xref: /linux/fs/btrfs/zstd.c (revision 96a6de1a541c86e9e67b9c310c14db4099bd1cbc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016-present, Facebook, Inc.
4  * All rights reserved.
5  *
6  */
7 
8 #include <linux/bio.h>
9 #include <linux/bitmap.h>
10 #include <linux/err.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/mm.h>
14 #include <linux/sched/mm.h>
15 #include <linux/pagemap.h>
16 #include <linux/refcount.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/zstd.h>
20 #include "compression.h"
21 #include "ctree.h"
22 
23 #define ZSTD_BTRFS_MAX_WINDOWLOG 17
24 #define ZSTD_BTRFS_MAX_INPUT (1 << ZSTD_BTRFS_MAX_WINDOWLOG)
25 #define ZSTD_BTRFS_DEFAULT_LEVEL 3
26 #define ZSTD_BTRFS_MAX_LEVEL 15
27 /* 307s to avoid pathologically clashing with transaction commit */
28 #define ZSTD_BTRFS_RECLAIM_JIFFIES (307 * HZ)
29 
30 static ZSTD_parameters zstd_get_btrfs_parameters(unsigned int level,
31 						 size_t src_len)
32 {
33 	ZSTD_parameters params = ZSTD_getParams(level, src_len, 0);
34 
35 	if (params.cParams.windowLog > ZSTD_BTRFS_MAX_WINDOWLOG)
36 		params.cParams.windowLog = ZSTD_BTRFS_MAX_WINDOWLOG;
37 	WARN_ON(src_len > ZSTD_BTRFS_MAX_INPUT);
38 	return params;
39 }
40 
41 struct workspace {
42 	void *mem;
43 	size_t size;
44 	char *buf;
45 	unsigned int level;
46 	unsigned int req_level;
47 	unsigned long last_used; /* jiffies */
48 	struct list_head list;
49 	struct list_head lru_list;
50 	ZSTD_inBuffer in_buf;
51 	ZSTD_outBuffer out_buf;
52 };
53 
54 /*
55  * Zstd Workspace Management
56  *
57  * Zstd workspaces have different memory requirements depending on the level.
58  * The zstd workspaces are managed by having individual lists for each level
59  * and a global lru.  Forward progress is maintained by protecting a max level
60  * workspace.
61  *
62  * Getting a workspace is done by using the bitmap to identify the levels that
63  * have available workspaces and scans up.  This lets us recycle higher level
64  * workspaces because of the monotonic memory guarantee.  A workspace's
65  * last_used is only updated if it is being used by the corresponding memory
66  * level.  Putting a workspace involves adding it back to the appropriate places
67  * and adding it back to the lru if necessary.
68  *
69  * A timer is used to reclaim workspaces if they have not been used for
70  * ZSTD_BTRFS_RECLAIM_JIFFIES.  This helps keep only active workspaces around.
71  * The upper bound is provided by the workqueue limit which is 2 (percpu limit).
72  */
73 
74 struct zstd_workspace_manager {
75 	const struct btrfs_compress_op *ops;
76 	spinlock_t lock;
77 	struct list_head lru_list;
78 	struct list_head idle_ws[ZSTD_BTRFS_MAX_LEVEL];
79 	unsigned long active_map;
80 	wait_queue_head_t wait;
81 	struct timer_list timer;
82 };
83 
84 static struct zstd_workspace_manager wsm;
85 
86 static size_t zstd_ws_mem_sizes[ZSTD_BTRFS_MAX_LEVEL];
87 
88 static inline struct workspace *list_to_workspace(struct list_head *list)
89 {
90 	return container_of(list, struct workspace, list);
91 }
92 
93 /*
94  * zstd_reclaim_timer_fn - reclaim timer
95  * @t: timer
96  *
97  * This scans the lru_list and attempts to reclaim any workspace that hasn't
98  * been used for ZSTD_BTRFS_RECLAIM_JIFFIES.
