1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/blkdev.h> 6 #include <linux/sched/mm.h> 7 #include <linux/atomic.h> 8 #include <linux/vmalloc.h> 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "zoned.h" 12 #include "rcu-string.h" 13 #include "disk-io.h" 14 #include "block-group.h" 15 #include "dev-replace.h" 16 #include "space-info.h" 17 #include "fs.h" 18 #include "accessors.h" 19 #include "bio.h" 20 21 /* Maximum number of zones to report per blkdev_report_zones() call */ 22 #define BTRFS_REPORT_NR_ZONES 4096 23 /* Invalid allocation pointer value for missing devices */ 24 #define WP_MISSING_DEV ((u64)-1) 25 /* Pseudo write pointer value for conventional zone */ 26 #define WP_CONVENTIONAL ((u64)-2) 27 28 /* 29 * Location of the first zone of superblock logging zone pairs. 30 * 31 * - primary superblock: 0B (zone 0) 32 * - first copy: 512G (zone starting at that offset) 33 * - second copy: 4T (zone starting at that offset) 34 */ 35 #define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL) 36 #define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G) 37 #define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G) 38 39 #define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET) 40 #define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET) 41 42 /* Number of superblock log zones */ 43 #define BTRFS_NR_SB_LOG_ZONES 2 44 45 /* 46 * Minimum of active zones we need: 47 * 48 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors 49 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group 50 * - 1 zone for tree-log dedicated block group 51 * - 1 zone for relocation 52 */ 53 #define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5) 54 55 /* 56 * Minimum / maximum supported zone size. Currently, SMR disks have a zone 57 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range. 58 * We do not expect the zone size to become larger than 8GiB or smaller than 59 * 4MiB in the near future. 60 */ 61 #define BTRFS_MAX_ZONE_SIZE SZ_8G 62 #define BTRFS_MIN_ZONE_SIZE SZ_4M 63 64 #define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT) 65 66 static void wait_eb_writebacks(struct btrfs_block_group *block_group); 67 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written); 68 69 static inline bool sb_zone_is_full(const struct blk_zone *zone) 70 { 71 return (zone->cond == BLK_ZONE_COND_FULL) || 72 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity); 73 } 74 75 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data) 76 { 77 struct blk_zone *zones = data; 78 79 memcpy(&zones[idx], zone, sizeof(*zone)); 80 81 return 0; 82 } 83 84 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones, 85 u64 *wp_ret) 86 { 87 bool empty[BTRFS_NR_SB_LOG_ZONES]; 88 bool full[BTRFS_NR_SB_LOG_ZONES]; 89 sector_t sector; 90 91 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 92 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL); 93 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY); 94 full[i] = sb_zone_is_full(&zones[i]); 95 } 96 97 /* 98 * Possible states of log buffer zones 99 * 100 * Empty[0] In use[0] Full[0] 101 * Empty[1] * 0 1 102 * In use[1] x x 1 103 * Full[1] 0 0 C 104 * 105 * Log position: 106 * *: Special case, no superblock is written 107 * 0: Use write pointer of zones[0] 108 * 1: Use write pointer of zones[1] 109 * C: Compare super blocks from zones[0] and zones[1], use the latest 110 * one determined by generation 111 * x: Invalid state 112 */ 113 114 if (empty[0] && empty[1]) { 115 /* Special case to distinguish no superblock to read */ 116 *wp_ret = zones[0].start << SECTOR_SHIFT; 117 return -ENOENT; 118 } else if (full[0] && full[1]) { 119 /* Compare two super blocks */ 120 struct address_space *mapping = bdev->bd_mapping; 121 struct page *page[BTRFS_NR_SB_LOG_ZONES]; 122 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES]; 123 124 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 125 u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT; 126 u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) - 127 BTRFS_SUPER_INFO_SIZE; 128 129 page[i] = read_cache_page_gfp(mapping, 130 bytenr >> PAGE_SHIFT, GFP_NOFS); 131 if (IS_ERR(page[i])) { 132 if (i == 1) 133 btrfs_release_disk_super(super[0]); 134 return PTR_ERR(page[i]); 135 } 136 super[i] = page_address(page[i]); 137 } 138 139 if (btrfs_super_generation(super[0]) > 140 btrfs_super_generation(super[1])) 141 sector = zones[1].start; 142 else 143 sector = zones[0].start; 144 145 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) 146 btrfs_release_disk_super(super[i]); 147 } else if (!full[0] && (empty[1] || full[1])) { 148 sector = zones[0].wp; 149 } else if (full[0]) { 150 sector = zones[1].wp; 151 } else { 152 return -EUCLEAN; 153 } 154 *wp_ret = sector << SECTOR_SHIFT; 155 return 0; 156 } 157 158 /* 159 * Get the first zone number of the superblock mirror 160 */ 161 static inline u32 sb_zone_number(int shift, int mirror) 162 { 163 u64 zone = U64_MAX; 164 165 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX); 166 switch (mirror) { 167 case 0: zone = 0; break; 168 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break; 169 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break; 170 } 171 172 ASSERT(zone <= U32_MAX); 173 174 return (u32)zone; 175 } 176 177 static inline sector_t zone_start_sector(u32 zone_number, 178 struct block_device *bdev) 179 { 180 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev)); 181 } 182 183 static inline u64 zone_start_physical(u32 zone_number, 184 struct btrfs_zoned_device_info *zone_info) 185 { 186 return (u64)zone_number << zone_info->zone_size_shift; 187 } 188 189 /* 190 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block 191 * device into static sized chunks and fake a conventional zone on each of 192 * them. 193 */ 194 static int emulate_report_zones(struct btrfs_device *device, u64 pos, 195 struct blk_zone *zones, unsigned int nr_zones) 196 { 197 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT; 198 sector_t bdev_size = bdev_nr_sectors(device->bdev); 199 unsigned int i; 200 201 pos >>= SECTOR_SHIFT; 202 for (i = 0; i < nr_zones; i++) { 203 zones[i].start = i * zone_sectors + pos; 204 zones[i].len = zone_sectors; 205 zones[i].capacity = zone_sectors; 206 zones[i].wp = zones[i].start + zone_sectors; 207 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL; 208 zones[i].cond = BLK_ZONE_COND_NOT_WP; 209 210 if (zones[i].wp >= bdev_size) { 211 i++; 212 break; 213 } 214 } 215 216 return i; 217 } 218 219 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos, 220 struct blk_zone *zones, unsigned int *nr_zones) 221 { 222 struct btrfs_zoned_device_info *zinfo = device->zone_info; 223 int ret; 224 225 if (!*nr_zones) 226 return 0; 227 228 if (!bdev_is_zoned(device->bdev)) { 229 ret = emulate_report_zones(device, pos, zones, *nr_zones); 230 *nr_zones = ret; 231 return 0; 232 } 233 234 /* Check cache */ 235 if (zinfo->zone_cache) { 236 unsigned int i; 237 u32 zno; 238 239 ASSERT(IS_ALIGNED(pos, zinfo->zone_size)); 240 zno = pos >> zinfo->zone_size_shift; 241 /* 242 * We cannot report zones beyond the zone end. So, it is OK to 243 * cap *nr_zones to at the end. 244 */ 245 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno); 246 247 for (i = 0; i < *nr_zones; i++) { 248 struct blk_zone *zone_info; 249 250 zone_info = &zinfo->zone_cache[zno + i]; 251 if (!zone_info->len) 252 break; 253 } 254 255 if (i == *nr_zones) { 256 /* Cache hit on all the zones */ 257 memcpy(zones, zinfo->zone_cache + zno, 258 sizeof(*zinfo->zone_cache) * *nr_zones); 259 return 0; 260 } 261 } 262 263 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones, 264 copy_zone_info_cb, zones); 265 if (ret < 0) { 266 btrfs_err_in_rcu(device->fs_info, 267 "zoned: failed to read zone %llu on %s (devid %llu)", 268 pos, rcu_str_deref(device->name), 269 device->devid); 270 return ret; 271 } 272 *nr_zones = ret; 273 if (!ret) 274 return -EIO; 275 276 /* Populate cache */ 277 if (zinfo->zone_cache) { 278 u32 zno = pos >> zinfo->zone_size_shift; 279 280 memcpy(zinfo->zone_cache + zno, zones, 281 sizeof(*zinfo->zone_cache) * *nr_zones); 282 } 283 284 return 0; 285 } 286 287 /* The emulated zone size is determined from the size of device extent */ 288 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info) 289 { 290 BTRFS_PATH_AUTO_FREE(path); 291 struct btrfs_root *root = fs_info->dev_root; 292 struct btrfs_key key; 293 struct extent_buffer *leaf; 294 struct btrfs_dev_extent *dext; 295 int ret = 0; 296 297 key.objectid = 1; 298 key.type = BTRFS_DEV_EXTENT_KEY; 299 key.offset = 0; 300 301 path = btrfs_alloc_path(); 302 if (!path) 303 return -ENOMEM; 304 305 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 306 if (ret < 0) 307 return ret; 308 309 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 310 ret = btrfs_next_leaf(root, path); 311 if (ret < 0) 312 return ret; 313 /* No dev extents at all? Not good */ 314 if (ret > 0) 315 return -EUCLEAN; 316 } 317 318 leaf = path->nodes[0]; 319 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 320 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext); 321 return 0; 322 } 323 324 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info) 325 { 326 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 327 struct btrfs_device *device; 328 int ret = 0; 329 330 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */ 331 if (!btrfs_fs_incompat(fs_info, ZONED)) 332 return 0; 333 334 mutex_lock(&fs_devices->device_list_mutex); 335 list_for_each_entry(device, &fs_devices->devices, dev_list) { 336 /* We can skip reading of zone info for missing devices */ 337 if (!device->bdev) 338 continue; 339 340 ret = btrfs_get_dev_zone_info(device, true); 