1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2016-present, Facebook, Inc. 4 * All rights reserved. 5 * 6 */ 7 8 #include <linux/bio.h> 9 #include <linux/bitmap.h> 10 #include <linux/err.h> 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/mm.h> 14 #include <linux/sched/mm.h> 15 #include <linux/pagemap.h> 16 #include <linux/refcount.h> 17 #include <linux/sched.h> 18 #include <linux/slab.h> 19 #include <linux/zstd.h> 20 #include "misc.h" 21 #include "compression.h" 22 #include "ctree.h" 23 24 #define ZSTD_BTRFS_MAX_WINDOWLOG 17 25 #define ZSTD_BTRFS_MAX_INPUT (1 << ZSTD_BTRFS_MAX_WINDOWLOG) 26 #define ZSTD_BTRFS_DEFAULT_LEVEL 3 27 #define ZSTD_BTRFS_MAX_LEVEL 15 28 /* 307s to avoid pathologically clashing with transaction commit */ 29 #define ZSTD_BTRFS_RECLAIM_JIFFIES (307 * HZ) 30 31 static ZSTD_parameters zstd_get_btrfs_parameters(unsigned int level, 32 size_t src_len) 33 { 34 ZSTD_parameters params = ZSTD_getParams(level, src_len, 0); 35 36 if (params.cParams.windowLog > ZSTD_BTRFS_MAX_WINDOWLOG) 37 params.cParams.windowLog = ZSTD_BTRFS_MAX_WINDOWLOG; 38 WARN_ON(src_len > ZSTD_BTRFS_MAX_INPUT); 39 return params; 40 } 41 42 struct workspace { 43 void *mem; 44 size_t size; 45 char *buf; 46 unsigned int level; 47 unsigned int req_level; 48 unsigned long last_used; /* jiffies */ 49 struct list_head list; 50 struct list_head lru_list; 51 ZSTD_inBuffer in_buf; 52 ZSTD_outBuffer out_buf; 53 }; 54 55 /* 56 * Zstd Workspace Management 57 * 58 * Zstd workspaces have different memory requirements depending on the level. 59 * The zstd workspaces are managed by having individual lists for each level 60 * and a global lru. Forward progress is maintained by protecting a max level 61 * workspace. 62 * 63 * Getting a workspace is done by using the bitmap to identify the levels that 64 * have available workspaces and scans up. This lets us recycle higher level 65 * workspaces because of the monotonic memory guarantee. A workspace's 66 * last_used is only updated if it is being used by the corresponding memory 67 * level. Putting a workspace involves adding it back to the appropriate places 68 * and adding it back to the lru if necessary. 69 * 70 * A timer is used to reclaim workspaces if they have not been used for 71 * ZSTD_BTRFS_RECLAIM_JIFFIES. This helps keep only active workspaces around. 72 * The upper bound is provided by the workqueue limit which is 2 (percpu limit). 73 */ 74 75 struct zstd_workspace_manager { 76 const struct btrfs_compress_op *ops; 77 spinlock_t lock; 78 struct list_head lru_list; 79 struct list_head idle_ws[ZSTD_BTRFS_MAX_LEVEL]; 80 unsigned long active_map; 81 wait_queue_head_t wait; 82 struct timer_list timer; 83 }; 84 85 static struct zstd_workspace_manager wsm; 86 87 static size_t zstd_ws_mem_sizes[ZSTD_BTRFS_MAX_LEVEL]; 88 89 static inline struct workspace *list_to_workspace(struct list_head *list) 90 { 91 return container_of(list, struct workspace, list); 92 } 93 94 void zstd_free_workspace(struct list_head *ws); 95 struct list_head *zstd_alloc_workspace(unsigned int level); 96 /* 97 * zstd_reclaim_timer_fn - reclaim timer 98 * @t: timer 99 * 100 * This scans the lru_list and attempts to reclaim any workspace that hasn't 101 * been used for ZSTD_BTRFS_RECLAIM_JIFFIES. 