xref: /linux/fs/btrfs/zstd.c (revision 24b10e5f8e0d2bee1a10fc67011ea5d936c1a389)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016-present, Facebook, Inc.
4  * All rights reserved.
5  *
6  */
7 
8 #include <linux/bio.h>
9 #include <linux/bitmap.h>
10 #include <linux/err.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/mm.h>
14 #include <linux/sched/mm.h>
15 #include <linux/pagemap.h>
16 #include <linux/refcount.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/zstd.h>
20 #include "misc.h"
21 #include "compression.h"
22 #include "ctree.h"
23 
24 #define ZSTD_BTRFS_MAX_WINDOWLOG 17
25 #define ZSTD_BTRFS_MAX_INPUT (1 << ZSTD_BTRFS_MAX_WINDOWLOG)
26 #define ZSTD_BTRFS_DEFAULT_LEVEL 3
27 #define ZSTD_BTRFS_MAX_LEVEL 15
28 /* 307s to avoid pathologically clashing with transaction commit */
29 #define ZSTD_BTRFS_RECLAIM_JIFFIES (307 * HZ)
30 
31 static zstd_parameters zstd_get_btrfs_parameters(unsigned int level,
32 						 size_t src_len)
33 {
34 	zstd_parameters params = zstd_get_params(level, src_len);
35 
36 	if (params.cParams.windowLog > ZSTD_BTRFS_MAX_WINDOWLOG)
37 		params.cParams.windowLog = ZSTD_BTRFS_MAX_WINDOWLOG;
38 	WARN_ON(src_len > ZSTD_BTRFS_MAX_INPUT);
39 	return params;
40 }
41 
42 struct workspace {
43 	void *mem;
44 	size_t size;
45 	char *buf;
46 	unsigned int level;
47 	unsigned int req_level;
48 	unsigned long last_used; /* jiffies */
49 	struct list_head list;
50 	struct list_head lru_list;
51 	zstd_in_buffer in_buf;
52 	zstd_out_buffer out_buf;
53 };
54 
55 /*
56  * Zstd Workspace Management
57  *
58  * Zstd workspaces have different memory requirements depending on the level.
59  * The zstd workspaces are managed by having individual lists for each level
60  * and a global lru.  Forward progress is maintained by protecting a max level
61  * workspace.
62  *
63  * Getting a workspace is done by using the bitmap to identify the levels that
64  * have available workspaces and scans up.  This lets us recycle higher level
65  * workspaces because of the monotonic memory guarantee.  A workspace's
66  * last_used is only updated if it is being used by the corresponding memory
67  * level.  Putting a workspace involves adding it back to the appropriate places
68  * and adding it back to the lru if necessary.
69  *
70  * A timer is used to reclaim workspaces if they have not been used for
71  * ZSTD_BTRFS_RECLAIM_JIFFIES.  This helps keep only active workspaces around.
72  * The upper bound is provided by the workqueue limit which is 2 (percpu limit).
73  */
74 
75 struct zstd_workspace_manager {
76 	const struct btrfs_compress_op *ops;
77 	spinlock_t lock;
78 	struct list_head lru_list;
79 	struct list_head idle_ws[ZSTD_BTRFS_MAX_LEVEL];
80 	unsigned long active_map;
81 	wait_queue_head_t wait;
82 	struct timer_list timer;
83 };
84 
85 static struct zstd_workspace_manager wsm;
86 
87 static size_t zstd_ws_mem_sizes[ZSTD_BTRFS_MAX_LEVEL];
88 
89 static inline struct workspace *list_to_workspace(struct list_head *list)
90 {
91 	return container_of(list, struct workspace, list);
92 }
93 
94 void zstd_free_workspace(struct list_head *ws);
95 struct list_head *zstd_alloc_workspace(unsigned int level);
96 
97 /*
98  * Timer callback to free unused workspaces.
99  *
100  * @t: timer
101  *
102  * This scans the lru_list and attempts to reclaim any workspace that hasn't
103  * been used for ZSTD_BTRFS_RECLAIM_JIFFIES.
104  *
105  * The context is softirq and does not need the _bh locking primitives.
