1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/blkdev.h> 6 #include <linux/sched/mm.h> 7 #include <linux/atomic.h> 8 #include <linux/vmalloc.h> 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "zoned.h" 12 #include "rcu-string.h" 13 #include "disk-io.h" 14 #include "block-group.h" 15 #include "dev-replace.h" 16 #include "space-info.h" 17 #include "fs.h" 18 #include "accessors.h" 19 #include "bio.h" 20 21 /* Maximum number of zones to report per blkdev_report_zones() call */ 22 #define BTRFS_REPORT_NR_ZONES 4096 23 /* Invalid allocation pointer value for missing devices */ 24 #define WP_MISSING_DEV ((u64)-1) 25 /* Pseudo write pointer value for conventional zone */ 26 #define WP_CONVENTIONAL ((u64)-2) 27 28 /* 29 * Location of the first zone of superblock logging zone pairs. 30 * 31 * - primary superblock: 0B (zone 0) 32 * - first copy: 512G (zone starting at that offset) 33 * - second copy: 4T (zone starting at that offset) 34 */ 35 #define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL) 36 #define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G) 37 #define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G) 38 39 #define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET) 40 #define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET) 41 42 /* Number of superblock log zones */ 43 #define BTRFS_NR_SB_LOG_ZONES 2 44 45 /* 46 * Minimum of active zones we need: 47 * 48 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors 49 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group 50 * - 1 zone for tree-log dedicated block group 51 * - 1 zone for relocation 52 */ 53 #define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5) 54 55 /* 56 * Minimum / maximum supported zone size. Currently, SMR disks have a zone 57 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range. 58 * We do not expect the zone size to become larger than 8GiB or smaller than 59 * 4MiB in the near future. 60 */ 61 #define BTRFS_MAX_ZONE_SIZE SZ_8G 62 #define BTRFS_MIN_ZONE_SIZE SZ_4M 63 64 #define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT) 65 66 static void wait_eb_writebacks(struct btrfs_block_group *block_group); 67 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written); 68 69 static inline bool sb_zone_is_full(const struct blk_zone *zone) 70 { 71 return (zone->cond == BLK_ZONE_COND_FULL) || 72 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity); 73 } 74 75 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data) 76 { 77 struct blk_zone *zones = data; 78 79 memcpy(&zones[idx], zone, sizeof(*zone)); 80 81 return 0; 82 } 83 84 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones, 85 u64 *wp_ret) 86 { 87 bool empty[BTRFS_NR_SB_LOG_ZONES]; 88 bool full[BTRFS_NR_SB_LOG_ZONES]; 89 sector_t sector; 90 91 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 92 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL); 93 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY); 94 full[i] = sb_zone_is_full(&zones[i]); 95 } 96 97 /* 98 * Possible states of log buffer zones 99 * 100 * Empty[0] In use[0] Full[0] 101 * Empty[1] * 0 1 102 * In use[1] x x 1 103 * Full[1] 0 0 C 104 * 105 * Log position: 106 * *: Special case, no superblock is written 107 * 0: Use write pointer of zones[0] 108 * 1: Use write pointer of zones[1] 109 * C: Compare super blocks from zones[0] and zones[1], use the latest 110 * one determined by generation 111 * x: Invalid state 112 */ 113 114 if (empty[0] && empty[1]) { 115 /* Special case to distinguish no superblock to read */ 116 *wp_ret = zones[0].start << SECTOR_SHIFT; 117 return -ENOENT; 118 } else if (full[0] && full[1]) { 119 /* Compare two super blocks */ 120 struct address_space *mapping = bdev->bd_mapping; 121 struct page *page[BTRFS_NR_SB_LOG_ZONES]; 122 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES]; 123 124 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 125 u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT; 126 u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) - 127 BTRFS_SUPER_INFO_SIZE; 128 129 page[i] = read_cache_page_gfp(mapping, 130 bytenr >> PAGE_SHIFT, GFP_NOFS); 131 if (IS_ERR(page[i])) { 132 if (i == 1) 133 btrfs_release_disk_super(super[0]); 134 return PTR_ERR(page[i]); 135 } 136 super[i] = page_address(page[i]); 137 } 138 139 if (btrfs_super_generation(super[0]) > 140 btrfs_super_generation(super[1])) 141 sector = zones[1].start; 142 else 143 sector = zones[0].start; 144 145 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) 146 btrfs_release_disk_super(super[i]); 147 } else if (!full[0] && (empty[1] || full[1])) { 148 sector = zones[0].wp; 149 } else if (full[0]) { 150 sector = zones[1].wp; 151 } else { 152 return -EUCLEAN; 153 } 154 *wp_ret = sector << SECTOR_SHIFT; 155 return 0; 156 } 157 158 /* 159 * Get the first zone number of the superblock mirror 160 */ 161 static inline u32 sb_zone_number(int shift, int mirror) 162 { 163 u64 zone = U64_MAX; 164 165 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX); 166 switch (mirror) { 167 case 0: zone = 0; break; 168 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break; 169 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break; 170 } 171 172 ASSERT(zone <= U32_MAX); 173 174 return (u32)zone; 175 } 176 177 static inline sector_t zone_start_sector(u32 zone_number, 178 struct block_device *bdev) 179 { 180 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev)); 181 } 182 183 static inline u64 zone_start_physical(u32 zone_number, 184 struct btrfs_zoned_device_info *zone_info) 185 { 186 return (u64)zone_number << zone_info->zone_size_shift; 187 } 188 189 /* 190 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block 191 * device into static sized chunks and fake a conventional zone on each of 192 * them. 193 */ 194 static int emulate_report_zones(struct btrfs_device *device, u64 pos, 195 struct blk_zone *zones, unsigned int nr_zones) 196 { 197 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT; 198 sector_t bdev_size = bdev_nr_sectors(device->bdev); 199 unsigned int i; 200 201 pos >>= SECTOR_SHIFT; 202 for (i = 0; i < nr_zones; i++) { 203 zones[i].start = i * zone_sectors + pos; 204 zones[i].len = zone_sectors; 205 zones[i].capacity = zone_sectors; 206 zones[i].wp = zones[i].start + zone_sectors; 207 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL; 208 zones[i].cond = BLK_ZONE_COND_NOT_WP; 209 210 if (zones[i].wp >= bdev_size) { 211 i++; 212 break; 213 } 214 } 215 216 return i; 217 } 218 219 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos, 220 struct blk_zone *zones, unsigned int *nr_zones) 221 { 222 struct btrfs_zoned_device_info *zinfo = device->zone_info; 223 int ret; 224 225 if (!*nr_zones) 226 return 0; 227 228 if (!bdev_is_zoned(device->bdev)) { 229 ret = emulate_report_zones(device, pos, zones, *nr_zones); 230 *nr_zones = ret; 231 return 0; 232 } 233 234 /* Check cache */ 235 if (zinfo->zone_cache) { 236 unsigned int i; 237 u32 zno; 238 239 ASSERT(IS_ALIGNED(pos, zinfo->zone_size)); 240 zno = pos >> zinfo->zone_size_shift; 241 /* 242 * We cannot report zones beyond the zone end. So, it is OK to 243 * cap *nr_zones to at the end. 244 */ 245 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno); 246 247 for (i = 0; i < *nr_zones; i++) { 248 struct blk_zone *zone_info; 249 250 zone_info = &zinfo->zone_cache[zno + i]; 251 if (!zone_info->len) 252 break; 253 } 254 255 if (i == *nr_zones) { 256 /* Cache hit on all the zones */ 257 memcpy(zones, zinfo->zone_cache + zno, 258 sizeof(*zinfo->zone_cache) * *nr_zones); 259 return 0; 260 } 261 } 262 263 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones, 264 copy_zone_info_cb, zones); 265 if (ret < 0) { 266 btrfs_err_in_rcu(device->fs_info, 267 "zoned: failed to read zone %llu on %s (devid %llu)", 268 pos, rcu_str_deref(device->name), 269 device->devid); 270 return ret; 271 } 272 *nr_zones = ret; 273 if (!ret) 274 return -EIO; 275 276 /* Populate cache */ 277 if (zinfo->zone_cache) { 278 u32 zno = pos >> zinfo->zone_size_shift; 279 280 memcpy(zinfo->zone_cache + zno, zones, 281 sizeof(*zinfo->zone_cache) * *nr_zones); 282 } 283 284 return 0; 285 } 286 287 /* The emulated zone size is determined from the size of device extent */ 288 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info) 289 { 290 BTRFS_PATH_AUTO_FREE(path); 291 struct btrfs_root *root = fs_info->dev_root; 292 struct btrfs_key key; 293 struct extent_buffer *leaf; 294 struct btrfs_dev_extent *dext; 295 int ret = 0; 296 297 key.objectid = 1; 298 key.type = BTRFS_DEV_EXTENT_KEY; 299 key.offset = 0; 300 301 path = btrfs_alloc_path(); 302 if (!path) 303 return -ENOMEM; 304 305 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 306 if (ret < 0) 307 return ret; 308 309 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 310 ret = btrfs_next_leaf(root, path); 311 if (ret < 0) 312 return ret; 313 /* No dev extents at all? Not good */ 314 if (ret > 0) 315 return -EUCLEAN; 316 } 317 318 leaf = path->nodes[0]; 319 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 320 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext); 321 return 0; 322 } 323 324 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info) 325 { 326 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 327 struct btrfs_device *device; 328 int ret = 0; 329 330 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */ 331 if (!btrfs_fs_incompat(fs_info, ZONED)) 332 return 0; 333 334 mutex_lock(&fs_devices->device_list_mutex); 335 list_for_each_entry(device, &fs_devices->devices, dev_list) { 336 /* We can skip reading of zone info for missing devices */ 337 if (!device->bdev) 338 continue; 339 340 ret = btrfs_get_dev_zone_info(device, true); 341 