1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2016-present, Facebook, Inc. 4 * All rights reserved. 5 * 6 */ 7 8 #include <linux/bio.h> 9 #include <linux/bitmap.h> 10 #include <linux/err.h> 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/mm.h> 14 #include <linux/sched/mm.h> 15 #include <linux/pagemap.h> 16 #include <linux/refcount.h> 17 #include <linux/sched.h> 18 #include <linux/slab.h> 19 #include <linux/zstd.h> 20 #include "misc.h" 21 #include "fs.h" 22 #include "btrfs_inode.h" 23 #include "compression.h" 24 #include "super.h" 25 26 #define ZSTD_BTRFS_MAX_WINDOWLOG 17 27 #define ZSTD_BTRFS_MAX_INPUT (1 << ZSTD_BTRFS_MAX_WINDOWLOG) 28 #define ZSTD_BTRFS_DEFAULT_LEVEL 3 29 #define ZSTD_BTRFS_MAX_LEVEL 15 30 /* 307s to avoid pathologically clashing with transaction commit */ 31 #define ZSTD_BTRFS_RECLAIM_JIFFIES (307 * HZ) 32 33 static zstd_parameters zstd_get_btrfs_parameters(unsigned int level, 34 size_t src_len) 35 { 36 zstd_parameters params = zstd_get_params(level, src_len); 37 38 if (params.cParams.windowLog > ZSTD_BTRFS_MAX_WINDOWLOG) 39 params.cParams.windowLog = ZSTD_BTRFS_MAX_WINDOWLOG; 40 WARN_ON(src_len > ZSTD_BTRFS_MAX_INPUT); 41 return params; 42 } 43 44 struct workspace { 45 void *mem; 46 size_t size; 47 char *buf; 48 unsigned int level; 49 unsigned int req_level; 50 unsigned long last_used; /* jiffies */ 51 struct list_head list; 52 struct list_head lru_list; 53 zstd_in_buffer in_buf; 54 zstd_out_buffer out_buf; 55 }; 56 57 /* 58 * Zstd Workspace Management 59 * 60 * Zstd workspaces have different memory requirements depending on the level. 61 * The zstd workspaces are managed by having individual lists for each level 62 * and a global lru. Forward progress is maintained by protecting a max level 63 * workspace. 64 * 65 * Getting a workspace is done by using the bitmap to identify the levels that 66 * have available workspaces and scans up. This lets us recycle higher level 67 * workspaces because of the monotonic memory guarantee. A workspace's 68 * last_used is only updated if it is being used by the corresponding memory 69 * level. Putting a workspace involves adding it back to the appropriate places 70 * and adding it back to the lru if necessary. 71 * 72 * A timer is used to reclaim workspaces if they have not been used for 73 * ZSTD_BTRFS_RECLAIM_JIFFIES. This helps keep only active workspaces around. 74 * The upper bound is provided by the workqueue limit which is 2 (percpu limit). 75 */ 76 77 struct zstd_workspace_manager { 78 const struct btrfs_compress_op *ops; 79 spinlock_t lock; 80 struct list_head lru_list; 81 struct list_head idle_ws[ZSTD_BTRFS_MAX_LEVEL]; 82 unsigned long active_map; 83 wait_queue_head_t wait; 84 struct timer_list timer; 85 }; 86 87 static struct zstd_workspace_manager wsm; 88 89 static size_t zstd_ws_mem_sizes[ZSTD_BTRFS_MAX_LEVEL]; 90 91 static inline struct workspace *list_to_workspace(struct list_head *list) 92 { 93 return container_of(list, struct workspace, list); 94 } 95 96 void zstd_free_workspace(struct list_head *ws); 97 struct list_head *zstd_alloc_workspace(unsigned int level); 98 99 /* 100 * Timer callback to free unused workspaces. 101 * 102 * @t: timer 103 * 104 * This scans the lru_list and attempts to reclaim any workspace that hasn't 105 * been used for ZSTD_BTRFS_RECLAIM_JIFFIES. 106 * 107 * The context is softirq and does not need the _bh locking primitives. 