102 */ 103 static void zstd_reclaim_timer_fn(struct timer_list *timer) 104 { 105 unsigned long reclaim_threshold = jiffies - ZSTD_BTRFS_RECLAIM_JIFFIES; 106 struct list_head *pos, *next; 107 108 spin_lock_bh(&wsm.lock); 109 110 if (list_empty(&wsm.lru_list)) { 111 spin_unlock_bh(&wsm.lock); 112 return; 113 } 114 115 list_for_each_prev_safe(pos, next, &wsm.lru_list) { 116 struct workspace *victim = container_of(pos, struct workspace, 117 lru_list); 118 unsigned int level; 119 120 if (time_after(victim->last_used, reclaim_threshold)) 121 break; 122 123 /* workspace is in use */ 124 if (victim->req_level) 125 continue; 126 127 level = victim->level; 128 list_del(&victim->lru_list); 129 list_del(&victim->list); 130 zstd_free_workspace(&victim->list); 131 132 if (list_empty(&wsm.idle_ws[level - 1])) 133 clear_bit(level - 1, &wsm.active_map); 134 135 } 136 137 if (!list_empty(&wsm.lru_list)) 138 mod_timer(&wsm.timer, jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES); 139 140 spin_unlock_bh(&wsm.lock); 141 } 142 143 /* 144 * zstd_calc_ws_mem_sizes - calculate monotonic memory bounds 145 * 146 * It is possible based on the level configurations that a higher level 147 * workspace uses less memory than a lower level workspace. In order to reuse 148 * workspaces, this must be made a monotonic relationship. This precomputes 149 * the required memory for each level and enforces the monotonicity between 150 * level and memory required. 151 */ 152 static void zstd_calc_ws_mem_sizes(void) 153 { 154 size_t max_size = 0; 155 unsigned int level; 156 157 for (level = 1; level <= ZSTD_BTRFS_MAX_LEVEL; level++) { 158 ZSTD_parameters params = 159 zstd_get_btrfs_parameters(level, ZSTD_BTRFS_MAX_INPUT); 160 size_t level_size = 161 max_t(size_t, 162 ZSTD_CStreamWorkspaceBound(params.cParams), 163 ZSTD_DStreamWorkspaceBound(ZSTD_BTRFS_MAX_INPUT)); 164 165 max_size = max_t(size_t, max_size, level_size); 166 zstd_ws_mem_sizes[level - 1] = max_size; 167 } 168 } 169 170 void zstd_init_workspace_manager(void) 171 { 172 struct list_head *ws; 173 int i; 174 175 zstd_calc_ws_mem_sizes(); 176 177 wsm.ops = &btrfs_zstd_compress; 178 spin_lock_init(&wsm.lock); 179 init_waitqueue_head(&wsm.wait); 180 timer_setup(&wsm.timer, zstd_reclaim_timer_fn, 0); 181 182 INIT_LIST_HEAD(&wsm.lru_list); 183 for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) 184 INIT_LIST_HEAD(&wsm.idle_ws[i]); 185 186 ws = zstd_alloc_workspace(ZSTD_BTRFS_MAX_LEVEL); 187 if (IS_ERR(ws)) { 188 pr_warn( 189 "BTRFS: cannot preallocate zstd compression workspace\n"); 190 } else { 191 set_bit(ZSTD_BTRFS_MAX_LEVEL - 1, &wsm.active_map); 192 list_add(ws, &wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1]); 193 } 194 } 195 196 void zstd_cleanup_workspace_manager(void) 197 { 198 struct workspace *workspace; 199 int i; 200 201 spin_lock_bh(&wsm.lock); 202 for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) { 203 while (!list_empty(&wsm.idle_ws[i])) { 204 workspace = container_of(wsm.idle_ws[i].next, 205 struct workspace, list); 206 list_del(&workspace->list); 207 list_del(&workspace->lru_list); 208 zstd_free_workspace(&workspace->list); 209 } 210 } 211 spin_unlock_bh(&wsm.lock); 212 213 del_timer_sync(&wsm.timer); 214 } 215 216 /* 217 * zstd_find_workspace - find workspace 218 * @level: compression level 219 * 220 * This iterates over the set bits in the active_map beginning at the requested 221 * compression level. This lets us utilize already allocated workspaces before 222 * allocating a new one. If the workspace is of a larger size, it is used, but 223 * the place in the lru_list and last_used times are not updated. This is to 224 * offer the opportunity to reclaim the workspace in favor of allocating an 225 * appropriately sized one in the future. 