if (ret) 342 break; 343 } 344 mutex_unlock(&fs_devices->device_list_mutex); 345 346 return ret; 347 } 348 349 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache) 350 { 351 struct btrfs_fs_info *fs_info = device->fs_info; 352 struct btrfs_zoned_device_info *zone_info = NULL; 353 struct block_device *bdev = device->bdev; 354 unsigned int max_active_zones; 355 unsigned int nactive; 356 sector_t nr_sectors; 357 sector_t sector = 0; 358 struct blk_zone *zones = NULL; 359 unsigned int i, nreported = 0, nr_zones; 360 sector_t zone_sectors; 361 char *model, *emulated; 362 int ret; 363 364 /* 365 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not 366 * yet be set. 367 */ 368 if (!btrfs_fs_incompat(fs_info, ZONED)) 369 return 0; 370 371 if (device->zone_info) 372 return 0; 373 374 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL); 375 if (!zone_info) 376 return -ENOMEM; 377 378 device->zone_info = zone_info; 379 380 if (!bdev_is_zoned(bdev)) { 381 if (!fs_info->zone_size) { 382 ret = calculate_emulated_zone_size(fs_info); 383 if (ret) 384 goto out; 385 } 386 387 ASSERT(fs_info->zone_size); 388 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT; 389 } else { 390 zone_sectors = bdev_zone_sectors(bdev); 391 } 392 393 ASSERT(is_power_of_two_u64(zone_sectors)); 394 zone_info->zone_size = zone_sectors << SECTOR_SHIFT; 395 396 /* We reject devices with a zone size larger than 8GB */ 397 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) { 398 btrfs_err_in_rcu(fs_info, 399 "zoned: %s: zone size %llu larger than supported maximum %llu", 400 rcu_str_deref(device->name), 401 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE); 402 ret = -EINVAL; 403 goto out; 404 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) { 405 btrfs_err_in_rcu(fs_info, 406 "zoned: %s: zone size %llu smaller than supported minimum %u", 407 rcu_str_deref(device->name), 408 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE); 409 ret = -EINVAL; 410 goto out; 411 } 412 413 nr_sectors = bdev_nr_sectors(bdev); 414 zone_info->zone_size_shift = ilog2(zone_info->zone_size); 415 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors); 416 if (!IS_ALIGNED(nr_sectors, zone_sectors)) 417 zone_info->nr_zones++; 418 419 max_active_zones = bdev_max_active_zones(bdev); 420 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) { 421 btrfs_err_in_rcu(fs_info, 422 "zoned: %s: max active zones %u is too small, need at least %u active zones", 423 rcu_str_deref(device->name), max_active_zones, 424 BTRFS_MIN_ACTIVE_ZONES); 425 ret = -EINVAL; 426 goto out; 427 } 428 zone_info->max_active_zones = max_active_zones; 429 430 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 431 if (!zone_info->seq_zones) { 432 ret = -ENOMEM; 433 goto out; 434 } 435 436 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 437 if (!zone_info->empty_zones) { 438 ret = -ENOMEM; 439 goto out; 440 } 441 442 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 443 if (!zone_info->active_zones) { 444 ret = -ENOMEM; 445 goto out; 446 } 447 448 zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL); 449 if (!zones) { 450 ret = -ENOMEM; 451 goto out; 452 } 453 454 /* 455 * Enable zone cache only for a zoned device. On a non-zoned device, we 456 * fill the zone info with emulated CONVENTIONAL zones, so no need to 457 * use the cache. 458 */ 459 if (populate_cache && bdev_is_zoned(device->bdev)) { 460 zone_info->zone_cache = vcalloc(zone_info->nr_zones, 461 sizeof(struct blk_zone)); 462 if (!zone_info->zone_cache) { 463 btrfs_err_in_rcu(device->fs_info, 464 "zoned: failed to allocate zone cache for %s", 465 rcu_str_deref(device->name)); 466 ret = -ENOMEM; 467 goto out; 468 } 469 } 470 471 /* Get zones type */ 472 nactive = 0; 473 while (sector < nr_sectors) { 474 nr_zones = BTRFS_REPORT_NR_ZONES; 475 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones, 476 &nr_zones); 477 if (ret) 478 goto out; 479 480 for (i = 0; i < nr_zones; i++) { 481 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ) 482 __set_bit(nreported, zone_info->seq_zones); 483 switch (zones[i].cond) { 484 case BLK_ZONE_COND_EMPTY: 485 __set_bit(nreported, zone_info->empty_zones); 486 break; 487 case BLK_ZONE_COND_IMP_OPEN: 488 case BLK_ZONE_COND_EXP_OPEN: 489 case BLK_ZONE_COND_CLOSED: 490 __set_bit(nreported, zone_info->active_zones); 491 nactive++; 492 break; 493 } 494 nreported++; 495 } 496 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len; 497 } 498 499 if (nreported != zone_info->nr_zones) { 500 btrfs_err_in_rcu(device->fs_info, 501 "inconsistent number of zones on %s (%u/%u)", 502 rcu_str_deref(device->name), nreported, 503 zone_info->nr_zones); 504 ret = -EIO; 505 goto out; 506 } 507 508 if (max_active_zones) { 509 if (nactive > max_active_zones) { 510 btrfs_err_in_rcu(device->fs_info, 511 "zoned: %u active zones on %s exceeds max_active_zones %u", 512 nactive, rcu_str_deref(device->name), 513 max_active_zones); 514 ret = -EIO; 515 goto out; 516 } 517 atomic_set(&zone_info->active_zones_left, 518 max_active_zones - nactive); 519 set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags); 520 } 521 522 /* Validate superblock log */ 523 nr_zones = BTRFS_NR_SB_LOG_ZONES; 524 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 525 u32 sb_zone; 526 u64 sb_wp; 527 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i; 528 529 sb_zone = sb_zone_number(zone_info->zone_size_shift, i); 530 if (sb_zone + 1 >= zone_info->nr_zones) 531 continue; 532 533 ret = btrfs_get_dev_zones(device, 534 zone_start_physical(sb_zone, zone_info), 535 &zone_info->sb_zones[sb_pos], 536 &nr_zones); 537 if (ret) 538 goto out; 539 540 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) { 541 btrfs_err_in_rcu(device->fs_info, 542 "zoned: failed to read super block log zone info at devid %llu zone %u", 543 device->devid, sb_zone); 544 ret = -EUCLEAN; 545 goto out; 546 } 547 548 /* 549 * If zones[0] is conventional, always use the beginning of the 550 * zone to record superblock. No need to validate in that case. 551 */ 552 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type == 553 BLK_ZONE_TYPE_CONVENTIONAL) 554 continue; 555 556 ret = sb_write_pointer(device->bdev, 557 &zone_info->sb_zones[sb_pos], &sb_wp); 558 if (ret != -ENOENT && ret) { 559 btrfs_err_in_rcu(device->fs_info, 560 "zoned: super block log zone corrupted devid %llu zone %u", 561 device->devid, sb_zone); 562 ret = -EUCLEAN; 563 goto out; 564 } 565 } 566 567 568 kvfree(zones); 569 570 if (bdev_is_zoned(bdev)) { 571 model = "host-managed zoned"; 572 emulated = ""; 573 } else { 574 model = "regular"; 575 emulated = "emulated "; 576 } 577 578 btrfs_info_in_rcu(fs_info, 579 "%s block device %s, %u %szones of %llu bytes", 580 model, rcu_str_deref(device->name), zone_info->nr_zones, 581 emulated, zone_info->zone_size); 582 583 return 0; 584 585 out: 586 kvfree(zones); 587 btrfs_destroy_dev_zone_info(device); 588 return ret; 589 } 590 591 void btrfs_destroy_dev_zone_info(struct btrfs_device *device) 592 { 593 struct btrfs_zoned_device_info *zone_info = device->zone_info; 594 595 if (!zone_info) 596 return; 597 598 bitmap_free(zone_info->active_zones); 599 bitmap_free(zone_info->seq_zones); 600 bitmap_free(zone_info->empty_zones); 601 vfree(zone_info->zone_cache); 602 kfree(zone_info); 603 device->zone_info = NULL; 604 } 605 606 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev) 607 { 608 struct btrfs_zoned_device_info *zone_info; 609 610 zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL); 611 if (!zone_info) 612 return NULL; 613 614 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 615 if (!zone_info->seq_zones) 616 goto out; 617 618 bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones, 619 zone_info->nr_zones); 620 621 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 622 if (!zone_info->empty_zones) 623 goto out; 624 625 bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones, 626 zone_info->nr_zones); 627 628 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 629 if (!zone_info->active_zones) 630 goto out; 631 632 bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones, 633 zone_info->nr_zones); 634 zone_info->zone_cache = NULL; 635 636 return zone_info; 637 638 out: 639 bitmap_free(zone_info->seq_zones); 640 bitmap_free(zone_info->empty_zones); 641 bitmap_free(zone_info->active_zones); 642 kfree(zone_info); 643 return NULL; 644 } 645 646 static int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, struct blk_zone *zone) 647 { 648 unsigned int nr_zones = 1; 649 int ret; 650 651 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones); 652 if (ret != 0 || !nr_zones) 653 return ret ? ret : -EIO; 654 655 return 0; 656 } 657 658 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info) 659 { 660 struct btrfs_device *device; 661 662 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 663 if (device->bdev && bdev_is_zoned(device->bdev)) { 664 btrfs_err(fs_info, 665 "zoned: mode not enabled but zoned device found: %pg", 666 device->bdev); 667 return -EINVAL; 668 } 669 } 670 671 return 0; 672 } 673 674 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info) 675 { 676 struct queue_limits *lim = &fs_info->limits; 677 struct btrfs_device *device; 678 u64 zone_size = 0; 679 int ret; 680 681 /* 682 * Host-Managed devices can't be used without the ZONED flag. With the 683 * ZONED all devices can be used, using zone emulation if required. 