev_aliases);
1773 
1774 static struct buffer_head *folio_create_buffers(struct folio *folio,
1775 						struct inode *inode,
1776 						unsigned int b_state)
1777 {
1778 	struct buffer_head *bh;
1779 
1780 	BUG_ON(!folio_test_locked(folio));
1781 
1782 	bh = folio_buffers(folio);
1783 	if (!bh)
1784 		bh = create_empty_buffers(folio,
1785 				1 << READ_ONCE(inode->i_blkbits), b_state);
1786 	return bh;
1787 }
1788 
1789 /*
1790  * NOTE! All mapped/uptodate combinations are valid:
1791  *
1792  *	Mapped	Uptodate	Meaning
1793  *
1794  *	No	No		"unknown" - must do get_block()
1795  *	No	Yes		"hole" - zero-filled
1796  *	Yes	No		"allocated" - allocated on disk, not read in
1797  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1798  *
1799  * "Dirty" is valid only with the last case (mapped+uptodate).
1800  */
1801 
1802 /*
1803  * While block_write_full_folio is writing back the dirty buffers under
1804  * the page lock, whoever dirtied the buffers may decide to clean them
1805  * again at any time.  We handle that by only looking at the buffer
1806  * state inside lock_buffer().
1807  *
1808  * If block_write_full_folio() is called for regular writeback
1809  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1810  * locked buffer.   This only can happen if someone has written the buffer
1811  * directly, with submit_bh().  At the address_space level PageWriteback
1812  * prevents this contention from occurring.
1813  *
1814  * If block_write_full_folio() is called with wbc->sync_mode ==
1815  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1816  * causes the writes to be flagged as synchronous writes.
1817  */
1818 int __block_write_full_folio(struct inode *inode, struct folio *folio,
1819 			get_block_t *get_block, struct writeback_control *wbc)
1820 {
1821 	int err;
1822 	sector_t block;
1823 	sector_t last_block;
1824 	struct buffer_head *bh, *head;
1825 	size_t blocksize;
1826 	int nr_underway = 0;
1827 	blk_opf_t write_flags = wbc_to_write_flags(wbc);
1828 
1829 	head = folio_create_buffers(folio, inode,
1830 				    (1 << BH_Dirty) | (1 << BH_Uptodate));
1831 
1832 	/*
1833 	 * Be very careful.  We have no exclusion from block_dirty_folio
1834 	 * here, and the (potentially unmapped) buffers may become dirty at
1835 	 * any time.  If a buffer becomes dirty here after we've inspected it
1836 	 * then we just miss that fact, and the folio stays dirty.
1837 	 *
1838 	 * Buffers outside i_size may be dirtied by block_dirty_folio;
1839 	 * handle that here by just cleaning them.
1840 	 */
1841 
1842 	bh = head;
1843 	blocksize = bh->b_size;
1844 
1845 	block = div_u64(folio_pos(folio), blocksize);
1846 	last_block = div_u64(i_size_read(inode) - 1, blocksize);
1847 
1848 	/*
1849 	 * Get all the dirty buffers mapped to disk addresses and
1850 	 * handle any aliases from the underlying blockdev's mapping.
1851 	 */
1852 	do {
1853 		if (block > last_block) {
1854 			/*
1855 			 * mapped buffers outside i_size will occur, because
1856 			 * this folio can be outside i_size when there is a
1857 			 * truncate in progress.
1858 			 */
1859 			/*
1860 			 * The buffer was zeroed by block_write_full_folio()
1861 			 */
1862 			clear_buffer_dirty(bh);
1863 			set_buffer_uptodate(bh);
1864 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1865 			   buffer_dirty(bh)) {
1866 			WARN_ON(bh->b_size != blocksize);
1867 			err = get_block(inode, block, bh, 1);
1868 			if (err)
1869 				goto recover;
1870 			clear_buffer_delay(bh);
1871 			if (buffer_new(bh)) {
1872 				/* blockdev mappings never come here */
1873 				clear_buffer_new(bh);
1874 				clean_bdev_bh_alias(bh);
1875 			}
1876 		}
1877 		bh = bh->b_this_page;
1878 		block++;
1879 	} while (bh != head);
1880 
1881 	do {
1882 		if (!buffer_mapped(bh))
1883 			continue;
1884 		/*
1885 		 * If it's a fully non-blocking write attempt and we cannot
1886 		 * lock the buffer then redirty the folio.  Note that this can
1887 		 * potentially cause a busy-wait loop from writeback threads
1888 		 * and kswapd activity, but those code paths have their own
1889 		 * higher-level throttling.
1890 		 */
1891 		if (wbc->sync_mode != WB_SYNC_NONE) {
1892 			lock_buffer(bh);
1893 		} else if (!trylock_buffer(bh)) {
1894 			folio_redirty_for_writepage(wbc, folio);
1895 			continue;
1896 		}
1897 		if (test_clear_buffer_dirty(bh)) {
1898 			mark_buffer_async_write_endio(bh,
1899 				end_buffer_async_write);
1900 		} else {
1901 			unlock_buffer(bh);
1902 		}
1903 	} while ((bh = bh->b_this_page) != head);
1904 
1905 	/*
1906 	 * The folio and its buffers are protected by the writeback flag,
1907 	 * so we can drop the bh refcounts early.
1908 	 */
1909 	BUG_ON(folio_test_writeback(folio));
1910 	folio_start_writeback(folio);
1911 
1912 	do {
1913 		struct buffer_head *next = bh->b_this_page;
1914 		if (buffer_async_write(bh)) {
1915 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1916 				      inode->i_write_hint, wbc);
1917 			nr_underway++;
1918 		}
1919 		bh = next;
1920 	} while (bh != head);
1921 	folio_unlock(folio);
1922 
1923 	err = 0;
1924 done:
1925 	if (nr_underway == 0) {
1926 		/*
1927 		 * The folio was marked dirty, but the buffers were
1928 		 * clean.  Someone wrote them back by hand with
1929 		 * write_dirty_buffer/submit_bh.  A rare case.
