1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2016-present, Facebook, Inc. 4 * All rights reserved. 5 * 6 */ 7 8 #include <linux/bio.h> 9 #include <linux/bitmap.h> 10 #include <linux/err.h> 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/mm.h> 14 #include <linux/sched/mm.h> 15 #include <linux/pagemap.h> 16 #include <linux/refcount.h> 17 #include <linux/sched.h> 18 #include <linux/slab.h> 19 #include <linux/zstd.h> 20 #include "misc.h" 21 #include "compression.h" 22 #include "ctree.h" 23 24 #define ZSTD_BTRFS_MAX_WINDOWLOG 17 25 #define ZSTD_BTRFS_MAX_INPUT (1 << ZSTD_BTRFS_MAX_WINDOWLOG) 26 #define ZSTD_BTRFS_DEFAULT_LEVEL 3 27 #define ZSTD_BTRFS_MAX_LEVEL 15 28 /* 307s to avoid pathologically clashing with transaction commit */ 29 #define ZSTD_BTRFS_RECLAIM_JIFFIES (307 * HZ) 30 31 static zstd_parameters zstd_get_btrfs_parameters(unsigned int level, 32 size_t src_len) 33 { 34 zstd_parameters params = zstd_get_params(level, src_len); 35 36 if (params.cParams.windowLog > ZSTD_BTRFS_MAX_WINDOWLOG) 37 params.cParams.windowLog = ZSTD_BTRFS_MAX_WINDOWLOG; 38 WARN_ON(src_len > ZSTD_BTRFS_MAX_INPUT); 39 return params; 40 } 41 42 struct workspace { 43 void *mem; 44 size_t size; 45 char *buf; 46 unsigned int level; 47 unsigned int req_level; 48 unsigned long last_used; /* jiffies */ 49 struct list_head list; 50 struct list_head lru_list; 51 zstd_in_buffer in_buf; 52 zstd_out_buffer out_buf; 53 }; 54 55 /* 56 * Zstd Workspace Management 57 * 58 * Zstd workspaces have different memory requirements depending on the level. 59 * The zstd workspaces are managed by having individual lists for each level 60 * and a global lru. Forward progress is maintained by protecting a max level 61 * workspace. 62 * 63 * Getting a workspace is done by using the bitmap to identify the levels that 64 * have available workspaces and scans up. This lets us recycle higher level 65 * workspaces because of the monotonic memory guarantee. A workspace's 66 * last_used is only updated if it is being used by the corresponding memory 67 * level. Putting a workspace involves adding it back to the appropriate places 68 * and adding it back to the lru if necessary. 69 * 70 * A timer is used to reclaim workspaces if they have not been used for 71 * ZSTD_BTRFS_RECLAIM_JIFFIES. This helps keep only active workspaces around. 72 * The upper bound is provided by the workqueue limit which is 2 (percpu limit). 73 */ 74 75 struct zstd_workspace_manager { 76 const struct btrfs_compress_op *ops; 77 spinlock_t lock; 78 struct list_head lru_list; 79 struct list_head idle_ws[ZSTD_BTRFS_MAX_LEVEL]; 80 unsigned long active_map; 81 wait_queue_head_t wait; 82 struct timer_list timer; 83 }; 84 85 static struct zstd_workspace_manager wsm; 86 87 static size_t zstd_ws_mem_sizes[ZSTD_BTRFS_MAX_LEVEL]; 88 89 static inline struct workspace *list_to_workspace(struct list_head *list) 90 { 91 return container_of(list, struct workspace, list); 92 } 93 94 void zstd_free_workspace(struct list_head *ws); 95 struct list_head *zstd_alloc_workspace(unsigned int level); 96 97 /* 98 * Timer callback to free unused workspaces. 99 * 100 * @t: timer 101 * 102 * This scans the lru_list and attempts to reclaim any workspace that hasn't 103 * been used for ZSTD_BTRFS_RECLAIM_JIFFIES. 104 * 105 * The context is softirq and does not need the _bh locking primitives. 