99  */
100 static void zstd_reclaim_timer_fn(struct timer_list *timer)
101 {
102 	unsigned long reclaim_threshold = jiffies - ZSTD_BTRFS_RECLAIM_JIFFIES;
103 	struct list_head *pos, *next;
104 
105 	spin_lock(&wsm.lock);
106 
107 	if (list_empty(&wsm.lru_list)) {
108 		spin_unlock(&wsm.lock);
109 		return;
110 	}
111 
112 	list_for_each_prev_safe(pos, next, &wsm.lru_list) {
113 		struct workspace *victim = container_of(pos, struct workspace,
114 							lru_list);
115 		unsigned int level;
116 
117 		if (time_after(victim->last_used, reclaim_threshold))
118 			break;
119 
120 		/* workspace is in use */
121 		if (victim->req_level)
122 			continue;
123 
124 		level = victim->level;
125 		list_del(&victim->lru_list);
126 		list_del(&victim->list);
127 		wsm.ops->free_workspace(&victim->list);
128 
129 		if (list_empty(&wsm.idle_ws[level - 1]))
130 			clear_bit(level - 1, &wsm.active_map);
131 
132 	}
133 
134 	if (!list_empty(&wsm.lru_list))
135 		mod_timer(&wsm.timer, jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES);
136 
137 	spin_unlock(&wsm.lock);
138 }
139 
140 /*
141  * zstd_calc_ws_mem_sizes - calculate monotonic memory bounds
142  *
143  * It is possible based on the level configurations that a higher level
144  * workspace uses less memory than a lower level workspace.  In order to reuse
145  * workspaces, this must be made a monotonic relationship.  This precomputes
146  * the required memory for each level and enforces the monotonicity between
147  * level and memory required.
148  */
149 static void zstd_calc_ws_mem_sizes(void)
150 {
151 	size_t max_size = 0;
152 	unsigned int level;
153 
154 	for (level = 1; level <= ZSTD_BTRFS_MAX_LEVEL; level++) {
155 		ZSTD_parameters params =
156 			zstd_get_btrfs_parameters(level, ZSTD_BTRFS_MAX_INPUT);
157 		size_t level_size =
158 			max_t(size_t,
159 			      ZSTD_CStreamWorkspaceBound(params.cParams),
160 			      ZSTD_DStreamWorkspaceBound(ZSTD_BTRFS_MAX_INPUT));
161 
162 		max_size = max_t(size_t, max_size, level_size);
163 		zstd_ws_mem_sizes[level - 1] = max_size;
164 	}
165 }
166 
167 static void zstd_init_workspace_manager(void)
168 {
169 	struct list_head *ws;
170 	int i;
171 
172 	zstd_calc_ws_mem_sizes();
173 
174 	wsm.ops = &btrfs_zstd_compress;
175 	spin_lock_init(&wsm.lock);
176 	init_waitqueue_head(&wsm.wait);
177 	timer_setup(&wsm.timer, zstd_reclaim_timer_fn, 0);
178 
179 	INIT_LIST_HEAD(&wsm.lru_list);
180 	for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++)
181 		INIT_LIST_HEAD(&wsm.idle_ws[i]);
182 
183 	ws = wsm.ops->alloc_workspace(ZSTD_BTRFS_MAX_LEVEL);
184 	if (IS_ERR(ws)) {
185 		pr_warn(
186 		"BTRFS: cannot preallocate zstd compression workspace\n");
187 	} else {
188 		set_bit(ZSTD_BTRFS_MAX_LEVEL - 1, &wsm.active_map);
189 		list_add(ws, &wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1]);
190 	}
191 }
192 
193 static void zstd_cleanup_workspace_manager(void)
194 {
195 	struct workspace *workspace;
196 	int i;
197 
198 	del_timer(&wsm.timer);
199 
200 	for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) {
201 		while (!list_empty(&wsm.idle_ws[i])) {
202 			workspace = container_of(wsm.idle_ws[i].next,
203 						 struct workspace, list);
204 			list_del(&workspace->list);
205 			list_del(&workspace->lru_list);
206 			wsm.ops->free_workspace(&workspace->list);
207 		}
208 	}
209 }
210 
211 /*
212  * zstd_find_workspace - find workspace
213  * @level: compression level
214  *
215  * This iterates over the set bits in the active_map beginning at the requested
216  * compression level.  This lets us utilize already allocated workspaces before
217  * allocating a new one.  If the workspace is of a larger size, it is used, but
218  * the place in the lru_list and last_used times are not updated.  This is to
219  * offer the opportunity to reclaim the workspace in favor of allocating an
220  * appropriately sized one in the future.
