xref: /linux/fs/btrfs/zstd.c (revision 7fcfa9a2d9a7c1b428d61992c2deaa9e37a437b0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016-present, Facebook, Inc.
4  * All rights reserved.
5  *
6  */
7 
8 #include <linux/bio.h>
9 #include <linux/bitmap.h>
10 #include <linux/err.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/mm.h>
14 #include <linux/sched/mm.h>
15 #include <linux/pagemap.h>
16 #include <linux/refcount.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/zstd.h>
20 #include "compression.h"
21 #include "ctree.h"
22 
23 #define ZSTD_BTRFS_MAX_WINDOWLOG 17
24 #define ZSTD_BTRFS_MAX_INPUT (1 << ZSTD_BTRFS_MAX_WINDOWLOG)
25 #define ZSTD_BTRFS_DEFAULT_LEVEL 3
26 #define ZSTD_BTRFS_MAX_LEVEL 15
27 /* 307s to avoid pathologically clashing with transaction commit */
28 #define ZSTD_BTRFS_RECLAIM_JIFFIES (307 * HZ)
29 
30 static ZSTD_parameters zstd_get_btrfs_parameters(unsigned int level,
31 						 size_t src_len)
32 {
33 	ZSTD_parameters params = ZSTD_getParams(level, src_len, 0);
34 
35 	if (params.cParams.windowLog > ZSTD_BTRFS_MAX_WINDOWLOG)
36 		params.cParams.windowLog = ZSTD_BTRFS_MAX_WINDOWLOG;
37 	WARN_ON(src_len > ZSTD_BTRFS_MAX_INPUT);
38 	return params;
39 }
40 
41 struct workspace {
42 	void *mem;
43 	size_t size;
44 	char *buf;
45 	unsigned int level;
46 	unsigned int req_level;
47 	unsigned long last_used; /* jiffies */
48 	struct list_head list;
49 	struct list_head lru_list;
50 	ZSTD_inBuffer in_buf;
51 	ZSTD_outBuffer out_buf;
52 };
53 
54 /*
55  * Zstd Workspace Management
56  *
57  * Zstd workspaces have different memory requirements depending on the level.
58  * The zstd workspaces are managed by having individual lists for each level
59  * and a global lru.  Forward progress is maintained by protecting a max level
60  * workspace.
61  *
62  * Getting a workspace is done by using the bitmap to identify the levels that
63  * have available workspaces and scans up.  This lets us recycle higher level
64  * workspaces because of the monotonic memory guarantee.  A workspace's
65  * last_used is only updated if it is being used by the corresponding memory
66  * level.  Putting a workspace involves adding it back to the appropriate places
67  * and adding it back to the lru if necessary.
68  *
69  * A timer is used to reclaim workspaces if they have not been used for
70  * ZSTD_BTRFS_RECLAIM_JIFFIES.  This helps keep only active workspaces around.
71  * The upper bound is provided by the workqueue limit which is 2 (percpu limit).
72  */
73 
74 struct zstd_workspace_manager {
75 	const struct btrfs_compress_op *ops;
76 	spinlock_t lock;
77 	struct list_head lru_list;
78 	struct list_head idle_ws[ZSTD_BTRFS_MAX_LEVEL];
79 	unsigned long active_map;
80 	wait_queue_head_t wait;
81 	struct timer_list timer;
82 };
83 
84 static struct zstd_workspace_manager wsm;
85 
86 static size_t zstd_ws_mem_sizes[ZSTD_BTRFS_MAX_LEVEL];
87 
88 static inline struct workspace *list_to_workspace(struct list_head *list)
89 {
90 	return container_of(list, struct workspace, list);
91 }
92 
93 /*
94  * zstd_reclaim_timer_fn - reclaim timer
95  * @t: timer
96  *
97  * This scans the lru_list and attempts to reclaim any workspace that hasn't
98  * been used for ZSTD_BTRFS_RECLAIM_JIFFIES.
