1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2016-present, Facebook, Inc. 4 * All rights reserved. 5 * 6 */ 7 8 #include <linux/bio.h> 9 #include <linux/bitmap.h> 10 #include <linux/err.h> 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/mm.h> 14 #include <linux/sched/mm.h> 15 #include <linux/pagemap.h> 16 #include <linux/refcount.h> 17 #include <linux/sched.h> 18 #include <linux/slab.h> 19 #include <linux/zstd.h> 20 #include "misc.h" 21 #include "compression.h" 22 #include "ctree.h" 23 24 #define ZSTD_BTRFS_MAX_WINDOWLOG 17 25 #define ZSTD_BTRFS_MAX_INPUT (1 << ZSTD_BTRFS_MAX_WINDOWLOG) 26 #define ZSTD_BTRFS_DEFAULT_LEVEL 3 27 #define ZSTD_BTRFS_MAX_LEVEL 15 28 /* 307s to avoid pathologically clashing with transaction commit */ 29 #define ZSTD_BTRFS_RECLAIM_JIFFIES (307 * HZ) 30 31 static zstd_parameters zstd_get_btrfs_parameters(unsigned int level, 32 size_t src_len) 33 { 34 zstd_parameters params = zstd_get_params(level, src_len); 35 36 if (params.cParams.windowLog > ZSTD_BTRFS_MAX_WINDOWLOG) 37 params.cParams.windowLog = ZSTD_BTRFS_MAX_WINDOWLOG; 38 WARN_ON(src_len > ZSTD_BTRFS_MAX_INPUT); 39 return params; 40 } 41 42 struct workspace { 43 void *mem; 44 size_t size; 45 char *buf; 46 unsigned int level; 47 unsigned int req_level; 48 unsigned long last_used; /* jiffies */ 49 struct list_head list; 50 struct list_head lru_list; 51 zstd_in_buffer in_buf; 52 zstd_out_buffer out_buf; 53 }; 54 55 /* 56 * Zstd Workspace Management 57 * 58 * Zstd workspaces have different memory requirements depending on the level. 59 * The zstd workspaces are managed by having individual lists for each level 60 * and a global lru. Forward progress is maintained by protecting a max level 61 * workspace. 62 * 63 * Getting a workspace is done by using the bitmap to identify the levels that 64 * have available workspaces and scans up. This lets us recycle higher level 65 * workspaces because of the monotonic memory guarantee. A workspace's 66 * last_used is only updated if it is being used by the corresponding memory 67 * level. Putting a workspace involves adding it back to the appropriate places 68 * and adding it back to the lru if necessary. 69 * 70 * A timer is used to reclaim workspaces if they have not been used for 71 * ZSTD_BTRFS_RECLAIM_JIFFIES. This helps keep only active workspaces around. 72 * The upper bound is provided by the workqueue limit which is 2 (percpu limit). 73 */ 74 75 struct zstd_workspace_manager { 76 const struct btrfs_compress_op *ops; 77 spinlock_t lock; 78 struct list_head lru_list; 79 struct list_head idle_ws[ZSTD_BTRFS_MAX_LEVEL]; 80 unsigned long active_map; 81 wait_queue_head_t wait; 82 struct timer_list timer; 83 }; 84 85 static struct zstd_workspace_manager wsm; 86 87 static size_t zstd_ws_mem_sizes[ZSTD_BTRFS_MAX_LEVEL]; 88 89 static inline struct workspace *list_to_workspace(struct list_head *list) 90 { 91 return container_of(list, struct workspace, list); 92 } 93 94 void zstd_free_workspace(struct list_head *ws); 95 struct list_head *zstd_alloc_workspace(unsigned int level); 96 97 /* 98 * Timer callback to free unused workspaces. 99 * 100 * @t: timer 101 * 102 * This scans the lru_list and attempts to reclaim any workspace that hasn't 103 * been used for ZSTD_BTRFS_RECLAIM_JIFFIES. 104 * 105 * The context is softirq and does not need the _bh locking primitives. 