1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/blkdev.h> 6 #include <linux/sched/mm.h> 7 #include <linux/atomic.h> 8 #include <linux/vmalloc.h> 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "zoned.h" 12 #include "rcu-string.h" 13 #include "disk-io.h" 14 #include "block-group.h" 15 #include "dev-replace.h" 16 #include "space-info.h" 17 #include "fs.h" 18 #include "accessors.h" 19 #include "bio.h" 20 21 /* Maximum number of zones to report per blkdev_report_zones() call */ 22 #define BTRFS_REPORT_NR_ZONES 4096 23 /* Invalid allocation pointer value for missing devices */ 24 #define WP_MISSING_DEV ((u64)-1) 25 /* Pseudo write pointer value for conventional zone */ 26 #define WP_CONVENTIONAL ((u64)-2) 27 28 /* 29 * Location of the first zone of superblock logging zone pairs. 30 * 31 * - primary superblock: 0B (zone 0) 32 * - first copy: 512G (zone starting at that offset) 33 * - second copy: 4T (zone starting at that offset) 34 */ 35 #define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL) 36 #define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G) 37 #define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G) 38 39 #define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET) 40 #define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET) 41 42 /* Number of superblock log zones */ 43 #define BTRFS_NR_SB_LOG_ZONES 2 44 45 /* 46 * Minimum of active zones we need: 47 * 48 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors 49 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group 50 * - 1 zone for tree-log dedicated block group 51 * - 1 zone for relocation 52 */ 53 #define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5) 54 55 /* 56 * Minimum / maximum supported zone size. Currently, SMR disks have a zone 57 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range. 58 * We do not expect the zone size to become larger than 8GiB or smaller than 59 * 4MiB in the near future. 60 */ 61 #define BTRFS_MAX_ZONE_SIZE SZ_8G 62 #define BTRFS_MIN_ZONE_SIZE SZ_4M 63 64 #define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT) 65 66 static void wait_eb_writebacks(struct btrfs_block_group *block_group); 67 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written); 68 69 static inline bool sb_zone_is_full(const struct blk_zone *zone) 70 { 71 return (zone->cond == BLK_ZONE_COND_FULL) || 72 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity); 73 } 74 75 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data) 76 { 77 struct blk_zone *zones = data; 78 79 memcpy(&zones[idx], zone, sizeof(*zone)); 80 81 return 0; 82 } 83 84 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones, 85 u64 *wp_ret) 86 { 87 bool empty[BTRFS_NR_SB_LOG_ZONES]; 88 bool full[BTRFS_NR_SB_LOG_ZONES]; 89 sector_t sector; 90 int i; 91 92 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 93 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL); 94 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY); 95 full[i] = sb_zone_is_full(&zones[i]); 96 } 97 98 /* 99 * Possible states of log buffer zones 100 * 101 * Empty[0] In use[0] Full[0] 102 * Empty[1] * 0 1 103 * In use[1] x x 1 104 * Full[1] 0 0 C 105 * 106 * Log position: 107 * *: Special case, no superblock is written 108 * 0: Use write pointer of zones[0] 109 * 1: Use write pointer of zones[1] 110 * C: Compare super blocks from zones[0] and zones[1], use the latest 111 * one determined by generation 112 * x: Invalid state 113 */ 114 115 if (empty[0] && empty[1]) { 116 /* Special case to distinguish no superblock to read */ 117 *wp_ret = zones[0].start << SECTOR_SHIFT; 118 return -ENOENT; 119 } else if (full[0] && full[1]) { 120 /* Compare two super blocks */ 121 struct address_space *mapping = bdev->bd_mapping; 122 struct page *page[BTRFS_NR_SB_LOG_ZONES]; 123 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES]; 124 int i; 125 126 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 127 u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT; 128 u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) - 129 BTRFS_SUPER_INFO_SIZE; 130 131 page[i] = read_cache_page_gfp(mapping, 132 bytenr >> PAGE_SHIFT, GFP_NOFS); 133 if (IS_ERR(page[i])) { 134 if (i == 1) 135 btrfs_release_disk_super(super[0]); 136 return PTR_ERR(page[i]); 137 } 138 super[i] = page_address(page[i]); 139 } 140 141 if (btrfs_super_generation(super[0]) > 142 btrfs_super_generation(super[1])) 143 sector = zones[1].start; 144 else 145 sector = zones[0].start; 146 147 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) 148 btrfs_release_disk_super(super[i]); 149 } else if (!full[0] && (empty[1] || full[1])) { 150 sector = zones[0].wp; 151 } else if (full[0]) { 152 sector = zones[1].wp; 153 } else { 154 return -EUCLEAN; 155 } 156 *wp_ret = sector << SECTOR_SHIFT; 157 return 0; 158 } 159 160 /* 161 * Get the first zone number of the superblock mirror 162 */ 163 static inline u32 sb_zone_number(int shift, int mirror) 164 { 165 u64 zone = U64_MAX; 166 167 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX); 168 switch (mirror) { 169 case 0: zone = 0; break; 170 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break; 171 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break; 172 } 173 174 ASSERT(zone <= U32_MAX); 175 176 return (u32)zone; 177 } 178 179 static inline sector_t zone_start_sector(u32 zone_number, 180 struct block_device *bdev) 181 { 182 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev)); 183 } 184 185 static inline u64 zone_start_physical(u32 zone_number, 186 struct btrfs_zoned_device_info *zone_info) 187 { 188 return (u64)zone_number << zone_info->zone_size_shift; 189 } 190 191 /* 192 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block 193 * device into static sized chunks and fake a conventional zone on each of 194 * them. 195 */ 196 static int emulate_report_zones(struct btrfs_device *device, u64 pos, 197 struct blk_zone *zones, unsigned int nr_zones) 198 { 199 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT; 200 sector_t bdev_size = bdev_nr_sectors(device->bdev); 201 unsigned int i; 202 203 pos >>= SECTOR_SHIFT; 204 for (i = 0; i < nr_zones; i++) { 205 zones[i].start = i * zone_sectors + pos; 206 zones[i].len = zone_sectors; 207 zones[i].capacity = zone_sectors; 208 zones[i].wp = zones[i].start + zone_sectors; 209 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL; 210 zones[i].cond = BLK_ZONE_COND_NOT_WP; 211 212 if (zones[i].wp >= bdev_size) { 213 i++; 214 break; 215 } 216 } 217 218 return i; 219 } 220 221 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos, 222 struct blk_zone *zones, unsigned int *nr_zones) 223 { 224 struct btrfs_zoned_device_info *zinfo = device->zone_info; 225 int ret; 226 227 if (!*nr_zones) 228 return 0; 229 230 if (!bdev_is_zoned(device->bdev)) { 231 ret = emulate_report_zones(device, pos, zones, *nr_zones); 232 *nr_zones = ret; 233 return 0; 234 } 235 236 /* Check cache */ 237 if (zinfo->zone_cache) { 238 unsigned int i; 239 u32 zno; 240 241 ASSERT(IS_ALIGNED(pos, zinfo->zone_size)); 242 zno = pos >> zinfo->zone_size_shift; 243 /* 244 * We cannot report zones beyond the zone end. So, it is OK to 245 * cap *nr_zones to at the end. 246 */ 247 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno); 248 249 for (i = 0; i < *nr_zones; i++) { 250 struct blk_zone *zone_info; 251 252 zone_info = &zinfo->zone_cache[zno + i]; 253 if (!zone_info->len) 254 break; 255 } 256 257 if (i == *nr_zones) { 258 /* Cache hit on all the zones */ 259 memcpy(zones, zinfo->zone_cache + zno, 260 sizeof(*zinfo->zone_cache) * *nr_zones); 261 return 0; 262 } 263 } 264 265 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones, 266 copy_zone_info_cb, zones); 267 if (ret < 0) { 268 btrfs_err_in_rcu(device->fs_info, 269 "zoned: failed to read zone %llu on %s (devid %llu)", 270 pos, rcu_str_deref(device->name), 271 device->devid); 272 return ret; 273 } 274 *nr_zones = ret; 275 if (!ret) 276 return -EIO; 277 278 /* Populate cache */ 279 if (zinfo->zone_cache) { 280 u32 zno = pos >> zinfo->zone_size_shift; 281 282 memcpy(zinfo->zone_cache + zno, zones, 283 sizeof(*zinfo->zone_cache) * *nr_zones); 284 } 285 286 return 0; 287 } 288 289 /* The emulated zone size is determined from the size of device extent */ 290 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info) 291 { 292 struct btrfs_path *path; 293 struct btrfs_root *root = fs_info->dev_root; 294 struct btrfs_key key; 295 struct extent_buffer *leaf; 296 struct btrfs_dev_extent *dext; 297 int ret = 0; 298 299 key.objectid = 1; 300 key.type = BTRFS_DEV_EXTENT_KEY; 301 key.offset = 0; 302 303 path = btrfs_alloc_path(); 304 if (!path) 305 return -ENOMEM; 306 307 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 308 if (ret < 0) 309 goto out; 310 311 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 312 ret = btrfs_next_leaf(root, path); 313 if (ret < 0) 314 goto out; 315 /* No dev extents at all? Not good */ 316 if (ret > 0) { 317 ret = -EUCLEAN; 318 goto out; 319 } 320 } 321 322 leaf = path->nodes[0]; 323 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 324 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext); 325 ret = 0; 326 327 out: 328 btrfs_free_path(path); 329 330 return ret; 331 } 332 333 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info) 334 { 335 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 336 struct btrfs_device *device; 337 int ret = 0; 338 339 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */ 340 if (!btrfs_fs_incompat(fs_info, ZONED)) 341 return 0; 342 343 mutex_lock(&fs_devices->device_list_mutex); 344 list_for_each_entry(device, &fs_devices->devices, dev_list) { 