221  */
222 static struct list_head *zstd_find_workspace(unsigned int level)
223 {
224 	struct list_head *ws;
225 	struct workspace *workspace;
226 	int i = level - 1;
227 
228 	spin_lock(&wsm.lock);
229 	for_each_set_bit_from(i, &wsm.active_map, ZSTD_BTRFS_MAX_LEVEL) {
230 		if (!list_empty(&wsm.idle_ws[i])) {
231 			ws = wsm.idle_ws[i].next;
232 			workspace = list_to_workspace(ws);
233 			list_del_init(ws);
234 			/* keep its place if it's a lower level using this */
235 			workspace->req_level = level;
236 			if (level == workspace->level)
237 				list_del(&workspace->lru_list);
238 			if (list_empty(&wsm.idle_ws[i]))
239 				clear_bit(i, &wsm.active_map);
240 			spin_unlock(&wsm.lock);
241 			return ws;
242 		}
243 	}
244 	spin_unlock(&wsm.lock);
245 
246 	return NULL;
247 }
248 
249 /*
250  * zstd_get_workspace - zstd's get_workspace
251  * @level: compression level
252  *
253  * If @level is 0, then any compression level can be used.  Therefore, we begin
254  * scanning from 1.  We first scan through possible workspaces and then after
255  * attempt to allocate a new workspace.  If we fail to allocate one due to
256  * memory pressure, go to sleep waiting for the max level workspace to free up.
257  */
258 static struct list_head *zstd_get_workspace(unsigned int level)
259 {
260 	struct list_head *ws;
261 	unsigned int nofs_flag;
262 
263 	/* level == 0 means we can use any workspace */
264 	if (!level)
265 		level = 1;
266 
267 again:
268 	ws = zstd_find_workspace(level);
269 	if (ws)
270 		return ws;
271 
272 	nofs_flag = memalloc_nofs_save();
273 	ws = wsm.ops->alloc_workspace(level);
274 	memalloc_nofs_restore(nofs_flag);
275 
276 	if (IS_ERR(ws)) {
277 		DEFINE_WAIT(wait);
278 
279 		prepare_to_wait(&wsm.wait, &wait, TASK_UNINTERRUPTIBLE);
280 		schedule();
281 		finish_wait(&wsm.wait, &wait);
282 
283 		goto again;
284 	}
285 
286 	return ws;
287 }
288 
289 /*
290  * zstd_put_workspace - zstd put_workspace
291  * @ws: list_head for the workspace
292  *
293  * When putting back a workspace, we only need to update the LRU if we are of
294  * the requested compression level.  Here is where we continue to protect the
295  * max level workspace or update last_used accordingly.  If the reclaim timer
296  * isn't set, it is also set here.  Only the max level workspace tries and wakes
297  * up waiting workspaces.
298  */
299 static void zstd_put_workspace(struct list_head *ws)
300 {
301 	struct workspace *workspace = list_to_workspace(ws);
302 
303 	spin_lock(&wsm.lock);
304 
305 	/* A node is only taken off the lru if we are the corresponding level */
306 	if (workspace->req_level == workspace->level) {
307 		/* Hide a max level workspace from reclaim */
308 		if (list_empty(&wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1])) {
309 			INIT_LIST_HEAD(&workspace->lru_list);
310 		} else {
311 			workspace->last_used = jiffies;
312 			list_add(&workspace->lru_list, &wsm.lru_list);
313 			if (!timer_pending(&wsm.timer))
314 				mod_timer(&wsm.timer,
315 					  jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES);
316 		}
317 	}
318 
319 	set_bit(workspace->level - 1, &wsm.active_map);
320 	list_add(&workspace->list, &wsm.idle_ws[workspace->level - 1]);
321 	workspace->req_level = 0;
322 
323 	spin_unlock(&wsm.lock);
324 
325 	if (workspace->level == ZSTD_BTRFS_MAX_LEVEL)
326 		cond_wake_up(&wsm.wait);
327 }
328 
329 static void zstd_free_workspace(struct list_head *ws)
330 {
331 	struct workspace *workspace = list_entry(ws, struct workspace, list);
332 
333 	kvfree(workspace->mem);
334 	kfree(workspace->buf);
335 	kfree(workspace);
336 }
337 
338 static struct list_head *zstd_alloc_workspace(unsigned int level)
339 {
340 	struct workspace *workspace;
341 
342 	workspace = kzalloc(sizeof(*workspace), GFP_KERNEL);