106  */
107 static void zstd_reclaim_timer_fn(struct timer_list *timer)
108 {
109 	unsigned long reclaim_threshold = jiffies - ZSTD_BTRFS_RECLAIM_JIFFIES;
110 	struct list_head *pos, *next;
111 
112 	spin_lock(&wsm.lock);
113 
114 	if (list_empty(&wsm.lru_list)) {
115 		spin_unlock(&wsm.lock);
116 		return;
117 	}
118 
119 	list_for_each_prev_safe(pos, next, &wsm.lru_list) {
120 		struct workspace *victim = container_of(pos, struct workspace,
121 							lru_list);
122 		unsigned int level;
123 
124 		if (time_after(victim->last_used, reclaim_threshold))
125 			break;
126 
127 		/* workspace is in use */
128 		if (victim->req_level)
129 			continue;
130 
131 		level = victim->level;
132 		list_del(&victim->lru_list);
133 		list_del(&victim->list);
134 		zstd_free_workspace(&victim->list);
135 
136 		if (list_empty(&wsm.idle_ws[level - 1]))
137 			clear_bit(level - 1, &wsm.active_map);
138 
139 	}
140 
141 	if (!list_empty(&wsm.lru_list))
142 		mod_timer(&wsm.timer, jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES);
143 
144 	spin_unlock(&wsm.lock);
145 }
146 
147 /*
148  * Calculate monotonic memory bounds.
149  *
150  * It is possible based on the level configurations that a higher level
151  * workspace uses less memory than a lower level workspace.  In order to reuse
152  * workspaces, this must be made a monotonic relationship.  This precomputes
153  * the required memory for each level and enforces the monotonicity between
154  * level and memory required.
155  */
156 static void zstd_calc_ws_mem_sizes(void)
157 {
158 	size_t max_size = 0;
159 	unsigned int level;
160 
161 	for (level = 1; level <= ZSTD_BTRFS_MAX_LEVEL; level++) {
162 		zstd_parameters params =
163 			zstd_get_btrfs_parameters(level, ZSTD_BTRFS_MAX_INPUT);
164 		size_t level_size =
165 			max_t(size_t,
166 			      zstd_cstream_workspace_bound(&params.cParams),
167 			      zstd_dstream_workspace_bound(ZSTD_BTRFS_MAX_INPUT));
168 
169 		max_size = max_t(size_t, max_size, level_size);
170 		zstd_ws_mem_sizes[level - 1] = max_size;
171 	}
172 }
173 
174 void zstd_init_workspace_manager(void)
175 {
176 	struct list_head *ws;
177 	int i;
178 
179 	zstd_calc_ws_mem_sizes();
180 
181 	wsm.ops = &btrfs_zstd_compress;
182 	spin_lock_init(&wsm.lock);
183 	init_waitqueue_head(&wsm.wait);
184 	timer_setup(&wsm.timer, zstd_reclaim_timer_fn, 0);
185 
186 	INIT_LIST_HEAD(&wsm.lru_list);
187 	for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++)
188 		INIT_LIST_HEAD(&wsm.idle_ws[i]);
189 
190 	ws = zstd_alloc_workspace(ZSTD_BTRFS_MAX_LEVEL);
191 	if (IS_ERR(ws)) {
192 		pr_warn(
193 		"BTRFS: cannot preallocate zstd compression workspace\n");
194 	} else {
195 		set_bit(ZSTD_BTRFS_MAX_LEVEL - 1, &wsm.active_map);
196 		list_add(ws, &wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1]);
197 	}
198 }
199 
200 void zstd_cleanup_workspace_manager(void)
201 {
202 	struct workspace *workspace;
203 	int i;
204 
205 	spin_lock_bh(&wsm.lock);
206 	for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) {
207 		while (!list_empty(&wsm.idle_ws[i])) {
208 			workspace = container_of(wsm.idle_ws[i].next,
209 						 struct workspace, list);
210 			list_del(&workspace->list);
211 			list_del(&workspace->lru_list);
212 			zstd_free_workspace(&workspace->list);
213 		}
214 	}
215 	spin_unlock_bh(&wsm.lock);
216 
217 	del_timer_sync(&wsm.timer);
218 }
219 
220 /*
221  * Find workspace for given level.
222  *
223  * @level: compression level
224  *
225  * This iterates over the set bits in the active_map beginning at the requested
226  * compression level.  This lets us utilize already allocated workspaces before
227  * allocating a new one.  If the workspace is of a larger size, it is used, but
228  * the place in the lru_list and last_used times are not updated.  This is to
229  * offer the opportunity to reclaim the workspace in favor of allocating an
230  * appropriately sized one in the future.