341 if (ret) 342 break; 343 } 344 mutex_unlock(&fs_devices->device_list_mutex); 345 346 return ret; 347 } 348 349 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache) 350 { 351 struct btrfs_fs_info *fs_info = device->fs_info; 352 struct btrfs_zoned_device_info *zone_info = NULL; 353 struct block_device *bdev = device->bdev; 354 unsigned int max_active_zones; 355 unsigned int nactive; 356 sector_t nr_sectors; 357 sector_t sector = 0; 358 struct blk_zone *zones = NULL; 359 unsigned int i, nreported = 0, nr_zones; 360 sector_t zone_sectors; 361 char *model, *emulated; 362 int ret; 363 364 /* 365 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not 366 * yet be set. 367 */ 368 if (!btrfs_fs_incompat(fs_info, ZONED)) 369 return 0; 370 371 if (device->zone_info) 372 return 0; 373 374 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL); 375 if (!zone_info) 376 return -ENOMEM; 377 378 device->zone_info = zone_info; 379 380 if (!bdev_is_zoned(bdev)) { 381 if (!fs_info->zone_size) { 382 ret = calculate_emulated_zone_size(fs_info); 383 if (ret) 384 goto out; 385 } 386 387 ASSERT(fs_info->zone_size); 388 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT; 389 } else { 390 zone_sectors = bdev_zone_sectors(bdev); 391 } 392 393 ASSERT(is_power_of_two_u64(zone_sectors)); 394 zone_info->zone_size = zone_sectors << SECTOR_SHIFT; 395 396 /* We reject devices with a zone size larger than 8GB */ 397 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) { 398 btrfs_err_in_rcu(fs_info, 399 "zoned: %s: zone size %llu larger than supported maximum %llu", 400 rcu_str_deref(device->name), 401 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE); 402 ret = -EINVAL; 403 goto out; 404 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) { 405 btrfs_err_in_rcu(fs_info, 406 "zoned: %s: zone size %llu smaller than supported minimum %u", 407 rcu_str_deref(device->name), 408 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE); 409 ret = -EINVAL; 410 goto out; 411 } 412 413 nr_sectors = bdev_nr_sectors(bdev); 414 zone_info->zone_size_shift = ilog2(zone_info->zone_size); 415 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors); 416 if (!IS_ALIGNED(nr_sectors, zone_sectors)) 417 zone_info->nr_zones++; 418 419 max_active_zones = bdev_max_active_zones(bdev); 420 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) { 421 btrfs_err_in_rcu(fs_info, 422 "zoned: %s: max active zones %u is too small, need at least %u active zones", 423 rcu_str_deref(device->name), max_active_zones, 424 BTRFS_MIN_ACTIVE_ZONES); 425 ret = -EINVAL; 426 goto out; 427 } 428 zone_info->max_active_zones = max_active_zones; 429 430 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 431 if (!zone_info->seq_zones) { 432 ret = -ENOMEM; 433 goto out; 434 } 435 436 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 437 if (!zone_info->empty_zones) { 438 ret = -ENOMEM; 439 goto out; 440 } 441 442 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 443 if (!zone_info->active_zones) { 444 ret = -ENOMEM; 445 goto out; 446 } 447 448 zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL); 449 if (!zones) { 450 ret = -ENOMEM; 451 goto out; 452 } 453 454 /* 455 * Enable zone cache only for a zoned device. On a non-zoned device, we 456 * fill the zone info with emulated CONVENTIONAL zones, so no need to 457 * use the cache. 458 */ 459 if (populate_cache && bdev_is_zoned(device->bdev)) { 460 zone_info->zone_cache = vcalloc(zone_info->nr_zones, 461 sizeof(struct blk_zone)); 462 if (!zone_info->zone_cache) { 463 btrfs_err_in_rcu(device->fs_info, 464 "zoned: failed to allocate zone cache for %s", 465 rcu_str_deref(device->name)); 466 ret = -ENOMEM; 467 goto out; 468 } 469 } 470 471 /* Get zones type */ 472 nactive = 0; 473 while (sector < nr_sectors) { 474 nr_zones = BTRFS_REPORT_NR_ZONES; 475 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones, 476 &nr_zones); 477 if (ret) 478 goto out; 479 480 for (i = 0; i < nr_zones; i++) { 481 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ) 482 __set_bit(nreported, zone_info->seq_zones); 483 switch (zones[i].cond) { 484 case BLK_ZONE_COND_EMPTY: 485 __set_bit(nreported, zone_info->empty_zones); 486 break; 487 case BLK_ZONE_COND_IMP_OPEN: 488 case BLK_ZONE_COND_EXP_OPEN: 489 case BLK_ZONE_COND_CLOSED: 490 __set_bit(nreported, zone_info->active_zones); 491 nactive++; 492 break; 493 } 494 nreported++; 495 } 496 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len; 497 } 498 499 if (nreported != zone_info->nr_zones) { 500 btrfs_err_in_rcu(device->fs_info, 501 "inconsistent number of zones on %s (%u/%u)", 502 rcu_str_deref(device->name), nreported, 503 zone_info->nr_zones); 504 ret = -EIO; 505 goto out; 506 } 507 508 if (max_active_zones) { 509 if (nactive > max_active_zones) { 510 btrfs_err_in_rcu(device->fs_info, 511 "zoned: %u active zones on %s exceeds max_active_zones %u", 512 nactive, rcu_str_deref(device->name), 513 max_active_zones); 514 ret = -EIO; 515 goto out; 516 } 517 atomic_set(&zone_info->active_zones_left, 518 max_active_zones - nactive); 519 set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags); 520 } 521 522 /* Validate superblock log */ 523 nr_zones = BTRFS_NR_SB_LOG_ZONES; 524 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 525 u32 sb_zone; 526 u64 sb_wp; 527 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i; 528 529 sb_zone = sb_zone_number(zone_info->zone_size_shift, i); 530 if (sb_zone + 1 >= zone_info->nr_zones) 531 continue; 532 533 ret = btrfs_get_dev_zones(device, 534 zone_start_physical(sb_zone, zone_info), 535 &zone_info->sb_zones[sb_pos], 536 &nr_zones); 537 if (ret) 538 goto out; 539 540 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) { 541 btrfs_err_in_rcu(device->fs_info, 542 "zoned: failed to read super block log zone info at devid %llu zone %u", 543 device->devid, sb_zone); 544 ret = -EUCLEAN; 545 goto out; 546 } 547 548 /* 549 * If zones[0] is conventional, always use the beginning of the 550 * zone to record superblock. No need to validate in that case. 551 */ 552 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type == 553 BLK_ZONE_TYPE_CONVENTIONAL) 554 continue; 555 556 ret = sb_write_pointer(device->bdev, 557 &zone_info->sb_zones[sb_pos], &sb_wp); 558 if (ret != -ENOENT && ret) { 559 btrfs_err_in_rcu(device->fs_info, 560 "zoned: super block log zone corrupted devid %llu zone %u", 561 device->devid, sb_zone); 562 ret = -EUCLEAN; 563 goto out; 564 } 565 } 566 567 568 kvfree(zones); 569 570 if (bdev_is_zoned(bdev)) { 571 model = "host-managed zoned"; 572 emulated = ""; 573 } else { 574 model = "regular"; 575 emulated = "emulated "; 576 } 577 578 btrfs_info_in_rcu(fs_info, 579 "%s block device %s, %u %szones of %llu bytes", 580 model, rcu_str_deref(device->name), zone_info->nr_zones, 581 emulated, zone_info->zone_size); 582 583 return 0; 584 585 out: 586 kvfree(zones); 587 btrfs_destroy_dev_zone_info(device); 588 return ret; 589 } 590 591 void btrfs_destroy_dev_zone_info(struct btrfs_device *device) 592 { 593 struct btrfs_zoned_device_info *zone_info = device->zone_info; 594 595 if (!zone_info) 596 return; 597 598 bitmap_free(zone_info->active_zones); 599 bitmap_free(zone_info->seq_zones); 600 bitmap_free(zone_info->empty_zones); 601 vfree(zone_info->zone_cache); 602 kfree(zone_info); 603 device->zone_info = NULL; 604 } 605 606 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev) 607 { 608 struct btrfs_zoned_device_info *zone_info; 609 610 zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL); 611 if (!zone_info) 612 return NULL; 613 614 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 615 if (!zone_info->seq_zones) 616 goto out; 617 618 bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones, 619 zone_info->nr_zones); 620 621 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 622 if (!zone_info->empty_zones) 623 goto out; 624 625 bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones, 626 zone_info->nr_zones); 627 628 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 629 if (!zone_info->active_zones) 630 goto out; 631 632 bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones, 633 zone_info->nr_zones); 634 zone_info->zone_cache = NULL; 635 636 return zone_info; 637 638 out: 639 bitmap_free(zone_info->seq_zones); 640 bitmap_free(zone_info->empty_zones); 641 bitmap_free(zone_info->active_zones); 642 kfree(zone_info); 643 return NULL; 644 } 645 646 static int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, struct blk_zone *zone) 647 { 648 unsigned int nr_zones = 1; 649 int ret; 650 651 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones); 652 if (ret != 0 || !nr_zones) 653 return ret ? ret : -EIO; 654 655 return 0; 656 } 657 658 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info) 659 { 660 struct btrfs_device *device; 661 662 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 663 if (device->bdev && bdev_is_zoned(device->bdev)) { 664 btrfs_err(fs_info, 665 "zoned: mode not enabled but zoned device found: %pg", 666 device->bdev); 667 return -EINVAL; 668 } 669 } 670 671 return 0; 672 } 673 674 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info) 675 { 676 struct queue_limits *lim = &fs_info->limits; 677 struct btrfs_device *device; 678 u64 zone_size = 0; 679 int ret; 680 681 /* 682 * Host-Managed devices can't be used without the ZONED flag. With the 683 * ZONED all devices can be used, using zone emulation if required. 