343 	if (!workspace)
344 		return ERR_PTR(-ENOMEM);
345 
346 	workspace->size = zstd_ws_mem_sizes[level - 1];
347 	workspace->level = level;
348 	workspace->req_level = level;
349 	workspace->last_used = jiffies;
350 	workspace->mem = kvmalloc(workspace->size, GFP_KERNEL);
351 	workspace->buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
352 	if (!workspace->mem || !workspace->buf)
353 		goto fail;
354 
355 	INIT_LIST_HEAD(&workspace->list);
356 	INIT_LIST_HEAD(&workspace->lru_list);
357 
358 	return &workspace->list;
359 fail:
360 	zstd_free_workspace(&workspace->list);
361 	return ERR_PTR(-ENOMEM);
362 }
363 
364 static int zstd_compress_pages(struct list_head *ws,
365 		struct address_space *mapping,
366 		u64 start,
367 		struct page **pages,
368 		unsigned long *out_pages,
369 		unsigned long *total_in,
370 		unsigned long *total_out)
371 {
372 	struct workspace *workspace = list_entry(ws, struct workspace, list);
373 	ZSTD_CStream *stream;
374 	int ret = 0;
375 	int nr_pages = 0;
376 	struct page *in_page = NULL;  /* The current page to read */
377 	struct page *out_page = NULL; /* The current page to write to */
378 	unsigned long tot_in = 0;
379 	unsigned long tot_out = 0;
380 	unsigned long len = *total_out;
381 	const unsigned long nr_dest_pages = *out_pages;
382 	unsigned long max_out = nr_dest_pages * PAGE_SIZE;
383 	ZSTD_parameters params = zstd_get_btrfs_parameters(workspace->req_level,
384 							   len);
385 
386 	*out_pages = 0;
387 	*total_out = 0;
388 	*total_in = 0;
389 
390 	/* Initialize the stream */
391 	stream = ZSTD_initCStream(params, len, workspace->mem,
392 			workspace->size);
393 	if (!stream) {
394 		pr_warn("BTRFS: ZSTD_initCStream failed\n");
395 		ret = -EIO;
396 		goto out;
397 	}
398 
399 	/* map in the first page of input data */
400 	in_page = find_get_page(mapping, start >> PAGE_SHIFT);
401 	workspace->in_buf.src = kmap(in_page);
402 	workspace->in_buf.pos = 0;
403 	workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE);
404 
405 
406 	/* Allocate and map in the output buffer */
407 	out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
408 	if (out_page == NULL) {
409 		ret = -ENOMEM;
410 		goto out;
411 	}
412 	pages[nr_pages++] = out_page;
413 	workspace->out_buf.dst = kmap(out_page);
414 	workspace->out_buf.pos = 0;
415 	workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE);
416 
417 	while (1) {
418 		size_t ret2;
419 
420 		ret2 = ZSTD_compressStream(stream, &workspace->out_buf,
421 				&workspace->in_buf);
422 		if (ZSTD_isError(ret2)) {
423 			pr_debug("BTRFS: ZSTD_compressStream returned %d\n",
424 					ZSTD_getErrorCode(ret2));
425 			ret = -EIO;
426 			goto out;
427 		}
428 
429 		/* Check to see if we are making it bigger */
430 		if (tot_in + workspace->in_buf.pos > 8192 &&
431 				tot_in + workspace->in_buf.pos <
432 				tot_out + workspace->out_buf.pos) {
433 			ret = -E2BIG;
434 			goto out;
435 		}
436 
437 		/* We've reached the end of our output range */
438 		if (workspace->out_buf.pos >= max_out) {
439 			tot_out += workspace->out_buf.pos;
440 			ret = -E2BIG;
441 			goto out;
442 		}
443 
444 		/* Check if we need more output space */
445 		if (workspace->out_buf.pos == workspace->out_buf.size) {
446 			tot_out += PAGE_SIZE;
447 			max_out -= PAGE_SIZE;
448 			kunmap(out_page);
449 			if (nr_pages == nr_dest_pages) {
450 				out_page = NULL;
451 				ret = -E2BIG;
452 				goto out;
453 			}
454 			out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
455 			if (out_page == NULL) {
456 				ret = -ENOMEM;
457 				goto out;
458 			}
459 			pages[nr_pages++] = out_page;
460 			workspace->out_buf.dst = kmap(out_page);
461 			workspace->out_buf.pos = 0;
462 			workspace->out_buf.size = min_t(size_t, max_out,