345 /* We can skip reading of zone info for missing devices */ 346 if (!device->bdev) 347 continue; 348 349 ret = btrfs_get_dev_zone_info(device, true); 350 if (ret) 351 break; 352 } 353 mutex_unlock(&fs_devices->device_list_mutex); 354 355 return ret; 356 } 357 358 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache) 359 { 360 struct btrfs_fs_info *fs_info = device->fs_info; 361 struct btrfs_zoned_device_info *zone_info = NULL; 362 struct block_device *bdev = device->bdev; 363 unsigned int max_active_zones; 364 unsigned int nactive; 365 sector_t nr_sectors; 366 sector_t sector = 0; 367 struct blk_zone *zones = NULL; 368 unsigned int i, nreported = 0, nr_zones; 369 sector_t zone_sectors; 370 char *model, *emulated; 371 int ret; 372 373 /* 374 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not 375 * yet be set. 376 */ 377 if (!btrfs_fs_incompat(fs_info, ZONED)) 378 return 0; 379 380 if (device->zone_info) 381 return 0; 382 383 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL); 384 if (!zone_info) 385 return -ENOMEM; 386 387 device->zone_info = zone_info; 388 389 if (!bdev_is_zoned(bdev)) { 390 if (!fs_info->zone_size) { 391 ret = calculate_emulated_zone_size(fs_info); 392 if (ret) 393 goto out; 394 } 395 396 ASSERT(fs_info->zone_size); 397 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT; 398 } else { 399 zone_sectors = bdev_zone_sectors(bdev); 400 } 401 402 ASSERT(is_power_of_two_u64(zone_sectors)); 403 zone_info->zone_size = zone_sectors << SECTOR_SHIFT; 404 405 /* We reject devices with a zone size larger than 8GB */ 406 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) { 407 btrfs_err_in_rcu(fs_info, 408 "zoned: %s: zone size %llu larger than supported maximum %llu", 409 rcu_str_deref(device->name), 410 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE); 411 ret = -EINVAL; 412 goto out; 413 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) { 414 btrfs_err_in_rcu(fs_info, 415 "zoned: %s: zone size %llu smaller than supported minimum %u", 416 rcu_str_deref(device->name), 417 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE); 418 ret = -EINVAL; 419 goto out; 420 } 421 422 nr_sectors = bdev_nr_sectors(bdev); 423 zone_info->zone_size_shift = ilog2(zone_info->zone_size); 424 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors); 425 if (!IS_ALIGNED(nr_sectors, zone_sectors)) 426 zone_info->nr_zones++; 427 428 max_active_zones = bdev_max_active_zones(bdev); 429 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) { 430 btrfs_err_in_rcu(fs_info, 431 "zoned: %s: max active zones %u is too small, need at least %u active zones", 432 rcu_str_deref(device->name), max_active_zones, 433 BTRFS_MIN_ACTIVE_ZONES); 434 ret = -EINVAL; 435 goto out; 436 } 437 zone_info->max_active_zones = max_active_zones; 438 439 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 440 if (!zone_info->seq_zones) { 441 ret = -ENOMEM; 442 goto out; 443 } 444 445 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 446 if (!zone_info->empty_zones) { 447 ret = -ENOMEM; 448 goto out; 449 } 450 451 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 452 if (!zone_info->active_zones) { 453 ret = -ENOMEM; 454 goto out; 455 } 456 457 zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL); 458 if (!zones) { 459 ret = -ENOMEM; 460 goto out; 461 } 462 463 /* 464 * Enable zone cache only for a zoned device. On a non-zoned device, we 465 * fill the zone info with emulated CONVENTIONAL zones, so no need to 466 * use the cache. 467 */ 468 if (populate_cache && bdev_is_zoned(device->bdev)) { 469 zone_info->zone_cache = vcalloc(zone_info->nr_zones, 470 sizeof(struct blk_zone)); 471 if (!zone_info->zone_cache) { 472 btrfs_err_in_rcu(device->fs_info, 473 "zoned: failed to allocate zone cache for %s", 474 rcu_str_deref(device->name)); 475 ret = -ENOMEM; 476 goto out; 477 } 478 } 479 480 /* Get zones type */ 481 nactive = 0; 482 while (sector < nr_sectors) { 483 nr_zones = BTRFS_REPORT_NR_ZONES; 484 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones, 485 &nr_zones); 486 if (ret) 487 goto out; 488 489 for (i = 0; i < nr_zones; i++) { 490 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ) 491 __set_bit(nreported, zone_info->seq_zones); 492 switch (zones[i].cond) { 493 case BLK_ZONE_COND_EMPTY: 494 __set_bit(nreported, zone_info->empty_zones); 495 break; 496 case BLK_ZONE_COND_IMP_OPEN: 497 case BLK_ZONE_COND_EXP_OPEN: 498 case BLK_ZONE_COND_CLOSED: 499 __set_bit(nreported, zone_info->active_zones); 500 nactive++; 501 break; 502 } 503 nreported++; 504 } 505 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len; 506 } 507 508 if (nreported != zone_info->nr_zones) { 509 btrfs_err_in_rcu(device->fs_info, 510 "inconsistent number of zones on %s (%u/%u)", 511 rcu_str_deref(device->name), nreported, 512 zone_info->nr_zones); 513 ret = -EIO; 514 goto out; 515 } 516 517 if (max_active_zones) { 518 if (nactive > max_active_zones) { 519 btrfs_err_in_rcu(device->fs_info, 520 "zoned: %u active zones on %s exceeds max_active_zones %u", 521 nactive, rcu_str_deref(device->name), 522 max_active_zones); 523 ret = -EIO; 524 goto out; 525 } 526 atomic_set(&zone_info->active_zones_left, 527 max_active_zones - nactive); 528 set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags); 529 } 530 531 /* Validate superblock log */ 532 nr_zones = BTRFS_NR_SB_LOG_ZONES; 533 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 534 u32 sb_zone; 535 u64 sb_wp; 536 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i; 537 538 sb_zone = sb_zone_number(zone_info->zone_size_shift, i); 539 if (sb_zone + 1 >= zone_info->nr_zones) 540 continue; 541 542 ret = btrfs_get_dev_zones(device, 543 zone_start_physical(sb_zone, zone_info), 544 &zone_info->sb_zones[sb_pos], 545 &nr_zones); 546 if (ret) 547 goto out; 548 549 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) { 550 btrfs_err_in_rcu(device->fs_info, 551 "zoned: failed to read super block log zone info at devid %llu zone %u", 552 device->devid, sb_zone); 553 ret = -EUCLEAN; 554 goto out; 555 } 556 557 /* 558 * If zones[0] is conventional, always use the beginning of the 559 * zone to record superblock. No need to validate in that case. 560 */ 561 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type == 562 BLK_ZONE_TYPE_CONVENTIONAL) 563 continue; 564 565 ret = sb_write_pointer(device->bdev, 566 &zone_info->sb_zones[sb_pos], &sb_wp); 567 if (ret != -ENOENT && ret) { 568 btrfs_err_in_rcu(device->fs_info, 569 "zoned: super block log zone corrupted devid %llu zone %u", 570 device->devid, sb_zone); 571 ret = -EUCLEAN; 572 goto out; 573 } 574 } 575 576 577 kvfree(zones); 578 579 if (bdev_is_zoned(bdev)) { 580 model = "host-managed zoned"; 581 emulated = ""; 582 } else { 583 model = "regular"; 584 emulated = "emulated "; 585 } 586 587 btrfs_info_in_rcu(fs_info, 588 "%s block device %s, %u %szones of %llu bytes", 589 model, rcu_str_deref(device->name), zone_info->nr_zones, 590 emulated, zone_info->zone_size); 591 592 return 0; 593 594 out: 595 kvfree(zones); 596 btrfs_destroy_dev_zone_info(device); 597 return ret; 598 } 599 600 void btrfs_destroy_dev_zone_info(struct btrfs_device *device) 601 { 602 struct btrfs_zoned_device_info *zone_info = device->zone_info; 603 604 if (!zone_info) 605 return; 606 607 bitmap_free(zone_info->active_zones); 608 bitmap_free(zone_info->seq_zones); 609 bitmap_free(zone_info->empty_zones); 610 vfree(zone_info->zone_cache); 611 kfree(zone_info); 612 device->zone_info = NULL; 613 } 614 615 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev) 616 { 617 struct btrfs_zoned_device_info *zone_info; 618 619 zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL); 620 if (!zone_info) 621 return NULL; 622 623 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 624 if (!zone_info->seq_zones) 625 goto out; 626 627 bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones, 628 zone_info->nr_zones); 629 630 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 631 if (!zone_info->empty_zones) 632 goto out; 633 634 bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones, 635 zone_info->nr_zones); 636 637 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 638 if (!zone_info->active_zones) 639 goto out; 640 641 bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones, 642 zone_info->nr_zones); 643 zone_info->zone_cache = NULL; 644 645 return zone_info; 646 647 out: 648 bitmap_free(zone_info->seq_zones); 649 bitmap_free(zone_info->empty_zones); 650 bitmap_free(zone_info->active_zones); 651 kfree(zone_info); 652 return NULL; 653 } 654 655 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, 656 struct blk_zone *zone) 657 { 658 unsigned int nr_zones = 1; 659 int ret; 660 661 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones); 662 if (ret != 0 || !nr_zones) 663 return ret ? ret : -EIO; 664 665 return 0; 666 } 667 668 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info) 669 { 670 struct btrfs_device *device; 671 672 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 673 if (device->bdev && bdev_is_zoned(device->bdev)) { 674 btrfs_err(fs_info, 675 "zoned: mode not enabled but zoned device found: %pg", 676 device->bdev); 677 return -EINVAL; 678 } 679 } 680 681 return 0; 682 } 683 684 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info) 685 { 686 struct queue_limits *lim = &fs_info->limits; 687 struct btrfs_device *device; 688 u64 zone_size = 0; 689 int ret; 690 691 /* 692 * Host-Managed devices can't be used without the ZONED flag. With the 693 * ZONED all devices can be used, using zone emulation if required. 