684 */ 685 if (!btrfs_fs_incompat(fs_info, ZONED)) 686 return btrfs_check_for_zoned_device(fs_info); 687 688 blk_set_stacking_limits(lim); 689 690 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 691 struct btrfs_zoned_device_info *zone_info = device->zone_info; 692 693 if (!device->bdev) 694 continue; 695 696 if (!zone_size) { 697 zone_size = zone_info->zone_size; 698 } else if (zone_info->zone_size != zone_size) { 699 btrfs_err(fs_info, 700 "zoned: unequal block device zone sizes: have %llu found %llu", 701 zone_info->zone_size, zone_size); 702 return -EINVAL; 703 } 704 705 /* 706 * With the zoned emulation, we can have non-zoned device on the 707 * zoned mode. In this case, we don't have a valid max zone 708 * append size. 709 */ 710 if (bdev_is_zoned(device->bdev)) 711 blk_stack_limits(lim, bdev_limits(device->bdev), 0); 712 } 713 714 ret = blk_validate_limits(lim); 715 if (ret) { 716 btrfs_err(fs_info, "zoned: failed to validate queue limits"); 717 return ret; 718 } 719 720 /* 721 * stripe_size is always aligned to BTRFS_STRIPE_LEN in 722 * btrfs_create_chunk(). Since we want stripe_len == zone_size, 723 * check the alignment here. 724 */ 725 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) { 726 btrfs_err(fs_info, 727 "zoned: zone size %llu not aligned to stripe %u", 728 zone_size, BTRFS_STRIPE_LEN); 729 return -EINVAL; 730 } 731 732 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 733 btrfs_err(fs_info, "zoned: mixed block groups not supported"); 734 return -EINVAL; 735 } 736 737 fs_info->zone_size = zone_size; 738 /* 739 * Also limit max_zone_append_size by max_segments * PAGE_SIZE. 740 * Technically, we can have multiple pages per segment. But, since 741 * we add the pages one by one to a bio, and cannot increase the 742 * metadata reservation even if it increases the number of extents, it 743 * is safe to stick with the limit. 744 */ 745 fs_info->max_zone_append_size = ALIGN_DOWN( 746 min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT, 747 (u64)lim->max_sectors << SECTOR_SHIFT, 748 (u64)lim->max_segments << PAGE_SHIFT), 749 fs_info->sectorsize); 750 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED; 751 752 fs_info->max_extent_size = min_not_zero(fs_info->max_extent_size, 753 fs_info->max_zone_append_size); 754 755 /* 756 * Check mount options here, because we might change fs_info->zoned 757 * from fs_info->zone_size. 758 */ 759 ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt); 760 if (ret) 761 return ret; 762 763 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size); 764 return 0; 765 } 766 767 int btrfs_check_mountopts_zoned(const struct btrfs_fs_info *info, 768 unsigned long long *mount_opt) 769 { 770 if (!btrfs_is_zoned(info)) 771 return 0; 772 773 /* 774 * Space cache writing is not COWed. Disable that to avoid write errors 775 * in sequential zones. 776 */ 777 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) { 778 btrfs_err(info, "zoned: space cache v1 is not supported"); 779 return -EINVAL; 780 } 781 782 if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) { 783 btrfs_err(info, "zoned: NODATACOW not supported"); 784 return -EINVAL; 785 } 786 787 if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) { 788 btrfs_info(info, 789 "zoned: async discard ignored and disabled for zoned mode"); 790 btrfs_clear_opt(*mount_opt, DISCARD_ASYNC); 791 } 792 793 return 0; 794 } 795 796 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones, 797 int rw, u64 *bytenr_ret) 798 { 799 u64 wp; 800 int ret; 801 802 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) { 803 *bytenr_ret = zones[0].start << SECTOR_SHIFT; 804 return 0; 805 } 806 807 ret = sb_write_pointer(bdev, zones, &wp); 808 if (ret != -ENOENT && ret < 0) 809 return ret; 810 811 if (rw == WRITE) { 812 struct blk_zone *reset = NULL; 813 814 if (wp == zones[0].start << SECTOR_SHIFT) 815 reset = &zones[0]; 816 else if (wp == zones[1].start << SECTOR_SHIFT) 817 reset = &zones[1]; 818 819 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) { 820 unsigned int nofs_flags; 821 822 ASSERT(sb_zone_is_full(reset)); 823 824 nofs_flags = memalloc_nofs_save(); 825 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 826 reset->start, reset->len); 827 memalloc_nofs_restore(nofs_flags); 828 if (ret) 829 return ret; 830 831 reset->cond = BLK_ZONE_COND_EMPTY; 832 reset->wp = reset->start; 833 } 834 } else if (ret != -ENOENT) { 835 /* 836 * For READ, we want the previous one. Move write pointer to 837 * the end of a zone, if it is at the head of a zone. 838 */ 839 u64 zone_end = 0; 840 841 if (wp == zones[0].start << SECTOR_SHIFT) 842 zone_end = zones[1].start + zones[1].capacity; 843 else if (wp == zones[1].start << SECTOR_SHIFT) 844 zone_end = zones[0].start + zones[0].capacity; 845 if (zone_end) 846 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT, 847 BTRFS_SUPER_INFO_SIZE); 848 849 wp -= BTRFS_SUPER_INFO_SIZE; 850 } 851 852 *bytenr_ret = wp; 853 return 0; 854 855 } 856 857 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw, 858 u64 *bytenr_ret) 859 { 860 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES]; 861 sector_t zone_sectors; 862 u32 sb_zone; 863 int ret; 864 u8 zone_sectors_shift; 865 sector_t nr_sectors; 866 u32 nr_zones; 867 868 if (!bdev_is_zoned(bdev)) { 869 *bytenr_ret = btrfs_sb_offset(mirror); 870 return 0; 871 } 872 873 ASSERT(rw == READ || rw == WRITE); 874 875 zone_sectors = bdev_zone_sectors(bdev); 876 if (!is_power_of_2(zone_sectors)) 877 return -EINVAL; 878 zone_sectors_shift = ilog2(zone_sectors); 879 nr_sectors = bdev_nr_sectors(bdev); 880 nr_zones = nr_sectors >> zone_sectors_shift; 881 882 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 883 if (sb_zone + 1 >= nr_zones) 884 return -ENOENT; 885 886 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev), 887 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb, 888 zones); 889 if (ret < 0) 890 return ret; 891 if (ret != BTRFS_NR_SB_LOG_ZONES) 892 return -EIO; 893 894 return sb_log_location(bdev, zones, rw, bytenr_ret); 895 } 896 897 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw, 898 u64 *bytenr_ret) 899 { 900 struct btrfs_zoned_device_info *zinfo = device->zone_info; 901 u32 zone_num; 902 903 /* 904 * For a zoned filesystem on a non-zoned block device, use the same 905 * super block locations as regular filesystem. Doing so, the super 906 * block can always be retrieved and the zoned flag of the volume 907 * detected from the super block information. 908 */ 909 if (!bdev_is_zoned(device->bdev)) { 910 *bytenr_ret = btrfs_sb_offset(mirror); 911 return 0; 912 } 913 914 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 915 if (zone_num + 1 >= zinfo->nr_zones) 916 return -ENOENT; 917 918 return sb_log_location(device->bdev, 919 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror], 920 rw, bytenr_ret); 921 } 922 923 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo, 924 int mirror) 925 { 926 u32 zone_num; 927 928 if (!zinfo) 929 return false; 930 931 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 932 if (zone_num + 1 >= zinfo->nr_zones) 933 return false; 934 935 if (!test_bit(zone_num, zinfo->seq_zones)) 936 return false; 937 938 return true; 939 } 940 941 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror) 942 { 943 struct btrfs_zoned_device_info *zinfo = device->zone_info; 944 struct blk_zone *zone; 945 int i; 946 947 if (!is_sb_log_zone(zinfo, mirror)) 948 return 0; 949 950 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror]; 951 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 952 /* Advance the next zone */ 953 if (zone->cond == BLK_ZONE_COND_FULL) { 954 zone++; 955 continue; 956 } 957 958 if (zone->cond == BLK_ZONE_COND_EMPTY) 959 zone->cond = BLK_ZONE_COND_IMP_OPEN; 960 961 zone->wp += SUPER_INFO_SECTORS; 962 963 if (sb_zone_is_full(zone)) { 964 /* 965 * No room left to write new superblock. Since 966 * superblock is written with REQ_SYNC, it is safe to 967 * finish the zone now. 968 * 969 * If the write pointer is exactly at the capacity, 970 * explicit ZONE_FINISH is not necessary. 971 */ 972 if (zone->wp != zone->start + zone->capacity) { 973 unsigned int nofs_flags; 974 int ret; 975 976 nofs_flags = memalloc_nofs_save(); 977 ret = blkdev_zone_mgmt(device->bdev, 978 REQ_OP_ZONE_FINISH, zone->start, 979 zone->len); 980 memalloc_nofs_restore(nofs_flags); 981 if (ret) 982 return ret; 983 } 984 985 zone->wp = zone->start + zone->len; 986 zone->cond = BLK_ZONE_COND_FULL; 987 } 988 return 0; 989 } 990 991 /* All the zones are FULL. Should not reach here. */ 992 ASSERT(0); 993 return -EIO; 994 } 995 996 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror) 997 { 998 unsigned int nofs_flags; 999 sector_t zone_sectors; 1000 sector_t nr_sectors; 1001 u8 zone_sectors_shift; 1002 u32 sb_zone; 1003 u32 nr_zones; 1004 int ret; 1005 1006 zone_sectors = bdev_zone_sectors(bdev); 1007 zone_sectors_shift = ilog2(zone_sectors); 1008 nr_sectors = bdev_nr_sectors(bdev); 1009 nr_zones = nr_sectors >> zone_sectors_shift; 1010 1011 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 1012 if (sb_zone + 1 >= nr_zones) 1013 return -ENOENT; 1014 1015 nofs_flags = memalloc_nofs_save(); 1016 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1017 zone_start_sector(sb_zone, bdev), 1018 zone_sectors * BTRFS_NR_SB_LOG_ZONES); 1019 memalloc_nofs_restore(nofs_flags); 1020 return ret; 1021 } 1022 1023 /* 1024 * Find allocatable zones within a given region. 1025 * 1026 * @device: the device to allocate a region on 1027 * @hole_start: the position of the hole to allocate the region 1028 * @num_bytes: size of wanted region 1029 * @hole_end: the end of the hole 1030 * @return: position of allocatable zones 1031 * 1032 * Allocatable region should not contain any superblock locations. 