xref: /linux/fs/btrfs/zstd.c (revision 17cfcb68af3bc7d5e8ae08779b1853310a2949f3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016-present, Facebook, Inc.
4  * All rights reserved.
5  *
6  */
7 
8 #include <linux/bio.h>
9 #include <linux/bitmap.h>
10 #include <linux/err.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/mm.h>
14 #include <linux/sched/mm.h>
15 #include <linux/pagemap.h>
16 #include <linux/refcount.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/zstd.h>
20 #include "misc.h"
21 #include "compression.h"
22 #include "ctree.h"
23 
24 #define ZSTD_BTRFS_MAX_WINDOWLOG 17
25 #define ZSTD_BTRFS_MAX_INPUT (1 << ZSTD_BTRFS_MAX_WINDOWLOG)
26 #define ZSTD_BTRFS_DEFAULT_LEVEL 3
27 #define ZSTD_BTRFS_MAX_LEVEL 15
28 /* 307s to avoid pathologically clashing with transaction commit */
29 #define ZSTD_BTRFS_RECLAIM_JIFFIES (307 * HZ)
30 
31 static ZSTD_parameters zstd_get_btrfs_parameters(unsigned int level,
32 						 size_t src_len)
33 {
34 	ZSTD_parameters params = ZSTD_getParams(level, src_len, 0);
35 
36 	if (params.cParams.windowLog > ZSTD_BTRFS_MAX_WINDOWLOG)
37 		params.cParams.windowLog = ZSTD_BTRFS_MAX_WINDOWLOG;
38 	WARN_ON(src_len > ZSTD_BTRFS_MAX_INPUT);
39 	return params;
40 }
41 
42 struct workspace {
43 	void *mem;
44 	size_t size;
45 	char *buf;
46 	unsigned int level;
47 	unsigned int req_level;
48 	unsigned long last_used; /* jiffies */
49 	struct list_head list;
50 	struct list_head lru_list;
51 	ZSTD_inBuffer in_buf;
52 	ZSTD_outBuffer out_buf;
53 };
54 
55 /*
56  * Zstd Workspace Management
57  *
58  * Zstd workspaces have different memory requirements depending on the level.
59  * The zstd workspaces are managed by having individual lists for each level
60  * and a global lru.  Forward progress is maintained by protecting a max level
61  * workspace.
62  *
63  * Getting a workspace is done by using the bitmap to identify the levels that
64  * have available workspaces and scans up.  This lets us recycle higher level
65  * workspaces because of the monotonic memory guarantee.  A workspace's
66  * last_used is only updated if it is being used by the corresponding memory
67  * level.  Putting a workspace involves adding it back to the appropriate places
68  * and adding it back to the lru if necessary.
69  *
70  * A timer is used to reclaim workspaces if they have not been used for
71  * ZSTD_BTRFS_RECLAIM_JIFFIES.  This helps keep only active workspaces around.
72  * The upper bound is provided by the workqueue limit which is 2 (percpu limit).
73  */
74 
75 struct zstd_workspace_manager {
76 	const struct btrfs_compress_op *ops;
77 	spinlock_t lock;
78 	struct list_head lru_list;
79 	struct list_head idle_ws[ZSTD_BTRFS_MAX_LEVEL];
80 	unsigned long active_map;
81 	wait_queue_head_t wait;
82 	struct timer_list timer;
83 };
84 
85 static struct zstd_workspace_manager wsm;
86 
87 static size_t zstd_ws_mem_sizes[ZSTD_BTRFS_MAX_LEVEL];
88 
89 static inline struct workspace *list_to_workspace(struct list_head *list)
90 {
91 	return container_of(list, struct workspace, list);
92 }
93 
94 static void zstd_free_workspace(struct list_head *ws);
95 static struct list_head *zstd_alloc_workspace(unsigned int level);
96 
97 /*
98  * zstd_reclaim_timer_fn - reclaim timer
99  * @t: timer
100  *
101  * This scans the lru_list and attempts to reclaim any workspace that hasn't
102  * been used for ZSTD_BTRFS_RECLAIM_JIFFIES.
