xref: /linux/fs/btrfs/zoned.c (revision c4bbe83d27c2446a033cc0381c3fb6be5e8c41c7)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "rcu-string.h"
13 #include "disk-io.h"
14 #include "block-group.h"
15 #include "transaction.h"
16 #include "dev-replace.h"
17 #include "space-info.h"
18 #include "super.h"
19 #include "fs.h"
20 #include "accessors.h"
21 #include "bio.h"
22 
23 /* Maximum number of zones to report per blkdev_report_zones() call */
24 #define BTRFS_REPORT_NR_ZONES   4096
25 /* Invalid allocation pointer value for missing devices */
26 #define WP_MISSING_DEV ((u64)-1)
27 /* Pseudo write pointer value for conventional zone */
28 #define WP_CONVENTIONAL ((u64)-2)
29 
30 /*
31  * Location of the first zone of superblock logging zone pairs.
32  *
33  * - primary superblock:    0B (zone 0)
34  * - first copy:          512G (zone starting at that offset)
35  * - second copy:           4T (zone starting at that offset)
36  */
37 #define BTRFS_SB_LOG_PRIMARY_OFFSET	(0ULL)
38 #define BTRFS_SB_LOG_FIRST_OFFSET	(512ULL * SZ_1G)
39 #define BTRFS_SB_LOG_SECOND_OFFSET	(4096ULL * SZ_1G)
40 
41 #define BTRFS_SB_LOG_FIRST_SHIFT	const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
42 #define BTRFS_SB_LOG_SECOND_SHIFT	const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
43 
44 /* Number of superblock log zones */
45 #define BTRFS_NR_SB_LOG_ZONES 2
46 
47 /*
48  * Minimum of active zones we need:
49  *
50  * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
51  * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
52  * - 1 zone for tree-log dedicated block group
53  * - 1 zone for relocation
54  */
55 #define BTRFS_MIN_ACTIVE_ZONES		(BTRFS_SUPER_MIRROR_MAX + 5)
56 
57 /*
58  * Minimum / maximum supported zone size. Currently, SMR disks have a zone
59  * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
60  * We do not expect the zone size to become larger than 8GiB or smaller than
61  * 4MiB in the near future.
62  */
63 #define BTRFS_MAX_ZONE_SIZE		SZ_8G
64 #define BTRFS_MIN_ZONE_SIZE		SZ_4M
65 
66 #define SUPER_INFO_SECTORS	((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
67 
68 static void wait_eb_writebacks(struct btrfs_block_group *block_group);
69 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written);
70 
71 static inline bool sb_zone_is_full(const struct blk_zone *zone)
72 {
73 	return (zone->cond == BLK_ZONE_COND_FULL) ||
74 		(zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
75 }
76 
77 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
78 {
79 	struct blk_zone *zones = data;
80 
81 	memcpy(&zones[idx], zone, sizeof(*zone));
82 
83 	return 0;
84 }
85 
86 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
87 			    u64 *wp_ret)
88 {
89 	bool empty[BTRFS_NR_SB_LOG_ZONES];
90 	bool full[BTRFS_NR_SB_LOG_ZONES];
91 	sector_t sector;
92 	int i;
93 
94 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
95 		ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
96 		empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
97 		full[i] = sb_zone_is_full(&zones[i]);
98 	}
99 
100 	/*
101 	 * Possible states of log buffer zones
102 	 *
103 	 *           Empty[0]  In use[0]  Full[0]
104 	 * Empty[1]         *          0        1
105 	 * In use[1]        x          x        1
106 	 * Full[1]          0          0        C
107 	 *
108 	 * Log position:
109 	 *   *: Special case, no superblock is written
110 	 *   0: Use write pointer of zones[0]
111 	 *   1: Use write pointer of zones[1]
112 	 *   C: Compare super blocks from zones[0] and zones[1], use the latest
113 	 *      one determined by generation
114 	 *   x: Invalid state
115 	 */
116 
117 	if (empty[0] && empty[1]) {
118 		/* Special case to distinguish no superblock to read */
119 		*wp_ret = zones[0].start << SECTOR_SHIFT;
120 		return -ENOENT;
121 	} else if (full[0] && full[1]) {
122 		/* Compare two super blocks */
123 		struct address_space *mapping = bdev->bd_inode->i_mapping;
124 		struct page *page[BTRFS_NR_SB_LOG_ZONES];
125 		struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
126 		int i;
127 
128 		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
129 			u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT;
130 			u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) -
131 						BTRFS_SUPER_INFO_SIZE;
132 
133 			page[i] = read_cache_page_gfp(mapping,
134 					bytenr >> PAGE_SHIFT, GFP_NOFS);
135 			if (IS_ERR(page[i])) {
136 				if (i == 1)
137 					btrfs_release_disk_super(super[0]);
138 				return PTR_ERR(page[i]);
139 			}
140 			super[i] = page_address(page[i]);
141 		}
142 
143 		if (btrfs_super_generation(super[0]) >
144 		    btrfs_super_generation(super[1]))
145 			sector = zones[1].start;
146 		else
147 			sector = zones[0].start;
148 
149 		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
150 			btrfs_release_disk_super(super[i]);
151 	} else if (!full[0] && (empty[1] || full[1])) {
152 		sector = zones[0].wp;
153 	} else if (full[0]) {
154 		sector = zones[1].wp;
155 	} else {
156 		return -EUCLEAN;
157 	}
158 	*wp_ret = sector << SECTOR_SHIFT;
159 	return 0;
160 }
161 
162 /*
163  * Get the first zone number of the superblock mirror
164  */
165 static inline u32 sb_zone_number(int shift, int mirror)
166 {
167 	u64 zone = U64_MAX;
168 
169 	ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
170 	switch (mirror) {
171 	case 0: zone = 0; break;
172 	case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
173 	case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
174 	}
175 
176 	ASSERT(zone <= U32_MAX);
177 
178 	return (u32)zone;
179 }
180 
181 static inline sector_t zone_start_sector(u32 zone_number,
182 					 struct block_device *bdev)
183 {
184 	return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
185 }
186 
187 static inline u64 zone_start_physical(u32 zone_number,
188 				      struct btrfs_zoned_device_info *zone_info)
189 {
190 	return (u64)zone_number << zone_info->zone_size_shift;
191 }
192 
193 /*
194  * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
195  * device into static sized chunks and fake a conventional zone on each of
196  * them.
197  */
198 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
199 				struct blk_zone *zones, unsigned int nr_zones)
200 {
201 	const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
202 	sector_t bdev_size = bdev_nr_sectors(device->bdev);
203 	unsigned int i;
204 
205 	pos >>= SECTOR_SHIFT;
206 	for (i = 0; i < nr_zones; i++) {
207 		zones[i].start = i * zone_sectors + pos;
208 		zones[i].len = zone_sectors;
209 		zones[i].capacity = zone_sectors;
210 		zones[i].wp = zones[i].start + zone_sectors;
211 		zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
212 		zones[i].cond = BLK_ZONE_COND_NOT_WP;
213 
214 		if (zones[i].wp >= bdev_size) {
215 			i++;
216 			break;
217 		}
218 	}
219 
220 	return i;
221 }
222 
223 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
224 			       struct blk_zone *zones, unsigned int *nr_zones)
225 {
226 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
227 	int ret;
228 
229 	if (!*nr_zones)
230 		return 0;
231 
232 	if (!bdev_is_zoned(device->bdev)) {
233 		ret = emulate_report_zones(device, pos, zones, *nr_zones);
234 		*nr_zones = ret;
235 		return 0;
236 	}
237 
238 	/* Check cache */
239 	if (zinfo->zone_cache) {
240 		unsigned int i;
241 		u32 zno;
242 
243 		ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
244 		zno = pos >> zinfo->zone_size_shift;
245 		/*
246 		 * We cannot report zones beyond the zone end. So, it is OK to
247 		 * cap *nr_zones to at the end.