694 */ 695 if (!btrfs_fs_incompat(fs_info, ZONED)) 696 return btrfs_check_for_zoned_device(fs_info); 697 698 blk_set_stacking_limits(lim); 699 700 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 701 struct btrfs_zoned_device_info *zone_info = device->zone_info; 702 703 if (!device->bdev) 704 continue; 705 706 if (!zone_size) { 707 zone_size = zone_info->zone_size; 708 } else if (zone_info->zone_size != zone_size) { 709 btrfs_err(fs_info, 710 "zoned: unequal block device zone sizes: have %llu found %llu", 711 zone_info->zone_size, zone_size); 712 return -EINVAL; 713 } 714 715 /* 716 * With the zoned emulation, we can have non-zoned device on the 717 * zoned mode. In this case, we don't have a valid max zone 718 * append size. 719 */ 720 if (bdev_is_zoned(device->bdev)) { 721 blk_stack_limits(lim, 722 &bdev_get_queue(device->bdev)->limits, 723 0); 724 } 725 } 726 727 /* 728 * stripe_size is always aligned to BTRFS_STRIPE_LEN in 729 * btrfs_create_chunk(). Since we want stripe_len == zone_size, 730 * check the alignment here. 731 */ 732 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) { 733 btrfs_err(fs_info, 734 "zoned: zone size %llu not aligned to stripe %u", 735 zone_size, BTRFS_STRIPE_LEN); 736 return -EINVAL; 737 } 738 739 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 740 btrfs_err(fs_info, "zoned: mixed block groups not supported"); 741 return -EINVAL; 742 } 743 744 fs_info->zone_size = zone_size; 745 /* 746 * Also limit max_zone_append_size by max_segments * PAGE_SIZE. 747 * Technically, we can have multiple pages per segment. But, since 748 * we add the pages one by one to a bio, and cannot increase the 749 * metadata reservation even if it increases the number of extents, it 750 * is safe to stick with the limit. 751 */ 752 fs_info->max_zone_append_size = ALIGN_DOWN( 753 min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT, 754 (u64)lim->max_sectors << SECTOR_SHIFT, 755 (u64)lim->max_segments << PAGE_SHIFT), 756 fs_info->sectorsize); 757 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED; 758 if (fs_info->max_zone_append_size < fs_info->max_extent_size) 759 fs_info->max_extent_size = fs_info->max_zone_append_size; 760 761 /* 762 * Check mount options here, because we might change fs_info->zoned 763 * from fs_info->zone_size. 764 */ 765 ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt); 766 if (ret) 767 return ret; 768 769 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size); 770 return 0; 771 } 772 773 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info, unsigned long *mount_opt) 774 { 775 if (!btrfs_is_zoned(info)) 776 return 0; 777 778 /* 779 * Space cache writing is not COWed. Disable that to avoid write errors 780 * in sequential zones. 781 */ 782 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) { 783 btrfs_err(info, "zoned: space cache v1 is not supported"); 784 return -EINVAL; 785 } 786 787 if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) { 788 btrfs_err(info, "zoned: NODATACOW not supported"); 789 return -EINVAL; 790 } 791 792 if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) { 793 btrfs_info(info, 794 "zoned: async discard ignored and disabled for zoned mode"); 795 btrfs_clear_opt(*mount_opt, DISCARD_ASYNC); 796 } 797 798 return 0; 799 } 800 801 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones, 802 int rw, u64 *bytenr_ret) 803 { 804 u64 wp; 805 int ret; 806 807 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) { 808 *bytenr_ret = zones[0].start << SECTOR_SHIFT; 809 return 0; 810 } 811 812 ret = sb_write_pointer(bdev, zones, &wp); 813 if (ret != -ENOENT && ret < 0) 814 return ret; 815 816 if (rw == WRITE) { 817 struct blk_zone *reset = NULL; 818 819 if (wp == zones[0].start << SECTOR_SHIFT) 820 reset = &zones[0]; 821 else if (wp == zones[1].start << SECTOR_SHIFT) 822 reset = &zones[1]; 823 824 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) { 825 unsigned int nofs_flags; 826 827 ASSERT(sb_zone_is_full(reset)); 828 829 nofs_flags = memalloc_nofs_save(); 830 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 831 reset->start, reset->len); 832 memalloc_nofs_restore(nofs_flags); 833 if (ret) 834 return ret; 835 836 reset->cond = BLK_ZONE_COND_EMPTY; 837 reset->wp = reset->start; 838 } 839 } else if (ret != -ENOENT) { 840 /* 841 * For READ, we want the previous one. Move write pointer to 842 * the end of a zone, if it is at the head of a zone. 843 */ 844 u64 zone_end = 0; 845 846 if (wp == zones[0].start << SECTOR_SHIFT) 847 zone_end = zones[1].start + zones[1].capacity; 848 else if (wp == zones[1].start << SECTOR_SHIFT) 849 zone_end = zones[0].start + zones[0].capacity; 850 if (zone_end) 851 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT, 852 BTRFS_SUPER_INFO_SIZE); 853 854 wp -= BTRFS_SUPER_INFO_SIZE; 855 } 856 857 *bytenr_ret = wp; 858 return 0; 859 860 } 861 862 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw, 863 u64 *bytenr_ret) 864 { 865 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES]; 866 sector_t zone_sectors; 867 u32 sb_zone; 868 int ret; 869 u8 zone_sectors_shift; 870 sector_t nr_sectors; 871 u32 nr_zones; 872 873 if (!bdev_is_zoned(bdev)) { 874 *bytenr_ret = btrfs_sb_offset(mirror); 875 return 0; 876 } 877 878 ASSERT(rw == READ || rw == WRITE); 879 880 zone_sectors = bdev_zone_sectors(bdev); 881 if (!is_power_of_2(zone_sectors)) 882 return -EINVAL; 883 zone_sectors_shift = ilog2(zone_sectors); 884 nr_sectors = bdev_nr_sectors(bdev); 885 nr_zones = nr_sectors >> zone_sectors_shift; 886 887 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 888 if (sb_zone + 1 >= nr_zones) 889 return -ENOENT; 890 891 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev), 892 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb, 893 zones); 894 if (ret < 0) 895 return ret; 896 if (ret != BTRFS_NR_SB_LOG_ZONES) 897 return -EIO; 898 899 return sb_log_location(bdev, zones, rw, bytenr_ret); 900 } 901 902 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw, 903 u64 *bytenr_ret) 904 { 905 struct btrfs_zoned_device_info *zinfo = device->zone_info; 906 u32 zone_num; 907 908 /* 909 * For a zoned filesystem on a non-zoned block device, use the same 910 * super block locations as regular filesystem. Doing so, the super 911 * block can always be retrieved and the zoned flag of the volume 912 * detected from the super block information. 913 */ 914 if (!bdev_is_zoned(device->bdev)) { 915 *bytenr_ret = btrfs_sb_offset(mirror); 916 return 0; 917 } 918 919 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 920 if (zone_num + 1 >= zinfo->nr_zones) 921 return -ENOENT; 922 923 return sb_log_location(device->bdev, 924 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror], 925 rw, bytenr_ret); 926 } 927 928 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo, 929 int mirror) 930 { 931 u32 zone_num; 932 933 if (!zinfo) 934 return false; 935 936 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 937 if (zone_num + 1 >= zinfo->nr_zones) 938 return false; 939 940 if (!test_bit(zone_num, zinfo->seq_zones)) 941 return false; 942 943 return true; 944 } 945 946 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror) 947 { 948 struct btrfs_zoned_device_info *zinfo = device->zone_info; 949 struct blk_zone *zone; 950 int i; 951 952 if (!is_sb_log_zone(zinfo, mirror)) 953 return 0; 954 955 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror]; 956 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 957 /* Advance the next zone */ 958 if (zone->cond == BLK_ZONE_COND_FULL) { 959 zone++; 960 continue; 961 } 962 963 if (zone->cond == BLK_ZONE_COND_EMPTY) 964 zone->cond = BLK_ZONE_COND_IMP_OPEN; 965 966 zone->wp += SUPER_INFO_SECTORS; 967 968 if (sb_zone_is_full(zone)) { 969 /* 970 * No room left to write new superblock. Since 971 * superblock is written with REQ_SYNC, it is safe to 972 * finish the zone now. 973 * 974 * If the write pointer is exactly at the capacity, 975 * explicit ZONE_FINISH is not necessary. 976 */ 977 if (zone->wp != zone->start + zone->capacity) { 978 unsigned int nofs_flags; 979 int ret; 980 981 nofs_flags = memalloc_nofs_save(); 982 ret = blkdev_zone_mgmt(device->bdev, 983 REQ_OP_ZONE_FINISH, zone->start, 984 zone->len); 985 memalloc_nofs_restore(nofs_flags); 986 if (ret) 987 return ret; 988 } 989 990 zone->wp = zone->start + zone->len; 991 zone->cond = BLK_ZONE_COND_FULL; 992 } 993 return 0; 994 } 995 996 /* All the zones are FULL. Should not reach here. */ 997 ASSERT(0); 998 return -EIO; 999 } 1000 1001 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror) 1002 { 1003 unsigned int nofs_flags; 1004 sector_t zone_sectors; 1005 sector_t nr_sectors; 1006 u8 zone_sectors_shift; 1007 u32 sb_zone; 1008 u32 nr_zones; 1009 int ret; 1010 1011 zone_sectors = bdev_zone_sectors(bdev); 1012 zone_sectors_shift = ilog2(zone_sectors); 1013 nr_sectors = bdev_nr_sectors(bdev); 1014 nr_zones = nr_sectors >> zone_sectors_shift; 1015 1016 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 1017 if (sb_zone + 1 >= nr_zones) 1018 return -ENOENT; 1019 1020 nofs_flags = memalloc_nofs_save(); 1021 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1022 zone_start_sector(sb_zone, bdev), 1023 zone_sectors * BTRFS_NR_SB_LOG_ZONES); 1024 memalloc_nofs_restore(nofs_flags); 1025 return ret; 1026 } 1027 1028 /* 1029 * Find allocatable zones within a given region. 1030 * 1031 * @device: the device to allocate a region on 1032 * @hole_start: the position of the hole to allocate the region 1033 * @num_bytes: size of wanted region 1034 * @hole_end: the end of the hole 1035 * @return: position of allocatable zones 1036 * 1037 * Allocatable region should not contain any superblock locations. 