99  */
100 static void zstd_reclaim_timer_fn(struct timer_list *timer)
101 {
102 	unsigned long reclaim_threshold = jiffies - ZSTD_BTRFS_RECLAIM_JIFFIES;
103 	struct list_head *pos, *next;
104 
105 	spin_lock(&wsm.lock);
106 
107 	if (list_empty(&wsm.lru_list)) {
108 		spin_unlock(&wsm.lock);
109 		return;
110 	}
111 
112 	list_for_each_prev_safe(pos, next, &wsm.lru_list) {
113 		struct workspace *victim = container_of(pos, struct workspace,
114 							lru_list);
115 		unsigned int level;
116 
117 		if (time_after(victim->last_used, reclaim_threshold))
118 			break;
119 
120 		/* workspace is in use */
121 		if (victim->req_level)
122 			continue;
123 
124 		level = victim->level;
125 		list_del(&victim->lru_list);
126 		list_del(&victim->list);
127 		wsm.ops->free_workspace(&victim->list);
128 
129 		if (list_empty(&wsm.idle_ws[level - 1]))
130 			clear_bit(level - 1, &wsm.active_map);
131 
132 	}
133 
134 	if (!list_empty(&wsm.lru_list))
135 		mod_timer(&wsm.timer, jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES);
136 
137 	spin_unlock(&wsm.lock);
138 }
139 
140 /*
141  * zstd_calc_ws_mem_sizes - calculate monotonic memory bounds
142  *
143  * It is possible based on the level configurations that a higher level
144  * workspace uses less memory than a lower level workspace.  In order to reuse
145  * workspaces, this must be made a monotonic relationship.  This precomputes
146  * the required memory for each level and enforces the monotonicity between
147  * level and memory required.
148  */
149 static void zstd_calc_ws_mem_sizes(void)
150 {
151 	size_t max_size = 0;
152 	unsigned int level;
153 
154 	for (level = 1; level <= ZSTD_BTRFS_MAX_LEVEL; level++) {
155 		ZSTD_parameters params =
156 			zstd_get_btrfs_parameters(level, ZSTD_BTRFS_MAX_INPUT);
157 		size_t level_size =
158 			max_t(size_t,
159 			      ZSTD_CStreamWorkspaceBound(params.cParams),
160 			      ZSTD_DStreamWorkspaceBound(ZSTD_BTRFS_MAX_INPUT));
161 
162 		max_size = max_t(size_t, max_size, level_size);
163 		zstd_ws_mem_sizes[level - 1] = max_size;
164 	}
165 }
166 
167 static void zstd_init_workspace_manager(void)
168 {
169 	struct list_head *ws;
170 	int i;
171 
172 	zstd_calc_ws_mem_sizes();
173 
174 	wsm.ops = &btrfs_zstd_compress;
175 	spin_lock_init(&wsm.lock);
176 	init_waitqueue_head(&wsm.wait);
177 	timer_setup(&wsm.timer, zstd_reclaim_timer_fn, 0);
178 
179 	INIT_LIST_HEAD(&wsm.lru_list);
180 	for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++)
181 		INIT_LIST_HEAD(&wsm.idle_ws[i]);
182 
183 	ws = wsm.ops->alloc_workspace(ZSTD_BTRFS_MAX_LEVEL);
184 	if (IS_ERR(ws)) {
185 		pr_warn(
186 		"BTRFS: cannot preallocate zstd compression workspace\n");
187 	} else {
188 		set_bit(ZSTD_BTRFS_MAX_LEVEL - 1, &wsm.active_map);
189 		list_add(ws, &wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1]);
190 	}
191 }
192 
193 static void zstd_cleanup_workspace_manager(void)
194 {
195 	struct workspace *workspace;
196 	int i;
197 
198 	spin_lock(&wsm.lock);
199 	for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) {
200 		while (!list_empty(&wsm.idle_ws[i])) {
201 			workspace = container_of(wsm.idle_ws[i].next,
202 						 struct workspace, list);
203 			list_del(&workspace->list);
204 			list_del(&workspace->lru_list);
205 			wsm.ops->free_workspace(&workspace->list);
206 		}
207 	}
208 	spin_unlock(&wsm.lock);
209 
210 	del_timer_sync(&wsm.timer);
211 }
212 
213 /*
214  * zstd_find_workspace - find workspace
215  * @level: compression level
216  *
217  * This iterates over the set bits in the active_map beginning at the requested
218  * compression level.  This lets us utilize already allocated workspaces before
219  * allocating a new one.  If the workspace is of a larger size, it is used, but
220  * the place in the lru_list and last_used times are not updated.  This is to
221  * offer the opportunity to reclaim the workspace in favor of allocating an
222  * appropriately sized one in the future.