106 */ 107 static void zstd_reclaim_timer_fn(struct timer_list *timer) 108 { 109 unsigned long reclaim_threshold = jiffies - ZSTD_BTRFS_RECLAIM_JIFFIES; 110 struct list_head *pos, *next; 111 112 spin_lock(&wsm.lock); 113 114 if (list_empty(&wsm.lru_list)) { 115 spin_unlock(&wsm.lock); 116 return; 117 } 118 119 list_for_each_prev_safe(pos, next, &wsm.lru_list) { 120 struct workspace *victim = container_of(pos, struct workspace, 121 lru_list); 122 unsigned int level; 123 124 if (time_after(victim->last_used, reclaim_threshold)) 125 break; 126 127 /* workspace is in use */ 128 if (victim->req_level) 129 continue; 130 131 level = victim->level; 132 list_del(&victim->lru_list); 133 list_del(&victim->list); 134 zstd_free_workspace(&victim->list); 135 136 if (list_empty(&wsm.idle_ws[level - 1])) 137 clear_bit(level - 1, &wsm.active_map); 138 139 } 140 141 if (!list_empty(&wsm.lru_list)) 142 mod_timer(&wsm.timer, jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES); 143 144 spin_unlock(&wsm.lock); 145 } 146 147 /* 148 * Calculate monotonic memory bounds. 149 * 150 * It is possible based on the level configurations that a higher level 151 * workspace uses less memory than a lower level workspace. In order to reuse 152 * workspaces, this must be made a monotonic relationship. This precomputes 153 * the required memory for each level and enforces the monotonicity between 154 * level and memory required. 155 */ 156 static void zstd_calc_ws_mem_sizes(void) 157 { 158 size_t max_size = 0; 159 unsigned int level; 160 161 for (level = 1; level <= ZSTD_BTRFS_MAX_LEVEL; level++) { 162 zstd_parameters params = 163 zstd_get_btrfs_parameters(level, ZSTD_BTRFS_MAX_INPUT); 164 size_t level_size = 165 max_t(size_t, 166 zstd_cstream_workspace_bound(¶ms.cParams), 167 zstd_dstream_workspace_bound(ZSTD_BTRFS_MAX_INPUT)); 168 169 max_size = max_t(size_t, max_size, level_size); 170 zstd_ws_mem_sizes[level - 1] = max_size; 171 } 172 } 173 174 void zstd_init_workspace_manager(void) 175 { 176 struct list_head *ws; 177 int i; 178 179 zstd_calc_ws_mem_sizes(); 180 181 wsm.ops = &btrfs_zstd_compress; 182 spin_lock_init(&wsm.lock); 183 init_waitqueue_head(&wsm.wait); 184 timer_setup(&wsm.timer, zstd_reclaim_timer_fn, 0); 185 186 INIT_LIST_HEAD(&wsm.lru_list); 187 for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) 188 INIT_LIST_HEAD(&wsm.idle_ws[i]); 189 190 ws = zstd_alloc_workspace(ZSTD_BTRFS_MAX_LEVEL); 191 if (IS_ERR(ws)) { 192 pr_warn( 193 "BTRFS: cannot preallocate zstd compression workspace\n"); 194 } else { 195 set_bit(ZSTD_BTRFS_MAX_LEVEL - 1, &wsm.active_map); 196 list_add(ws, &wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1]); 197 } 198 } 199 200 void zstd_cleanup_workspace_manager(void) 201 { 202 struct workspace *workspace; 203 int i; 204 205 spin_lock_bh(&wsm.lock); 206 for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) { 207 while (!list_empty(&wsm.idle_ws[i])) { 208 workspace = container_of(wsm.idle_ws[i].next, 209 struct workspace, list); 210 list_del(&workspace->list); 211 list_del(&workspace->lru_list); 212 zstd_free_workspace(&workspace->list); 213 } 214 } 215 spin_unlock_bh(&wsm.lock); 216 217 del_timer_sync(&wsm.timer); 218 } 219 220 /* 221 * Find workspace for given level. 