1038 */ 1039 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start, 1040 u64 hole_end, u64 num_bytes) 1041 { 1042 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1043 const u8 shift = zinfo->zone_size_shift; 1044 u64 nzones = num_bytes >> shift; 1045 u64 pos = hole_start; 1046 u64 begin, end; 1047 bool have_sb; 1048 int i; 1049 1050 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size)); 1051 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size)); 1052 1053 while (pos < hole_end) { 1054 begin = pos >> shift; 1055 end = begin + nzones; 1056 1057 if (end > zinfo->nr_zones) 1058 return hole_end; 1059 1060 /* Check if zones in the region are all empty */ 1061 if (btrfs_dev_is_sequential(device, pos) && 1062 !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) { 1063 pos += zinfo->zone_size; 1064 continue; 1065 } 1066 1067 have_sb = false; 1068 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1069 u32 sb_zone; 1070 u64 sb_pos; 1071 1072 sb_zone = sb_zone_number(shift, i); 1073 if (!(end <= sb_zone || 1074 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) { 1075 have_sb = true; 1076 pos = zone_start_physical( 1077 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo); 1078 break; 1079 } 1080 1081 /* We also need to exclude regular superblock positions */ 1082 sb_pos = btrfs_sb_offset(i); 1083 if (!(pos + num_bytes <= sb_pos || 1084 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) { 1085 have_sb = true; 1086 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE, 1087 zinfo->zone_size); 1088 break; 1089 } 1090 } 1091 if (!have_sb) 1092 break; 1093 } 1094 1095 return pos; 1096 } 1097 1098 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos) 1099 { 1100 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1101 unsigned int zno = (pos >> zone_info->zone_size_shift); 1102 1103 /* We can use any number of zones */ 1104 if (zone_info->max_active_zones == 0) 1105 return true; 1106 1107 if (!test_bit(zno, zone_info->active_zones)) { 1108 /* Active zone left? */ 1109 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0) 1110 return false; 1111 if (test_and_set_bit(zno, zone_info->active_zones)) { 1112 /* Someone already set the bit */ 1113 atomic_inc(&zone_info->active_zones_left); 1114 } 1115 } 1116 1117 return true; 1118 } 1119 1120 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos) 1121 { 1122 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1123 unsigned int zno = (pos >> zone_info->zone_size_shift); 1124 1125 /* We can use any number of zones */ 1126 if (zone_info->max_active_zones == 0) 1127 return; 1128 1129 if (test_and_clear_bit(zno, zone_info->active_zones)) 1130 atomic_inc(&zone_info->active_zones_left); 1131 } 1132 1133 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical, 1134 u64 length, u64 *bytes) 1135 { 1136 unsigned int nofs_flags; 1137 int ret; 1138 1139 *bytes = 0; 1140 nofs_flags = memalloc_nofs_save(); 1141 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET, 1142 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT); 1143 memalloc_nofs_restore(nofs_flags); 1144 if (ret) 1145 return ret; 1146 1147 *bytes = length; 1148 while (length) { 1149 btrfs_dev_set_zone_empty(device, physical); 1150 btrfs_dev_clear_active_zone(device, physical); 1151 physical += device->zone_info->zone_size; 1152 length -= device->zone_info->zone_size; 1153 } 1154 1155 return 0; 1156 } 1157 1158 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size) 1159 { 1160 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1161 const u8 shift = zinfo->zone_size_shift; 1162 unsigned long begin = start >> shift; 1163 unsigned long nbits = size >> shift; 1164 u64 pos; 1165 int ret; 1166 1167 ASSERT(IS_ALIGNED(start, zinfo->zone_size)); 1168 ASSERT(IS_ALIGNED(size, zinfo->zone_size)); 1169 1170 if (begin + nbits > zinfo->nr_zones) 1171 return -ERANGE; 1172 1173 /* All the zones are conventional */ 1174 if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits)) 1175 return 0; 1176 1177 /* All the zones are sequential and empty */ 1178 if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) && 1179 bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits)) 1180 return 0; 1181 1182 for (pos = start; pos < start + size; pos += zinfo->zone_size) { 1183 u64 reset_bytes; 1184 1185 if (!btrfs_dev_is_sequential(device, pos) || 1186 btrfs_dev_is_empty_zone(device, pos)) 1187 continue; 1188 1189 /* Free regions should be empty */ 1190 btrfs_warn_in_rcu( 1191 device->fs_info, 1192 "zoned: resetting device %s (devid %llu) zone %llu for allocation", 1193 rcu_str_deref(device->name), device->devid, pos >> shift); 1194 WARN_ON_ONCE(1); 1195 1196 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size, 1197 &reset_bytes); 1198 if (ret) 1199 return ret; 1200 } 1201 1202 return 0; 1203 } 1204 1205 /* 1206 * Calculate an allocation pointer from the extent allocation information 1207 * for a block group consist of conventional zones. It is pointed to the 1208 * end of the highest addressed extent in the block group as an allocation 1209 * offset. 1210 */ 1211 static int calculate_alloc_pointer(struct btrfs_block_group *cache, 1212 u64 *offset_ret, bool new) 1213 { 1214 struct btrfs_fs_info *fs_info = cache->fs_info; 1215 struct btrfs_root *root; 1216 struct btrfs_path *path; 1217 struct btrfs_key key; 1218 struct btrfs_key found_key; 1219 int ret; 1220 u64 length; 1221 1222 /* 1223 * Avoid tree lookups for a new block group, there's no use for it. 1224 * It must always be 0. 1225 * 1226 * Also, we have a lock chain of extent buffer lock -> chunk mutex. 1227 * For new a block group, this function is called from 1228 * btrfs_make_block_group() which is already taking the chunk mutex. 1229 * Thus, we cannot call calculate_alloc_pointer() which takes extent 1230 * buffer locks to avoid deadlock. 1231 */ 1232 if (new) { 1233 *offset_ret = 0; 1234 return 0; 1235 } 1236 1237 path = btrfs_alloc_path(); 1238 if (!path) 1239 return -ENOMEM; 1240 1241 key.objectid = cache->start + cache->length; 1242 key.type = 0; 1243 key.offset = 0; 1244 1245 root = btrfs_extent_root(fs_info, key.objectid); 1246 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1247 /* We should not find the exact match */ 1248 if (!ret) 1249 ret = -EUCLEAN; 1250 if (ret < 0) 1251 goto out; 1252 1253 ret = btrfs_previous_extent_item(root, path, cache->start); 1254 if (ret) { 1255 if (ret == 1) { 1256 ret = 0; 1257 *offset_ret = 0; 1258 } 1259 goto out; 1260 } 1261 1262 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 1263 1264 if (found_key.type == BTRFS_EXTENT_ITEM_KEY) 1265 length = found_key.offset; 1266 else 1267 length = fs_info->nodesize; 1268 1269 if (!(found_key.objectid >= cache->start && 1270 found_key.objectid + length <= cache->start + cache->length)) { 1271 ret = -EUCLEAN; 1272 goto out; 1273 } 1274 *offset_ret = found_key.objectid + length - cache->start; 1275 ret = 0; 1276 1277 out: 1278 btrfs_free_path(path); 1279 return ret; 1280 } 1281 1282 struct zone_info { 1283 u64 physical; 1284 u64 capacity; 1285 u64 alloc_offset; 1286 }; 1287 1288 static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx, 1289 struct zone_info *info, unsigned long *active, 1290 struct btrfs_chunk_map *map) 1291 { 1292 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1293 struct btrfs_device *device; 1294 int dev_replace_is_ongoing = 0; 1295 unsigned int nofs_flag; 1296 struct blk_zone zone; 1297 int ret; 1298 1299 info->physical = map->stripes[zone_idx].physical; 1300 1301 down_read(&dev_replace->rwsem); 1302 device = map->stripes[zone_idx].dev; 1303 1304 if (!device->bdev) { 1305 up_read(&dev_replace->rwsem); 1306 info->alloc_offset = WP_MISSING_DEV; 1307 return 0; 1308 } 1309 1310 /* Consider a zone as active if we can allow any number of active zones. */ 1311 if (!device->zone_info->max_active_zones) 1312 __set_bit(zone_idx, active); 1313 1314 if (!btrfs_dev_is_sequential(device, info->physical)) { 1315 up_read(&dev_replace->rwsem); 1316 info->alloc_offset = WP_CONVENTIONAL; 1317 return 0; 1318 } 1319 1320 /* This zone will be used for allocation, so mark this zone non-empty. */ 1321 btrfs_dev_clear_zone_empty(device, info->physical); 1322 1323 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 1324 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 1325 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical); 1326 1327 /* 1328 * The group is mapped to a sequential zone. Get the zone write pointer 1329 * to determine the allocation offset within the zone. 1330 */ 1331 WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size)); 1332 nofs_flag = memalloc_nofs_save(); 1333 ret = btrfs_get_dev_zone(device, info->physical, &zone); 1334 memalloc_nofs_restore(nofs_flag); 1335 if (ret) { 1336 up_read(&dev_replace->rwsem); 1337 if (ret != -EIO && ret != -EOPNOTSUPP) 1338 return ret; 1339 info->alloc_offset = WP_MISSING_DEV; 1340 return 0; 1341 } 1342 1343 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) { 1344 btrfs_err_in_rcu(fs_info, 1345 "zoned: unexpected conventional zone %llu on device %s (devid %llu)", 1346 zone.start << SECTOR_SHIFT, rcu_str_deref(device->name), 1347 device->devid); 1348 up_read(&dev_replace->rwsem); 1349 return -EIO; 1350 } 1351 1352 info->capacity = (zone.capacity << SECTOR_SHIFT); 1353 1354 switch (zone.cond) { 1355 case BLK_ZONE_COND_OFFLINE: 1356 case BLK_ZONE_COND_READONLY: 1357 btrfs_err(fs_info, 1358 "zoned: offline/readonly zone %llu on device %s (devid %llu)", 1359 (info->physical >> device->zone_info->zone_size_shift), 1360 rcu_str_deref(device->name), device->devid); 