223  */
224 static struct list_head *zstd_find_workspace(unsigned int level)
225 {
226 	struct list_head *ws;
227 	struct workspace *workspace;
228 	int i = level - 1;
229 
230 	spin_lock(&wsm.lock);
231 	for_each_set_bit_from(i, &wsm.active_map, ZSTD_BTRFS_MAX_LEVEL) {
232 		if (!list_empty(&wsm.idle_ws[i])) {
233 			ws = wsm.idle_ws[i].next;
234 			workspace = list_to_workspace(ws);
235 			list_del_init(ws);
236 			/* keep its place if it's a lower level using this */
237 			workspace->req_level = level;
238 			if (level == workspace->level)
239 				list_del(&workspace->lru_list);
240 			if (list_empty(&wsm.idle_ws[i]))
241 				clear_bit(i, &wsm.active_map);
242 			spin_unlock(&wsm.lock);
243 			return ws;
244 		}
245 	}
246 	spin_unlock(&wsm.lock);
247 
248 	return NULL;
249 }
250 
251 /*
252  * zstd_get_workspace - zstd's get_workspace
253  * @level: compression level
254  *
255  * If @level is 0, then any compression level can be used.  Therefore, we begin
256  * scanning from 1.  We first scan through possible workspaces and then after
257  * attempt to allocate a new workspace.  If we fail to allocate one due to
258  * memory pressure, go to sleep waiting for the max level workspace to free up.
259  */
260 static struct list_head *zstd_get_workspace(unsigned int level)
261 {
262 	struct list_head *ws;
263 	unsigned int nofs_flag;
264 
265 	/* level == 0 means we can use any workspace */
266 	if (!level)
267 		level = 1;
268 
269 again:
270 	ws = zstd_find_workspace(level);
271 	if (ws)
272 		return ws;
273 
274 	nofs_flag = memalloc_nofs_save();
275 	ws = wsm.ops->alloc_workspace(level);
276 	memalloc_nofs_restore(nofs_flag);
277 
278 	if (IS_ERR(ws)) {
279 		DEFINE_WAIT(wait);
280 
281 		prepare_to_wait(&wsm.wait, &wait, TASK_UNINTERRUPTIBLE);
282 		schedule();
283 		finish_wait(&wsm.wait, &wait);
284 
285 		goto again;
286 	}
287 
288 	return ws;
289 }
290 
291 /*
292  * zstd_put_workspace - zstd put_workspace
293  * @ws: list_head for the workspace
294  *
295  * When putting back a workspace, we only need to update the LRU if we are of
296  * the requested compression level.  Here is where we continue to protect the
297  * max level workspace or update last_used accordingly.  If the reclaim timer
298  * isn't set, it is also set here.  Only the max level workspace tries and wakes
299  * up waiting workspaces.