248 		 */
249 		*nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
250 
251 		for (i = 0; i < *nr_zones; i++) {
252 			struct blk_zone *zone_info;
253 
254 			zone_info = &zinfo->zone_cache[zno + i];
255 			if (!zone_info->len)
256 				break;
257 		}
258 
259 		if (i == *nr_zones) {
260 			/* Cache hit on all the zones */
261 			memcpy(zones, zinfo->zone_cache + zno,
262 			       sizeof(*zinfo->zone_cache) * *nr_zones);
263 			return 0;
264 		}
265 	}
266 
267 	ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
268 				  copy_zone_info_cb, zones);
269 	if (ret < 0) {
270 		btrfs_err_in_rcu(device->fs_info,
271 				 "zoned: failed to read zone %llu on %s (devid %llu)",
272 				 pos, rcu_str_deref(device->name),
273 				 device->devid);
274 		return ret;
275 	}
276 	*nr_zones = ret;
277 	if (!ret)
278 		return -EIO;
279 
280 	/* Populate cache */
281 	if (zinfo->zone_cache) {
282 		u32 zno = pos >> zinfo->zone_size_shift;
283 
284 		memcpy(zinfo->zone_cache + zno, zones,
285 		       sizeof(*zinfo->zone_cache) * *nr_zones);
286 	}
287 
288 	return 0;
289 }
290 
291 /* The emulated zone size is determined from the size of device extent */
292 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
293 {
294 	struct btrfs_path *path;
295 	struct btrfs_root *root = fs_info->dev_root;
296 	struct btrfs_key key;
297 	struct extent_buffer *leaf;
298 	struct btrfs_dev_extent *dext;
299 	int ret = 0;
300 
301 	key.objectid = 1;
302 	key.type = BTRFS_DEV_EXTENT_KEY;
303 	key.offset = 0;
304 
305 	path = btrfs_alloc_path();
306 	if (!path)
307 		return -ENOMEM;
308 
309 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
310 	if (ret < 0)
311 		goto out;
312 
313 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
314 		ret = btrfs_next_leaf(root, path);
315 		if (ret < 0)
316 			goto out;
317 		/* No dev extents at all? Not good */
318 		if (ret > 0) {
319 			ret = -EUCLEAN;
320 			goto out;
321 		}
322 	}
323 
324 	leaf = path->nodes[0];
325 	dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
326 	fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
327 	ret = 0;
328 
329 out:
330 	btrfs_free_path(path);
331 
332 	return ret;
333 }
334 
335 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
336 {
337 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
338 	struct btrfs_device *device;
339 	int ret = 0;
340 
341 	/* fs_info->zone_size might not set yet. Use the incomapt flag here. */
342 	if (!btrfs_fs_incompat(fs_info, ZONED))
343 		return 0;
344 
345 	mutex_lock(&fs_devices->device_list_mutex);
346 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
347 		/* We can skip reading of zone info for missing devices */
348 		if (!device->bdev)
349 			continue;
350 
351 		ret = btrfs_get_dev_zone_info(device, true);
352 		if (ret)
353 			break;
354 	}
355 	mutex_unlock(&fs_devices->device_list_mutex);
356 
357 	return ret;
358 }
359 
360 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
361 {
362 	struct btrfs_fs_info *fs_info = device->fs_info;
363 	struct btrfs_zoned_device_info *zone_info = NULL;
364 	struct block_device *bdev = device->bdev;
365 	unsigned int max_active_zones;
366 	unsigned int nactive;
367 	sector_t nr_sectors;
368 	sector_t sector = 0;
369 	struct blk_zone *zones = NULL;
370 	unsigned int i, nreported = 0, nr_zones;
371 	sector_t zone_sectors;
372 	char *model, *emulated;
373 	int ret;
374 
375 	/*
376 	 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
377 	 * yet be set.
378 	 */
379 	if (!btrfs_fs_incompat(fs_info, ZONED))
380 		return 0;
381 
382 	if (device->zone_info)
383 		return 0;
384 
385 	zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
386 	if (!zone_info)
387 		return -ENOMEM;
388 
389 	device->zone_info = zone_info;
390 
391 	if (!bdev_is_zoned(bdev)) {
392 		if (!fs_info->zone_size) {
393 			ret = calculate_emulated_zone_size(fs_info);
394 			if (ret)
395 				goto out;
396 		}
397 
398 		ASSERT(fs_info->zone_size);
399 		zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
400 	} else {
401 		zone_sectors = bdev_zone_sectors(bdev);
402 	}
403 
404 	ASSERT(is_power_of_two_u64(zone_sectors));
405 	zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
406 
407 	/* We reject devices with a zone size larger than 8GB */
408 	if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
409 		btrfs_err_in_rcu(fs_info,
410 		"zoned: %s: zone size %llu larger than supported maximum %llu",
411 				 rcu_str_deref(device->name),
412 				 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
413 		ret = -EINVAL;
414 		goto out;
415 	} else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
416 		btrfs_err_in_rcu(fs_info,
417 		"zoned: %s: zone size %llu smaller than supported minimum %u",
418 				 rcu_str_deref(device->name),
419 				 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
420 		ret = -EINVAL;
421 		goto out;
422 	}
423 
424 	nr_sectors = bdev_nr_sectors(bdev);
425 	zone_info->zone_size_shift = ilog2(zone_info->zone_size);
426 	zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
427 	if (!IS_ALIGNED(nr_sectors, zone_sectors))
428 		zone_info->nr_zones++;
429 
430 	max_active_zones = bdev_max_active_zones(bdev);
431 	if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
432 		btrfs_err_in_rcu(fs_info,
433 "zoned: %s: max active zones %u is too small, need at least %u active zones",
434 				 rcu_str_deref(device->name), max_active_zones,
435 				 BTRFS_MIN_ACTIVE_ZONES);
436 		ret = -EINVAL;
437 		goto out;
438 	}
439 	zone_info->max_active_zones = max_active_zones;
440 
441 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
442 	if (!zone_info->seq_zones) {
443 		ret = -ENOMEM;
444 		goto out;
445 	}
446 
447 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
448 	if (!zone_info->empty_zones) {
449 		ret = -ENOMEM;
450 		goto out;
451 	}
452 
453 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
454 	if (!zone_info->active_zones) {
455 		ret = -ENOMEM;
456 		goto out;
457 	}
458 
459 	zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
460 	if (!zones) {
461 		ret = -ENOMEM;
462 		goto out;
463 	}
464 
465 	/*
466 	 * Enable zone cache only for a zoned device. On a non-zoned device, we
467 	 * fill the zone info with emulated CONVENTIONAL zones, so no need to
468 	 * use the cache.
469 	 */
470 	if (populate_cache && bdev_is_zoned(device->bdev)) {
471 		zone_info->zone_cache = vcalloc(zone_info->nr_zones,
472 						sizeof(struct blk_zone));
473 		if (!zone_info->zone_cache) {
474 			btrfs_err_in_rcu(device->fs_info,
475 				"zoned: failed to allocate zone cache for %s",
476 				rcu_str_deref(device->name));
477 			ret = -ENOMEM;
478 			goto out;
479 		}
480 	}
481 
482 	/* Get zones type */
483 	nactive = 0;
484 	while (sector < nr_sectors) {
485 		nr_zones = BTRFS_REPORT_NR_ZONES;
486 		ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
487 					  &nr_zones);
488 		if (ret)
489 			goto out;
490 
491 		for (i = 0; i < nr_zones; i++) {
492 			if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
493 				__set_bit(nreported, zone_info->seq_zones);
494 			switch (zones[i].cond) {
495 			case BLK_ZONE_COND_EMPTY:
496 				__set_bit(nreported, zone_info->empty_zones);
497 				break;
498 			case BLK_ZONE_COND_IMP_OPEN:
499 			case BLK_ZONE_COND_EXP_OPEN:
500 			case BLK_ZONE_COND_CLOSED:
501 				__set_bit(nreported, zone_info->active_zones);
502 				nactive++;
503 				break;
504 			}
505 			nreported++;
506 		}
507 		sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
508 	}
509 
510 	if (nreported != zone_info->nr_zones) {
511 		btrfs_err_in_rcu(device->fs_info,
512 				 "inconsistent number of zones on %s (%u/%u)",
513 				 rcu_str_deref(device->name), nreported,
514 				 zone_info->nr_zones);
515 		ret = -EIO;
516 		goto out;
517 	}
518 
519 	if (max_active_zones) {
520 		if (nactive > max_active_zones) {
521 			btrfs_err_in_rcu(device->fs_info,
522 			"zoned: %u active zones on %s exceeds max_active_zones %u",
523 					 nactive, rcu_str_deref(device->name),
524 					 max_active_zones);
525 			ret = -EIO;
526 			goto out;
527 		}
528 		atomic_set(&zone_info->active_zones_left,
529 			   max_active_zones - nactive);
530 		set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
531 	}
532 
533 	/* Validate superblock log */
534 	nr_zones = BTRFS_NR_SB_LOG_ZONES;
535 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
536 		u32 sb_zone;
537 		u64 sb_wp;
538 		int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
539 
540 		sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
541 		if (sb_zone + 1 >= zone_info->nr_zones)
542 			continue;
543 
544 		ret = btrfs_get_dev_zones(device,
545 					  zone_start_physical(sb_zone, zone_info),
546 					  &zone_info->sb_zones[sb_pos],
547 					  &nr_zones);
548 		if (ret)
549 			goto out;
550 
551 		if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
552 			btrfs_err_in_rcu(device->fs_info,
553 	"zoned: failed to read super block log zone info at devid %llu zone %u",
554 					 device->devid, sb_zone);
555 			ret = -EUCLEAN;
556 			goto out;
557 		}
558 
559 		/*
560 		 * If zones[0] is conventional, always use the beginning of the
561 		 * zone to record superblock. No need to validate in that case.
