1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/blkdev.h> 6 #include <linux/sched/mm.h> 7 #include <linux/atomic.h> 8 #include <linux/vmalloc.h> 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "zoned.h" 12 #include "rcu-string.h" 13 #include "disk-io.h" 14 #include "block-group.h" 15 #include "dev-replace.h" 16 #include "space-info.h" 17 #include "fs.h" 18 #include "accessors.h" 19 #include "bio.h" 20 21 /* Maximum number of zones to report per blkdev_report_zones() call */ 22 #define BTRFS_REPORT_NR_ZONES 4096 23 /* Invalid allocation pointer value for missing devices */ 24 #define WP_MISSING_DEV ((u64)-1) 25 /* Pseudo write pointer value for conventional zone */ 26 #define WP_CONVENTIONAL ((u64)-2) 27 28 /* 29 * Location of the first zone of superblock logging zone pairs. 30 * 31 * - primary superblock: 0B (zone 0) 32 * - first copy: 512G (zone starting at that offset) 33 * - second copy: 4T (zone starting at that offset) 34 */ 35 #define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL) 36 #define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G) 37 #define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G) 38 39 #define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET) 40 #define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET) 41 42 /* Number of superblock log zones */ 43 #define BTRFS_NR_SB_LOG_ZONES 2 44 45 /* 46 * Minimum of active zones we need: 47 * 48 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors 49 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group 50 * - 1 zone for tree-log dedicated block group 51 * - 1 zone for relocation 52 */ 53 #define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5) 54 55 /* 56 * Minimum / maximum supported zone size. Currently, SMR disks have a zone 57 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range. 58 * We do not expect the zone size to become larger than 8GiB or smaller than 59 * 4MiB in the near future. 60 */ 61 #define BTRFS_MAX_ZONE_SIZE SZ_8G 62 #define BTRFS_MIN_ZONE_SIZE SZ_4M 63 64 #define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT) 65 66 static void wait_eb_writebacks(struct btrfs_block_group *block_group); 67 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written); 68 69 static inline bool sb_zone_is_full(const struct blk_zone *zone) 70 { 71 return (zone->cond == BLK_ZONE_COND_FULL) || 72 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity); 73 } 74 75 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data) 76 { 77 struct blk_zone *zones = data; 78 79 memcpy(&zones[idx], zone, sizeof(*zone)); 80 81 return 0; 82 } 83 84 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones, 85 u64 *wp_ret) 86 { 87 bool empty[BTRFS_NR_SB_LOG_ZONES]; 88 bool full[BTRFS_NR_SB_LOG_ZONES]; 89 sector_t sector; 90 91 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 92 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL); 93 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY); 94 full[i] = sb_zone_is_full(&zones[i]); 95 } 96 97 /* 98 * Possible states of log buffer zones 99 * 100 * Empty[0] In use[0] Full[0] 101 * Empty[1] * 0 1 102 * In use[1] x x 1 103 * Full[1] 0 0 C 104 * 105 * Log position: 106 * *: Special case, no superblock is written 107 * 0: Use write pointer of zones[0] 108 * 1: Use write pointer of zones[1] 109 * C: Compare super blocks from zones[0] and zones[1], use the latest 110 * one determined by generation 111 * x: Invalid state 112 */ 113 114 if (empty[0] && empty[1]) { 115 /* Special case to distinguish no superblock to read */ 116 *wp_ret = zones[0].start << SECTOR_SHIFT; 117 return -ENOENT; 118 } else if (full[0] && full[1]) { 119 /* Compare two super blocks */ 120 struct address_space *mapping = bdev->bd_mapping; 121 struct page *page[BTRFS_NR_SB_LOG_ZONES]; 122 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES]; 123 124 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 125 u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT; 126 u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) - 127 BTRFS_SUPER_INFO_SIZE; 128 129 page[i] = read_cache_page_gfp(mapping, 130 bytenr >> PAGE_SHIFT, GFP_NOFS); 131 if (IS_ERR(page[i])) { 132 if (i == 1) 133 btrfs_release_disk_super(super[0]); 134 return PTR_ERR(page[i]); 135 } 136 super[i] = page_address(page[i]); 137 } 138 139 if (btrfs_super_generation(super[0]) > 140 btrfs_super_generation(super[1])) 141 sector = zones[1].start; 142 else 143 sector = zones[0].start; 144 145 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) 146 btrfs_release_disk_super(super[i]); 147 } else if (!full[0] && (empty[1] || full[1])) { 148 sector = zones[0].wp; 149 } else if (full[0]) { 150 sector = zones[1].wp; 151 } else { 152 return -EUCLEAN; 153 } 154 *wp_ret = sector << SECTOR_SHIFT; 155 return 0; 156 } 157 158 /* 159 * Get the first zone number of the superblock mirror 160 */ 161 static inline u32 sb_zone_number(int shift, int mirror) 162 { 163 u64 zone = U64_MAX; 164 165 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX); 166 switch (mirror) { 167 case 0: zone = 0; break; 168 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break; 169 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break; 170 } 171 172 ASSERT(zone <= U32_MAX); 173 174 return (u32)zone; 175 } 176 177 static inline sector_t zone_start_sector(u32 zone_number, 178 struct block_device *bdev) 179 { 180 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev)); 181 } 182 183 static inline u64 zone_start_physical(u32 zone_number, 184 struct btrfs_zoned_device_info *zone_info) 185 { 186 return (u64)zone_number << zone_info->zone_size_shift; 187 } 188 189 /* 190 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block 191 * device into static sized chunks and fake a conventional zone on each of 192 * them. 193 */ 194 static int emulate_report_zones(struct btrfs_device *device, u64 pos, 195 struct blk_zone *zones, unsigned int nr_zones) 196 { 197 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT; 198 sector_t bdev_size = bdev_nr_sectors(device->bdev); 199 unsigned int i; 200 201 pos >>= SECTOR_SHIFT; 202 for (i = 0; i < nr_zones; i++) { 203 zones[i].start = i * zone_sectors + pos; 204 zones[i].len = zone_sectors; 205 zones[i].capacity = zone_sectors; 206 zones[i].wp = zones[i].start + zone_sectors; 207 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL; 208 zones[i].cond = BLK_ZONE_COND_NOT_WP; 209 210 if (zones[i].wp >= bdev_size) { 211 i++; 212 break; 213 } 214 } 215 216 return i; 217 } 218 219 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos, 220 struct blk_zone *zones, unsigned int *nr_zones) 221 { 222 struct btrfs_zoned_device_info *zinfo = device->zone_info; 223 int ret; 224 225 if (!*nr_zones) 226 return 0; 227 228 if (!bdev_is_zoned(device->bdev)) { 229 ret = emulate_report_zones(device, pos, zones, *nr_zones); 230 *nr_zones = ret; 231 return 0; 232 } 233 234 /* Check cache */ 235 if (zinfo->zone_cache) { 236 unsigned int i; 237 u32 zno; 238 239 ASSERT(IS_ALIGNED(pos, zinfo->zone_size)); 240 zno = pos >> zinfo->zone_size_shift; 241 /* 242 * We cannot report zones beyond the zone end. So, it is OK to 243 * cap *nr_zones to at the end. 244 */ 245 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno); 246 247 for (i = 0; i < *nr_zones; i++) { 248 struct blk_zone *zone_info; 249 250 zone_info = &zinfo->zone_cache[zno + i]; 251 if (!zone_info->len) 252 break; 253 } 254 255 if (i == *nr_zones) { 256 /* Cache hit on all the zones */ 257 memcpy(zones, zinfo->zone_cache + zno, 258 sizeof(*zinfo->zone_cache) * *nr_zones); 259 return 0; 260 } 261 } 262 263 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones, 264 copy_zone_info_cb, zones); 265 if (ret < 0) { 266 btrfs_err_in_rcu(device->fs_info, 267 "zoned: failed to read zone %llu on %s (devid %llu)", 268 pos, rcu_str_deref(device->name), 269 device->devid); 270 return ret; 271 } 272 *nr_zones = ret; 273 if (!ret) 274 return -EIO; 275 276 /* Populate cache */ 277 if (zinfo->zone_cache) { 278 u32 zno = pos >> zinfo->zone_size_shift; 279 280 memcpy(zinfo->zone_cache + zno, zones, 281 sizeof(*zinfo->zone_cache) * *nr_zones); 282 } 283 284 return 0; 285 } 286 287 /* The emulated zone size is determined from the size of device extent */ 288 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info) 289 { 290 struct btrfs_path *path; 291 struct btrfs_root *root = fs_info->dev_root; 292 struct btrfs_key key; 293 struct extent_buffer *leaf; 294 struct btrfs_dev_extent *dext; 295 int ret = 0; 296 297 key.objectid = 1; 298 key.type = BTRFS_DEV_EXTENT_KEY; 299 key.offset = 0; 300 301 path = btrfs_alloc_path(); 302 if (!path) 303 return -ENOMEM; 304 305 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 306 if (ret < 0) 307 goto out; 308 309 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 310 ret = btrfs_next_leaf(root, path); 311 if (ret < 0) 312 goto out; 313 /* No dev extents at all? Not good */ 314 if (ret > 0) { 315 ret = -EUCLEAN; 316 goto out; 317 } 318 } 319 320 leaf = path->nodes[0]; 321 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 322 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext); 323 ret = 0; 324 325 out: 326 btrfs_free_path(path); 327 328 return ret; 329 } 330 331 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info) 332 { 333 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 334 struct btrfs_device *device; 335 int ret = 0; 336 337 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */ 338 if (!btrfs_fs_incompat(fs_info, ZONED)) 339 return 0; 340 341 mutex_lock(&fs_devices->device_list_mutex); 342 list_for_each_entry(device, &fs_devices->devices, dev_list) { 