xref: /linux/fs/btrfs/zstd.c (revision 3027ce13e04eee76539ca65c2cb1028a01c8c508)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016-present, Facebook, Inc.
4  * All rights reserved.
5  *
6  */
7 
8 #include <linux/bio.h>
9 #include <linux/bitmap.h>
10 #include <linux/err.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/mm.h>
14 #include <linux/sched/mm.h>
15 #include <linux/pagemap.h>
16 #include <linux/refcount.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/zstd.h>
20 #include "misc.h"
21 #include "fs.h"
22 #include "compression.h"
23 #include "super.h"
24 
25 #define ZSTD_BTRFS_MAX_WINDOWLOG 17
26 #define ZSTD_BTRFS_MAX_INPUT (1 << ZSTD_BTRFS_MAX_WINDOWLOG)
27 #define ZSTD_BTRFS_DEFAULT_LEVEL 3
28 #define ZSTD_BTRFS_MAX_LEVEL 15
29 /* 307s to avoid pathologically clashing with transaction commit */
30 #define ZSTD_BTRFS_RECLAIM_JIFFIES (307 * HZ)
31 
32 static zstd_parameters zstd_get_btrfs_parameters(unsigned int level,
33 						 size_t src_len)
34 {
35 	zstd_parameters params = zstd_get_params(level, src_len);
36 
37 	if (params.cParams.windowLog > ZSTD_BTRFS_MAX_WINDOWLOG)
38 		params.cParams.windowLog = ZSTD_BTRFS_MAX_WINDOWLOG;
39 	WARN_ON(src_len > ZSTD_BTRFS_MAX_INPUT);
40 	return params;
41 }
42 
43 struct workspace {
44 	void *mem;
45 	size_t size;
46 	char *buf;
47 	unsigned int level;
48 	unsigned int req_level;
49 	unsigned long last_used; /* jiffies */
50 	struct list_head list;
51 	struct list_head lru_list;
52 	zstd_in_buffer in_buf;
53 	zstd_out_buffer out_buf;
54 };
55 
56 /*
57  * Zstd Workspace Management
58  *
59  * Zstd workspaces have different memory requirements depending on the level.
60  * The zstd workspaces are managed by having individual lists for each level
61  * and a global lru.  Forward progress is maintained by protecting a max level
62  * workspace.
63  *
64  * Getting a workspace is done by using the bitmap to identify the levels that
65  * have available workspaces and scans up.  This lets us recycle higher level
66  * workspaces because of the monotonic memory guarantee.  A workspace's
67  * last_used is only updated if it is being used by the corresponding memory
68  * level.  Putting a workspace involves adding it back to the appropriate places
69  * and adding it back to the lru if necessary.
70  *
71  * A timer is used to reclaim workspaces if they have not been used for
72  * ZSTD_BTRFS_RECLAIM_JIFFIES.  This helps keep only active workspaces around.
73  * The upper bound is provided by the workqueue limit which is 2 (percpu limit).
74  */
75 
76 struct zstd_workspace_manager {
77 	const struct btrfs_compress_op *ops;
78 	spinlock_t lock;
79 	struct list_head lru_list;
80 	struct list_head idle_ws[ZSTD_BTRFS_MAX_LEVEL];
81 	unsigned long active_map;
82 	wait_queue_head_t wait;
83 	struct timer_list timer;
84 };
85 
86 static struct zstd_workspace_manager wsm;
87 
88 static size_t zstd_ws_mem_sizes[ZSTD_BTRFS_MAX_LEVEL];
89 
90 static inline struct workspace *list_to_workspace(struct list_head *list)
91 {
92 	return container_of(list, struct workspace, list);
93 }
94 
95 void zstd_free_workspace(struct list_head *ws);
96 struct list_head *zstd_alloc_workspace(unsigned int level);
97 
98 /*
99  * Timer callback to free unused workspaces.
100  *
101  * @t: timer
102  *
103  * This scans the lru_list and attempts to reclaim any workspace that hasn't
104  * been used for ZSTD_BTRFS_RECLAIM_JIFFIES.
105  *
106  * The context is softirq and does not need the _bh locking primitives.