1033 */ 1034 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start, 1035 u64 hole_end, u64 num_bytes) 1036 { 1037 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1038 const u8 shift = zinfo->zone_size_shift; 1039 u64 nzones = num_bytes >> shift; 1040 u64 pos = hole_start; 1041 u64 begin, end; 1042 bool have_sb; 1043 int i; 1044 1045 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size)); 1046 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size)); 1047 1048 while (pos < hole_end) { 1049 begin = pos >> shift; 1050 end = begin + nzones; 1051 1052 if (end > zinfo->nr_zones) 1053 return hole_end; 1054 1055 /* Check if zones in the region are all empty */ 1056 if (btrfs_dev_is_sequential(device, pos) && 1057 !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) { 1058 pos += zinfo->zone_size; 1059 continue; 1060 } 1061 1062 have_sb = false; 1063 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1064 u32 sb_zone; 1065 u64 sb_pos; 1066 1067 sb_zone = sb_zone_number(shift, i); 1068 if (!(end <= sb_zone || 1069 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) { 1070 have_sb = true; 1071 pos = zone_start_physical( 1072 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo); 1073 break; 1074 } 1075 1076 /* We also need to exclude regular superblock positions */ 1077 sb_pos = btrfs_sb_offset(i); 1078 if (!(pos + num_bytes <= sb_pos || 1079 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) { 1080 have_sb = true; 1081 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE, 1082 zinfo->zone_size); 1083 break; 1084 } 1085 } 1086 if (!have_sb) 1087 break; 1088 } 1089 1090 return pos; 1091 } 1092 1093 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos) 1094 { 1095 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1096 unsigned int zno = (pos >> zone_info->zone_size_shift); 1097 1098 /* We can use any number of zones */ 1099 if (zone_info->max_active_zones == 0) 1100 return true; 1101 1102 if (!test_bit(zno, zone_info->active_zones)) { 1103 /* Active zone left? */ 1104 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0) 1105 return false; 1106 if (test_and_set_bit(zno, zone_info->active_zones)) { 1107 /* Someone already set the bit */ 1108 atomic_inc(&zone_info->active_zones_left); 1109 } 1110 } 1111 1112 return true; 1113 } 1114 1115 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos) 1116 { 1117 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1118 unsigned int zno = (pos >> zone_info->zone_size_shift); 1119 1120 /* We can use any number of zones */ 1121 if (zone_info->max_active_zones == 0) 1122 return; 1123 1124 if (test_and_clear_bit(zno, zone_info->active_zones)) 1125 atomic_inc(&zone_info->active_zones_left); 1126 } 1127 1128 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical, 1129 u64 length, u64 *bytes) 1130 { 1131 unsigned int nofs_flags; 1132 int ret; 1133 1134 *bytes = 0; 1135 nofs_flags = memalloc_nofs_save(); 1136 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET, 1137 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT); 1138 memalloc_nofs_restore(nofs_flags); 1139 if (ret) 1140 return ret; 1141 1142 *bytes = length; 1143 while (length) { 1144 btrfs_dev_set_zone_empty(device, physical); 1145 btrfs_dev_clear_active_zone(device, physical); 1146 physical += device->zone_info->zone_size; 1147 length -= device->zone_info->zone_size; 1148 } 1149 1150 return 0; 1151 } 1152 1153 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size) 1154 { 1155 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1156 const u8 shift = zinfo->zone_size_shift; 1157 unsigned long begin = start >> shift; 1158 unsigned long nbits = size >> shift; 1159 u64 pos; 1160 int ret; 1161 1162 ASSERT(IS_ALIGNED(start, zinfo->zone_size)); 1163 ASSERT(IS_ALIGNED(size, zinfo->zone_size)); 1164 1165 if (begin + nbits > zinfo->nr_zones) 1166 return -ERANGE; 1167 1168 /* All the zones are conventional */ 1169 if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits)) 1170 return 0; 1171 1172 /* All the zones are sequential and empty */ 1173 if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) && 1174 bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits)) 1175 return 0; 1176 1177 for (pos = start; pos < start + size; pos += zinfo->zone_size) { 1178 u64 reset_bytes; 1179 1180 if (!btrfs_dev_is_sequential(device, pos) || 1181 btrfs_dev_is_empty_zone(device, pos)) 1182 continue; 1183 1184 /* Free regions should be empty */ 1185 btrfs_warn_in_rcu( 1186 device->fs_info, 1187 "zoned: resetting device %s (devid %llu) zone %llu for allocation", 1188 rcu_str_deref(device->name), device->devid, pos >> shift); 1189 WARN_ON_ONCE(1); 1190 1191 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size, 1192 &reset_bytes); 1193 if (ret) 1194 return ret; 1195 } 1196 1197 return 0; 1198 } 1199 1200 /* 1201 * Calculate an allocation pointer from the extent allocation information 1202 * for a block group consist of conventional zones. It is pointed to the 1203 * end of the highest addressed extent in the block group as an allocation 1204 * offset. 1205 */ 1206 static int calculate_alloc_pointer(struct btrfs_block_group *cache, 1207 u64 *offset_ret, bool new) 1208 { 1209 struct btrfs_fs_info *fs_info = cache->fs_info; 1210 struct btrfs_root *root; 1211 BTRFS_PATH_AUTO_FREE(path); 1212 struct btrfs_key key; 1213 struct btrfs_key found_key; 1214 int ret; 1215 u64 length; 1216 1217 /* 1218 * Avoid tree lookups for a new block group, there's no use for it. 1219 * It must always be 0. 1220 * 1221 * Also, we have a lock chain of extent buffer lock -> chunk mutex. 1222 * For new a block group, this function is called from 1223 * btrfs_make_block_group() which is already taking the chunk mutex. 1224 * Thus, we cannot call calculate_alloc_pointer() which takes extent 1225 * buffer locks to avoid deadlock. 1226 */ 1227 if (new) { 1228 *offset_ret = 0; 1229 return 0; 1230 } 1231 1232 path = btrfs_alloc_path(); 1233 if (!path) 1234 return -ENOMEM; 1235 1236 key.objectid = cache->start + cache->length; 1237 key.type = 0; 1238 key.offset = 0; 1239 1240 root = btrfs_extent_root(fs_info, key.objectid); 1241 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1242 /* We should not find the exact match */ 1243 if (!ret) 1244 ret = -EUCLEAN; 1245 if (ret < 0) 1246 return ret; 1247 1248 ret = btrfs_previous_extent_item(root, path, cache->start); 1249 if (ret) { 1250 if (ret == 1) { 1251 ret = 0; 1252 *offset_ret = 0; 1253 } 1254 return ret; 1255 } 1256 1257 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 1258 1259 if (found_key.type == BTRFS_EXTENT_ITEM_KEY) 1260 length = found_key.offset; 1261 else 1262 length = fs_info->nodesize; 1263 1264 if (!(found_key.objectid >= cache->start && 1265 found_key.objectid + length <= cache->start + cache->length)) { 1266 return -EUCLEAN; 1267 } 1268 *offset_ret = found_key.objectid + length - cache->start; 1269 return 0; 1270 } 1271 1272 struct zone_info { 1273 u64 physical; 1274 u64 capacity; 1275 u64 alloc_offset; 1276 }; 1277 1278 static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx, 1279 struct zone_info *info, unsigned long *active, 1280 struct btrfs_chunk_map *map) 1281 { 1282 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1283 struct btrfs_device *device; 1284 int dev_replace_is_ongoing = 0; 1285 unsigned int nofs_flag; 1286 struct blk_zone zone; 1287 int ret; 1288 1289 info->physical = map->stripes[zone_idx].physical; 1290 1291 down_read(&dev_replace->rwsem); 1292 device = map->stripes[zone_idx].dev; 1293 1294 if (!device->bdev) { 1295 up_read(&dev_replace->rwsem); 1296 info->alloc_offset = WP_MISSING_DEV; 1297 return 0; 1298 } 1299 1300 /* Consider a zone as active if we can allow any number of active zones. */ 1301 if (!device->zone_info->max_active_zones) 1302 __set_bit(zone_idx, active); 1303 1304 if (!btrfs_dev_is_sequential(device, info->physical)) { 1305 up_read(&dev_replace->rwsem); 1306 info->alloc_offset = WP_CONVENTIONAL; 1307 return 0; 1308 } 1309 1310 /* This zone will be used for allocation, so mark this zone non-empty. */ 1311 btrfs_dev_clear_zone_empty(device, info->physical); 1312 1313 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 1314 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 1315 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical); 1316 1317 /* 1318 * The group is mapped to a sequential zone. Get the zone write pointer 1319 * to determine the allocation offset within the zone. 1320 */ 1321 WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size)); 1322 nofs_flag = memalloc_nofs_save(); 1323 ret = btrfs_get_dev_zone(device, info->physical, &zone); 1324 memalloc_nofs_restore(nofs_flag); 1325 if (ret) { 1326 up_read(&dev_replace->rwsem); 1327 if (ret != -EIO && ret != -EOPNOTSUPP) 1328 return ret; 1329 info->alloc_offset = WP_MISSING_DEV; 1330 return 0; 1331 } 1332 1333 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) { 1334 btrfs_err_in_rcu(fs_info, 1335 "zoned: unexpected conventional zone %llu on device %s (devid %llu)", 1336 zone.start << SECTOR_SHIFT, rcu_str_deref(device->name), 1337 device->devid); 1338 up_read(&dev_replace->rwsem); 1339 return -EIO; 1340 } 1341 1342 info->capacity = (zone.capacity << SECTOR_SHIFT); 1343 1344 switch (zone.cond) { 1345 case BLK_ZONE_COND_OFFLINE: 1346 case BLK_ZONE_COND_READONLY: 1347 btrfs_err_in_rcu(fs_info, 1348 "zoned: offline/readonly zone %llu on device %s (devid %llu)", 1349 (info->physical >> device->zone_info->zone_size_shift), 1350 rcu_str_deref(device->name), device->devid); 1351 info->alloc_offset = WP_MISSING_DEV; 1352 break; 1353 case BLK_ZONE_COND_EMPTY: 1354 info->alloc_offset = 0; 1355 break; 1356 case BLK_ZONE_COND_FULL: 1357 info->alloc_offset = info->capacity; 1358 break; 1359 default: 1360 /* Partially used zone. */ 1361 info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT); 1362 __set_bit(zone_idx, active); 1363 break; 1364 } 1365 1366 