1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2016-present, Facebook, Inc. 4 * All rights reserved. 5 * 6 */ 7 8 #include <linux/bio.h> 9 #include <linux/bitmap.h> 10 #include <linux/err.h> 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/mm.h> 14 #include <linux/sched/mm.h> 15 #include <linux/pagemap.h> 16 #include <linux/refcount.h> 17 #include <linux/sched.h> 18 #include <linux/slab.h> 19 #include <linux/zstd.h> 20 #include "misc.h" 21 #include "fs.h" 22 #include "compression.h" 23 #include "super.h" 24 25 #define ZSTD_BTRFS_MAX_WINDOWLOG 17 26 #define ZSTD_BTRFS_MAX_INPUT (1 << ZSTD_BTRFS_MAX_WINDOWLOG) 27 #define ZSTD_BTRFS_DEFAULT_LEVEL 3 28 #define ZSTD_BTRFS_MAX_LEVEL 15 29 /* 307s to avoid pathologically clashing with transaction commit */ 30 #define ZSTD_BTRFS_RECLAIM_JIFFIES (307 * HZ) 31 32 static zstd_parameters zstd_get_btrfs_parameters(unsigned int level, 33 size_t src_len) 34 { 35 zstd_parameters params = zstd_get_params(level, src_len); 36 37 if (params.cParams.windowLog > ZSTD_BTRFS_MAX_WINDOWLOG) 38 params.cParams.windowLog = ZSTD_BTRFS_MAX_WINDOWLOG; 39 WARN_ON(src_len > ZSTD_BTRFS_MAX_INPUT); 40 return params; 41 } 42 43 struct workspace { 44 void *mem; 45 size_t size; 46 char *buf; 47 unsigned int level; 48 unsigned int req_level; 49 unsigned long last_used; /* jiffies */ 50 struct list_head list; 51 struct list_head lru_list; 52 zstd_in_buffer in_buf; 53 zstd_out_buffer out_buf; 54 }; 55 56 /* 57 * Zstd Workspace Management 58 * 59 * Zstd workspaces have different memory requirements depending on the level. 60 * The zstd workspaces are managed by having individual lists for each level 61 * and a global lru. Forward progress is maintained by protecting a max level 62 * workspace. 63 * 64 * Getting a workspace is done by using the bitmap to identify the levels that 65 * have available workspaces and scans up. This lets us recycle higher level 66 * workspaces because of the monotonic memory guarantee. A workspace's 67 * last_used is only updated if it is being used by the corresponding memory 68 * level. Putting a workspace involves adding it back to the appropriate places 69 * and adding it back to the lru if necessary. 70 * 71 * A timer is used to reclaim workspaces if they have not been used for 72 * ZSTD_BTRFS_RECLAIM_JIFFIES. This helps keep only active workspaces around. 73 * The upper bound is provided by the workqueue limit which is 2 (percpu limit). 74 */ 75 76 struct zstd_workspace_manager { 77 const struct btrfs_compress_op *ops; 78 spinlock_t lock; 79 struct list_head lru_list; 80 struct list_head idle_ws[ZSTD_BTRFS_MAX_LEVEL]; 81 unsigned long active_map; 82 wait_queue_head_t wait; 83 struct timer_list timer; 84 }; 85 86 static struct zstd_workspace_manager wsm; 87 88 static size_t zstd_ws_mem_sizes[ZSTD_BTRFS_MAX_LEVEL]; 89 90 static inline struct workspace *list_to_workspace(struct list_head *list) 91 { 92 return container_of(list, struct workspace, list); 93 } 94 95 void zstd_free_workspace(struct list_head *ws); 96 struct list_head *zstd_alloc_workspace(unsigned int level); 97 98 /* 99 * Timer callback to free unused workspaces. 100 * 101 * @t: timer 102 * 103 * This scans the lru_list and attempts to reclaim any workspace that hasn't 104 * been used for ZSTD_BTRFS_RECLAIM_JIFFIES. 