1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2016-present, Facebook, Inc. 4 * All rights reserved. 5 * 6 */ 7 8 #include <linux/bio.h> 9 #include <linux/bitmap.h> 10 #include <linux/err.h> 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/mm.h> 14 #include <linux/sched/mm.h> 15 #include <linux/pagemap.h> 16 #include <linux/refcount.h> 17 #include <linux/sched.h> 18 #include <linux/slab.h> 19 #include <linux/zstd.h> 20 #include "misc.h" 21 #include "fs.h" 22 #include "btrfs_inode.h" 23 #include "compression.h" 24 #include "super.h" 25 26 #define ZSTD_BTRFS_MAX_WINDOWLOG 17 27 #define ZSTD_BTRFS_MAX_INPUT (1U << ZSTD_BTRFS_MAX_WINDOWLOG) 28 #define ZSTD_BTRFS_DEFAULT_LEVEL 3 29 #define ZSTD_BTRFS_MIN_LEVEL -15 30 #define ZSTD_BTRFS_MAX_LEVEL 15 31 /* 307s to avoid pathologically clashing with transaction commit */ 32 #define ZSTD_BTRFS_RECLAIM_JIFFIES (307 * HZ) 33 34 static zstd_parameters zstd_get_btrfs_parameters(int level, 35 size_t src_len) 36 { 37 zstd_parameters params = zstd_get_params(level, src_len); 38 39 if (params.cParams.windowLog > ZSTD_BTRFS_MAX_WINDOWLOG) 40 params.cParams.windowLog = ZSTD_BTRFS_MAX_WINDOWLOG; 41 WARN_ON(src_len > ZSTD_BTRFS_MAX_INPUT); 42 return params; 43 } 44 45 struct workspace { 46 void *mem; 47 size_t size; 48 char *buf; 49 int level; 50 int req_level; 51 unsigned long last_used; /* jiffies */ 52 struct list_head list; 53 struct list_head lru_list; 54 zstd_in_buffer in_buf; 55 zstd_out_buffer out_buf; 56 zstd_parameters params; 57 }; 58 59 /* 60 * Zstd Workspace Management 61 * 62 * Zstd workspaces have different memory requirements depending on the level. 63 * The zstd workspaces are managed by having individual lists for each level 64 * and a global lru. Forward progress is maintained by protecting a max level 65 * workspace. 66 * 67 * Getting a workspace is done by using the bitmap to identify the levels that 68 * have available workspaces and scans up. This lets us recycle higher level 69 * workspaces because of the monotonic memory guarantee. A workspace's 70 * last_used is only updated if it is being used by the corresponding memory 71 * level. Putting a workspace involves adding it back to the appropriate places 72 * and adding it back to the lru if necessary. 73 * 74 * A timer is used to reclaim workspaces if they have not been used for 75 * ZSTD_BTRFS_RECLAIM_JIFFIES. This helps keep only active workspaces around. 76 * The upper bound is provided by the workqueue limit which is 2 (percpu limit). 77 */ 78 79 struct zstd_workspace_manager { 80 spinlock_t lock; 81 struct list_head lru_list; 82 struct list_head idle_ws[ZSTD_BTRFS_MAX_LEVEL]; 83 unsigned long active_map; 84 wait_queue_head_t wait; 85 struct timer_list timer; 86 }; 87 88 static size_t zstd_ws_mem_sizes[ZSTD_BTRFS_MAX_LEVEL]; 89 90 static inline struct workspace *list_to_workspace(struct list_head *list) 91 { 92 return container_of(list, struct workspace, list); 93 } 94 95 static inline int clip_level(int level) 96 { 97 return max(0, level - 1); 98 } 99 100 /* 101 * Timer callback to free unused workspaces. 102 * 103 * @t: timer 104 * 105 * This scans the lru_list and attempts to reclaim any workspace that hasn't 106 * been used for ZSTD_BTRFS_RECLAIM_JIFFIES. 107 * 108 * The context is softirq and does not need the _bh locking primitives. 