343 /* We can skip reading of zone info for missing devices */ 344 if (!device->bdev) 345 continue; 346 347 ret = btrfs_get_dev_zone_info(device, true); 348 if (ret) 349 break; 350 } 351 mutex_unlock(&fs_devices->device_list_mutex); 352 353 return ret; 354 } 355 356 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache) 357 { 358 struct btrfs_fs_info *fs_info = device->fs_info; 359 struct btrfs_zoned_device_info *zone_info = NULL; 360 struct block_device *bdev = device->bdev; 361 unsigned int max_active_zones; 362 unsigned int nactive; 363 sector_t nr_sectors; 364 sector_t sector = 0; 365 struct blk_zone *zones = NULL; 366 unsigned int i, nreported = 0, nr_zones; 367 sector_t zone_sectors; 368 char *model, *emulated; 369 int ret; 370 371 /* 372 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not 373 * yet be set. 374 */ 375 if (!btrfs_fs_incompat(fs_info, ZONED)) 376 return 0; 377 378 if (device->zone_info) 379 return 0; 380 381 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL); 382 if (!zone_info) 383 return -ENOMEM; 384 385 device->zone_info = zone_info; 386 387 if (!bdev_is_zoned(bdev)) { 388 if (!fs_info->zone_size) { 389 ret = calculate_emulated_zone_size(fs_info); 390 if (ret) 391 goto out; 392 } 393 394 ASSERT(fs_info->zone_size); 395 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT; 396 } else { 397 zone_sectors = bdev_zone_sectors(bdev); 398 } 399 400 ASSERT(is_power_of_two_u64(zone_sectors)); 401 zone_info->zone_size = zone_sectors << SECTOR_SHIFT; 402 403 /* We reject devices with a zone size larger than 8GB */ 404 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) { 405 btrfs_err_in_rcu(fs_info, 406 "zoned: %s: zone size %llu larger than supported maximum %llu", 407 rcu_str_deref(device->name), 408 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE); 409 ret = -EINVAL; 410 goto out; 411 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) { 412 btrfs_err_in_rcu(fs_info, 413 "zoned: %s: zone size %llu smaller than supported minimum %u", 414 rcu_str_deref(device->name), 415 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE); 416 ret = -EINVAL; 417 goto out; 418 } 419 420 nr_sectors = bdev_nr_sectors(bdev); 421 zone_info->zone_size_shift = ilog2(zone_info->zone_size); 422 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors); 423 if (!IS_ALIGNED(nr_sectors, zone_sectors)) 424 zone_info->nr_zones++; 425 426 max_active_zones = bdev_max_active_zones(bdev); 427 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) { 428 btrfs_err_in_rcu(fs_info, 429 "zoned: %s: max active zones %u is too small, need at least %u active zones", 430 rcu_str_deref(device->name), max_active_zones, 431 BTRFS_MIN_ACTIVE_ZONES); 432 ret = -EINVAL; 433 goto out; 434 } 435 zone_info->max_active_zones = max_active_zones; 436 437 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 438 if (!zone_info->seq_zones) { 439 ret = -ENOMEM; 440 goto out; 441 } 442 443 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 444 if (!zone_info->empty_zones) { 445 ret = -ENOMEM; 446 goto out; 447 } 448 449 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 450 if (!zone_info->active_zones) { 451 ret = -ENOMEM; 452 goto out; 453 } 454 455 zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL); 456 if (!zones) { 457 ret = -ENOMEM; 458 goto out; 459 } 460 461 /* 462 * Enable zone cache only for a zoned device. On a non-zoned device, we 463 * fill the zone info with emulated CONVENTIONAL zones, so no need to 464 * use the cache. 465 */ 466 if (populate_cache && bdev_is_zoned(device->bdev)) { 467 zone_info->zone_cache = vcalloc(zone_info->nr_zones, 468 sizeof(struct blk_zone)); 469 if (!zone_info->zone_cache) { 470 btrfs_err_in_rcu(device->fs_info, 471 "zoned: failed to allocate zone cache for %s", 472 rcu_str_deref(device->name)); 473 ret = -ENOMEM; 474 goto out; 475 } 476 } 477 478 /* Get zones type */ 479 nactive = 0; 480 while (sector < nr_sectors) { 481 nr_zones = BTRFS_REPORT_NR_ZONES; 482 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones, 483 &nr_zones); 484 if (ret) 485 goto out; 486 487 for (i = 0; i < nr_zones; i++) { 488 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ) 489 __set_bit(nreported, zone_info->seq_zones); 490 switch (zones[i].cond) { 491 case BLK_ZONE_COND_EMPTY: 492 __set_bit(nreported, zone_info->empty_zones); 493 break; 494 case BLK_ZONE_COND_IMP_OPEN: 495 case BLK_ZONE_COND_EXP_OPEN: 496 case BLK_ZONE_COND_CLOSED: 497 __set_bit(nreported, zone_info->active_zones); 498 nactive++; 499 break; 500 } 501 nreported++; 502 } 503 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len; 504 } 505 506 if (nreported != zone_info->nr_zones) { 507 btrfs_err_in_rcu(device->fs_info, 508 "inconsistent number of zones on %s (%u/%u)", 509 rcu_str_deref(device->name), nreported, 510 zone_info->nr_zones); 511 ret = -EIO; 512 goto out; 513 } 514 515 if (max_active_zones) { 516 if (nactive > max_active_zones) { 517 btrfs_err_in_rcu(device->fs_info, 518 "zoned: %u active zones on %s exceeds max_active_zones %u", 519 nactive, rcu_str_deref(device->name), 520 max_active_zones); 521 ret = -EIO; 522 goto out; 523 } 524 atomic_set(&zone_info->active_zones_left, 525 max_active_zones - nactive); 526 set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags); 527 } 528 529 /* Validate superblock log */ 530 nr_zones = BTRFS_NR_SB_LOG_ZONES; 531 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 532 u32 sb_zone; 533 u64 sb_wp; 534 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i; 535 536 sb_zone = sb_zone_number(zone_info->zone_size_shift, i); 537 if (sb_zone + 1 >= zone_info->nr_zones) 538 continue; 539 540 ret = btrfs_get_dev_zones(device, 541 zone_start_physical(sb_zone, zone_info), 542 &zone_info->sb_zones[sb_pos], 543 &nr_zones); 544 if (ret) 545 goto out; 546 547 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) { 548 btrfs_err_in_rcu(device->fs_info, 549 "zoned: failed to read super block log zone info at devid %llu zone %u", 550 device->devid, sb_zone); 551 ret = -EUCLEAN; 552 goto out; 553 } 554 555 /* 556 * If zones[0] is conventional, always use the beginning of the 557 * zone to record superblock. No need to validate in that case. 558 */ 559 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type == 560 BLK_ZONE_TYPE_CONVENTIONAL) 561 continue; 562 563 ret = sb_write_pointer(device->bdev, 564 &zone_info->sb_zones[sb_pos], &sb_wp); 565 if (ret != -ENOENT && ret) { 566 btrfs_err_in_rcu(device->fs_info, 567 "zoned: super block log zone corrupted devid %llu zone %u", 568 device->devid, sb_zone); 569 ret = -EUCLEAN; 570 goto out; 571 } 572 } 573 574 575 kvfree(zones); 576 577 if (bdev_is_zoned(bdev)) { 578 model = "host-managed zoned"; 579 emulated = ""; 580 } else { 581 model = "regular"; 582 emulated = "emulated "; 583 } 584 585 btrfs_info_in_rcu(fs_info, 586 "%s block device %s, %u %szones of %llu bytes", 587 model, rcu_str_deref(device->name), zone_info->nr_zones, 588 emulated, zone_info->zone_size); 589 590 return 0; 591 592 out: 593 kvfree(zones); 594 btrfs_destroy_dev_zone_info(device); 595 return ret; 596 } 597 598 void btrfs_destroy_dev_zone_info(struct btrfs_device *device) 599 { 600 struct btrfs_zoned_device_info *zone_info = device->zone_info; 601 602 if (!zone_info) 603 return; 604 605 bitmap_free(zone_info->active_zones); 606 bitmap_free(zone_info->seq_zones); 607 bitmap_free(zone_info->empty_zones); 608 vfree(zone_info->zone_cache); 609 kfree(zone_info); 610 device->zone_info = NULL; 611 } 612 613 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev) 614 { 615 struct btrfs_zoned_device_info *zone_info; 616 617 zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL); 618 if (!zone_info) 619 return NULL; 620 621 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 622 if (!zone_info->seq_zones) 623 goto out; 624 625 bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones, 626 zone_info->nr_zones); 627 628 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 629 if (!zone_info->empty_zones) 630 goto out; 631 632 bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones, 633 zone_info->nr_zones); 634 635 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 636 if (!zone_info->active_zones) 637 goto out; 638 639 bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones, 640 zone_info->nr_zones); 641 zone_info->zone_cache = NULL; 642 643 return zone_info; 644 645 out: 646 bitmap_free(zone_info->seq_zones); 647 bitmap_free(zone_info->empty_zones); 648 bitmap_free(zone_info->active_zones); 649 kfree(zone_info); 650 return NULL; 651 } 652 653 static int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, struct blk_zone *zone) 654 { 655 unsigned int nr_zones = 1; 656 int ret; 657 658 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones); 659 if (ret != 0 || !nr_zones) 660 return ret ? ret : -EIO; 661 662 return 0; 663 } 664 665 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info) 666 { 667 struct btrfs_device *device; 668 669 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 670 if (device->bdev && bdev_is_zoned(device->bdev)) { 671 btrfs_err(fs_info, 672 "zoned: mode not enabled but zoned device found: %pg", 673 device->bdev); 674 return -EINVAL; 675 } 676 } 677 678 return 0; 679 } 680 681 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info) 682 { 683 struct queue_limits *lim = &fs_info->limits; 684 struct btrfs_device *device; 685 u64 zone_size = 0; 686 int ret; 687 688 /* 689 * Host-Managed devices can't be used without the ZONED flag. With the 690 * ZONED all devices can be used, using zone emulation if required. 