231  */
232 static struct list_head *zstd_find_workspace(unsigned int level)
233 {
234 	struct list_head *ws;
235 	struct workspace *workspace;
236 	int i = level - 1;
237 
238 	spin_lock_bh(&wsm.lock);
239 	for_each_set_bit_from(i, &wsm.active_map, ZSTD_BTRFS_MAX_LEVEL) {
240 		if (!list_empty(&wsm.idle_ws[i])) {
241 			ws = wsm.idle_ws[i].next;
242 			workspace = list_to_workspace(ws);
243 			list_del_init(ws);
244 			/* keep its place if it's a lower level using this */
245 			workspace->req_level = level;
246 			if (level == workspace->level)
247 				list_del(&workspace->lru_list);
248 			if (list_empty(&wsm.idle_ws[i]))
249 				clear_bit(i, &wsm.active_map);
250 			spin_unlock_bh(&wsm.lock);
251 			return ws;
252 		}
253 	}
254 	spin_unlock_bh(&wsm.lock);
255 
256 	return NULL;
257 }
258 
259 /*
260  * Zstd get_workspace for level.
261  *
262  * @level: compression level
263  *
264  * If @level is 0, then any compression level can be used.  Therefore, we begin
265  * scanning from 1.  We first scan through possible workspaces and then after
266  * attempt to allocate a new workspace.  If we fail to allocate one due to
267  * memory pressure, go to sleep waiting for the max level workspace to free up.
268  */
269 struct list_head *zstd_get_workspace(unsigned int level)
270 {
271 	struct list_head *ws;
272 	unsigned int nofs_flag;
273 
274 	/* level == 0 means we can use any workspace */
275 	if (!level)
276 		level = 1;
277 
278 again:
279 	ws = zstd_find_workspace(level);
280 	if (ws)
281 		return ws;
282 
283 	nofs_flag = memalloc_nofs_save();
284 	ws = zstd_alloc_workspace(level);
285 	memalloc_nofs_restore(nofs_flag);
286 
287 	if (IS_ERR(ws)) {
288 		DEFINE_WAIT(wait);
289 
290 		prepare_to_wait(&wsm.wait, &wait, TASK_UNINTERRUPTIBLE);
291 		schedule();
292 		finish_wait(&wsm.wait, &wait);
293 
294 		goto again;
295 	}
296 
297 	return ws;
298 }
299 
300 /*
301  * Zstd put_workspace.
302  *
303  * @ws: list_head for the workspace
304  *
305  * When putting back a workspace, we only need to update the LRU if we are of
306  * the requested compression level.  Here is where we continue to protect the
307  * max level workspace or update last_used accordingly.  If the reclaim timer
308  * isn't set, it is also set here.  Only the max level workspace tries and wakes
309  * up waiting workspaces.
310  */
311 void zstd_put_workspace(struct list_head *ws)
312 {
313 	struct workspace *workspace = list_to_workspace(ws);
314 
315 	spin_lock_bh(&wsm.lock);
316 
317 	/* A node is only taken off the lru if we are the corresponding level */
318 	if (workspace->req_level == workspace->level) {
319 		/* Hide a max level workspace from reclaim */
320 		if (list_empty(&wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1])) {
321 			INIT_LIST_HEAD(&workspace->lru_list);
322 		} else {
323 			workspace->last_used = jiffies;
324 			list_add(&workspace->lru_list, &wsm.lru_list);
325 			if (!timer_pending(&wsm.timer))
326 				mod_timer(&wsm.timer,
327 					  jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES);
328 		}
329 	}
330 
331 	set_bit(workspace->level - 1, &wsm.active_map);
332 	list_add(&workspace->list, &wsm.idle_ws[workspace->level - 1]);
333 	workspace->req_level = 0;
334 
335 	spin_unlock_bh(&wsm.lock);
336 
337 	if (workspace->level == ZSTD_BTRFS_MAX_LEVEL)
338 		cond_wake_up(&wsm.wait);
339 }
340 
341 void zstd_free_workspace(struct list_head *ws)
342 {
343 	struct workspace *workspace = list_entry(ws, struct workspace, list);
344 
345 	kvfree(workspace->mem);
346 	kfree(workspace->buf);