109 */ 110 static void zstd_reclaim_timer_fn(struct timer_list *timer) 111 { 112 struct zstd_workspace_manager *zwsm = 113 container_of(timer, struct zstd_workspace_manager, timer); 114 unsigned long reclaim_threshold = jiffies - ZSTD_BTRFS_RECLAIM_JIFFIES; 115 struct list_head *pos, *next; 116 117 spin_lock(&zwsm->lock); 118 119 if (list_empty(&zwsm->lru_list)) { 120 spin_unlock(&zwsm->lock); 121 return; 122 } 123 124 list_for_each_prev_safe(pos, next, &zwsm->lru_list) { 125 struct workspace *victim = container_of(pos, struct workspace, 126 lru_list); 127 int level; 128 129 if (time_after(victim->last_used, reclaim_threshold)) 130 break; 131 132 /* workspace is in use */ 133 if (victim->req_level) 134 continue; 135 136 level = victim->level; 137 list_del(&victim->lru_list); 138 list_del(&victim->list); 139 zstd_free_workspace(&victim->list); 140 141 if (list_empty(&zwsm->idle_ws[level])) 142 clear_bit(level, &zwsm->active_map); 143 144 } 145 146 if (!list_empty(&zwsm->lru_list)) 147 mod_timer(&zwsm->timer, jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES); 148 149 spin_unlock(&zwsm->lock); 150 } 151 152 /* 153 * Calculate monotonic memory bounds. 154 * 155 * It is possible based on the level configurations that a higher level 156 * workspace uses less memory than a lower level workspace. In order to reuse 157 * workspaces, this must be made a monotonic relationship. This precomputes 158 * the required memory for each level and enforces the monotonicity between 159 * level and memory required. 160 */ 161 static void zstd_calc_ws_mem_sizes(void) 162 { 163 size_t max_size = 0; 164 int level; 165 166 for (level = ZSTD_BTRFS_MIN_LEVEL; level <= ZSTD_BTRFS_MAX_LEVEL; level++) { 167 if (level == 0) 168 continue; 169 zstd_parameters params = 170 zstd_get_btrfs_parameters(level, ZSTD_BTRFS_MAX_INPUT); 171 size_t level_size = 172 max_t(size_t, 173 zstd_cstream_workspace_bound(¶ms.cParams), 174 zstd_dstream_workspace_bound(ZSTD_BTRFS_MAX_INPUT)); 175 176 max_size = max_t(size_t, max_size, level_size); 177 /* Use level 1 workspace size for all the fast mode negative levels. */ 178 zstd_ws_mem_sizes[clip_level(level)] = max_size; 179 } 180 } 181 182 int zstd_alloc_workspace_manager(struct btrfs_fs_info *fs_info) 183 { 184 struct zstd_workspace_manager *zwsm; 185 struct list_head *ws; 186 187 ASSERT(fs_info->compr_wsm[BTRFS_COMPRESS_ZSTD] == NULL); 188 zwsm = kzalloc(sizeof(*zwsm), GFP_KERNEL); 189 if (!zwsm) 190 return -ENOMEM; 191 zstd_calc_ws_mem_sizes(); 192 spin_lock_init(&zwsm->lock); 193 init_waitqueue_head(&zwsm->wait); 194 timer_setup(&zwsm->timer, zstd_reclaim_timer_fn, 0); 195 196 INIT_LIST_HEAD(&zwsm->lru_list); 197 for (int i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) 198 INIT_LIST_HEAD(&zwsm->idle_ws[i]); 199 fs_info->compr_wsm[BTRFS_COMPRESS_ZSTD] = zwsm; 200 201 ws = zstd_alloc_workspace(fs_info, ZSTD_BTRFS_MAX_LEVEL); 202 if (IS_ERR(ws)) { 203 btrfs_warn(NULL, "cannot preallocate zstd compression workspace"); 204 } else { 205 set_bit(ZSTD_BTRFS_MAX_LEVEL - 1, &zwsm->active_map); 206 list_add(ws, &zwsm->idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1]); 207 } 208 return 0; 209 } 210 211 void zstd_free_workspace_manager(struct btrfs_fs_info *fs_info) 212 { 213 struct zstd_workspace_manager *zwsm = fs_info->compr_wsm[BTRFS_COMPRESS_ZSTD]; 