1930 		 */
1931 		folio_end_writeback(folio);
1932 
1933 		/*
1934 		 * The folio and buffer_heads can be released at any time from
1935 		 * here on.
1936 		 */
1937 	}
1938 	return err;
1939 
1940 recover:
1941 	/*
1942 	 * ENOSPC, or some other error.  We may already have added some
1943 	 * blocks to the file, so we need to write these out to avoid
1944 	 * exposing stale data.
1945 	 * The folio is currently locked and not marked for writeback
1946 	 */
1947 	bh = head;
1948 	/* Recovery: lock and submit the mapped buffers */
1949 	do {
1950 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1951 		    !buffer_delay(bh)) {
1952 			lock_buffer(bh);
1953 			mark_buffer_async_write_endio(bh,
1954 				end_buffer_async_write);
1955 		} else {
1956 			/*
1957 			 * The buffer may have been set dirty during
1958 			 * attachment to a dirty folio.
1959 			 */
1960 			clear_buffer_dirty(bh);
1961 		}
1962 	} while ((bh = bh->b_this_page) != head);
1963 	folio_set_error(folio);
1964 	BUG_ON(folio_test_writeback(folio));
1965 	mapping_set_error(folio->mapping, err);
1966 	folio_start_writeback(folio);
1967 	do {
1968 		struct buffer_head *next = bh->b_this_page;
1969 		if (buffer_async_write(bh)) {
1970 			clear_buffer_dirty(bh);
1971 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1972 				      inode->i_write_hint, wbc);
1973 			nr_underway++;
1974 		}
1975 		bh = next;
1976 	} while (bh != head);
1977 	folio_unlock(folio);
1978 	goto done;
1979 }
1980 EXPORT_SYMBOL(__block_write_full_folio);
1981 
1982 /*
1983  * If a folio has any new buffers, zero them out here, and mark them uptodate
1984  * and dirty so they'll be written out (in order to prevent uninitialised
1985  * block data from leaking). And clear the new bit.
1986  */
1987 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
1988 {
1989 	size_t block_start, block_end;
1990 	struct buffer_head *head, *bh;
1991 
1992 	BUG_ON(!folio_test_locked(folio));
1993 	head = folio_buffers(folio);
1994 	if (!head)
1995 		return;
1996 
1997 	bh = head;
1998 	block_start = 0;
1999 	do {
2000 		block_end = block_start + bh->b_size;
2001 
2002 		if (buffer_new(bh)) {
2003 			if (block_end > from && block_start < to) {
2004 				if (!folio_test_uptodate(folio)) {
2005 					size_t start, xend;
2006 
2007 					start = max(from, block_start);
2008 					xend = min(to, block_end);
2009 
2010 					folio_zero_segment(folio, start, xend);
2011 					set_buffer_uptodate(bh);
2012 				}
2013 
2014 				clear_buffer_new(bh);
2015 				mark_buffer_dirty(bh);
2016 			}
2017 		}
2018 
2019 		block_start = block_end;
2020 		bh = bh->b_this_page;
2021 	} while (bh != head);
2022 }
2023 EXPORT_SYMBOL(folio_zero_new_buffers);
2024 
2025 static int
2026 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2027 		const struct iomap *iomap)
2028 {
2029 	loff_t offset = (loff_t)block << inode->i_blkbits;
2030 
2031 	bh->b_bdev = iomap->bdev;
2032 
2033 	/*
2034 	 * Block points to offset in file we need to map, iomap contains
2035 	 * the offset at which the map starts. If the map ends before the
2036 	 * current block, then do not map the buffer and let the caller
2037 	 * handle it.
2038 	 */
2039 	if (offset >= iomap->offset + iomap->length)
2040 		return -EIO;
2041 
2042 	switch (iomap->type) {
2043 	case IOMAP_HOLE:
2044 		/*
2045 		 * If the buffer is not up to date or beyond the current EOF,
2046 		 * we need to mark it as new to ensure sub-block zeroing is
2047 		 * executed if necessary.
2048 		 */
2049 		if (!buffer_uptodate(bh) ||
2050 		    (offset >= i_size_read(inode)))
2051 			set_buffer_new(bh);
2052 		return 0;
2053 	case IOMAP_DELALLOC:
2054 		if (!buffer_uptodate(bh) ||
2055 		    (offset >= i_size_read(inode)))
2056 			set_buffer_new(bh);
2057 		set_buffer_uptodate(bh);
2058 		set_buffer_mapped(bh);
2059 		set_buffer_delay(bh);
2060 		return 0;
2061 	case IOMAP_UNWRITTEN:
2062 		/*
2063 		 * For unwritten regions, we always need to ensure that regions
2064 		 * in the block we are not writing to are zeroed. Mark the
2065 		 * buffer as new to ensure this.
2066 		 */
2067 		set_buffer_new(bh);
2068 		set_buffer_unwritten(bh);
2069 		fallthrough;
2070 	case IOMAP_MAPPED:
2071 		if ((iomap->flags & IOMAP_F_NEW) ||
2072 		    offset >= i_size_read(inode)) {
2073 			/*
2074 			 * This can happen if truncating the block device races
2075 			 * with the check in the caller as i_size updates on
2076 			 * block devices aren't synchronized by i_rwsem for
2077 			 * block devices.