105 * 106 * The context is softirq and does not need the _bh locking primitives. 107 */ 108 static void zstd_reclaim_timer_fn(struct timer_list *timer) 109 { 110 unsigned long reclaim_threshold = jiffies - ZSTD_BTRFS_RECLAIM_JIFFIES; 111 struct list_head *pos, *next; 112 113 spin_lock(&wsm.lock); 114 115 if (list_empty(&wsm.lru_list)) { 116 spin_unlock(&wsm.lock); 117 return; 118 } 119 120 list_for_each_prev_safe(pos, next, &wsm.lru_list) { 121 struct workspace *victim = container_of(pos, struct workspace, 122 lru_list); 123 unsigned int level; 124 125 if (time_after(victim->last_used, reclaim_threshold)) 126 break; 127 128 /* workspace is in use */ 129 if (victim->req_level) 130 continue; 131 132 level = victim->level; 133 list_del(&victim->lru_list); 134 list_del(&victim->list); 135 zstd_free_workspace(&victim->list); 136 137 if (list_empty(&wsm.idle_ws[level - 1])) 138 clear_bit(level - 1, &wsm.active_map); 139 140 } 141 142 if (!list_empty(&wsm.lru_list)) 143 mod_timer(&wsm.timer, jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES); 144 145 spin_unlock(&wsm.lock); 146 } 147 148 /* 149 * Calculate monotonic memory bounds. 150 * 151 * It is possible based on the level configurations that a higher level 152 * workspace uses less memory than a lower level workspace. In order to reuse 153 * workspaces, this must be made a monotonic relationship. This precomputes 154 * the required memory for each level and enforces the monotonicity between 155 * level and memory required. 156 */ 157 static void zstd_calc_ws_mem_sizes(void) 158 { 159 size_t max_size = 0; 160 unsigned int level; 161 162 for (level = 1; level <= ZSTD_BTRFS_MAX_LEVEL; level++) { 163 zstd_parameters params = 164 zstd_get_btrfs_parameters(level, ZSTD_BTRFS_MAX_INPUT); 165 size_t level_size = 166 max_t(size_t, 167 zstd_cstream_workspace_bound(¶ms.cParams), 168 zstd_dstream_workspace_bound(ZSTD_BTRFS_MAX_INPUT)); 169 170 max_size = max_t(size_t, max_size, level_size); 171 zstd_ws_mem_sizes[level - 1] = max_size; 172 } 173 } 174 175 void zstd_init_workspace_manager(void) 176 { 177 struct list_head *ws; 178 int i; 179 180 zstd_calc_ws_mem_sizes(); 181 182 wsm.ops = &btrfs_zstd_compress; 183 spin_lock_init(&wsm.lock); 184 init_waitqueue_head(&wsm.wait); 185 timer_setup(&wsm.timer, zstd_reclaim_timer_fn, 0); 186 187 INIT_LIST_HEAD(&wsm.lru_list); 188 for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) 189 INIT_LIST_HEAD(&wsm.idle_ws[i]); 190 191 ws = zstd_alloc_workspace(ZSTD_BTRFS_MAX_LEVEL); 192 if (IS_ERR(ws)) { 193 pr_warn( 194 "BTRFS: cannot preallocate zstd compression workspace\n"); 195 } else { 196 set_bit(ZSTD_BTRFS_MAX_LEVEL - 1, &wsm.active_map); 197 list_add(ws, &wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1]); 198 } 199 } 200 201 void zstd_cleanup_workspace_manager(void) 202 { 203 struct workspace *workspace; 204 int i; 205 206 spin_lock_bh(&wsm.lock); 207 for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) { 208 while (!list_empty(&wsm.idle_ws[i])) { 209 workspace = container_of(wsm.idle_ws[i].next, 210 struct workspace, list); 211 list_del(&workspace->list); 212 list_del(&workspace->lru_list); 213 zstd_free_workspace(&workspace->list); 214 } 215 } 216 spin_unlock_bh(&wsm.lock); 217 218 del_timer_sync(&wsm.timer); 219 } 220 221 /* 222 * Find workspace for given level. 