106 */ 107 static void zstd_reclaim_timer_fn(struct timer_list *timer) 108 { 109 unsigned long reclaim_threshold = jiffies - ZSTD_BTRFS_RECLAIM_JIFFIES; 110 struct list_head *pos, *next; 111 112 spin_lock(&wsm.lock); 113 114 if (list_empty(&wsm.lru_list)) { 115 spin_unlock(&wsm.lock); 116 return; 117 } 118 119 list_for_each_prev_safe(pos, next, &wsm.lru_list) { 120 struct workspace *victim = container_of(pos, struct workspace, 121 lru_list); 122 unsigned int level; 123 124 if (time_after(victim->last_used, reclaim_threshold)) 125 break; 126 127 /* workspace is in use */ 128 if (victim->req_level) 129 continue; 130 131 level = victim->level; 132 list_del(&victim->lru_list); 133 list_del(&victim->list); 134 zstd_free_workspace(&victim->list); 135 136 if (list_empty(&wsm.idle_ws[level - 1])) 137 clear_bit(level - 1, &wsm.active_map); 138 139 } 140 141 if (!list_empty(&wsm.lru_list)) 142 mod_timer(&wsm.timer, jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES); 143 144 spin_unlock(&wsm.lock); 145 } 146 147 /* 148 * Calculate monotonic memory bounds. 149 * 150 * It is possible based on the level configurations that a higher level 151 * workspace uses less memory than a lower level workspace. In order to reuse 152 * workspaces, this must be made a monotonic relationship. This precomputes 153 * the required memory for each level and enforces the monotonicity between 154 * level and memory required. 155 */ 156 static void zstd_calc_ws_mem_sizes(void) 157 { 158 size_t max_size = 0; 159 unsigned int level; 160 161 for (level = 1; level <= ZSTD_BTRFS_MAX_LEVEL; level++) { 162 zstd_parameters params = 163 zstd_get_btrfs_parameters(level, ZSTD_BTRFS_MAX_INPUT); 164 size_t level_size = 165 max_t(size_t, 166 zstd_cstream_workspace_bound(¶ms.cParams), 167 zstd_dstream_workspace_bound(ZSTD_BTRFS_MAX_INPUT)); 168 169 max_size = max_t(size_t, max_size, level_size); 170 zstd_ws_mem_sizes[level - 1] = max_size; 171 } 172 } 173 174 void zstd_init_workspace_manager(void) 175 { 176 struct list_head *ws; 177 int i; 178 179 zstd_calc_ws_mem_sizes(); 180 181 wsm.ops = &btrfs_zstd_compress; 182 spin_lock_init(&wsm.lock); 183 init_waitqueue_head(&wsm.wait); 184 timer_setup(&wsm.timer, zstd_reclaim_timer_fn, 0); 185 186 INIT_LIST_HEAD(&wsm.lru_list); 187 for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) 188 INIT_LIST_HEAD(&wsm.idle_ws[i]); 189 190 ws = zstd_alloc_workspace(ZSTD_BTRFS_MAX_LEVEL); 191 if (IS_ERR(ws)) { 192 pr_warn( 193 "BTRFS: cannot preallocate zstd compression workspace\n"); 194 } else { 195 set_bit(ZSTD_BTRFS_MAX_LEVEL - 1, &wsm.active_map); 196 list_add(ws, &wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1]); 197 } 198 } 199 200 void zstd_cleanup_workspace_manager(void) 201 { 202 struct workspace *workspace; 203 int i; 204 205 spin_lock_bh(&wsm.lock); 206 for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) { 207 while (!list_empty(&wsm.idle_ws[i])) { 208 workspace = container_of(wsm.idle_ws[i].next, 209 struct workspace, list); 210 list_del(&workspace->list); 211 list_del(&workspace->lru_list); 212 zstd_free_workspace(&workspace->list); 213 } 214 } 215 spin_unlock_bh(&wsm.lock); 216 217 del_timer_sync(&wsm.timer); 218 } 219 220 /* 221 * Find workspace for given level. 