347 	kfree(workspace);
348 }
349 
350 struct list_head *zstd_alloc_workspace(unsigned int level)
351 {
352 	struct workspace *workspace;
353 
354 	workspace = kzalloc(sizeof(*workspace), GFP_KERNEL);
355 	if (!workspace)
356 		return ERR_PTR(-ENOMEM);
357 
358 	workspace->size = zstd_ws_mem_sizes[level - 1];
359 	workspace->level = level;
360 	workspace->req_level = level;
361 	workspace->last_used = jiffies;
362 	workspace->mem = kvmalloc(workspace->size, GFP_KERNEL | __GFP_NOWARN);
363 	workspace->buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
364 	if (!workspace->mem || !workspace->buf)
365 		goto fail;
366 
367 	INIT_LIST_HEAD(&workspace->list);
368 	INIT_LIST_HEAD(&workspace->lru_list);
369 
370 	return &workspace->list;
371 fail:
372 	zstd_free_workspace(&workspace->list);
373 	return ERR_PTR(-ENOMEM);
374 }
375 
376 int zstd_compress_pages(struct list_head *ws, struct address_space *mapping,
377 		u64 start, struct page **pages, unsigned long *out_pages,
378 		unsigned long *total_in, unsigned long *total_out)
379 {
380 	struct workspace *workspace = list_entry(ws, struct workspace, list);
381 	zstd_cstream *stream;
382 	int ret = 0;
383 	int nr_pages = 0;
384 	struct page *in_page = NULL;  /* The current page to read */
385 	struct page *out_page = NULL; /* The current page to write to */
386 	unsigned long tot_in = 0;
387 	unsigned long tot_out = 0;
388 	unsigned long len = *total_out;
389 	const unsigned long nr_dest_pages = *out_pages;
390 	unsigned long max_out = nr_dest_pages * PAGE_SIZE;
391 	zstd_parameters params = zstd_get_btrfs_parameters(workspace->req_level,
392 							   len);
393 
394 	*out_pages = 0;
395 	*total_out = 0;
396 	*total_in = 0;
397 
398 	/* Initialize the stream */
399 	stream = zstd_init_cstream(&params, len, workspace->mem,
400 			workspace->size);
401 	if (!stream) {
402 		pr_warn("BTRFS: zstd_init_cstream failed\n");
403 		ret = -EIO;
404 		goto out;
405 	}
406 
407 	/* map in the first page of input data */
408 	in_page = find_get_page(mapping, start >> PAGE_SHIFT);
409 	workspace->in_buf.src = kmap_local_page(in_page);
410 	workspace->in_buf.pos = 0;
411 	workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE);
412 
413 	/* Allocate and map in the output buffer */
414 	out_page = btrfs_alloc_compr_page();
415 	if (out_page == NULL) {
416 		ret = -ENOMEM;
417 		goto out;
418 	}
419 	pages[nr_pages++] = out_page;
420 	workspace->out_buf.dst = page_address(out_page);
421 	workspace->out_buf.pos = 0;
422 	workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE);
423 
424 	while (1) {
425 		size_t ret2;
426 
427 		ret2 = zstd_compress_stream(stream, &workspace->out_buf,
428 				&workspace->in_buf);
429 		if (zstd_is_error(ret2)) {
430 			pr_debug("BTRFS: zstd_compress_stream returned %d\n",
431 					zstd_get_error_code(ret2));
432 			ret = -EIO;
433 			goto out;
434 		}
435 
436 		/* Check to see if we are making it bigger */
437 		if (tot_in + workspace->in_buf.pos > 8192 &&
438 				tot_in + workspace->in_buf.pos <
439 				tot_out + workspace->out_buf.pos) {
440 			ret = -E2BIG;
441 			goto out;
442 		}
443 
444 		/* We've reached the end of our output range */
445 		if (workspace->out_buf.pos >= max_out) {
446 			tot_out += workspace->out_buf.pos;
447 			ret = -E2BIG;
448 			goto out;
449 		}
450 
451 		/* Check if we need more output space */
452 		if (workspace->out_buf.pos == workspace->out_buf.size) {
453 			tot_out += PAGE_SIZE;
454 			max_out -= PAGE_SIZE;
455 			if (nr_pages == nr_dest_pages) {
456 				ret = -E2BIG;
457 				goto out;