214 struct workspace *workspace; 215 216 if (!zwsm) 217 return; 218 fs_info->compr_wsm[BTRFS_COMPRESS_ZSTD] = NULL; 219 spin_lock_bh(&zwsm->lock); 220 for (int i = 0; i < ZSTD_BTRFS_MAX_LEVEL; i++) { 221 while (!list_empty(&zwsm->idle_ws[i])) { 222 workspace = container_of(zwsm->idle_ws[i].next, 223 struct workspace, list); 224 list_del(&workspace->list); 225 list_del(&workspace->lru_list); 226 zstd_free_workspace(&workspace->list); 227 } 228 } 229 spin_unlock_bh(&zwsm->lock); 230 timer_delete_sync(&zwsm->timer); 231 kfree(zwsm); 232 } 233 234 /* 235 * Find workspace for given level. 236 * 237 * @level: compression level 238 * 239 * This iterates over the set bits in the active_map beginning at the requested 240 * compression level. This lets us utilize already allocated workspaces before 241 * allocating a new one. If the workspace is of a larger size, it is used, but 242 * the place in the lru_list and last_used times are not updated. This is to 243 * offer the opportunity to reclaim the workspace in favor of allocating an 244 * appropriately sized one in the future. 245 */ 246 static struct list_head *zstd_find_workspace(struct btrfs_fs_info *fs_info, int level) 247 { 248 struct zstd_workspace_manager *zwsm = fs_info->compr_wsm[BTRFS_COMPRESS_ZSTD]; 249 struct list_head *ws; 250 struct workspace *workspace; 251 int i = clip_level(level); 252 253 ASSERT(zwsm); 254 spin_lock_bh(&zwsm->lock); 255 for_each_set_bit_from(i, &zwsm->active_map, ZSTD_BTRFS_MAX_LEVEL) { 256 if (!list_empty(&zwsm->idle_ws[i])) { 257 ws = zwsm->idle_ws[i].next; 258 workspace = list_to_workspace(ws); 259 list_del_init(ws); 260 /* keep its place if it's a lower level using this */ 261 workspace->req_level = level; 262 if (clip_level(level) == workspace->level) 263 list_del(&workspace->lru_list); 264 if (list_empty(&zwsm->idle_ws[i])) 265 clear_bit(i, &zwsm->active_map); 266 spin_unlock_bh(&zwsm->lock); 267 return ws; 268 } 269 } 270 spin_unlock_bh(&zwsm->lock); 271 272 return NULL; 273 } 274 275 /* 276 * Zstd get_workspace for level. 277 * 278 * @level: compression level 279 * 280 * If @level is 0, then any compression level can be used. Therefore, we begin 281 * scanning from 1. We first scan through possible workspaces and then after 282 * attempt to allocate a new workspace. If we fail to allocate one due to 283 * memory pressure, go to sleep waiting for the max level workspace to free up. 284 */ 285 struct list_head *zstd_get_workspace(struct btrfs_fs_info *fs_info, int level) 286 { 287 struct zstd_workspace_manager *zwsm = fs_info->compr_wsm[BTRFS_COMPRESS_ZSTD]; 288 struct list_head *ws; 289 unsigned int nofs_flag; 290 291 ASSERT(zwsm); 292 293 /* level == 0 means we can use any workspace */ 294 if (!level) 295 level = 1; 296 297 again: 298 ws = zstd_find_workspace(fs_info, level); 299 if (ws) 300 return ws; 301 302 nofs_flag = memalloc_nofs_save(); 303 ws = zstd_alloc_workspace(fs_info, level); 304 memalloc_nofs_restore(nofs_flag); 305 306 if (IS_ERR(ws)) { 307 DEFINE_WAIT(wait); 308 309 prepare_to_wait(&zwsm->wait, &wait, TASK_UNINTERRUPTIBLE); 310 schedule(); 311 finish_wait(&zwsm->wait, &wait); 312 313 goto again; 314 } 315 316 return ws; 317 } 318 319 /* 320 * Zstd put_workspace. 