107  */
108 static void zstd_reclaim_timer_fn(struct timer_list *timer)
109 {
110 	unsigned long reclaim_threshold = jiffies - ZSTD_BTRFS_RECLAIM_JIFFIES;
111 	struct list_head *pos, *next;
112 
113 	spin_lock(&wsm.lock);
114 
115 	if (list_empty(&wsm.lru_list)) {
116 		spin_unlock(&wsm.lock);
117 		return;
118 	}
119 
120 	list_for_each_prev_safe(pos, next, &wsm.lru_list) {
121 		struct workspace *victim = container_of(pos, struct workspace,
122 							lru_list);
123 		unsigned int level;
124 
125 		if (time_after(victim->last_used, reclaim_threshold))
126 			break;
127 
128 		/* workspace is in use */
129 		if (victim->req_level)
130 			continue;
131 
132 		level = victim->level;
133 		list_del(&victim->lru_list);
134 		list_del(&victim->list);
135 		zstd_free_workspace(&victim->list);
136 
137 		if (list_empty(&wsm.idle_ws[level - 1]))
138 			clear_bit(level - 1, &wsm.active_map);
139 
140 	}
141 
142 	if (!list_empty(&wsm.lru_list))
143 		mod_timer(&wsm.timer, jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES);
144 
145 	spin_unlock(&wsm.lock);
146 }
147 
148 /*
149  * Calculate monotonic memory bounds.
150  *
151  * It is possible based on the level configurations that a higher level
152  * workspace uses less memory than a lower level workspace.  In order to reuse
153  * workspaces, this must be made a monotonic relationship.  This precomputes
154  * the required memory for each level and enforces the monotonicity between
155  * level and memory required.
156  */
157 static void zstd_calc_ws_mem_sizes(void)
158 {
159 	size_t max_size = 0;
160 	unsigned int level;
161 
162 	for (level = 1; level <= ZSTD_BTRFS_MAX_LEVEL; level++) {
163 		zstd_parameters params =
164 			zstd_get_btrfs_parameters(level, ZSTD_BTRFS_MAX_INPUT);
165 		size_t level_size =
166 			max_t(size_t,
167 			      zstd_cstream_workspace_bound(&params.cParams),
168 			      zstd_dstream_workspace_bound(ZSTD_BTRFS_MAX_INPUT));
169 
170 		max_size = max_t(size_t, max_size, level_size);
171 		zstd_ws_mem_sizes[level - 1] = max_size;
172 	}
173 }
174 
175 void zstd_init_workspace_manager(void)
176 {
177 	struct list_head *ws;
178 	int i;
179 
180 	zstd_calc_ws_mem_sizes();
181 
182 	wsm.ops = &btrfs_zstd_compress;
183 	spin_lock_init(&wsm.lock);
184 	init_waitqueue_head(&wsm.wait);
185 	timer_setup(&wsm.timer, zstd_reclaim_timer_fn, 0);
186 
187 	INIT_LIST_HEAD(&wsm.lru_list);
188 	for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++)
189 		INIT_LIST_HEAD(&wsm.idle_ws[i]);
190 
191 	ws = zstd_alloc_workspace(ZSTD_BTRFS_MAX_LEVEL);
192 	if (IS_ERR(ws)) {
193 		pr_warn(
194 		"BTRFS: cannot preallocate zstd compression workspace\n");
195 	} else {
196 		set_bit(ZSTD_BTRFS_MAX_LEVEL - 1, &wsm.active_map);
197 		list_add(ws, &wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1]);
198 	}
199 }
200 
201 void zstd_cleanup_workspace_manager(void)
202 {
203 	struct workspace *workspace;
204 	int i;
205 
206 	spin_lock_bh(&wsm.lock);
207 	for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) {
208 		while (!list_empty(&wsm.idle_ws[i])) {
209 			workspace = container_of(wsm.idle_ws[i].next,
210 						 struct workspace, list);
211 			list_del(&workspace->list);
212 			list_del(&workspace->lru_list);
213 			zstd_free_workspace(&workspace->list);
214 		}
215 	}
216 	spin_unlock_bh(&wsm.lock);
217 
218 	del_timer_sync(&wsm.timer);
219 }
220 
221 /*
222  * Find workspace for given level.