up_read(&dev_replace->rwsem); 1367 1368 return 0; 1369 } 1370 1371 static int btrfs_load_block_group_single(struct btrfs_block_group *bg, 1372 struct zone_info *info, 1373 unsigned long *active) 1374 { 1375 if (info->alloc_offset == WP_MISSING_DEV) { 1376 btrfs_err(bg->fs_info, 1377 "zoned: cannot recover write pointer for zone %llu", 1378 info->physical); 1379 return -EIO; 1380 } 1381 1382 bg->alloc_offset = info->alloc_offset; 1383 bg->zone_capacity = info->capacity; 1384 if (test_bit(0, active)) 1385 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1386 return 0; 1387 } 1388 1389 static int btrfs_load_block_group_dup(struct btrfs_block_group *bg, 1390 struct btrfs_chunk_map *map, 1391 struct zone_info *zone_info, 1392 unsigned long *active) 1393 { 1394 struct btrfs_fs_info *fs_info = bg->fs_info; 1395 1396 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1397 btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree"); 1398 return -EINVAL; 1399 } 1400 1401 bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity); 1402 1403 if (zone_info[0].alloc_offset == WP_MISSING_DEV) { 1404 btrfs_err(bg->fs_info, 1405 "zoned: cannot recover write pointer for zone %llu", 1406 zone_info[0].physical); 1407 return -EIO; 1408 } 1409 if (zone_info[1].alloc_offset == WP_MISSING_DEV) { 1410 btrfs_err(bg->fs_info, 1411 "zoned: cannot recover write pointer for zone %llu", 1412 zone_info[1].physical); 1413 return -EIO; 1414 } 1415 if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) { 1416 btrfs_err(bg->fs_info, 1417 "zoned: write pointer offset mismatch of zones in DUP profile"); 1418 return -EIO; 1419 } 1420 1421 if (test_bit(0, active) != test_bit(1, active)) { 1422 if (!btrfs_zone_activate(bg)) 1423 return -EIO; 1424 } else if (test_bit(0, active)) { 1425 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1426 } 1427 1428 bg->alloc_offset = zone_info[0].alloc_offset; 1429 return 0; 1430 } 1431 1432 static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg, 1433 struct btrfs_chunk_map *map, 1434 struct zone_info *zone_info, 1435 unsigned long *active) 1436 { 1437 struct btrfs_fs_info *fs_info = bg->fs_info; 1438 int i; 1439 1440 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1441 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1442 btrfs_bg_type_to_raid_name(map->type)); 1443 return -EINVAL; 1444 } 1445 1446 /* In case a device is missing we have a cap of 0, so don't use it. */ 1447 bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity); 1448 1449 for (i = 0; i < map->num_stripes; i++) { 1450 if (zone_info[i].alloc_offset == WP_MISSING_DEV || 1451 zone_info[i].alloc_offset == WP_CONVENTIONAL) 1452 continue; 1453 1454 if ((zone_info[0].alloc_offset != zone_info[i].alloc_offset) && 1455 !btrfs_test_opt(fs_info, DEGRADED)) { 1456 btrfs_err(fs_info, 1457 "zoned: write pointer offset mismatch of zones in %s profile", 1458 btrfs_bg_type_to_raid_name(map->type)); 1459 return -EIO; 1460 } 1461 if (test_bit(0, active) != test_bit(i, active)) { 1462 if (!btrfs_test_opt(fs_info, DEGRADED) && 1463 !btrfs_zone_activate(bg)) { 1464 return -EIO; 1465 } 1466 } else { 1467 if (test_bit(0, active)) 1468 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1469 } 1470 } 1471 1472 if (zone_info[0].alloc_offset != WP_MISSING_DEV) 1473 bg->alloc_offset = zone_info[0].alloc_offset; 1474 else 1475 bg->alloc_offset = zone_info[i - 1].alloc_offset; 1476 1477 return 0; 1478 } 1479 1480 static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg, 1481 struct btrfs_chunk_map *map, 1482 struct zone_info *zone_info, 1483 unsigned long *active) 1484 { 1485 struct btrfs_fs_info *fs_info = bg->fs_info; 1486 1487 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1488 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1489 btrfs_bg_type_to_raid_name(map->type)); 1490 return -EINVAL; 1491 } 1492 1493 for (int i = 0; i < map->num_stripes; i++) { 1494 if (zone_info[i].alloc_offset == WP_MISSING_DEV || 1495 zone_info[i].alloc_offset == WP_CONVENTIONAL) 1496 continue; 1497 1498 if (test_bit(0, active) != test_bit(i, active)) { 1499 if (!btrfs_zone_activate(bg)) 1500 return -EIO; 1501 } else { 1502 if (test_bit(0, active)) 1503 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1504 } 1505 bg->zone_capacity += zone_info[i].capacity; 1506 bg->alloc_offset += zone_info[i].alloc_offset; 1507 } 1508 1509 return 0; 1510 } 1511 1512 static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg, 1513 struct btrfs_chunk_map *map, 1514 struct zone_info *zone_info, 1515 unsigned long *active) 1516 { 1517 struct btrfs_fs_info *fs_info = bg->fs_info; 1518 1519 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1520 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1521 btrfs_bg_type_to_raid_name(map->type)); 1522 return -EINVAL; 1523 } 1524 1525 for (int i = 0; i < map->num_stripes; i++) { 1526 if (zone_info[i].alloc_offset == WP_MISSING_DEV || 1527 zone_info[i].alloc_offset == WP_CONVENTIONAL) 1528 continue; 1529 1530 if (test_bit(0, active) != test_bit(i, active)) { 1531 if (!btrfs_zone_activate(bg)) 1532 return -EIO; 1533 } else { 1534 if (test_bit(0, active)) 1535 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1536 } 1537 1538 if ((i % map->sub_stripes) == 0) { 1539 bg->zone_capacity += zone_info[i].capacity; 1540 bg->alloc_offset += zone_info[i].alloc_offset; 1541 } 1542 } 1543 1544 return 0; 1545 } 1546 1547 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new) 1548 { 1549 struct btrfs_fs_info *fs_info = cache->fs_info; 1550 struct btrfs_chunk_map *map; 1551 u64 logical = cache->start; 1552 u64 length = cache->length; 1553 struct zone_info *zone_info = NULL; 1554 int ret; 1555 int i; 1556 unsigned long *active = NULL; 1557 u64 last_alloc = 0; 1558 u32 num_sequential = 0, num_conventional = 0; 1559 u64 profile; 1560 1561 if (!btrfs_is_zoned(fs_info)) 1562 return 0; 1563 1564 /* Sanity check */ 1565 if (!IS_ALIGNED(length, fs_info->zone_size)) { 1566 btrfs_err(fs_info, 1567 "zoned: block group %llu len %llu unaligned to zone size %llu", 1568 logical, length, fs_info->zone_size); 1569 return -EIO; 1570 } 1571 1572 map = btrfs_find_chunk_map(fs_info, logical, length); 1573 if (!map) 1574 return -EINVAL; 1575 1576 cache->physical_map = map; 1577 1578 zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS); 1579 if (!zone_info) { 1580 ret = -ENOMEM; 1581 goto out; 1582 } 1583 1584 active = bitmap_zalloc(map->num_stripes, GFP_NOFS); 1585 if (!active) { 1586 ret = -ENOMEM; 1587 goto out; 1588 } 1589 1590 for (i = 0; i < map->num_stripes; i++) { 1591 ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map); 1592 if (ret) 1593 goto out; 1594 1595 if (zone_info[i].alloc_offset == WP_CONVENTIONAL) 1596 num_conventional++; 1597 else 1598 num_sequential++; 1599 } 1600 1601 if (num_sequential > 0) 1602 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); 1603 1604 if (num_conventional > 0) { 1605 /* Zone capacity is always zone size in emulation */ 1606 cache->zone_capacity = cache->length; 1607 ret = calculate_alloc_pointer(cache, &last_alloc, new); 1608 if (ret) { 1609 btrfs_err(fs_info, 1610 "zoned: failed to determine allocation offset of bg %llu", 1611 cache->start); 1612 goto out; 1613 } else if (map->num_stripes == num_conventional) { 1614 cache->alloc_offset = last_alloc; 1615 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags); 1616 goto out; 1617 } 1618 } 1619 1620 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK; 1621 switch (profile) { 1622 case 0: /* single */ 1623 ret = btrfs_load_block_group_single(cache, &zone_info[0], active); 1624 break; 1625 case BTRFS_BLOCK_GROUP_DUP: 1626 ret = btrfs_load_block_group_dup(cache, map, zone_info, active); 1627 break; 1628 case BTRFS_BLOCK_GROUP_RAID1: 1629 case BTRFS_BLOCK_GROUP_RAID1C3: 1630 case BTRFS_BLOCK_GROUP_RAID1C4: 1631 ret = btrfs_load_block_group_raid1(cache, map, zone_info, active); 1632 break; 1633 case BTRFS_BLOCK_GROUP_RAID0: 1634 ret = btrfs_load_block_group_raid0(cache, map, zone_info, active); 1635 break; 1636 case BTRFS_BLOCK_GROUP_RAID10: 1637 ret = btrfs_load_block_group_raid10(cache, map, zone_info, active); 1638 break; 1639 case BTRFS_BLOCK_GROUP_RAID5: 1640 case BTRFS_BLOCK_GROUP_RAID6: 1641 default: 1642 btrfs_err(fs_info, "zoned: profile %s not yet supported", 1643 btrfs_bg_type_to_raid_name(map->type)); 1644 ret = -EINVAL; 1645 goto out; 1646 } 1647 1648 if (ret == -EIO && profile != 0 && profile != BTRFS_BLOCK_GROUP_RAID0 && 1649 profile != BTRFS_BLOCK_GROUP_RAID10) { 1650 /* 1651 * Detected broken write pointer. Make this block group 1652 * unallocatable by setting the allocation pointer at the end of 1653 * allocatable region. Relocating this block group will fix the 1654 * mismatch. 1655 * 1656 * Currently, we cannot handle RAID0 or RAID10 case like this 1657 * because we don't have a proper zone_capacity value. But, 1658 * reading from this block group won't work anyway by a missing 1659 * stripe. 