2078 			 */
2079 			if (S_ISBLK(inode->i_mode))
2080 				return -EIO;
2081 			set_buffer_new(bh);
2082 		}
2083 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2084 				inode->i_blkbits;
2085 		set_buffer_mapped(bh);
2086 		return 0;
2087 	default:
2088 		WARN_ON_ONCE(1);
2089 		return -EIO;
2090 	}
2091 }
2092 
2093 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2094 		get_block_t *get_block, const struct iomap *iomap)
2095 {
2096 	size_t from = offset_in_folio(folio, pos);
2097 	size_t to = from + len;
2098 	struct inode *inode = folio->mapping->host;
2099 	size_t block_start, block_end;
2100 	sector_t block;
2101 	int err = 0;
2102 	size_t blocksize;
2103 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2104 
2105 	BUG_ON(!folio_test_locked(folio));
2106 	BUG_ON(to > folio_size(folio));
2107 	BUG_ON(from > to);
2108 
2109 	head = folio_create_buffers(folio, inode, 0);
2110 	blocksize = head->b_size;
2111 	block = div_u64(folio_pos(folio), blocksize);
2112 
2113 	for (bh = head, block_start = 0; bh != head || !block_start;
2114 	    block++, block_start=block_end, bh = bh->b_this_page) {
2115 		block_end = block_start + blocksize;
2116 		if (block_end <= from || block_start >= to) {
2117 			if (folio_test_uptodate(folio)) {
2118 				if (!buffer_uptodate(bh))
2119 					set_buffer_uptodate(bh);
2120 			}
2121 			continue;
2122 		}
2123 		if (buffer_new(bh))
2124 			clear_buffer_new(bh);
2125 		if (!buffer_mapped(bh)) {
2126 			WARN_ON(bh->b_size != blocksize);
2127 			if (get_block)
2128 				err = get_block(inode, block, bh, 1);
2129 			else
2130 				err = iomap_to_bh(inode, block, bh, iomap);
2131 			if (err)
2132 				break;
2133 
2134 			if (buffer_new(bh)) {
2135 				clean_bdev_bh_alias(bh);
2136 				if (folio_test_uptodate(folio)) {
2137 					clear_buffer_new(bh);
2138 					set_buffer_uptodate(bh);
2139 					mark_buffer_dirty(bh);
2140 					continue;
2141 				}
2142 				if (block_end > to || block_start < from)
2143 					folio_zero_segments(folio,
2144 						to, block_end,
2145 						block_start, from);
2146 				continue;
2147 			}
2148 		}
2149 		if (folio_test_uptodate(folio)) {
2150 			if (!buffer_uptodate(bh))
2151 				set_buffer_uptodate(bh);
2152 			continue;
2153 		}
2154 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2155 		    !buffer_unwritten(bh) &&
2156 		     (block_start < from || block_end > to)) {
2157 			bh_read_nowait(bh, 0);
2158 			*wait_bh++=bh;
2159 		}
2160 	}
2161 	/*
2162 	 * If we issued read requests - let them complete.
2163 	 */
2164 	while(wait_bh > wait) {
2165 		wait_on_buffer(*--wait_bh);
2166 		if (!buffer_uptodate(*wait_bh))
2167 			err = -EIO;
2168 	}
2169 	if (unlikely(err))
2170 		folio_zero_new_buffers(folio, from, to);
2171 	return err;
2172 }
2173 
2174 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2175 		get_block_t *get_block)
2176 {
2177 	return __block_write_begin_int(page_folio(page), pos, len, get_block,
2178 				       NULL);
2179 }
2180 EXPORT_SYMBOL(__block_write_begin);
2181 
2182 static void __block_commit_write(struct folio *folio, size_t from, size_t to)
2183 {
2184 	size_t block_start, block_end;
2185 	bool partial = false;
2186 	unsigned blocksize;
2187 	struct buffer_head *bh, *head;
2188 
2189 	bh = head = folio_buffers(folio);
2190 	blocksize = bh->b_size;
2191 
2192 	block_start = 0;
2193 	do {
2194 		block_end = block_start + blocksize;
2195 		if (block_end <= from || block_start >= to) {
2196 			if (!buffer_uptodate(bh))
2197 				partial = true;
2198 		} else {
2199 			set_buffer_uptodate(bh);
2200 			mark_buffer_dirty(bh);
2201 		}
2202 		if (buffer_new(bh))
2203 			clear_buffer_new(bh);
2204 
2205 		block_start = block_end;
2206 		bh = bh->b_this_page;
2207 	} while (bh != head);
2208 
2209 	/*
2210 	 * If this is a partial write which happened to make all buffers
2211 	 * uptodate then we can optimize away a bogus read_folio() for
2212 	 * the next read(). Here we 'discover' whether the folio went
2213 	 * uptodate as a result of this (potentially partial) write.
2214 	 */
2215 	if (!partial)
2216 		folio_mark_uptodate(folio);
2217 }
2218 
2219 /*
2220  * block_write_begin takes care of the basic task of block allocation and
2221  * bringing partial write blocks uptodate first.
2222  *
2223  * The filesystem needs to handle block truncation upon failure.
2224  */
2225 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2226 		struct page **pagep, get_block_t *get_block)
2227 {
2228 	pgoff_t index = pos >> PAGE_SHIFT;
2229 	struct page *page;
2230 	int status;
2231 
2232 	page = grab_cache_page_write_begin(mapping, index);
2233 	if (!page)
2234 		return -ENOMEM;
2235 
2236 	status = __block_write_begin(page, pos, len, get_block);
2237 	if (unlikely(status)) {
2238 		unlock_page(page);
2239 		put_page(page);
2240 		page = NULL;
2241 	}
2242 
2243 	*pagep = page;
2244 	return status;
2245 }
2246 EXPORT_SYMBOL(block_write_begin);
2247 
2248 int block_write_end(struct file *file, struct address_space *mapping,
2249 			loff_t pos, unsigned len, unsigned copied,
2250 			struct page *page, void *fsdata)
2251 {
2252 	struct folio *folio = page_folio(page);
2253 	size_t start = pos - folio_pos(folio);
2254 
2255 	if (unlikely(copied < len)) {
2256 		/*
2257 		 * The buffers that were written will now be uptodate, so
2258 		 * we don't have to worry about a read_folio reading them
2259 		 * and overwriting a partial write. However if we have
2260 		 * encountered a short write and only partially written
2261 		 * into a buffer, it will not be marked uptodate, so a
2262 		 * read_folio might come in and destroy our partial write.
2263 		 *
2264 		 * Do the simplest thing, and just treat any short write to a
2265 		 * non uptodate folio as a zero-length write, and force the
2266 		 * caller to redo the whole thing.