1361 info->alloc_offset = WP_MISSING_DEV; 1362 break; 1363 case BLK_ZONE_COND_EMPTY: 1364 info->alloc_offset = 0; 1365 break; 1366 case BLK_ZONE_COND_FULL: 1367 info->alloc_offset = info->capacity; 1368 break; 1369 default: 1370 /* Partially used zone. */ 1371 info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT); 1372 __set_bit(zone_idx, active); 1373 break; 1374 } 1375 1376 up_read(&dev_replace->rwsem); 1377 1378 return 0; 1379 } 1380 1381 static int btrfs_load_block_group_single(struct btrfs_block_group *bg, 1382 struct zone_info *info, 1383 unsigned long *active) 1384 { 1385 if (info->alloc_offset == WP_MISSING_DEV) { 1386 btrfs_err(bg->fs_info, 1387 "zoned: cannot recover write pointer for zone %llu", 1388 info->physical); 1389 return -EIO; 1390 } 1391 1392 bg->alloc_offset = info->alloc_offset; 1393 bg->zone_capacity = info->capacity; 1394 if (test_bit(0, active)) 1395 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1396 return 0; 1397 } 1398 1399 static int btrfs_load_block_group_dup(struct btrfs_block_group *bg, 1400 struct btrfs_chunk_map *map, 1401 struct zone_info *zone_info, 1402 unsigned long *active) 1403 { 1404 struct btrfs_fs_info *fs_info = bg->fs_info; 1405 1406 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1407 btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree"); 1408 return -EINVAL; 1409 } 1410 1411 if (zone_info[0].alloc_offset == WP_MISSING_DEV) { 1412 btrfs_err(bg->fs_info, 1413 "zoned: cannot recover write pointer for zone %llu", 1414 zone_info[0].physical); 1415 return -EIO; 1416 } 1417 if (zone_info[1].alloc_offset == WP_MISSING_DEV) { 1418 btrfs_err(bg->fs_info, 1419 "zoned: cannot recover write pointer for zone %llu", 1420 zone_info[1].physical); 1421 return -EIO; 1422 } 1423 if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) { 1424 btrfs_err(bg->fs_info, 1425 "zoned: write pointer offset mismatch of zones in DUP profile"); 1426 return -EIO; 1427 } 1428 1429 if (test_bit(0, active) != test_bit(1, active)) { 1430 if (!btrfs_zone_activate(bg)) 1431 return -EIO; 1432 } else if (test_bit(0, active)) { 1433 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1434 } 1435 1436 bg->alloc_offset = zone_info[0].alloc_offset; 1437 bg->zone_capacity = min(zone_info[0].capacity, zone_info[1].capacity); 1438 return 0; 1439 } 1440 1441 static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg, 1442 struct btrfs_chunk_map *map, 1443 struct zone_info *zone_info, 1444 unsigned long *active) 1445 { 1446 struct btrfs_fs_info *fs_info = bg->fs_info; 1447 int i; 1448 1449 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1450 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1451 btrfs_bg_type_to_raid_name(map->type)); 1452 return -EINVAL; 1453 } 1454 1455 for (i = 0; i < map->num_stripes; i++) { 1456 if (zone_info[i].alloc_offset == WP_MISSING_DEV || 1457 zone_info[i].alloc_offset == WP_CONVENTIONAL) 1458 continue; 1459 1460 if ((zone_info[0].alloc_offset != zone_info[i].alloc_offset) && 1461 !btrfs_test_opt(fs_info, DEGRADED)) { 1462 btrfs_err(fs_info, 1463 "zoned: write pointer offset mismatch of zones in %s profile", 1464 btrfs_bg_type_to_raid_name(map->type)); 1465 return -EIO; 1466 } 1467 if (test_bit(0, active) != test_bit(i, active)) { 1468 if (!btrfs_test_opt(fs_info, DEGRADED) && 1469 !btrfs_zone_activate(bg)) { 1470 return -EIO; 1471 } 1472 } else { 1473 if (test_bit(0, active)) 1474 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1475 } 1476 /* In case a device is missing we have a cap of 0, so don't use it. */ 1477 bg->zone_capacity = min_not_zero(zone_info[0].capacity, 1478 zone_info[1].capacity); 1479 } 1480 1481 if (zone_info[0].alloc_offset != WP_MISSING_DEV) 1482 bg->alloc_offset = zone_info[0].alloc_offset; 1483 else 1484 bg->alloc_offset = zone_info[i - 1].alloc_offset; 1485 1486 return 0; 1487 } 1488 1489 static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg, 1490 struct btrfs_chunk_map *map, 1491 struct zone_info *zone_info, 1492 unsigned long *active) 1493 { 1494 struct btrfs_fs_info *fs_info = bg->fs_info; 1495 1496 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1497 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1498 btrfs_bg_type_to_raid_name(map->type)); 1499 return -EINVAL; 1500 } 1501 1502 for (int i = 0; i < map->num_stripes; i++) { 1503 if (zone_info[i].alloc_offset == WP_MISSING_DEV || 1504 zone_info[i].alloc_offset == WP_CONVENTIONAL) 1505 continue; 1506 1507 if (test_bit(0, active) != test_bit(i, active)) { 1508 if (!btrfs_zone_activate(bg)) 1509 return -EIO; 1510 } else { 1511 if (test_bit(0, active)) 1512 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1513 } 1514 bg->zone_capacity += zone_info[i].capacity; 1515 bg->alloc_offset += zone_info[i].alloc_offset; 1516 } 1517 1518 return 0; 1519 } 1520 1521 static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg, 1522 struct btrfs_chunk_map *map, 1523 struct zone_info *zone_info, 1524 unsigned long *active) 1525 { 1526 struct btrfs_fs_info *fs_info = bg->fs_info; 1527 1528 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1529 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1530 btrfs_bg_type_to_raid_name(map->type)); 1531 return -EINVAL; 1532 } 1533 1534 for (int i = 0; i < map->num_stripes; i++) { 1535 if (zone_info[i].alloc_offset == WP_MISSING_DEV || 1536 zone_info[i].alloc_offset == WP_CONVENTIONAL) 1537 continue; 1538 1539 if (test_bit(0, active) != test_bit(i, active)) { 1540 if (!btrfs_zone_activate(bg)) 1541 return -EIO; 1542 } else { 1543 if (test_bit(0, active)) 1544 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1545 } 1546 1547 if ((i % map->sub_stripes) == 0) { 1548 bg->zone_capacity += zone_info[i].capacity; 1549 bg->alloc_offset += zone_info[i].alloc_offset; 1550 } 1551 } 1552 1553 return 0; 1554 } 1555 1556 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new) 1557 { 1558 struct btrfs_fs_info *fs_info = cache->fs_info; 1559 struct btrfs_chunk_map *map; 1560 u64 logical = cache->start; 1561 u64 length = cache->length; 1562 struct zone_info *zone_info = NULL; 1563 int ret; 1564 int i; 1565 unsigned long *active = NULL; 1566 u64 last_alloc = 0; 1567 u32 num_sequential = 0, num_conventional = 0; 1568 1569 if (!btrfs_is_zoned(fs_info)) 1570 return 0; 1571 1572 /* Sanity check */ 1573 if (!IS_ALIGNED(length, fs_info->zone_size)) { 1574 btrfs_err(fs_info, 1575 "zoned: block group %llu len %llu unaligned to zone size %llu", 1576 logical, length, fs_info->zone_size); 1577 return -EIO; 1578 } 1579 1580 map = btrfs_find_chunk_map(fs_info, logical, length); 1581 if (!map) 1582 return -EINVAL; 1583 1584 cache->physical_map = map; 1585 1586 zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS); 1587 if (!zone_info) { 1588 ret = -ENOMEM; 1589 goto out; 1590 } 1591 1592 active = bitmap_zalloc(map->num_stripes, GFP_NOFS); 1593 if (!active) { 1594 ret = -ENOMEM; 1595 goto out; 1596 } 1597 1598 for (i = 0; i < map->num_stripes; i++) { 1599 ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map); 1600 if (ret) 1601 goto out; 1602 1603 if (zone_info[i].alloc_offset == WP_CONVENTIONAL) 1604 num_conventional++; 1605 else 1606 num_sequential++; 1607 } 1608 1609 if (num_sequential > 0) 1610 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); 1611 1612 if (num_conventional > 0) { 1613 /* Zone capacity is always zone size in emulation */ 1614 cache->zone_capacity = cache->length; 1615 ret = calculate_alloc_pointer(cache, &last_alloc, new); 1616 if (ret) { 1617 btrfs_err(fs_info, 1618 "zoned: failed to determine allocation offset of bg %llu", 1619 cache->start); 1620 goto out; 1621 } else if (map->num_stripes == num_conventional) { 1622 cache->alloc_offset = last_alloc; 1623 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags); 1624 goto out; 1625 } 1626 } 1627 1628 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 1629 case 0: /* single */ 1630 ret = btrfs_load_block_group_single(cache, &zone_info[0], active); 1631 break; 1632 case BTRFS_BLOCK_GROUP_DUP: 1633 ret = btrfs_load_block_group_dup(cache, map, zone_info, active); 1634 break; 1635 case BTRFS_BLOCK_GROUP_RAID1: 1636 case BTRFS_BLOCK_GROUP_RAID1C3: 1637 case BTRFS_BLOCK_GROUP_RAID1C4: 1638 ret = btrfs_load_block_group_raid1(cache, map, zone_info, active); 1639 break; 1640 case BTRFS_BLOCK_GROUP_RAID0: 1641 ret = btrfs_load_block_group_raid0(cache, map, zone_info, active); 1642 break; 1643 case BTRFS_BLOCK_GROUP_RAID10: 1644 ret = btrfs_load_block_group_raid10(cache, map, zone_info, active); 1645 break; 1646 case BTRFS_BLOCK_GROUP_RAID5: 1647 case BTRFS_BLOCK_GROUP_RAID6: 1648 default: 1649 btrfs_err(fs_info, "zoned: profile %s not yet supported", 1650 btrfs_bg_type_to_raid_name(map->type)); 1651 ret = -EINVAL; 1652 goto out; 1653 } 1654 1655 out: 1656 /* Reject non SINGLE data profiles without RST */ 1657 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && 1658 (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) && 1659 !fs_info->stripe_root) { 1660 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1661 btrfs_bg_type_to_raid_name(map->type)); 1662 return -EINVAL; 1663 } 1664 1665 if (cache->alloc_offset > cache->zone_capacity) { 1666 btrfs_err(fs_info, 1667 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu", 1668 cache->alloc_offset, cache->zone_capacity, 1669 cache->start); 1670 ret = -EIO; 1671 } 1672 1673 /* An extent is allocated after the write pointer */ 1674 if (!ret && num_conventional && last_alloc > cache->alloc_offset) { 1675 btrfs_err(fs_info, 1676 "zoned: got wrong write pointer in BG %llu: %llu > %llu", 1677 logical, last_alloc, cache->alloc_offset); 1678 ret = -EIO; 