684 */ 685 if (!btrfs_fs_incompat(fs_info, ZONED)) 686 return btrfs_check_for_zoned_device(fs_info); 687 688 blk_set_stacking_limits(lim); 689 690 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 691 struct btrfs_zoned_device_info *zone_info = device->zone_info; 692 693 if (!device->bdev) 694 continue; 695 696 if (!zone_size) { 697 zone_size = zone_info->zone_size; 698 } else if (zone_info->zone_size != zone_size) { 699 btrfs_err(fs_info, 700 "zoned: unequal block device zone sizes: have %llu found %llu", 701 zone_info->zone_size, zone_size); 702 return -EINVAL; 703 } 704 705 /* 706 * With the zoned emulation, we can have non-zoned device on the 707 * zoned mode. In this case, we don't have a valid max zone 708 * append size. 709 */ 710 if (bdev_is_zoned(device->bdev)) { 711 blk_stack_limits(lim, 712 &bdev_get_queue(device->bdev)->limits, 713 0); 714 } 715 } 716 717 /* 718 * stripe_size is always aligned to BTRFS_STRIPE_LEN in 719 * btrfs_create_chunk(). Since we want stripe_len == zone_size, 720 * check the alignment here. 721 */ 722 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) { 723 btrfs_err(fs_info, 724 "zoned: zone size %llu not aligned to stripe %u", 725 zone_size, BTRFS_STRIPE_LEN); 726 return -EINVAL; 727 } 728 729 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 730 btrfs_err(fs_info, "zoned: mixed block groups not supported"); 731 return -EINVAL; 732 } 733 734 fs_info->zone_size = zone_size; 735 /* 736 * Also limit max_zone_append_size by max_segments * PAGE_SIZE. 737 * Technically, we can have multiple pages per segment. But, since 738 * we add the pages one by one to a bio, and cannot increase the 739 * metadata reservation even if it increases the number of extents, it 740 * is safe to stick with the limit. 741 */ 742 fs_info->max_zone_append_size = ALIGN_DOWN( 743 min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT, 744 (u64)lim->max_sectors << SECTOR_SHIFT, 745 (u64)lim->max_segments << PAGE_SHIFT), 746 fs_info->sectorsize); 747 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED; 748 if (fs_info->max_zone_append_size < fs_info->max_extent_size) 749 fs_info->max_extent_size = fs_info->max_zone_append_size; 750 751 /* 752 * Check mount options here, because we might change fs_info->zoned 753 * from fs_info->zone_size. 754 */ 755 ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt); 756 if (ret) 757 return ret; 758 759 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size); 760 return 0; 761 } 762 763 int btrfs_check_mountopts_zoned(const struct btrfs_fs_info *info, 764 unsigned long long *mount_opt) 765 { 766 if (!btrfs_is_zoned(info)) 767 return 0; 768 769 /* 770 * Space cache writing is not COWed. Disable that to avoid write errors 771 * in sequential zones. 772 */ 773 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) { 774 btrfs_err(info, "zoned: space cache v1 is not supported"); 775 return -EINVAL; 776 } 777 778 if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) { 779 btrfs_err(info, "zoned: NODATACOW not supported"); 780 return -EINVAL; 781 } 782 783 if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) { 784 btrfs_info(info, 785 "zoned: async discard ignored and disabled for zoned mode"); 786 btrfs_clear_opt(*mount_opt, DISCARD_ASYNC); 787 } 788 789 return 0; 790 } 791 792 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones, 793 int rw, u64 *bytenr_ret) 794 { 795 u64 wp; 796 int ret; 797 798 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) { 799 *bytenr_ret = zones[0].start << SECTOR_SHIFT; 800 return 0; 801 } 802 803 ret = sb_write_pointer(bdev, zones, &wp); 804 if (ret != -ENOENT && ret < 0) 805 return ret; 806 807 if (rw == WRITE) { 808 struct blk_zone *reset = NULL; 809 810 if (wp == zones[0].start << SECTOR_SHIFT) 811 reset = &zones[0]; 812 else if (wp == zones[1].start << SECTOR_SHIFT) 813 reset = &zones[1]; 814 815 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) { 816 unsigned int nofs_flags; 817 818 ASSERT(sb_zone_is_full(reset)); 819 820 nofs_flags = memalloc_nofs_save(); 821 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 822 reset->start, reset->len); 823 memalloc_nofs_restore(nofs_flags); 824 if (ret) 825 return ret; 826 827 reset->cond = BLK_ZONE_COND_EMPTY; 828 reset->wp = reset->start; 829 } 830 } else if (ret != -ENOENT) { 831 /* 832 * For READ, we want the previous one. Move write pointer to 833 * the end of a zone, if it is at the head of a zone. 834 */ 835 u64 zone_end = 0; 836 837 if (wp == zones[0].start << SECTOR_SHIFT) 838 zone_end = zones[1].start + zones[1].capacity; 839 else if (wp == zones[1].start << SECTOR_SHIFT) 840 zone_end = zones[0].start + zones[0].capacity; 841 if (zone_end) 842 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT, 843 BTRFS_SUPER_INFO_SIZE); 844 845 wp -= BTRFS_SUPER_INFO_SIZE; 846 } 847 848 *bytenr_ret = wp; 849 return 0; 850 851 } 852 853 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw, 854 u64 *bytenr_ret) 855 { 856 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES]; 857 sector_t zone_sectors; 858 u32 sb_zone; 859 int ret; 860 u8 zone_sectors_shift; 861 sector_t nr_sectors; 862 u32 nr_zones; 863 864 if (!bdev_is_zoned(bdev)) { 865 *bytenr_ret = btrfs_sb_offset(mirror); 866 return 0; 867 } 868 869 ASSERT(rw == READ || rw == WRITE); 870 871 zone_sectors = bdev_zone_sectors(bdev); 872 if (!is_power_of_2(zone_sectors)) 873 return -EINVAL; 874 zone_sectors_shift = ilog2(zone_sectors); 875 nr_sectors = bdev_nr_sectors(bdev); 876 nr_zones = nr_sectors >> zone_sectors_shift; 877 878 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 879 if (sb_zone + 1 >= nr_zones) 880 return -ENOENT; 881 882 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev), 883 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb, 884 zones); 885 if (ret < 0) 886 return ret; 887 if (ret != BTRFS_NR_SB_LOG_ZONES) 888 return -EIO; 889 890 return sb_log_location(bdev, zones, rw, bytenr_ret); 891 } 892 893 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw, 894 u64 *bytenr_ret) 895 { 896 struct btrfs_zoned_device_info *zinfo = device->zone_info; 897 u32 zone_num; 898 899 /* 900 * For a zoned filesystem on a non-zoned block device, use the same 901 * super block locations as regular filesystem. Doing so, the super 902 * block can always be retrieved and the zoned flag of the volume 903 * detected from the super block information. 904 */ 905 if (!bdev_is_zoned(device->bdev)) { 906 *bytenr_ret = btrfs_sb_offset(mirror); 907 return 0; 908 } 909 910 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 911 if (zone_num + 1 >= zinfo->nr_zones) 912 return -ENOENT; 913 914 return sb_log_location(device->bdev, 915 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror], 916 rw, bytenr_ret); 917 } 918 919 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo, 920 int mirror) 921 { 922 u32 zone_num; 923 924 if (!zinfo) 925 return false; 926 927 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 928 if (zone_num + 1 >= zinfo->nr_zones) 929 return false; 930 931 if (!test_bit(zone_num, zinfo->seq_zones)) 932 return false; 933 934 return true; 935 } 936 937 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror) 938 { 939 struct btrfs_zoned_device_info *zinfo = device->zone_info; 940 struct blk_zone *zone; 941 int i; 942 943 if (!is_sb_log_zone(zinfo, mirror)) 944 return 0; 945 946 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror]; 947 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 948 /* Advance the next zone */ 949 if (zone->cond == BLK_ZONE_COND_FULL) { 950 zone++; 951 continue; 952 } 953 954 if (zone->cond == BLK_ZONE_COND_EMPTY) 955 zone->cond = BLK_ZONE_COND_IMP_OPEN; 956 957 zone->wp += SUPER_INFO_SECTORS; 958 959 if (sb_zone_is_full(zone)) { 960 /* 961 * No room left to write new superblock. Since 962 * superblock is written with REQ_SYNC, it is safe to 963 * finish the zone now. 964 * 965 * If the write pointer is exactly at the capacity, 966 * explicit ZONE_FINISH is not necessary. 967 */ 968 if (zone->wp != zone->start + zone->capacity) { 969 unsigned int nofs_flags; 970 int ret; 971 972 nofs_flags = memalloc_nofs_save(); 973 ret = blkdev_zone_mgmt(device->bdev, 974 REQ_OP_ZONE_FINISH, zone->start, 975 zone->len); 976 memalloc_nofs_restore(nofs_flags); 977 if (ret) 978 return ret; 979 } 980 981 zone->wp = zone->start + zone->len; 982 zone->cond = BLK_ZONE_COND_FULL; 983 } 984 return 0; 985 } 986 987 /* All the zones are FULL. Should not reach here. */ 988 ASSERT(0); 989 return -EIO; 990 } 991 992 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror) 993 { 994 unsigned int nofs_flags; 995 sector_t zone_sectors; 996 sector_t nr_sectors; 997 u8 zone_sectors_shift; 998 u32 sb_zone; 999 u32 nr_zones; 1000 int ret; 1001 1002 zone_sectors = bdev_zone_sectors(bdev); 1003 zone_sectors_shift = ilog2(zone_sectors); 1004 nr_sectors = bdev_nr_sectors(bdev); 1005 nr_zones = nr_sectors >> zone_sectors_shift; 1006 1007 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 1008 if (sb_zone + 1 >= nr_zones) 1009 return -ENOENT; 1010 1011 nofs_flags = memalloc_nofs_save(); 1012 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1013 zone_start_sector(sb_zone, bdev), 1014 zone_sectors * BTRFS_NR_SB_LOG_ZONES); 1015 memalloc_nofs_restore(nofs_flags); 1016 return ret; 1017 } 1018 1019 /* 1020 * Find allocatable zones within a given region. 1021 * 1022 * @device: the device to allocate a region on 1023 * @hole_start: the position of the hole to allocate the region 1024 * @num_bytes: size of wanted region 1025 * @hole_end: the end of the hole 1026 * @return: position of allocatable zones 1027 * 1028 * Allocatable region should not contain any superblock locations. 