223 * 224 * @level: compression level 225 * 226 * This iterates over the set bits in the active_map beginning at the requested 227 * compression level. This lets us utilize already allocated workspaces before 228 * allocating a new one. If the workspace is of a larger size, it is used, but 229 * the place in the lru_list and last_used times are not updated. This is to 230 * offer the opportunity to reclaim the workspace in favor of allocating an 231 * appropriately sized one in the future. 232 */ 233 static struct list_head *zstd_find_workspace(unsigned int level) 234 { 235 struct list_head *ws; 236 struct workspace *workspace; 237 int i = level - 1; 238 239 spin_lock_bh(&wsm.lock); 240 for_each_set_bit_from(i, &wsm.active_map, ZSTD_BTRFS_MAX_LEVEL) { 241 if (!list_empty(&wsm.idle_ws[i])) { 242 ws = wsm.idle_ws[i].next; 243 workspace = list_to_workspace(ws); 244 list_del_init(ws); 245 /* keep its place if it's a lower level using this */ 246 workspace->req_level = level; 247 if (level == workspace->level) 248 list_del(&workspace->lru_list); 249 if (list_empty(&wsm.idle_ws[i])) 250 clear_bit(i, &wsm.active_map); 251 spin_unlock_bh(&wsm.lock); 252 return ws; 253 } 254 } 255 spin_unlock_bh(&wsm.lock); 256 257 return NULL; 258 } 259 260 /* 261 * Zstd get_workspace for level. 262 * 263 * @level: compression level 264 * 265 * If @level is 0, then any compression level can be used. Therefore, we begin 266 * scanning from 1. We first scan through possible workspaces and then after 267 * attempt to allocate a new workspace. If we fail to allocate one due to 268 * memory pressure, go to sleep waiting for the max level workspace to free up. 269 */ 270 struct list_head *zstd_get_workspace(unsigned int level) 271 { 272 struct list_head *ws; 273 unsigned int nofs_flag; 274 275 /* level == 0 means we can use any workspace */ 276 if (!level) 277 level = 1; 278 279 again: 280 ws = zstd_find_workspace(level); 281 if (ws) 282 return ws; 283 284 nofs_flag = memalloc_nofs_save(); 285 ws = zstd_alloc_workspace(level); 286 memalloc_nofs_restore(nofs_flag); 287 288 if (IS_ERR(ws)) { 289 DEFINE_WAIT(wait); 290 291 prepare_to_wait(&wsm.wait, &wait, TASK_UNINTERRUPTIBLE); 292 schedule(); 293 finish_wait(&wsm.wait, &wait); 294 295 goto again; 296 } 297 298 return ws; 299 } 300 301 /* 302 * Zstd put_workspace. 303 * 304 * @ws: list_head for the workspace 305 * 306 * When putting back a workspace, we only need to update the LRU if we are of 307 * the requested compression level. Here is where we continue to protect the 308 * max level workspace or update last_used accordingly. If the reclaim timer 309 * isn't set, it is also set here. Only the max level workspace tries and wakes 310 * up waiting workspaces. 311 */ 312 void zstd_put_workspace(struct list_head *ws) 313 { 314 struct workspace *workspace = list_to_workspace(ws); 315 316 spin_lock_bh(&wsm.lock); 317 318 /* A node is only taken off the lru if we are the corresponding level */ 319 if (workspace->req_level == workspace->level) { 320 /* Hide a max level workspace from reclaim */ 321 if (list_empty(&wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1])) { 322 INIT_LIST_HEAD(&workspace->lru_list); 323 } else { 324 workspace->last_used = jiffies; 325 list_add(&workspace->lru_list, &wsm.lru_list); 326 if (!timer_pending(&wsm.timer)) 327 mod_timer(&wsm.timer, 