222 * 223 * @level: compression level 224 * 225 * This iterates over the set bits in the active_map beginning at the requested 226 * compression level. This lets us utilize already allocated workspaces before 227 * allocating a new one. If the workspace is of a larger size, it is used, but 228 * the place in the lru_list and last_used times are not updated. This is to 229 * offer the opportunity to reclaim the workspace in favor of allocating an 230 * appropriately sized one in the future. 231 */ 232 static struct list_head *zstd_find_workspace(unsigned int level) 233 { 234 struct list_head *ws; 235 struct workspace *workspace; 236 int i = level - 1; 237 238 spin_lock_bh(&wsm.lock); 239 for_each_set_bit_from(i, &wsm.active_map, ZSTD_BTRFS_MAX_LEVEL) { 240 if (!list_empty(&wsm.idle_ws[i])) { 241 ws = wsm.idle_ws[i].next; 242 workspace = list_to_workspace(ws); 243 list_del_init(ws); 244 /* keep its place if it's a lower level using this */ 245 workspace->req_level = level; 246 if (level == workspace->level) 247 list_del(&workspace->lru_list); 248 if (list_empty(&wsm.idle_ws[i])) 249 clear_bit(i, &wsm.active_map); 250 spin_unlock_bh(&wsm.lock); 251 return ws; 252 } 253 } 254 spin_unlock_bh(&wsm.lock); 255 256 return NULL; 257 } 258 259 /* 260 * Zstd get_workspace for level. 261 * 262 * @level: compression level 263 * 264 * If @level is 0, then any compression level can be used. Therefore, we begin 265 * scanning from 1. We first scan through possible workspaces and then after 266 * attempt to allocate a new workspace. If we fail to allocate one due to 267 * memory pressure, go to sleep waiting for the max level workspace to free up. 268 */ 269 struct list_head *zstd_get_workspace(unsigned int level) 270 { 271 struct list_head *ws; 272 unsigned int nofs_flag; 273 274 /* level == 0 means we can use any workspace */ 275 if (!level) 276 level = 1; 277 278 again: 279 ws = zstd_find_workspace(level); 280 if (ws) 281 return ws; 282 283 nofs_flag = memalloc_nofs_save(); 284 ws = zstd_alloc_workspace(level); 285 memalloc_nofs_restore(nofs_flag); 286 287 if (IS_ERR(ws)) { 288 DEFINE_WAIT(wait); 289 290 prepare_to_wait(&wsm.wait, &wait, TASK_UNINTERRUPTIBLE); 291 schedule(); 292 finish_wait(&wsm.wait, &wait); 293 294 goto again; 295 } 296 297 return ws; 298 } 299 300 /* 301 * Zstd put_workspace. 302 * 303 * @ws: list_head for the workspace 304 * 305 * When putting back a workspace, we only need to update the LRU if we are of 306 * the requested compression level. Here is where we continue to protect the 307 * max level workspace or update last_used accordingly. If the reclaim timer 308 * isn't set, it is also set here. Only the max level workspace tries and wakes 309 * up waiting workspaces. 310 */ 311 void zstd_put_workspace(struct list_head *ws) 312 { 313 struct workspace *workspace = list_to_workspace(ws); 314 315 spin_lock_bh(&wsm.lock); 316 317 /* A node is only taken off the lru if we are the corresponding level */ 318 if (workspace->req_level == workspace->level) { 319 /* Hide a max level workspace from reclaim */ 320 if (list_empty(&wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1])) { 321 INIT_LIST_HEAD(&workspace->lru_list); 322 } else { 323 workspace->last_used = jiffies; 324 list_add(&workspace->lru_list, &wsm.lru_list); 325 if (!timer_pending(&wsm.timer)) 326 mod_timer(&wsm.timer, 327 jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES); 328 } 329 } 330 331 set_bit(workspace->level - 1, &wsm.active_map); 332 list_add(&workspace->list, &wsm.idle_ws[workspace->level - 1]); 333 workspace->req_level = 0; 334 335 spin_unlock_bh(&wsm.lock); 336 337 if (workspace->level == ZSTD_BTRFS_MAX_LEVEL) 