691 */ 692 if (!btrfs_fs_incompat(fs_info, ZONED)) 693 return btrfs_check_for_zoned_device(fs_info); 694 695 blk_set_stacking_limits(lim); 696 697 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 698 struct btrfs_zoned_device_info *zone_info = device->zone_info; 699 700 if (!device->bdev) 701 continue; 702 703 if (!zone_size) { 704 zone_size = zone_info->zone_size; 705 } else if (zone_info->zone_size != zone_size) { 706 btrfs_err(fs_info, 707 "zoned: unequal block device zone sizes: have %llu found %llu", 708 zone_info->zone_size, zone_size); 709 return -EINVAL; 710 } 711 712 /* 713 * With the zoned emulation, we can have non-zoned device on the 714 * zoned mode. In this case, we don't have a valid max zone 715 * append size. 716 */ 717 if (bdev_is_zoned(device->bdev)) { 718 blk_stack_limits(lim, 719 &bdev_get_queue(device->bdev)->limits, 720 0); 721 } 722 } 723 724 /* 725 * stripe_size is always aligned to BTRFS_STRIPE_LEN in 726 * btrfs_create_chunk(). Since we want stripe_len == zone_size, 727 * check the alignment here. 728 */ 729 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) { 730 btrfs_err(fs_info, 731 "zoned: zone size %llu not aligned to stripe %u", 732 zone_size, BTRFS_STRIPE_LEN); 733 return -EINVAL; 734 } 735 736 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 737 btrfs_err(fs_info, "zoned: mixed block groups not supported"); 738 return -EINVAL; 739 } 740 741 fs_info->zone_size = zone_size; 742 /* 743 * Also limit max_zone_append_size by max_segments * PAGE_SIZE. 744 * Technically, we can have multiple pages per segment. But, since 745 * we add the pages one by one to a bio, and cannot increase the 746 * metadata reservation even if it increases the number of extents, it 747 * is safe to stick with the limit. 748 */ 749 fs_info->max_zone_append_size = ALIGN_DOWN( 750 min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT, 751 (u64)lim->max_sectors << SECTOR_SHIFT, 752 (u64)lim->max_segments << PAGE_SHIFT), 753 fs_info->sectorsize); 754 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED; 755 if (fs_info->max_zone_append_size < fs_info->max_extent_size) 756 fs_info->max_extent_size = fs_info->max_zone_append_size; 757 758 /* 759 * Check mount options here, because we might change fs_info->zoned 760 * from fs_info->zone_size. 761 */ 762 ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt); 763 if (ret) 764 return ret; 765 766 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size); 767 return 0; 768 } 769 770 int btrfs_check_mountopts_zoned(const struct btrfs_fs_info *info, unsigned long *mount_opt) 771 { 772 if (!btrfs_is_zoned(info)) 773 return 0; 774 775 /* 776 * Space cache writing is not COWed. Disable that to avoid write errors 777 * in sequential zones. 778 */ 779 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) { 780 btrfs_err(info, "zoned: space cache v1 is not supported"); 781 return -EINVAL; 782 } 783 784 if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) { 785 btrfs_err(info, "zoned: NODATACOW not supported"); 786 return -EINVAL; 787 } 788 789 if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) { 790 btrfs_info(info, 791 "zoned: async discard ignored and disabled for zoned mode"); 792 btrfs_clear_opt(*mount_opt, DISCARD_ASYNC); 793 } 794 795 return 0; 796 } 797 798 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones, 799 int rw, u64 *bytenr_ret) 800 { 801 u64 wp; 802 int ret; 803 804 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) { 805 *bytenr_ret = zones[0].start << SECTOR_SHIFT; 806 return 0; 807 } 808 809 ret = sb_write_pointer(bdev, zones, &wp); 810 if (ret != -ENOENT && ret < 0) 811 return ret; 812 813 if (rw == WRITE) { 814 struct blk_zone *reset = NULL; 815 816 if (wp == zones[0].start << SECTOR_SHIFT) 817 reset = &zones[0]; 818 else if (wp == zones[1].start << SECTOR_SHIFT) 819 reset = &zones[1]; 820 821 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) { 822 unsigned int nofs_flags; 823 824 ASSERT(sb_zone_is_full(reset)); 825 826 nofs_flags = memalloc_nofs_save(); 827 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 828 reset->start, reset->len); 829 memalloc_nofs_restore(nofs_flags); 830 if (ret) 831 return ret; 832 833 reset->cond = BLK_ZONE_COND_EMPTY; 834 reset->wp = reset->start; 835 } 836 } else if (ret != -ENOENT) { 837 /* 838 * For READ, we want the previous one. Move write pointer to 839 * the end of a zone, if it is at the head of a zone. 840 */ 841 u64 zone_end = 0; 842 843 if (wp == zones[0].start << SECTOR_SHIFT) 844 zone_end = zones[1].start + zones[1].capacity; 845 else if (wp == zones[1].start << SECTOR_SHIFT) 846 zone_end = zones[0].start + zones[0].capacity; 847 if (zone_end) 848 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT, 849 BTRFS_SUPER_INFO_SIZE); 850 851 wp -= BTRFS_SUPER_INFO_SIZE; 852 } 853 854 *bytenr_ret = wp; 855 return 0; 856 857 } 858 859 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw, 860 u64 *bytenr_ret) 861 { 862 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES]; 863 sector_t zone_sectors; 864 u32 sb_zone; 865 int ret; 866 u8 zone_sectors_shift; 867 sector_t nr_sectors; 868 u32 nr_zones; 869 870 if (!bdev_is_zoned(bdev)) { 871 *bytenr_ret = btrfs_sb_offset(mirror); 872 return 0; 873 } 874 875 ASSERT(rw == READ || rw == WRITE); 876 877 zone_sectors = bdev_zone_sectors(bdev); 878 if (!is_power_of_2(zone_sectors)) 879 return -EINVAL; 880 zone_sectors_shift = ilog2(zone_sectors); 881 nr_sectors = bdev_nr_sectors(bdev); 882 nr_zones = nr_sectors >> zone_sectors_shift; 883 884 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 885 if (sb_zone + 1 >= nr_zones) 886 return -ENOENT; 887 888 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev), 889 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb, 890 zones); 891 if (ret < 0) 892 return ret; 893 if (ret != BTRFS_NR_SB_LOG_ZONES) 894 return -EIO; 895 896 return sb_log_location(bdev, zones, rw, bytenr_ret); 897 } 898 899 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw, 900 u64 *bytenr_ret) 901 { 902 struct btrfs_zoned_device_info *zinfo = device->zone_info; 903 u32 zone_num; 904 905 /* 906 * For a zoned filesystem on a non-zoned block device, use the same 907 * super block locations as regular filesystem. Doing so, the super 908 * block can always be retrieved and the zoned flag of the volume 909 * detected from the super block information. 910 */ 911 if (!bdev_is_zoned(device->bdev)) { 912 *bytenr_ret = btrfs_sb_offset(mirror); 913 return 0; 914 } 915 916 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 917 if (zone_num + 1 >= zinfo->nr_zones) 918 return -ENOENT; 919 920 return sb_log_location(device->bdev, 921 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror], 922 rw, bytenr_ret); 923 } 924 925 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo, 926 int mirror) 927 { 928 u32 zone_num; 929 930 if (!zinfo) 931 return false; 932 933 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 934 if (zone_num + 1 >= zinfo->nr_zones) 935 return false; 936 937 if (!test_bit(zone_num, zinfo->seq_zones)) 938 return false; 939 940 return true; 941 } 942 943 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror) 944 { 945 struct btrfs_zoned_device_info *zinfo = device->zone_info; 946 struct blk_zone *zone; 947 int i; 948 949 if (!is_sb_log_zone(zinfo, mirror)) 950 return 0; 951 952 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror]; 953 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 954 /* Advance the next zone */ 955 if (zone->cond == BLK_ZONE_COND_FULL) { 956 zone++; 957 continue; 958 } 959 960 if (zone->cond == BLK_ZONE_COND_EMPTY) 961 zone->cond = BLK_ZONE_COND_IMP_OPEN; 962 963 zone->wp += SUPER_INFO_SECTORS; 964 965 if (sb_zone_is_full(zone)) { 966 /* 967 * No room left to write new superblock. Since 968 * superblock is written with REQ_SYNC, it is safe to 969 * finish the zone now. 970 * 971 * If the write pointer is exactly at the capacity, 972 * explicit ZONE_FINISH is not necessary. 973 */ 974 if (zone->wp != zone->start + zone->capacity) { 975 unsigned int nofs_flags; 976 int ret; 977 978 nofs_flags = memalloc_nofs_save(); 979 ret = blkdev_zone_mgmt(device->bdev, 980 REQ_OP_ZONE_FINISH, zone->start, 981 zone->len); 982 memalloc_nofs_restore(nofs_flags); 983 if (ret) 984 return ret; 985 } 986 987 zone->wp = zone->start + zone->len; 988 zone->cond = BLK_ZONE_COND_FULL; 989 } 990 return 0; 991 } 992 993 /* All the zones are FULL. Should not reach here. */ 994 ASSERT(0); 995 return -EIO; 996 } 997 998 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror) 999 { 1000 unsigned int nofs_flags; 1001 sector_t zone_sectors; 1002 sector_t nr_sectors; 1003 u8 zone_sectors_shift; 1004 u32 sb_zone; 1005 u32 nr_zones; 1006 int ret; 1007 1008 zone_sectors = bdev_zone_sectors(bdev); 1009 zone_sectors_shift = ilog2(zone_sectors); 1010 nr_sectors = bdev_nr_sectors(bdev); 1011 nr_zones = nr_sectors >> zone_sectors_shift; 1012 1013 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 1014 if (sb_zone + 1 >= nr_zones) 1015 return -ENOENT; 1016 1017 nofs_flags = memalloc_nofs_save(); 1018 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1019 zone_start_sector(sb_zone, bdev), 1020 zone_sectors * BTRFS_NR_SB_LOG_ZONES); 1021 memalloc_nofs_restore(nofs_flags); 1022 return ret; 1023 } 1024 1025 /* 1026 * Find allocatable zones within a given region. 1027 * 1028 * @device: the device to allocate a region on 1029 * @hole_start: the position of the hole to allocate the region 1030 * @num_bytes: size of wanted region 1031 * @hole_end: the end of the hole 1032 * @return: position of allocatable zones 1033 * 1034 * Allocatable region should not contain any superblock locations. 