328 jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES); 329 } 330 } 331 332 set_bit(workspace->level - 1, &wsm.active_map); 333 list_add(&workspace->list, &wsm.idle_ws[workspace->level - 1]); 334 workspace->req_level = 0; 335 336 spin_unlock_bh(&wsm.lock); 337 338 if (workspace->level == ZSTD_BTRFS_MAX_LEVEL) 339 cond_wake_up(&wsm.wait); 340 } 341 342 void zstd_free_workspace(struct list_head *ws) 343 { 344 struct workspace *workspace = list_entry(ws, struct workspace, list); 345 346 kvfree(workspace->mem); 347 kfree(workspace->buf); 348 kfree(workspace); 349 } 350 351 struct list_head *zstd_alloc_workspace(unsigned int level) 352 { 353 struct workspace *workspace; 354 355 workspace = kzalloc(sizeof(*workspace), GFP_KERNEL); 356 if (!workspace) 357 return ERR_PTR(-ENOMEM); 358 359 workspace->size = zstd_ws_mem_sizes[level - 1]; 360 workspace->level = level; 361 workspace->req_level = level; 362 workspace->last_used = jiffies; 363 workspace->mem = kvmalloc(workspace->size, GFP_KERNEL | __GFP_NOWARN); 364 workspace->buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 365 if (!workspace->mem || !workspace->buf) 366 goto fail; 367 368 INIT_LIST_HEAD(&workspace->list); 369 INIT_LIST_HEAD(&workspace->lru_list); 370 371 return &workspace->list; 372 fail: 373 zstd_free_workspace(&workspace->list); 374 return ERR_PTR(-ENOMEM); 375 } 376 377 int zstd_compress_pages(struct list_head *ws, struct address_space *mapping, 378 u64 start, struct page **pages, unsigned long *out_pages, 379 unsigned long *total_in, unsigned long *total_out) 380 { 381 struct workspace *workspace = list_entry(ws, struct workspace, list); 382 zstd_cstream *stream; 383 int ret = 0; 384 int nr_pages = 0; 385 struct page *in_page = NULL; /* The current page to read */ 386 struct page *out_page = NULL; /* The current page to write to */ 387 unsigned long tot_in = 0; 388 unsigned long tot_out = 0; 389 unsigned long len = *total_out; 390 const unsigned long nr_dest_pages = *out_pages; 391 unsigned long max_out = nr_dest_pages * PAGE_SIZE; 392 zstd_parameters params = zstd_get_btrfs_parameters(workspace->req_level, 393 len); 394 395 *out_pages = 0; 396 *total_out = 0; 397 *total_in = 0; 398 399 /* Initialize the stream */ 400 stream = zstd_init_cstream(¶ms, len, workspace->mem, 401 workspace->size); 402 if (!stream) { 403 pr_warn("BTRFS: zstd_init_cstream failed\n"); 404 ret = -EIO; 405 goto out; 406 } 407 408 /* map in the first page of input data */ 409 in_page = find_get_page(mapping, start >> PAGE_SHIFT); 410 workspace->in_buf.src = kmap_local_page(in_page); 411 workspace->in_buf.pos = 0; 412 workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE); 413 414 /* Allocate and map in the output buffer */ 415 out_page = btrfs_alloc_compr_page(); 416 if (out_page == NULL) { 417 ret = -ENOMEM; 418 goto out; 419 } 420 pages[nr_pages++] = out_page; 421 workspace->out_buf.dst = page_address(out_page); 422 workspace->out_buf.pos = 0; 423 workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE); 424 425 while (1) { 426 size_t ret2; 427 428 ret2 = zstd_compress_stream(stream, &workspace->out_buf, 429 &workspace->in_buf); 430 if (zstd_is_error(ret2)) { 431 pr_debug("BTRFS: zstd_compress_stream returned %d\n", 432 zstd_get_error_code(ret2)); 433 ret = -EIO; 434 goto out; 435 } 436 437 /* Check