103  */
104 static void zstd_reclaim_timer_fn(struct timer_list *timer)
105 {
106 	unsigned long reclaim_threshold = jiffies - ZSTD_BTRFS_RECLAIM_JIFFIES;
107 	struct list_head *pos, *next;
108 
109 	spin_lock_bh(&wsm.lock);
110 
111 	if (list_empty(&wsm.lru_list)) {
112 		spin_unlock_bh(&wsm.lock);
113 		return;
114 	}
115 
116 	list_for_each_prev_safe(pos, next, &wsm.lru_list) {
117 		struct workspace *victim = container_of(pos, struct workspace,
118 							lru_list);
119 		unsigned int level;
120 
121 		if (time_after(victim->last_used, reclaim_threshold))
122 			break;
123 
124 		/* workspace is in use */
125 		if (victim->req_level)
126 			continue;
127 
128 		level = victim->level;
129 		list_del(&victim->lru_list);
130 		list_del(&victim->list);
131 		zstd_free_workspace(&victim->list);
132 
133 		if (list_empty(&wsm.idle_ws[level - 1]))
134 			clear_bit(level - 1, &wsm.active_map);
135 
136 	}
137 
138 	if (!list_empty(&wsm.lru_list))
139 		mod_timer(&wsm.timer, jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES);
140 
141 	spin_unlock_bh(&wsm.lock);
142 }
143 
144 /*
145  * zstd_calc_ws_mem_sizes - calculate monotonic memory bounds
146  *
147  * It is possible based on the level configurations that a higher level
148  * workspace uses less memory than a lower level workspace.  In order to reuse
149  * workspaces, this must be made a monotonic relationship.  This precomputes
150  * the required memory for each level and enforces the monotonicity between
151  * level and memory required.
152  */
153 static void zstd_calc_ws_mem_sizes(void)
154 {
155 	size_t max_size = 0;
156 	unsigned int level;
157 
158 	for (level = 1; level <= ZSTD_BTRFS_MAX_LEVEL; level++) {
159 		ZSTD_parameters params =
160 			zstd_get_btrfs_parameters(level, ZSTD_BTRFS_MAX_INPUT);
161 		size_t level_size =
162 			max_t(size_t,
163 			      ZSTD_CStreamWorkspaceBound(params.cParams),
164 			      ZSTD_DStreamWorkspaceBound(ZSTD_BTRFS_MAX_INPUT));
165 
166 		max_size = max_t(size_t, max_size, level_size);
167 		zstd_ws_mem_sizes[level - 1] = max_size;
168 	}
169 }
170 
171 static void zstd_init_workspace_manager(void)
172 {
173 	struct list_head *ws;
174 	int i;
175 
176 	zstd_calc_ws_mem_sizes();
177 
178 	wsm.ops = &btrfs_zstd_compress;
179 	spin_lock_init(&wsm.lock);
180 	init_waitqueue_head(&wsm.wait);
181 	timer_setup(&wsm.timer, zstd_reclaim_timer_fn, 0);
182 
183 	INIT_LIST_HEAD(&wsm.lru_list);
184 	for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++)
185 		INIT_LIST_HEAD(&wsm.idle_ws[i]);
186 
187 	ws = zstd_alloc_workspace(ZSTD_BTRFS_MAX_LEVEL);
188 	if (IS_ERR(ws)) {
189 		pr_warn(
190 		"BTRFS: cannot preallocate zstd compression workspace\n");
191 	} else {
192 		set_bit(ZSTD_BTRFS_MAX_LEVEL - 1, &wsm.active_map);
193 		list_add(ws, &wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1]);
194 	}
195 }
196 
197 static void zstd_cleanup_workspace_manager(void)
198 {
199 	struct workspace *workspace;
200 	int i;
201 
202 	spin_lock_bh(&wsm.lock);
203 	for (i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) {
204 		while (!list_empty(&wsm.idle_ws[i])) {
205 			workspace = container_of(wsm.idle_ws[i].next,
206 						 struct workspace, list);
207 			list_del(&workspace->list);
208 			list_del(&workspace->lru_list);
209 			zstd_free_workspace(&workspace->list);
210 		}
211 	}
212 	spin_unlock_bh(&wsm.lock);
213 
214 	del_timer_sync(&wsm.timer);
215 }
216 
217 /*
218  * zstd_find_workspace - find workspace
219  * @level: compression level
220  *
221  * This iterates over the set bits in the active_map beginning at the requested
222  * compression level.  This lets us utilize already allocated workspaces before
223  * allocating a new one.  If the workspace is of a larger size, it is used, but
224  * the place in the lru_list and last_used times are not updated.  This is to
225  * offer the opportunity to reclaim the workspace in favor of allocating an
226  * appropriately sized one in the future.