1660 */ 1661 cache->alloc_offset = cache->zone_capacity; 1662 ret = 0; 1663 } 1664 1665 out: 1666 /* Reject non SINGLE data profiles without RST */ 1667 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && 1668 (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) && 1669 !fs_info->stripe_root) { 1670 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1671 btrfs_bg_type_to_raid_name(map->type)); 1672 return -EINVAL; 1673 } 1674 1675 if (cache->alloc_offset > cache->zone_capacity) { 1676 btrfs_err(fs_info, 1677 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu", 1678 cache->alloc_offset, cache->zone_capacity, 1679 cache->start); 1680 ret = -EIO; 1681 } 1682 1683 /* An extent is allocated after the write pointer */ 1684 if (!ret && num_conventional && last_alloc > cache->alloc_offset) { 1685 btrfs_err(fs_info, 1686 "zoned: got wrong write pointer in BG %llu: %llu > %llu", 1687 logical, last_alloc, cache->alloc_offset); 1688 ret = -EIO; 1689 } 1690 1691 if (!ret) { 1692 cache->meta_write_pointer = cache->alloc_offset + cache->start; 1693 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) { 1694 btrfs_get_block_group(cache); 1695 spin_lock(&fs_info->zone_active_bgs_lock); 1696 list_add_tail(&cache->active_bg_list, 1697 &fs_info->zone_active_bgs); 1698 spin_unlock(&fs_info->zone_active_bgs_lock); 1699 } 1700 } else { 1701 btrfs_free_chunk_map(cache->physical_map); 1702 cache->physical_map = NULL; 1703 } 1704 bitmap_free(active); 1705 kfree(zone_info); 1706 1707 return ret; 1708 } 1709 1710 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache) 1711 { 1712 u64 unusable, free; 1713 1714 if (!btrfs_is_zoned(cache->fs_info)) 1715 return; 1716 1717 WARN_ON(cache->bytes_super != 0); 1718 unusable = (cache->alloc_offset - cache->used) + 1719 (cache->length - cache->zone_capacity); 1720 free = cache->zone_capacity - cache->alloc_offset; 1721 1722 /* We only need ->free_space in ALLOC_SEQ block groups */ 1723 cache->cached = BTRFS_CACHE_FINISHED; 1724 cache->free_space_ctl->free_space = free; 1725 cache->zone_unusable = unusable; 1726 } 1727 1728 bool btrfs_use_zone_append(struct btrfs_bio *bbio) 1729 { 1730 u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT); 1731 struct btrfs_inode *inode = bbio->inode; 1732 struct btrfs_fs_info *fs_info = bbio->fs_info; 1733 struct btrfs_block_group *cache; 1734 bool ret = false; 1735 1736 if (!btrfs_is_zoned(fs_info)) 1737 return false; 1738 1739 if (!inode || !is_data_inode(inode)) 1740 return false; 1741 1742 if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE) 1743 return false; 1744 1745 /* 1746 * Using REQ_OP_ZONE_APPEND for relocation can break assumptions on the 1747 * extent layout the relocation code has. 1748 * Furthermore we have set aside own block-group from which only the 1749 * relocation "process" can allocate and make sure only one process at a 1750 * time can add pages to an extent that gets relocated, so it's safe to 1751 * use regular REQ_OP_WRITE for this special case. 1752 */ 1753 if (btrfs_is_data_reloc_root(inode->root)) 1754 return false; 1755 1756 cache = btrfs_lookup_block_group(fs_info, start); 1757 ASSERT(cache); 1758 if (!cache) 1759 return false; 1760 1761 ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); 1762 btrfs_put_block_group(cache); 1763 1764 return ret; 1765 } 1766 1767 void btrfs_record_physical_zoned(struct btrfs_bio *bbio) 1768 { 1769 const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 1770 struct btrfs_ordered_sum *sum = bbio->sums; 1771 1772 if (physical < bbio->orig_physical) 1773 sum->logical -= bbio->orig_physical - physical; 1774 else 1775 sum->logical += physical - bbio->orig_physical; 1776 } 1777 1778 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered, 1779 u64 logical) 1780 { 1781 struct extent_map_tree *em_tree = &ordered->inode->extent_tree; 1782 struct extent_map *em; 1783 1784 ordered->disk_bytenr = logical; 1785 1786 write_lock(&em_tree->lock); 1787 em = search_extent_mapping(em_tree, ordered->file_offset, 1788 ordered->num_bytes); 1789 /* The em should be a new COW extent, thus it should not have an offset. */ 1790 ASSERT(em->offset == 0); 1791 em->disk_bytenr = logical; 1792 free_extent_map(em); 1793 write_unlock(&em_tree->lock); 1794 } 1795 1796 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered, 1797 u64 logical, u64 len) 1798 { 1799 struct btrfs_ordered_extent *new; 1800 1801 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) && 1802 split_extent_map(ordered->inode, ordered->file_offset, 1803 ordered->num_bytes, len, logical)) 1804 return false; 1805 1806 new = btrfs_split_ordered_extent(ordered, len); 1807 if (IS_ERR(new)) 1808 return false; 1809 new->disk_bytenr = logical; 1810 btrfs_finish_one_ordered(new); 1811 return true; 1812 } 1813 1814 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered) 1815 { 1816 struct btrfs_inode *inode = ordered->inode; 1817 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1818 struct btrfs_ordered_sum *sum; 1819 u64 logical, len; 1820 1821 /* 1822 * Write to pre-allocated region is for the data relocation, and so 1823 * it should use WRITE operation. No split/rewrite are necessary. 1824 */ 1825 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) 1826 return; 1827 1828 ASSERT(!list_empty(&ordered->list)); 1829 /* The ordered->list can be empty in the above pre-alloc case. */ 1830 sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list); 1831 logical = sum->logical; 1832 len = sum->len; 1833 1834 while (len < ordered->disk_num_bytes) { 1835 sum = list_next_entry(sum, list); 1836 if (sum->logical == logical + len) { 1837 len += sum->len; 1838 continue; 1839 } 1840 if (!btrfs_zoned_split_ordered(ordered, logical, len)) { 1841 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 1842 btrfs_err(fs_info, "failed to split ordered extent"); 1843 goto out; 1844 } 1845 logical = sum->logical; 1846 len = sum->len; 1847 } 1848 1849 if (ordered->disk_bytenr != logical) 1850 btrfs_rewrite_logical_zoned(ordered, logical); 1851 1852 out: 1853 /* 1854 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures 1855 * were allocated by btrfs_alloc_dummy_sum only to record the logical 1856 * addresses and don't contain actual checksums. We thus must free them 1857 * here so that we don't attempt to log the csums later. 1858 */ 1859 if ((inode->flags & BTRFS_INODE_NODATASUM) || 1860 test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state)) { 1861 while ((sum = list_first_entry_or_null(&ordered->list, 1862 typeof(*sum), list))) { 1863 list_del(&sum->list); 1864 kfree(sum); 1865 } 1866 } 1867 } 1868 1869 static bool check_bg_is_active(struct btrfs_eb_write_context *ctx, 1870 struct btrfs_block_group **active_bg) 1871 { 1872 const struct writeback_control *wbc = ctx->wbc; 1873 struct btrfs_block_group *block_group = ctx->zoned_bg; 1874 struct btrfs_fs_info *fs_info = block_group->fs_info; 1875 1876 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) 1877 return true; 1878 1879 if (fs_info->treelog_bg == block_group->start) { 1880 if (!btrfs_zone_activate(block_group)) { 1881 int ret_fin = btrfs_zone_finish_one_bg(fs_info); 1882 1883 if (ret_fin != 1 || !btrfs_zone_activate(block_group)) 1884 return false; 1885 } 1886 } else if (*active_bg != block_group) { 1887 struct btrfs_block_group *tgt = *active_bg; 1888 1889 /* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */ 1890 lockdep_assert_held(&fs_info->zoned_meta_io_lock); 1891 1892 if (tgt) { 1893 /* 1894 * If there is an unsent IO left in the allocated area, 1895 * we cannot wait for them as it may cause a deadlock. 1896 */ 1897 if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) { 1898 if (wbc->sync_mode == WB_SYNC_NONE || 1899 (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)) 1900 return false; 1901 } 1902 1903 /* Pivot active metadata/system block group. */ 1904 btrfs_zoned_meta_io_unlock(fs_info); 1905 wait_eb_writebacks(tgt); 1906 do_zone_finish(tgt, true); 1907 btrfs_zoned_meta_io_lock(fs_info); 1908 if (*active_bg == tgt) { 1909 btrfs_put_block_group(tgt); 1910 *active_bg = NULL; 1911 } 1912 } 1913 if (!btrfs_zone_activate(block_group)) 1914 return false; 1915 if (*active_bg != block_group) { 1916 ASSERT(*active_bg == NULL); 1917 *active_bg = block_group; 1918 btrfs_get_block_group(block_group); 1919 } 1920 } 1921 1922 return true; 1923 } 1924 1925 /* 1926 * Check if @ctx->eb is aligned to the write pointer. 1927 * 1928 * Return: 1929 * 0: @ctx->eb is at the write pointer. You can write it. 1930 * -EAGAIN: There is a hole. The caller should handle the case. 1931 * -EBUSY: There is a hole, but the caller can just bail out. 1932 */ 1933 int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info, 1934 struct btrfs_eb_write_context *ctx) 1935 { 1936 const struct writeback_control *wbc = ctx->wbc; 1937 const struct extent_buffer *eb = ctx->eb; 1938 struct btrfs_block_group *block_group = ctx->zoned_bg; 1939 1940 if (!btrfs_is_zoned(fs_info)) 1941 return 0; 1942 1943 if (block_group) { 1944 if (block_group->start > eb->start || 1945 block_group->start + block_group->length <= eb->start) { 1946 btrfs_put_block_group(block_group); 1947 block_group = NULL; 1948 ctx->zoned_bg = NULL; 1949 } 1950 } 1951 1952 if (!block_group) { 1953 block_group = btrfs_lookup_block_group(fs_info, eb->start); 1954 if (!block_group) 1955 return 0; 1956 ctx->zoned_bg = block_group; 1957 } 1958 1959 if (block_group->meta_write_pointer == eb->start) { 1960 struct btrfs_block_group **tgt; 1961 1962 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags)) 1963 return 0; 1964 1965 if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) 1966 tgt = &fs_info->active_system_bg; 1967 else 1968 tgt = &fs_info->active_meta_bg; 1969 if (check_bg_is_active(ctx, tgt)) 1970 return 0; 1971 } 1972 1973 /* 1974 * Since we may release fs_info->zoned_meta_io_lock, someone can already 1975 * start writing this eb. In that case, we can just bail out. 1976 */ 1977 if (block_group->meta_write_pointer > eb->start) 1978 return -EBUSY; 1979 1980 /* If for_sync, this hole will be filled with transaction commit. */ 1981 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 1982 return -EAGAIN; 1983 return -EBUSY; 1984 } 1985 1986 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length) 1987 { 1988 if (!btrfs_dev_is_sequential(device, physical)) 1989 return -EOPNOTSUPP; 1990 1991 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT, 1992 length >> SECTOR_SHIFT, GFP_NOFS, 0); 1993 } 1994 1995 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical, 1996 struct blk_zone *zone) 1997 { 1998 struct btrfs_io_context *bioc = NULL; 1999 u64 mapped_length = PAGE_SIZE; 2000 unsigned int nofs_flag; 2001 int nmirrors; 2002 int i, ret; 2003 2004 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 2005 &mapped_length, &bioc, NULL, NULL); 2006 if (ret || !bioc || mapped_length < PAGE_SIZE) { 2007 ret = -EIO; 2008 goto out_put_bioc; 2009 } 2010 2011 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 2012 ret = -EINVAL; 2013 goto out_put_bioc; 2014 } 2015 2016 nofs_flag = memalloc_nofs_save(); 2017 nmirrors = (int)bioc->num_stripes; 2018 for (i = 0; i < nmirrors; i++) { 2019 u64 physical = bioc->stripes[i].physical; 2020 struct btrfs_device *dev = bioc->stripes[i].dev; 2021 2022 /* Missing device */ 2023 if (!dev->bdev) 2024 continue; 2025 2026 ret = btrfs_get_dev_zone(dev, physical, zone); 2027 /* Failing device */ 2028 if (ret == -EIO || ret == -EOPNOTSUPP) 2029 continue; 2030 break; 2031 } 2032 memalloc_nofs_restore(nofs_flag); 2033 out_put_bioc: 2034 btrfs_put_bioc(bioc); 2035 return ret; 2036 } 2037 2038 /* 2039 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by 2040 * filling zeros between @physical_pos to a write pointer of dev-replace 2041 * source device. 