338 cond_wake_up(&wsm.wait); 339 } 340 341 void zstd_free_workspace(struct list_head *ws) 342 { 343 struct workspace *workspace = list_entry(ws, struct workspace, list); 344 345 kvfree(workspace->mem); 346 kfree(workspace->buf); 347 kfree(workspace); 348 } 349 350 struct list_head *zstd_alloc_workspace(unsigned int level) 351 { 352 struct workspace *workspace; 353 354 workspace = kzalloc(sizeof(*workspace), GFP_KERNEL); 355 if (!workspace) 356 return ERR_PTR(-ENOMEM); 357 358 workspace->size = zstd_ws_mem_sizes[level - 1]; 359 workspace->level = level; 360 workspace->req_level = level; 361 workspace->last_used = jiffies; 362 workspace->mem = kvmalloc(workspace->size, GFP_KERNEL | __GFP_NOWARN); 363 workspace->buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 364 if (!workspace->mem || !workspace->buf) 365 goto fail; 366 367 INIT_LIST_HEAD(&workspace->list); 368 INIT_LIST_HEAD(&workspace->lru_list); 369 370 return &workspace->list; 371 fail: 372 zstd_free_workspace(&workspace->list); 373 return ERR_PTR(-ENOMEM); 374 } 375 376 int zstd_compress_pages(struct list_head *ws, struct address_space *mapping, 377 u64 start, struct page **pages, unsigned long *out_pages, 378 unsigned long *total_in, unsigned long *total_out) 379 { 380 struct workspace *workspace = list_entry(ws, struct workspace, list); 381 zstd_cstream *stream; 382 int ret = 0; 383 int nr_pages = 0; 384 struct page *in_page = NULL; /* The current page to read */ 385 struct page *out_page = NULL; /* The current page to write to */ 386 unsigned long tot_in = 0; 387 unsigned long tot_out = 0; 388 unsigned long len = *total_out; 389 const unsigned long nr_dest_pages = *out_pages; 390 unsigned long max_out = nr_dest_pages * PAGE_SIZE; 391 zstd_parameters params = zstd_get_btrfs_parameters(workspace->req_level, 392 len); 393 394 *out_pages = 0; 395 *total_out = 0; 396 *total_in = 0; 397 398 /* Initialize the stream */ 399 stream = zstd_init_cstream(¶ms, len, workspace->mem, 400 workspace->size); 401 if (!stream) { 402 pr_warn("BTRFS: zstd_init_cstream failed\n"); 403 ret = -EIO; 404 goto out; 405 } 406 407 /* map in the first page of input data */ 408 in_page = find_get_page(mapping, start >> PAGE_SHIFT); 409 workspace->in_buf.src = kmap_local_page(in_page); 410 workspace->in_buf.pos = 0; 411 workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE); 412 413 /* Allocate and map in the output buffer */ 414 out_page = btrfs_alloc_compr_page(); 415 if (out_page == NULL) { 416 ret = -ENOMEM; 417 goto out; 418 } 419 pages[nr_pages++] = out_page; 420 workspace->out_buf.dst = page_address(out_page); 421 workspace->out_buf.pos = 0; 422 workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE); 423 424 while (1) { 425 size_t ret2; 426 427 ret2 = zstd_compress_stream(stream, &workspace->out_buf, 428 &workspace->in_buf); 429 if (zstd_is_error(ret2)) { 430 pr_debug("BTRFS: zstd_compress_stream returned %d\n", 431 zstd_get_error_code(ret2)); 432 ret = -EIO; 433 goto out; 434 } 435 436 /* Check to see if we are making it bigger */ 437 if (tot_in + workspace->in_buf.pos > 8192 && 438 tot_in + workspace->in_buf.pos < 439 tot_out + workspace->out_buf.pos) { 440 ret = -E2BIG; 441 goto out; 442 } 443 444 /* We've reached the end of our output range */ 445 if (workspace->out_buf.pos >= max_out) { 446 tot_out += workspace->out_buf.pos; 447 ret = -E2BIG; 448 goto out; 449 } 450 451 /* Check if we need