1679 } 1680 1681 if (!ret) { 1682 cache->meta_write_pointer = cache->alloc_offset + cache->start; 1683 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) { 1684 btrfs_get_block_group(cache); 1685 spin_lock(&fs_info->zone_active_bgs_lock); 1686 list_add_tail(&cache->active_bg_list, 1687 &fs_info->zone_active_bgs); 1688 spin_unlock(&fs_info->zone_active_bgs_lock); 1689 } 1690 } else { 1691 btrfs_free_chunk_map(cache->physical_map); 1692 cache->physical_map = NULL; 1693 } 1694 bitmap_free(active); 1695 kfree(zone_info); 1696 1697 return ret; 1698 } 1699 1700 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache) 1701 { 1702 u64 unusable, free; 1703 1704 if (!btrfs_is_zoned(cache->fs_info)) 1705 return; 1706 1707 WARN_ON(cache->bytes_super != 0); 1708 unusable = (cache->alloc_offset - cache->used) + 1709 (cache->length - cache->zone_capacity); 1710 free = cache->zone_capacity - cache->alloc_offset; 1711 1712 /* We only need ->free_space in ALLOC_SEQ block groups */ 1713 cache->cached = BTRFS_CACHE_FINISHED; 1714 cache->free_space_ctl->free_space = free; 1715 cache->zone_unusable = unusable; 1716 } 1717 1718 bool btrfs_use_zone_append(struct btrfs_bio *bbio) 1719 { 1720 u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT); 1721 struct btrfs_inode *inode = bbio->inode; 1722 struct btrfs_fs_info *fs_info = bbio->fs_info; 1723 struct btrfs_block_group *cache; 1724 bool ret = false; 1725 1726 if (!btrfs_is_zoned(fs_info)) 1727 return false; 1728 1729 if (!inode || !is_data_inode(&inode->vfs_inode)) 1730 return false; 1731 1732 if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE) 1733 return false; 1734 1735 /* 1736 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the 1737 * extent layout the relocation code has. 1738 * Furthermore we have set aside own block-group from which only the 1739 * relocation "process" can allocate and make sure only one process at a 1740 * time can add pages to an extent that gets relocated, so it's safe to 1741 * use regular REQ_OP_WRITE for this special case. 1742 */ 1743 if (btrfs_is_data_reloc_root(inode->root)) 1744 return false; 1745 1746 cache = btrfs_lookup_block_group(fs_info, start); 1747 ASSERT(cache); 1748 if (!cache) 1749 return false; 1750 1751 ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); 1752 btrfs_put_block_group(cache); 1753 1754 return ret; 1755 } 1756 1757 void btrfs_record_physical_zoned(struct btrfs_bio *bbio) 1758 { 1759 const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 1760 struct btrfs_ordered_sum *sum = bbio->sums; 1761 1762 if (physical < bbio->orig_physical) 1763 sum->logical -= bbio->orig_physical - physical; 1764 else 1765 sum->logical += physical - bbio->orig_physical; 1766 } 1767 1768 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered, 1769 u64 logical) 1770 { 1771 struct extent_map_tree *em_tree = &BTRFS_I(ordered->inode)->extent_tree; 1772 struct extent_map *em; 1773 1774 ordered->disk_bytenr = logical; 1775 1776 write_lock(&em_tree->lock); 1777 em = search_extent_mapping(em_tree, ordered->file_offset, 1778 ordered->num_bytes); 1779 em->block_start = logical; 1780 free_extent_map(em); 1781 write_unlock(&em_tree->lock); 1782 } 1783 1784 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered, 1785 u64 logical, u64 len) 1786 { 1787 struct btrfs_ordered_extent *new; 1788 1789 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) && 1790 split_extent_map(BTRFS_I(ordered->inode), ordered->file_offset, 1791 ordered->num_bytes, len, logical)) 1792 return false; 1793 1794 new = btrfs_split_ordered_extent(ordered, len); 1795 if (IS_ERR(new)) 1796 return false; 1797 new->disk_bytenr = logical; 1798 btrfs_finish_one_ordered(new); 1799 return true; 1800 } 1801 1802 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered) 1803 { 1804 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 1805 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1806 struct btrfs_ordered_sum *sum; 1807 u64 logical, len; 1808 1809 /* 1810 * Write to pre-allocated region is for the data relocation, and so 1811 * it should use WRITE operation. No split/rewrite are necessary. 1812 */ 1813 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) 1814 return; 1815 1816 ASSERT(!list_empty(&ordered->list)); 1817 /* The ordered->list can be empty in the above pre-alloc case. */ 1818 sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list); 1819 logical = sum->logical; 1820 len = sum->len; 1821 1822 while (len < ordered->disk_num_bytes) { 1823 sum = list_next_entry(sum, list); 1824 if (sum->logical == logical + len) { 1825 len += sum->len; 1826 continue; 1827 } 1828 if (!btrfs_zoned_split_ordered(ordered, logical, len)) { 1829 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 1830 btrfs_err(fs_info, "failed to split ordered extent"); 1831 goto out; 1832 } 1833 logical = sum->logical; 1834 len = sum->len; 1835 } 1836 1837 if (ordered->disk_bytenr != logical) 1838 btrfs_rewrite_logical_zoned(ordered, logical); 1839 1840 out: 1841 /* 1842 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures 1843 * were allocated by btrfs_alloc_dummy_sum only to record the logical 1844 * addresses and don't contain actual checksums. We thus must free them 1845 * here so that we don't attempt to log the csums later. 1846 */ 1847 if ((inode->flags & BTRFS_INODE_NODATASUM) || 1848 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) { 1849 while ((sum = list_first_entry_or_null(&ordered->list, 1850 typeof(*sum), list))) { 1851 list_del(&sum->list); 1852 kfree(sum); 1853 } 1854 } 1855 } 1856 1857 static bool check_bg_is_active(struct btrfs_eb_write_context *ctx, 1858 struct btrfs_block_group **active_bg) 1859 { 1860 const struct writeback_control *wbc = ctx->wbc; 1861 struct btrfs_block_group *block_group = ctx->zoned_bg; 1862 struct btrfs_fs_info *fs_info = block_group->fs_info; 1863 1864 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) 1865 return true; 1866 1867 if (fs_info->treelog_bg == block_group->start) { 1868 if (!btrfs_zone_activate(block_group)) { 1869 int ret_fin = btrfs_zone_finish_one_bg(fs_info); 1870 1871 if (ret_fin != 1 || !btrfs_zone_activate(block_group)) 1872 return false; 1873 } 1874 } else if (*active_bg != block_group) { 1875 struct btrfs_block_group *tgt = *active_bg; 1876 1877 /* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */ 1878 lockdep_assert_held(&fs_info->zoned_meta_io_lock); 1879 1880 if (tgt) { 1881 /* 1882 * If there is an unsent IO left in the allocated area, 1883 * we cannot wait for them as it may cause a deadlock. 1884 */ 1885 if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) { 1886 if (wbc->sync_mode == WB_SYNC_NONE || 1887 (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)) 1888 return false; 1889 } 1890 1891 /* Pivot active metadata/system block group. */ 1892 btrfs_zoned_meta_io_unlock(fs_info); 1893 wait_eb_writebacks(tgt); 1894 do_zone_finish(tgt, true); 1895 btrfs_zoned_meta_io_lock(fs_info); 1896 if (*active_bg == tgt) { 1897 btrfs_put_block_group(tgt); 1898 *active_bg = NULL; 1899 } 1900 } 1901 if (!btrfs_zone_activate(block_group)) 1902 return false; 1903 if (*active_bg != block_group) { 1904 ASSERT(*active_bg == NULL); 1905 *active_bg = block_group; 1906 btrfs_get_block_group(block_group); 1907 } 1908 } 1909 1910 return true; 1911 } 1912 1913 /* 1914 * Check if @ctx->eb is aligned to the write pointer. 1915 * 1916 * Return: 1917 * 0: @ctx->eb is at the write pointer. You can write it. 1918 * -EAGAIN: There is a hole. The caller should handle the case. 1919 * -EBUSY: There is a hole, but the caller can just bail out. 1920 */ 1921 int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info, 1922 struct btrfs_eb_write_context *ctx) 1923 { 1924 const struct writeback_control *wbc = ctx->wbc; 1925 const struct extent_buffer *eb = ctx->eb; 1926 struct btrfs_block_group *block_group = ctx->zoned_bg; 1927 1928 if (!btrfs_is_zoned(fs_info)) 1929 return 0; 1930 1931 if (block_group) { 1932 if (block_group->start > eb->start || 1933 block_group->start + block_group->length <= eb->start) { 1934 btrfs_put_block_group(block_group); 1935 block_group = NULL; 1936 ctx->zoned_bg = NULL; 1937 } 1938 } 1939 1940 if (!block_group) { 1941 block_group = btrfs_lookup_block_group(fs_info, eb->start); 1942 if (!block_group) 1943 return 0; 1944 ctx->zoned_bg = block_group; 1945 } 1946 1947 if (block_group->meta_write_pointer == eb->start) { 1948 struct btrfs_block_group **tgt; 1949 1950 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags)) 1951 return 0; 1952 1953 if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) 1954 tgt = &fs_info->active_system_bg; 1955 else 1956 tgt = &fs_info->active_meta_bg; 1957 if (check_bg_is_active(ctx, tgt)) 1958 return 0; 1959 } 1960 1961 /* 1962 * Since we may release fs_info->zoned_meta_io_lock, someone can already 1963 * start writing this eb. In that case, we can just bail out. 1964 */ 1965 if (block_group->meta_write_pointer > eb->start) 1966 return -EBUSY; 1967 1968 /* If for_sync, this hole will be filled with trasnsaction commit. */ 1969 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 1970 return -EAGAIN; 1971 return -EBUSY; 1972 } 1973 1974 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length) 1975 { 1976 if (!btrfs_dev_is_sequential(device, physical)) 1977 return -EOPNOTSUPP; 1978 1979 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT, 1980 length >> SECTOR_SHIFT, GFP_NOFS, 0); 1981 } 1982 1983 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical, 1984 struct blk_zone *zone) 1985 { 1986 struct btrfs_io_context *bioc = NULL; 1987 u64 mapped_length = PAGE_SIZE; 1988 unsigned int nofs_flag; 1989 int nmirrors; 1990 int i, ret; 1991 1992 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 1993 &mapped_length, &bioc, NULL, NULL); 1994 if (ret || !bioc || mapped_length < PAGE_SIZE) { 1995 ret = -EIO; 1996 goto out_put_bioc; 1997 } 1998 1999 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 2000 ret = -EINVAL; 2001 goto out_put_bioc; 2002 } 2003 2004 nofs_flag = memalloc_nofs_save(); 2005 nmirrors = (int)bioc->num_stripes; 2006 for (i = 0; i < nmirrors; i++) { 2007 u64 physical = bioc->stripes[i].physical; 2008 struct btrfs_device *dev = bioc->stripes[i].dev; 2009 2010 /* Missing device */ 2011 if (!dev->bdev) 2012 continue; 2013 2014 ret = btrfs_get_dev_zone(dev, physical, zone); 2015 /* Failing device */ 2016 if (ret == -EIO || ret == -EOPNOTSUPP) 2017 continue; 2018 break; 2019 } 2020 memalloc_nofs_restore(nofs_flag); 2021 out_put_bioc: 2022 btrfs_put_bioc(bioc); 2023 return ret; 2024 } 2025 2026 /* 2027 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by 2028 * filling zeros between @physical_pos to a write pointer of dev-replace 2029 * source device. 