226 */ 227 static struct list_head *zstd_find_workspace(unsigned int level) 228 { 229 struct list_head *ws; 230 struct workspace *workspace; 231 int i = level - 1; 232 233 spin_lock_bh(&wsm.lock); 234 for_each_set_bit_from(i, &wsm.active_map, ZSTD_BTRFS_MAX_LEVEL) { 235 if (!list_empty(&wsm.idle_ws[i])) { 236 ws = wsm.idle_ws[i].next; 237 workspace = list_to_workspace(ws); 238 list_del_init(ws); 239 /* keep its place if it's a lower level using this */ 240 workspace->req_level = level; 241 if (level == workspace->level) 242 list_del(&workspace->lru_list); 243 if (list_empty(&wsm.idle_ws[i])) 244 clear_bit(i, &wsm.active_map); 245 spin_unlock_bh(&wsm.lock); 246 return ws; 247 } 248 } 249 spin_unlock_bh(&wsm.lock); 250 251 return NULL; 252 } 253 254 /* 255 * zstd_get_workspace - zstd's get_workspace 256 * @level: compression level 257 * 258 * If @level is 0, then any compression level can be used. Therefore, we begin 259 * scanning from 1. We first scan through possible workspaces and then after 260 * attempt to allocate a new workspace. If we fail to allocate one due to 261 * memory pressure, go to sleep waiting for the max level workspace to free up. 262 */ 263 struct list_head *zstd_get_workspace(unsigned int level) 264 { 265 struct list_head *ws; 266 unsigned int nofs_flag; 267 268 /* level == 0 means we can use any workspace */ 269 if (!level) 270 level = 1; 271 272 again: 273 ws = zstd_find_workspace(level); 274 if (ws) 275 return ws; 276 277 nofs_flag = memalloc_nofs_save(); 278 ws = zstd_alloc_workspace(level); 279 memalloc_nofs_restore(nofs_flag); 280 281 if (IS_ERR(ws)) { 282 DEFINE_WAIT(wait); 283 284 prepare_to_wait(&wsm.wait, &wait, TASK_UNINTERRUPTIBLE); 285 schedule(); 286 finish_wait(&wsm.wait, &wait); 287 288 goto again; 289 } 290 291 return ws; 292 } 293 294 /* 295 * zstd_put_workspace - zstd put_workspace 296 * @ws: list_head for the workspace 297 * 298 * When putting back a workspace, we only need to update the LRU if we are of 299 * the requested compression level. Here is where we continue to protect the 300 * max level workspace or update last_used accordingly. If the reclaim timer 301 * isn't set, it is also set here. Only the max level workspace tries and wakes 302 * up waiting workspaces. 303 */ 304 void zstd_put_workspace(struct list_head *ws) 305 { 306 struct workspace *workspace = list_to_workspace(ws); 307 308 spin_lock_bh(&wsm.lock); 309 310 /* A node is only taken off the lru if we are the corresponding level */ 311 if (workspace->req_level == workspace->level) { 312 /* Hide a max level workspace from reclaim */ 313 if (list_empty(&wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1])) { 314 INIT_LIST_HEAD(&workspace->lru_list); 315 } else { 316 workspace->last_used = jiffies; 317 list_add(&workspace->lru_list, &wsm.lru_list); 318 if (!timer_pending(&wsm.timer)) 319 mod_timer(&wsm.timer, 320 jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES); 321 } 322 } 323 324 set_bit(workspace->level - 1, &wsm.active_map); 325 list_add(&workspace->list, &wsm.idle_ws[workspace->level - 1]); 326 workspace->req_level = 0; 327 328 spin_unlock_bh(&wsm.lock); 329 330 if (workspace->level == ZSTD_BTRFS_MAX_LEVEL) 331 cond_wake_up(&wsm.wait); 332 } 333 334 void zstd_free_workspace(struct