more output space */ 452 if (workspace->out_buf.pos == workspace->out_buf.size) { 453 tot_out += PAGE_SIZE; 454 max_out -= PAGE_SIZE; 455 if (nr_pages == nr_dest_pages) { 456 ret = -E2BIG; 457 goto out; 458 } 459 out_page = btrfs_alloc_compr_page(); 460 if (out_page == NULL) { 461 ret = -ENOMEM; 462 goto out; 463 } 464 pages[nr_pages++] = out_page; 465 workspace->out_buf.dst = page_address(out_page); 466 workspace->out_buf.pos = 0; 467 workspace->out_buf.size = min_t(size_t, max_out, 468 PAGE_SIZE); 469 } 470 471 /* We've reached the end of the input */ 472 if (workspace->in_buf.pos >= len) { 473 tot_in += workspace->in_buf.pos; 474 break; 475 } 476 477 /* Check if we need more input */ 478 if (workspace->in_buf.pos == workspace->in_buf.size) { 479 tot_in += PAGE_SIZE; 480 kunmap_local(workspace->in_buf.src); 481 put_page(in_page); 482 start += PAGE_SIZE; 483 len -= PAGE_SIZE; 484 in_page = find_get_page(mapping, start >> PAGE_SHIFT); 485 workspace->in_buf.src = kmap_local_page(in_page); 486 workspace->in_buf.pos = 0; 487 workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE); 488 } 489 } 490 while (1) { 491 size_t ret2; 492 493 ret2 = zstd_end_stream(stream, &workspace->out_buf); 494 if (zstd_is_error(ret2)) { 495 pr_debug("BTRFS: zstd_end_stream returned %d\n", 496 zstd_get_error_code(ret2)); 497 ret = -EIO; 498 goto out; 499 } 500 if (ret2 == 0) { 501 tot_out += workspace->out_buf.pos; 502 break; 503 } 504 if (workspace->out_buf.pos >= max_out) { 505 tot_out += workspace->out_buf.pos; 506 ret = -E2BIG; 507 goto out; 508 } 509 510 tot_out += PAGE_SIZE; 511 max_out -= PAGE_SIZE; 512 if (nr_pages == nr_dest_pages) { 513 ret = -E2BIG; 514 goto out; 515 } 516 out_page = btrfs_alloc_compr_page(); 517 if (out_page == NULL) { 518 ret = -ENOMEM; 519 goto out; 520 } 521 pages[nr_pages++] = out_page; 522 workspace->out_buf.dst = page_address(out_page); 523 workspace->out_buf.pos = 0; 524 workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE); 525 } 526 527 if (tot_out >= tot_in) { 528 ret = -E2BIG; 529 goto out; 530 } 531 532 ret = 0; 533 *total_in = tot_in; 534 *total_out = tot_out; 535 out: 536 *out_pages = nr_pages; 537 if (workspace->in_buf.src) { 538 kunmap_local(workspace->in_buf.src); 539 put_page(in_page); 540 } 541 return ret; 542 } 543 544 int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb) 545 { 546 struct workspace *workspace = list_entry(ws, struct workspace, list); 547 struct page **pages_in = cb->compressed_pages; 548 size_t srclen = cb->compressed_len; 549 zstd_dstream *stream; 550 int ret = 0; 551 unsigned long page_in_index = 0; 552 unsigned long total_pages_in = DIV_ROUND_UP(srclen, PAGE_SIZE); 553 unsigned long buf_start; 554 unsigned long total_out = 0; 555 556 stream = zstd_init_dstream( 557 ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size); 558 if (!stream) { 559 pr_debug("BTRFS: zstd_init_dstream failed\n"); 560 ret = -EIO; 561 goto done; 562 } 563 564 workspace->in_buf.src = kmap_local_page(pages_in[page_in_index]); 565 workspace->in_buf.pos = 0; 566 workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE); 567 568 workspace->out_buf.dst = workspace->buf; 569 workspace->out_buf.pos = 0; 570 workspace->out_buf.size = PAGE_SIZE; 571 572 while (1) { 573 size_t ret2; 574 575 ret2 = zstd_decompress_stream(stream, &workspace->out_buf, 576 &workspace->in_buf); 577 if (zstd_is_error(ret2)) { 578 pr_debug("BTRFS: zstd_decompress_stream returned %d\n", 579 zstd_get_error_code(ret2)); 580 ret = -EIO; 581 goto done; 582 } 583 buf_start = total_out; 584 total_out += workspace->out_buf.pos; 585 workspace->out_buf.pos = 0; 586 587 ret = btrfs_decompress_buf2page(workspace->out_buf.dst, 588 total_out - buf_start, cb, buf_start); 589 if (ret == 0) 590 break; 591 592 if (workspace->in_buf.pos >= srclen) 593 break; 594 595 /* Check if we've hit the end of a frame */ 596 if (ret2 == 0) 597 break; 598 599 if (workspace->in_buf.pos == workspace->in_buf.size) { 600 kunmap_local(workspace->in_buf.src); 601 page_in_index++; 602 if (page_in_index >= total_pages_in) { 603 workspace->in_buf.src = NULL; 604 ret = -EIO; 605 goto done; 606 } 607 srclen -= PAGE_SIZE; 608 workspace->in_buf.src = kmap_local_page(pages_in[page_in_index]); 609 workspace->in_buf.pos = 0; 610 workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE); 611 } 612 } 613 ret = 0; 614 done: 615 if (workspace->in_buf.src) 616 kunmap_local(workspace->in_buf.src); 617 return ret; 618 } 619 620 int zstd_decompress(struct list_head *ws, const u8 *data_in, 621 struct page *dest_page, unsigned long start_byte, size_t srclen, 622 size_t destlen) 623 { 624 struct workspace *workspace = list_entry(ws, struct workspace, list); 625 zstd_dstream *stream; 626 int ret = 0; 627 size_t ret2; 628 unsigned long total_out = 0; 629 unsigned long pg_offset = 0; 630 631 stream = zstd_init_dstream( 632 ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size); 633 if (!stream) { 634 pr_warn("BTRFS: zstd_init_dstream failed\n"); 635 ret = -EIO; 636 goto finish; 637 } 638 639 destlen = min_t(size_t, destlen, PAGE_SIZE); 640 641 workspace->in_buf.src = data_in; 642 workspace->in_buf.pos = 0; 643 workspace->in_buf.size = srclen; 644 645 workspace->out_buf.dst = workspace->buf; 646 workspace->out_buf.pos = 0; 647 workspace->out_buf.size = PAGE_SIZE; 648 649 ret2 = 1; 650 while (pg_offset < destlen 651 && workspace->in_buf.pos < workspace->in_buf.size) { 652 unsigned long buf_start; 653 unsigned long buf_offset; 654 unsigned long bytes; 655 656 /* Check if the frame is over and we still need more input */ 657 if (ret2 == 0) { 658 pr_debug("BTRFS: zstd_decompress_stream ended early\n"); 659 ret = -EIO; 660 goto finish; 661 } 662 ret2 = zstd_decompress_stream(stream, &workspace->out_buf, 663 &workspace->in_buf); 664 if (zstd_is_error(ret2)) { 665 pr_debug("BTRFS: zstd_decompress_stream returned %d\n", 666 zstd_get_error_code(ret2)); 667 ret = -EIO; 668 goto finish; 669 } 670 671 buf_start = total_out; 672 total_out += workspace->out_buf.pos; 673 workspace->out_buf.pos = 0; 674 675 if (total_out <= start_byte) 676 continue; 677 678 if (total_out > start_byte && buf_start < start_byte) 679 buf_offset = start_byte - buf_start; 680 else 681 buf_offset = 0; 682 683 bytes = min_t(unsigned long, destlen - pg_offset, 684 workspace->out_buf.size - buf_offset); 685 686 memcpy_to_page(dest_page, pg_offset, 687 workspace->out_buf.dst + buf_offset, bytes); 688 689 pg_offset += bytes; 690 } 691 ret = 0; 692 finish: 693 if (pg_offset < destlen) { 694 memzero_page(dest_page, pg_offset, destlen - pg_offset); 695 } 696 return ret; 697 } 698 699 const struct btrfs_compress_op btrfs_zstd_compress = { 700 /* ZSTD uses own workspace manager */ 701 .workspace_manager = NULL, 702 .max_level = ZSTD_BTRFS_MAX_LEVEL, 703 .default_level = ZSTD_BTRFS_DEFAULT_LEVEL, 704 }; 705