2267 		 */
2268 		if (!folio_test_uptodate(folio))
2269 			copied = 0;
2270 
2271 		folio_zero_new_buffers(folio, start+copied, start+len);
2272 	}
2273 	flush_dcache_folio(folio);
2274 
2275 	/* This could be a short (even 0-length) commit */
2276 	__block_commit_write(folio, start, start + copied);
2277 
2278 	return copied;
2279 }
2280 EXPORT_SYMBOL(block_write_end);
2281 
2282 int generic_write_end(struct file *file, struct address_space *mapping,
2283 			loff_t pos, unsigned len, unsigned copied,
2284 			struct page *page, void *fsdata)
2285 {
2286 	struct inode *inode = mapping->host;
2287 	loff_t old_size = inode->i_size;
2288 	bool i_size_changed = false;
2289 
2290 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2291 
2292 	/*
2293 	 * No need to use i_size_read() here, the i_size cannot change under us
2294 	 * because we hold i_rwsem.
2295 	 *
2296 	 * But it's important to update i_size while still holding page lock:
2297 	 * page writeout could otherwise come in and zero beyond i_size.
2298 	 */
2299 	if (pos + copied > inode->i_size) {
2300 		i_size_write(inode, pos + copied);
2301 		i_size_changed = true;
2302 	}
2303 
2304 	unlock_page(page);
2305 	put_page(page);
2306 
2307 	if (old_size < pos)
2308 		pagecache_isize_extended(inode, old_size, pos);
2309 	/*
2310 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2311 	 * makes the holding time of page lock longer. Second, it forces lock
2312 	 * ordering of page lock and transaction start for journaling
2313 	 * filesystems.
2314 	 */
2315 	if (i_size_changed)
2316 		mark_inode_dirty(inode);
2317 	return copied;
2318 }
2319 EXPORT_SYMBOL(generic_write_end);
2320 
2321 /*
2322  * block_is_partially_uptodate checks whether buffers within a folio are
2323  * uptodate or not.
2324  *
2325  * Returns true if all buffers which correspond to the specified part
2326  * of the folio are uptodate.
2327  */
2328 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2329 {
2330 	unsigned block_start, block_end, blocksize;
2331 	unsigned to;
2332 	struct buffer_head *bh, *head;
2333 	bool ret = true;
2334 
2335 	head = folio_buffers(folio);
2336 	if (!head)
2337 		return false;
2338 	blocksize = head->b_size;
2339 	to = min_t(unsigned, folio_size(folio) - from, count);
2340 	to = from + to;
2341 	if (from < blocksize && to > folio_size(folio) - blocksize)
2342 		return false;
2343 
2344 	bh = head;
2345 	block_start = 0;
2346 	do {
2347 		block_end = block_start + blocksize;
2348 		if (block_end > from && block_start < to) {
2349 			if (!buffer_uptodate(bh)) {
2350 				ret = false;
2351 				break;
2352 			}
2353 			if (block_end >= to)
2354 				break;
2355 		}
2356 		block_start = block_end;
2357 		bh = bh->b_this_page;
2358 	} while (bh != head);
2359 
2360 	return ret;
2361 }
2362 EXPORT_SYMBOL(block_is_partially_uptodate);
2363 
2364 /*
2365  * Generic "read_folio" function for block devices that have the normal
2366  * get_block functionality. This is most of the block device filesystems.
2367  * Reads the folio asynchronously --- the unlock_buffer() and
2368  * set/clear_buffer_uptodate() functions propagate buffer state into the
2369  * folio once IO has completed.
2370  */
2371 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2372 {
2373 	struct inode *inode = folio->mapping->host;
2374 	sector_t iblock, lblock;
2375 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2376 	size_t blocksize;
2377 	int nr, i;
2378 	int fully_mapped = 1;
2379 	bool page_error = false;
2380 	loff_t limit = i_size_read(inode);
2381 
2382 	/* This is needed for ext4. */
2383 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2384 		limit = inode->i_sb->s_maxbytes;
2385 
2386 	VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2387 
2388 	head = folio_create_buffers(folio, inode, 0);
2389 	blocksize = head->b_size;
2390 
2391 	iblock = div_u64(folio_pos(folio), blocksize);
2392 	lblock = div_u64(limit + blocksize - 1, blocksize);
2393 	bh = head;
2394 	nr = 0;
2395 	i = 0;
2396 
2397 	do {
2398 		if (buffer_uptodate(bh))
2399 			continue;
2400 
2401 		if (!buffer_mapped(bh)) {
2402 			int err = 0;
2403 
2404 			fully_mapped = 0;
2405 			if (iblock < lblock) {
2406 				WARN_ON(bh->b_size != blocksize);
2407 				err = get_block(inode, iblock, bh, 0);
2408 				if (err) {
2409 					folio_set_error(folio);
2410 					page_error = true;
2411 				}
2412 			}
2413 			if (!buffer_mapped(bh)) {
2414 				folio_zero_range(folio, i * blocksize,
2415 						blocksize);
2416 				if (!err)
2417 					set_buffer_uptodate(bh);
2418 				continue;
2419 			}
2420 			/*
2421 			 * get_block() might have updated the buffer
2422 			 * synchronously
2423 			 */
2424 			if (buffer_uptodate(bh))
2425 				continue;
2426 		}
2427 		arr[nr++] = bh;
2428 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2429 
2430 	if (fully_mapped)
2431 		folio_set_mappedtodisk(folio);
2432 
2433 	if (!nr) {
2434 		/*
2435 		 * All buffers are uptodate or get_block() returned an
2436 		 * error when trying to map them - we can finish the read.
2437 		 */
2438 		folio_end_read(folio, !page_error);
2439 		return 0;
2440 	}
2441 
2442 	/* Stage two: lock the buffers */
2443 	for (i = 0; i < nr; i++) {
2444 		bh = arr[i];
2445 		lock_buffer(bh);
2446 		mark_buffer_async_read(bh);
2447 	}
2448 
2449 	/*
2450 	 * Stage 3: start the IO.  Check for uptodateness
2451 	 * inside the buffer lock in case another process reading
2452 	 * the underlying blockdev brought it uptodate (the sct fix).