227  */
228 static struct list_head *zstd_find_workspace(unsigned int level)
229 {
230 	struct list_head *ws;
231 	struct workspace *workspace;
232 	int i = level - 1;
233 
234 	spin_lock_bh(&wsm.lock);
235 	for_each_set_bit_from(i, &wsm.active_map, ZSTD_BTRFS_MAX_LEVEL) {
236 		if (!list_empty(&wsm.idle_ws[i])) {
237 			ws = wsm.idle_ws[i].next;
238 			workspace = list_to_workspace(ws);
239 			list_del_init(ws);
240 			/* keep its place if it's a lower level using this */
241 			workspace->req_level = level;
242 			if (level == workspace->level)
243 				list_del(&workspace->lru_list);
244 			if (list_empty(&wsm.idle_ws[i]))
245 				clear_bit(i, &wsm.active_map);
246 			spin_unlock_bh(&wsm.lock);
247 			return ws;
248 		}
249 	}
250 	spin_unlock_bh(&wsm.lock);
251 
252 	return NULL;
253 }
254 
255 /*
256  * zstd_get_workspace - zstd's get_workspace
257  * @level: compression level
258  *
259  * If @level is 0, then any compression level can be used.  Therefore, we begin
260  * scanning from 1.  We first scan through possible workspaces and then after
261  * attempt to allocate a new workspace.  If we fail to allocate one due to
262  * memory pressure, go to sleep waiting for the max level workspace to free up.
263  */
264 static struct list_head *zstd_get_workspace(unsigned int level)
265 {
266 	struct list_head *ws;
267 	unsigned int nofs_flag;
268 
269 	/* level == 0 means we can use any workspace */
270 	if (!level)
271 		level = 1;
272 
273 again:
274 	ws = zstd_find_workspace(level);
275 	if (ws)
276 		return ws;
277 
278 	nofs_flag = memalloc_nofs_save();
279 	ws = zstd_alloc_workspace(level);
280 	memalloc_nofs_restore(nofs_flag);
281 
282 	if (IS_ERR(ws)) {
283 		DEFINE_WAIT(wait);
284 
285 		prepare_to_wait(&wsm.wait, &wait, TASK_UNINTERRUPTIBLE);
286 		schedule();
287 		finish_wait(&wsm.wait, &wait);
288 
289 		goto again;
290 	}
291 
292 	return ws;
293 }
294 
295 /*
296  * zstd_put_workspace - zstd put_workspace
297  * @ws: list_head for the workspace
298  *
299  * When putting back a workspace, we only need to update the LRU if we are of
300  * the requested compression level.  Here is where we continue to protect the
301  * max level workspace or update last_used accordingly.  If the reclaim timer
302  * isn't set, it is also set here.  Only the max level workspace tries and wakes
303  * up waiting workspaces.