222 * 223 * @level: compression level 224 * 225 * This iterates over the set bits in the active_map beginning at the requested 226 * compression level. This lets us utilize already allocated workspaces before 227 * allocating a new one. If the workspace is of a larger size, it is used, but 228 * the place in the lru_list and last_used times are not updated. This is to 229 * offer the opportunity to reclaim the workspace in favor of allocating an 230 * appropriately sized one in the future. 231 */ 232 static struct list_head *zstd_find_workspace(unsigned int level) 233 { 234 struct list_head *ws; 235 struct workspace *workspace; 236 int i = level - 1; 237 238 spin_lock_bh(&wsm.lock); 239 for_each_set_bit_from(i, &wsm.active_map, ZSTD_BTRFS_MAX_LEVEL) { 240 if (!list_empty(&wsm.idle_ws[i])) { 241 ws = wsm.idle_ws[i].next; 242 workspace = list_to_workspace(ws); 243 list_del_init(ws); 244 /* keep its place if it's a lower level using this */ 245 workspace->req_level = level; 246 if (level == workspace->level) 247 list_del(&workspace->lru_list); 248 if (list_empty(&wsm.idle_ws[i])) 249 clear_bit(i, &wsm.active_map); 250 spin_unlock_bh(&wsm.lock); 251 return ws; 252 } 253 } 254 spin_unlock_bh(&wsm.lock); 255 256 return NULL; 257 } 258 259 /* 260 * Zstd get_workspace for level. 261 * 262 * @level: compression level 263 * 264 * If @level is 0, then any compression level can be used. Therefore, we begin 265 * scanning from 1. We first scan through possible workspaces and then after 266 * attempt to allocate a new workspace. If we fail to allocate one due to 267 * memory pressure, go to sleep waiting for the max level workspace to free up. 268 */ 269 struct list_head *zstd_get_workspace(unsigned int level) 270 { 271 struct list_head *ws; 272 unsigned int nofs_flag; 273 274 /* level == 0 means we can use any workspace */ 275 if (!level) 276 level = 1; 277 278 again: 279 ws = zstd_find_workspace(level); 280 if (ws) 281 return ws; 282 283 nofs_flag = memalloc_nofs_save(); 284 ws = zstd_alloc_workspace(level); 285 memalloc_nofs_restore(nofs_flag); 286 287 if (IS_ERR(ws)) { 288 DEFINE_WAIT(wait); 289 290 prepare_to_wait(&wsm.wait, &wait, TASK_UNINTERRUPTIBLE); 291 schedule(); 292 finish_wait(&wsm.wait, &wait); 293 294 goto again; 295 } 296 297 return ws; 298 } 299 300 /* 301 * Zstd put_workspace. 302 * 303 * @ws: list_head for the workspace 304 * 305 * When putting back a workspace, we only need to update the LRU if we are of 306 * the requested compression level. Here is where we continue to protect the 307 * max level workspace or update last_used accordingly. If the reclaim timer 308 * isn't set, it is also set here. Only the max level workspace tries and wakes 309 * up waiting workspaces. 310 */ 311 void zstd_put_workspace(struct list_head *ws) 312 { 313 struct workspace *workspace = list_to_workspace(ws); 314 315 spin_lock_bh(&wsm.lock); 316 317 /* A node is only taken off the lru if we are the corresponding level */ 318 if (workspace->req_level == workspace->level) { 319 /* Hide a max level workspace from reclaim */ 320 if (list_empty(&wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1])) { 321 INIT_LIST_HEAD(&workspace->lru_list); 322 } else { 323 workspace->last_used = jiffies; 324 list_add(&workspace->lru_list, &wsm.lru_list); 325 if (!timer_pending(&wsm.timer)) 326 mod_timer(&wsm.timer, 327 jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES); 328 } 329 } 330 331 set_bit(workspace->level - 1, &wsm.active_map); 332 list_add(&workspace->list, &wsm.idle_ws[workspace->level - 1]); 333 workspace->req_level = 0; 334 335 spin_unlock_bh(&wsm.lock); 336 337 if (workspace->level == ZSTD_BTRFS_MAX_LEVEL) 338 cond_wake_up(&wsm.wait); 339 } 340 341 void zstd_free_workspace(struct list_head *ws) 342 { 343 struct workspace *workspace = list_entry(ws, struct workspace, list); 344 345 kvfree(workspace->mem); 346 kfree(workspace->buf); 347 kfree(workspace); 348 } 349 350 struct list_head *zstd_alloc_workspace(unsigned int level) 351 { 352 struct workspace *workspace; 353 354 workspace = kzalloc(sizeof(*workspace), GFP_KERNEL); 355 if (!workspace) 356 return ERR_PTR(-ENOMEM); 357 358 workspace->size = zstd_ws_mem_sizes[level - 1]; 359 workspace->level = level; 360 workspace->req_level = level; 361 workspace->last_used = jiffies; 362 workspace->mem = kvmalloc(workspace->size, GFP_KERNEL | __GFP_NOWARN); 363 workspace->buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 364 if (!workspace->mem || !workspace->buf) 365 goto fail; 366 367 INIT_LIST_HEAD(&workspace->list); 368 INIT_LIST_HEAD(&workspace->lru_list); 369 370 return &workspace->list; 371 fail: 372 zstd_free_workspace(&workspace->list); 373 return ERR_PTR(-ENOMEM); 374 } 375 376 int zstd_compress_pages(struct list_head *ws, struct address_space *mapping, 377 u64 start, struct page **pages, unsigned long *out_pages, 378 unsigned long *total_in, unsigned long *total_out) 379 { 380 struct workspace *workspace = list_entry(ws, struct workspace, list); 381 zstd_cstream *stream; 382 int ret = 0; 383 int nr_pages = 0; 384 struct page *in_page = NULL; /* The current page to read */ 385 struct page *out_page = NULL; /* The current page to write to */ 386 unsigned long tot_in = 0; 387 unsigned long tot_out = 0; 388 unsigned long len = *total_out; 389 const unsigned long nr_dest_pages = *out_pages; 390 unsigned long max_out = nr_dest_pages * PAGE_SIZE; 391 zstd_parameters params = zstd_get_btrfs_parameters(workspace->req_level, 392 len); 393 394 *out_pages = 0; 395 *total_out = 0; 396 *total_in = 0; 397 398 /* Initialize the stream */ 399 stream = zstd_init_cstream(¶ms, len, workspace->mem, 400 workspace->size); 401 if (!stream) { 402 pr_warn("BTRFS: zstd_init_cstream failed\n"); 403 ret = -EIO; 404 goto out; 405 } 406 407 /* map in the first page of input data */ 408 in_page = find_get_page(mapping, start >> PAGE_SHIFT); 409 workspace->in_buf.src = kmap_local_page(in_page); 410 workspace->in_buf.pos = 0; 411 workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE); 412 413 414 /* Allocate and map in the output buffer */ 415 out_page = alloc_page(GFP_NOFS); 416 if (out_page == NULL) { 417 ret = -ENOMEM; 418 goto out; 419 } 420 pages[nr_pages++] = out_page; 421 workspace->out_buf.dst = page_address(out_page); 422 workspace->out_buf.pos = 0; 423 workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE); 424 425 while (1) { 426 size_t ret2; 427 428 ret2 = zstd_compress_stream(stream, &workspace->out_buf, 429 &workspace->in_buf); 430 if (zstd_is_error(ret2)) { 431 pr_debug("BTRFS: zstd_compress_stream returned %d\n", 432 zstd_get_error_code(ret2)); 433 ret = -EIO; 434 goto out; 435 } 436 437 /* Check to see if we are making it bigger */ 438 if (tot_in + workspace->in_buf.pos > 8192 && 439 tot_in + workspace->in_buf.pos < 440 tot_out + workspace->out_buf.pos) { 441 ret = -E2BIG; 442 goto out; 443 } 444 445 /* We've reached the end of our output range */ 446 if (workspace->out_buf.pos >= max_out) { 447 tot_out += workspace->out_buf.pos; 448 ret = -E2BIG; 449 goto out; 450 } 451 452 /* Check if we