2453 	 */
2454 	for (i = 0; i < nr; i++) {
2455 		bh = arr[i];
2456 		if (buffer_uptodate(bh))
2457 			end_buffer_async_read(bh, 1);
2458 		else
2459 			submit_bh(REQ_OP_READ, bh);
2460 	}
2461 	return 0;
2462 }
2463 EXPORT_SYMBOL(block_read_full_folio);
2464 
2465 /* utility function for filesystems that need to do work on expanding
2466  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2467  * deal with the hole.
2468  */
2469 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2470 {
2471 	struct address_space *mapping = inode->i_mapping;
2472 	const struct address_space_operations *aops = mapping->a_ops;
2473 	struct page *page;
2474 	void *fsdata = NULL;
2475 	int err;
2476 
2477 	err = inode_newsize_ok(inode, size);
2478 	if (err)
2479 		goto out;
2480 
2481 	err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2482 	if (err)
2483 		goto out;
2484 
2485 	err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2486 	BUG_ON(err > 0);
2487 
2488 out:
2489 	return err;
2490 }
2491 EXPORT_SYMBOL(generic_cont_expand_simple);
2492 
2493 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2494 			    loff_t pos, loff_t *bytes)
2495 {
2496 	struct inode *inode = mapping->host;
2497 	const struct address_space_operations *aops = mapping->a_ops;
2498 	unsigned int blocksize = i_blocksize(inode);
2499 	struct page *page;
2500 	void *fsdata = NULL;
2501 	pgoff_t index, curidx;
2502 	loff_t curpos;
2503 	unsigned zerofrom, offset, len;
2504 	int err = 0;
2505 
2506 	index = pos >> PAGE_SHIFT;
2507 	offset = pos & ~PAGE_MASK;
2508 
2509 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2510 		zerofrom = curpos & ~PAGE_MASK;
2511 		if (zerofrom & (blocksize-1)) {
2512 			*bytes |= (blocksize-1);
2513 			(*bytes)++;
2514 		}
2515 		len = PAGE_SIZE - zerofrom;
2516 
2517 		err = aops->write_begin(file, mapping, curpos, len,
2518 					    &page, &fsdata);
2519 		if (err)
2520 			goto out;
2521 		zero_user(page, zerofrom, len);
2522 		err = aops->write_end(file, mapping, curpos, len, len,
2523 						page, fsdata);
2524 		if (err < 0)
2525 			goto out;
2526 		BUG_ON(err != len);
2527 		err = 0;
2528 
2529 		balance_dirty_pages_ratelimited(mapping);
2530 
2531 		if (fatal_signal_pending(current)) {
2532 			err = -EINTR;
2533 			goto out;
2534 		}
2535 	}
2536 
2537 	/* page covers the boundary, find the boundary offset */
2538 	if (index == curidx) {
2539 		zerofrom = curpos & ~PAGE_MASK;
2540 		/* if we will expand the thing last block will be filled */
2541 		if (offset <= zerofrom) {
2542 			goto out;
2543 		}
2544 		if (zerofrom & (blocksize-1)) {
2545 			*bytes |= (blocksize-1);
2546 			(*bytes)++;
2547 		}
2548 		len = offset - zerofrom;
2549 
2550 		err = aops->write_begin(file, mapping, curpos, len,
2551 					    &page, &fsdata);
2552 		if (err)
2553 			goto out;
2554 		zero_user(page, zerofrom, len);
2555 		err = aops->write_end(file, mapping, curpos, len, len,
2556 						page, fsdata);
2557 		if (err < 0)
2558 			goto out;
2559 		BUG_ON(err != len);
2560 		err = 0;
2561 	}
2562 out:
2563 	return err;
2564 }
2565 
2566 /*
2567  * For moronic filesystems that do not allow holes in file.
2568  * We may have to extend the file.
2569  */
2570 int cont_write_begin(struct file *file, struct address_space *mapping,
2571 			loff_t pos, unsigned len,
2572 			struct page **pagep, void **fsdata,
2573 			get_block_t *get_block, loff_t *bytes)
2574 {
2575 	struct inode *inode = mapping->host;
2576 	unsigned int blocksize = i_blocksize(inode);
2577 	unsigned int zerofrom;
2578 	int err;
2579 
2580 	err = cont_expand_zero(file, mapping, pos, bytes);
2581 	if (err)
2582 		return err;
2583 
2584 	zerofrom = *bytes & ~PAGE_MASK;
2585 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2586 		*bytes |= (blocksize-1);
2587 		(*bytes)++;
2588 	}
2589 
2590 	return block_write_begin(mapping, pos, len, pagep, get_block);
2591 }
2592 EXPORT_SYMBOL(cont_write_begin);
2593 
2594 void block_commit_write(struct page *page, unsigned from, unsigned to)
2595 {
2596 	struct folio *folio = page_folio(page);
2597 	__block_commit_write(folio, from, to);
2598 }
2599 EXPORT_SYMBOL(block_commit_write);
2600 
2601 /*
2602  * block_page_mkwrite() is not allowed to change the file size as it gets
2603  * called from a page fault handler when a page is first dirtied. Hence we must
2604  * be careful to check for EOF conditions here. We set the page up correctly
2605  * for a written page which means we get ENOSPC checking when writing into
2606  * holes and correct delalloc and unwritten extent mapping on filesystems that
2607  * support these features.
2608  *
2609  * We are not allowed to take the i_mutex here so we have to play games to
2610  * protect against truncate races as the page could now be beyond EOF.  Because
2611  * truncate writes the inode size before removing pages, once we have the
2612  * page lock we can determine safely if the page is beyond EOF. If it is not
2613  * beyond EOF, then the page is guaranteed safe against truncation until we
2614  * unlock the page.
2615  *
2616  * Direct callers of this function should protect against filesystem freezing
2617  * using sb_start_pagefault() - sb_end_pagefault() functions.