223  *
224  * @level: compression level
225  *
226  * This iterates over the set bits in the active_map beginning at the requested
227  * compression level.  This lets us utilize already allocated workspaces before
228  * allocating a new one.  If the workspace is of a larger size, it is used, but
229  * the place in the lru_list and last_used times are not updated.  This is to
230  * offer the opportunity to reclaim the workspace in favor of allocating an
231  * appropriately sized one in the future.
232  */
233 static struct list_head *zstd_find_workspace(unsigned int level)
234 {
235 	struct list_head *ws;
236 	struct workspace *workspace;
237 	int i = level - 1;
238 
239 	spin_lock_bh(&wsm.lock);
240 	for_each_set_bit_from(i, &wsm.active_map, ZSTD_BTRFS_MAX_LEVEL) {
241 		if (!list_empty(&wsm.idle_ws[i])) {
242 			ws = wsm.idle_ws[i].next;
243 			workspace = list_to_workspace(ws);
244 			list_del_init(ws);
245 			/* keep its place if it's a lower level using this */
246 			workspace->req_level = level;
247 			if (level == workspace->level)
248 				list_del(&workspace->lru_list);
249 			if (list_empty(&wsm.idle_ws[i]))
250 				clear_bit(i, &wsm.active_map);
251 			spin_unlock_bh(&wsm.lock);
252 			return ws;
253 		}
254 	}
255 	spin_unlock_bh(&wsm.lock);
256 
257 	return NULL;
258 }
259 
260 /*
261  * Zstd get_workspace for level.
262  *
263  * @level: compression level
264  *
265  * If @level is 0, then any compression level can be used.  Therefore, we begin
266  * scanning from 1.  We first scan through possible workspaces and then after
267  * attempt to allocate a new workspace.  If we fail to allocate one due to
268  * memory pressure, go to sleep waiting for the max level workspace to free up.
269  */
270 struct list_head *zstd_get_workspace(unsigned int level)
271 {
272 	struct list_head *ws;
273 	unsigned int nofs_flag;
274 
275 	/* level == 0 means we can use any workspace */
276 	if (!level)
277 		level = 1;
278 
279 again:
280 	ws = zstd_find_workspace(level);
281 	if (ws)
282 		return ws;
283 
284 	nofs_flag = memalloc_nofs_save();
285 	ws = zstd_alloc_workspace(level);
286 	memalloc_nofs_restore(nofs_flag);
287 
288 	if (IS_ERR(ws)) {
289 		DEFINE_WAIT(wait);
290 
291 		prepare_to_wait(&wsm.wait, &wait, TASK_UNINTERRUPTIBLE);
292 		schedule();
293 		finish_wait(&wsm.wait, &wait);
294 
295 		goto again;
296 	}
297 
298 	return ws;
299 }
300 
301 /*
302  * Zstd put_workspace.
303  *
304  * @ws: list_head for the workspace
305  *
306  * When putting back a workspace, we only need to update the LRU if we are of
307  * the requested compression level.  Here is where we continue to protect the
308  * max level workspace or update last_used accordingly.  If the reclaim timer
309  * isn't set, it is also set here.  Only the max level workspace tries and wakes
310  * up waiting workspaces.