304  */
305 static void zstd_put_workspace(struct list_head *ws)
306 {
307 	struct workspace *workspace = list_to_workspace(ws);
308 
309 	spin_lock_bh(&wsm.lock);
310 
311 	/* A node is only taken off the lru if we are the corresponding level */
312 	if (workspace->req_level == workspace->level) {
313 		/* Hide a max level workspace from reclaim */
314 		if (list_empty(&wsm.idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1])) {
315 			INIT_LIST_HEAD(&workspace->lru_list);
316 		} else {
317 			workspace->last_used = jiffies;
318 			list_add(&workspace->lru_list, &wsm.lru_list);
319 			if (!timer_pending(&wsm.timer))
320 				mod_timer(&wsm.timer,
321 					  jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES);
322 		}
323 	}
324 
325 	set_bit(workspace->level - 1, &wsm.active_map);
326 	list_add(&workspace->list, &wsm.idle_ws[workspace->level - 1]);
327 	workspace->req_level = 0;
328 
329 	spin_unlock_bh(&wsm.lock);
330 
331 	if (workspace->level == ZSTD_BTRFS_MAX_LEVEL)
332 		cond_wake_up(&wsm.wait);
333 }
334 
335 static void zstd_free_workspace(struct list_head *ws)
336 {
337 	struct workspace *workspace = list_entry(ws, struct workspace, list);
338 
339 	kvfree(workspace->mem);
340 	kfree(workspace->buf);
341 	kfree(workspace);
342 }
343 
344 static struct list_head *zstd_alloc_workspace(unsigned int level)
345 {
346 	struct workspace *workspace;
347 
348 	workspace = kzalloc(sizeof(*workspace), GFP_KERNEL);
349 	if (!workspace)
350 		return ERR_PTR(-ENOMEM);
351 
352 	workspace->size = zstd_ws_mem_sizes[level - 1];
353 	workspace->level = level;
354 	workspace->req_level = level;
355 	workspace->last_used = jiffies;
356 	workspace->mem = kvmalloc(workspace->size, GFP_KERNEL);
357 	workspace->buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
358 	if (!workspace->mem || !workspace->buf)
359 		goto fail;
360 
361 	INIT_LIST_HEAD(&workspace->list);
362 	INIT_LIST_HEAD(&workspace->lru_list);
363 
364 	return &workspace->list;
365 fail:
366 	zstd_free_workspace(&workspace->list);
367 	return ERR_PTR(-ENOMEM);
368 }
369 
370 static int zstd_compress_pages(struct list_head *ws,
371 		struct address_space *mapping,
372 		u64 start,
373 		struct page **pages,
374 		unsigned long *out_pages,
375 		unsigned long *total_in,
376 		unsigned long *total_out)
377 {
378 	struct workspace *workspace = list_entry(ws, struct workspace, list);
379 	ZSTD_CStream *stream;
380 	int ret = 0;
381 	int nr_pages = 0;
382 	struct page *in_page = NULL;  /* The current page to read */
383 	struct page *out_page = NULL; /* The current page to write to */
384 	unsigned long tot_in = 0;
385 	unsigned long tot_out = 0;
386 	unsigned long len = *total_out;
387 	const unsigned long nr_dest_pages = *out_pages;
388 	unsigned long max_out = nr_dest_pages * PAGE_SIZE;
389 	ZSTD_parameters params = zstd_get_btrfs_parameters(workspace->req_level,
390 							   len);
391 
392 	*out_pages = 0;
393 	*total_out = 0;
394 	*total_in = 0;
395 
396 	/* Initialize the stream */
397 	stream = ZSTD_initCStream(params, len, workspace->mem,
398 			workspace->size);
399 	if (!stream) {
400 		pr_warn("BTRFS: ZSTD_initCStream failed\n");