1035 */ 1036 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start, 1037 u64 hole_end, u64 num_bytes) 1038 { 1039 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1040 const u8 shift = zinfo->zone_size_shift; 1041 u64 nzones = num_bytes >> shift; 1042 u64 pos = hole_start; 1043 u64 begin, end; 1044 bool have_sb; 1045 int i; 1046 1047 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size)); 1048 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size)); 1049 1050 while (pos < hole_end) { 1051 begin = pos >> shift; 1052 end = begin + nzones; 1053 1054 if (end > zinfo->nr_zones) 1055 return hole_end; 1056 1057 /* Check if zones in the region are all empty */ 1058 if (btrfs_dev_is_sequential(device, pos) && 1059 !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) { 1060 pos += zinfo->zone_size; 1061 continue; 1062 } 1063 1064 have_sb = false; 1065 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1066 u32 sb_zone; 1067 u64 sb_pos; 1068 1069 sb_zone = sb_zone_number(shift, i); 1070 if (!(end <= sb_zone || 1071 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) { 1072 have_sb = true; 1073 pos = zone_start_physical( 1074 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo); 1075 break; 1076 } 1077 1078 /* We also need to exclude regular superblock positions */ 1079 sb_pos = btrfs_sb_offset(i); 1080 if (!(pos + num_bytes <= sb_pos || 1081 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) { 1082 have_sb = true; 1083 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE, 1084 zinfo->zone_size); 1085 break; 1086 } 1087 } 1088 if (!have_sb) 1089 break; 1090 } 1091 1092 return pos; 1093 } 1094 1095 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos) 1096 { 1097 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1098 unsigned int zno = (pos >> zone_info->zone_size_shift); 1099 1100 /* We can use any number of zones */ 1101 if (zone_info->max_active_zones == 0) 1102 return true; 1103 1104 if (!test_bit(zno, zone_info->active_zones)) { 1105 /* Active zone left? */ 1106 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0) 1107 return false; 1108 if (test_and_set_bit(zno, zone_info->active_zones)) { 1109 /* Someone already set the bit */ 1110 atomic_inc(&zone_info->active_zones_left); 1111 } 1112 } 1113 1114 return true; 1115 } 1116 1117 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos) 1118 { 1119 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1120 unsigned int zno = (pos >> zone_info->zone_size_shift); 1121 1122 /* We can use any number of zones */ 1123 if (zone_info->max_active_zones == 0) 1124 return; 1125 1126 if (test_and_clear_bit(zno, zone_info->active_zones)) 1127 atomic_inc(&zone_info->active_zones_left); 1128 } 1129 1130 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical, 1131 u64 length, u64 *bytes) 1132 { 1133 unsigned int nofs_flags; 1134 int ret; 1135 1136 *bytes = 0; 1137 nofs_flags = memalloc_nofs_save(); 1138 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET, 1139 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT); 1140 memalloc_nofs_restore(nofs_flags); 1141 if (ret) 1142 return ret; 1143 1144 *bytes = length; 1145 while (length) { 1146 btrfs_dev_set_zone_empty(device, physical); 1147 btrfs_dev_clear_active_zone(device, physical); 1148 physical += device->zone_info->zone_size; 1149 length -= device->zone_info->zone_size; 1150 } 1151 1152 return 0; 1153 } 1154 1155 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size) 1156 { 1157 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1158 const u8 shift = zinfo->zone_size_shift; 1159 unsigned long begin = start >> shift; 1160 unsigned long nbits = size >> shift; 1161 u64 pos; 1162 int ret; 1163 1164 ASSERT(IS_ALIGNED(start, zinfo->zone_size)); 1165 ASSERT(IS_ALIGNED(size, zinfo->zone_size)); 1166 1167 if (begin + nbits > zinfo->nr_zones) 1168 return -ERANGE; 1169 1170 /* All the zones are conventional */ 1171 if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits)) 1172 return 0; 1173 1174 /* All the zones are sequential and empty */ 1175 if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) && 1176 bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits)) 1177 return 0; 1178 1179 for (pos = start; pos < start + size; pos += zinfo->zone_size) { 1180 u64 reset_bytes; 1181 1182 if (!btrfs_dev_is_sequential(device, pos) || 1183 btrfs_dev_is_empty_zone(device, pos)) 1184 continue; 1185 1186 /* Free regions should be empty */ 1187 btrfs_warn_in_rcu( 1188 device->fs_info, 1189 "zoned: resetting device %s (devid %llu) zone %llu for allocation", 1190 rcu_str_deref(device->name), device->devid, pos >> shift); 1191 WARN_ON_ONCE(1); 1192 1193 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size, 1194 &reset_bytes); 1195 if (ret) 1196 return ret; 1197 } 1198 1199 return 0; 1200 } 1201 1202 /* 1203 * Calculate an allocation pointer from the extent allocation information 1204 * for a block group consist of conventional zones. It is pointed to the 1205 * end of the highest addressed extent in the block group as an allocation 1206 * offset. 1207 */ 1208 static int calculate_alloc_pointer(struct btrfs_block_group *cache, 1209 u64 *offset_ret, bool new) 1210 { 1211 struct btrfs_fs_info *fs_info = cache->fs_info; 1212 struct btrfs_root *root; 1213 struct btrfs_path *path; 1214 struct btrfs_key key; 1215 struct btrfs_key found_key; 1216 int ret; 1217 u64 length; 1218 1219 /* 1220 * Avoid tree lookups for a new block group, there's no use for it. 1221 * It must always be 0. 1222 * 1223 * Also, we have a lock chain of extent buffer lock -> chunk mutex. 1224 * For new a block group, this function is called from 1225 * btrfs_make_block_group() which is already taking the chunk mutex. 1226 * Thus, we cannot call calculate_alloc_pointer() which takes extent 1227 * buffer locks to avoid deadlock. 1228 */ 1229 if (new) { 1230 *offset_ret = 0; 1231 return 0; 1232 } 1233 1234 path = btrfs_alloc_path(); 1235 if (!path) 1236 return -ENOMEM; 1237 1238 key.objectid = cache->start + cache->length; 1239 key.type = 0; 1240 key.offset = 0; 1241 1242 root = btrfs_extent_root(fs_info, key.objectid); 1243 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1244 /* We should not find the exact match */ 1245 if (!ret) 1246 ret = -EUCLEAN; 1247 if (ret < 0) 1248 goto out; 1249 1250 ret = btrfs_previous_extent_item(root, path, cache->start); 1251 if (ret) { 1252 if (ret == 1) { 1253 ret = 0; 1254 *offset_ret = 0; 1255 } 1256 goto out; 1257 } 1258 1259 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 1260 1261 if (found_key.type == BTRFS_EXTENT_ITEM_KEY) 1262 length = found_key.offset; 1263 else 1264 length = fs_info->nodesize; 1265 1266 if (!(found_key.objectid >= cache->start && 1267 found_key.objectid + length <= cache->start + cache->length)) { 1268 ret = -EUCLEAN; 1269 goto out; 1270 } 1271 *offset_ret = found_key.objectid + length - cache->start; 1272 ret = 0; 1273 1274 out: 1275 btrfs_free_path(path); 1276 return ret; 1277 } 1278 1279 struct zone_info { 1280 u64 physical; 1281 u64 capacity; 1282 u64 alloc_offset; 1283 }; 1284 1285 static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx, 1286 struct zone_info *info, unsigned long *active, 1287 struct btrfs_chunk_map *map) 1288 { 1289 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1290 struct btrfs_device *device; 1291 int dev_replace_is_ongoing = 0; 1292 unsigned int nofs_flag; 1293 struct blk_zone zone; 1294 int ret; 1295 1296 info->physical = map->stripes[zone_idx].physical; 1297 1298 down_read(&dev_replace->rwsem); 1299 device = map->stripes[zone_idx].dev; 1300 1301 if (!device->bdev) { 1302 up_read(&dev_replace->rwsem); 1303 info->alloc_offset = WP_MISSING_DEV; 1304 return 0; 1305 } 1306 1307 /* Consider a zone as active if we can allow any number of active zones. */ 1308 if (!device->zone_info->max_active_zones) 1309 __set_bit(zone_idx, active); 1310 1311 if (!btrfs_dev_is_sequential(device, info->physical)) { 1312 up_read(&dev_replace->rwsem); 1313 info->alloc_offset = WP_CONVENTIONAL; 1314 return 0; 1315 } 1316 1317 /* This zone will be used for allocation, so mark this zone non-empty. */ 1318 btrfs_dev_clear_zone_empty(device, info->physical); 1319 1320 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 1321 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 1322 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical); 1323 1324 /* 1325 * The group is mapped to a sequential zone. Get the zone write pointer 1326 * to determine the allocation offset within the zone. 1327 */ 1328 WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size)); 1329 nofs_flag = memalloc_nofs_save(); 1330 ret = btrfs_get_dev_zone(device, info->physical, &zone); 1331 memalloc_nofs_restore(nofs_flag); 1332 if (ret) { 1333 up_read(&dev_replace->rwsem); 1334 if (ret != -EIO && ret != -EOPNOTSUPP) 1335 return ret; 1336 info->alloc_offset = WP_MISSING_DEV; 1337 return 0; 1338 } 1339 1340 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) { 1341 btrfs_err_in_rcu(fs_info, 1342 "zoned: unexpected conventional zone %llu on device %s (devid %llu)", 1343 zone.start << SECTOR_SHIFT, rcu_str_deref(device->name), 1344 device->devid); 1345 up_read(&dev_replace->rwsem); 1346 return -EIO; 1347 } 1348 1349 info->capacity = (zone.capacity << SECTOR_SHIFT); 1350 1351 switch (zone.cond) { 1352 case BLK_ZONE_COND_OFFLINE: 1353 case BLK_ZONE_COND_READONLY: 1354 btrfs_err(fs_info, 1355 "zoned: offline/readonly zone %llu on device %s (devid %llu)", 1356 (info->physical >> device->zone_info->zone_size_shift), 1357 rcu_str_deref(device->name), device->devid); 1358 info->alloc_offset = WP_MISSING_DEV; 1359 break; 1360 case BLK_ZONE_COND_EMPTY: 1361 info->alloc_offset = 0; 1362 break; 1363 case BLK_ZONE_COND_FULL: 1364 info->alloc_offset = info->capacity; 1365 break; 1366 default: 1367 /* Partially used zone. */ 1368 info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT); 1369 __set_bit(zone_idx, active); 1370 break; 1371 } 1372 1373 up_read(&dev_replace->rwsem); 1374 1375 return 0; 1376 } 1377 1378 static int btrfs_load_block_group_single(struct btrfs_block_group *bg, 1379 struct zone_info *info, 1380 unsigned long *active) 1381 { 1382 if (info->alloc_offset == WP_MISSING_DEV) { 1383 btrfs_err(bg->fs_info, 1384 "zoned: cannot recover write pointer for zone %llu", 1385 info->physical); 1386 return -EIO; 1387 } 1388 1389 bg->alloc_offset = info->alloc_offset; 1390 bg->zone_capacity = info->capacity; 1391 if (test_bit(0, active)) 1392 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1393 return 0; 1394 } 1395 1396 static int btrfs_load_block_group_dup(struct btrfs_block_group *bg, 1397 struct btrfs_chunk_map *map, 1398 struct zone_info *zone_info, 1399 unsigned long *active) 1400 { 1401 struct btrfs_fs_info *fs_info = bg->fs_info; 1402 1403 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1404 btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree"); 1405 return -EINVAL; 1406 } 1407 1408 if (zone_info[0].alloc_offset == WP_MISSING_DEV) { 1409 btrfs_err(bg->fs_info, 1410 "zoned: cannot recover write pointer for zone %llu", 1411 zone_info[0].physical); 1412 return -EIO; 1413 } 1414 if (zone_info[1].alloc_offset == WP_MISSING_DEV) { 1415 btrfs_err(bg->fs_info, 1416 "zoned: cannot recover write pointer for zone %llu", 1417 zone_info[1].physical); 1418 return -EIO; 1419 } 1420 if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) { 1421 btrfs_err(bg->fs_info, 1422 "zoned: write pointer offset mismatch of zones in DUP profile"); 1423 return -EIO; 1424 } 1425 1426 if (test_bit(0, active) != test_bit(1, active)) { 1427 if (!btrfs_zone_activate(bg)) 1428 return -EIO; 1429 } else if (test_bit(0, active)) { 1430 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1431 } 1432 1433 bg->alloc_offset = zone_info[0].alloc_offset; 1434 bg->zone_capacity = min(zone_info[0].capacity, zone_info[1].capacity); 1435 return 0; 1436 } 1437 1438 static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg, 1439 struct btrfs_chunk_map *map, 1440 struct zone_info *zone_info, 1441 unsigned long *active) 1442 { 1443 struct btrfs_fs_info *fs_info = bg->fs_info; 1444 int i; 1445 1446 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1447 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1448 btrfs_bg_type_to_raid_name(map->type)); 1449 return -EINVAL; 1450 } 1451 1452 for (i = 0; i < map->num_stripes; i++) { 1453 if (zone_info[i].alloc_offset == WP_MISSING_DEV || 1454 zone_info[i].alloc_offset == WP_CONVENTIONAL) 1455 continue; 1456 1457 if ((zone_info[0].alloc_offset != zone_info[i].alloc_offset) && 1458 !btrfs_test_opt(fs_info, DEGRADED)) { 1459 btrfs_err(fs_info, 1460 "zoned: write pointer offset mismatch of zones in %s profile", 1461 btrfs_bg_type_to_raid_name(map->type)); 1462 return -EIO; 1463 } 1464 if (test_bit(0, active) != test_bit(i, active)) { 1465 if (!btrfs_test_opt(fs_info, DEGRADED) && 1466 !btrfs_zone_activate(bg)) { 1467 return -EIO; 1468 } 1469 } else { 1470 if (test_bit(0, active)) 1471 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1472 } 1473 /* In case a device is missing we have a cap of 0, so don't use it. */ 1474 bg->zone_capacity = min_not_zero(zone_info[0].capacity, 1475 zone_info[1].capacity); 1476 } 1477 1478 if (zone_info[0].alloc_offset != WP_MISSING_DEV) 1479 bg->alloc_offset = zone_info[0].alloc_offset; 1480 else 1481 bg->alloc_offset = zone_info[i - 1].alloc_offset; 1482 1483 return 0; 1484 } 1485 1486 static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg, 1487 struct btrfs_chunk_map *map, 1488 struct zone_info *zone_info, 1489 unsigned long *active) 1490 { 1491 struct btrfs_fs_info *fs_info = bg->fs_info; 1492 1493 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1494 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1495 btrfs_bg_type_to_raid_name(map->type)); 1496 return -EINVAL; 1497 } 1498 1499 for (int i = 0; i < map->num_stripes; i++) { 1500 if (zone_info[i].alloc_offset == WP_MISSING_DEV || 1501 zone_info[i].alloc_offset == WP_CONVENTIONAL) 1502 continue; 1503 1504 if (test_bit(0, active) != test_bit(i, active)) { 1505 if (!btrfs_zone_activate(bg)) 1506 return -EIO; 1507 } else { 1508 if (test_bit(0, active)) 1509 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1510 } 1511 bg->zone_capacity += zone_info[i].capacity; 1512 bg->alloc_offset += zone_info[i].alloc_offset; 1513 } 1514 1515 return 0; 1516 } 1517 1518 static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg, 1519 struct btrfs_chunk_map *map, 1520 struct zone_info *zone_info, 1521 unsigned long *active) 1522 { 1523 struct btrfs_fs_info *fs_info = bg->fs_info; 1524 1525 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1526 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1527 btrfs_bg_type_to_raid_name(map->type)); 1528 return -EINVAL; 1529 } 1530 1531 for (int i = 0; i < map->num_stripes; i++) { 1532 if (zone_info[i].alloc_offset == WP_MISSING_DEV || 1533 zone_info[i].alloc_offset == WP_CONVENTIONAL) 1534 continue; 1535 1536 if (test_bit(0, active) != test_bit(i, active)) { 1537 if (!btrfs_zone_activate(bg)) 1538 return -EIO; 1539 } else { 1540 if (test_bit(0, active)) 1541 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1542 } 1543 1544 if ((i % map->sub_stripes) == 0) { 1545 bg->zone_capacity += zone_info[i].capacity; 1546 bg->alloc_offset += zone_info[i].alloc_offset; 1547 } 1548 } 1549 1550 return 0; 1551 } 1552 1553 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new) 1554 { 1555 struct btrfs_fs_info *fs_info = cache->fs_info; 1556 struct btrfs_chunk_map *map; 1557 u64 logical = cache->start; 1558 u64 length = cache->length; 1559 struct zone_info *zone_info = NULL; 1560 int ret; 1561 int i; 1562 unsigned long *active = NULL; 1563 u64 last_alloc = 0; 1564 u32 num_sequential = 0, num_conventional = 0; 1565 1566 if (!btrfs_is_zoned(fs_info)) 1567 return 0; 1568 1569 /* Sanity check */ 1570 if (!IS_ALIGNED(length, fs_info->zone_size)) { 1571 btrfs_err(fs_info, 1572 "zoned: block group %llu len %llu unaligned to zone size %llu", 1573 logical, length, fs_info->zone_size); 1574 return -EIO; 1575 } 1576 1577 map = btrfs_find_chunk_map(fs_info, logical, length); 1578 if (!map) 1579 return -EINVAL; 1580 1581 cache->physical_map = map; 1582 1583 zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS); 1584 if (!zone_info) { 1585 ret = -ENOMEM; 1586 goto out; 1587 } 1588 1589 active = bitmap_zalloc(map->num_stripes, GFP_NOFS); 1590 if (!active) { 1591 ret = -ENOMEM; 1592 goto out; 1593 } 1594 1595 for (i = 0; i < map->num_stripes; i++) { 1596 ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map); 1597 if (ret) 1598 goto out; 1599 1600 if (zone_info[i].alloc_offset == WP_CONVENTIONAL) 1601 num_conventional++; 1602 else 1603 num_sequential++; 1604 } 1605 1606 if (num_sequential > 0) 1607 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); 1608 1609 if (num_conventional > 0) { 1610 /* Zone capacity is always zone size in emulation */ 1611 cache->zone_capacity = cache->length; 1612 ret = calculate_alloc_pointer(cache, &last_alloc, new); 1613 if (ret) { 1614 btrfs_err(fs_info, 1615 "zoned: failed to determine allocation offset of bg %llu", 1616 cache->start); 1617 goto out; 1618 } else if (map->num_stripes == num_conventional) { 1619 cache->alloc_offset = last_alloc; 1620 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags); 1621 goto out; 1622 } 1623 } 1624 1625 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 1626 case 0: /* single */ 1627 ret = btrfs_load_block_group_single(cache, &zone_info[0], active); 1628 break; 1629 case BTRFS_BLOCK_GROUP_DUP: 1630 ret = btrfs_load_block_group_dup(cache, map, zone_info, active); 1631 break; 1632 case BTRFS_BLOCK_GROUP_RAID1: 1633 case BTRFS_BLOCK_GROUP_RAID1C3: 1634 case BTRFS_BLOCK_GROUP_RAID1C4: 1635 ret = btrfs_load_block_group_raid1(cache, map, zone_info, active); 1636 break; 1637 case BTRFS_BLOCK_GROUP_RAID0: 1638 ret = btrfs_load_block_group_raid0(cache, map, zone_info, active); 1639 break; 1640 case BTRFS_BLOCK_GROUP_RAID10: 1641 ret = btrfs_load_block_group_raid10(cache, map, zone_info, active); 1642 break; 1643 case BTRFS_BLOCK_GROUP_RAID5: 1644 case BTRFS_BLOCK_GROUP_RAID6: 1645 default: 1646 btrfs_err(fs_info, "zoned: profile %s not yet supported", 1647 btrfs_bg_type_to_raid_name(map->type)); 1648 ret = -EINVAL; 1649 goto out; 1650 } 1651 1652 out: 1653 /* Reject non SINGLE data profiles without RST */ 1654 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && 1655 (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) && 1656 !fs_info->stripe_root) { 1657 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1658 btrfs_bg_type_to_raid_name(map->type)); 1659 return -EINVAL; 1660 } 1661 1662 if (cache->alloc_offset > cache->zone_capacity) { 1663 btrfs_err(fs_info, 1664 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu", 1665 cache->alloc_offset, cache->zone_capacity, 1666 cache->start); 1667 ret = -EIO; 1668 } 1669 1670 /* An extent is allocated after the write pointer */ 1671 if (!ret && num_conventional && last_alloc > cache->alloc_offset) { 1672 btrfs_err(fs_info, 1673 "zoned: got wrong write pointer in BG %llu: %llu > %llu", 1674 logical, last_alloc, cache->alloc_offset); 1675 ret = -EIO; 1676 } 1677 1678 if (!ret) { 1679 