458 			}
459 			out_page = btrfs_alloc_compr_page();
460 			if (out_page == NULL) {
461 				ret = -ENOMEM;
462 				goto out;
463 			}
464 			pages[nr_pages++] = out_page;
465 			workspace->out_buf.dst = page_address(out_page);
466 			workspace->out_buf.pos = 0;
467 			workspace->out_buf.size = min_t(size_t, max_out,
468 							PAGE_SIZE);
469 		}
470 
471 		/* We've reached the end of the input */
472 		if (workspace->in_buf.pos >= len) {
473 			tot_in += workspace->in_buf.pos;
474 			break;
475 		}
476 
477 		/* Check if we need more input */
478 		if (workspace->in_buf.pos == workspace->in_buf.size) {
479 			tot_in += PAGE_SIZE;
480 			kunmap_local(workspace->in_buf.src);
481 			put_page(in_page);
482 			start += PAGE_SIZE;
483 			len -= PAGE_SIZE;
484 			in_page = find_get_page(mapping, start >> PAGE_SHIFT);
485 			workspace->in_buf.src = kmap_local_page(in_page);
486 			workspace->in_buf.pos = 0;
487 			workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE);
488 		}
489 	}
490 	while (1) {
491 		size_t ret2;
492 
493 		ret2 = zstd_end_stream(stream, &workspace->out_buf);
494 		if (zstd_is_error(ret2)) {
495 			pr_debug("BTRFS: zstd_end_stream returned %d\n",
496 					zstd_get_error_code(ret2));
497 			ret = -EIO;
498 			goto out;
499 		}
500 		if (ret2 == 0) {
501 			tot_out += workspace->out_buf.pos;
502 			break;
503 		}
504 		if (workspace->out_buf.pos >= max_out) {
505 			tot_out += workspace->out_buf.pos;
506 			ret = -E2BIG;
507 			goto out;
508 		}
509 
510 		tot_out += PAGE_SIZE;
511 		max_out -= PAGE_SIZE;
512 		if (nr_pages == nr_dest_pages) {
513 			ret = -E2BIG;
514 			goto out;
515 		}
516 		out_page = btrfs_alloc_compr_page();
517 		if (out_page == NULL) {
518 			ret = -ENOMEM;
519 			goto out;
520 		}
521 		pages[nr_pages++] = out_page;
522 		workspace->out_buf.dst = page_address(out_page);
523 		workspace->out_buf.pos = 0;
524 		workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE);
525 	}
526 
527 	if (tot_out >= tot_in) {
528 		ret = -E2BIG;
529 		goto out;
530 	}
531 
532 	ret = 0;
533 	*total_in = tot_in;
534 	*total_out = tot_out;
535 out:
536 	*out_pages = nr_pages;
537 	if (workspace->in_buf.src) {
538 		kunmap_local(workspace->in_buf.src);
539 		put_page(in_page);
540 	}
541 	return ret;
542 }
543 
544 int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb)
545 {
546 	struct workspace *workspace = list_entry(ws, struct workspace, list);
547 	struct page **pages_in = cb->compressed_pages;
548 	size_t srclen = cb->compressed_len;
549 	zstd_dstream *stream;
550 	int ret = 0;
551 	unsigned long page_in_index = 0;
552 	unsigned long total_pages_in = DIV_ROUND_UP(srclen, PAGE_SIZE);
553 	unsigned long buf_start;
554 	unsigned long total_out = 0;
555 
556 	stream = zstd_init_dstream(
557 			ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size);
558 	if (!stream) {
559 		pr_debug("BTRFS: zstd_init_dstream failed\n");
560 		ret = -EIO;
561 		goto done;
562 	}
563 
564 	workspace->in_buf.src = kmap_local_page(pages_in[page_in_index]);
565 	workspace->in_buf.pos = 0;
566 	workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE);
567 
568 	workspace->out_buf.dst = workspace->buf;
569 	workspace->out_buf.pos = 0;
570 	workspace->out_buf.size = PAGE_SIZE;
571 
572 	while (1) {
573 		size_t ret2;
574 
575 		ret2 = zstd_decompress_stream(stream, &workspace->out_buf,
576 				&workspace->in_buf);
577 		if (zstd_is_error(ret2)) {
578 			pr_debug("BTRFS: zstd_decompress_stream returned %d\n",
579 					zstd_get_error_code(ret2));
580 			ret = -EIO;
581 			goto done;