2030 */ 2031 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical, 2032 u64 physical_start, u64 physical_pos) 2033 { 2034 struct btrfs_fs_info *fs_info = tgt_dev->fs_info; 2035 struct blk_zone zone; 2036 u64 length; 2037 u64 wp; 2038 int ret; 2039 2040 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos)) 2041 return 0; 2042 2043 ret = read_zone_info(fs_info, logical, &zone); 2044 if (ret) 2045 return ret; 2046 2047 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT); 2048 2049 if (physical_pos == wp) 2050 return 0; 2051 2052 if (physical_pos > wp) 2053 return -EUCLEAN; 2054 2055 length = wp - physical_pos; 2056 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length); 2057 } 2058 2059 /* 2060 * Activate block group and underlying device zones 2061 * 2062 * @block_group: the block group to activate 2063 * 2064 * Return: true on success, false otherwise 2065 */ 2066 bool btrfs_zone_activate(struct btrfs_block_group *block_group) 2067 { 2068 struct btrfs_fs_info *fs_info = block_group->fs_info; 2069 struct btrfs_chunk_map *map; 2070 struct btrfs_device *device; 2071 u64 physical; 2072 const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA); 2073 bool ret; 2074 int i; 2075 2076 if (!btrfs_is_zoned(block_group->fs_info)) 2077 return true; 2078 2079 map = block_group->physical_map; 2080 2081 spin_lock(&fs_info->zone_active_bgs_lock); 2082 spin_lock(&block_group->lock); 2083 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 2084 ret = true; 2085 goto out_unlock; 2086 } 2087 2088 /* No space left */ 2089 if (btrfs_zoned_bg_is_full(block_group)) { 2090 ret = false; 2091 goto out_unlock; 2092 } 2093 2094 for (i = 0; i < map->num_stripes; i++) { 2095 struct btrfs_zoned_device_info *zinfo; 2096 int reserved = 0; 2097 2098 device = map->stripes[i].dev; 2099 physical = map->stripes[i].physical; 2100 zinfo = device->zone_info; 2101 2102 if (zinfo->max_active_zones == 0) 2103 continue; 2104 2105 if (is_data) 2106 reserved = zinfo->reserved_active_zones; 2107 /* 2108 * For the data block group, leave active zones for one 2109 * metadata block group and one system block group. 2110 */ 2111 if (atomic_read(&zinfo->active_zones_left) <= reserved) { 2112 ret = false; 2113 goto out_unlock; 2114 } 2115 2116 if (!btrfs_dev_set_active_zone(device, physical)) { 2117 /* Cannot activate the zone */ 2118 ret = false; 2119 goto out_unlock; 2120 } 2121 if (!is_data) 2122 zinfo->reserved_active_zones--; 2123 } 2124 2125 /* Successfully activated all the zones */ 2126 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 2127 spin_unlock(&block_group->lock); 2128 2129 /* For the active block group list */ 2130 btrfs_get_block_group(block_group); 2131 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs); 2132 spin_unlock(&fs_info->zone_active_bgs_lock); 2133 2134 return true; 2135 2136 out_unlock: 2137 spin_unlock(&block_group->lock); 2138 spin_unlock(&fs_info->zone_active_bgs_lock); 2139 return ret; 2140 } 2141 2142 static void wait_eb_writebacks(struct btrfs_block_group *block_group) 2143 { 2144 struct btrfs_fs_info *fs_info = block_group->fs_info; 2145 const u64 end = block_group->start + block_group->length; 2146 struct radix_tree_iter iter; 2147 struct extent_buffer *eb; 2148 void __rcu **slot; 2149 2150 rcu_read_lock(); 2151 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter, 2152 block_group->start >> fs_info->sectorsize_bits) { 2153 eb = radix_tree_deref_slot(slot); 2154 if (!eb) 2155 continue; 2156 if (radix_tree_deref_retry(eb)) { 2157 slot = radix_tree_iter_retry(&iter); 2158 continue; 2159 } 2160 2161 if (eb->start < block_group->start) 2162 continue; 2163 if (eb->start >= end) 2164 break; 2165 2166 slot = radix_tree_iter_resume(slot, &iter); 2167 rcu_read_unlock(); 2168 wait_on_extent_buffer_writeback(eb); 2169 rcu_read_lock(); 2170 } 2171 rcu_read_unlock(); 2172 } 2173 2174 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written) 2175 { 2176 struct btrfs_fs_info *fs_info = block_group->fs_info; 2177 struct btrfs_chunk_map *map; 2178 const bool is_metadata = (block_group->flags & 2179 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)); 2180 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 2181 int ret = 0; 2182 int i; 2183 2184 spin_lock(&block_group->lock); 2185 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 2186 spin_unlock(&block_group->lock); 2187 return 0; 2188 } 2189 2190 /* Check if we have unwritten allocated space */ 2191 if (is_metadata && 2192 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) { 2193 spin_unlock(&block_group->lock); 2194 return -EAGAIN; 2195 } 2196 2197 /* 2198 * If we are sure that the block group is full (= no more room left for 2199 * new allocation) and the IO for the last usable block is completed, we 2200 * don't need to wait for the other IOs. This holds because we ensure 2201 * the sequential IO submissions using the ZONE_APPEND command for data 2202 * and block_group->meta_write_pointer for metadata. 2203 */ 2204 if (!fully_written) { 2205 if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) { 2206 spin_unlock(&block_group->lock); 2207 return -EAGAIN; 2208 } 2209 spin_unlock(&block_group->lock); 2210 2211 ret = btrfs_inc_block_group_ro(block_group, false); 2212 if (ret) 2213 return ret; 2214 2215 /* Ensure all writes in this block group finish */ 2216 btrfs_wait_block_group_reservations(block_group); 2217 /* No need to wait for NOCOW writers. Zoned mode does not allow that */ 2218 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start, 2219 block_group->length); 2220 /* Wait for extent buffers to be written. */ 2221 if (is_metadata) 2222 wait_eb_writebacks(block_group); 2223 2224 spin_lock(&block_group->lock); 2225 2226 /* 2227 * Bail out if someone already deactivated the block group, or 2228 * allocated space is left in the block group. 2229 */ 2230 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2231 &block_group->runtime_flags)) { 2232 spin_unlock(&block_group->lock); 2233 btrfs_dec_block_group_ro(block_group); 2234 return 0; 2235 } 2236 2237 if (block_group->reserved || 2238 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, 2239 &block_group->runtime_flags)) { 2240 spin_unlock(&block_group->lock); 2241 btrfs_dec_block_group_ro(block_group); 2242 return -EAGAIN; 2243 } 2244 } 2245 2246 clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 2247 block_group->alloc_offset = block_group->zone_capacity; 2248 if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)) 2249 block_group->meta_write_pointer = block_group->start + 2250 block_group->zone_capacity; 2251 block_group->free_space_ctl->free_space = 0; 2252 btrfs_clear_treelog_bg(block_group); 2253 btrfs_clear_data_reloc_bg(block_group); 2254 spin_unlock(&block_group->lock); 2255 2256 down_read(&dev_replace->rwsem); 2257 map = block_group->physical_map; 2258 for (i = 0; i < map->num_stripes; i++) { 2259 struct btrfs_device *device = map->stripes[i].dev; 2260 const u64 physical = map->stripes[i].physical; 2261 struct btrfs_zoned_device_info *zinfo = device->zone_info; 2262 unsigned int nofs_flags; 2263 2264 if (zinfo->max_active_zones == 0) 2265 continue; 2266 2267 nofs_flags = memalloc_nofs_save(); 2268 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH, 2269 physical >> SECTOR_SHIFT, 2270 zinfo->zone_size >> SECTOR_SHIFT); 2271 memalloc_nofs_restore(nofs_flags); 2272 2273 if (ret) { 2274 up_read(&dev_replace->rwsem); 2275 return ret; 2276 } 2277 2278 if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 2279 zinfo->reserved_active_zones++; 2280 btrfs_dev_clear_active_zone(device, physical); 2281 } 2282 up_read(&dev_replace->rwsem); 2283 2284 if (!fully_written) 2285 btrfs_dec_block_group_ro(block_group); 2286 2287 spin_lock(&fs_info->zone_active_bgs_lock); 2288 ASSERT(!list_empty(&block_group->active_bg_list)); 2289 list_del_init(&block_group->active_bg_list); 2290 spin_unlock(&fs_info->zone_active_bgs_lock); 2291 2292 /* For active_bg_list */ 2293 btrfs_put_block_group(block_group); 2294 2295 clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2296 2297 return 0; 2298 } 2299 2300 int btrfs_zone_finish(struct btrfs_block_group *block_group) 2301 { 2302 if (!btrfs_is_zoned(block_group->fs_info)) 2303 return 0; 2304 2305 return do_zone_finish(block_group, false); 2306 } 2307 2308 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags) 2309 { 2310 struct btrfs_fs_info *fs_info = fs_devices->fs_info; 2311 struct btrfs_device *device; 2312 bool ret = false; 2313 2314 if (!btrfs_is_zoned(fs_info)) 