108 */ 109 static void zstd_reclaim_timer_fn(struct timer_list *timer) 110 { 111 unsigned long reclaim_threshold = jiffies - ZSTD_BTRFS_RECLAIM_JIFFIES; 112 struct list_head *pos, *next; 113 114 ASSERT(timer == &wsm.timer); 115 116 spin_lock(&wsm.lock); 117 118 if (list_empty(&wsm.lru_list)) { 119 spin_unlock(&wsm.lock); 120 return; 121 } 122 123 list_for_each_prev_safe(pos, next, &wsm.lru_list) { 124 struct workspace *victim = container_of(pos, struct workspace, 125 lru_list); 126 unsigned int level; 127 128 if (time_after(victim->last_used, reclaim_threshold)) 129 break; 130 131 /* workspace is in use */ 132 if (victim->req_level) 133 continue; 134 135 level = victim->level; 136 list_del(&victim->lru_list); 137 list_del(&victim->list); 138 zstd_free_workspace(&victim->list); 139 140 if (list_empty(&wsm.idle_ws[level - 1])) 141 clear_bit(level - 1, &wsm.active_map); 142 143 } 144 145 if (!list_empty(&wsm.lru_list)) 146 mod_timer(&wsm.timer, jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES); 147 148 spin_unlock(&wsm.lock); 149 } 150 151 /* 152 * Calculate monotonic memory bounds. 153 * 154 * It is possible based on the level configurations that a higher level 155 * workspace uses less memory than a lower level workspace. In order to reuse 156 * workspaces, this must be made a monotonic relationship. This precomputes 157 * the required memory for each level and enforces the monotonicity between 158 * level and memory required. 159 */ 160 static void zstd_calc_ws_mem_sizes(void) 161 { 162 size_t max_size = 0; 163 unsigned int level; 164 165 for (level = 1; level <= ZSTD_BTRFS_MAX_LEVEL; level++) { 166 zstd_parameters params = 167 zstd_get_btrfs_parameters(level, ZSTD_BTRFS_MAX_INPUT); 168 size_t level_size = 169 max_t(size_t, 170 zstd_cstream_workspace_bound(¶ms.cParams), 171 zstd_dstream_workspace_bound(ZSTD_BTRFS_MAX_INPUT)); 172 173 max_size = max_t(size_t, max_size, level_size); 174 zstd_ws_mem_sizes[level - 1] = max_size; 175 } 176 } 177 178 void zstd_init_workspace_manager(void) 179 { 180 struct list_head *ws; 181 int i; 182 183 zstd_calc_ws_mem_sizes(); 184 185 wsm.ops = &btrfs_zstd_compress; 186 spin_lock_init(&wsm.lock); 187 init_waitqueue_head(&wsm.wait); 188 timer_setup(&wsm.timer, zstd_reclaim_timer_fn, 0); 189 190 INIT_LIST_HEAD(&wsm.lru_list); 191 for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) 192 INIT_LIST_HEAD(&wsm.idle_ws[i]); 193 194 ws = zstd_alloc_workspace(ZSTD_BTRFS_MAX_LEVEL); 195 if (IS_ERR(ws)) { 196 pr_warn( 197 "BTRFS: cannot preallocate zstd compression workspace\n"); 198 } else { 199 set_bit(ZSTD_BTRFS_MAX_LEVEL - 1, &wsm.active_map); 200 list_add(ws, &wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1]); 201 } 202 } 203 204 void zstd_cleanup_workspace_manager(void) 205 { 206 struct workspace *workspace; 207 int i; 208 209 spin_lock_bh(&wsm.lock); 210 for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) { 211 while (!list_empty(&wsm.idle_ws[i])) { 212 workspace = container_of(wsm.idle_ws[i].next, 213 struct workspace, list); 214 list_del(&workspace->list); 215 list_del(&workspace->lru_list); 216 zstd_free_workspace(&workspace->list); 217 } 218 } 219 spin_unlock_bh(&wsm.lock); 220 221 del_timer_sync(&wsm.timer); 222 } 223 224 /* 225 * Find workspace for given level. 226 * 227 * @level: compression level 228 * 229 * This iterates over the set bits in the active_map beginning at the requested 230 * compression level. This lets us utilize already allocated workspaces before 231 * allocating a new one. If the workspace is of a larger size, it is used, but 232 * the place in the lru_list and last_used times are not updated. This is to 233 * offer the opportunity to reclaim the workspace in favor of allocating an 234 * appropriately sized one in the future. 