list_head *ws) 335 { 336 struct workspace *workspace = list_entry(ws, struct workspace, list); 337 338 kvfree(workspace->mem); 339 kfree(workspace->buf); 340 kfree(workspace); 341 } 342 343 struct list_head *zstd_alloc_workspace(unsigned int level) 344 { 345 struct workspace *workspace; 346 347 workspace = kzalloc(sizeof(*workspace), GFP_KERNEL); 348 if (!workspace) 349 return ERR_PTR(-ENOMEM); 350 351 workspace->size = zstd_ws_mem_sizes[level - 1]; 352 workspace->level = level; 353 workspace->req_level = level; 354 workspace->last_used = jiffies; 355 workspace->mem = kvmalloc(workspace->size, GFP_KERNEL); 356 workspace->buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 357 if (!workspace->mem || !workspace->buf) 358 goto fail; 359 360 INIT_LIST_HEAD(&workspace->list); 361 INIT_LIST_HEAD(&workspace->lru_list); 362 363 return &workspace->list; 364 fail: 365 zstd_free_workspace(&workspace->list); 366 return ERR_PTR(-ENOMEM); 367 } 368 369 int zstd_compress_pages(struct list_head *ws, struct address_space *mapping, 370 u64 start, struct page **pages, unsigned long *out_pages, 371 unsigned long *total_in, unsigned long *total_out) 372 { 373 struct workspace *workspace = list_entry(ws, struct workspace, list); 374 ZSTD_CStream *stream; 375 int ret = 0; 376 int nr_pages = 0; 377 struct page *in_page = NULL; /* The current page to read */ 378 struct page *out_page = NULL; /* The current page to write to */ 379 unsigned long tot_in = 0; 380 unsigned long tot_out = 0; 381 unsigned long len = *total_out; 382 const unsigned long nr_dest_pages = *out_pages; 383 unsigned long max_out = nr_dest_pages * PAGE_SIZE; 384 ZSTD_parameters params = zstd_get_btrfs_parameters(workspace->req_level, 385 len); 386 387 *out_pages = 0; 388 *total_out = 0; 389 *total_in = 0; 390 391 /* Initialize the stream */ 392 stream = ZSTD_initCStream(params, len, workspace->mem, 393 workspace->size); 394 if (!stream) { 395 pr_warn("BTRFS: ZSTD_initCStream failed\n"); 396 ret = -EIO; 397 goto out; 398 } 399 400 /* map in the first page of input data */ 401 in_page = find_get_page(mapping, start >> PAGE_SHIFT); 402 workspace->in_buf.src = kmap(in_page); 403 workspace->in_buf.pos = 0; 404 workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE); 405 406 407 /* Allocate and map in the output buffer */ 408 out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 409 if (out_page == NULL) { 410 ret = -ENOMEM; 411 goto out; 412 } 413 pages[nr_pages++] = out_page; 414 workspace->out_buf.dst = kmap(out_page); 415 workspace->out_buf.pos = 0; 416 workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE); 417 418 while (1) { 419 size_t ret2; 420 421 ret2 = ZSTD_compressStream(stream, &workspace->out_buf, 422 &workspace->in_buf); 423 if (ZSTD_isError(ret2)) { 424 pr_debug("BTRFS: ZSTD_compressStream returned %d\n", 425 ZSTD_getErrorCode(ret2)); 426 ret = -EIO; 427 goto out; 428 } 429 430 /* Check to see if we are making it bigger */ 431 if (tot_in + workspace->in_buf.pos > 8192 && 432 tot_in + workspace->in_buf.pos < 433 tot_out + workspace->out_buf.pos) { 434 ret = -E2BIG; 435 goto out; 436 } 437 438 /* We've reached the end of our output range */ 439 if (workspace->out_buf.pos >= max_out) { 440 tot_out += workspace->out_buf.pos; 441 ret = -E2BIG; 442 goto out; 443 } 444 445 /* Check if we need more output space */ 446 if (workspace->out_buf.pos == workspace->out_buf.size) { 447 tot_out += PAGE_SIZE; 448 max_out -= PAGE_SIZE; 449 kunmap(out_page); 450 if (nr_pages == nr_dest_pages) { 451 out_page = NULL; 452 ret = -E2BIG; 453 goto out; 454 } 455 out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 456 if (out_page == NULL) { 457 ret = -ENOMEM; 458 goto out; 459 } 460 pages[nr_pages++] = out_page; 461 workspace->out_buf.dst = kmap(out_page); 462 workspace->out_buf.pos = 0; 463 workspace->out_buf.size = min_t(size_t, max_out, 464 PAGE_SIZE); 465 } 466 467 /* We've reached the end of the input */ 468 if (workspace->in_buf.pos >= len) { 469 tot_in += workspace->in_buf.pos; 470 break; 471 } 472 473 /* Check if we need more input */ 474 if (workspace->in_buf.pos == workspace->in_buf.size) { 475 tot_in += PAGE_SIZE; 476 kunmap(in_page); 477 put_page(in_page); 478 479 start += PAGE_SIZE; 480 len -= PAGE_SIZE; 481 in_page = find_get_page(mapping, start >> PAGE_SHIFT); 482 workspace->in_buf.src = kmap(in_page); 483 workspace->in_buf.pos = 0; 484 workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE); 485 } 486 } 487 while (1) { 488 size_t ret2; 489 490 ret2 = ZSTD_endStream(stream, &workspace->out_buf); 491 if (ZSTD_isError(ret2)) { 492 pr_debug("BTRFS: ZSTD_endStream returned %d\n", 493 ZSTD_getErrorCode(ret2)); 494 ret = -EIO; 495 goto out; 496 } 497 if (ret2 == 0) { 498 tot_out += workspace->out_buf.pos; 499 break; 500 } 501 if (workspace->out_buf.pos >= max_out) { 502 tot_out += workspace->out_buf.pos; 503 ret = -E2BIG; 504 goto out; 505 } 506 507 tot_out += PAGE_SIZE; 508 max_out -= PAGE_SIZE; 509 kunmap(out_page); 510 if (nr_pages == nr_dest_pages) { 511 out_page = NULL; 512 ret = -E2BIG; 513 goto out; 514 } 515 out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 516 if (out_page == NULL) { 517 ret = -ENOMEM; 518 goto out; 519 } 520 pages[nr_pages++] = out_page; 521 workspace->out_buf.dst = kmap(out_page); 522 workspace->out_buf.pos = 0; 523 workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE); 524 } 525 526 if (tot_out >= tot_in) { 527 ret = -E2BIG; 528 goto out; 529 } 530 531 ret = 0; 532 *total_in = tot_in; 533 *total_out = tot_out; 534 out: 535 *out_pages = nr_pages; 536 /* Cleanup */ 537 if (in_page) { 538 kunmap(in_page); 539 put_page(in_page); 540 } 541 if (out_page) 542 kunmap(out_page); 543 return ret; 544 } 545 546 int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb) 547 { 548 struct workspace *workspace = list_entry(ws, struct workspace, list); 549 struct page **pages_in = cb->compressed_pages; 550 u64 disk_start = cb->start; 551 struct bio *orig_bio = cb->orig_bio; 552 size_t srclen = cb->compressed_len; 553 ZSTD_DStream *stream; 554 int ret = 0; 555 unsigned long page_in_index = 0; 556 unsigned long total_pages_in = DIV_ROUND_UP(srclen, PAGE_SIZE); 557 unsigned long buf_start; 558 unsigned long total_out = 0; 559 560 stream = ZSTD_initDStream( 561 ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size); 562 if (!stream) { 563 pr_debug("BTRFS: ZSTD_initDStream failed\n"); 564 ret = -EIO; 565 goto done; 566 } 567 568 workspace->in_buf.src = kmap(pages_in[page_in_index]); 569 workspace->in_buf.pos = 0; 570 workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE); 571 572 workspace->out_buf.dst = workspace->buf; 573 workspace->out_buf.pos = 0; 574 workspace->out_buf.size = PAGE_SIZE; 575 576 while (1) { 577 size_t ret2; 578 579 ret2 = ZSTD_decompressStream(stream, &workspace->out_buf, 580 &workspace->in_buf); 581 if (ZSTD_isError(ret2)) { 