need more output space */ 453 if (workspace->out_buf.pos == workspace->out_buf.size) { 454 tot_out += PAGE_SIZE; 455 max_out -= PAGE_SIZE; 456 if (nr_pages == nr_dest_pages) { 457 ret = -E2BIG; 458 goto out; 459 } 460 out_page = alloc_page(GFP_NOFS); 461 if (out_page == NULL) { 462 ret = -ENOMEM; 463 goto out; 464 } 465 pages[nr_pages++] = out_page; 466 workspace->out_buf.dst = page_address(out_page); 467 workspace->out_buf.pos = 0; 468 workspace->out_buf.size = min_t(size_t, max_out, 469 PAGE_SIZE); 470 } 471 472 /* We've reached the end of the input */ 473 if (workspace->in_buf.pos >= len) { 474 tot_in += workspace->in_buf.pos; 475 break; 476 } 477 478 /* Check if we need more input */ 479 if (workspace->in_buf.pos == workspace->in_buf.size) { 480 tot_in += PAGE_SIZE; 481 kunmap_local(workspace->in_buf.src); 482 put_page(in_page); 483 start += PAGE_SIZE; 484 len -= PAGE_SIZE; 485 in_page = find_get_page(mapping, start >> PAGE_SHIFT); 486 workspace->in_buf.src = kmap_local_page(in_page); 487 workspace->in_buf.pos = 0; 488 workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE); 489 } 490 } 491 while (1) { 492 size_t ret2; 493 494 ret2 = zstd_end_stream(stream, &workspace->out_buf); 495 if (zstd_is_error(ret2)) { 496 pr_debug("BTRFS: zstd_end_stream returned %d\n", 497 zstd_get_error_code(ret2)); 498 ret = -EIO; 499 goto out; 500 } 501 if (ret2 == 0) { 502 tot_out += workspace->out_buf.pos; 503 break; 504 } 505 if (workspace->out_buf.pos >= max_out) { 506 tot_out += workspace->out_buf.pos; 507 ret = -E2BIG; 508 goto out; 509 } 510 511 tot_out += PAGE_SIZE; 512 max_out -= PAGE_SIZE; 513 if (nr_pages == nr_dest_pages) { 514 ret = -E2BIG; 515 goto out; 516 } 517 out_page = alloc_page(GFP_NOFS); 518 if (out_page == NULL) { 519 ret = -ENOMEM; 520 goto out; 521 } 522 pages[nr_pages++] = out_page; 523 workspace->out_buf.dst = page_address(out_page); 524 workspace->out_buf.pos = 0; 525 workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE); 526 } 527 528 if (tot_out >= tot_in) { 529 ret = -E2BIG; 530 goto out; 531 } 532 533 ret = 0; 534 *total_in = tot_in; 535 *total_out = tot_out; 536 out: 537 *out_pages = nr_pages; 538 if (workspace->in_buf.src) { 539 kunmap_local(workspace->in_buf.src); 540 put_page(in_page); 541 } 542 return ret; 543 } 544 545 int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb) 546 { 547 struct workspace *workspace = list_entry(ws, struct workspace, list); 548 struct page **pages_in = cb->compressed_pages; 549 size_t srclen = cb->compressed_len; 550 zstd_dstream *stream; 551 int ret = 0; 552 unsigned long page_in_index = 0; 553 unsigned long total_pages_in = DIV_ROUND_UP(srclen, PAGE_SIZE); 554 unsigned long buf_start; 555 unsigned long total_out = 0; 556 557 stream = zstd_init_dstream( 558 ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size); 559 if (!stream) { 560 pr_debug("BTRFS: zstd_init_dstream failed\n"); 561 ret = -EIO; 562 goto done; 563 } 564 565 workspace->in_buf.src = kmap_local_page(pages_in[page_in_index]); 566 workspace->in_buf.pos = 0; 567 workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE); 568 569 workspace->out_buf.dst = workspace->buf; 570 workspace->out_buf.pos = 0; 571 workspace->out_buf.size = PAGE_SIZE; 572 573 while (1) { 574 size_t ret2; 575 576 ret2 = zstd_decompress_stream(stream, &workspace->out_buf, 577 &workspace->in_buf); 578 if (zstd_is_error(ret2)) { 579 pr_debug("BTRFS: zstd_decompress_stream returned %d\n", 580 zstd_get_error_code(ret2)); 581 ret = -EIO; 582 goto done; 583 } 584 buf_start = total_out; 585 total_out += workspace->out_buf.pos; 586 workspace->out_buf.pos = 0; 587 588 ret = btrfs_decompress_buf2page(workspace->out_buf.dst, 589 total_out - buf_start, cb, buf_start); 590 if (ret == 0) 591 break; 592 593 if (workspace->in_buf.pos >= srclen) 594 break; 595 596 /* Check if we've hit the end of a frame */ 597 if (ret2 == 0) 598 break; 599 600 if (workspace->in_buf.pos == workspace->in_buf.size) { 601 kunmap_local(workspace->in_buf.src); 602 page_in_index++; 603 if (page_in_index >= total_pages_in) { 604 workspace->in_buf.src = NULL; 605 ret = -EIO; 606 goto done; 607 } 608 srclen -= PAGE_SIZE; 609 workspace->in_buf.src = kmap_local_page(pages_in[page_in_index]); 610 workspace->in_buf.pos = 0; 611 workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE); 612 } 613 } 614 ret = 0; 615 done: 616 if (workspace->in_buf.src) 617 kunmap_local(workspace->in_buf.src); 618 return ret; 619 } 620 621 int zstd_decompress(struct list_head *ws, const u8 *data_in, 622 struct page *dest_page, unsigned long start_byte, size_t srclen, 623 size_t destlen) 624 { 625 struct workspace *workspace = list_entry(ws, struct workspace, list); 626 zstd_dstream *stream; 627 int ret = 0; 628 size_t ret2; 629 unsigned long total_out = 0; 630 unsigned long pg_offset = 0; 631 632 stream = zstd_init_dstream( 633 ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size); 634 if (!stream) { 635 pr_warn("BTRFS: zstd_init_dstream failed\n"); 636 ret = -EIO; 637 goto finish; 638 } 639 640 destlen = min_t(size_t, destlen, PAGE_SIZE); 641 642 workspace->in_buf.src = data_in; 643 workspace->in_buf.pos = 0; 644 workspace->in_buf.size = srclen; 645 646 workspace->out_buf.dst = workspace->buf; 647 workspace->out_buf.pos = 0; 648 workspace->out_buf.size = PAGE_SIZE; 649 650 ret2 = 1; 651 while (pg_offset < destlen 652 && workspace->in_buf.pos < workspace->in_buf.size) { 653 unsigned long buf_start; 654 unsigned long buf_offset; 655 unsigned long bytes; 656 657 /* Check if the frame is over and we still need more input */ 658 if (ret2 == 0) { 659 pr_debug("BTRFS: zstd_decompress_stream ended early\n"); 660 ret = -EIO; 661 goto finish; 662 } 663 ret2 = zstd_decompress_stream(stream, &workspace->out_buf, 664 &workspace->in_buf); 665 if (zstd_is_error(ret2)) { 666 pr_debug("BTRFS: zstd_decompress_stream returned %d\n", 667 zstd_get_error_code(ret2)); 668 ret = -EIO; 669 goto finish; 670 } 671 672 buf_start = total_out; 673 total_out += workspace->out_buf.pos; 674 workspace->out_buf.pos = 0; 675 676 if (total_out <= start_byte) 677 continue; 678 679 if (total_out > start_byte && buf_start < start_byte) 680 buf_offset = start_byte - buf_start; 681 else 682 buf_offset = 0; 683 684 bytes = min_t(unsigned long, destlen - pg_offset, 685 workspace->out_buf.size - buf_offset); 686 687 memcpy_to_page(dest_page, pg_offset, 688 workspace->out_buf.dst + buf_offset, bytes); 689 690 pg_offset += bytes; 691 } 692 ret = 0; 693 finish: 694 if (pg_offset < destlen) { 695 memzero_page(dest_page, pg_offset, destlen - pg_offset); 696 } 697 return ret; 698 } 699 700 const struct btrfs_compress_op btrfs_zstd_compress = { 701 /* ZSTD uses own workspace manager */ 702 .workspace_manager = NULL, 703 .max_level = ZSTD_BTRFS_MAX_LEVEL, 704 .default_level = ZSTD_BTRFS_DEFAULT_LEVEL, 705 }; 706