235 */ 236 static struct list_head *zstd_find_workspace(unsigned int level) 237 { 238 struct list_head *ws; 239 struct workspace *workspace; 240 int i = level - 1; 241 242 spin_lock_bh(&wsm.lock); 243 for_each_set_bit_from(i, &wsm.active_map, ZSTD_BTRFS_MAX_LEVEL) { 244 if (!list_empty(&wsm.idle_ws[i])) { 245 ws = wsm.idle_ws[i].next; 246 workspace = list_to_workspace(ws); 247 list_del_init(ws); 248 /* keep its place if it's a lower level using this */ 249 workspace->req_level = level; 250 if (level == workspace->level) 251 list_del(&workspace->lru_list); 252 if (list_empty(&wsm.idle_ws[i])) 253 clear_bit(i, &wsm.active_map); 254 spin_unlock_bh(&wsm.lock); 255 return ws; 256 } 257 } 258 spin_unlock_bh(&wsm.lock); 259 260 return NULL; 261 } 262 263 /* 264 * Zstd get_workspace for level. 265 * 266 * @level: compression level 267 * 268 * If @level is 0, then any compression level can be used. Therefore, we begin 269 * scanning from 1. We first scan through possible workspaces and then after 270 * attempt to allocate a new workspace. If we fail to allocate one due to 271 * memory pressure, go to sleep waiting for the max level workspace to free up. 272 */ 273 struct list_head *zstd_get_workspace(unsigned int level) 274 { 275 struct list_head *ws; 276 unsigned int nofs_flag; 277 278 /* level == 0 means we can use any workspace */ 279 if (!level) 280 level = 1; 281 282 again: 283 ws = zstd_find_workspace(level); 284 if (ws) 285 return ws; 286 287 nofs_flag = memalloc_nofs_save(); 288 ws = zstd_alloc_workspace(level); 289 memalloc_nofs_restore(nofs_flag); 290 291 if (IS_ERR(ws)) { 292 DEFINE_WAIT(wait); 293 294 prepare_to_wait(&wsm.wait, &wait, TASK_UNINTERRUPTIBLE); 295 schedule(); 296 finish_wait(&wsm.wait, &wait); 297 298 goto again; 299 } 300 301 return ws; 302 } 303 304 /* 305 * Zstd put_workspace. 306 * 307 * @ws: list_head for the workspace 308 * 309 * When putting back a workspace, we only need to update the LRU if we are of 310 * the requested compression level. Here is where we continue to protect the 311 * max level workspace or update last_used accordingly. If the reclaim timer 312 * isn't set, it is also set here. Only the max level workspace tries and wakes 313 * up waiting workspaces. 314 */ 315 void zstd_put_workspace(struct list_head *ws) 316 { 317 struct workspace *workspace = list_to_workspace(ws); 318 319 spin_lock_bh(&wsm.lock); 320 321 /* A node is only taken off the lru if we are the corresponding level */ 322 if (workspace->req_level == workspace->level) { 323 /* Hide a max level workspace from reclaim */ 324 if (list_empty(&wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1])) { 325 INIT_LIST_HEAD(&workspace->lru_list); 326 } else { 327 workspace->last_used = jiffies; 328 list_add(&workspace->lru_list, &wsm.lru_list); 329 if (!timer_pending(&wsm.timer)) 330 mod_timer(&wsm.timer, 331 jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES); 332 } 333 } 334 335 set_bit(workspace->level - 1, &wsm.active_map); 336 list_add(&workspace->list, &wsm.idle_ws[workspace->level - 1]); 337 workspace->req_level = 0; 338 339 spin_unlock_bh(&wsm.lock); 340 341 if (workspace->level == ZSTD_BTRFS_MAX_LEVEL) 342 cond_wake_up(&wsm.wait); 343 } 344 345 void zstd_free_workspace(struct list_head *ws) 346 { 347 struct workspace *workspace = list_entry(ws, struct workspace, list); 348 349 kvfree(workspace->mem); 350 kfree(workspace->buf); 351 kfree(workspace); 352 } 353 354 struct list_head *zstd_alloc_workspace(unsigned int level) 355 { 356 struct workspace *workspace; 357 358 workspace = kzalloc(sizeof(*workspace), GFP_KERNEL); 359 if (!workspace) 360 return ERR_PTR(-ENOMEM); 361 362 workspace->size = zstd_ws_mem_sizes[level - 1]; 363 workspace->level = level; 364 workspace->req_level = level; 365 workspace->last_used = jiffies; 366 workspace->mem = kvmalloc(workspace->size, GFP_KERNEL | __GFP_NOWARN); 367 workspace->buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 368 if (!workspace->mem || !workspace->buf) 369 goto fail; 370 371 INIT_LIST_HEAD(&workspace->list); 372 INIT_LIST_HEAD(&workspace->lru_list); 373 374 return &workspace->list; 375 fail: 376 zstd_free_workspace(&workspace->list); 377 return ERR_PTR(-ENOMEM); 378 } 379 380 int zstd_compress_folios(struct list_head *ws, struct address_space *mapping, 381 u64 start, struct folio **folios, unsigned long *out_folios, 382 unsigned long *total_in, unsigned long *total_out) 383 { 384 struct workspace *workspace = list_entry(ws, struct workspace, list); 385 zstd_cstream *stream; 386 int ret = 0; 387 int nr_folios = 0; 388 struct folio *in_folio = NULL; /* The current folio to read. */ 389 struct folio *out_folio = NULL; /* The current folio to write to. */ 390 unsigned long tot_in = 0; 391 unsigned long tot_out = 0; 392 unsigned long len = *total_out; 393 const unsigned long nr_dest_folios = *out_folios; 394 const u64 orig_end = start + len; 395 unsigned long max_out = nr_dest_folios * PAGE_SIZE; 396 unsigned int pg_off; 397 unsigned int cur_len; 398 zstd_parameters params = zstd_get_btrfs_parameters(workspace->req_level, 399 len); 400 401 *out_folios = 0; 402 *total_out = 0; 403 *total_in = 0; 404 405 /* Initialize the stream */ 406 stream = zstd_init_cstream(¶ms, len, workspace->mem, 407 workspace->size); 408 if (unlikely(!stream)) { 409 struct btrfs_inode *inode = BTRFS_I(mapping->host); 410 411 btrfs_err(inode->root->fs_info, 412 "zstd compression init level %d failed, root %llu inode %llu offset %llu", 413 workspace->req_level, btrfs_root_id(inode->root), 414 btrfs_ino(inode), start); 415 ret = -EIO; 416 goto out; 417 } 418 419 /* map in the first page of input data */ 420 ret = btrfs_compress_filemap_get_folio(mapping, start, &in_folio); 421 if (ret < 0) 422 goto out; 423 pg_off = offset_in_page(start); 424 cur_len = btrfs_calc_input_length(orig_end, start); 425 workspace->in_buf.src = kmap_local_folio(in_folio, pg_off); 426 workspace->in_buf.pos = 0; 427 workspace->in_buf.size = cur_len; 428 429 /* Allocate and map in the output buffer */ 430 out_folio = btrfs_alloc_compr_folio(); 431 if (out_folio == NULL) { 432 ret = -ENOMEM; 433 goto out; 434 } 435 folios[nr_folios++] = out_folio; 436 workspace->out_buf.dst = folio_address(out_folio); 437 workspace->out_buf.pos = 0; 438 workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE); 439 440 while (1) { 441 size_t ret2; 442 443 ret2 = zstd_compress_stream(stream, &workspace->out_buf, 444 &workspace->in_buf); 445 if (unlikely(zstd_is_error(ret2))) { 446 struct btrfs_inode *inode = BTRFS_I(mapping->host); 447 448 btrfs_warn(inode->root->fs_info, 449 "zstd compression level %d failed, error %d root %llu inode %llu offset %llu", 450 workspace->req_level, zstd_get_error_code(ret2), 451 btrfs_root_id(inode->root), btrfs_ino(inode), 452 start); 453 ret = -EIO; 454 goto out; 455 } 456 457 /* Check to see if we are making it bigger */ 458 if (tot_in + workspace->in_buf.pos > 8192 && 459 tot_in + workspace->in_buf.pos < 460 tot_out + workspace->out_buf.pos) { 461 ret = -E2BIG; 462 goto out; 463 } 464 465 /* We've reached the end of our output range */ 466 if (workspace->out_buf.pos >= max_out) { 467 tot_out += workspace->out_buf.pos; 468 ret = -E2BIG; 469 goto out; 470 } 471 472 /* Check if we need more output space */ 473 if (workspace->out_buf.pos == workspace->out_buf.size) { 474 tot_out += PAGE_SIZE; 475 max_out -= PAGE_SIZE; 476 if (nr_folios == nr_dest_folios) { 477 ret = -E2BIG; 478 goto out; 479 } 480 out_folio = btrfs_alloc_compr_folio(); 481 if (out_folio == NULL) { 482 ret = -ENOMEM; 483 goto out; 484 } 485 folios[nr_folios++] = out_folio; 486 workspace->out_buf.dst = folio_address(out_folio); 487 workspace->out_buf.pos = 0; 488 workspace->out_buf.size = min_t(size_t, max_out, 489 PAGE_SIZE); 490 } 491 492 /* We've reached the end of the input */ 493 if (workspace->in_buf.pos >= len) { 494 tot_in += workspace->in_buf.pos; 495 break; 496 } 497 498 /* Check if we need more input */ 499 if (workspace->in_buf.pos == workspace->in_buf.size) { 500 tot_in += workspace->in_buf.size; 501 kunmap_local(workspace->in_buf.src); 502 workspace->in_buf.src = NULL; 503 folio_put(in_folio); 504 start += cur_len; 505 len -= cur_len; 506 ret = btrfs_compress_filemap_get_folio(mapping, start, &in_folio); 507 if (ret < 0) 508 goto out; 509 pg_off = offset_in_page(start); 510 cur_len = btrfs_calc_input_length(orig_end, start); 511 workspace->in_buf.src = kmap_local_folio(in_folio, pg_off); 512 workspace->in_buf.pos = 0; 513 workspace->in_buf.size = cur_len; 514 } 515 } 516 while (1) { 517 size_t ret2; 518 519 ret2 = zstd_end_stream(stream, &workspace->out_buf); 520 if (unlikely(zstd_is_error(ret2))) { 521 struct btrfs_inode *inode = BTRFS_I(mapping->host); 522 523 btrfs_err(inode->root->fs_info, 524 "zstd compression end level %d failed, error %d root %llu inode %llu offset %llu", 525 workspace->req_level, zstd_get_error_code(ret2), 526 btrfs_root_id(inode->root), btrfs_ino(inode), 527 start); 528 ret = -EIO; 529 goto out; 530 } 531 if (ret2 == 0) { 532 tot_out += workspace->out_buf.pos; 533 break; 534 } 535 if (workspace->out_buf.pos >= max_out) { 536 tot_out += workspace->out_buf.pos; 537 ret = -E2BIG; 538 goto out; 539 } 540 541 tot_out += PAGE_SIZE; 542 max_out -= PAGE_SIZE; 543 if (nr_folios == nr_dest_folios) { 544 ret = -E2BIG; 545 goto out; 546 } 547 out_folio = btrfs_alloc_compr_folio(); 548 if (out_folio == NULL) { 549 ret = -ENOMEM; 550 goto out; 551 } 552 folios[nr_folios++] = out_folio; 553 workspace->out_buf.dst = folio_address(out_folio); 554 workspace->out_buf.pos = 0; 555 workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE); 556 } 557 558 if (tot_out >= tot_in) { 559 ret = -E2BIG; 560 goto out; 561 } 562 563 ret = 0; 564 *total_in = tot_in; 565 *total_out = tot_out; 566 out: 567 *out_folios = nr_folios; 568 if (workspace->in_buf.src) { 569 kunmap_local(workspace->in_buf.src); 570 folio_put(in_folio); 571 } 572 return ret; 573 } 574 575 int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb) 576 { 577 struct workspace *workspace = list_entry(ws, struct workspace, list); 578 struct folio **folios_in = cb->compressed_folios; 579 size_t srclen = cb->compressed_len; 580 zstd_dstream *stream; 581 int ret = 0; 582 unsigned long folio_in_index = 0; 583 unsigned long total_folios_in = DIV_ROUND_UP(srclen, PAGE_SIZE); 584 unsigned long buf_start; 585 unsigned long total_out = 0; 586 587 stream = zstd_init_dstream( 588 ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size); 589 if (unlikely(!stream)) { 590 struct btrfs_inode *inode = cb->bbio.inode; 591 592 btrfs_err(inode->root->fs_info, 593 "zstd decompression init failed, root %llu inode %llu offset %llu", 594 btrfs_root_id(inode->root), btrfs_ino(inode), cb->start); 595 ret = -EIO; 596 goto done; 597 } 598 599 workspace->in_buf.src = kmap_local_folio(folios_in[folio_in_index], 0); 600 workspace->in_buf.pos = 0; 601 workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE); 602 603 workspace->out_buf.dst = workspace->buf; 604 workspace->out_buf.pos = 0; 605 