401 		ret = -EIO;
402 		goto out;
403 	}
404 
405 	/* map in the first page of input data */
406 	in_page = find_get_page(mapping, start >> PAGE_SHIFT);
407 	workspace->in_buf.src = kmap(in_page);
408 	workspace->in_buf.pos = 0;
409 	workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE);
410 
411 
412 	/* Allocate and map in the output buffer */
413 	out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
414 	if (out_page == NULL) {
415 		ret = -ENOMEM;
416 		goto out;
417 	}
418 	pages[nr_pages++] = out_page;
419 	workspace->out_buf.dst = kmap(out_page);
420 	workspace->out_buf.pos = 0;
421 	workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE);
422 
423 	while (1) {
424 		size_t ret2;
425 
426 		ret2 = ZSTD_compressStream(stream, &workspace->out_buf,
427 				&workspace->in_buf);
428 		if (ZSTD_isError(ret2)) {
429 			pr_debug("BTRFS: ZSTD_compressStream returned %d\n",
430 					ZSTD_getErrorCode(ret2));
431 			ret = -EIO;
432 			goto out;
433 		}
434 
435 		/* Check to see if we are making it bigger */
436 		if (tot_in + workspace->in_buf.pos > 8192 &&
437 				tot_in + workspace->in_buf.pos <
438 				tot_out + workspace->out_buf.pos) {
439 			ret = -E2BIG;
440 			goto out;
441 		}
442 
443 		/* We've reached the end of our output range */
444 		if (workspace->out_buf.pos >= max_out) {
445 			tot_out += workspace->out_buf.pos;
446 			ret = -E2BIG;
447 			goto out;
448 		}
449 
450 		/* Check if we need more output space */
451 		if (workspace->out_buf.pos == workspace->out_buf.size) {
452 			tot_out += PAGE_SIZE;
453 			max_out -= PAGE_SIZE;
454 			kunmap(out_page);
455 			if (nr_pages == nr_dest_pages) {
456 				out_page = NULL;
457 				ret = -E2BIG;
458 				goto out;
459 			}
460 			out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
461 			if (out_page == NULL) {
462 				ret = -ENOMEM;
463 				goto out;
464 			}
465 			pages[nr_pages++] = out_page;
466 			workspace->out_buf.dst = kmap(out_page);
467 			workspace->out_buf.pos = 0;
468 			workspace->out_buf.size = min_t(size_t, max_out,
469 							PAGE_SIZE);
470 		}
471 
472 		/* We've reached the end of the input */
473 		if (workspace->in_buf.pos >= len) {
474 			tot_in += workspace->in_buf.pos;
475 			break;
476 		}
477 
478 		/* Check if we need more input */
479 		if (workspace->in_buf.pos == workspace->in_buf.size) {
480 			tot_in += PAGE_SIZE;
481 			kunmap(in_page);
482 			put_page(in_page);
483 
484 			start += PAGE_SIZE;
485 			len -= PAGE_SIZE;
486 			in_page = find_get_page(mapping, start >> PAGE_SHIFT);
487 			workspace->in_buf.src = kmap(in_page);
488 			workspace->in_buf.pos = 0;
489 			workspace->in_buf.size = min_t(size_t, len, PAGE_SIZE);
490 		}
491 	}
492 	while (1) {
493 		size_t ret2;
494 
495 		ret2 = ZSTD_endStream(stream, &workspace->out_buf);
496 		if (ZSTD_isError(ret2)) {
497 			pr_debug("BTRFS: ZSTD_endStream returned %d\n",
498 					ZSTD_getErrorCode(ret2));
499 			ret = -EIO;
500 			goto out;
501 		}
502 		if (ret2 == 0) {
503 			tot_out += workspace->out_buf.pos;
504 			break;
505 		}
506 		if (workspace->out_buf.pos >= max_out) {
507 			tot_out += workspace->out_buf.pos;