300  */
301 static void zstd_put_workspace(struct list_head *ws)
302 {
303 	struct workspace *workspace = list_to_workspace(ws);
304 
305 	spin_lock(&wsm.lock);
306 
307 	/* A node is only taken off the lru if we are the corresponding level */
308 	if (workspace->req_level == workspace->level) {
309 		/* Hide a max level workspace from reclaim */
310 		if (list_empty(&wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1])) {
311 			INIT_LIST_HEAD(&workspace->lru_list);
312 		} else {
313 			workspace->last_used = jiffies;
314 			list_add(&workspace->lru_list, &wsm.lru_list);
315 			if (!timer_pending(&wsm.timer))
316 				mod_timer(&wsm.timer,
317 					  jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES);
318 		}
319 	}
320 
321 	set_bit(workspace->level - 1, &wsm.active_map);
322 	list_add(&workspace->list, &wsm.idle_ws[workspace->level - 1]);
323 	workspace->req_level = 0;
324 
325 	spin_unlock(&wsm.lock);
326 
327 	if (workspace->level == ZSTD_BTRFS_MAX_LEVEL)
328 		cond_wake_up(&wsm.wait);
329 }
330 
331 static void zstd_free_workspace(struct list_head *ws)
332 {
333 	struct workspace *workspace = list_entry(ws, struct workspace, list);
334 
335 	kvfree(workspace->mem);
336 	kfree(workspace->buf);
337 	kfree(workspace);
338 }
339 
340 static struct list_head *zstd_alloc_workspace(unsigned int level)
341 {
342 	struct workspace *workspace;
343 
344 	workspace = kzalloc(sizeof(*workspace), GFP_KERNEL);
345 	if (!workspace)
346 		return ERR_PTR(-ENOMEM);
347 
348 	workspace->size = zstd_ws_mem_sizes[level - 1];
349 	workspace->level = level;
350 	workspace->req_level = level;
351 	workspace->last_used = jiffies;
352 	workspace->mem = kvmalloc(workspace->size, GFP_KERNEL);
353 	workspace->buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
354 	if (!workspace->mem || !workspace->buf)
355 		goto fail;
356 
357 	INIT_LIST_HEAD(&workspace->list);
358 	INIT_LIST_HEAD(&workspace->lru_list);
359 
360 	return &workspace->list;
361 fail:
362 	zstd_free_workspace(&workspace->list);
363 	return ERR_PTR(-ENOMEM);
364 }
365 
366 static int zstd_compress_pages(struct list_head *ws,
367 		struct address_space *mapping,
368 		u64 start,
369 		struct page **pages,
370 		unsigned long *out_pages,
371 		unsigned long *total_in,
372 		unsigned long *total_out)
373 {
374 	struct workspace *workspace = list_entry(ws, struct workspace, list);
375 	ZSTD_CStream *stream;
376 	int ret = 0;
377 	int nr_pages = 0;
378 	struct page *in_page = NULL;  /* The current page to read */
379 	struct page *out_page = NULL; /* The current page to write to */
380 	unsigned long tot_in = 0;
381 	unsigned long tot_out = 0;
382 	unsigned long len = *total_out;
383 	const unsigned long nr_dest_pages = *out_pages;
384 	unsigned long max_out = nr_dest_pages * PAGE_SIZE;
385 	ZSTD_parameters params = zstd_get_btrfs_parameters(workspace->req_level,
386 							   len);
387 
388 	*out_pages = 0;
389 	*total_out = 0;
390 	*total_in = 0;
391 
392 	/* Initialize the stream */
393 	stream = ZSTD_initCStream(params, len, workspace->mem,
394 			workspace->size);
395 	if (!stream) {
396 		pr_warn("BTRFS: ZSTD_initCStream failed\n");
397 		ret = -EIO;
398 		goto out;