582 pr_debug("BTRFS: ZSTD_decompressStream returned %d\n", 583 ZSTD_getErrorCode(ret2)); 584 ret = -EIO; 585 goto done; 586 } 587 buf_start = total_out; 588 total_out += workspace->out_buf.pos; 589 workspace->out_buf.pos = 0; 590 591 ret = btrfs_decompress_buf2page(workspace->out_buf.dst, 592 buf_start, total_out, disk_start, orig_bio); 593 if (ret == 0) 594 break; 595 596 if (workspace->in_buf.pos >= srclen) 597 break; 598 599 /* Check if we've hit the end of a frame */ 600 if (ret2 == 0) 601 break; 602 603 if (workspace->in_buf.pos == workspace->in_buf.size) { 604 kunmap(pages_in[page_in_index++]); 605 if (page_in_index >= total_pages_in) { 606 workspace->in_buf.src = NULL; 607 ret = -EIO; 608 goto done; 609 } 610 srclen -= PAGE_SIZE; 611 workspace->in_buf.src = kmap(pages_in[page_in_index]); 612 workspace->in_buf.pos = 0; 613 workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE); 614 } 615 } 616 ret = 0; 617 zero_fill_bio(orig_bio); 618 done: 619 if (workspace->in_buf.src) 620 kunmap(pages_in[page_in_index]); 621 return ret; 622 } 623 624 int zstd_decompress(struct list_head *ws, unsigned char *data_in, 625 struct page *dest_page, unsigned long start_byte, size_t srclen, 626 size_t destlen) 627 { 628 struct workspace *workspace = list_entry(ws, struct workspace, list); 629 ZSTD_DStream *stream; 630 int ret = 0; 631 size_t ret2; 632 unsigned long total_out = 0; 633 unsigned long pg_offset = 0; 634 635 stream = ZSTD_initDStream( 636 ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size); 637 if (!stream) { 638 pr_warn("BTRFS: ZSTD_initDStream failed\n"); 639 ret = -EIO; 640 goto finish; 641 } 642 643 destlen = min_t(size_t, destlen, PAGE_SIZE); 644 645 workspace->in_buf.src = data_in; 646 workspace->in_buf.pos = 0; 647 workspace->in_buf.size = srclen; 648 649 workspace->out_buf.dst = workspace->buf; 650 workspace->out_buf.pos = 0; 651 workspace->out_buf.size = PAGE_SIZE; 652 653 ret2 = 1; 654 while (pg_offset < destlen 655 && workspace->in_buf.pos < workspace->in_buf.size) { 656 unsigned long buf_start; 657 unsigned long buf_offset; 658 unsigned long bytes; 659 660 /* Check if the frame is over and we still need more input */ 661 if (ret2 == 0) { 662 pr_debug("BTRFS: ZSTD_decompressStream ended early\n"); 663 ret = -EIO; 664 goto finish; 665 } 666 ret2 = ZSTD_decompressStream(stream, &workspace->out_buf, 667 &workspace->in_buf); 668 if (ZSTD_isError(ret2)) { 669 pr_debug("BTRFS: ZSTD_decompressStream returned %d\n", 670 ZSTD_getErrorCode(ret2)); 671 ret = -EIO; 672 goto finish; 673 } 674 675 buf_start = total_out; 676 total_out += workspace->out_buf.pos; 677 workspace->out_buf.pos = 0; 678 679 if (total_out <= start_byte) 680 continue; 681 682 if (total_out > start_byte && buf_start < start_byte) 683 buf_offset = start_byte - buf_start; 684 else 685 buf_offset = 0; 686 687 bytes = min_t(unsigned long, destlen - pg_offset, 688 workspace->out_buf.size - buf_offset); 689 690 memcpy_to_page(dest_page, pg_offset, 691 workspace->out_buf.dst + buf_offset, bytes); 692 693 pg_offset += bytes; 694 } 695 ret = 0; 696 finish: 697 if (pg_offset < destlen) { 698 memzero_page(dest_page, pg_offset, destlen - pg_offset); 699 } 700 return ret; 701 } 702 703 const struct btrfs_compress_op btrfs_zstd_compress = { 704 /* ZSTD uses own workspace manager */ 705 .workspace_manager = NULL, 706 .max_level = ZSTD_BTRFS_MAX_LEVEL, 707 .default_level = ZSTD_BTRFS_DEFAULT_LEVEL, 708 }; 709