1029 */ 1030 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start, 1031 u64 hole_end, u64 num_bytes) 1032 { 1033 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1034 const u8 shift = zinfo->zone_size_shift; 1035 u64 nzones = num_bytes >> shift; 1036 u64 pos = hole_start; 1037 u64 begin, end; 1038 bool have_sb; 1039 int i; 1040 1041 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size)); 1042 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size)); 1043 1044 while (pos < hole_end) { 1045 begin = pos >> shift; 1046 end = begin + nzones; 1047 1048 if (end > zinfo->nr_zones) 1049 return hole_end; 1050 1051 /* Check if zones in the region are all empty */ 1052 if (btrfs_dev_is_sequential(device, pos) && 1053 !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) { 1054 pos += zinfo->zone_size; 1055 continue; 1056 } 1057 1058 have_sb = false; 1059 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1060 u32 sb_zone; 1061 u64 sb_pos; 1062 1063 sb_zone = sb_zone_number(shift, i); 1064 if (!(end <= sb_zone || 1065 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) { 1066 have_sb = true; 1067 pos = zone_start_physical( 1068 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo); 1069 break; 1070 } 1071 1072 /* We also need to exclude regular superblock positions */ 1073 sb_pos = btrfs_sb_offset(i); 1074 if (!(pos + num_bytes <= sb_pos || 1075 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) { 1076 have_sb = true; 1077 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE, 1078 zinfo->zone_size); 1079 break; 1080 } 1081 } 1082 if (!have_sb) 1083 break; 1084 } 1085 1086 return pos; 1087 } 1088 1089 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos) 1090 { 1091 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1092 unsigned int zno = (pos >> zone_info->zone_size_shift); 1093 1094 /* We can use any number of zones */ 1095 if (zone_info->max_active_zones == 0) 1096 return true; 1097 1098 if (!test_bit(zno, zone_info->active_zones)) { 1099 /* Active zone left? */ 1100 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0) 1101 return false; 1102 if (test_and_set_bit(zno, zone_info->active_zones)) { 1103 /* Someone already set the bit */ 1104 atomic_inc(&zone_info->active_zones_left); 1105 } 1106 } 1107 1108 return true; 1109 } 1110 1111 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos) 1112 { 1113 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1114 unsigned int zno = (pos >> zone_info->zone_size_shift); 1115 1116 /* We can use any number of zones */ 1117 if (zone_info->max_active_zones == 0) 1118 return; 1119 1120 if (test_and_clear_bit(zno, zone_info->active_zones)) 1121 atomic_inc(&zone_info->active_zones_left); 1122 } 1123 1124 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical, 1125 u64 length, u64 *bytes) 1126 { 1127 unsigned int nofs_flags; 1128 int ret; 1129 1130 *bytes = 0; 1131 nofs_flags = memalloc_nofs_save(); 1132 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET, 1133 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT); 1134 memalloc_nofs_restore(nofs_flags); 1135 if (ret) 1136 return ret; 1137 1138 *bytes = length; 1139 while (length) { 1140 btrfs_dev_set_zone_empty(device, physical); 1141 btrfs_dev_clear_active_zone(device, physical); 1142 physical += device->zone_info->zone_size; 1143 length -= device->zone_info->zone_size; 1144 } 1145 1146 return 0; 1147 } 1148 1149 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size) 1150 { 1151 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1152 const u8 shift = zinfo->zone_size_shift; 1153 unsigned long begin = start >> shift; 1154 unsigned long nbits = size >> shift; 1155 u64 pos; 1156 int ret; 1157 1158 ASSERT(IS_ALIGNED(start, zinfo->zone_size)); 1159 ASSERT(IS_ALIGNED(size, zinfo->zone_size)); 1160 1161 if (begin + nbits > zinfo->nr_zones) 1162 return -ERANGE; 1163 1164 /* All the zones are conventional */ 1165 if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits)) 1166 return 0; 1167 1168 /* All the zones are sequential and empty */ 1169 if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) && 1170 bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits)) 1171 return 0; 1172 1173 for (pos = start; pos < start + size; pos += zinfo->zone_size) { 1174 u64 reset_bytes; 1175 1176 if (!btrfs_dev_is_sequential(device, pos) || 1177 btrfs_dev_is_empty_zone(device, pos)) 1178 continue; 1179 1180 /* Free regions should be empty */ 1181 btrfs_warn_in_rcu( 1182 device->fs_info, 1183 "zoned: resetting device %s (devid %llu) zone %llu for allocation", 1184 rcu_str_deref(device->name), device->devid, pos >> shift); 1185 WARN_ON_ONCE(1); 1186 1187 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size, 1188 &reset_bytes); 1189 if (ret) 1190 return ret; 1191 } 1192 1193 return 0; 1194 } 1195 1196 /* 1197 * Calculate an allocation pointer from the extent allocation information 1198 * for a block group consist of conventional zones. It is pointed to the 1199 * end of the highest addressed extent in the block group as an allocation 1200 * offset. 1201 */ 1202 static int calculate_alloc_pointer(struct btrfs_block_group *cache, 1203 u64 *offset_ret, bool new) 1204 { 1205 struct btrfs_fs_info *fs_info = cache->fs_info; 1206 struct btrfs_root *root; 1207 BTRFS_PATH_AUTO_FREE(path); 1208 struct btrfs_key key; 1209 struct btrfs_key found_key; 1210 int ret; 1211 u64 length; 1212 1213 /* 1214 * Avoid tree lookups for a new block group, there's no use for it. 1215 * It must always be 0. 1216 * 1217 * Also, we have a lock chain of extent buffer lock -> chunk mutex. 1218 * For new a block group, this function is called from 1219 * btrfs_make_block_group() which is already taking the chunk mutex. 1220 * Thus, we cannot call calculate_alloc_pointer() which takes extent 1221 * buffer locks to avoid deadlock. 1222 */ 1223 if (new) { 1224 *offset_ret = 0; 1225 return 0; 1226 } 1227 1228 path = btrfs_alloc_path(); 1229 if (!path) 1230 return -ENOMEM; 1231 1232 key.objectid = cache->start + cache->length; 1233 key.type = 0; 1234 key.offset = 0; 1235 1236 root = btrfs_extent_root(fs_info, key.objectid); 1237 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1238 /* We should not find the exact match */ 1239 if (!ret) 1240 ret = -EUCLEAN; 1241 if (ret < 0) 1242 return ret; 1243 1244 ret = btrfs_previous_extent_item(root, path, cache->start); 1245 if (ret) { 1246 if (ret == 1) { 1247 ret = 0; 1248 *offset_ret = 0; 1249 } 1250 return ret; 1251 } 1252 1253 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 1254 1255 if (found_key.type == BTRFS_EXTENT_ITEM_KEY) 1256 length = found_key.offset; 1257 else 1258 length = fs_info->nodesize; 1259 1260 if (!(found_key.objectid >= cache->start && 1261 found_key.objectid + length <= cache->start + cache->length)) { 1262 return -EUCLEAN; 1263 } 1264 *offset_ret = found_key.objectid + length - cache->start; 1265 return 0; 1266 } 1267 1268 struct zone_info { 1269 u64 physical; 1270 u64 capacity; 1271 u64 alloc_offset; 1272 }; 1273 1274 static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx, 1275 struct zone_info *info, unsigned long *active, 1276 struct btrfs_chunk_map *map) 1277 { 1278 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1279 struct btrfs_device *device; 1280 int dev_replace_is_ongoing = 0; 1281 unsigned int nofs_flag; 1282 struct blk_zone zone; 1283 int ret; 1284 1285 info->physical = map->stripes[zone_idx].physical; 1286 1287 down_read(&dev_replace->rwsem); 1288 device = map->stripes[zone_idx].dev; 1289 1290 if (!device->bdev) { 1291 up_read(&dev_replace->rwsem); 1292 info->alloc_offset = WP_MISSING_DEV; 1293 return 0; 1294 } 1295 1296 /* Consider a zone as active if we can allow any number of active zones. */ 1297 if (!device->zone_info->max_active_zones) 1298 __set_bit(zone_idx, active); 1299 1300 if (!btrfs_dev_is_sequential(device, info->physical)) { 1301 up_read(&dev_replace->rwsem); 1302 info->alloc_offset = WP_CONVENTIONAL; 1303 return 0; 1304 } 1305 1306 /* This zone will be used for allocation, so mark this zone non-empty. */ 1307 btrfs_dev_clear_zone_empty(device, info->physical); 1308 1309 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 1310 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 1311 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical); 1312 1313 /* 1314 * The group is mapped to a sequential zone. Get the zone write pointer 1315 * to determine the allocation offset within the zone. 1316 */ 1317 WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size)); 1318 nofs_flag = memalloc_nofs_save(); 1319 ret = btrfs_get_dev_zone(device, info->physical, &zone); 1320 memalloc_nofs_restore(nofs_flag); 1321 if (ret) { 1322 up_read(&dev_replace->rwsem); 1323 if (ret != -EIO && ret != -EOPNOTSUPP) 1324 return ret; 1325 info->alloc_offset = WP_MISSING_DEV; 1326 return 0; 1327 } 1328 1329 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) { 1330 btrfs_err_in_rcu(fs_info, 1331 "zoned: unexpected conventional zone %llu on device %s (devid %llu)", 1332 zone.start << SECTOR_SHIFT, rcu_str_deref(device->name), 1333 device->devid); 1334 up_read(&dev_replace->rwsem); 1335 return -EIO; 1336 } 1337 1338 info->capacity = (zone.capacity << SECTOR_SHIFT); 1339 1340 switch (zone.cond) { 1341 case BLK_ZONE_COND_OFFLINE: 1342 case BLK_ZONE_COND_READONLY: 1343 btrfs_err_in_rcu(fs_info, 1344 "zoned: offline/readonly zone %llu on device %s (devid %llu)", 1345 (info->physical >> device->zone_info->zone_size_shift), 1346 rcu_str_deref(device->name), device->devid); 1347 info->alloc_offset = WP_MISSING_DEV; 1348 break; 1349 case BLK_ZONE_COND_EMPTY: 1350 info->alloc_offset = 0; 1351 break; 1352 case BLK_ZONE_COND_FULL: 1353 info->alloc_offset = info->capacity; 1354 break; 1355 default: 1356 /* Partially used zone. */ 1357 info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT); 1358 __set_bit(zone_idx, active); 1359 break; 1360 } 1361 1362 up_read(&dev_replace->rwsem); 1363 1364 return 0; 