399 	}
400 
401 	/* map in the first page of input data */
402 	in_page = find_get_page(mapping, start >> PAGE_SHIFT);
403 	workspace->in_buf.src = kmap(in_page);
404 	workspace->in_buf.pos = 0;
405 	workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE);
406 
407 
408 	/* Allocate and map in the output buffer */
409 	out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
410 	if (out_page == NULL) {
411 		ret = -ENOMEM;
412 		goto out;
413 	}
414 	pages[nr_pages++] = out_page;
415 	workspace->out_buf.dst = kmap(out_page);
416 	workspace->out_buf.pos = 0;
417 	workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE);
418 
419 	while (1) {
420 		size_t ret2;
421 
422 		ret2 = ZSTD_compressStream(stream, &workspace->out_buf,
423 				&workspace->in_buf);
424 		if (ZSTD_isError(ret2)) {
425 			pr_debug("BTRFS: ZSTD_compressStream returned %d\n",
426 					ZSTD_getErrorCode(ret2));
427 			ret = -EIO;
428 			goto out;
429 		}
430 
431 		/* Check to see if we are making it bigger */
432 		if (tot_in + workspace->in_buf.pos > 8192 &&
433 				tot_in + workspace->in_buf.pos <
434 				tot_out + workspace->out_buf.pos) {
435 			ret = -E2BIG;
436 			goto out;
437 		}
438 
439 		/* We've reached the end of our output range */
440 		if (workspace->out_buf.pos >= max_out) {
441 			tot_out += workspace->out_buf.pos;
442 			ret = -E2BIG;
443 			goto out;
444 		}
445 
446 		/* Check if we need more output space */
447 		if (workspace->out_buf.pos == workspace->out_buf.size) {
448 			tot_out += PAGE_SIZE;
449 			max_out -= PAGE_SIZE;
450 			kunmap(out_page);
451 			if (nr_pages == nr_dest_pages) {
452 				out_page = NULL;
453 				ret = -E2BIG;
454 				goto out;
455 			}
456 			out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
457 			if (out_page == NULL) {
458 				ret = -ENOMEM;
459 				goto out;
460 			}
461 			pages[nr_pages++] = out_page;
462 			workspace->out_buf.dst = kmap(out_page);
463 			workspace->out_buf.pos = 0;
464 			workspace->out_buf.size = min_t(size_t, max_out,
465 							PAGE_SIZE);
466 		}
467 
468 		/* We've reached the end of the input */
469 		if (workspace->in_buf.pos >= len) {
470 			tot_in += workspace->in_buf.pos;
471 			break;
472 		}
473 
474 		/* Check if we need more input */
475 		if (workspace->in_buf.pos == workspace->in_buf.size) {
476 			tot_in += PAGE_SIZE;
477 			kunmap(in_page);
478 			put_page(in_page);
479 
480 			start += PAGE_SIZE;
481 			len -= PAGE_SIZE;
482 			in_page = find_get_page(mapping, start >> PAGE_SHIFT);
483 			workspace->in_buf.src = kmap(in_page);
484 			workspace->in_buf.pos = 0;
485 			workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE);
486 		}
487 	}
488 	while (1) {
489 		size_t ret2;
490 
491 		ret2 = ZSTD_endStream(stream, &workspace->out_buf);
492 		if (ZSTD_isError(ret2)) {
493 			pr_debug("BTRFS: ZSTD_endStream returned %d\n",
494 					ZSTD_getErrorCode(ret2));
495 			ret = -EIO;
496 			goto out;
497 		}
498 		if (ret2 == 0) {
499 			tot_out += workspace->out_buf.pos;
500 			break;
501 		}
502 		if (workspace->out_buf.pos >= max_out) {
503 			tot_out += workspace->out_buf.pos;
504 			ret = -E2BIG;
505 			goto out;
506 		}
507 
508 		tot_out += PAGE_SIZE;