cache->meta_write_pointer = cache->alloc_offset + cache->start; 1680 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) { 1681 btrfs_get_block_group(cache); 1682 spin_lock(&fs_info->zone_active_bgs_lock); 1683 list_add_tail(&cache->active_bg_list, 1684 &fs_info->zone_active_bgs); 1685 spin_unlock(&fs_info->zone_active_bgs_lock); 1686 } 1687 } else { 1688 btrfs_free_chunk_map(cache->physical_map); 1689 cache->physical_map = NULL; 1690 } 1691 bitmap_free(active); 1692 kfree(zone_info); 1693 1694 return ret; 1695 } 1696 1697 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache) 1698 { 1699 u64 unusable, free; 1700 1701 if (!btrfs_is_zoned(cache->fs_info)) 1702 return; 1703 1704 WARN_ON(cache->bytes_super != 0); 1705 unusable = (cache->alloc_offset - cache->used) + 1706 (cache->length - cache->zone_capacity); 1707 free = cache->zone_capacity - cache->alloc_offset; 1708 1709 /* We only need ->free_space in ALLOC_SEQ block groups */ 1710 cache->cached = BTRFS_CACHE_FINISHED; 1711 cache->free_space_ctl->free_space = free; 1712 cache->zone_unusable = unusable; 1713 } 1714 1715 bool btrfs_use_zone_append(struct btrfs_bio *bbio) 1716 { 1717 u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT); 1718 struct btrfs_inode *inode = bbio->inode; 1719 struct btrfs_fs_info *fs_info = bbio->fs_info; 1720 struct btrfs_block_group *cache; 1721 bool ret = false; 1722 1723 if (!btrfs_is_zoned(fs_info)) 1724 return false; 1725 1726 if (!inode || !is_data_inode(inode)) 1727 return false; 1728 1729 if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE) 1730 return false; 1731 1732 /* 1733 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the 1734 * extent layout the relocation code has. 1735 * Furthermore we have set aside own block-group from which only the 1736 * relocation "process" can allocate and make sure only one process at a 1737 * time can add pages to an extent that gets relocated, so it's safe to 1738 * use regular REQ_OP_WRITE for this special case. 1739 */ 1740 if (btrfs_is_data_reloc_root(inode->root)) 1741 return false; 1742 1743 cache = btrfs_lookup_block_group(fs_info, start); 1744 ASSERT(cache); 1745 if (!cache) 1746 return false; 1747 1748 ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); 1749 btrfs_put_block_group(cache); 1750 1751 return ret; 1752 } 1753 1754 void btrfs_record_physical_zoned(struct btrfs_bio *bbio) 1755 { 1756 const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 1757 struct btrfs_ordered_sum *sum = bbio->sums; 1758 1759 if (physical < bbio->orig_physical) 1760 sum->logical -= bbio->orig_physical - physical; 1761 else 1762 sum->logical += physical - bbio->orig_physical; 1763 } 1764 1765 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered, 1766 u64 logical) 1767 { 1768 struct extent_map_tree *em_tree = &ordered->inode->extent_tree; 1769 struct extent_map *em; 1770 1771 ordered->disk_bytenr = logical; 1772 1773 write_lock(&em_tree->lock); 1774 em = search_extent_mapping(em_tree, ordered->file_offset, 1775 ordered->num_bytes); 1776 /* The em should be a new COW extent, thus it should not have an offset. */ 1777 ASSERT(em->offset == 0); 1778 em->disk_bytenr = logical; 1779 free_extent_map(em); 1780 write_unlock(&em_tree->lock); 1781 } 1782 1783 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered, 1784 u64 logical, u64 len) 1785 { 1786 struct btrfs_ordered_extent *new; 1787 1788 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) && 1789 split_extent_map(ordered->inode, ordered->file_offset, 1790 ordered->num_bytes, len, logical)) 1791 return false; 1792 1793 new = btrfs_split_ordered_extent(ordered, len); 1794 if (IS_ERR(new)) 1795 return false; 1796 new->disk_bytenr = logical; 1797 btrfs_finish_one_ordered(new); 1798 return true; 1799 } 1800 1801 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered) 1802 { 1803 struct btrfs_inode *inode = ordered->inode; 1804 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1805 struct btrfs_ordered_sum *sum; 1806 u64 logical, len; 1807 1808 /* 1809 * Write to pre-allocated region is for the data relocation, and so 1810 * it should use WRITE operation. No split/rewrite are necessary. 1811 */ 1812 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) 1813 return; 1814 1815 ASSERT(!list_empty(&ordered->list)); 1816 /* The ordered->list can be empty in the above pre-alloc case. */ 1817 sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list); 1818 logical = sum->logical; 1819 len = sum->len; 1820 1821 while (len < ordered->disk_num_bytes) { 1822 sum = list_next_entry(sum, list); 1823 if (sum->logical == logical + len) { 1824 len += sum->len; 1825 continue; 1826 } 1827 if (!btrfs_zoned_split_ordered(ordered, logical, len)) { 1828 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 1829 btrfs_err(fs_info, "failed to split ordered extent"); 1830 goto out; 1831 } 1832 logical = sum->logical; 1833 len = sum->len; 1834 } 1835 1836 if (ordered->disk_bytenr != logical) 1837 btrfs_rewrite_logical_zoned(ordered, logical); 1838 1839 out: 1840 /* 1841 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures 1842 * were allocated by btrfs_alloc_dummy_sum only to record the logical 1843 * addresses and don't contain actual checksums. We thus must free them 1844 * here so that we don't attempt to log the csums later. 1845 */ 1846 if ((inode->flags & BTRFS_INODE_NODATASUM) || 1847 test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state)) { 1848 while ((sum = list_first_entry_or_null(&ordered->list, 1849 typeof(*sum), list))) { 1850 list_del(&sum->list); 1851 kfree(sum); 1852 } 1853 } 1854 } 1855 1856 static bool check_bg_is_active(struct btrfs_eb_write_context *ctx, 1857 struct btrfs_block_group **active_bg) 1858 { 1859 const struct writeback_control *wbc = ctx->wbc; 1860 struct btrfs_block_group *block_group = ctx->zoned_bg; 1861 struct btrfs_fs_info *fs_info = block_group->fs_info; 1862 1863 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) 1864 return true; 1865 1866 if (fs_info->treelog_bg == block_group->start) { 1867 if (!btrfs_zone_activate(block_group)) { 1868 int ret_fin = btrfs_zone_finish_one_bg(fs_info); 1869 1870 if (ret_fin != 1 || !btrfs_zone_activate(block_group)) 1871 return false; 1872 } 1873 } else if (*active_bg != block_group) { 1874 struct btrfs_block_group *tgt = *active_bg; 1875 1876 /* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */ 1877 lockdep_assert_held(&fs_info->zoned_meta_io_lock); 1878 1879 if (tgt) { 1880 /* 1881 * If there is an unsent IO left in the allocated area, 1882 * we cannot wait for them as it may cause a deadlock. 1883 */ 1884 if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) { 1885 if (wbc->sync_mode == WB_SYNC_NONE || 1886 (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)) 1887 return false; 1888 } 1889 1890 /* Pivot active metadata/system block group. */ 1891 btrfs_zoned_meta_io_unlock(fs_info); 1892 wait_eb_writebacks(tgt); 1893 do_zone_finish(tgt, true); 1894 btrfs_zoned_meta_io_lock(fs_info); 1895 if (*active_bg == tgt) { 1896 btrfs_put_block_group(tgt); 1897 *active_bg = NULL; 1898 } 1899 } 1900 if (!btrfs_zone_activate(block_group)) 1901 return false; 1902 if (*active_bg != block_group) { 1903 ASSERT(*active_bg == NULL); 1904 *active_bg = block_group; 1905 btrfs_get_block_group(block_group); 1906 } 1907 } 1908 1909 return true; 1910 } 1911 1912 /* 1913 * Check if @ctx->eb is aligned to the write pointer. 1914 * 1915 * Return: 1916 * 0: @ctx->eb is at the write pointer. You can write it. 1917 * -EAGAIN: There is a hole. The caller should handle the case. 1918 * -EBUSY: There is a hole, but the caller can just bail out. 1919 */ 1920 int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info, 1921 struct btrfs_eb_write_context *ctx) 1922 { 1923 const struct writeback_control *wbc = ctx->wbc; 1924 const struct extent_buffer *eb = ctx->eb; 1925 struct btrfs_block_group *block_group = ctx->zoned_bg; 1926 1927 if (!btrfs_is_zoned(fs_info)) 1928 return 0; 1929 1930 if (block_group) { 1931 if (block_group->start > eb->start || 1932 block_group->start + block_group->length <= eb->start) { 1933 btrfs_put_block_group(block_group); 1934 block_group = NULL; 1935 ctx->zoned_bg = NULL; 1936 } 1937 } 1938 1939 if (!block_group) { 1940 block_group = btrfs_lookup_block_group(fs_info, eb->start); 1941 if (!block_group) 1942 return 0; 1943 ctx->zoned_bg = block_group; 1944 } 1945 1946 if (block_group->meta_write_pointer == eb->start) { 1947 struct btrfs_block_group **tgt; 1948 1949 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags)) 1950 return 0; 1951 1952 if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) 1953 tgt = &fs_info->active_system_bg; 1954 else 1955 tgt = &fs_info->active_meta_bg; 1956 if (check_bg_is_active(ctx, tgt)) 1957 return 0; 1958 } 1959 1960 /* 1961 * Since we may release fs_info->zoned_meta_io_lock, someone can already 1962 * start writing this eb. In that case, we can just bail out. 1963 */ 1964 if (block_group->meta_write_pointer > eb->start) 1965 return -EBUSY; 1966 1967 /* If for_sync, this hole will be filled with trasnsaction commit. */ 1968 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 1969 return -EAGAIN; 1970 return -EBUSY; 1971 } 1972 1973 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length) 1974 { 1975 if (!btrfs_dev_is_sequential(device, physical)) 1976 return -EOPNOTSUPP; 1977 1978 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT, 1979 length >> SECTOR_SHIFT, GFP_NOFS, 0); 1980 } 1981 1982 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical, 1983 struct blk_zone *zone) 1984 { 1985 struct btrfs_io_context *bioc = NULL; 1986 u64 mapped_length = PAGE_SIZE; 1987 unsigned int nofs_flag; 1988 int nmirrors; 1989 int i, ret; 1990 1991 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 1992 &mapped_length, &bioc, NULL, NULL); 1993 if (ret || !bioc || mapped_length < PAGE_SIZE) { 1994 ret = -EIO; 1995 goto out_put_bioc; 1996 } 1997 1998 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1999 ret = -EINVAL; 2000 goto out_put_bioc; 2001 } 2002 2003 nofs_flag = memalloc_nofs_save(); 2004 nmirrors = (int)bioc->num_stripes; 2005 for (i = 0; i < nmirrors; i++) { 2006 u64 physical = bioc->stripes[i].physical; 2007 struct btrfs_device *dev = bioc->stripes[i].dev; 2008 2009 /* Missing device */ 2010 if (!dev->bdev) 2011 continue; 2012 2013 ret = btrfs_get_dev_zone(dev, physical, zone); 2014 /* Failing device */ 2015 if (ret == -EIO || ret == -EOPNOTSUPP) 2016 continue; 2017 break; 2018 } 2019 memalloc_nofs_restore(nofs_flag); 2020 out_put_bioc: 2021 btrfs_put_bioc(bioc); 2022 return ret; 2023 } 2024 2025 /* 2026 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by 2027 * filling zeros between @physical_pos to a write pointer of dev-replace 2028 * source device. 