1365 } 1366 1367 static int btrfs_load_block_group_single(struct btrfs_block_group *bg, 1368 struct zone_info *info, 1369 unsigned long *active) 1370 { 1371 if (info->alloc_offset == WP_MISSING_DEV) { 1372 btrfs_err(bg->fs_info, 1373 "zoned: cannot recover write pointer for zone %llu", 1374 info->physical); 1375 return -EIO; 1376 } 1377 1378 bg->alloc_offset = info->alloc_offset; 1379 bg->zone_capacity = info->capacity; 1380 if (test_bit(0, active)) 1381 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1382 return 0; 1383 } 1384 1385 static int btrfs_load_block_group_dup(struct btrfs_block_group *bg, 1386 struct btrfs_chunk_map *map, 1387 struct zone_info *zone_info, 1388 unsigned long *active) 1389 { 1390 struct btrfs_fs_info *fs_info = bg->fs_info; 1391 1392 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1393 btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree"); 1394 return -EINVAL; 1395 } 1396 1397 bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity); 1398 1399 if (zone_info[0].alloc_offset == WP_MISSING_DEV) { 1400 btrfs_err(bg->fs_info, 1401 "zoned: cannot recover write pointer for zone %llu", 1402 zone_info[0].physical); 1403 return -EIO; 1404 } 1405 if (zone_info[1].alloc_offset == WP_MISSING_DEV) { 1406 btrfs_err(bg->fs_info, 1407 "zoned: cannot recover write pointer for zone %llu", 1408 zone_info[1].physical); 1409 return -EIO; 1410 } 1411 if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) { 1412 btrfs_err(bg->fs_info, 1413 "zoned: write pointer offset mismatch of zones in DUP profile"); 1414 return -EIO; 1415 } 1416 1417 if (test_bit(0, active) != test_bit(1, active)) { 1418 if (!btrfs_zone_activate(bg)) 1419 return -EIO; 1420 } else if (test_bit(0, active)) { 1421 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1422 } 1423 1424 bg->alloc_offset = zone_info[0].alloc_offset; 1425 return 0; 1426 } 1427 1428 static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg, 1429 struct btrfs_chunk_map *map, 1430 struct zone_info *zone_info, 1431 unsigned long *active) 1432 { 1433 struct btrfs_fs_info *fs_info = bg->fs_info; 1434 int i; 1435 1436 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1437 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1438 btrfs_bg_type_to_raid_name(map->type)); 1439 return -EINVAL; 1440 } 1441 1442 /* In case a device is missing we have a cap of 0, so don't use it. */ 1443 bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity); 1444 1445 for (i = 0; i < map->num_stripes; i++) { 1446 if (zone_info[i].alloc_offset == WP_MISSING_DEV || 1447 zone_info[i].alloc_offset == WP_CONVENTIONAL) 1448 continue; 1449 1450 if ((zone_info[0].alloc_offset != zone_info[i].alloc_offset) && 1451 !btrfs_test_opt(fs_info, DEGRADED)) { 1452 btrfs_err(fs_info, 1453 "zoned: write pointer offset mismatch of zones in %s profile", 1454 btrfs_bg_type_to_raid_name(map->type)); 1455 return -EIO; 1456 } 1457 if (test_bit(0, active) != test_bit(i, active)) { 1458 if (!btrfs_test_opt(fs_info, DEGRADED) && 1459 !btrfs_zone_activate(bg)) { 1460 return -EIO; 1461 } 1462 } else { 1463 if (test_bit(0, active)) 1464 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1465 } 1466 } 1467 1468 if (zone_info[0].alloc_offset != WP_MISSING_DEV) 1469 bg->alloc_offset = zone_info[0].alloc_offset; 1470 else 1471 bg->alloc_offset = zone_info[i - 1].alloc_offset; 1472 1473 return 0; 1474 } 1475 1476 static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg, 1477 struct btrfs_chunk_map *map, 1478 struct zone_info *zone_info, 1479 unsigned long *active) 1480 { 1481 struct btrfs_fs_info *fs_info = bg->fs_info; 1482 1483 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1484 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1485 btrfs_bg_type_to_raid_name(map->type)); 1486 return -EINVAL; 1487 } 1488 1489 for (int i = 0; i < map->num_stripes; i++) { 1490 if (zone_info[i].alloc_offset == WP_MISSING_DEV || 1491 zone_info[i].alloc_offset == WP_CONVENTIONAL) 1492 continue; 1493 1494 if (test_bit(0, active) != test_bit(i, active)) { 1495 if (!btrfs_zone_activate(bg)) 1496 return -EIO; 1497 } else { 1498 if (test_bit(0, active)) 1499 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1500 } 1501 bg->zone_capacity += zone_info[i].capacity; 1502 bg->alloc_offset += zone_info[i].alloc_offset; 1503 } 1504 1505 return 0; 1506 } 1507 1508 static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg, 1509 struct btrfs_chunk_map *map, 1510 struct zone_info *zone_info, 1511 unsigned long *active) 1512 { 1513 struct btrfs_fs_info *fs_info = bg->fs_info; 1514 1515 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1516 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1517 btrfs_bg_type_to_raid_name(map->type)); 1518 return -EINVAL; 1519 } 1520 1521 for (int i = 0; i < map->num_stripes; i++) { 1522 if (zone_info[i].alloc_offset == WP_MISSING_DEV || 1523 zone_info[i].alloc_offset == WP_CONVENTIONAL) 1524 continue; 1525 1526 if (test_bit(0, active) != test_bit(i, active)) { 1527 if (!btrfs_zone_activate(bg)) 1528 return -EIO; 1529 } else { 1530 if (test_bit(0, active)) 1531 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1532 } 1533 1534 if ((i % map->sub_stripes) == 0) { 1535 bg->zone_capacity += zone_info[i].capacity; 1536 bg->alloc_offset += zone_info[i].alloc_offset; 1537 } 1538 } 1539 1540 return 0; 1541 } 1542 1543 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new) 1544 { 1545 struct btrfs_fs_info *fs_info = cache->fs_info; 1546 struct btrfs_chunk_map *map; 1547 u64 logical = cache->start; 1548 u64 length = cache->length; 1549 struct zone_info *zone_info = NULL; 1550 int ret; 1551 int i; 1552 unsigned long *active = NULL; 1553 u64 last_alloc = 0; 1554 u32 num_sequential = 0, num_conventional = 0; 1555 u64 profile; 1556 1557 if (!btrfs_is_zoned(fs_info)) 1558 return 0; 1559 1560 /* Sanity check */ 1561 if (!IS_ALIGNED(length, fs_info->zone_size)) { 1562 btrfs_err(fs_info, 1563 "zoned: block group %llu len %llu unaligned to zone size %llu", 1564 logical, length, fs_info->zone_size); 1565 return -EIO; 1566 } 1567 1568 map = btrfs_find_chunk_map(fs_info, logical, length); 1569 if (!map) 1570 return -EINVAL; 1571 1572 cache->physical_map = map; 1573 1574 zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS); 1575 if (!zone_info) { 1576 ret = -ENOMEM; 1577 goto out; 1578 } 1579 1580 active = bitmap_zalloc(map->num_stripes, GFP_NOFS); 1581 if (!active) { 1582 ret = -ENOMEM; 1583 goto out; 1584 } 1585 1586 for (i = 0; i < map->num_stripes; i++) { 1587 ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map); 1588 if (ret) 1589 goto out; 1590 1591 if (zone_info[i].alloc_offset == WP_CONVENTIONAL) 1592 num_conventional++; 1593 else 1594 num_sequential++; 1595 } 1596 1597 if (num_sequential > 0) 1598 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); 1599 1600 if (num_conventional > 0) { 1601 /* Zone capacity is always zone size in emulation */ 1602 cache->zone_capacity = cache->length; 1603 ret = calculate_alloc_pointer(cache, &last_alloc, new); 1604 if (ret) { 1605 btrfs_err(fs_info, 1606 "zoned: failed to determine allocation offset of bg %llu", 1607 cache->start); 1608 goto out; 1609 } else if (map->num_stripes == num_conventional) { 1610 cache->alloc_offset = last_alloc; 1611 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags); 1612 goto out; 1613 } 1614 } 1615 1616 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK; 1617 switch (profile) { 1618 case 0: /* single */ 1619 ret = btrfs_load_block_group_single(cache, &zone_info[0], active); 1620 break; 1621 case BTRFS_BLOCK_GROUP_DUP: 1622 ret = btrfs_load_block_group_dup(cache, map, zone_info, active); 1623 break; 1624 case BTRFS_BLOCK_GROUP_RAID1: 1625 case BTRFS_BLOCK_GROUP_RAID1C3: 1626 case BTRFS_BLOCK_GROUP_RAID1C4: 1627 ret = btrfs_load_block_group_raid1(cache, map, zone_info, active); 1628 break; 1629 case BTRFS_BLOCK_GROUP_RAID0: 1630 ret = btrfs_load_block_group_raid0(cache, map, zone_info, active); 1631 break; 1632 case BTRFS_BLOCK_GROUP_RAID10: 1633 ret = btrfs_load_block_group_raid10(cache, map, zone_info, active); 1634 break; 1635 case BTRFS_BLOCK_GROUP_RAID5: 1636 case BTRFS_BLOCK_GROUP_RAID6: 1637 default: 1638 btrfs_err(fs_info, "zoned: profile %s not yet supported", 1639 btrfs_bg_type_to_raid_name(map->type)); 1640 ret = -EINVAL; 1641 goto out; 1642 } 1643 1644 if (ret == -EIO && profile != 0 && profile != BTRFS_BLOCK_GROUP_RAID0 && 1645 profile != BTRFS_BLOCK_GROUP_RAID10) { 1646 /* 1647 * Detected broken write pointer. Make this block group 1648 * unallocatable by setting the allocation pointer at the end of 1649 * allocatable region. Relocating this block group will fix the 1650 * mismatch. 1651 * 1652 * Currently, we cannot handle RAID0 or RAID10 case like this 1653 * because we don't have a proper zone_capacity value. But, 1654 * reading from this block group won't work anyway by a missing 1655 * stripe. 