workspace->out_buf.size = PAGE_SIZE; 606 607 while (1) { 608 size_t ret2; 609 610 ret2 = zstd_decompress_stream(stream, &workspace->out_buf, 611 &workspace->in_buf); 612 if (unlikely(zstd_is_error(ret2))) { 613 struct btrfs_inode *inode = cb->bbio.inode; 614 615 btrfs_err(inode->root->fs_info, 616 "zstd decompression failed, error %d root %llu inode %llu offset %llu", 617 zstd_get_error_code(ret2), btrfs_root_id(inode->root), 618 btrfs_ino(inode), cb->start); 619 ret = -EIO; 620 goto done; 621 } 622 buf_start = total_out; 623 total_out += workspace->out_buf.pos; 624 workspace->out_buf.pos = 0; 625 626 ret = btrfs_decompress_buf2page(workspace->out_buf.dst, 627 total_out - buf_start, cb, buf_start); 628 if (ret == 0) 629 break; 630 631 if (workspace->in_buf.pos >= srclen) 632 break; 633 634 /* Check if we've hit the end of a frame */ 635 if (ret2 == 0) 636 break; 637 638 if (workspace->in_buf.pos == workspace->in_buf.size) { 639 kunmap_local(workspace->in_buf.src); 640 folio_in_index++; 641 if (folio_in_index >= total_folios_in) { 642 workspace->in_buf.src = NULL; 643 ret = -EIO; 644 goto done; 645 } 646 srclen -= PAGE_SIZE; 647 workspace->in_buf.src = 648 kmap_local_folio(folios_in[folio_in_index], 0); 649 workspace->in_buf.pos = 0; 650 workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE); 651 } 652 } 653 ret = 0; 654 done: 655 if (workspace->in_buf.src) 656 kunmap_local(workspace->in_buf.src); 657 return ret; 658 } 659 660 int zstd_decompress(struct list_head *ws, const u8 *data_in, 661 struct folio *dest_folio, unsigned long dest_pgoff, size_t srclen, 662 size_t destlen) 663 { 664 struct workspace *workspace = list_entry(ws, struct workspace, list); 665 struct btrfs_fs_info *fs_info = btrfs_sb(folio_inode(dest_folio)->i_sb); 666 const u32 sectorsize = fs_info->sectorsize; 667 zstd_dstream *stream; 668 int ret = 0; 669 unsigned long to_copy = 0; 670 671 stream = zstd_init_dstream( 672 ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size); 673 if (unlikely(!stream)) { 674 struct btrfs_inode *inode = folio_to_inode(dest_folio); 675 676 btrfs_err(inode->root->fs_info, 677 "zstd decompression init failed, root %llu inode %llu offset %llu", 678 btrfs_root_id(inode->root), btrfs_ino(inode), 679 folio_pos(dest_folio)); 680 ret = -EIO; 681 goto finish; 682 } 683 684 workspace->in_buf.src = data_in; 685 workspace->in_buf.pos = 0; 686 workspace->in_buf.size = srclen; 687 688 workspace->out_buf.dst = workspace->buf; 689 workspace->out_buf.pos = 0; 690 workspace->out_buf.size = sectorsize; 691 692 /* 693 * Since both input and output buffers should not exceed one sector, 694 * one call should end the decompression. 695 */ 696 ret = zstd_decompress_stream(stream, &workspace->out_buf, &workspace->in_buf); 697 if (unlikely(zstd_is_error(ret))) { 698 struct btrfs_inode *inode = folio_to_inode(dest_folio); 699 700 btrfs_err(inode->root->fs_info, 701 "zstd decompression failed, error %d root %llu inode %llu offset %llu", 702 zstd_get_error_code(ret), btrfs_root_id(inode->root), 703 btrfs_ino(inode), folio_pos(dest_folio)); 704 goto finish; 705 } 706 to_copy = workspace->out_buf.pos; 707 memcpy_to_folio(dest_folio, dest_pgoff, workspace->out_buf.dst, to_copy); 708 finish: 709 /* Error or early end. */ 710 if (unlikely(to_copy < destlen)) { 711 ret = -EIO; 712 folio_zero_range(dest_folio, dest_pgoff + to_copy, destlen - to_copy); 713 } 714 return ret; 715 } 716 717 const struct btrfs_compress_op btrfs_zstd_compress = { 718 /* ZSTD uses own workspace manager */ 719 .workspace_manager = NULL, 720 .max_level = ZSTD_BTRFS_MAX_LEVEL, 721 .default_level = ZSTD_BTRFS_DEFAULT_LEVEL, 722 }; 723