562 		 */
563 		if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
564 		    BLK_ZONE_TYPE_CONVENTIONAL)
565 			continue;
566 
567 		ret = sb_write_pointer(device->bdev,
568 				       &zone_info->sb_zones[sb_pos], &sb_wp);
569 		if (ret != -ENOENT && ret) {
570 			btrfs_err_in_rcu(device->fs_info,
571 			"zoned: super block log zone corrupted devid %llu zone %u",
572 					 device->devid, sb_zone);
573 			ret = -EUCLEAN;
574 			goto out;
575 		}
576 	}
577 
578 
579 	kvfree(zones);
580 
581 	if (bdev_is_zoned(bdev)) {
582 		model = "host-managed zoned";
583 		emulated = "";
584 	} else {
585 		model = "regular";
586 		emulated = "emulated ";
587 	}
588 
589 	btrfs_info_in_rcu(fs_info,
590 		"%s block device %s, %u %szones of %llu bytes",
591 		model, rcu_str_deref(device->name), zone_info->nr_zones,
592 		emulated, zone_info->zone_size);
593 
594 	return 0;
595 
596 out:
597 	kvfree(zones);
598 	btrfs_destroy_dev_zone_info(device);
599 	return ret;
600 }
601 
602 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
603 {
604 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
605 
606 	if (!zone_info)
607 		return;
608 
609 	bitmap_free(zone_info->active_zones);
610 	bitmap_free(zone_info->seq_zones);
611 	bitmap_free(zone_info->empty_zones);
612 	vfree(zone_info->zone_cache);
613 	kfree(zone_info);
614 	device->zone_info = NULL;
615 }
616 
617 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
618 {
619 	struct btrfs_zoned_device_info *zone_info;
620 
621 	zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
622 	if (!zone_info)
623 		return NULL;
624 
625 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
626 	if (!zone_info->seq_zones)
627 		goto out;
628 
629 	bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
630 		    zone_info->nr_zones);
631 
632 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
633 	if (!zone_info->empty_zones)
634 		goto out;
635 
636 	bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
637 		    zone_info->nr_zones);
638 
639 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
640 	if (!zone_info->active_zones)
641 		goto out;
642 
643 	bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
644 		    zone_info->nr_zones);
645 	zone_info->zone_cache = NULL;
646 
647 	return zone_info;
648 
649 out:
650 	bitmap_free(zone_info->seq_zones);
651 	bitmap_free(zone_info->empty_zones);
652 	bitmap_free(zone_info->active_zones);
653 	kfree(zone_info);
654 	return NULL;
655 }
656 
657 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
658 		       struct blk_zone *zone)
659 {
660 	unsigned int nr_zones = 1;
661 	int ret;
662 
663 	ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
664 	if (ret != 0 || !nr_zones)
665 		return ret ? ret : -EIO;
666 
667 	return 0;
668 }
669 
670 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
671 {
672 	struct btrfs_device *device;
673 
674 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
675 		if (device->bdev && bdev_is_zoned(device->bdev)) {
676 			btrfs_err(fs_info,
677 				"zoned: mode not enabled but zoned device found: %pg",
678 				device->bdev);
679 			return -EINVAL;
680 		}
681 	}
682 
683 	return 0;
684 }
685 
686 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
687 {
688 	struct queue_limits *lim = &fs_info->limits;
689 	struct btrfs_device *device;
690 	u64 zone_size = 0;
691 	int ret;
692 
693 	/*
694 	 * Host-Managed devices can't be used without the ZONED flag.  With the
695 	 * ZONED all devices can be used, using zone emulation if required.
696 	 */
697 	if (!btrfs_fs_incompat(fs_info, ZONED))
698 		return btrfs_check_for_zoned_device(fs_info);
699 
700 	blk_set_stacking_limits(lim);
701 
702 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
703 		struct btrfs_zoned_device_info *zone_info = device->zone_info;
704 
705 		if (!device->bdev)
706 			continue;
707 
708 		if (!zone_size) {
709 			zone_size = zone_info->zone_size;
710 		} else if (zone_info->zone_size != zone_size) {
711 			btrfs_err(fs_info,
712 		"zoned: unequal block device zone sizes: have %llu found %llu",
713 				  zone_info->zone_size, zone_size);
714 			return -EINVAL;
715 		}
716 
717 		/*
718 		 * With the zoned emulation, we can have non-zoned device on the
719 		 * zoned mode. In this case, we don't have a valid max zone
720 		 * append size.
721 		 */
722 		if (bdev_is_zoned(device->bdev)) {
723 			blk_stack_limits(lim,
724 					 &bdev_get_queue(device->bdev)->limits,
725 					 0);
726 		}
727 	}
728 
729 	/*
730 	 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
731 	 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
732 	 * check the alignment here.
733 	 */
734 	if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
735 		btrfs_err(fs_info,
736 			  "zoned: zone size %llu not aligned to stripe %u",
737 			  zone_size, BTRFS_STRIPE_LEN);
738 		return -EINVAL;
739 	}
740 
741 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
742 		btrfs_err(fs_info, "zoned: mixed block groups not supported");
743 		return -EINVAL;
744 	}
745 
746 	fs_info->zone_size = zone_size;
747 	/*
748 	 * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
749 	 * Technically, we can have multiple pages per segment. But, since
750 	 * we add the pages one by one to a bio, and cannot increase the
751 	 * metadata reservation even if it increases the number of extents, it
752 	 * is safe to stick with the limit.
753 	 */
754 	fs_info->max_zone_append_size = ALIGN_DOWN(
755 		min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
756 		     (u64)lim->max_sectors << SECTOR_SHIFT,
757 		     (u64)lim->max_segments << PAGE_SHIFT),
758 		fs_info->sectorsize);
759 	fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
760 	if (fs_info->max_zone_append_size < fs_info->max_extent_size)
761 		fs_info->max_extent_size = fs_info->max_zone_append_size;
762 
763 	/*
764 	 * Check mount options here, because we might change fs_info->zoned
765 	 * from fs_info->zone_size.
766 	 */
767 	ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt);
768 	if (ret)
769 		return ret;
770 
771 	btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
772 	return 0;
773 }
774 
775 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info, unsigned long *mount_opt)
776 {
777 	if (!btrfs_is_zoned(info))
778 		return 0;
779 
780 	/*
781 	 * Space cache writing is not COWed. Disable that to avoid write errors
782 	 * in sequential zones.
783 	 */
784 	if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
785 		btrfs_err(info, "zoned: space cache v1 is not supported");
786 		return -EINVAL;
787 	}
788 
789 	if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) {
790 		btrfs_err(info, "zoned: NODATACOW not supported");
791 		return -EINVAL;
792 	}
793 
794 	if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) {
795 		btrfs_info(info,
796 			   "zoned: async discard ignored and disabled for zoned mode");
797 		btrfs_clear_opt(*mount_opt, DISCARD_ASYNC);
798 	}
799 
800 	return 0;
801 }
802 
803 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
804 			   int rw, u64 *bytenr_ret)
805 {
806 	u64 wp;
807 	int ret;
808 
809 	if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
810 		*bytenr_ret = zones[0].start << SECTOR_SHIFT;
811 		return 0;
812 	}
813 
814 	ret = sb_write_pointer(bdev, zones, &wp);
815 	if (ret != -ENOENT && ret < 0)
816 		return ret;
817 
818 	if (rw == WRITE) {
819 		struct blk_zone *reset = NULL;
820 
821 		if (wp == zones[0].start << SECTOR_SHIFT)
822 			reset = &zones[0];
823 		else if (wp == zones[1].start << SECTOR_SHIFT)
824 			reset = &zones[1];
825 
826 		if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
827 			ASSERT(sb_zone_is_full(reset));
828 
829 			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
830 					       reset->start, reset->len,
831 					       GFP_NOFS);
832 			if (ret)
833 				return ret;
834 
835 			reset->cond = BLK_ZONE_COND_EMPTY;
836 			reset->wp = reset->start;
837 		}
838 	} else if (ret != -ENOENT) {
839 		/*
840 		 * For READ, we want the previous one. Move write pointer to
841 		 * the end of a zone, if it is at the head of a zone.