2618  */
2619 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2620 			 get_block_t get_block)
2621 {
2622 	struct folio *folio = page_folio(vmf->page);
2623 	struct inode *inode = file_inode(vma->vm_file);
2624 	unsigned long end;
2625 	loff_t size;
2626 	int ret;
2627 
2628 	folio_lock(folio);
2629 	size = i_size_read(inode);
2630 	if ((folio->mapping != inode->i_mapping) ||
2631 	    (folio_pos(folio) >= size)) {
2632 		/* We overload EFAULT to mean page got truncated */
2633 		ret = -EFAULT;
2634 		goto out_unlock;
2635 	}
2636 
2637 	end = folio_size(folio);
2638 	/* folio is wholly or partially inside EOF */
2639 	if (folio_pos(folio) + end > size)
2640 		end = size - folio_pos(folio);
2641 
2642 	ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2643 	if (unlikely(ret))
2644 		goto out_unlock;
2645 
2646 	__block_commit_write(folio, 0, end);
2647 
2648 	folio_mark_dirty(folio);
2649 	folio_wait_stable(folio);
2650 	return 0;
2651 out_unlock:
2652 	folio_unlock(folio);
2653 	return ret;
2654 }
2655 EXPORT_SYMBOL(block_page_mkwrite);
2656 
2657 int block_truncate_page(struct address_space *mapping,
2658 			loff_t from, get_block_t *get_block)
2659 {
2660 	pgoff_t index = from >> PAGE_SHIFT;
2661 	unsigned blocksize;
2662 	sector_t iblock;
2663 	size_t offset, length, pos;
2664 	struct inode *inode = mapping->host;
2665 	struct folio *folio;
2666 	struct buffer_head *bh;
2667 	int err = 0;
2668 
2669 	blocksize = i_blocksize(inode);
2670 	length = from & (blocksize - 1);
2671 
2672 	/* Block boundary? Nothing to do */
2673 	if (!length)
2674 		return 0;
2675 
2676 	length = blocksize - length;
2677 	iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits;
2678 
2679 	folio = filemap_grab_folio(mapping, index);
2680 	if (IS_ERR(folio))
2681 		return PTR_ERR(folio);
2682 
2683 	bh = folio_buffers(folio);
2684 	if (!bh)
2685 		bh = create_empty_buffers(folio, blocksize, 0);
2686 
2687 	/* Find the buffer that contains "offset" */
2688 	offset = offset_in_folio(folio, from);
2689 	pos = blocksize;
2690 	while (offset >= pos) {
2691 		bh = bh->b_this_page;
2692 		iblock++;
2693 		pos += blocksize;
2694 	}
2695 
2696 	if (!buffer_mapped(bh)) {
2697 		WARN_ON(bh->b_size != blocksize);
2698 		err = get_block(inode, iblock, bh, 0);
2699 		if (err)
2700 			goto unlock;
2701 		/* unmapped? It's a hole - nothing to do */
2702 		if (!buffer_mapped(bh))
2703 			goto unlock;
2704 	}
2705 
2706 	/* Ok, it's mapped. Make sure it's up-to-date */
2707 	if (folio_test_uptodate(folio))
2708 		set_buffer_uptodate(bh);
2709 
2710 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2711 		err = bh_read(bh, 0);
2712 		/* Uhhuh. Read error. Complain and punt. */
2713 		if (err < 0)
2714 			goto unlock;
2715 	}
2716 
2717 	folio_zero_range(folio, offset, length);
2718 	mark_buffer_dirty(bh);
2719 
2720 unlock:
2721 	folio_unlock(folio);
2722 	folio_put(folio);
2723 
2724 	return err;
2725 }
2726 EXPORT_SYMBOL(block_truncate_page);
2727 
2728 /*
2729  * The generic ->writepage function for buffer-backed address_spaces
2730  */
2731 int block_write_full_folio(struct folio *folio, struct writeback_control *wbc,
2732 		void *get_block)
2733 {
2734 	struct inode * const inode = folio->mapping->host;
2735 	loff_t i_size = i_size_read(inode);
2736 
2737 	/* Is the folio fully inside i_size? */
2738 	if (folio_pos(folio) + folio_size(folio) <= i_size)
2739 		return __block_write_full_folio(inode, folio, get_block, wbc);
2740 
2741 	/* Is the folio fully outside i_size? (truncate in progress) */
2742 	if (folio_pos(folio) >= i_size) {
2743 		folio_unlock(folio);
2744 		return 0; /* don't care */
2745 	}
2746 
2747 	/*
2748 	 * The folio straddles i_size.  It must be zeroed out on each and every
2749 	 * writepage invocation because it may be mmapped.  "A file is mapped
2750 	 * in multiples of the page size.  For a file that is not a multiple of
2751 	 * the page size, the remaining memory is zeroed when mapped, and
2752 	 * writes to that region are not written out to the file."