311  */
312 void zstd_put_workspace(struct list_head *ws)
313 {
314 	struct workspace *workspace = list_to_workspace(ws);
315 
316 	spin_lock_bh(&wsm.lock);
317 
318 	/* A node is only taken off the lru if we are the corresponding level */
319 	if (workspace->req_level == workspace->level) {
320 		/* Hide a max level workspace from reclaim */
321 		if (list_empty(&wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1])) {
322 			INIT_LIST_HEAD(&workspace->lru_list);
323 		} else {
324 			workspace->last_used = jiffies;
325 			list_add(&workspace->lru_list, &wsm.lru_list);
326 			if (!timer_pending(&wsm.timer))
327 				mod_timer(&wsm.timer,
328 					  jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES);
329 		}
330 	}
331 
332 	set_bit(workspace->level - 1, &wsm.active_map);
333 	list_add(&workspace->list, &wsm.idle_ws[workspace->level - 1]);
334 	workspace->req_level = 0;
335 
336 	spin_unlock_bh(&wsm.lock);
337 
338 	if (workspace->level == ZSTD_BTRFS_MAX_LEVEL)
339 		cond_wake_up(&wsm.wait);
340 }
341 
342 void zstd_free_workspace(struct list_head *ws)
343 {
344 	struct workspace *workspace = list_entry(ws, struct workspace, list);
345 
346 	kvfree(workspace->mem);
347 	kfree(workspace->buf);
348 	kfree(workspace);
349 }
350 
351 struct list_head *zstd_alloc_workspace(unsigned int level)
352 {
353 	struct workspace *workspace;
354 
355 	workspace = kzalloc(sizeof(*workspace), GFP_KERNEL);
356 	if (!workspace)
357 		return ERR_PTR(-ENOMEM);
358 
359 	workspace->size = zstd_ws_mem_sizes[level - 1];
360 	workspace->level = level;
361 	workspace->req_level = level;
362 	workspace->last_used = jiffies;
363 	workspace->mem = kvmalloc(workspace->size, GFP_KERNEL | __GFP_NOWARN);
364 	workspace->buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
365 	if (!workspace->mem || !workspace->buf)
366 		goto fail;
367 
368 	INIT_LIST_HEAD(&workspace->list);
369 	INIT_LIST_HEAD(&workspace->lru_list);
370 
371 	return &workspace->list;
372 fail:
373 	zstd_free_workspace(&workspace->list);
374 	return ERR_PTR(-ENOMEM);
375 }
376 
377 int zstd_compress_pages(struct list_head *ws, struct address_space *mapping,
378 		u64 start, struct page **pages, unsigned long *out_pages,
379 		unsigned long *total_in, unsigned long *total_out)
380 {
381 	struct workspace *workspace = list_entry(ws, struct workspace, list);
382 	zstd_cstream *stream;
383 	int ret = 0;
384 	int nr_pages = 0;
385 	struct page *in_page = NULL;  /* The current page to read */
386 	struct page *out_page = NULL; /* The current page to write to */
387 	unsigned long tot_in = 0;
388 	unsigned long tot_out = 0;
389 	unsigned long len = *total_out;
390 	const unsigned long nr_dest_pages = *out_pages;
391 	unsigned long max_out = nr_dest_pages * PAGE_SIZE;
392 	zstd_parameters params = zstd_get_btrfs_parameters(workspace->req_level,
393 							   len);
394 
395 	*out_pages = 0;
396 	*total_out = 0;
397 	*total_in = 0;
398 
399 	/* Initialize the stream */
400 	stream = zstd_init_cstream(&params, len, workspace->mem,
401 			workspace->size);
402 	if (!stream) {
403 		pr_warn("BTRFS: zstd_init_cstream failed\n");
404 		ret = -EIO;
405 		goto out;
406 	}
407 
408 	/* map in the first page of input data */
409 	in_page = find_get_page(mapping, start >> PAGE_SHIFT);
410 	workspace->in_buf.src = kmap_local_page(in_page);
411 	workspace->in_buf.pos = 0;
412 	workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE);
413 
414 	/* Allocate and map in the output buffer */
415 	out_page = btrfs_alloc_compr_page();
416 	if (out_page == NULL) {
417 		ret = -ENOMEM;
418 		goto out;
419 	}
420 	pages[nr_pages++] = out_page;
421 	workspace->out_buf.dst = page_address(out_page);
422 	workspace->out_buf.pos = 0;