463 							PAGE_SIZE);
464 		}
465 
466 		/* We've reached the end of the input */
467 		if (workspace->in_buf.pos >= len) {
468 			tot_in += workspace->in_buf.pos;
469 			break;
470 		}
471 
472 		/* Check if we need more input */
473 		if (workspace->in_buf.pos == workspace->in_buf.size) {
474 			tot_in += PAGE_SIZE;
475 			kunmap(in_page);
476 			put_page(in_page);
477 
478 			start += PAGE_SIZE;
479 			len -= PAGE_SIZE;
480 			in_page = find_get_page(mapping, start >> PAGE_SHIFT);
481 			workspace->in_buf.src = kmap(in_page);
482 			workspace->in_buf.pos = 0;
483 			workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE);
484 		}
485 	}
486 	while (1) {
487 		size_t ret2;
488 
489 		ret2 = ZSTD_endStream(stream, &workspace->out_buf);
490 		if (ZSTD_isError(ret2)) {
491 			pr_debug("BTRFS: ZSTD_endStream returned %d\n",
492 					ZSTD_getErrorCode(ret2));
493 			ret = -EIO;
494 			goto out;
495 		}
496 		if (ret2 == 0) {
497 			tot_out += workspace->out_buf.pos;
498 			break;
499 		}
500 		if (workspace->out_buf.pos >= max_out) {
501 			tot_out += workspace->out_buf.pos;
502 			ret = -E2BIG;
503 			goto out;
504 		}
505 
506 		tot_out += PAGE_SIZE;
507 		max_out -= PAGE_SIZE;
508 		kunmap(out_page);
509 		if (nr_pages == nr_dest_pages) {
510 			out_page = NULL;
511 			ret = -E2BIG;
512 			goto out;
513 		}
514 		out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
515 		if (out_page == NULL) {
516 			ret = -ENOMEM;
517 			goto out;
518 		}
519 		pages[nr_pages++] = out_page;
520 		workspace->out_buf.dst = kmap(out_page);
521 		workspace->out_buf.pos = 0;
522 		workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE);
523 	}
524 
525 	if (tot_out >= tot_in) {
526 		ret = -E2BIG;
527 		goto out;
528 	}
529 
530 	ret = 0;
531 	*total_in = tot_in;
532 	*total_out = tot_out;
533 out:
534 	*out_pages = nr_pages;
535 	/* Cleanup */
536 	if (in_page) {
537 		kunmap(in_page);
538 		put_page(in_page);
539 	}
540 	if (out_page)
541 		kunmap(out_page);
542 	return ret;
543 }
544 
545 static int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb)
546 {
547 	struct workspace *workspace = list_entry(ws, struct workspace, list);
548 	struct page **pages_in = cb->compressed_pages;
549 	u64 disk_start = cb->start;
550 	struct bio *orig_bio = cb->orig_bio;
551 	size_t srclen = cb->compressed_len;
552 	ZSTD_DStream *stream;
553 	int ret = 0;
554 	unsigned long page_in_index = 0;
555 	unsigned long total_pages_in = DIV_ROUND_UP(srclen, PAGE_SIZE);
556 	unsigned long buf_start;
557 	unsigned long total_out = 0;
558 
559 	stream = ZSTD_initDStream(
560 			ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size);
561 	if (!stream) {
562 		pr_debug("BTRFS: ZSTD_initDStream failed\n");
563 		ret = -EIO;
564 		goto done;
565 	}
566 
567 	workspace->in_buf.src = kmap(pages_in[page_in_index]);
568 	workspace->in_buf.pos = 0;
569 	workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE);
570 
571 	workspace->out_buf.dst = workspace->buf;
572 	workspace->out_buf.pos = 0;
573 	workspace->out_buf.size = PAGE_SIZE;
574 
575 	while (1) {
576 		size_t ret2;
577 
578 		ret2 = ZSTD_decompressStream(stream, &workspace->out_buf,
579 				&workspace->in_buf);
580 		if (ZSTD_isError(ret2)) {
581 			pr_debug("BTRFS: ZSTD_decompressStream returned %d\n",
582 					ZSTD_getErrorCode(ret2));
583 			ret = -EIO;
584 			goto done;
585 		}
586 		buf_start = total_out;
587 		total_out += workspace->out_buf.pos;
588 		workspace->out_buf.pos = 0;
589 
590 		ret = btrfs_decompress_buf2page(workspace->out_buf.dst,
591 				buf_start, total_out, disk_start, orig_bio);
592 		if (ret == 0)
593 			break;
594 
595 		if (workspace->in_buf.pos >= srclen)
596 			break;
597 
598 		/* Check if we've hit the end of a frame */
599 		if (ret2 == 0)