2753 	 */
2754 	folio_zero_segment(folio, offset_in_folio(folio, i_size),
2755 			folio_size(folio));
2756 	return __block_write_full_folio(inode, folio, get_block, wbc);
2757 }
2758 
2759 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2760 			    get_block_t *get_block)
2761 {
2762 	struct inode *inode = mapping->host;
2763 	struct buffer_head tmp = {
2764 		.b_size = i_blocksize(inode),
2765 	};
2766 
2767 	get_block(inode, block, &tmp, 0);
2768 	return tmp.b_blocknr;
2769 }
2770 EXPORT_SYMBOL(generic_block_bmap);
2771 
2772 static void end_bio_bh_io_sync(struct bio *bio)
2773 {
2774 	struct buffer_head *bh = bio->bi_private;
2775 
2776 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2777 		set_bit(BH_Quiet, &bh->b_state);
2778 
2779 	bh->b_end_io(bh, !bio->bi_status);
2780 	bio_put(bio);
2781 }
2782 
2783 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2784 			  enum rw_hint write_hint,
2785 			  struct writeback_control *wbc)
2786 {
2787 	const enum req_op op = opf & REQ_OP_MASK;
2788 	struct bio *bio;
2789 
2790 	BUG_ON(!buffer_locked(bh));
2791 	BUG_ON(!buffer_mapped(bh));
2792 	BUG_ON(!bh->b_end_io);
2793 	BUG_ON(buffer_delay(bh));
2794 	BUG_ON(buffer_unwritten(bh));
2795 
2796 	/*
2797 	 * Only clear out a write error when rewriting
2798 	 */
2799 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2800 		clear_buffer_write_io_error(bh);
2801 
2802 	if (buffer_meta(bh))
2803 		opf |= REQ_META;
2804 	if (buffer_prio(bh))
2805 		opf |= REQ_PRIO;
2806 
2807 	bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2808 
2809 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2810 
2811 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2812 	bio->bi_write_hint = write_hint;
2813 
2814 	__bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2815 
2816 	bio->bi_end_io = end_bio_bh_io_sync;
2817 	bio->bi_private = bh;
2818 
2819 	/* Take care of bh's that straddle the end of the device */
2820 	guard_bio_eod(bio);
2821 
2822 	if (wbc) {
2823 		wbc_init_bio(wbc, bio);
2824 		wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2825 	}
2826 
2827 	submit_bio(bio);
2828 }
2829 
2830 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2831 {
2832 	submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL);
2833 }
2834 EXPORT_SYMBOL(submit_bh);
2835 
2836 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2837 {
2838 	lock_buffer(bh);
2839 	if (!test_clear_buffer_dirty(bh)) {
2840 		unlock_buffer(bh);
2841 		return;
2842 	}
2843 	bh->b_end_io = end_buffer_write_sync;
2844 	get_bh(bh);
2845 	submit_bh(REQ_OP_WRITE | op_flags, bh);
2846 }
2847 EXPORT_SYMBOL(write_dirty_buffer);
2848 
2849 /*
2850  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2851  * and then start new I/O and then wait upon it.  The caller must have a ref on
2852  * the buffer_head.
2853  */
2854 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2855 {
2856 	WARN_ON(atomic_read(&bh->b_count) < 1);
2857 	lock_buffer(bh);
2858 	if (test_clear_buffer_dirty(bh)) {
2859 		/*
2860 		 * The bh should be mapped, but it might not be if the
2861 		 * device was hot-removed. Not much we can do but fail the I/O.
2862 		 */
2863 		if (!buffer_mapped(bh)) {
2864 			unlock_buffer(bh);
2865 			return -EIO;
2866 		}
2867 
2868 		get_bh(bh);
2869 		bh->b_end_io = end_buffer_write_sync;
2870 		submit_bh(REQ_OP_WRITE | op_flags, bh);
2871 		wait_on_buffer(bh);
2872 		if (!buffer_uptodate(bh))
2873 			return -EIO;
2874 	} else {
2875 		unlock_buffer(bh);
2876 	}
2877 	return 0;
2878 }
2879 EXPORT_SYMBOL(__sync_dirty_buffer);
2880 
2881 int sync_dirty_buffer(struct buffer_head *bh)
2882 {
2883 	return __sync_dirty_buffer(bh, REQ_SYNC);
2884 }
2885 EXPORT_SYMBOL(sync_dirty_buffer);
2886 
2887 static inline int buffer_busy(struct buffer_head *bh)
2888 {
2889 	return atomic_read(&bh->b_count) |
2890 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2891 }
2892 
2893 static bool
2894 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2895 {
2896 	struct buffer_head *head = folio_buffers(folio);
2897 	struct buffer_head *bh;
2898 
2899 	bh = head;
2900 	do {
2901 		if (buffer_busy(bh))
2902 			goto failed;
2903 		bh = bh->b_this_page;
2904 	} while (bh != head);
2905 
2906 	do {
2907 		struct buffer_head *next = bh->b_this_page;
2908 
2909 		if (bh->b_assoc_map)
2910 			__remove_assoc_queue(bh);
2911 		bh = next;
2912 	} while (bh != head);
2913 	*buffers_to_free = head;
2914 	folio_detach_private(folio);
2915 	return true;
2916 failed:
2917 	return false;
2918 }
2919 
2920 /**
2921  * try_to_free_buffers - Release buffers attached to this folio.
2922  * @folio: The folio.
2923  *
2924  * If any buffers are in use (dirty, under writeback, elevated refcount),
2925  * no buffers will be freed.
2926  *
2927  * If the folio is dirty but all the buffers are clean then we need to
2928  * be sure to mark the folio clean as well.  This is because the folio
2929  * may be against a block device, and a later reattachment of buffers
2930  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2931  * filesystem data on the same device.
2932  *
2933  * The same applies to regular filesystem folios: if all the buffers are
2934  * clean then we set the folio clean and proceed.  To do that, we require
2935  * total exclusion from block_dirty_folio().  That is obtained with
2936  * i_private_lock.
2937  *
2938  * Exclusion against try_to_free_buffers may be obtained by either
2939  * locking the folio or by holding its mapping's i_private_lock.
2940  *
2941  * Context: Process context.  @folio must be locked.  Will not sleep.
2942  * Return: true if all buffers attached to this folio were freed.
2943  */
2944 bool try_to_free_buffers(struct folio *folio)
2945 {
2946 	struct address_space * const mapping = folio->mapping;
2947 	struct buffer_head *buffers_to_free = NULL;
2948 	bool ret = 0;
2949 
2950 	BUG_ON(!folio_test_locked(folio));
2951 	if (folio_test_writeback(folio))
2952 		return false;
2953 
2954 	if (mapping == NULL) {		/* can this still happen? */
2955 		ret = drop_buffers(folio, &buffers_to_free);
2956 		goto out;
2957 	}
2958 
2959 	spin_lock(&mapping->i_private_lock);
2960 	ret = drop_buffers(folio, &buffers_to_free);
2961 
2962 	/*
2963 	 * If the filesystem writes its buffers by hand (eg ext3)
2964 	 * then we can have clean buffers against a dirty folio.  We
2965 	 * clean the folio here; otherwise the VM will never notice
2966 	 * that the filesystem did any IO at all.
2967 	 *
2968 	 * Also, during truncate, discard_buffer will have marked all
2969 	 * the folio's buffers clean.  We discover that here and clean
2970 	 * the folio also.