2315 return true; 2316 2317 /* Check if there is a device with active zones left */ 2318 mutex_lock(&fs_info->chunk_mutex); 2319 spin_lock(&fs_info->zone_active_bgs_lock); 2320 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 2321 struct btrfs_zoned_device_info *zinfo = device->zone_info; 2322 int reserved = 0; 2323 2324 if (!device->bdev) 2325 continue; 2326 2327 if (!zinfo->max_active_zones) { 2328 ret = true; 2329 break; 2330 } 2331 2332 if (flags & BTRFS_BLOCK_GROUP_DATA) 2333 reserved = zinfo->reserved_active_zones; 2334 2335 switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 2336 case 0: /* single */ 2337 ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved)); 2338 break; 2339 case BTRFS_BLOCK_GROUP_DUP: 2340 ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved)); 2341 break; 2342 } 2343 if (ret) 2344 break; 2345 } 2346 spin_unlock(&fs_info->zone_active_bgs_lock); 2347 mutex_unlock(&fs_info->chunk_mutex); 2348 2349 if (!ret) 2350 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2351 2352 return ret; 2353 } 2354 2355 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length) 2356 { 2357 struct btrfs_block_group *block_group; 2358 u64 min_alloc_bytes; 2359 2360 if (!btrfs_is_zoned(fs_info)) 2361 return; 2362 2363 block_group = btrfs_lookup_block_group(fs_info, logical); 2364 ASSERT(block_group); 2365 2366 /* No MIXED_BG on zoned btrfs. */ 2367 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA) 2368 min_alloc_bytes = fs_info->sectorsize; 2369 else 2370 min_alloc_bytes = fs_info->nodesize; 2371 2372 /* Bail out if we can allocate more data from this block group. */ 2373 if (logical + length + min_alloc_bytes <= 2374 block_group->start + block_group->zone_capacity) 2375 goto out; 2376 2377 do_zone_finish(block_group, true); 2378 2379 out: 2380 btrfs_put_block_group(block_group); 2381 } 2382 2383 static void btrfs_zone_finish_endio_workfn(struct work_struct *work) 2384 { 2385 struct btrfs_block_group *bg = 2386 container_of(work, struct btrfs_block_group, zone_finish_work); 2387 2388 wait_on_extent_buffer_writeback(bg->last_eb); 2389 free_extent_buffer(bg->last_eb); 2390 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length); 2391 btrfs_put_block_group(bg); 2392 } 2393 2394 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg, 2395 struct extent_buffer *eb) 2396 { 2397 if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) || 2398 eb->start + eb->len * 2 <= bg->start + bg->zone_capacity) 2399 return; 2400 2401 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) { 2402 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing", 2403 bg->start); 2404 return; 2405 } 2406 2407 /* For the work */ 2408 btrfs_get_block_group(bg); 2409 atomic_inc(&eb->refs); 2410 bg->last_eb = eb; 2411 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn); 2412 queue_work(system_unbound_wq, &bg->zone_finish_work); 2413 } 2414 2415 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg) 2416 { 2417 struct btrfs_fs_info *fs_info = bg->fs_info; 2418 2419 spin_lock(&fs_info->relocation_bg_lock); 2420 if (fs_info->data_reloc_bg == bg->start) 2421 fs_info->data_reloc_bg = 0; 2422 spin_unlock(&fs_info->relocation_bg_lock); 2423 } 2424 2425 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info) 2426 { 2427 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2428 struct btrfs_device *device; 2429 2430 if (!btrfs_is_zoned(fs_info)) 2431 return; 2432 2433 mutex_lock(&fs_devices->device_list_mutex); 2434 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2435 if (device->zone_info) { 2436 vfree(device->zone_info->zone_cache); 2437 device->zone_info->zone_cache = NULL; 2438 } 2439 } 2440 mutex_unlock(&fs_devices->device_list_mutex); 2441 } 2442 2443 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info) 2444 { 2445 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2446 struct btrfs_device *device; 2447 u64 used = 0; 2448 u64 total = 0; 2449 u64 factor; 2450 2451 ASSERT(btrfs_is_zoned(fs_info)); 2452 2453 if (fs_info->bg_reclaim_threshold == 0) 2454 return false; 2455 2456 mutex_lock(&fs_devices->device_list_mutex); 2457 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2458 if (!device->bdev) 2459 continue; 2460 2461 total += device->disk_total_bytes; 2462 used += device->bytes_used; 2463 } 2464 mutex_unlock(&fs_devices->device_list_mutex); 2465 2466 factor = div64_u64(used * 100, total); 2467 return factor >= fs_info->bg_reclaim_threshold; 2468 } 2469 2470 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical, 2471 u64 length) 2472 { 2473 struct btrfs_block_group *block_group; 2474 2475 if (!btrfs_is_zoned(fs_info)) 2476 return; 2477 2478 block_group = btrfs_lookup_block_group(fs_info, logical); 2479 /* It should be called on a previous data relocation block group. */ 2480 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)); 2481 2482 spin_lock(&block_group->lock); 2483 if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) 2484 goto out; 2485 2486 /* All relocation extents are written. */ 2487 if (block_group->start + block_group->alloc_offset == logical + length) { 2488 /* 2489 * Now, release this block group for further allocations and 2490 * zone finish. 2491 */ 2492 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, 2493 &block_group->runtime_flags); 2494 } 2495 2496 out: 2497 spin_unlock(&block_group->lock); 2498 btrfs_put_block_group(block_group); 2499 } 2500 2501 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info) 2502 { 2503 struct btrfs_block_group *block_group; 2504 struct btrfs_block_group *min_bg = NULL; 2505 u64 min_avail = U64_MAX; 2506 int ret; 2507 2508 spin_lock(&fs_info->zone_active_bgs_lock); 2509 list_for_each_entry(block_group, &fs_info->zone_active_bgs, 2510 active_bg_list) { 2511 u64 avail; 2512 2513 spin_lock(&block_group->lock); 2514 if (block_group->reserved || block_group->alloc_offset == 0 || 2515 (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) || 2516 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) { 2517 spin_unlock(&block_group->lock); 2518 continue; 2519 } 2520 2521 avail = block_group->zone_capacity - block_group->alloc_offset; 2522 if (min_avail > avail) { 2523 if (min_bg) 2524 btrfs_put_block_group(min_bg); 2525 min_bg = block_group; 2526 min_avail = avail; 2527 btrfs_get_block_group(min_bg); 2528 } 2529 spin_unlock(&block_group->lock); 2530 } 2531 spin_unlock(&fs_info->zone_active_bgs_lock); 2532 2533 if (!min_bg) 2534 return 0; 2535 2536 ret = btrfs_zone_finish(min_bg); 2537 btrfs_put_block_group(min_bg); 2538 2539 return ret < 0 ? ret : 1; 2540 } 2541 2542 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info, 2543 struct btrfs_space_info *space_info, 2544 bool do_finish) 2545 { 2546 struct btrfs_block_group *bg; 2547 int index; 2548 2549 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA)) 2550 return 0; 2551 2552 for (;;) { 2553 int ret; 2554 bool need_finish = false; 2555 2556 down_read(&space_info->groups_sem); 2557 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) { 2558 list_for_each_entry(bg, &space_info->block_groups[index], 2559 list) { 2560 if (!spin_trylock(&bg->lock)) 2561 continue; 2562 if (btrfs_zoned_bg_is_full(bg) || 2563 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2564 &bg->runtime_flags)) { 2565 spin_unlock(&bg->lock); 2566 continue; 2567 } 2568 spin_unlock(&bg->lock); 2569 2570 if (btrfs_zone_activate(bg)) { 2571 up_read(&space_info->groups_sem); 2572 return 1; 2573 } 2574 2575 need_finish = true; 2576 } 2577 } 2578 up_read(&space_info->groups_sem); 2579 2580 if (!do_finish || !need_finish) 2581 break; 2582 2583 ret = btrfs_zone_finish_one_bg(fs_info); 2584 if (ret == 0) 2585 break; 2586 if (ret < 0) 2587 return ret; 2588 } 2589 2590 return 0; 2591 } 2592 2593 /* 2594 * Reserve zones for one metadata block group, one tree-log block group, and one 2595 * system block group. 2596 */ 2597 void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info) 2598 { 2599 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2600 struct btrfs_block_group *block_group; 2601 struct btrfs_device *device; 2602 /* Reserve zones for normal SINGLE metadata and tree-log block group. */ 2603 unsigned int metadata_reserve = 2; 2604 /* Reserve a zone for SINGLE system block group. */ 2605 unsigned int system_reserve = 1; 2606 2607 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags)) 2608 return; 2609 2610 /* 2611 * This function is called from the mount context. So, there is no 2612 * parallel process touching the bits. No need for read_seqretry(). 2613 */ 2614 if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP) 2615 metadata_reserve = 4; 2616 if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP) 2617 system_reserve = 2; 2618 2619 /* Apply the reservation on all the devices. */ 2620 mutex_lock(&fs_devices->device_list_mutex); 2621 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2622 if (!device->bdev) 2623 continue; 2624 2625 device->zone_info->reserved_active_zones = 2626 metadata_reserve + system_reserve; 2627 } 2628 mutex_unlock(&fs_devices->device_list_mutex); 2629 2630 /* Release reservation for currently active block groups. */ 2631 spin_lock(&fs_info->zone_active_bgs_lock); 2632 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) { 2633 struct btrfs_chunk_map *map = block_group->physical_map; 2634 2635 if (!(block_group->flags & 2636 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))) 2637 continue; 2638 2639 for (int i = 0; i < map->num_stripes; i++) 2640 map->stripes[i].dev->zone_info->reserved_active_zones--; 2641 } 2642 spin_unlock(&fs_info->zone_active_bgs_lock); 2643 } 2644