509 		max_out -= PAGE_SIZE;
510 		kunmap(out_page);
511 		if (nr_pages == nr_dest_pages) {
512 			out_page = NULL;
513 			ret = -E2BIG;
514 			goto out;
515 		}
516 		out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
517 		if (out_page == NULL) {
518 			ret = -ENOMEM;
519 			goto out;
520 		}
521 		pages[nr_pages++] = out_page;
522 		workspace->out_buf.dst = kmap(out_page);
523 		workspace->out_buf.pos = 0;
524 		workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE);
525 	}
526 
527 	if (tot_out >= tot_in) {
528 		ret = -E2BIG;
529 		goto out;
530 	}
531 
532 	ret = 0;
533 	*total_in = tot_in;
534 	*total_out = tot_out;
535 out:
536 	*out_pages = nr_pages;
537 	/* Cleanup */
538 	if (in_page) {
539 		kunmap(in_page);
540 		put_page(in_page);
541 	}
542 	if (out_page)
543 		kunmap(out_page);
544 	return ret;
545 }
546 
547 static int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb)
548 {
549 	struct workspace *workspace = list_entry(ws, struct workspace, list);
550 	struct page **pages_in = cb->compressed_pages;
551 	u64 disk_start = cb->start;
552 	struct bio *orig_bio = cb->orig_bio;
553 	size_t srclen = cb->compressed_len;
554 	ZSTD_DStream *stream;
555 	int ret = 0;
556 	unsigned long page_in_index = 0;
557 	unsigned long total_pages_in = DIV_ROUND_UP(srclen, PAGE_SIZE);
558 	unsigned long buf_start;
559 	unsigned long total_out = 0;
560 
561 	stream = ZSTD_initDStream(
562 			ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size);
563 	if (!stream) {
564 		pr_debug("BTRFS: ZSTD_initDStream failed\n");
565 		ret = -EIO;
566 		goto done;
567 	}
568 
569 	workspace->in_buf.src = kmap(pages_in[page_in_index]);
570 	workspace->in_buf.pos = 0;
571 	workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE);
572 
573 	workspace->out_buf.dst = workspace->buf;
574 	workspace->out_buf.pos = 0;
575 	workspace->out_buf.size = PAGE_SIZE;
576 
577 	while (1) {
578 		size_t ret2;
579 
580 		ret2 = ZSTD_decompressStream(stream, &workspace->out_buf,
581 				&workspace->in_buf);
582 		if (ZSTD_isError(ret2)) {
583 			pr_debug("BTRFS: ZSTD_decompressStream returned %d\n",
584 					ZSTD_getErrorCode(ret2));
585 			ret = -EIO;
586 			goto done;
587 		}
588 		buf_start = total_out;
589 		total_out += workspace->out_buf.pos;
590 		workspace->out_buf.pos = 0;
591 
592 		ret = btrfs_decompress_buf2page(workspace->out_buf.dst,
593 				buf_start, total_out, disk_start, orig_bio);
594 		if (ret == 0)
595 			break;
596 
597 		if (workspace->in_buf.pos >= srclen)
598 			break;
599 
600 		/* Check if we've hit the end of a frame */
601 		if (ret2 == 0)
602 			break;
603 
604 		if (workspace->in_buf.pos == workspace->in_buf.size) {
605 			kunmap(pages_in[page_in_index++]);
606 			if (page_in_index >= total_pages_in) {
607 				workspace->in_buf.src = NULL;
608 				ret = -EIO;
609 				goto done;
610 			}
611 			srclen -= PAGE_SIZE;
612 			workspace->in_buf.src = kmap(pages_in[page_in_index]);
613 			workspace->in_buf.pos = 0;
614 			workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE);
615 		}
616 	}
617 	ret = 0;
618 	zero_fill_bio(orig_bio);
619 done:
620 	if (workspace->in_buf.src)
621 		kunmap(pages_in[page_in_index]);