508 			ret = -E2BIG;
509 			goto out;
510 		}
511 
512 		tot_out += PAGE_SIZE;
513 		max_out -= PAGE_SIZE;
514 		kunmap(out_page);
515 		if (nr_pages == nr_dest_pages) {
516 			out_page = NULL;
517 			ret = -E2BIG;
518 			goto out;
519 		}
520 		out_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
521 		if (out_page == NULL) {
522 			ret = -ENOMEM;
523 			goto out;
524 		}
525 		pages[nr_pages++] = out_page;
526 		workspace->out_buf.dst = kmap(out_page);
527 		workspace->out_buf.pos = 0;
528 		workspace->out_buf.size = min_t(size_t, max_out, PAGE_SIZE);
529 	}
530 
531 	if (tot_out >= tot_in) {
532 		ret = -E2BIG;
533 		goto out;
534 	}
535 
536 	ret = 0;
537 	*total_in = tot_in;
538 	*total_out = tot_out;
539 out:
540 	*out_pages = nr_pages;
541 	/* Cleanup */
542 	if (in_page) {
543 		kunmap(in_page);
544 		put_page(in_page);
545 	}
546 	if (out_page)
547 		kunmap(out_page);
548 	return ret;
549 }
550 
551 static int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb)
552 {
553 	struct workspace *workspace = list_entry(ws, struct workspace, list);
554 	struct page **pages_in = cb->compressed_pages;
555 	u64 disk_start = cb->start;
556 	struct bio *orig_bio = cb->orig_bio;
557 	size_t srclen = cb->compressed_len;
558 	ZSTD_DStream *stream;
559 	int ret = 0;
560 	unsigned long page_in_index = 0;
561 	unsigned long total_pages_in = DIV_ROUND_UP(srclen, PAGE_SIZE);
562 	unsigned long buf_start;
563 	unsigned long total_out = 0;
564 
565 	stream = ZSTD_initDStream(
566 			ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size);
567 	if (!stream) {
568 		pr_debug("BTRFS: ZSTD_initDStream failed\n");
569 		ret = -EIO;
570 		goto done;
571 	}
572 
573 	workspace->in_buf.src = kmap(pages_in[page_in_index]);
574 	workspace->in_buf.pos = 0;
575 	workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE);
576 
577 	workspace->out_buf.dst = workspace->buf;
578 	workspace->out_buf.pos = 0;
579 	workspace->out_buf.size = PAGE_SIZE;
580 
581 	while (1) {
582 		size_t ret2;
583 
584 		ret2 = ZSTD_decompressStream(stream, &workspace->out_buf,
585 				&workspace->in_buf);
586 		if (ZSTD_isError(ret2)) {
587 			pr_debug("BTRFS: ZSTD_decompressStream returned %d\n",
588 					ZSTD_getErrorCode(ret2));
589 			ret = -EIO;
590 			goto done;
591 		}
592 		buf_start = total_out;
593 		total_out += workspace->out_buf.pos;
594 		workspace->out_buf.pos = 0;
595 
596 		ret = btrfs_decompress_buf2page(workspace->out_buf.dst,
597 				buf_start, total_out, disk_start, orig_bio);
598 		if (ret == 0)
599 			break;
600 
601 		if (workspace->in_buf.pos >= srclen)
602 			break;
603 
604 		/* Check if we've hit the end of a frame */
605 		if (ret2 == 0)
606 			break;
607 
608 		if (workspace->in_buf.pos == workspace->in_buf.size) {
609 			kunmap(pages_in[page_in_index++]);
610 			if (page_in_index >= total_pages_in) {
611 				workspace->in_buf.src = NULL;
612 				ret = -EIO;
613 				goto done;
614 			}
615 			srclen -= PAGE_SIZE;
616 			workspace->in_buf.src = kmap(pages_in[page_in_index]);
617 			workspace->in_buf.pos = 0;
618 			workspace->in_buf.size = min_t(size_t, srclen, PAGE_SIZE);
619 		}
620 	}
621 	ret = 0;