582 		}
583 		buf_start = total_out;
584 		total_out += workspace->out_buf.pos;
585 		workspace->out_buf.pos = 0;
586 
587 		ret = btrfs_decompress_buf2page(workspace->out_buf.dst,
588 				total_out - buf_start, cb, buf_start);
589 		if (ret == 0)
590 			break;
591 
592 		if (workspace->in_buf.pos >= srclen)
593 			break;
594 
595 		/* Check if we've hit the end of a frame */
596 		if (ret2 == 0)
597 			break;
598 
599 		if (workspace->in_buf.pos == workspace->in_buf.size) {
600 			kunmap_local(workspace->in_buf.src);
601 			page_in_index++;
602 			if (page_in_index >= total_pages_in) {
603 				workspace->in_buf.src = NULL;
604 				ret = -EIO;
605 				goto done;
606 			}
607 			srclen -= PAGE_SIZE;
608 			workspace->in_buf.src = kmap_local_page(pages_in[page_in_index]);
609 			workspace->in_buf.pos = 0;
610 			workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE);
611 		}
612 	}
613 	ret = 0;
614 done:
615 	if (workspace->in_buf.src)
616 		kunmap_local(workspace->in_buf.src);
617 	return ret;
618 }
619 
620 int zstd_decompress(struct list_head *ws, const u8 *data_in,
621 		struct page *dest_page, unsigned long start_byte, size_t srclen,
622 		size_t destlen)
623 {
624 	struct workspace *workspace = list_entry(ws, struct workspace, list);
625 	zstd_dstream *stream;
626 	int ret = 0;
627 	size_t ret2;
628 	unsigned long total_out = 0;
629 	unsigned long pg_offset = 0;
630 
631 	stream = zstd_init_dstream(
632 			ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size);
633 	if (!stream) {
634 		pr_warn("BTRFS: zstd_init_dstream failed\n");
635 		ret = -EIO;
636 		goto finish;
637 	}
638 
639 	destlen = min_t(size_t, destlen, PAGE_SIZE);
640 
641 	workspace->in_buf.src = data_in;
642 	workspace->in_buf.pos = 0;
643 	workspace->in_buf.size = srclen;
644 
645 	workspace->out_buf.dst = workspace->buf;
646 	workspace->out_buf.pos = 0;
647 	workspace->out_buf.size = PAGE_SIZE;
648 
649 	ret2 = 1;
650 	while (pg_offset < destlen
651 	       && workspace->in_buf.pos < workspace->in_buf.size) {
652 		unsigned long buf_start;
653 		unsigned long buf_offset;
654 		unsigned long bytes;
655 
656 		/* Check if the frame is over and we still need more input */
657 		if (ret2 == 0) {
658 			pr_debug("BTRFS: zstd_decompress_stream ended early\n");
659 			ret = -EIO;
660 			goto finish;
661 		}
662 		ret2 = zstd_decompress_stream(stream, &workspace->out_buf,
663 				&workspace->in_buf);
664 		if (zstd_is_error(ret2)) {
665 			pr_debug("BTRFS: zstd_decompress_stream returned %d\n",
666 					zstd_get_error_code(ret2));
667 			ret = -EIO;
668 			goto finish;
669 		}
670 
671 		buf_start = total_out;
672 		total_out += workspace->out_buf.pos;
673 		workspace->out_buf.pos = 0;
674 
675 		if (total_out <= start_byte)
676 			continue;
677 
678 		if (total_out > start_byte && buf_start < start_byte)
679 			buf_offset = start_byte - buf_start;
680 		else
681 			buf_offset = 0;
682 
683 		bytes = min_t(unsigned long, destlen - pg_offset,
684 				workspace->out_buf.size - buf_offset);
685 
686 		memcpy_to_page(dest_page, pg_offset,
687 			       workspace->out_buf.dst + buf_offset, bytes);
688 
689 		pg_offset += bytes;
690 	}
691 	ret = 0;
692 finish:
693 	if (pg_offset < destlen) {
694 		memzero_page(dest_page, pg_offset, destlen - pg_offset);
695 	}
696 	return ret;
697 }
698 
699 const struct btrfs_compress_op btrfs_zstd_compress = {
700 	/* ZSTD uses own workspace manager */
701 	.workspace_manager = NULL,
702 	.max_level	= ZSTD_BTRFS_MAX_LEVEL,
703 	.default_level	= ZSTD_BTRFS_DEFAULT_LEVEL,
704 };
705