2029 */ 2030 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical, 2031 u64 physical_start, u64 physical_pos) 2032 { 2033 struct btrfs_fs_info *fs_info = tgt_dev->fs_info; 2034 struct blk_zone zone; 2035 u64 length; 2036 u64 wp; 2037 int ret; 2038 2039 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos)) 2040 return 0; 2041 2042 ret = read_zone_info(fs_info, logical, &zone); 2043 if (ret) 2044 return ret; 2045 2046 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT); 2047 2048 if (physical_pos == wp) 2049 return 0; 2050 2051 if (physical_pos > wp) 2052 return -EUCLEAN; 2053 2054 length = wp - physical_pos; 2055 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length); 2056 } 2057 2058 /* 2059 * Activate block group and underlying device zones 2060 * 2061 * @block_group: the block group to activate 2062 * 2063 * Return: true on success, false otherwise 2064 */ 2065 bool btrfs_zone_activate(struct btrfs_block_group *block_group) 2066 { 2067 struct btrfs_fs_info *fs_info = block_group->fs_info; 2068 struct btrfs_chunk_map *map; 2069 struct btrfs_device *device; 2070 u64 physical; 2071 const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA); 2072 bool ret; 2073 int i; 2074 2075 if (!btrfs_is_zoned(block_group->fs_info)) 2076 return true; 2077 2078 map = block_group->physical_map; 2079 2080 spin_lock(&fs_info->zone_active_bgs_lock); 2081 spin_lock(&block_group->lock); 2082 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 2083 ret = true; 2084 goto out_unlock; 2085 } 2086 2087 /* No space left */ 2088 if (btrfs_zoned_bg_is_full(block_group)) { 2089 ret = false; 2090 goto out_unlock; 2091 } 2092 2093 for (i = 0; i < map->num_stripes; i++) { 2094 struct btrfs_zoned_device_info *zinfo; 2095 int reserved = 0; 2096 2097 device = map->stripes[i].dev; 2098 physical = map->stripes[i].physical; 2099 zinfo = device->zone_info; 2100 2101 if (zinfo->max_active_zones == 0) 2102 continue; 2103 2104 if (is_data) 2105 reserved = zinfo->reserved_active_zones; 2106 /* 2107 * For the data block group, leave active zones for one 2108 * metadata block group and one system block group. 2109 */ 2110 if (atomic_read(&zinfo->active_zones_left) <= reserved) { 2111 ret = false; 2112 goto out_unlock; 2113 } 2114 2115 if (!btrfs_dev_set_active_zone(device, physical)) { 2116 /* Cannot activate the zone */ 2117 ret = false; 2118 goto out_unlock; 2119 } 2120 if (!is_data) 2121 zinfo->reserved_active_zones--; 2122 } 2123 2124 /* Successfully activated all the zones */ 2125 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 2126 spin_unlock(&block_group->lock); 2127 2128 /* For the active block group list */ 2129 btrfs_get_block_group(block_group); 2130 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs); 2131 spin_unlock(&fs_info->zone_active_bgs_lock); 2132 2133 return true; 2134 2135 out_unlock: 2136 spin_unlock(&block_group->lock); 2137 spin_unlock(&fs_info->zone_active_bgs_lock); 2138 return ret; 2139 } 2140 2141 static void wait_eb_writebacks(struct btrfs_block_group *block_group) 2142 { 2143 struct btrfs_fs_info *fs_info = block_group->fs_info; 2144 const u64 end = block_group->start + block_group->length; 2145 struct radix_tree_iter iter; 2146 struct extent_buffer *eb; 2147 void __rcu **slot; 2148 2149 rcu_read_lock(); 2150 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter, 2151 block_group->start >> fs_info->sectorsize_bits) { 2152 eb = radix_tree_deref_slot(slot); 2153 if (!eb) 2154 continue; 2155 if (radix_tree_deref_retry(eb)) { 2156 slot = radix_tree_iter_retry(&iter); 2157 continue; 2158 } 2159 2160 if (eb->start < block_group->start) 2161 continue; 2162 if (eb->start >= end) 2163 break; 2164 2165 slot = radix_tree_iter_resume(slot, &iter); 2166 rcu_read_unlock(); 2167 wait_on_extent_buffer_writeback(eb); 2168 rcu_read_lock(); 2169 } 2170 rcu_read_unlock(); 2171 } 2172 2173 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written) 2174 { 2175 struct btrfs_fs_info *fs_info = block_group->fs_info; 2176 struct btrfs_chunk_map *map; 2177 const bool is_metadata = (block_group->flags & 2178 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)); 2179 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 2180 int ret = 0; 2181 int i; 2182 2183 spin_lock(&block_group->lock); 2184 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 2185 spin_unlock(&block_group->lock); 2186 return 0; 2187 } 2188 2189 /* Check if we have unwritten allocated space */ 2190 if (is_metadata && 2191 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) { 2192 spin_unlock(&block_group->lock); 2193 return -EAGAIN; 2194 } 2195 2196 /* 2197 * If we are sure that the block group is full (= no more room left for 2198 * new allocation) and the IO for the last usable block is completed, we 2199 * don't need to wait for the other IOs. This holds because we ensure 2200 * the sequential IO submissions using the ZONE_APPEND command for data 2201 * and block_group->meta_write_pointer for metadata. 2202 */ 2203 if (!fully_written) { 2204 if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) { 2205 spin_unlock(&block_group->lock); 2206 return -EAGAIN; 2207 } 2208 spin_unlock(&block_group->lock); 2209 2210 ret = btrfs_inc_block_group_ro(block_group, false); 2211 if (ret) 2212 return ret; 2213 2214 /* Ensure all writes in this block group finish */ 2215 btrfs_wait_block_group_reservations(block_group); 2216 /* No need to wait for NOCOW writers. Zoned mode does not allow that */ 2217 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group); 2218 /* Wait for extent buffers to be written. */ 2219 if (is_metadata) 2220 wait_eb_writebacks(block_group); 2221 2222 spin_lock(&block_group->lock); 2223 2224 /* 2225 * Bail out if someone already deactivated the block group, or 2226 * allocated space is left in the block group. 2227 */ 2228 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2229 &block_group->runtime_flags)) { 2230 spin_unlock(&block_group->lock); 2231 btrfs_dec_block_group_ro(block_group); 2232 return 0; 2233 } 2234 2235 if (block_group->reserved || 2236 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, 2237 &block_group->runtime_flags)) { 2238 spin_unlock(&block_group->lock); 2239 btrfs_dec_block_group_ro(block_group); 2240 return -EAGAIN; 2241 } 2242 } 2243 2244 clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 2245 block_group->alloc_offset = block_group->zone_capacity; 2246 if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)) 2247 block_group->meta_write_pointer = block_group->start + 2248 block_group->zone_capacity; 2249 block_group->free_space_ctl->free_space = 0; 2250 btrfs_clear_treelog_bg(block_group); 2251 btrfs_clear_data_reloc_bg(block_group); 2252 spin_unlock(&block_group->lock); 2253 2254 down_read(&dev_replace->rwsem); 2255 map = block_group->physical_map; 2256 for (i = 0; i < map->num_stripes; i++) { 2257 struct btrfs_device *device = map->stripes[i].dev; 2258 const u64 physical = map->stripes[i].physical; 2259 struct btrfs_zoned_device_info *zinfo = device->zone_info; 2260 unsigned int nofs_flags; 2261 2262 if (zinfo->max_active_zones == 0) 2263 continue; 2264 2265 nofs_flags = memalloc_nofs_save(); 2266 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH, 2267 physical >> SECTOR_SHIFT, 2268 zinfo->zone_size >> SECTOR_SHIFT); 2269 memalloc_nofs_restore(nofs_flags); 2270 2271 if (ret) { 2272 up_read(&dev_replace->rwsem); 2273 return ret; 2274 } 2275 2276 if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 2277 zinfo->reserved_active_zones++; 2278 btrfs_dev_clear_active_zone(device, physical); 2279 } 2280 up_read(&dev_replace->rwsem); 2281 2282 if (!fully_written) 2283 btrfs_dec_block_group_ro(block_group); 2284 2285 spin_lock(&fs_info->zone_active_bgs_lock); 2286 ASSERT(!list_empty(&block_group->active_bg_list)); 2287 list_del_init(&block_group->active_bg_list); 2288 spin_unlock(&fs_info->zone_active_bgs_lock); 2289 2290 /* For active_bg_list */ 2291 btrfs_put_block_group(block_group); 2292 2293 clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2294 2295 return 0; 2296 } 2297 2298 int btrfs_zone_finish(struct btrfs_block_group *block_group) 2299 { 2300 if (!btrfs_is_zoned(block_group->fs_info)) 2301 return 0; 2302 2303 return do_zone_finish(block_group, false); 2304 } 2305 2306 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags) 2307 { 2308 struct btrfs_fs_info *fs_info = fs_devices->fs_info; 2309 struct btrfs_device *device; 2310 bool ret = false; 2311 2312 if (!btrfs_is_zoned(fs_info)) 2313 return true; 2314 2315 /* Check if there is a device with active zones left */ 2316 mutex_lock(&fs_info->chunk_mutex); 2317 spin_lock(&fs_info->zone_active_bgs_lock); 2318 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 2319 struct btrfs_zoned_device_info *zinfo = device->zone_info; 2320 int reserved = 0; 2321 2322 if (!device->bdev) 2323 continue; 2324 2325 if (!zinfo->max_active_zones) { 2326 ret = true; 2327 break; 2328 } 2329 2330 if (flags & BTRFS_BLOCK_GROUP_DATA) 2331 reserved = zinfo->reserved_active_zones; 2332 2333 switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 2334 case 0: /* single */ 2335 ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved)); 2336 break; 2337 case BTRFS_BLOCK_GROUP_DUP: 2338 ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved)); 2339 break; 2340 } 2341 if (ret) 2342 break; 2343 } 2344 spin_unlock(&fs_info->zone_active_bgs_lock); 2345 mutex_unlock(&fs_info->chunk_mutex); 2346 2347 if (!ret) 2348 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2349 2350 return ret; 2351 } 2352 2353 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length) 2354 { 2355 struct btrfs_block_group *block_group; 2356 u64 min_alloc_bytes; 2357 2358 if (!btrfs_is_zoned(fs_info)) 2359 return; 2360 2361 block_group = btrfs_lookup_block_group(fs_info, logical); 2362 ASSERT(block_group); 2363 2364 /* No MIXED_BG on zoned btrfs. */ 2365 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA) 2366 min_alloc_bytes = fs_info->sectorsize; 2367 else 2368 min_alloc_bytes = fs_info->nodesize; 2369 2370 /* Bail out if we can allocate more data from this block group. */ 2371 if (logical + length + min_alloc_bytes <= 2372 block_group->start + block_group->zone_capacity) 2373 goto out; 2374 2375 do_zone_finish(block_group, true); 2376 2377 out: 2378 btrfs_put_block_group(block_group); 2379 } 2380 2381 static void btrfs_zone_finish_endio_workfn(struct work_struct *work) 2382 { 2383 struct btrfs_block_group *bg = 2384 container_of(work, struct btrfs_block_group, zone_finish_work); 2385 2386 wait_on_extent_buffer_writeback(bg->last_eb); 2387 free_extent_buffer(bg->last_eb); 2388 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length); 2389 btrfs_put_block_group(bg); 2390 } 2391 2392 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg, 2393 struct extent_buffer *eb) 2394 { 2395 if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) || 2396 eb->start + eb->len * 2 <= bg->start + bg->zone_capacity) 2397 return; 2398 2399 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) { 2400 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing", 2401 bg->start); 2402 return; 2403 } 2404 2405 /* For the work */ 2406 btrfs_get_block_group(bg); 2407 atomic_inc(&eb->refs); 2408 bg->last_eb = eb; 2409 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn); 2410 queue_work(system_unbound_wq, &bg->zone_finish_work); 2411 } 2412 2413 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg) 2414 { 2415 struct btrfs_fs_info *fs_info = bg->fs_info; 2416 2417 spin_lock(&fs_info->relocation_bg_lock); 2418 if (fs_info->data_reloc_bg == bg->start) 2419 fs_info->data_reloc_bg = 0; 2420 spin_unlock(&fs_info->relocation_bg_lock); 2421 } 2422 2423 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info) 2424 { 2425 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2426 struct btrfs_device *device; 2427 2428 if (!btrfs_is_zoned(fs_info)) 2429 return; 2430 2431 mutex_lock(&fs_devices->device_list_mutex); 2432 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2433 if (device->zone_info) { 2434 vfree(device->zone_info->zone_cache); 2435 device->zone_info->zone_cache = NULL; 2436 } 2437 } 2438 mutex_unlock(&fs_devices->device_list_mutex); 2439 } 2440 2441 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info) 2442 { 2443 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2444 struct btrfs_device *device; 2445 u64 used = 0; 2446 u64 total = 0; 2447 u64 factor; 2448 2449 ASSERT(btrfs_is_zoned(fs_info)); 2450 2451 if (fs_info->bg_reclaim_threshold == 0) 2452 return false; 2453 2454 mutex_lock(&fs_devices->device_list_mutex); 2455 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2456 if (!device->bdev) 2457 continue; 2458 2459 total += device->disk_total_bytes; 2460 used += device->bytes_used; 2461 } 2462 mutex_unlock(&fs_devices->device_list_mutex); 2463 2464 factor = div64_u64(used * 100, total); 2465 return factor >= fs_info->bg_reclaim_threshold; 2466 } 2467 2468 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical, 2469 u64 length) 2470 { 2471 struct btrfs_block_group *block_group; 2472 2473 if (!btrfs_is_zoned(fs_info)) 2474 return; 2475 2476 block_group = btrfs_lookup_block_group(fs_info, logical); 2477 /* It should be called on a previous data relocation block group. */ 2478 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)); 2479 2480 spin_lock(&block_group->lock); 2481 if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) 2482 goto out; 2483 2484 /* All relocation extents are written. */ 2485 if (block_group->start + block_group->alloc_offset == logical + length) { 2486 /* 2487 * Now, release this block group for further allocations and 2488 * zone finish. 2489 */ 2490 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, 2491 &block_group->runtime_flags); 2492 } 2493 2494 out: 2495 spin_unlock(&block_group->lock); 2496 btrfs_put_block_group(block_group); 2497 } 2498 2499 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info) 2500 { 2501 struct btrfs_block_group *block_group; 2502 struct btrfs_block_group *min_bg = NULL; 2503 u64 min_avail = U64_MAX; 2504 int ret; 2505 2506 spin_lock(&fs_info->zone_active_bgs_lock); 2507 list_for_each_entry(block_group, &fs_info->zone_active_bgs, 2508 active_bg_list) { 2509 u64 avail; 2510 2511 spin_lock(&block_group->lock); 2512 if (block_group->reserved || block_group->alloc_offset == 0 || 2513 (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) || 2514 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) { 2515 spin_unlock(&block_group->lock); 2516 continue; 2517 } 2518 2519 avail = block_group->zone_capacity - block_group->alloc_offset; 2520 if (min_avail > avail) { 2521 if (min_bg) 2522 btrfs_put_block_group(min_bg); 2523 min_bg = block_group; 2524 min_avail = avail; 2525 btrfs_get_block_group(min_bg); 2526 } 2527 spin_unlock(&block_group->lock); 2528 } 2529 spin_unlock(&fs_info->zone_active_bgs_lock); 2530 2531 if (!min_bg) 2532 return 0; 2533 2534 ret = btrfs_zone_finish(min_bg); 2535 btrfs_put_block_group(min_bg); 2536 2537 return ret < 0 ? ret : 1; 2538 } 2539 2540 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info, 2541 struct btrfs_space_info *space_info, 2542 bool do_finish) 2543 { 2544 struct btrfs_block_group *bg; 2545 int index; 2546 2547 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA)) 2548 return 0; 2549 2550 for (;;) { 2551 int ret; 2552 bool need_finish = false; 2553 2554 down_read(&space_info->groups_sem); 2555 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) { 2556 list_for_each_entry(bg, &space_info->block_groups[index], 2557 list) { 2558 if (!spin_trylock(&bg->lock)) 2559 continue; 2560 if (btrfs_zoned_bg_is_full(bg) || 2561 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2562 &bg->runtime_flags)) { 2563 spin_unlock(&bg->lock); 2564 continue; 2565 } 2566 spin_unlock(&bg->lock); 2567 2568 if (btrfs_zone_activate(bg)) { 2569 up_read(&space_info->groups_sem); 2570 return 1; 2571 } 2572 2573 need_finish = true; 2574 } 2575 } 2576 up_read(&space_info->groups_sem); 2577 2578 if (!do_finish || !need_finish) 2579 break; 2580 2581 ret = btrfs_zone_finish_one_bg(fs_info); 2582 if (ret == 0) 2583 break; 2584 if (ret < 0) 2585 return ret; 2586 } 2587 2588 return 0; 2589 } 2590 2591 /* 2592 * Reserve zones for one metadata block group, one tree-log block group, and one 2593 * system block group. 2594 */ 2595 void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info) 2596 { 2597 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2598 struct btrfs_block_group *block_group; 2599 struct btrfs_device *device; 2600 /* Reserve zones for normal SINGLE metadata and tree-log block group. */ 2601 unsigned int metadata_reserve = 2; 2602 /* Reserve a zone for SINGLE system block group. */ 2603 unsigned int system_reserve = 1; 2604 2605 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags)) 2606 return; 2607 2608 /* 2609 * This function is called from the mount context. So, there is no 2610 * parallel process touching the bits. No need for read_seqretry(). 2611 */ 2612 if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP) 2613 metadata_reserve = 4; 2614 if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP) 2615 system_reserve = 2; 2616 2617 /* Apply the reservation on all the devices. */ 2618 mutex_lock(&fs_devices->device_list_mutex); 2619 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2620 if (!device->bdev) 2621 continue; 2622 2623 device->zone_info->reserved_active_zones = 2624 metadata_reserve + system_reserve; 2625 } 2626 mutex_unlock(&fs_devices->device_list_mutex); 2627 2628 /* Release reservation for currently active block groups. */ 2629 spin_lock(&fs_info->zone_active_bgs_lock); 2630 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) { 2631 struct btrfs_chunk_map *map = block_group->physical_map; 2632 2633 if (!(block_group->flags & 2634 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))) 2635 continue; 2636 2637 for (int i = 0; i < map->num_stripes; i++) 2638 map->stripes[i].dev->zone_info->reserved_active_zones--; 2639 } 2640 spin_unlock(&fs_info->zone_active_bgs_lock); 2641 } 2642