600 			break;
601 
602 		if (workspace->in_buf.pos == workspace->in_buf.size) {
603 			kunmap(pages_in[page_in_index++]);
604 			if (page_in_index >= total_pages_in) {
605 				workspace->in_buf.src = NULL;
606 				ret = -EIO;
607 				goto done;
608 			}
609 			srclen -= PAGE_SIZE;
610 			workspace->in_buf.src = kmap(pages_in[page_in_index]);
611 			workspace->in_buf.pos = 0;
612 			workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE);
613 		}
614 	}
615 	ret = 0;
616 	zero_fill_bio(orig_bio);
617 done:
618 	if (workspace->in_buf.src)
619 		kunmap(pages_in[page_in_index]);
620 	return ret;
621 }
622 
623 static int zstd_decompress(struct list_head *ws, unsigned char *data_in,
624 		struct page *dest_page,
625 		unsigned long start_byte,
626 		size_t srclen, size_t destlen)
627 {
628 	struct workspace *workspace = list_entry(ws, struct workspace, list);
629 	ZSTD_DStream *stream;
630 	int ret = 0;
631 	size_t ret2;
632 	unsigned long total_out = 0;
633 	unsigned long pg_offset = 0;
634 	char *kaddr;
635 
636 	stream = ZSTD_initDStream(
637 			ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size);
638 	if (!stream) {
639 		pr_warn("BTRFS: ZSTD_initDStream failed\n");
640 		ret = -EIO;
641 		goto finish;
642 	}
643 
644 	destlen = min_t(size_t, destlen, PAGE_SIZE);
645 
646 	workspace->in_buf.src = data_in;
647 	workspace->in_buf.pos = 0;
648 	workspace->in_buf.size = srclen;
649 
650 	workspace->out_buf.dst = workspace->buf;
651 	workspace->out_buf.pos = 0;
652 	workspace->out_buf.size = PAGE_SIZE;
653 
654 	ret2 = 1;
655 	while (pg_offset < destlen
656 	       && workspace->in_buf.pos < workspace->in_buf.size) {
657 		unsigned long buf_start;
658 		unsigned long buf_offset;
659 		unsigned long bytes;
660 
661 		/* Check if the frame is over and we still need more input */
662 		if (ret2 == 0) {
663 			pr_debug("BTRFS: ZSTD_decompressStream ended early\n");
664 			ret = -EIO;
665 			goto finish;
666 		}
667 		ret2 = ZSTD_decompressStream(stream, &workspace->out_buf,
668 				&workspace->in_buf);
669 		if (ZSTD_isError(ret2)) {
670 			pr_debug("BTRFS: ZSTD_decompressStream returned %d\n",
671 					ZSTD_getErrorCode(ret2));
672 			ret = -EIO;
673 			goto finish;
674 		}
675 
676 		buf_start = total_out;
677 		total_out += workspace->out_buf.pos;
678 		workspace->out_buf.pos = 0;
679 
680 		if (total_out <= start_byte)
681 			continue;
682 
683 		if (total_out > start_byte && buf_start < start_byte)
684 			buf_offset = start_byte - buf_start;
685 		else
686 			buf_offset = 0;
687 
688 		bytes = min_t(unsigned long, destlen - pg_offset,
689 				workspace->out_buf.size - buf_offset);
690 
691 		kaddr = kmap_atomic(dest_page);
692 		memcpy(kaddr + pg_offset, workspace->out_buf.dst + buf_offset,
693 				bytes);
694 		kunmap_atomic(kaddr);
695 
696 		pg_offset += bytes;
697 	}
698 	ret = 0;
699 finish:
700 	if (pg_offset < destlen) {
701 		kaddr = kmap_atomic(dest_page);
702 		memset(kaddr + pg_offset, 0, destlen - pg_offset);
703 		kunmap_atomic(kaddr);
704 	}
705 	return ret;
706 }
707 
708 static unsigned int zstd_set_level(unsigned int level)
709 {
710 	if (!level)
711 		return ZSTD_BTRFS_DEFAULT_LEVEL;
712 
713 	return min_t(unsigned int, level, ZSTD_BTRFS_MAX_LEVEL);
714 }
715 
716 const struct btrfs_compress_op btrfs_zstd_compress = {
717 	.init_workspace_manager = zstd_init_workspace_manager,
718 	.cleanup_workspace_manager = zstd_cleanup_workspace_manager,
719 	.get_workspace = zstd_get_workspace,
720 	.put_workspace = zstd_put_workspace,
721 	.alloc_workspace = zstd_alloc_workspace,
722 	.free_workspace = zstd_free_workspace,
723 	.compress_pages = zstd_compress_pages,
724 	.decompress_bio = zstd_decompress_bio,
725 	.decompress = zstd_decompress,
726 	.set_level = zstd_set_level,
727 };
728