2042 */ 2043 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical, 2044 u64 physical_start, u64 physical_pos) 2045 { 2046 struct btrfs_fs_info *fs_info = tgt_dev->fs_info; 2047 struct blk_zone zone; 2048 u64 length; 2049 u64 wp; 2050 int ret; 2051 2052 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos)) 2053 return 0; 2054 2055 ret = read_zone_info(fs_info, logical, &zone); 2056 if (ret) 2057 return ret; 2058 2059 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT); 2060 2061 if (physical_pos == wp) 2062 return 0; 2063 2064 if (physical_pos > wp) 2065 return -EUCLEAN; 2066 2067 length = wp - physical_pos; 2068 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length); 2069 } 2070 2071 /* 2072 * Activate block group and underlying device zones 2073 * 2074 * @block_group: the block group to activate 2075 * 2076 * Return: true on success, false otherwise 2077 */ 2078 bool btrfs_zone_activate(struct btrfs_block_group *block_group) 2079 { 2080 struct btrfs_fs_info *fs_info = block_group->fs_info; 2081 struct btrfs_chunk_map *map; 2082 struct btrfs_device *device; 2083 u64 physical; 2084 const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA); 2085 bool ret; 2086 int i; 2087 2088 if (!btrfs_is_zoned(block_group->fs_info)) 2089 return true; 2090 2091 map = block_group->physical_map; 2092 2093 spin_lock(&fs_info->zone_active_bgs_lock); 2094 spin_lock(&block_group->lock); 2095 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 2096 ret = true; 2097 goto out_unlock; 2098 } 2099 2100 /* No space left */ 2101 if (btrfs_zoned_bg_is_full(block_group)) { 2102 ret = false; 2103 goto out_unlock; 2104 } 2105 2106 for (i = 0; i < map->num_stripes; i++) { 2107 struct btrfs_zoned_device_info *zinfo; 2108 int reserved = 0; 2109 2110 device = map->stripes[i].dev; 2111 physical = map->stripes[i].physical; 2112 zinfo = device->zone_info; 2113 2114 if (zinfo->max_active_zones == 0) 2115 continue; 2116 2117 if (is_data) 2118 reserved = zinfo->reserved_active_zones; 2119 /* 2120 * For the data block group, leave active zones for one 2121 * metadata block group and one system block group. 2122 */ 2123 if (atomic_read(&zinfo->active_zones_left) <= reserved) { 2124 ret = false; 2125 goto out_unlock; 2126 } 2127 2128 if (!btrfs_dev_set_active_zone(device, physical)) { 2129 /* Cannot activate the zone */ 2130 ret = false; 2131 goto out_unlock; 2132 } 2133 if (!is_data) 2134 zinfo->reserved_active_zones--; 2135 } 2136 2137 /* Successfully activated all the zones */ 2138 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 2139 spin_unlock(&block_group->lock); 2140 2141 /* For the active block group list */ 2142 btrfs_get_block_group(block_group); 2143 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs); 2144 spin_unlock(&fs_info->zone_active_bgs_lock); 2145 2146 return true; 2147 2148 out_unlock: 2149 spin_unlock(&block_group->lock); 2150 spin_unlock(&fs_info->zone_active_bgs_lock); 2151 return ret; 2152 } 2153 2154 static void wait_eb_writebacks(struct btrfs_block_group *block_group) 2155 { 2156 struct btrfs_fs_info *fs_info = block_group->fs_info; 2157 const u64 end = block_group->start + block_group->length; 2158 struct radix_tree_iter iter; 2159 struct extent_buffer *eb; 2160 void __rcu **slot; 2161 2162 rcu_read_lock(); 2163 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter, 2164 block_group->start >> fs_info->sectorsize_bits) { 2165 eb = radix_tree_deref_slot(slot); 2166 if (!eb) 2167 continue; 2168 if (radix_tree_deref_retry(eb)) { 2169 slot = radix_tree_iter_retry(&iter); 2170 continue; 2171 } 2172 2173 if (eb->start < block_group->start) 2174 continue; 2175 if (eb->start >= end) 2176 break; 2177 2178 slot = radix_tree_iter_resume(slot, &iter); 2179 rcu_read_unlock(); 2180 wait_on_extent_buffer_writeback(eb); 2181 rcu_read_lock(); 2182 } 2183 rcu_read_unlock(); 2184 } 2185 2186 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written) 2187 { 2188 struct btrfs_fs_info *fs_info = block_group->fs_info; 2189 struct btrfs_chunk_map *map; 2190 const bool is_metadata = (block_group->flags & 2191 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)); 2192 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 2193 int ret = 0; 2194 int i; 2195 2196 spin_lock(&block_group->lock); 2197 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 2198 spin_unlock(&block_group->lock); 2199 return 0; 2200 } 2201 2202 /* Check if we have unwritten allocated space */ 2203 if (is_metadata && 2204 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) { 2205 spin_unlock(&block_group->lock); 2206 return -EAGAIN; 2207 } 2208 2209 /* 2210 * If we are sure that the block group is full (= no more room left for 2211 * new allocation) and the IO for the last usable block is completed, we 2212 * don't need to wait for the other IOs. This holds because we ensure 2213 * the sequential IO submissions using the ZONE_APPEND command for data 2214 * and block_group->meta_write_pointer for metadata. 2215 */ 2216 if (!fully_written) { 2217 if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) { 2218 spin_unlock(&block_group->lock); 2219 return -EAGAIN; 2220 } 2221 spin_unlock(&block_group->lock); 2222 2223 ret = btrfs_inc_block_group_ro(block_group, false); 2224 if (ret) 2225 return ret; 2226 2227 /* Ensure all writes in this block group finish */ 2228 btrfs_wait_block_group_reservations(block_group); 2229 /* No need to wait for NOCOW writers. Zoned mode does not allow that */ 2230 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group); 2231 /* Wait for extent buffers to be written. */ 2232 if (is_metadata) 2233 wait_eb_writebacks(block_group); 2234 2235 spin_lock(&block_group->lock); 2236 2237 /* 2238 * Bail out if someone already deactivated the block group, or 2239 * allocated space is left in the block group. 2240 */ 2241 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2242 &block_group->runtime_flags)) { 2243 spin_unlock(&block_group->lock); 2244 btrfs_dec_block_group_ro(block_group); 2245 return 0; 2246 } 2247 2248 if (block_group->reserved || 2249 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, 2250 &block_group->runtime_flags)) { 2251 spin_unlock(&block_group->lock); 2252 btrfs_dec_block_group_ro(block_group); 2253 return -EAGAIN; 2254 } 2255 } 2256 2257 clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 2258 block_group->alloc_offset = block_group->zone_capacity; 2259 if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)) 2260 block_group->meta_write_pointer = block_group->start + 2261 block_group->zone_capacity; 2262 block_group->free_space_ctl->free_space = 0; 2263 btrfs_clear_treelog_bg(block_group); 2264 btrfs_clear_data_reloc_bg(block_group); 2265 spin_unlock(&block_group->lock); 2266 2267 down_read(&dev_replace->rwsem); 2268 map = block_group->physical_map; 2269 for (i = 0; i < map->num_stripes; i++) { 2270 struct btrfs_device *device = map->stripes[i].dev; 2271 const u64 physical = map->stripes[i].physical; 2272 struct btrfs_zoned_device_info *zinfo = device->zone_info; 2273 unsigned int nofs_flags; 2274 2275 if (zinfo->max_active_zones == 0) 2276 continue; 2277 2278 nofs_flags = memalloc_nofs_save(); 2279 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH, 2280 physical >> SECTOR_SHIFT, 2281 zinfo->zone_size >> SECTOR_SHIFT); 2282 memalloc_nofs_restore(nofs_flags); 2283 2284 if (ret) { 2285 up_read(&dev_replace->rwsem); 2286 return ret; 2287 } 2288 2289 if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 2290 zinfo->reserved_active_zones++; 2291 btrfs_dev_clear_active_zone(device, physical); 2292 } 2293 up_read(&dev_replace->rwsem); 2294 2295 if (!fully_written) 2296 btrfs_dec_block_group_ro(block_group); 2297 2298 spin_lock(&fs_info->zone_active_bgs_lock); 2299 ASSERT(!list_empty(&block_group->active_bg_list)); 2300 list_del_init(&block_group->active_bg_list); 2301 spin_unlock(&fs_info->zone_active_bgs_lock); 2302 2303 /* For active_bg_list */ 2304 btrfs_put_block_group(block_group); 2305 2306 clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2307 2308 return 0; 2309 } 2310 2311 int btrfs_zone_finish(struct btrfs_block_group *block_group) 2312 { 2313 if (!btrfs_is_zoned(block_group->fs_info)) 2314 return 0; 2315 2316 return do_zone_finish(block_group, false); 2317 } 2318 2319 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags) 2320 { 2321 struct btrfs_fs_info *fs_info = fs_devices->fs_info; 2322 struct