321 * 322 * @ws: list_head for the workspace 323 * 324 * When putting back a workspace, we only need to update the LRU if we are of 325 * the requested compression level. Here is where we continue to protect the 326 * max level workspace or update last_used accordingly. If the reclaim timer 327 * isn't set, it is also set here. Only the max level workspace tries and wakes 328 * up waiting workspaces. 329 */ 330 void zstd_put_workspace(struct btrfs_fs_info *fs_info, struct list_head *ws) 331 { 332 struct zstd_workspace_manager *zwsm = fs_info->compr_wsm[BTRFS_COMPRESS_ZSTD]; 333 struct workspace *workspace = list_to_workspace(ws); 334 335 ASSERT(zwsm); 336 spin_lock_bh(&zwsm->lock); 337 338 /* A node is only taken off the lru if we are the corresponding level */ 339 if (clip_level(workspace->req_level) == workspace->level) { 340 /* Hide a max level workspace from reclaim */ 341 if (list_empty(&zwsm->idle_ws[ZSTD_BTRFS_MAX_LEVEL - 1])) { 342 INIT_LIST_HEAD(&workspace->lru_list); 343 } else { 344 workspace->last_used = jiffies; 345 list_add(&workspace->lru_list, &zwsm->lru_list); 346 if (!timer_pending(&zwsm->timer)) 347 mod_timer(&zwsm->timer, 348 jiffies + ZSTD_BTRFS_RECLAIM_JIFFIES); 349 } 350 } 351 352 set_bit(workspace->level, &zwsm->active_map); 353 list_add(&workspace->list, &zwsm->idle_ws[workspace->level]); 354 workspace->req_level = 0; 355 356 spin_unlock_bh(&zwsm->lock); 357 358 if (workspace->level == clip_level(ZSTD_BTRFS_MAX_LEVEL)) 359 cond_wake_up(&zwsm->wait); 360 } 361 362 void zstd_free_workspace(struct list_head *ws) 363 { 364 struct workspace *workspace = list_entry(ws, struct workspace, list); 365 366 kvfree(workspace->mem); 367 kfree(workspace->buf); 368 kfree(workspace); 369 } 370 371 struct list_head *zstd_alloc_workspace(struct btrfs_fs_info *fs_info, int level) 372 { 373 const u32 blocksize = fs_info->sectorsize; 374 struct workspace *workspace; 375 376 workspace = kzalloc(sizeof(*workspace), GFP_KERNEL); 377 if (!workspace) 378 return ERR_PTR(-ENOMEM); 379 380 /* Use level 1 workspace size for all the fast mode negative levels. */ 381 workspace->size = zstd_ws_mem_sizes[clip_level(level)]; 382 workspace->level = clip_level(level); 383 workspace->req_level = level; 384 workspace->last_used = jiffies; 385 workspace->mem = kvmalloc(workspace->size, GFP_KERNEL | __GFP_NOWARN); 386 workspace->buf = kmalloc(blocksize, GFP_KERNEL); 387 if (!workspace->mem || !workspace->buf) 388 goto fail; 389 390 INIT_LIST_HEAD(&workspace->list); 391 INIT_LIST_HEAD(&workspace->lru_list); 392 393 return &workspace->list; 394 fail: 395 zstd_free_workspace(&workspace->list); 396 return ERR_PTR(-ENOMEM); 397 } 398 399 int zstd_compress_folios(struct list_head *ws, struct btrfs_inode *inode, 400 u64 start, struct folio **folios, unsigned long *out_folios, 401 unsigned long *total_in, unsigned long *total_out) 402 { 403 struct btrfs_fs_info *fs_info = inode->root->fs_info; 404 struct workspace *workspace = list_entry(ws, struct workspace, list); 405 struct address_space *mapping = inode->vfs_inode.i_mapping; 406 zstd_cstream *stream; 407 int ret = 0; 408 int nr_folios = 0; 409 struct folio *in_folio = NULL; /* The current folio to read. */ 410 struct folio *out_folio = NULL; /* The current folio to write to. */ 411 unsigned long tot_in = 0; 412 unsigned long tot_out = 0; 413 unsigned long len = *total_out; 414 const unsigned long nr_dest_folios = *out_folios; 415 const u64 orig_end = start + len; 416 const u32 blocksize = fs_info->sectorsize; 417 const u32 min_folio_size = btrfs_min_folio_size(fs_info); 418 unsigned long max_out = nr_dest_folios * min_folio_size; 419 unsigned int cur_len; 420 421 workspace->params = zstd_get_btrfs_parameters(workspace->req_level, len); 422 *out_folios = 0; 423 *total_out = 0; 424 *total_in = 0; 425 426 /* Initialize the stream */ 427 stream = zstd_init_cstream(&workspace->params, len, workspace->mem, 428 workspace->size); 429 if (unlikely(!stream)) { 430 btrfs_err(fs_info, 431 "zstd compression init level %d failed, root %llu inode %llu offset %llu", 432 workspace->req_level, btrfs_root_id(inode->root), 433 btrfs_ino(inode), start); 434 ret = -EIO; 435 goto out; 436 } 437 438 /* map in the first page of input data */ 439 ret = btrfs_compress_filemap_get_folio(mapping, start, &in_folio); 440 if (ret < 0) 441 goto out; 442 cur_len = btrfs_calc_input_length(in_folio, orig_end, start); 443 workspace->in_buf.src = kmap_local_folio(in_folio, offset_in_folio(in_folio, start)); 444 workspace->in_buf.pos = 0; 445 workspace->in_buf.size = cur_len; 446 447 /* Allocate and map in the output buffer */ 448 out_folio = btrfs_alloc_compr_folio(fs_info); 449 if (out_folio == NULL) { 450 ret = -ENOMEM; 451 goto out; 452 } 453 folios[nr_folios++] = out_folio; 454 workspace->out_buf.dst = folio_address(out_folio); 455 workspace->out_buf.pos = 0; 456 workspace->out_buf.size = min_t(size_t, max_out, min_folio_size); 457 458 while (1) { 459 size_t ret2; 460 461 ret2 = zstd_compress_stream(stream, &workspace->out_buf, 462 &workspace->in_buf); 463 if (unlikely(zstd_is_error(ret2))) { 464 btrfs_warn(fs_info, 465 "zstd compression level %d failed, error %d root %llu inode %llu offset %llu", 466 workspace->req_level, zstd_get_error_code(ret2), 467 btrfs_root_id(inode->root), btrfs_ino(inode), 468 start); 469 ret = -EIO; 470 goto out; 471 } 472 473 /* Check to see if we are making it bigger */ 474 if (tot_in + workspace->in_buf.pos > blocksize * 2 && 475 tot_in + workspace->in_buf.pos < 476 tot_out + workspace->out_buf.pos) { 477 ret = -E2BIG; 478 goto out; 479 } 480 481 /* We've reached the end of our output range */ 482 if (workspace->out_buf.pos >= max_out) { 483 tot_out += workspace->out_buf.pos; 484 ret = -E2BIG; 485 goto out; 486 } 487 488 /* Check if we need more output space */ 489 if (workspace->out_buf.pos == workspace->out_buf.size) { 490 tot_out += min_folio_size; 491 max_out -= min_folio_size; 492 if (nr_folios == nr_dest_folios) { 493 ret = -E2BIG; 494 goto out; 495 } 496 out_folio = btrfs_alloc_compr_folio(fs_info); 497 if (out_folio == NULL) { 498 ret = -ENOMEM; 499 goto out; 500 } 501 folios[nr_folios++] = out_folio; 502 workspace->out_buf.dst = folio_address(out_folio); 503 workspace->out_buf.pos = 0; 504 workspace->out_buf.size = min_t(size_t, max_out, min_folio_size); 505 } 506 507 /* We've reached the end of the input */ 508 if (workspace->in_buf.pos >= len) { 509 tot_in += workspace->in_buf.pos; 510 break; 511 } 512 513 /* Check if we need more input */ 514 if (workspace->in_buf.pos == workspace->in_buf.size) { 515 tot_in += workspace->in_buf.size; 516 kunmap_local(workspace->in_buf.src); 517 workspace->in_buf.src = NULL; 518 folio_put(in_folio); 519 start += cur_len; 