842 		 */
843 		u64 zone_end = 0;
844 
845 		if (wp == zones[0].start << SECTOR_SHIFT)
846 			zone_end = zones[1].start + zones[1].capacity;
847 		else if (wp == zones[1].start << SECTOR_SHIFT)
848 			zone_end = zones[0].start + zones[0].capacity;
849 		if (zone_end)
850 			wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
851 					BTRFS_SUPER_INFO_SIZE);
852 
853 		wp -= BTRFS_SUPER_INFO_SIZE;
854 	}
855 
856 	*bytenr_ret = wp;
857 	return 0;
858 
859 }
860 
861 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
862 			       u64 *bytenr_ret)
863 {
864 	struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
865 	sector_t zone_sectors;
866 	u32 sb_zone;
867 	int ret;
868 	u8 zone_sectors_shift;
869 	sector_t nr_sectors;
870 	u32 nr_zones;
871 
872 	if (!bdev_is_zoned(bdev)) {
873 		*bytenr_ret = btrfs_sb_offset(mirror);
874 		return 0;
875 	}
876 
877 	ASSERT(rw == READ || rw == WRITE);
878 
879 	zone_sectors = bdev_zone_sectors(bdev);
880 	if (!is_power_of_2(zone_sectors))
881 		return -EINVAL;
882 	zone_sectors_shift = ilog2(zone_sectors);
883 	nr_sectors = bdev_nr_sectors(bdev);
884 	nr_zones = nr_sectors >> zone_sectors_shift;
885 
886 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
887 	if (sb_zone + 1 >= nr_zones)
888 		return -ENOENT;
889 
890 	ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
891 				  BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
892 				  zones);
893 	if (ret < 0)
894 		return ret;
895 	if (ret != BTRFS_NR_SB_LOG_ZONES)
896 		return -EIO;
897 
898 	return sb_log_location(bdev, zones, rw, bytenr_ret);
899 }
900 
901 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
902 			  u64 *bytenr_ret)
903 {
904 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
905 	u32 zone_num;
906 
907 	/*
908 	 * For a zoned filesystem on a non-zoned block device, use the same
909 	 * super block locations as regular filesystem. Doing so, the super
910 	 * block can always be retrieved and the zoned flag of the volume
911 	 * detected from the super block information.
912 	 */
913 	if (!bdev_is_zoned(device->bdev)) {
914 		*bytenr_ret = btrfs_sb_offset(mirror);
915 		return 0;
916 	}
917 
918 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
919 	if (zone_num + 1 >= zinfo->nr_zones)
920 		return -ENOENT;
921 
922 	return sb_log_location(device->bdev,
923 			       &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
924 			       rw, bytenr_ret);
925 }
926 
927 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
928 				  int mirror)
929 {
930 	u32 zone_num;
931 
932 	if (!zinfo)
933 		return false;
934 
935 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
936 	if (zone_num + 1 >= zinfo->nr_zones)
937 		return false;
938 
939 	if (!test_bit(zone_num, zinfo->seq_zones))
940 		return false;
941 
942 	return true;
943 }
944 
945 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
946 {
947 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
948 	struct blk_zone *zone;
949 	int i;
950 
951 	if (!is_sb_log_zone(zinfo, mirror))
952 		return 0;
953 
954 	zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
955 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
956 		/* Advance the next zone */
957 		if (zone->cond == BLK_ZONE_COND_FULL) {
958 			zone++;
959 			continue;
960 		}
961 
962 		if (zone->cond == BLK_ZONE_COND_EMPTY)
963 			zone->cond = BLK_ZONE_COND_IMP_OPEN;
964 
965 		zone->wp += SUPER_INFO_SECTORS;
966 
967 		if (sb_zone_is_full(zone)) {
968 			/*
969 			 * No room left to write new superblock. Since
970 			 * superblock is written with REQ_SYNC, it is safe to
971 			 * finish the zone now.
972 			 *
973 			 * If the write pointer is exactly at the capacity,
974 			 * explicit ZONE_FINISH is not necessary.
975 			 */
976 			if (zone->wp != zone->start + zone->capacity) {
977 				int ret;
978 
979 				ret = blkdev_zone_mgmt(device->bdev,
980 						REQ_OP_ZONE_FINISH, zone->start,
981 						zone->len, GFP_NOFS);
982 				if (ret)
983 					return ret;
984 			}
985 
986 			zone->wp = zone->start + zone->len;
987 			zone->cond = BLK_ZONE_COND_FULL;
988 		}
989 		return 0;
990 	}
991 
992 	/* All the zones are FULL. Should not reach here. */
993 	ASSERT(0);
994 	return -EIO;
995 }
996 
997 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
998 {
999 	sector_t zone_sectors;
1000 	sector_t nr_sectors;
1001 	u8 zone_sectors_shift;
1002 	u32 sb_zone;
1003 	u32 nr_zones;
1004 
1005 	zone_sectors = bdev_zone_sectors(bdev);
1006 	zone_sectors_shift = ilog2(zone_sectors);
1007 	nr_sectors = bdev_nr_sectors(bdev);
1008 	nr_zones = nr_sectors >> zone_sectors_shift;
1009 
1010 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1011 	if (sb_zone + 1 >= nr_zones)
1012 		return -ENOENT;
1013 
1014 	return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1015 				zone_start_sector(sb_zone, bdev),
1016 				zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
1017 }
1018 
1019 /*
1020  * Find allocatable zones within a given region.
1021  *
1022  * @device:	the device to allocate a region on
1023  * @hole_start: the position of the hole to allocate the region
1024  * @num_bytes:	size of wanted region
1025  * @hole_end:	the end of the hole
1026  * @return:	position of allocatable zones
1027  *
1028  * Allocatable region should not contain any superblock locations.
1029  */
1030 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1031 				 u64 hole_end, u64 num_bytes)
1032 {
1033 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1034 	const u8 shift = zinfo->zone_size_shift;
1035 	u64 nzones = num_bytes >> shift;
1036 	u64 pos = hole_start;
1037 	u64 begin, end;
1038 	bool have_sb;
1039 	int i;
1040 
1041 	ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1042 	ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1043 
1044 	while (pos < hole_end) {
1045 		begin = pos >> shift;
1046 		end = begin + nzones;
1047 
1048 		if (end > zinfo->nr_zones)
1049 			return hole_end;
1050 
1051 		/* Check if zones in the region are all empty */
1052 		if (btrfs_dev_is_sequential(device, pos) &&
1053 		    !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) {
1054 			pos += zinfo->zone_size;
1055 			continue;
1056 		}
1057 
1058 		have_sb = false;
1059 		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1060 			u32 sb_zone;
1061 			u64 sb_pos;
1062 
1063 			sb_zone = sb_zone_number(shift, i);
1064 			if (!(end <= sb_zone ||
1065 			      sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1066 				have_sb = true;
1067 				pos = zone_start_physical(
1068 					sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1069 				break;
1070 			}
1071 
1072 			/* We also need to exclude regular superblock positions */
1073 			sb_pos = btrfs_sb_offset(i);
1074 			if (!(pos + num_bytes <= sb_pos ||
1075 			      sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1076 				have_sb = true;
1077 				pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1078 					    zinfo->zone_size);
1079 				break;
1080 			}
1081 		}
1082 		if (!have_sb)
1083 			break;
1084 	}
1085 
1086 	return pos;
1087 }
1088 
1089 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1090 {
1091 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1092 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1093 
1094 	/* We can use any number of zones */
1095 	if (zone_info->max_active_zones == 0)
1096 		return true;
1097 
1098 	if (!test_bit(zno, zone_info->active_zones)) {
1099 		/* Active zone left? */
1100 		if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1101 			return false;
1102 		if (test_and_set_bit(zno, zone_info->active_zones)) {
1103 			/* Someone already set the bit */
1104 			atomic_inc(&zone_info->active_zones_left);
1105 		}
1106 	}
1107 
1108 	return true;
1109 }
1110 
1111 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1112 {
1113 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1114 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1115 
1116 	/* We can use any number of zones */
1117 	if (zone_info->max_active_zones == 0)
1118 		return;
1119 
1120 	if (test_and_clear_bit(zno, zone_info->active_zones))
1121 		atomic_inc(&zone_info->active_zones_left);
1122 }
1123 
1124 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1125 			    u64 length, u64 *bytes)
1126 {
1127 	int ret;
1128 
1129 	*bytes = 0;
1130 	ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1131 			       physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1132 			       GFP_NOFS);
1133 	if (ret)
1134 		return ret;
1135 
1136 	*bytes = length;
1137 	while (length) {
1138 		btrfs_dev_set_zone_empty(device, physical);
1139 		btrfs_dev_clear_active_zone(device, physical);
1140 		physical += device->zone_info->zone_size;
1141 		length -= device->zone_info->zone_size;
1142 	}
1143 
1144 	return 0;
1145 }
1146 
1147 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1148 {
1149 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1150 	const u8 shift = zinfo->zone_size_shift;
1151 	unsigned long begin = start >> shift;
1152 	unsigned long nbits = size >> shift;
1153 	u64 pos;
1154 	int ret;
1155 
1156 	ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1157 	ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1158 
1159 	if (begin + nbits > zinfo->nr_zones)
1160 		return -ERANGE;
1161 
1162 	/* All the zones are conventional */
1163 	if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits))
1164 		return 0;
1165 
1166 	/* All the zones are sequential and empty */
1167 	if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) &&
1168 	    bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits))
1169 		return 0;
1170 
1171 	for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1172 		u64 reset_bytes;
1173 
1174 		if (!btrfs_dev_is_sequential(device, pos) ||
1175 		    btrfs_dev_is_empty_zone(device, pos))
1176 			continue;
1177 
1178 		/* Free regions should be empty */
1179 		btrfs_warn_in_rcu(
1180 			device->fs_info,
1181 		"zoned: resetting device %s (devid %llu) zone %llu for allocation",
1182 			rcu_str_deref(device->name), device->devid, pos >> shift);
1183 		WARN_ON_ONCE(1);
1184 
1185 		ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1186 					      &reset_bytes);
1187 		if (ret)
1188 			return ret;
1189 	}
1190 
1191 	return 0;
1192 }
1193 
1194 /*
1195  * Calculate an allocation pointer from the extent allocation information
1196  * for a block group consist of conventional zones. It is pointed to the
1197  * end of the highest addressed extent in the block group as an allocation
1198  * offset.