622 	zero_fill_bio(orig_bio);
623 done:
624 	if (workspace->in_buf.src)
625 		kunmap(pages_in[page_in_index]);
626 	return ret;
627 }
628 
629 static int zstd_decompress(struct list_head *ws, unsigned char *data_in,
630 		struct page *dest_page,
631 		unsigned long start_byte,
632 		size_t srclen, size_t destlen)
633 {
634 	struct workspace *workspace = list_entry(ws, struct workspace, list);
635 	ZSTD_DStream *stream;
636 	int ret = 0;
637 	size_t ret2;
638 	unsigned long total_out = 0;
639 	unsigned long pg_offset = 0;
640 	char *kaddr;
641 
642 	stream = ZSTD_initDStream(
643 			ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size);
644 	if (!stream) {
645 		pr_warn("BTRFS: ZSTD_initDStream failed\n");
646 		ret = -EIO;
647 		goto finish;
648 	}
649 
650 	destlen = min_t(size_t, destlen, PAGE_SIZE);
651 
652 	workspace->in_buf.src = data_in;
653 	workspace->in_buf.pos = 0;
654 	workspace->in_buf.size = srclen;
655 
656 	workspace->out_buf.dst = workspace->buf;
657 	workspace->out_buf.pos = 0;
658 	workspace->out_buf.size = PAGE_SIZE;
659 
660 	ret2 = 1;
661 	while (pg_offset < destlen
662 	       && workspace->in_buf.pos < workspace->in_buf.size) {
663 		unsigned long buf_start;
664 		unsigned long buf_offset;
665 		unsigned long bytes;
666 
667 		/* Check if the frame is over and we still need more input */
668 		if (ret2 == 0) {
669 			pr_debug("BTRFS: ZSTD_decompressStream ended early\n");
670 			ret = -EIO;
671 			goto finish;
672 		}
673 		ret2 = ZSTD_decompressStream(stream, &workspace->out_buf,
674 				&workspace->in_buf);
675 		if (ZSTD_isError(ret2)) {
676 			pr_debug("BTRFS: ZSTD_decompressStream returned %d\n",
677 					ZSTD_getErrorCode(ret2));
678 			ret = -EIO;
679 			goto finish;
680 		}
681 
682 		buf_start = total_out;
683 		total_out += workspace->out_buf.pos;
684 		workspace->out_buf.pos = 0;
685 
686 		if (total_out <= start_byte)
687 			continue;
688 
689 		if (total_out > start_byte && buf_start < start_byte)
690 			buf_offset = start_byte - buf_start;
691 		else
692 			buf_offset = 0;
693 
694 		bytes = min_t(unsigned long, destlen - pg_offset,
695 				workspace->out_buf.size - buf_offset);
696 
697 		kaddr = kmap_atomic(dest_page);
698 		memcpy(kaddr + pg_offset, workspace->out_buf.dst + buf_offset,
699 				bytes);
700 		kunmap_atomic(kaddr);
701 
702 		pg_offset += bytes;
703 	}
704 	ret = 0;
705 finish:
706 	if (pg_offset < destlen) {
707 		kaddr = kmap_atomic(dest_page);
708 		memset(kaddr + pg_offset, 0, destlen - pg_offset);
709 		kunmap_atomic(kaddr);
710 	}
711 	return ret;
712 }
713 
714 const struct btrfs_compress_op btrfs_zstd_compress = {
715 	.init_workspace_manager = zstd_init_workspace_manager,
716 	.cleanup_workspace_manager = zstd_cleanup_workspace_manager,
717 	.get_workspace = zstd_get_workspace,
718 	.put_workspace = zstd_put_workspace,
719 	.alloc_workspace = zstd_alloc_workspace,
720 	.free_workspace = zstd_free_workspace,
721 	.compress_pages = zstd_compress_pages,
722 	.decompress_bio = zstd_decompress_bio,
723 	.decompress = zstd_decompress,
724 	.max_level	= ZSTD_BTRFS_MAX_LEVEL,
725 	.default_level	= ZSTD_BTRFS_DEFAULT_LEVEL,
726 };
727