2971 	 *
2972 	 * i_private_lock must be held over this entire operation in order
2973 	 * to synchronise against block_dirty_folio and prevent the
2974 	 * dirty bit from being lost.
2975 	 */
2976 	if (ret)
2977 		folio_cancel_dirty(folio);
2978 	spin_unlock(&mapping->i_private_lock);
2979 out:
2980 	if (buffers_to_free) {
2981 		struct buffer_head *bh = buffers_to_free;
2982 
2983 		do {
2984 			struct buffer_head *next = bh->b_this_page;
2985 			free_buffer_head(bh);
2986 			bh = next;
2987 		} while (bh != buffers_to_free);
2988 	}
2989 	return ret;
2990 }
2991 EXPORT_SYMBOL(try_to_free_buffers);
2992 
2993 /*
2994  * Buffer-head allocation
2995  */
2996 static struct kmem_cache *bh_cachep __ro_after_init;
2997 
2998 /*
2999  * Once the number of bh's in the machine exceeds this level, we start
3000  * stripping them in writeback.
3001  */
3002 static unsigned long max_buffer_heads __ro_after_init;
3003 
3004 int buffer_heads_over_limit;
3005 
3006 struct bh_accounting {
3007 	int nr;			/* Number of live bh's */
3008 	int ratelimit;		/* Limit cacheline bouncing */
3009 };
3010 
3011 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3012 
3013 static void recalc_bh_state(void)
3014 {
3015 	int i;
3016 	int tot = 0;
3017 
3018 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3019 		return;
3020 	__this_cpu_write(bh_accounting.ratelimit, 0);
3021 	for_each_online_cpu(i)
3022 		tot += per_cpu(bh_accounting, i).nr;
3023 	buffer_heads_over_limit = (tot > max_buffer_heads);
3024 }
3025 
3026 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3027 {
3028 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3029 	if (ret) {
3030 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3031 		spin_lock_init(&ret->b_uptodate_lock);
3032 		preempt_disable();
3033 		__this_cpu_inc(bh_accounting.nr);
3034 		recalc_bh_state();
3035 		preempt_enable();
3036 	}
3037 	return ret;
3038 }
3039 EXPORT_SYMBOL(alloc_buffer_head);
3040 
3041 void free_buffer_head(struct buffer_head *bh)
3042 {
3043 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3044 	kmem_cache_free(bh_cachep, bh);
3045 	preempt_disable();
3046 	__this_cpu_dec(bh_accounting.nr);
3047 	recalc_bh_state();
3048 	preempt_enable();
3049 }
3050 EXPORT_SYMBOL(free_buffer_head);
3051 
3052 static int buffer_exit_cpu_dead(unsigned int cpu)
3053 {
3054 	int i;
3055 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3056 
3057 	for (i = 0; i < BH_LRU_SIZE; i++) {
3058 		brelse(b->bhs[i]);
3059 		b->bhs[i] = NULL;
3060 	}
3061 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3062 	per_cpu(bh_accounting, cpu).nr = 0;
3063 	return 0;
3064 }
3065 
3066 /**
3067  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3068  * @bh: struct buffer_head
3069  *
3070  * Return true if the buffer is up-to-date and false,
3071  * with the buffer locked, if not.
3072  */
3073 int bh_uptodate_or_lock(struct buffer_head *bh)
3074 {
3075 	if (!buffer_uptodate(bh)) {
3076 		lock_buffer(bh);
3077 		if (!buffer_uptodate(bh))
3078 			return 0;
3079 		unlock_buffer(bh);
3080 	}
3081 	return 1;
3082 }
3083 EXPORT_SYMBOL(bh_uptodate_or_lock);
3084 
3085 /**
3086  * __bh_read - Submit read for a locked buffer
3087  * @bh: struct buffer_head
3088  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3089  * @wait: wait until reading finish
3090  *
3091  * Returns zero on success or don't wait, and -EIO on error.
3092  */
3093 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3094 {
3095 	int ret = 0;
3096 
3097 	BUG_ON(!buffer_locked(bh));
3098 
3099 	get_bh(bh);
3100 	bh->b_end_io = end_buffer_read_sync;
3101 	submit_bh(REQ_OP_READ | op_flags, bh);
3102 	if (wait) {
3103 		wait_on_buffer(bh);
3104 		if (!buffer_uptodate(bh))
3105 			ret = -EIO;
3106 	}
3107 	return ret;
3108 }
3109 EXPORT_SYMBOL(__bh_read);
3110 
3111 /**
3112  * __bh_read_batch - Submit read for a batch of unlocked buffers
3113  * @nr: entry number of the buffer batch
3114  * @bhs: a batch of struct buffer_head
3115  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3116  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3117  *              buffer that cannot lock.
3118  *
3119  * Returns zero on success or don't wait, and -EIO on error.
3120  */
3121 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3122 		     blk_opf_t op_flags, bool force_lock)
3123 {
3124 	int i;
3125 
3126 	for (i = 0; i < nr; i++) {
3127 		struct buffer_head *bh = bhs[i];
3128 
3129 		if (buffer_uptodate(bh))
3130 			continue;
3131 
3132 		if (force_lock)
3133 			lock_buffer(bh);
3134 		else
3135 			if (!trylock_buffer(bh))
3136 				continue;
3137 
3138 		if (buffer_uptodate(bh)) {
3139 			unlock_buffer(bh);
3140 			continue;
3141 		}
3142 
3143 		bh->b_end_io = end_buffer_read_sync;
3144 		get_bh(bh);
3145 		submit_bh(REQ_OP_READ | op_flags, bh);
3146 	}
3147 }
3148 EXPORT_SYMBOL(__bh_read_batch);
3149 
3150 void __init buffer_init(void)
3151 {
3152 	unsigned long nrpages;
3153 	int ret;
3154 
3155 	bh_cachep = KMEM_CACHE(buffer_head,
3156 				SLAB_RECLAIM_ACCOUNT|SLAB_PANIC);
3157 	/*
3158 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3159 	 */
3160 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3161 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3162 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3163 					NULL, buffer_exit_cpu_dead);
3164 	WARN_ON(ret < 0);
3165 }
3166