1199  */
1200 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1201 				   u64 *offset_ret, bool new)
1202 {
1203 	struct btrfs_fs_info *fs_info = cache->fs_info;
1204 	struct btrfs_root *root;
1205 	struct btrfs_path *path;
1206 	struct btrfs_key key;
1207 	struct btrfs_key found_key;
1208 	int ret;
1209 	u64 length;
1210 
1211 	/*
1212 	 * Avoid  tree lookups for a new block group, there's no use for it.
1213 	 * It must always be 0.
1214 	 *
1215 	 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1216 	 * For new a block group, this function is called from
1217 	 * btrfs_make_block_group() which is already taking the chunk mutex.
1218 	 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1219 	 * buffer locks to avoid deadlock.
1220 	 */
1221 	if (new) {
1222 		*offset_ret = 0;
1223 		return 0;
1224 	}
1225 
1226 	path = btrfs_alloc_path();
1227 	if (!path)
1228 		return -ENOMEM;
1229 
1230 	key.objectid = cache->start + cache->length;
1231 	key.type = 0;
1232 	key.offset = 0;
1233 
1234 	root = btrfs_extent_root(fs_info, key.objectid);
1235 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1236 	/* We should not find the exact match */
1237 	if (!ret)
1238 		ret = -EUCLEAN;
1239 	if (ret < 0)
1240 		goto out;
1241 
1242 	ret = btrfs_previous_extent_item(root, path, cache->start);
1243 	if (ret) {
1244 		if (ret == 1) {
1245 			ret = 0;
1246 			*offset_ret = 0;
1247 		}
1248 		goto out;
1249 	}
1250 
1251 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1252 
1253 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1254 		length = found_key.offset;
1255 	else
1256 		length = fs_info->nodesize;
1257 
1258 	if (!(found_key.objectid >= cache->start &&
1259 	       found_key.objectid + length <= cache->start + cache->length)) {
1260 		ret = -EUCLEAN;
1261 		goto out;
1262 	}
1263 	*offset_ret = found_key.objectid + length - cache->start;
1264 	ret = 0;
1265 
1266 out:
1267 	btrfs_free_path(path);
1268 	return ret;
1269 }
1270 
1271 struct zone_info {
1272 	u64 physical;
1273 	u64 capacity;
1274 	u64 alloc_offset;
1275 };
1276 
1277 static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx,
1278 				struct zone_info *info, unsigned long *active,
1279 				struct btrfs_chunk_map *map)
1280 {
1281 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1282 	struct btrfs_device *device = map->stripes[zone_idx].dev;
1283 	int dev_replace_is_ongoing = 0;
1284 	unsigned int nofs_flag;
1285 	struct blk_zone zone;
1286 	int ret;
1287 
1288 	info->physical = map->stripes[zone_idx].physical;
1289 
1290 	if (!device->bdev) {
1291 		info->alloc_offset = WP_MISSING_DEV;
1292 		return 0;
1293 	}
1294 
1295 	/* Consider a zone as active if we can allow any number of active zones. */
1296 	if (!device->zone_info->max_active_zones)
1297 		__set_bit(zone_idx, active);
1298 
1299 	if (!btrfs_dev_is_sequential(device, info->physical)) {
1300 		info->alloc_offset = WP_CONVENTIONAL;
1301 		return 0;
1302 	}
1303 
1304 	/* This zone will be used for allocation, so mark this zone non-empty. */
1305 	btrfs_dev_clear_zone_empty(device, info->physical);
1306 
1307 	down_read(&dev_replace->rwsem);
1308 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1309 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1310 		btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical);
1311 	up_read(&dev_replace->rwsem);
1312 
1313 	/*
1314 	 * The group is mapped to a sequential zone. Get the zone write pointer
1315 	 * to determine the allocation offset within the zone.