1656 */ 1657 cache->alloc_offset = cache->zone_capacity; 1658 ret = 0; 1659 } 1660 1661 out: 1662 /* Reject non SINGLE data profiles without RST */ 1663 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && 1664 (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) && 1665 !fs_info->stripe_root) { 1666 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1667 btrfs_bg_type_to_raid_name(map->type)); 1668 return -EINVAL; 1669 } 1670 1671 if (cache->alloc_offset > cache->zone_capacity) { 1672 btrfs_err(fs_info, 1673 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu", 1674 cache->alloc_offset, cache->zone_capacity, 1675 cache->start); 1676 ret = -EIO; 1677 } 1678 1679 /* An extent is allocated after the write pointer */ 1680 if (!ret && num_conventional && last_alloc > cache->alloc_offset) { 1681 btrfs_err(fs_info, 1682 "zoned: got wrong write pointer in BG %llu: %llu > %llu", 1683 logical, last_alloc, cache->alloc_offset); 1684 ret = -EIO; 1685 } 1686 1687 if (!ret) { 1688 cache->meta_write_pointer = cache->alloc_offset + cache->start; 1689 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) { 1690 btrfs_get_block_group(cache); 1691 spin_lock(&fs_info->zone_active_bgs_lock); 1692 list_add_tail(&cache->active_bg_list, 1693 &fs_info->zone_active_bgs); 1694 spin_unlock(&fs_info->zone_active_bgs_lock); 1695 } 1696 } else { 1697 btrfs_free_chunk_map(cache->physical_map); 1698 cache->physical_map = NULL; 1699 } 1700 bitmap_free(active); 1701 kfree(zone_info); 1702 1703 return ret; 1704 } 1705 1706 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache) 1707 { 1708 u64 unusable, free; 1709 1710 if (!btrfs_is_zoned(cache->fs_info)) 1711 return; 1712 1713 WARN_ON(cache->bytes_super != 0); 1714 unusable = (cache->alloc_offset - cache->used) + 1715 (cache->length - cache->zone_capacity); 1716 free = cache->zone_capacity - cache->alloc_offset; 1717 1718 /* We only need ->free_space in ALLOC_SEQ block groups */ 1719 cache->cached = BTRFS_CACHE_FINISHED; 1720 cache->free_space_ctl->free_space = free; 1721 cache->zone_unusable = unusable; 1722 } 1723 1724 bool btrfs_use_zone_append(struct btrfs_bio *bbio) 1725 { 1726 u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT); 1727 struct btrfs_inode *inode = bbio->inode; 1728 struct btrfs_fs_info *fs_info = bbio->fs_info; 1729 struct btrfs_block_group *cache; 1730 bool ret = false; 1731 1732 if (!btrfs_is_zoned(fs_info)) 1733 return false; 1734 1735 if (!inode || !is_data_inode(inode)) 1736 return false; 1737 1738 if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE) 1739 return false; 1740 1741 /* 1742 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the 1743 * extent layout the relocation code has. 1744 * Furthermore we have set aside own block-group from which only the 1745 * relocation "process" can allocate and make sure only one process at a 1746 * time can add pages to an extent that gets relocated, so it's safe to 1747 * use regular REQ_OP_WRITE for this special case. 1748 */ 1749 if (btrfs_is_data_reloc_root(inode->root)) 1750 return false; 1751 1752 cache = btrfs_lookup_block_group(fs_info, start); 1753 ASSERT(cache); 1754 if (!cache) 1755 return false; 1756 1757 ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); 1758 btrfs_put_block_group(cache); 1759 1760 return ret; 1761 } 1762 1763 void btrfs_record_physical_zoned(struct btrfs_bio *bbio) 1764 { 1765 const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 1766 struct btrfs_ordered_sum *sum = bbio->sums; 1767 1768 if (physical < bbio->orig_physical) 1769 sum->logical -= bbio->orig_physical - physical; 1770 else 1771 sum->logical += physical - bbio->orig_physical; 1772 } 1773 1774 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered, 1775 u64 logical) 1776 { 1777 struct extent_map_tree *em_tree = &ordered->inode->extent_tree; 1778 struct extent_map *em; 1779 1780 ordered->disk_bytenr = logical; 1781 1782 write_lock(&em_tree->lock); 1783 em = search_extent_mapping(em_tree, ordered->file_offset, 1784 ordered->num_bytes); 1785 /* The em should be a new COW extent, thus it should not have an offset. */ 1786 ASSERT(em->offset == 0); 1787 em->disk_bytenr = logical; 1788 free_extent_map(em); 1789 write_unlock(&em_tree->lock); 1790 } 1791 1792 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered, 1793 u64 logical, u64 len) 1794 { 1795 struct btrfs_ordered_extent *new; 1796 1797 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) && 1798 split_extent_map(ordered->inode, ordered->file_offset, 1799 ordered->num_bytes, len, logical)) 1800 return false; 1801 1802 new = btrfs_split_ordered_extent(ordered, len); 1803 if (IS_ERR(new)) 1804 return false; 1805 new->disk_bytenr = logical; 1806 btrfs_finish_one_ordered(new); 1807 return true; 1808 } 1809 1810 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered) 1811 { 1812 struct btrfs_inode *inode = ordered->inode; 1813 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1814 struct btrfs_ordered_sum *sum; 1815 u64 logical, len; 1816 1817 /* 1818 * Write to pre-allocated region is for the data relocation, and so 1819 * it should use WRITE operation. No split/rewrite are necessary. 1820 */ 1821 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) 1822 return; 1823 1824 ASSERT(!list_empty(&ordered->list)); 1825 /* The ordered->list can be empty in the above pre-alloc case. */ 1826 sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list); 1827 logical = sum->logical; 1828 len = sum->len; 1829 1830 while (len < ordered->disk_num_bytes) { 1831 sum = list_next_entry(sum, list); 1832 if (sum->logical == logical + len) { 1833 len += sum->len; 1834 continue; 1835 } 1836 if (!btrfs_zoned_split_ordered(ordered, logical, len)) { 1837 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 1838 btrfs_err(fs_info, "failed to split ordered extent"); 1839 goto out; 1840 } 1841 logical = sum->logical; 1842 len = sum->len; 1843 } 1844 1845 if (ordered->disk_bytenr != logical) 1846 btrfs_rewrite_logical_zoned(ordered, logical); 1847 1848 out: 1849 /* 1850 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures 1851 * were allocated by btrfs_alloc_dummy_sum only to record the logical 1852 * addresses and don't contain actual checksums. We thus must free them 1853 * here so that we don't attempt to log the csums later. 1854 */ 1855 if ((inode->flags & BTRFS_INODE_NODATASUM) || 1856 test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state)) { 1857 while ((sum = list_first_entry_or_null(&ordered->list, 1858 typeof(*sum), list))) { 1859 list_del(&sum->list); 1860 kfree(sum); 1861 } 1862 } 1863 } 1864 1865 static bool check_bg_is_active(struct btrfs_eb_write_context *ctx, 1866 struct btrfs_block_group **active_bg) 1867 { 1868 const struct writeback_control *wbc = ctx->wbc; 1869 struct btrfs_block_group *block_group = ctx->zoned_bg; 1870 struct btrfs_fs_info *fs_info = block_group->fs_info; 1871 1872 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) 1873 return true; 1874 1875 if (fs_info->treelog_bg == block_group->start) { 1876 if (!btrfs_zone_activate(block_group)) { 1877 int ret_fin = btrfs_zone_finish_one_bg(fs_info); 1878 1879 if (ret_fin != 1 || !btrfs_zone_activate(block_group)) 1880 return false; 1881 } 1882 } else if (*active_bg != block_group) { 1883 struct btrfs_block_group *tgt = *active_bg; 1884 1885 /* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */ 1886 lockdep_assert_held(&fs_info->zoned_meta_io_lock); 1887 1888 if (tgt) { 1889 /* 1890 * If there is an unsent IO left in the allocated area, 1891 * we cannot wait for them as it may cause a deadlock. 1892 */ 1893 if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) { 1894 if (wbc->sync_mode == WB_SYNC_NONE || 1895 (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)) 1896 return false; 1897 } 1898 1899 /* Pivot active metadata/system block group. */ 1900 btrfs_zoned_meta_io_unlock(fs_info); 1901 wait_eb_writebacks(tgt); 1902 do_zone_finish(tgt, true); 1903 btrfs_zoned_meta_io_lock(fs_info); 1904 if (*active_bg == tgt) { 1905 btrfs_put_block_group(tgt); 1906 *active_bg = NULL; 1907 } 1908 } 1909 if (!btrfs_zone_activate(block_group)) 1910 return false; 1911 if (*active_bg != block_group) { 1912 ASSERT(*active_bg == NULL); 1913 *active_bg = block_group; 1914 btrfs_get_block_group(block_group); 1915 } 1916 } 1917 1918 return true; 1919 } 1920 1921 /* 1922 * Check if @ctx->eb is aligned to the write pointer. 1923 * 1924 * Return: 1925 * 0: @ctx->eb is at the write pointer. You can write it. 1926 * -EAGAIN: There is a hole. The caller should handle the case. 1927 * -EBUSY: There is a hole, but the caller can just bail out. 1928 */ 1929 int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info, 1930 struct btrfs_eb_write_context *ctx) 1931 { 1932 const struct writeback_control *wbc = ctx->wbc; 1933 const struct extent_buffer *eb = ctx->eb; 1934 struct btrfs_block_group *block_group = ctx->zoned_bg; 1935 1936 if (!btrfs_is_zoned(fs_info)) 1937 return 0; 1938 1939 if (block_group) { 1940 if (block_group->start > eb->start || 1941 block_group->start + block_group->length <= eb->start) { 1942 btrfs_put_block_group(block_group); 1943 block_group = NULL; 1944 ctx->zoned_bg = NULL; 1945 } 1946 } 1947 1948 if (!block_group) { 1949 block_group = btrfs_lookup_block_group(fs_info, eb->start); 1950 if (!block_group) 1951 return 0; 1952 ctx->zoned_bg = block_group; 1953 } 1954 1955 if (block_group->meta_write_pointer == eb->start) { 1956 struct btrfs_block_group **tgt; 1957 1958 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags)) 1959 return 0; 1960 1961 if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) 1962 tgt = &fs_info->active_system_bg; 1963 else 1964 tgt = &fs_info->active_meta_bg; 1965 if (check_bg_is_active(ctx, tgt)) 1966 return 0; 1967 } 1968 1969 /* 1970 * Since we may release fs_info->zoned_meta_io_lock, someone can already 1971 * start writing this eb. In that case, we can just bail out. 1972 */ 1973 if (block_group->meta_write_pointer > eb->start) 1974 return -EBUSY; 1975 1976 /* If for_sync, this hole will be filled with trasnsaction commit. */ 1977 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 1978 return -EAGAIN; 1979 return -EBUSY; 1980 } 1981 1982 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length) 1983 { 1984 if (!btrfs_dev_is_sequential(device, physical)) 1985 return -EOPNOTSUPP; 1986 1987 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT, 1988 length >> SECTOR_SHIFT, GFP_NOFS, 0); 1989 } 1990 1991 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical, 1992 struct blk_zone *zone) 1993 { 1994 struct btrfs_io_context *bioc = NULL; 1995 u64 mapped_length = PAGE_SIZE; 1996 unsigned int nofs_flag; 1997 int nmirrors; 1998 int i, ret; 1999 2000 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 2001 &mapped_length, &bioc, NULL, NULL); 2002 if (ret || !bioc || mapped_length < PAGE_SIZE) { 2003 ret = -EIO; 2004 goto out_put_bioc; 2005 } 2006 2007 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 2008 ret = -EINVAL; 2009 goto out_put_bioc; 2010 } 2011 2012 nofs_flag = memalloc_nofs_save(); 2013 nmirrors = (int)bioc->num_stripes; 2014 for (i = 0; i < nmirrors; i++) { 2015 u64 physical = bioc->stripes[i].physical; 2016 struct btrfs_device *dev = bioc->stripes[i].dev; 2017 2018 /* Missing device */ 2019 if (!dev->bdev) 2020 continue; 2021 2022 ret = btrfs_get_dev_zone(dev, physical, zone); 2023 /* Failing device */ 2024 if (ret == -EIO || ret == -EOPNOTSUPP) 2025 continue; 2026 break; 2027 } 2028 memalloc_nofs_restore(nofs_flag); 2029 out_put_bioc: 2030 btrfs_put_bioc(bioc); 2031 return ret; 2032 } 2033 2034 /* 2035 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by 2036 * filling zeros between @physical_pos to a write pointer of dev-replace 2037 * source device. 