622 	return ret;
623 }
624 
625 static int zstd_decompress(struct list_head *ws, unsigned char *data_in,
626 		struct page *dest_page,
627 		unsigned long start_byte,
628 		size_t srclen, size_t destlen)
629 {
630 	struct workspace *workspace = list_entry(ws, struct workspace, list);
631 	ZSTD_DStream *stream;
632 	int ret = 0;
633 	size_t ret2;
634 	unsigned long total_out = 0;
635 	unsigned long pg_offset = 0;
636 	char *kaddr;
637 
638 	stream = ZSTD_initDStream(
639 			ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size);
640 	if (!stream) {
641 		pr_warn("BTRFS: ZSTD_initDStream failed\n");
642 		ret = -EIO;
643 		goto finish;
644 	}
645 
646 	destlen = min_t(size_t, destlen, PAGE_SIZE);
647 
648 	workspace->in_buf.src = data_in;
649 	workspace->in_buf.pos = 0;
650 	workspace->in_buf.size = srclen;
651 
652 	workspace->out_buf.dst = workspace->buf;
653 	workspace->out_buf.pos = 0;
654 	workspace->out_buf.size = PAGE_SIZE;
655 
656 	ret2 = 1;
657 	while (pg_offset < destlen
658 	       && workspace->in_buf.pos < workspace->in_buf.size) {
659 		unsigned long buf_start;
660 		unsigned long buf_offset;
661 		unsigned long bytes;
662 
663 		/* Check if the frame is over and we still need more input */
664 		if (ret2 == 0) {
665 			pr_debug("BTRFS: ZSTD_decompressStream ended early\n");
666 			ret = -EIO;
667 			goto finish;
668 		}
669 		ret2 = ZSTD_decompressStream(stream, &workspace->out_buf,
670 				&workspace->in_buf);
671 		if (ZSTD_isError(ret2)) {
672 			pr_debug("BTRFS: ZSTD_decompressStream returned %d\n",
673 					ZSTD_getErrorCode(ret2));
674 			ret = -EIO;
675 			goto finish;
676 		}
677 
678 		buf_start = total_out;
679 		total_out += workspace->out_buf.pos;
680 		workspace->out_buf.pos = 0;
681 
682 		if (total_out <= start_byte)
683 			continue;
684 
685 		if (total_out > start_byte && buf_start < start_byte)
686 			buf_offset = start_byte - buf_start;
687 		else
688 			buf_offset = 0;
689 
690 		bytes = min_t(unsigned long, destlen - pg_offset,
691 				workspace->out_buf.size - buf_offset);
692 
693 		kaddr = kmap_atomic(dest_page);
694 		memcpy(kaddr + pg_offset, workspace->out_buf.dst + buf_offset,
695 				bytes);
696 		kunmap_atomic(kaddr);
697 
698 		pg_offset += bytes;
699 	}
700 	ret = 0;
701 finish:
702 	if (pg_offset < destlen) {
703 		kaddr = kmap_atomic(dest_page);
704 		memset(kaddr + pg_offset, 0, destlen - pg_offset);
705 		kunmap_atomic(kaddr);
706 	}
707 	return ret;
708 }
709 
710 static unsigned int zstd_set_level(unsigned int level)
711 {
712 	if (!level)
713 		return ZSTD_BTRFS_DEFAULT_LEVEL;
714 
715 	return min_t(unsigned int, level, ZSTD_BTRFS_MAX_LEVEL);
716 }
717 
718 const struct btrfs_compress_op btrfs_zstd_compress = {
719 	.init_workspace_manager = zstd_init_workspace_manager,
720 	.cleanup_workspace_manager = zstd_cleanup_workspace_manager,
721 	.get_workspace = zstd_get_workspace,
722 	.put_workspace = zstd_put_workspace,
723 	.alloc_workspace = zstd_alloc_workspace,
724 	.free_workspace = zstd_free_workspace,
725 	.compress_pages = zstd_compress_pages,
726 	.decompress_bio = zstd_decompress_bio,
727 	.decompress = zstd_decompress,
728 	.set_level = zstd_set_level,
729 };
730