1316 	 */
1317 	WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size));
1318 	nofs_flag = memalloc_nofs_save();
1319 	ret = btrfs_get_dev_zone(device, info->physical, &zone);
1320 	memalloc_nofs_restore(nofs_flag);
1321 	if (ret) {
1322 		if (ret != -EIO && ret != -EOPNOTSUPP)
1323 			return ret;
1324 		info->alloc_offset = WP_MISSING_DEV;
1325 		return 0;
1326 	}
1327 
1328 	if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1329 		btrfs_err_in_rcu(fs_info,
1330 		"zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1331 			zone.start << SECTOR_SHIFT, rcu_str_deref(device->name),
1332 			device->devid);
1333 		return -EIO;
1334 	}
1335 
1336 	info->capacity = (zone.capacity << SECTOR_SHIFT);
1337 
1338 	switch (zone.cond) {
1339 	case BLK_ZONE_COND_OFFLINE:
1340 	case BLK_ZONE_COND_READONLY:
1341 		btrfs_err(fs_info,
1342 		"zoned: offline/readonly zone %llu on device %s (devid %llu)",
1343 			  (info->physical >> device->zone_info->zone_size_shift),
1344 			  rcu_str_deref(device->name), device->devid);
1345 		info->alloc_offset = WP_MISSING_DEV;
1346 		break;
1347 	case BLK_ZONE_COND_EMPTY:
1348 		info->alloc_offset = 0;
1349 		break;
1350 	case BLK_ZONE_COND_FULL:
1351 		info->alloc_offset = info->capacity;
1352 		break;
1353 	default:
1354 		/* Partially used zone. */
1355 		info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT);
1356 		__set_bit(zone_idx, active);
1357 		break;
1358 	}
1359 
1360 	return 0;
1361 }
1362 
1363 static int btrfs_load_block_group_single(struct btrfs_block_group *bg,
1364 					 struct zone_info *info,
1365 					 unsigned long *active)
1366 {
1367 	if (info->alloc_offset == WP_MISSING_DEV) {
1368 		btrfs_err(bg->fs_info,
1369 			"zoned: cannot recover write pointer for zone %llu",
1370 			info->physical);
1371 		return -EIO;
1372 	}
1373 
1374 	bg->alloc_offset = info->alloc_offset;
1375 	bg->zone_capacity = info->capacity;
1376 	if (test_bit(0, active))
1377 		set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1378 	return 0;
1379 }
1380 
1381 static int btrfs_load_block_group_dup(struct btrfs_block_group *bg,
1382 				      struct btrfs_chunk_map *map,
1383 				      struct zone_info *zone_info,
1384 				      unsigned long *active)
1385 {
1386 	struct btrfs_fs_info *fs_info = bg->fs_info;
1387 
1388 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1389 		btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree");
1390 		return -EINVAL;
1391 	}
1392 
1393 	if (zone_info[0].alloc_offset == WP_MISSING_DEV) {
1394 		btrfs_err(bg->fs_info,
1395 			  "zoned: cannot recover write pointer for zone %llu",
1396 			  zone_info[0].physical);
1397 		return -EIO;
1398 	}
1399 	if (zone_info[1].alloc_offset == WP_MISSING_DEV) {
1400 		btrfs_err(bg->fs_info,
1401 			  "zoned: cannot recover write pointer for zone %llu",
1402 			  zone_info[1].physical);
1403 		return -EIO;
1404 	}
1405 	if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) {
1406 		btrfs_err(bg->fs_info,
1407 			  "zoned: write pointer offset mismatch of zones in DUP profile");
1408 		return -EIO;
1409 	}
1410 
1411 	if (test_bit(0, active) != test_bit(1, active)) {
1412 		if (!btrfs_zone_activate(bg))
1413 			return -EIO;
1414 	} else if (test_bit(0, active)) {
1415 		set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1416 	}
1417 
1418 	bg->alloc_offset = zone_info[0].alloc_offset;
1419 	bg->zone_capacity = min(zone_info[0].capacity, zone_info[1].capacity);
1420 	return 0;
1421 }
1422 
1423 static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg,
1424 					struct btrfs_chunk_map *map,
1425 					struct zone_info *zone_info,
1426 					unsigned long *active)
1427 {
1428 	struct btrfs_fs_info *fs_info = bg->fs_info;
1429 	int i;
1430 
1431 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1432 		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1433 			  btrfs_bg_type_to_raid_name(map->type));
1434 		return -EINVAL;
1435 	}
1436 
1437 	for (i = 0; i < map->num_stripes; i++) {
1438 		if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1439 		    zone_info[i].alloc_offset == WP_CONVENTIONAL)
1440 			continue;
1441 
1442 		if ((zone_info[0].alloc_offset != zone_info[i].alloc_offset) &&
1443 		    !btrfs_test_opt(fs_info, DEGRADED)) {
1444 			btrfs_err(fs_info,
1445 			"zoned: write pointer offset mismatch of zones in %s profile",
1446 				  btrfs_bg_type_to_raid_name(map->type));
1447 			return -EIO;
1448 		}
1449 		if (test_bit(0, active) != test_bit(i, active)) {
1450 			if (!btrfs_test_opt(fs_info, DEGRADED) &&
1451 			    !btrfs_zone_activate(bg)) {
1452 				return -EIO;
1453 			}
1454 		} else {
1455 			if (test_bit(0, active))
1456 				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1457 		}
1458 		/* In case a device is missing we have a cap of 0, so don't use it. */
1459 		bg->zone_capacity = min_not_zero(zone_info[0].capacity,
1460 						 zone_info[1].capacity);
1461 	}
1462 
1463 	if (zone_info[0].alloc_offset != WP_MISSING_DEV)
1464 		bg->alloc_offset = zone_info[0].alloc_offset;
1465 	else
1466 		bg->alloc_offset = zone_info[i - 1].alloc_offset;
1467 
1468 	return 0;
1469 }
1470 
1471 static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg,
1472 					struct btrfs_chunk_map *map,
1473 					struct zone_info *zone_info,
1474 					unsigned long *active)
1475 {
1476 	struct btrfs_fs_info *fs_info = bg->fs_info;
1477 
1478 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1479 		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1480 			  btrfs_bg_type_to_raid_name(map->type));
1481 		return -EINVAL;
1482 	}
1483 
1484 	for (int i = 0; i < map->num_stripes; i++) {
1485 		if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1486 		    zone_info[i].alloc_offset == WP_CONVENTIONAL)
1487 			continue;
1488 
1489 		if (test_bit(0, active) != test_bit(i, active)) {
1490 			if (!btrfs_zone_activate(bg))
1491 				return -EIO;
1492 		} else {
1493 			if (test_bit(0, active))
1494 				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1495 		}
1496 		bg->zone_capacity += zone_info[i].capacity;
1497 		bg->alloc_offset += zone_info[i].alloc_offset;
1498 	}
1499 
1500 	return 0;
1501 }
1502 
1503 static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg,
1504 					 struct btrfs_chunk_map *map,
1505 					 struct zone_info *zone_info,
1506 					 unsigned long *active)
1507 {
1508 	struct btrfs_fs_info *fs_info = bg->fs_info;
1509 
1510 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1511 		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1512 			  btrfs_bg_type_to_raid_name(map->type));
1513 		return -EINVAL;
1514 	}
1515 
1516 	for (int i = 0; i < map->num_stripes; i++) {
1517 		if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1518 		    zone_info[i].alloc_offset == WP_CONVENTIONAL)
1519 			continue;
1520 
1521 		if (test_bit(0, active) != test_bit(i, active)) {
1522 			if (!btrfs_zone_activate(bg))
1523 				return -EIO;
1524 		} else {
1525 			if (test_bit(0, active))
1526 				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1527 		}
1528 
1529 		if ((i % map->sub_stripes) == 0) {
1530 			bg->zone_capacity += zone_info[i].capacity;
1531 			bg->alloc_offset += zone_info[i].alloc_offset;
1532 		}
1533 	}
1534 
1535 	return 0;
1536 }
1537 
1538 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1539 {
1540 	struct btrfs_fs_info *fs_info = cache->fs_info;
1541 	struct btrfs_chunk_map *map;
1542 	u64 logical = cache->start;
1543 	u64 length = cache->length;
1544 	struct zone_info *zone_info = NULL;
1545 	int ret;
1546 	int i;
1547 	unsigned long *active = NULL;
1548 	u64 last_alloc = 0;
1549 	u32 num_sequential = 0, num_conventional = 0;
1550 
1551 	if (!btrfs_is_zoned(fs_info))
1552 		return 0;
1553 
1554 	/* Sanity check */
1555 	if (!IS_ALIGNED(length, fs_info->zone_size)) {
1556 		btrfs_err(fs_info,
1557 		"zoned: block group %llu len %llu unaligned to zone size %llu",
1558 			  logical, length, fs_info->zone_size);
1559 		return -EIO;
1560 	}
1561 
1562 	map = btrfs_find_chunk_map(fs_info, logical, length);
1563 	if (!map)
1564 		return -EINVAL;
1565 
1566 	cache->physical_map = btrfs_clone_chunk_map(map, GFP_NOFS);
1567 	if (!cache->physical_map) {
1568 		ret = -ENOMEM;
1569 		goto out;
1570 	}
1571 
1572 	zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS);
1573 	if (!zone_info) {
1574 		ret = -ENOMEM;
1575 		goto out;
1576 	}
1577 
1578 	active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1579 	if (!active) {
1580 		ret = -ENOMEM;
1581 		goto out;
1582 	}
1583 
1584 	for (i = 0; i < map->num_stripes; i++) {
1585 		ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map);
1586 		if (ret)
1587 			goto out;
1588 
1589 		if (zone_info[i].alloc_offset == WP_CONVENTIONAL)
1590 			num_conventional++;
1591 		else
1592 			num_sequential++;
1593 	}
1594 
1595 	if (num_sequential > 0)
1596 		set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1597 
1598 	if (num_conventional > 0) {