btrfs_device *device; 2323 bool ret = false; 2324 2325 if (!btrfs_is_zoned(fs_info)) 2326 return true; 2327 2328 /* Check if there is a device with active zones left */ 2329 mutex_lock(&fs_info->chunk_mutex); 2330 spin_lock(&fs_info->zone_active_bgs_lock); 2331 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 2332 struct btrfs_zoned_device_info *zinfo = device->zone_info; 2333 int reserved = 0; 2334 2335 if (!device->bdev) 2336 continue; 2337 2338 if (!zinfo->max_active_zones) { 2339 ret = true; 2340 break; 2341 } 2342 2343 if (flags & BTRFS_BLOCK_GROUP_DATA) 2344 reserved = zinfo->reserved_active_zones; 2345 2346 switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 2347 case 0: /* single */ 2348 ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved)); 2349 break; 2350 case BTRFS_BLOCK_GROUP_DUP: 2351 ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved)); 2352 break; 2353 } 2354 if (ret) 2355 break; 2356 } 2357 spin_unlock(&fs_info->zone_active_bgs_lock); 2358 mutex_unlock(&fs_info->chunk_mutex); 2359 2360 if (!ret) 2361 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2362 2363 return ret; 2364 } 2365 2366 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length) 2367 { 2368 struct btrfs_block_group *block_group; 2369 u64 min_alloc_bytes; 2370 2371 if (!btrfs_is_zoned(fs_info)) 2372 return; 2373 2374 block_group = btrfs_lookup_block_group(fs_info, logical); 2375 ASSERT(block_group); 2376 2377 /* No MIXED_BG on zoned btrfs. */ 2378 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA) 2379 min_alloc_bytes = fs_info->sectorsize; 2380 else 2381 min_alloc_bytes = fs_info->nodesize; 2382 2383 /* Bail out if we can allocate more data from this block group. */ 2384 if (logical + length + min_alloc_bytes <= 2385 block_group->start + block_group->zone_capacity) 2386 goto out; 2387 2388 do_zone_finish(block_group, true); 2389 2390 out: 2391 btrfs_put_block_group(block_group); 2392 } 2393 2394 static void btrfs_zone_finish_endio_workfn(struct work_struct *work) 2395 { 2396 struct btrfs_block_group *bg = 2397 container_of(work, struct btrfs_block_group, zone_finish_work); 2398 2399 wait_on_extent_buffer_writeback(bg->last_eb); 2400 free_extent_buffer(bg->last_eb); 2401 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length); 2402 btrfs_put_block_group(bg); 2403 } 2404 2405 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg, 2406 struct extent_buffer *eb) 2407 { 2408 if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) || 2409 eb->start + eb->len * 2 <= bg->start + bg->zone_capacity) 2410 return; 2411 2412 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) { 2413 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing", 2414 bg->start); 2415 return; 2416 } 2417 2418 /* For the work */ 2419 btrfs_get_block_group(bg); 2420 atomic_inc(&eb->refs); 2421 bg->last_eb = eb; 2422 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn); 2423 queue_work(system_unbound_wq, &bg->zone_finish_work); 2424 } 2425 2426 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg) 2427 { 2428 struct btrfs_fs_info *fs_info = bg->fs_info; 2429 2430 spin_lock(&fs_info->relocation_bg_lock); 2431 if (fs_info->data_reloc_bg == bg->start) 2432 fs_info->data_reloc_bg = 0; 2433 spin_unlock(&fs_info->relocation_bg_lock); 2434 } 2435 2436 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info) 2437 { 2438 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2439 struct btrfs_device *device; 2440 2441 if (!btrfs_is_zoned(fs_info)) 2442 return; 2443 2444 mutex_lock(&fs_devices->device_list_mutex); 2445 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2446 if (device->zone_info) { 2447 vfree(device->zone_info->zone_cache); 2448 device->zone_info->zone_cache = NULL; 2449 } 2450 } 2451 mutex_unlock(&fs_devices->device_list_mutex); 2452 } 2453 2454 bool btrfs_zoned_should_reclaim(const struct btrfs_fs_info *fs_info) 2455 { 2456 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2457 struct btrfs_device *device; 2458 u64 used = 0; 2459 u64 total = 0; 2460 u64 factor; 2461 2462 ASSERT(btrfs_is_zoned(fs_info)); 2463 2464 if (fs_info->bg_reclaim_threshold == 0) 2465 return false; 2466 2467 mutex_lock(&fs_devices->device_list_mutex); 2468 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2469 if (!device->bdev) 2470 continue; 2471 2472 total += device->disk_total_bytes; 2473 used += device->bytes_used; 2474 } 2475 mutex_unlock(&fs_devices->device_list_mutex); 2476 2477 factor = div64_u64(used * 100, total); 2478 return factor >= fs_info->bg_reclaim_threshold; 2479 } 2480 2481 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical, 2482 u64 length) 2483 { 2484 struct btrfs_block_group *block_group; 2485 2486 if (!btrfs_is_zoned(fs_info)) 2487 return; 2488 2489 block_group = btrfs_lookup_block_group(fs_info, logical); 2490 /* It should be called on a previous data relocation block group. */ 2491 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)); 2492 2493 spin_lock(&block_group->lock); 2494 if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) 2495 goto out; 2496 2497 /* All relocation extents are written. */ 2498 if (block_group->start + block_group->alloc_offset == logical + length) { 2499 /* 2500 * Now, release this block group for further allocations and 2501 * zone finish. 2502 */ 2503 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, 2504 &block_group->runtime_flags); 2505 } 2506 2507 out: 2508 spin_unlock(&block_group->lock); 2509 btrfs_put_block_group(block_group); 2510 } 2511 2512 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info) 2513 { 2514 struct btrfs_block_group *block_group; 2515 struct btrfs_block_group *min_bg = NULL; 2516 u64 min_avail = U64_MAX; 2517 int ret; 2518 2519 spin_lock(&fs_info->zone_active_bgs_lock); 2520 list_for_each_entry(block_group, &fs_info->zone_active_bgs, 2521 active_bg_list) { 2522 u64 avail; 2523 2524 spin_lock(&block_group->lock); 2525 if (block_group->reserved || block_group->alloc_offset == 0 || 2526 (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) || 2527 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) { 2528 spin_unlock(&block_group->lock); 2529 continue; 2530 } 2531 2532 avail = block_group->zone_capacity - block_group->alloc_offset; 2533 if (min_avail > avail) { 2534 if (min_bg) 2535 btrfs_put_block_group(min_bg); 2536 min_bg = block_group; 2537 min_avail = avail; 2538 btrfs_get_block_group(min_bg); 2539 } 2540 spin_unlock(&block_group->lock); 2541 } 2542 spin_unlock(&fs_info->zone_active_bgs_lock); 2543 2544 if (!min_bg) 2545 return 0; 2546 2547 ret = btrfs_zone_finish(min_bg); 2548 btrfs_put_block_group(min_bg); 2549 2550 return ret < 0 ? ret : 1; 2551 } 2552 2553 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info, 2554 struct btrfs_space_info *space_info, 2555 bool do_finish) 2556 { 2557 struct btrfs_block_group *bg; 2558 int index; 2559 2560 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA)) 2561 return 0; 2562 2563 for (;;) { 2564 int ret; 2565 bool need_finish = false; 2566 2567 down_read(&space_info->groups_sem); 2568 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) { 2569 list_for_each_entry(bg, &space_info->block_groups[index], 2570 list) { 2571 if (!spin_trylock(&bg->lock)) 2572 continue; 2573 if (btrfs_zoned_bg_is_full(bg) || 2574 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2575 &bg->runtime_flags)) { 2576 spin_unlock(&bg->lock); 2577 continue; 2578 } 2579 spin_unlock(&bg->lock); 2580 2581 if (btrfs_zone_activate(bg)) { 2582 up_read(&space_info->groups_sem); 2583 return 1; 2584 } 2585 2586 need_finish = true; 2587 } 2588 } 2589 up_read(&space_info->groups_sem); 2590 2591 if (!do_finish || !need_finish) 2592 break; 2593 2594 ret = btrfs_zone_finish_one_bg(fs_info); 2595 if (ret == 0) 2596 break; 2597 if (ret < 0) 2598 return ret; 2599 } 2600 2601 return 0; 2602 } 2603 2604 /* 2605 * Reserve zones for one metadata block group, one tree-log block group, and one 2606 * system block group. 2607 */ 2608 void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info) 2609 { 2610 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2611 struct btrfs_block_group *block_group; 2612 struct btrfs_device *device; 2613 /* Reserve zones for normal SINGLE metadata and tree-log block group. */ 2614 unsigned int metadata_reserve = 2; 2615 /* Reserve a zone for SINGLE system block group. */ 2616 unsigned int system_reserve = 1; 2617 2618 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags)) 2619 return; 2620 2621 /* 2622 * This function is called from the mount context. So, there is no 2623 * parallel process touching the bits. No need for read_seqretry(). 2624 */ 2625 if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP) 2626 metadata_reserve = 4; 2627 if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP) 2628 system_reserve = 2; 2629 2630 /* Apply the reservation on all the devices. */ 2631 mutex_lock(&fs_devices->device_list_mutex); 2632 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2633 if (!device->bdev) 2634 continue; 2635 2636 device->zone_info->reserved_active_zones = 2637 metadata_reserve + system_reserve; 2638 } 2639 mutex_unlock(&fs_devices->device_list_mutex); 2640 2641 /* Release reservation for currently active block groups. */ 2642 spin_lock(&fs_info->zone_active_bgs_lock); 2643 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) { 2644 struct btrfs_chunk_map *map = block_group->physical_map; 2645 2646 if (!(block_group->flags & 2647 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))) 2648 continue; 2649 2650 for (int i = 0; i < map->num_stripes; i++) 2651 map->stripes[i].dev->zone_info->reserved_active_zones--; 2652 } 2653 spin_unlock(&fs_info->zone_active_bgs_lock); 2654 } 2655