423 	workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE);
424 
425 	while (1) {
426 		size_t ret2;
427 
428 		ret2 = zstd_compress_stream(stream, &workspace->out_buf,
429 				&workspace->in_buf);
430 		if (zstd_is_error(ret2)) {
431 			pr_debug("BTRFS: zstd_compress_stream returned %d\n",
432 					zstd_get_error_code(ret2));
433 			ret = -EIO;
434 			goto out;
435 		}
436 
437 		/* Check to see if we are making it bigger */
438 		if (tot_in + workspace->in_buf.pos > 8192 &&
439 				tot_in + workspace->in_buf.pos <
440 				tot_out + workspace->out_buf.pos) {
441 			ret = -E2BIG;
442 			goto out;
443 		}
444 
445 		/* We've reached the end of our output range */
446 		if (workspace->out_buf.pos >= max_out) {
447 			tot_out += workspace->out_buf.pos;
448 			ret = -E2BIG;
449 			goto out;
450 		}
451 
452 		/* Check if we need more output space */
453 		if (workspace->out_buf.pos == workspace->out_buf.size) {
454 			tot_out += PAGE_SIZE;
455 			max_out -= PAGE_SIZE;
456 			if (nr_pages == nr_dest_pages) {
457 				ret = -E2BIG;
458 				goto out;
459 			}
460 			out_page = btrfs_alloc_compr_page();
461 			if (out_page == NULL) {
462 				ret = -ENOMEM;
463 				goto out;
464 			}
465 			pages[nr_pages++] = out_page;
466 			workspace->out_buf.dst = page_address(out_page);
467 			workspace->out_buf.pos = 0;
468 			workspace->out_buf.size = min_t(size_t, max_out,
469 							PAGE_SIZE);
470 		}
471 
472 		/* We've reached the end of the input */
473 		if (workspace->in_buf.pos >= len) {
474 			tot_in += workspace->in_buf.pos;
475 			break;
476 		}
477 
478 		/* Check if we need more input */
479 		if (workspace->in_buf.pos == workspace->in_buf.size) {
480 			tot_in += PAGE_SIZE;
481 			kunmap_local(workspace->in_buf.src);
482 			put_page(in_page);
483 			start += PAGE_SIZE;
484 			len -= PAGE_SIZE;
485 			in_page = find_get_page(mapping, start >> PAGE_SHIFT);
486 			workspace->in_buf.src = kmap_local_page(in_page);
487 			workspace->in_buf.pos = 0;
488 			workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE);
489 		}
490 	}
491 	while (1) {
492 		size_t ret2;
493 
494 		ret2 = zstd_end_stream(stream, &workspace->out_buf);
495 		if (zstd_is_error(ret2)) {
496 			pr_debug("BTRFS: zstd_end_stream returned %d\n",
497 					zstd_get_error_code(ret2));
498 			ret = -EIO;
499 			goto out;
500 		}
501 		if (ret2 == 0) {
502 			tot_out += workspace->out_buf.pos;
503 			break;
504 		}
505 		if (workspace->out_buf.pos >= max_out) {
506 			tot_out += workspace->out_buf.pos;
507 			ret = -E2BIG;
508 			goto out;
509 		}
510 
511 		tot_out += PAGE_SIZE;
512 		max_out -= PAGE_SIZE;
513 		if (nr_pages == nr_dest_pages) {
514 			ret = -E2BIG;
515 			goto out;
516 		}
517 		out_page = btrfs_alloc_compr_page();
518 		if (out_page == NULL) {
519 			ret = -ENOMEM;
520 			goto out;
521 		}
522 		pages[nr_pages++] = out_page;
523 		workspace->out_buf.dst = page_address(out_page);
524 		workspace->out_buf.pos = 0;
525 		workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE);
526 	}
527 
528 	if (tot_out >= tot_in) {
529 		ret = -E2BIG;
530 		goto out;
531 	}
532 
533 	ret = 0;
534 	*total_in = tot_in;
535 	*total_out = tot_out;
536 out:
537 	*out_pages = nr_pages;
538 	if (workspace->in_buf.src) {
539 		kunmap_local(workspace->in_buf.src);
540 		put_page(in_page);
541 	}
542 	return ret;
543 }
544 
545 int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb)
546 {
547 	struct workspace *workspace = list_entry(ws, struct workspace, list);
548 	struct page **pages_in = cb->compressed_pages;
549 	size_t srclen = cb->compressed_len;
550 	zstd_dstream *stream;
551 	int ret = 0;
552 	unsigned long page_in_index = 0;
553 	unsigned long total_pages_in = DIV_ROUND_UP(srclen, PAGE_SIZE);
554 	unsigned long buf_start;