1599 		/* Zone capacity is always zone size in emulation */
1600 		cache->zone_capacity = cache->length;
1601 		ret = calculate_alloc_pointer(cache, &last_alloc, new);
1602 		if (ret) {
1603 			btrfs_err(fs_info,
1604 			"zoned: failed to determine allocation offset of bg %llu",
1605 				  cache->start);
1606 			goto out;
1607 		} else if (map->num_stripes == num_conventional) {
1608 			cache->alloc_offset = last_alloc;
1609 			set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1610 			goto out;
1611 		}
1612 	}
1613 
1614 	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1615 	case 0: /* single */
1616 		ret = btrfs_load_block_group_single(cache, &zone_info[0], active);
1617 		break;
1618 	case BTRFS_BLOCK_GROUP_DUP:
1619 		ret = btrfs_load_block_group_dup(cache, map, zone_info, active);
1620 		break;
1621 	case BTRFS_BLOCK_GROUP_RAID1:
1622 	case BTRFS_BLOCK_GROUP_RAID1C3:
1623 	case BTRFS_BLOCK_GROUP_RAID1C4:
1624 		ret = btrfs_load_block_group_raid1(cache, map, zone_info, active);
1625 		break;
1626 	case BTRFS_BLOCK_GROUP_RAID0:
1627 		ret = btrfs_load_block_group_raid0(cache, map, zone_info, active);
1628 		break;
1629 	case BTRFS_BLOCK_GROUP_RAID10:
1630 		ret = btrfs_load_block_group_raid10(cache, map, zone_info, active);
1631 		break;
1632 	case BTRFS_BLOCK_GROUP_RAID5:
1633 	case BTRFS_BLOCK_GROUP_RAID6:
1634 	default:
1635 		btrfs_err(fs_info, "zoned: profile %s not yet supported",
1636 			  btrfs_bg_type_to_raid_name(map->type));
1637 		ret = -EINVAL;
1638 		goto out;
1639 	}
1640 
1641 out:
1642 	if (cache->alloc_offset > cache->zone_capacity) {
1643 		btrfs_err(fs_info,
1644 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1645 			  cache->alloc_offset, cache->zone_capacity,
1646 			  cache->start);
1647 		ret = -EIO;
1648 	}
1649 
1650 	/* An extent is allocated after the write pointer */
1651 	if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1652 		btrfs_err(fs_info,
1653 			  "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1654 			  logical, last_alloc, cache->alloc_offset);
1655 		ret = -EIO;
1656 	}
1657 
1658 	if (!ret) {
1659 		cache->meta_write_pointer = cache->alloc_offset + cache->start;
1660 		if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1661 			btrfs_get_block_group(cache);
1662 			spin_lock(&fs_info->zone_active_bgs_lock);
1663 			list_add_tail(&cache->active_bg_list,
1664 				      &fs_info->zone_active_bgs);
1665 			spin_unlock(&fs_info->zone_active_bgs_lock);
1666 		}
1667 	} else {
1668 		btrfs_free_chunk_map(cache->physical_map);
1669 		cache->physical_map = NULL;
1670 	}
1671 	bitmap_free(active);
1672 	kfree(zone_info);
1673 
1674 	return ret;
1675 }
1676 
1677 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1678 {
1679 	u64 unusable, free;
1680 
1681 	if (!btrfs_is_zoned(cache->fs_info))
1682 		return;
1683 
1684 	WARN_ON(cache->bytes_super != 0);
1685 	unusable = (cache->alloc_offset - cache->used) +
1686 		   (cache->length - cache->zone_capacity);
1687 	free = cache->zone_capacity - cache->alloc_offset;
1688 
1689 	/* We only need ->free_space in ALLOC_SEQ block groups */
1690 	cache->cached = BTRFS_CACHE_FINISHED;
1691 	cache->free_space_ctl->free_space = free;
1692 	cache->zone_unusable = unusable;
1693 }
1694 
1695 bool btrfs_use_zone_append(struct btrfs_bio *bbio)
1696 {
1697 	u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1698 	struct btrfs_inode *inode = bbio->inode;
1699 	struct btrfs_fs_info *fs_info = bbio->fs_info;
1700 	struct btrfs_block_group *cache;
1701 	bool ret = false;
1702 
1703 	if (!btrfs_is_zoned(fs_info))
1704 		return false;
1705 
1706 	if (!inode || !is_data_inode(&inode->vfs_inode))
1707 		return false;
1708 
1709 	if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
1710 		return false;
1711 
1712 	/*
1713 	 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1714 	 * extent layout the relocation code has.
1715 	 * Furthermore we have set aside own block-group from which only the
1716 	 * relocation "process" can allocate and make sure only one process at a
1717 	 * time can add pages to an extent that gets relocated, so it's safe to
1718 	 * use regular REQ_OP_WRITE for this special case.
1719 	 */
1720 	if (btrfs_is_data_reloc_root(inode->root))
1721 		return false;
1722 
1723 	cache = btrfs_lookup_block_group(fs_info, start);
1724 	ASSERT(cache);
1725 	if (!cache)
1726 		return false;
1727 
1728 	ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1729 	btrfs_put_block_group(cache);
1730 
1731 	return ret;
1732 }
1733 
1734 void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
1735 {
1736 	const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
1737 	struct btrfs_ordered_sum *sum = bbio->sums;
1738 
1739 	if (physical < bbio->orig_physical)
1740 		sum->logical -= bbio->orig_physical - physical;
1741 	else
1742 		sum->logical += physical - bbio->orig_physical;
1743 }
1744 
1745 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered,
1746 					u64 logical)
1747 {
1748 	struct extent_map_tree *em_tree = &BTRFS_I(ordered->inode)->extent_tree;
1749 	struct extent_map *em;
1750 
1751 	ordered->disk_bytenr = logical;
1752 
1753 	write_lock(&em_tree->lock);
1754 	em = search_extent_mapping(em_tree, ordered->file_offset,
1755 				   ordered->num_bytes);
1756 	em->block_start = logical;
1757 	free_extent_map(em);
1758 	write_unlock(&em_tree->lock);
1759 }
1760 
1761 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered,
1762 				      u64 logical, u64 len)
1763 {
1764 	struct btrfs_ordered_extent *new;
1765 
1766 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
1767 	    split_extent_map(BTRFS_I(ordered->inode), ordered->file_offset,
1768 			     ordered->num_bytes, len, logical))
1769 		return false;
1770 
1771 	new = btrfs_split_ordered_extent(ordered, len);
1772 	if (IS_ERR(new))
1773 		return false;
1774 	new->disk_bytenr = logical;
1775 	btrfs_finish_one_ordered(new);
1776 	return true;
1777 }
1778 
1779 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered)
1780 {
1781 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1782 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1783 	struct btrfs_ordered_sum *sum;
1784 	u64 logical, len;
1785 
1786 	/*
1787 	 * Write to pre-allocated region is for the data relocation, and so
1788 	 * it should use WRITE operation. No split/rewrite are necessary.
1789 	 */
1790 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1791 		return;
1792 
1793 	ASSERT(!list_empty(&ordered->list));
1794 	/* The ordered->list can be empty in the above pre-alloc case. */
1795 	sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list);
1796 	logical = sum->logical;
1797 	len = sum->len;
1798 
1799 	while (len < ordered->disk_num_bytes) {
1800 		sum = list_next_entry(sum, list);
1801 		if (sum->logical == logical + len) {
1802 			len += sum->len;
1803 			continue;
1804 		}
1805 		if (!btrfs_zoned_split_ordered(ordered, logical, len)) {
1806 			set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
1807 			btrfs_err(fs_info, "failed to split ordered extent");
1808 			goto out;
1809 		}
1810 		logical = sum->logical;
1811 		len = sum->len;
1812 	}
1813 
1814 	if (ordered->disk_bytenr != logical)
1815 		btrfs_rewrite_logical_zoned(ordered, logical);
1816 
1817 out:
1818 	/*
1819 	 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures
1820 	 * were allocated by btrfs_alloc_dummy_sum only to record the logical
1821 	 * addresses and don't contain actual checksums.  We thus must free them
1822 	 * here so that we don't attempt to log the csums later.
1823 	 */
1824 	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
1825 	    test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) {
1826 		while ((sum = list_first_entry_or_null(&ordered->list,
1827 						       typeof(*sum), list))) {
1828 			list_del(&sum->list);
1829 			kfree(sum);
1830 		}
1831 	}
1832 }
1833 
1834 static bool check_bg_is_active(struct btrfs_eb_write_context *ctx,
1835 			       struct btrfs_block_group **active_bg)
1836 {
1837 	const struct writeback_control *wbc = ctx->wbc;
1838 	struct btrfs_block_group *block_group = ctx->zoned_bg;
1839 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1840 
1841 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1842 		return true;
1843 
1844 	if (fs_info->treelog_bg == block_group->start) {
1845 		if (!btrfs_zone_activate(block_group)) {
1846 			int ret_fin = btrfs_zone_finish_one_bg(fs_info);
1847 
1848 			if (ret_fin != 1 || !btrfs_zone_activate(block_group))
1849 				return false;
1850 		}
1851 	} else if (*active_bg != block_group) {
1852 		struct btrfs_block_group *tgt = *active_bg;
1853 
1854 		/* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */
1855 		lockdep_assert_held(&fs_info->zoned_meta_io_lock);
1856 
1857 		if (tgt) {
1858 			/*
1859 			 * If there is an unsent IO left in the allocated area,
1860 			 * we cannot wait for them as it may cause a deadlock.