520 len -= cur_len; 521 ret = btrfs_compress_filemap_get_folio(mapping, start, &in_folio); 522 if (ret < 0) 523 goto out; 524 cur_len = btrfs_calc_input_length(in_folio, orig_end, start); 525 workspace->in_buf.src = kmap_local_folio(in_folio, 526 offset_in_folio(in_folio, start)); 527 workspace->in_buf.pos = 0; 528 workspace->in_buf.size = cur_len; 529 } 530 } 531 while (1) { 532 size_t ret2; 533 534 ret2 = zstd_end_stream(stream, &workspace->out_buf); 535 if (unlikely(zstd_is_error(ret2))) { 536 btrfs_err(fs_info, 537 "zstd compression end level %d failed, error %d root %llu inode %llu offset %llu", 538 workspace->req_level, zstd_get_error_code(ret2), 539 btrfs_root_id(inode->root), btrfs_ino(inode), 540 start); 541 ret = -EIO; 542 goto out; 543 } 544 if (ret2 == 0) { 545 tot_out += workspace->out_buf.pos; 546 break; 547 } 548 if (workspace->out_buf.pos >= max_out) { 549 tot_out += workspace->out_buf.pos; 550 ret = -E2BIG; 551 goto out; 552 } 553 554 tot_out += min_folio_size; 555 max_out -= min_folio_size; 556 if (nr_folios == nr_dest_folios) { 557 ret = -E2BIG; 558 goto out; 559 } 560 out_folio = btrfs_alloc_compr_folio(fs_info); 561 if (out_folio == NULL) { 562 ret = -ENOMEM; 563 goto out; 564 } 565 folios[nr_folios++] = out_folio; 566 workspace->out_buf.dst = folio_address(out_folio); 567 workspace->out_buf.pos = 0; 568 workspace->out_buf.size = min_t(size_t, max_out, min_folio_size); 569 } 570 571 if (tot_out >= tot_in) { 572 ret = -E2BIG; 573 goto out; 574 } 575 576 ret = 0; 577 *total_in = tot_in; 578 *total_out = tot_out; 579 out: 580 *out_folios = nr_folios; 581 if (workspace->in_buf.src) { 582 kunmap_local(workspace->in_buf.src); 583 folio_put(in_folio); 584 } 585 return ret; 586 } 587 588 int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb) 589 { 590 struct btrfs_fs_info *fs_info = cb_to_fs_info(cb); 591 struct workspace *workspace = list_entry(ws, struct workspace, list); 592 struct folio **folios_in = cb->compressed_folios; 593 size_t srclen = cb->compressed_len; 594 zstd_dstream *stream; 595 int ret = 0; 596 const u32 blocksize = fs_info->sectorsize; 597 const unsigned int min_folio_size = btrfs_min_folio_size(fs_info); 598 unsigned long folio_in_index = 0; 599 unsigned long total_folios_in = DIV_ROUND_UP(srclen, min_folio_size); 600 unsigned long buf_start; 601 unsigned long total_out = 0; 602 603 stream = zstd_init_dstream( 604 ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size); 605 if (unlikely(!stream)) { 606 struct btrfs_inode *inode = cb->bbio.inode; 607 608 btrfs_err(inode->root->fs_info, 609 "zstd decompression init failed, root %llu inode %llu offset %llu", 610 btrfs_root_id(inode->root), btrfs_ino(inode), cb->start); 611 ret = -EIO; 612 goto done; 613 } 614 615 workspace->in_buf.src = kmap_local_folio(folios_in[folio_in_index], 0); 616 workspace->in_buf.pos = 0; 617 workspace->in_buf.size = min_t(size_t, srclen, min_folio_size); 618 619 workspace->out_buf.dst = workspace->buf; 620 workspace->out_buf.pos = 0; 621 workspace->out_buf.size = blocksize; 622 623 while (1) { 624 size_t ret2; 625 626 ret2 = zstd_decompress_stream(stream, &workspace->out_buf, 627 &workspace->in_buf); 628 if (unlikely(zstd_is_error(ret2))) { 629 struct btrfs_inode *inode = cb->bbio.inode; 630 631 btrfs_err(inode->root->fs_info, 632 "zstd