555 	unsigned long total_out = 0;
556 
557 	stream = zstd_init_dstream(
558 			ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size);
559 	if (!stream) {
560 		pr_debug("BTRFS: zstd_init_dstream failed\n");
561 		ret = -EIO;
562 		goto done;
563 	}
564 
565 	workspace->in_buf.src = kmap_local_page(pages_in[page_in_index]);
566 	workspace->in_buf.pos = 0;
567 	workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE);
568 
569 	workspace->out_buf.dst = workspace->buf;
570 	workspace->out_buf.pos = 0;
571 	workspace->out_buf.size = PAGE_SIZE;
572 
573 	while (1) {
574 		size_t ret2;
575 
576 		ret2 = zstd_decompress_stream(stream, &workspace->out_buf,
577 				&workspace->in_buf);
578 		if (zstd_is_error(ret2)) {
579 			pr_debug("BTRFS: zstd_decompress_stream returned %d\n",
580 					zstd_get_error_code(ret2));
581 			ret = -EIO;
582 			goto done;
583 		}
584 		buf_start = total_out;
585 		total_out += workspace->out_buf.pos;
586 		workspace->out_buf.pos = 0;
587 
588 		ret = btrfs_decompress_buf2page(workspace->out_buf.dst,
589 				total_out - buf_start, cb, buf_start);
590 		if (ret == 0)
591 			break;
592 
593 		if (workspace->in_buf.pos >= srclen)
594 			break;
595 
596 		/* Check if we've hit the end of a frame */
597 		if (ret2 == 0)
598 			break;
599 
600 		if (workspace->in_buf.pos == workspace->in_buf.size) {
601 			kunmap_local(workspace->in_buf.src);
602 			page_in_index++;
603 			if (page_in_index >= total_pages_in) {
604 				workspace->in_buf.src = NULL;
605 				ret = -EIO;
606 				goto done;
607 			}
608 			srclen -= PAGE_SIZE;
609 			workspace->in_buf.src = kmap_local_page(pages_in[page_in_index]);
610 			workspace->in_buf.pos = 0;
611 			workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE);
612 		}
613 	}
614 	ret = 0;
615 done:
616 	if (workspace->in_buf.src)
617 		kunmap_local(workspace->in_buf.src);
618 	return ret;
619 }
620 
621 int zstd_decompress(struct list_head *ws, const u8 *data_in,
622 		struct page *dest_page, unsigned long dest_pgoff, size_t srclen,
623 		size_t destlen)
624 {
625 	struct workspace *workspace = list_entry(ws, struct workspace, list);
626 	struct btrfs_fs_info *fs_info = btrfs_sb(dest_page->mapping->host->i_sb);
627 	const u32 sectorsize = fs_info->sectorsize;
628 	zstd_dstream *stream;
629 	int ret = 0;
630 	unsigned long to_copy = 0;
631 
632 	stream = zstd_init_dstream(
633 			ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size);
634 	if (!stream) {
635 		pr_warn("BTRFS: zstd_init_dstream failed\n");
636 		goto finish;
637 	}
638 
639 	workspace->in_buf.src = data_in;
640 	workspace->in_buf.pos = 0;
641 	workspace->in_buf.size = srclen;
642 
643 	workspace->out_buf.dst = workspace->buf;
644 	workspace->out_buf.pos = 0;
645 	workspace->out_buf.size = sectorsize;
646 
647 	/*
648 	 * Since both input and output buffers should not exceed one sector,
649 	 * one call should end the decompression.
650 	 */
651 	ret = zstd_decompress_stream(stream, &workspace->out_buf, &workspace->in_buf);
652 	if (zstd_is_error(ret)) {
653 		pr_warn_ratelimited("BTRFS: zstd_decompress_stream return %d\n",
654 				    zstd_get_error_code(ret));
655 		goto finish;
656 	}
657 	to_copy = workspace->out_buf.pos;
658 	memcpy_to_page(dest_page, dest_pgoff, workspace->out_buf.dst, to_copy);
659 finish:
660 	/* Error or early end. */
661 	if (unlikely(to_copy < destlen)) {
662 		ret = -EIO;
663 		memzero_page(dest_page, dest_pgoff + to_copy, destlen - to_copy);
664 	}
665 	return ret;
666 }
667 
668 const struct btrfs_compress_op btrfs_zstd_compress = {
669 	/* ZSTD uses own workspace manager */
670 	.workspace_manager = NULL,
671 	.max_level	= ZSTD_BTRFS_MAX_LEVEL,
672 	.default_level	= ZSTD_BTRFS_DEFAULT_LEVEL,
673 };
674