to see if we are making it bigger */ 438 if (tot_in + workspace->in_buf.pos > 8192 && 439 tot_in + workspace->in_buf.pos < 440 tot_out + workspace->out_buf.pos) { 441 ret = -E2BIG; 442 goto out; 443 } 444 445 /* We've reached the end of our output range */ 446 if (workspace->out_buf.pos >= max_out) { 447 tot_out += workspace->out_buf.pos; 448 ret = -E2BIG; 449 goto out; 450 } 451 452 /* Check if we need more output space */ 453 if (workspace->out_buf.pos == workspace->out_buf.size) { 454 tot_out += PAGE_SIZE; 455 max_out -= PAGE_SIZE; 456 if (nr_pages == nr_dest_pages) { 457 ret = -E2BIG; 458 goto out; 459 } 460 out_page = btrfs_alloc_compr_page(); 461 if (out_page == NULL) { 462 ret = -ENOMEM; 463 goto out; 464 } 465 pages[nr_pages++] = out_page; 466 workspace->out_buf.dst = page_address(out_page); 467 workspace->out_buf.pos = 0; 468 workspace->out_buf.size = min_t(size_t, max_out, 469 PAGE_SIZE); 470 } 471 472 /* We've reached the end of the input */ 473 if (workspace->in_buf.pos >= len) { 474 tot_in += workspace->in_buf.pos; 475 break; 476 } 477 478 /* Check if we need more input */ 479 if (workspace->in_buf.pos == workspace->in_buf.size) { 480 tot_in += PAGE_SIZE; 481 kunmap_local(workspace->in_buf.src); 482 put_page(in_page); 483 start += PAGE_SIZE; 484 len -= PAGE_SIZE; 485 in_page = find_get_page(mapping, start >> PAGE_SHIFT); 486 workspace->in_buf.src = kmap_local_page(in_page); 487 workspace->in_buf.pos = 0; 488 workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE); 489 } 490 } 491 while (1) { 492 size_t ret2; 493 494 ret2 = zstd_end_stream(stream, &workspace->out_buf); 495 if (zstd_is_error(ret2)) { 496 pr_debug("BTRFS: zstd_end_stream returned %d\n", 497 zstd_get_error_code(ret2)); 498 ret = -EIO; 499 goto out; 500 } 501 if (ret2 == 0) { 502 tot_out += workspace->out_buf.pos; 503 break; 504 } 505 if (workspace->out_buf.pos >= max_out) { 506 tot_out += workspace->out_buf.pos; 507 ret = -E2BIG; 508 goto out; 509 } 510 511 tot_out += PAGE_SIZE; 512 max_out -= PAGE_SIZE; 513 if (nr_pages == nr_dest_pages) { 514 ret = -E2BIG; 515 goto out; 516 } 517 out_page = btrfs_alloc_compr_page(); 518 if (out_page == NULL) { 519 ret = -ENOMEM; 520 goto out; 521 } 522 pages[nr_pages++] = out_page; 523 workspace->out_buf.dst = page_address(out_page); 524 workspace->out_buf.pos = 0; 525 workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE); 526 } 527 528 if (tot_out >= tot_in) { 529 ret = -E2BIG; 530 goto out; 531 } 532 533 ret = 0; 534 *total_in = tot_in; 535 *total_out = tot_out; 536 out: 537 *out_pages = nr_pages; 538 if (workspace->in_buf.src) { 539 kunmap_local(workspace->in_buf.src); 540 put_page(in_page); 541 } 542 return ret; 543 } 544 545 int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb) 546 { 547 struct workspace *workspace = list_entry(ws, struct workspace, list); 548 struct page **pages_in = cb->compressed_pages; 549 size_t srclen = cb->compressed_len; 550 zstd_dstream *stream; 551 int ret = 0; 552 unsigned long page_in_index = 0; 553 unsigned long total_pages_in = DIV_ROUND_UP(srclen, PAGE_SIZE); 554 unsigned long buf_start; 555 unsigned long total_out = 0; 556 557 stream = zstd_init_dstream( 558 ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size); 559 if (!stream) { 560 pr_debug("BTRFS: zstd_init_dstream failed\n"); 561 ret = -EIO; 562 goto done; 563 } 564 565 workspace->in_buf.src = kmap_local_page(pages_in[page_in_index]); 566 workspace->in_buf.pos = 0; 567 workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE); 568 569 workspace->out_buf.dst = workspace->buf; 570 workspace->out_buf.pos = 0; 571 workspace->out_buf.size = PAGE_SIZE; 572 573 while (1) { 574 size_t ret2; 575 576 ret2 = zstd_decompress_stream(stream, &workspace->out_buf, 577 &workspace->in_buf); 578 if (zstd_is_error(ret2)) { 579 pr_debug("BTRFS: zstd_decompress_stream returned %d\n", 580 zstd_get_error_code(ret2)); 581 ret = -EIO; 582 goto done; 583 } 584 buf_start = total_out; 585 total_out += workspace->out_buf.pos; 586 workspace->out_buf.pos = 0; 587 588 ret = btrfs_decompress_buf2page(workspace->out_buf.dst, 589 total_out - buf_start, cb, buf_start); 590 if (ret == 0) 591 break; 592 593 if (workspace->in_buf.pos >= srclen) 594 break; 595 596 /* Check if we've hit the end of a frame */ 597 if (ret2 == 0) 598 break; 599 600 if (workspace->in_buf.pos == workspace->in_buf.size) { 601 kunmap_local(workspace->in_buf.src); 602 page_in_index++; 603 if (page_in_index >= total_pages_in) { 604 workspace->in_buf.src = NULL; 605 ret = -EIO; 606 goto done; 607 } 608 srclen -= PAGE_SIZE; 609 workspace->in_buf.src = kmap_local_page(pages_in[page_in_index]); 610 workspace->in_buf.pos = 0; 611 workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE); 612 } 613 } 614 ret = 0; 615 done: 616 if (workspace->in_buf.src) 617 kunmap_local(workspace->in_buf.src); 618 return ret; 619 } 620 621 int zstd_decompress(struct list_head *ws, const u8 *data_in, 622 struct page *dest_page, unsigned long dest_pgoff, size_t srclen, 623 size_t destlen) 624 { 625 struct workspace *workspace = list_entry(ws, struct workspace, list); 626 struct btrfs_fs_info *fs_info = btrfs_sb(dest_page->mapping->host->i_sb); 627 const u32 sectorsize = fs_info->sectorsize; 628 zstd_dstream *stream; 629 int ret = 0; 630 unsigned long to_copy = 0; 631 632 stream = zstd_init_dstream( 633 ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size); 634 if (!stream) { 635 pr_warn("BTRFS: zstd_init_dstream failed\n"); 636 goto finish; 637 } 638 639 workspace->in_buf.src = data_in; 640 workspace->in_buf.pos = 0; 641 workspace->in_buf.size = srclen; 642 643 workspace->out_buf.dst = workspace->buf; 644 workspace->out_buf.pos = 0; 645 workspace->out_buf.size = sectorsize; 646 647 /* 648 * Since both input and output buffers should not exceed one sector, 649 * one call should end the decompression. 650 */ 651 ret = zstd_decompress_stream(stream, &workspace->out_buf, &workspace->in_buf); 652 if (zstd_is_error(ret)) { 653 pr_warn_ratelimited("BTRFS: zstd_decompress_stream return %d\n", 654 zstd_get_error_code(ret)); 655 goto finish; 656 } 657 to_copy = workspace->out_buf.pos; 658 memcpy_to_page(dest_page, dest_pgoff, workspace->out_buf.dst, to_copy); 659 finish: 660 /* Error or early end. */ 661 if (unlikely(to_copy < destlen)) { 662 ret = -EIO; 663 memzero_page(dest_page, dest_pgoff + to_copy, destlen - to_copy); 664 } 665 return ret; 666 } 667 668 const struct btrfs_compress_op btrfs_zstd_compress = { 669 /* ZSTD uses own workspace manager */ 670 .workspace_manager = NULL, 671 .max_level = ZSTD_BTRFS_MAX_LEVEL, 672 .default_level = ZSTD_BTRFS_DEFAULT_LEVEL, 673 }; 674