2038 */ 2039 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical, 2040 u64 physical_start, u64 physical_pos) 2041 { 2042 struct btrfs_fs_info *fs_info = tgt_dev->fs_info; 2043 struct blk_zone zone; 2044 u64 length; 2045 u64 wp; 2046 int ret; 2047 2048 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos)) 2049 return 0; 2050 2051 ret = read_zone_info(fs_info, logical, &zone); 2052 if (ret) 2053 return ret; 2054 2055 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT); 2056 2057 if (physical_pos == wp) 2058 return 0; 2059 2060 if (physical_pos > wp) 2061 return -EUCLEAN; 2062 2063 length = wp - physical_pos; 2064 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length); 2065 } 2066 2067 /* 2068 * Activate block group and underlying device zones 2069 * 2070 * @block_group: the block group to activate 2071 * 2072 * Return: true on success, false otherwise 2073 */ 2074 bool btrfs_zone_activate(struct btrfs_block_group *block_group) 2075 { 2076 struct btrfs_fs_info *fs_info = block_group->fs_info; 2077 struct btrfs_chunk_map *map; 2078 struct btrfs_device *device; 2079 u64 physical; 2080 const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA); 2081 bool ret; 2082 int i; 2083 2084 if (!btrfs_is_zoned(block_group->fs_info)) 2085 return true; 2086 2087 map = block_group->physical_map; 2088 2089 spin_lock(&fs_info->zone_active_bgs_lock); 2090 spin_lock(&block_group->lock); 2091 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 2092 ret = true; 2093 goto out_unlock; 2094 } 2095 2096 /* No space left */ 2097 if (btrfs_zoned_bg_is_full(block_group)) { 2098 ret = false; 2099 goto out_unlock; 2100 } 2101 2102 for (i = 0; i < map->num_stripes; i++) { 2103 struct btrfs_zoned_device_info *zinfo; 2104 int reserved = 0; 2105 2106 device = map->stripes[i].dev; 2107 physical = map->stripes[i].physical; 2108 zinfo = device->zone_info; 2109 2110 if (zinfo->max_active_zones == 0) 2111 continue; 2112 2113 if (is_data) 2114 reserved = zinfo->reserved_active_zones; 2115 /* 2116 * For the data block group, leave active zones for one 2117 * metadata block group and one system block group. 2118 */ 2119 if (atomic_read(&zinfo->active_zones_left) <= reserved) { 2120 ret = false; 2121 goto out_unlock; 2122 } 2123 2124 if (!btrfs_dev_set_active_zone(device, physical)) { 2125 /* Cannot activate the zone */ 2126 ret = false; 2127 goto out_unlock; 2128 } 2129 if (!is_data) 2130 zinfo->reserved_active_zones--; 2131 } 2132 2133 /* Successfully activated all the zones */ 2134 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 2135 spin_unlock(&block_group->lock); 2136 2137 /* For the active block group list */ 2138 btrfs_get_block_group(block_group); 2139 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs); 2140 spin_unlock(&fs_info->zone_active_bgs_lock); 2141 2142 return true; 2143 2144 out_unlock: 2145 spin_unlock(&block_group->lock); 2146 spin_unlock(&fs_info->zone_active_bgs_lock); 2147 return ret; 2148 } 2149 2150 static void wait_eb_writebacks(struct btrfs_block_group *block_group) 2151 { 2152 struct btrfs_fs_info *fs_info = block_group->fs_info; 2153 const u64 end = block_group->start + block_group->length; 2154 struct radix_tree_iter iter; 2155 struct extent_buffer *eb; 2156 void __rcu **slot; 2157 2158 rcu_read_lock(); 2159 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter, 2160 block_group->start >> fs_info->sectorsize_bits) { 2161 eb = radix_tree_deref_slot(slot); 2162 if (!eb) 2163 continue; 2164 if (radix_tree_deref_retry(eb)) { 2165 slot = radix_tree_iter_retry(&iter); 2166 continue; 2167 } 2168 2169 if (eb->start < block_group->start) 2170 continue; 2171 if (eb->start >= end) 2172 break; 2173 2174 slot = radix_tree_iter_resume(slot, &iter); 2175 rcu_read_unlock(); 2176 wait_on_extent_buffer_writeback(eb); 2177 rcu_read_lock(); 2178 } 2179 rcu_read_unlock(); 2180 } 2181 2182 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written) 2183 { 2184 struct btrfs_fs_info *fs_info = block_group->fs_info; 2185 struct btrfs_chunk_map *map; 2186 const bool is_metadata = (block_group->flags & 2187 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)); 2188 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 2189 int ret = 0; 2190 int i; 2191 2192 spin_lock(&block_group->lock); 2193 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 2194 spin_unlock(&block_group->lock); 2195 return 0; 2196 } 2197 2198 /* Check if we have unwritten allocated space */ 2199 if (is_metadata && 2200 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) { 2201 spin_unlock(&block_group->lock); 2202 return -EAGAIN; 2203 } 2204 2205 /* 2206 * If we are sure that the block group is full (= no more room left for 2207 * new allocation) and the IO for the last usable block is completed, we 2208 * don't need to wait for the other IOs. This holds because we ensure 2209 * the sequential IO submissions using the ZONE_APPEND command for data 2210 * and block_group->meta_write_pointer for metadata. 2211 */ 2212 if (!fully_written) { 2213 if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) { 2214 spin_unlock(&block_group->lock); 2215 return -EAGAIN; 2216 } 2217 spin_unlock(&block_group->lock); 2218 2219 ret = btrfs_inc_block_group_ro(block_group, false); 2220 if (ret) 2221 return ret; 2222 2223 /* Ensure all writes in this block group finish */ 2224 btrfs_wait_block_group_reservations(block_group); 2225 /* No need to wait for NOCOW writers. Zoned mode does not allow that */ 2226 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group); 2227 /* Wait for extent buffers to be written. */ 2228 if (is_metadata) 2229 wait_eb_writebacks(block_group); 2230 2231 spin_lock(&block_group->lock); 2232 2233 /* 2234 * Bail out if someone already deactivated the block group, or 2235 * allocated space is left in the block group. 2236 */ 2237 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2238 &block_group->runtime_flags)) { 2239 spin_unlock(&block_group->lock); 2240 btrfs_dec_block_group_ro(block_group); 2241 return 0; 2242 } 2243 2244 if (block_group->reserved || 2245 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, 2246 &block_group->runtime_flags)) { 2247 spin_unlock(&block_group->lock); 2248 btrfs_dec_block_group_ro(block_group); 2249 return -EAGAIN; 2250 } 2251 } 2252 2253 clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 2254 block_group->alloc_offset = block_group->zone_capacity; 2255 if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)) 2256 block_group->meta_write_pointer = block_group->start + 2257 block_group->zone_capacity; 2258 block_group->free_space_ctl->free_space = 0; 2259 btrfs_clear_treelog_bg(block_group); 2260 btrfs_clear_data_reloc_bg(block_group); 2261 spin_unlock(&block_group->lock); 2262 2263 down_read(&dev_replace->rwsem); 2264 map = block_group->physical_map; 2265 for (i = 0; i < map->num_stripes; i++) { 2266 struct btrfs_device *device = map->stripes[i].dev; 2267 const u64 physical = map->stripes[i].physical; 2268 struct btrfs_zoned_device_info *zinfo = device->zone_info; 2269 unsigned int nofs_flags; 2270 2271 if (zinfo->max_active_zones == 0) 2272 continue; 2273 2274 nofs_flags = memalloc_nofs_save(); 2275 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH, 2276 physical >> SECTOR_SHIFT, 2277 zinfo->zone_size >> SECTOR_SHIFT); 2278 memalloc_nofs_restore(nofs_flags); 2279 2280 if (ret) { 2281 up_read(&dev_replace->rwsem); 2282 return ret; 2283 } 2284 2285 if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 2286 zinfo->reserved_active_zones++; 2287 btrfs_dev_clear_active_zone(device, physical); 2288 } 2289 up_read(&dev_replace->rwsem); 2290 2291 if (!fully_written) 2292 btrfs_dec_block_group_ro(block_group); 2293 2294 spin_lock(&fs_info->zone_active_bgs_lock); 2295 ASSERT(!list_empty(&block_group->active_bg_list)); 2296 list_del_init(&block_group->active_bg_list); 2297 spin_unlock(&fs_info->zone_active_bgs_lock); 2298 2299 /* For active_bg_list */ 2300 btrfs_put_block_group(block_group); 2301 2302 clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2303 2304 return 0; 2305 } 2306 2307 int btrfs_zone_finish(struct btrfs_block_group *block_group) 2308 { 2309 if (!btrfs_is_zoned(block_group->fs_info)) 2310 return 0; 2311 2312 return do_zone_finish(block_group, false); 2313 } 2314 2315 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags) 2316 { 2317 struct btrfs_fs_info *fs_info = fs_devices->fs_info; 2318 struct btrfs_device *device; 2319 bool ret = false; 2320 2321 if (!btrfs_is_zoned(fs_info)) 2322 return true; 2323 2324 /* Check if there is a device with active zones left */ 2325 mutex_lock(&fs_info->chunk_mutex); 2326 spin_lock(&fs_info->zone_active_bgs_lock); 2327 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 2328 struct btrfs_zoned_device_info *zinfo = device->zone_info; 2329 int reserved = 0; 2330 2331 if (!device->bdev) 2332 continue; 2333 2334 if (!zinfo->max_active_zones) { 2335 ret = true; 2336 break; 2337 } 2338 2339 if (flags & BTRFS_BLOCK_GROUP_DATA) 2340 reserved = zinfo->reserved_active_zones; 2341 2342 switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 2343 case 0: /* single */ 2344 ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved)); 2345 break; 2346 case BTRFS_BLOCK_GROUP_DUP: 2347 ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved)); 2348 break; 2349 } 2350 if (ret) 2351 break; 2352 } 2353 spin_unlock(&fs_info->zone_active_bgs_lock); 2354 mutex_unlock(&fs_info->chunk_mutex); 2355 2356 if (!ret) 2357 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2358 2359 return ret; 2360 } 2361 2362 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length) 2363 { 2364 struct btrfs_block_group *block_group; 2365 u64 min_alloc_bytes; 2366 2367 if (!btrfs_is_zoned(fs_info)) 2368 return; 2369 2370 block_group = btrfs_lookup_block_group(fs_info, logical); 2371 ASSERT(block_group); 2372 2373 /* No MIXED_BG on zoned btrfs. */ 2374 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA) 2375 min_alloc_bytes = fs_info->sectorsize; 2376 else 2377 min_alloc_bytes = fs_info->nodesize; 2378 2379 /* Bail out if we can allocate more data from this block group. */ 2380 if (logical + length + min_alloc_bytes <= 2381 block_group->start + block_group->zone_capacity) 2382 goto out; 2383 2384 do_zone_finish(block_group, true); 2385 2386 out: 2387 btrfs_put_block_group(block_group); 2388 } 2389 2390 static void btrfs_zone_finish_endio_workfn(struct work_struct *work) 2391 { 2392 struct btrfs_block_group *bg = 2393 container_of(work, struct btrfs_block_group, zone_finish_work); 2394 2395 wait_on_extent_buffer_writeback(bg->last_eb); 2396 free_extent_buffer(bg->last_eb); 2397 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length); 2398 btrfs_put_block_group(bg); 2399 } 2400 2401 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg, 2402 struct extent_buffer *eb) 2403 { 2404 if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) || 2405 eb->start + eb->len * 2 <= bg->start + bg->zone_capacity) 2406 return; 2407 2408 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) { 2409 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing", 2410 bg->start); 2411 return; 2412 } 2413 2414 /* For the work */ 2415 btrfs_get_block_group(bg); 2416 atomic_inc(&eb->refs); 2417 bg->last_eb = eb; 2418 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn); 2419 queue_work(system_unbound_wq, &bg->zone_finish_work); 2420 } 2421 2422 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg) 2423 { 2424 struct btrfs_fs_info *fs_info = bg->fs_info; 2425 2426 spin_lock(&fs_info->relocation_bg_lock); 2427 if (fs_info->data_reloc_bg == bg->start) 2428 fs_info->data_reloc_bg = 0; 2429 spin_unlock(&fs_info->relocation_bg_lock); 2430 } 2431 2432 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info) 2433 { 2434 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2435 struct btrfs_device *device; 2436 2437 if (!btrfs_is_zoned(fs_info)) 2438 return; 2439 2440 mutex_lock(&fs_devices->device_list_mutex); 2441 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2442 if (device->zone_info) { 2443 vfree(device->zone_info->zone_cache); 2444 device->zone_info->zone_cache = NULL; 2445 } 2446 } 2447 mutex_unlock(&fs_devices->device_list_mutex); 2448 } 2449 2450 bool btrfs_zoned_should_reclaim(const struct btrfs_fs_info *fs_info) 2451 { 2452 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2453 struct btrfs_device *device; 2454 u64 used = 0; 2455 u64 total = 0; 2456 u64 factor; 2457 2458 ASSERT(btrfs_is_zoned(fs_info)); 2459 2460 if (fs_info->bg_reclaim_threshold == 0) 2461 return false; 2462 2463 mutex_lock(&fs_devices->device_list_mutex); 2464 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2465 if (!device->bdev) 2466 continue; 2467 2468 total += device->disk_total_bytes; 2469 used += device->bytes_used; 2470 } 2471 mutex_unlock(&fs_devices->device_list_mutex); 2472 2473 factor = div64_u64(used * 100, total); 2474 return factor >= fs_info->bg_reclaim_threshold; 2475 } 2476 2477 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical, 2478 u64 length) 2479 { 2480 struct btrfs_block_group *block_group; 2481 2482 if (!btrfs_is_zoned(fs_info)) 2483 return; 2484 2485 block_group = btrfs_lookup_block_group(fs_info, logical); 2486 /* It should be called on a previous data relocation block group. */ 2487 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)); 2488 2489 spin_lock(&block_group->lock); 2490 if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) 2491 goto out; 2492 2493 /* All relocation extents are written. */ 2494 if (block_group->start + block_group->alloc_offset == logical + length) { 2495 /* 2496 * Now, release this block group for further allocations and 2497 * zone finish. 2498 */ 2499 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, 2500 &block_group->runtime_flags); 2501 } 2502 2503 out: 2504 spin_unlock(&block_group->lock); 2505 btrfs_put_block_group(block_group); 2506 } 2507 2508 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info) 2509 { 2510 struct btrfs_block_group *block_group; 2511 struct btrfs_block_group *min_bg = NULL; 2512 u64 min_avail = U64_MAX; 2513 int ret; 2514 2515 spin_lock(&fs_info->zone_active_bgs_lock); 2516 list_for_each_entry(block_group, &fs_info->zone_active_bgs, 2517 active_bg_list) { 2518 u64 avail; 2519 2520 spin_lock(&block_group->lock); 2521 if (block_group->reserved || block_group->alloc_offset == 0 || 2522 (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) || 2523 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) { 2524 spin_unlock(&block_group->lock); 2525 continue; 2526 } 2527 2528 avail = block_group->zone_capacity - block_group->alloc_offset; 2529 if (min_avail > avail) { 2530 if (min_bg) 2531 btrfs_put_block_group(min_bg); 2532 min_bg = block_group; 2533 min_avail = avail; 2534 btrfs_get_block_group(min_bg); 2535 } 2536 spin_unlock(&block_group->lock); 2537 } 2538 spin_unlock(&fs_info->zone_active_bgs_lock); 2539 2540 if (!min_bg) 2541 return 0; 2542 2543 ret = btrfs_zone_finish(min_bg); 2544 btrfs_put_block_group(min_bg); 2545 2546 return ret < 0 ? ret : 1; 2547 } 2548 2549 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info, 2550 struct btrfs_space_info *space_info, 2551 bool do_finish) 2552 { 2553 struct btrfs_block_group *bg; 2554 int index; 2555 2556 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA)) 2557 return 0; 2558 2559 for (;;) { 2560 int ret; 2561 bool need_finish = false; 2562 2563 down_read(&space_info->groups_sem); 2564 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) { 2565 list_for_each_entry(bg, &space_info->block_groups[index], 2566 list) { 2567 if (!spin_trylock(&bg->lock)) 2568 continue; 2569 if (btrfs_zoned_bg_is_full(bg) || 2570 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2571 &bg->runtime_flags)) { 2572 spin_unlock(&bg->lock); 2573 continue; 2574 } 2575 spin_unlock(&bg->lock); 2576 2577 if (btrfs_zone_activate(bg)) { 2578 up_read(&space_info->groups_sem); 2579 return 1; 2580 } 2581 2582 need_finish = true; 2583 } 2584 } 2585 up_read(&space_info->groups_sem); 2586 2587 if (!do_finish || !need_finish) 2588 break; 2589 2590 ret = btrfs_zone_finish_one_bg(fs_info); 2591 if (ret == 0) 2592 break; 2593 if (ret < 0) 2594 return ret; 2595 } 2596 2597 return 0; 2598 } 2599 2600 /* 2601 * Reserve zones for one metadata block group, one tree-log block group, and one 2602 * system block group. 2603 */ 2604 void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info) 2605 { 2606 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2607 struct btrfs_block_group *block_group; 2608 struct btrfs_device *device; 2609 /* Reserve zones for normal SINGLE metadata and tree-log block group. */ 2610 unsigned int metadata_reserve = 2; 2611 /* Reserve a zone for SINGLE system block group. */ 2612 unsigned int system_reserve = 1; 2613 2614 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags)) 2615 return; 2616 2617 /* 2618 * This function is called from the mount context. So, there is no 2619 * parallel process touching the bits. No need for read_seqretry(). 2620 */ 2621 if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP) 2622 metadata_reserve = 4; 2623 if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP) 2624 system_reserve = 2; 2625 2626 /* Apply the reservation on all the devices. */ 2627 mutex_lock(&fs_devices->device_list_mutex); 2628 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2629 if (!device->bdev) 2630 continue; 2631 2632 device->zone_info->reserved_active_zones = 2633 metadata_reserve + system_reserve; 2634 } 2635 mutex_unlock(&fs_devices->device_list_mutex); 2636 2637 /* Release reservation for currently active block groups. */ 2638 spin_lock(&fs_info->zone_active_bgs_lock); 2639 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) { 2640 struct btrfs_chunk_map *map = block_group->physical_map; 2641 2642 if (!(block_group->flags & 2643 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))) 2644 continue; 2645 2646 for (int i = 0; i < map->num_stripes; i++) 2647 map->stripes[i].dev->zone_info->reserved_active_zones--; 2648 } 2649 spin_unlock(&fs_info->zone_active_bgs_lock); 2650 } 2651