decompression failed, error %d root %llu inode %llu offset %llu", 633 zstd_get_error_code(ret2), btrfs_root_id(inode->root), 634 btrfs_ino(inode), cb->start); 635 ret = -EIO; 636 goto done; 637 } 638 buf_start = total_out; 639 total_out += workspace->out_buf.pos; 640 workspace->out_buf.pos = 0; 641 642 ret = btrfs_decompress_buf2page(workspace->out_buf.dst, 643 total_out - buf_start, cb, buf_start); 644 if (ret == 0) 645 break; 646 647 if (workspace->in_buf.pos >= srclen) 648 break; 649 650 /* Check if we've hit the end of a frame */ 651 if (ret2 == 0) 652 break; 653 654 if (workspace->in_buf.pos == workspace->in_buf.size) { 655 kunmap_local(workspace->in_buf.src); 656 folio_in_index++; 657 if (unlikely(folio_in_index >= total_folios_in)) { 658 workspace->in_buf.src = NULL; 659 ret = -EIO; 660 goto done; 661 } 662 srclen -= min_folio_size; 663 workspace->in_buf.src = 664 kmap_local_folio(folios_in[folio_in_index], 0); 665 workspace->in_buf.pos = 0; 666 workspace->in_buf.size = min_t(size_t, srclen, min_folio_size); 667 } 668 } 669 ret = 0; 670 done: 671 if (workspace->in_buf.src) 672 kunmap_local(workspace->in_buf.src); 673 return ret; 674 } 675 676 int zstd_decompress(struct list_head *ws, const u8 *data_in, 677 struct folio *dest_folio, unsigned long dest_pgoff, size_t srclen, 678 size_t destlen) 679 { 680 struct workspace *workspace = list_entry(ws, struct workspace, list); 681 struct btrfs_fs_info *fs_info = btrfs_sb(folio_inode(dest_folio)->i_sb); 682 const u32 sectorsize = fs_info->sectorsize; 683 zstd_dstream *stream; 684 int ret = 0; 685 unsigned long to_copy = 0; 686 687 stream = zstd_init_dstream( 688 ZSTD_BTRFS_MAX_INPUT, workspace->mem, workspace->size); 689 if (unlikely(!stream)) { 690 struct btrfs_inode *inode = folio_to_inode(dest_folio); 691 692 btrfs_err(inode->root->fs_info, 693 "zstd decompression init failed, root %llu inode %llu offset %llu", 694 btrfs_root_id(inode->root), btrfs_ino(inode), 695 folio_pos(dest_folio)); 696 ret = -EIO; 697 goto finish; 698 } 699 700 workspace->in_buf.src = data_in; 701 workspace->in_buf.pos = 0; 702 workspace->in_buf.size = srclen; 703 704 workspace->out_buf.dst = workspace->buf; 705 workspace->out_buf.pos = 0; 706 workspace->out_buf.size = sectorsize; 707 708 /* 709 * Since both input and output buffers should not exceed one sector, 710 * one call should end the decompression. 711 */ 712 ret = zstd_decompress_stream(stream, &workspace->out_buf, &workspace->in_buf); 713 if (unlikely(zstd_is_error(ret))) { 714 struct btrfs_inode *inode = folio_to_inode(dest_folio); 715 716 btrfs_err(inode->root->fs_info, 717 "zstd decompression failed, error %d root %llu inode %llu offset %llu", 718 zstd_get_error_code(ret), btrfs_root_id(inode->root), 719 btrfs_ino(inode), folio_pos(dest_folio)); 720 goto finish; 721 } 722 to_copy = workspace->out_buf.pos; 723 memcpy_to_folio(dest_folio, dest_pgoff, workspace->out_buf.dst, to_copy); 724 finish: 725 /* Error or early end. */ 726 if (unlikely(to_copy < destlen)) { 727 ret = -EIO; 728 folio_zero_range(dest_folio, dest_pgoff + to_copy, destlen - to_copy); 729 } 730 return ret; 731 } 732 733 const struct btrfs_compress_levels btrfs_zstd_compress = { 734 .min_level = ZSTD_BTRFS_MIN_LEVEL, 735 .max_level = ZSTD_BTRFS_MAX_LEVEL, 736 .default_level = ZSTD_BTRFS_DEFAULT_LEVEL, 737 }; 738