1861 			 */
1862 			if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) {
1863 				if (wbc->sync_mode == WB_SYNC_NONE ||
1864 				    (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync))
1865 					return false;
1866 			}
1867 
1868 			/* Pivot active metadata/system block group. */
1869 			btrfs_zoned_meta_io_unlock(fs_info);
1870 			wait_eb_writebacks(tgt);
1871 			do_zone_finish(tgt, true);
1872 			btrfs_zoned_meta_io_lock(fs_info);
1873 			if (*active_bg == tgt) {
1874 				btrfs_put_block_group(tgt);
1875 				*active_bg = NULL;
1876 			}
1877 		}
1878 		if (!btrfs_zone_activate(block_group))
1879 			return false;
1880 		if (*active_bg != block_group) {
1881 			ASSERT(*active_bg == NULL);
1882 			*active_bg = block_group;
1883 			btrfs_get_block_group(block_group);
1884 		}
1885 	}
1886 
1887 	return true;
1888 }
1889 
1890 /*
1891  * Check if @ctx->eb is aligned to the write pointer.
1892  *
1893  * Return:
1894  *   0:        @ctx->eb is at the write pointer. You can write it.
1895  *   -EAGAIN:  There is a hole. The caller should handle the case.
1896  *   -EBUSY:   There is a hole, but the caller can just bail out.
1897  */
1898 int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1899 				   struct btrfs_eb_write_context *ctx)
1900 {
1901 	const struct writeback_control *wbc = ctx->wbc;
1902 	const struct extent_buffer *eb = ctx->eb;
1903 	struct btrfs_block_group *block_group = ctx->zoned_bg;
1904 
1905 	if (!btrfs_is_zoned(fs_info))
1906 		return 0;
1907 
1908 	if (block_group) {
1909 		if (block_group->start > eb->start ||
1910 		    block_group->start + block_group->length <= eb->start) {
1911 			btrfs_put_block_group(block_group);
1912 			block_group = NULL;
1913 			ctx->zoned_bg = NULL;
1914 		}
1915 	}
1916 
1917 	if (!block_group) {
1918 		block_group = btrfs_lookup_block_group(fs_info, eb->start);
1919 		if (!block_group)
1920 			return 0;
1921 		ctx->zoned_bg = block_group;
1922 	}
1923 
1924 	if (block_group->meta_write_pointer == eb->start) {
1925 		struct btrfs_block_group **tgt;
1926 
1927 		if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
1928 			return 0;
1929 
1930 		if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)
1931 			tgt = &fs_info->active_system_bg;
1932 		else
1933 			tgt = &fs_info->active_meta_bg;
1934 		if (check_bg_is_active(ctx, tgt))
1935 			return 0;
1936 	}
1937 
1938 	/*
1939 	 * Since we may release fs_info->zoned_meta_io_lock, someone can already
1940 	 * start writing this eb. In that case, we can just bail out.
1941 	 */
1942 	if (block_group->meta_write_pointer > eb->start)
1943 		return -EBUSY;
1944 
1945 	/* If for_sync, this hole will be filled with trasnsaction commit. */
1946 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
1947 		return -EAGAIN;
1948 	return -EBUSY;
1949 }
1950 
1951 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1952 {
1953 	if (!btrfs_dev_is_sequential(device, physical))
1954 		return -EOPNOTSUPP;
1955 
1956 	return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1957 				    length >> SECTOR_SHIFT, GFP_NOFS, 0);
1958 }
1959 
1960 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1961 			  struct blk_zone *zone)
1962 {
1963 	struct btrfs_io_context *bioc = NULL;
1964 	u64 mapped_length = PAGE_SIZE;
1965 	unsigned int nofs_flag;
1966 	int nmirrors;
1967 	int i, ret;
1968 
1969 	ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1970 			      &mapped_length, &bioc, NULL, NULL);
1971 	if (ret || !bioc || mapped_length < PAGE_SIZE) {
1972 		ret = -EIO;
1973 		goto out_put_bioc;
1974 	}
1975 
1976 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1977 		ret = -EINVAL;
1978 		goto out_put_bioc;
1979 	}
1980 
1981 	nofs_flag = memalloc_nofs_save();
1982 	nmirrors = (int)bioc->num_stripes;
1983 	for (i = 0; i < nmirrors; i++) {
1984 		u64 physical = bioc->stripes[i].physical;
1985 		struct btrfs_device *dev = bioc->stripes[i].dev;
1986 
1987 		/* Missing device */
1988 		if (!dev->bdev)
1989 			continue;
1990 
1991 		ret = btrfs_get_dev_zone(dev, physical, zone);
1992 		/* Failing device */
1993 		if (ret == -EIO || ret == -EOPNOTSUPP)
1994 			continue;
1995 		break;
1996 	}
1997 	memalloc_nofs_restore(nofs_flag);
1998 out_put_bioc:
1999 	btrfs_put_bioc(bioc);
2000 	return ret;
2001 }
2002 
2003 /*
2004  * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
2005  * filling zeros between @physical_pos to a write pointer of dev-replace
2006  * source device.
2007  */
2008 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
2009 				    u64 physical_start, u64 physical_pos)
2010 {
2011 	struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
2012 	struct blk_zone zone;
2013 	u64 length;
2014 	u64 wp;
2015 	int ret;
2016 
2017 	if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
2018 		return 0;
2019 
2020 	ret = read_zone_info(fs_info, logical, &zone);
2021 	if (ret)
2022 		return ret;
2023 
2024 	wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
2025 
2026 	if (physical_pos == wp)
2027 		return 0;
2028 
2029 	if (physical_pos > wp)
2030 		return -EUCLEAN;
2031 
2032 	length = wp - physical_pos;
2033 	return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
2034 }
2035 
2036 /*
2037  * Activate block group and underlying device zones
2038  *
2039  * @block_group: the block group to activate
2040  *
2041  * Return: true on success, false otherwise
2042  */
2043 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
2044 {
2045 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2046 	struct btrfs_chunk_map *map;
2047 	struct btrfs_device *device;
2048 	u64 physical;
2049 	const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA);
2050 	bool ret;
2051 	int i;
2052 
2053 	if (!btrfs_is_zoned(block_group->fs_info))
2054 		return true;
2055 
2056 	map = block_group->physical_map;
2057 
2058 	spin_lock(&block_group->lock);
2059 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2060 		ret = true;
2061 		goto out_unlock;
2062 	}
2063 
2064 	/* No space left */
2065 	if (btrfs_zoned_bg_is_full(block_group)) {
2066 		ret = false;
2067 		goto out_unlock;
2068 	}
2069 
2070 	spin_lock(&fs_info->zone_active_bgs_lock);
2071 	for (i = 0; i < map->num_stripes; i++) {
2072 		struct btrfs_zoned_device_info *zinfo;
2073 		int reserved = 0;
2074 
2075 		device = map->stripes[i].dev;
2076 		physical = map->stripes[i].physical;
2077 		zinfo = device->zone_info;
2078 
2079 		if (zinfo->max_active_zones == 0)
2080 			continue;
2081 
2082 		if (is_data)
2083 			reserved = zinfo->reserved_active_zones;
2084 		/*
2085 		 * For the data block group, leave active zones for one
2086 		 * metadata block group and one system block group.
2087 		 */
2088 		if (atomic_read(&zinfo->active_zones_left) <= reserved) {
2089 			ret = false;
2090 			spin_unlock(&fs_info->zone_active_bgs_lock);
2091 			goto out_unlock;
2092 		}
2093 
2094 		if (!btrfs_dev_set_active_zone(device, physical)) {
2095 			/* Cannot activate the zone */
2096 			ret = false;
2097 			spin_unlock(&fs_info->zone_active_bgs_lock);
2098 			goto out_unlock;
2099 		}
2100 		if (!is_data)
2101 			zinfo->reserved_active_zones--;
2102 	}
2103 	spin_unlock(&fs_info->zone_active_bgs_lock);
2104 
2105 	/* Successfully activated all the zones */
2106 	set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2107 	spin_unlock(&block_group->lock);
2108 
2109 	/* For the active block group list */
2110 	btrfs_get_block_group(block_group);
2111 
2112 	spin_lock(&fs_info->zone_active_bgs_lock);
2113 	list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
2114 	spin_unlock(&fs_info->zone_active_bgs_lock);
2115 
2116 	return true;
2117 
2118 out_unlock:
2119 	spin_unlock(&block_group->lock);
2120 	return ret;
2121 }
2122 
2123 static void wait_eb_writebacks(struct btrfs_block_group *block_group)
2124 {
2125 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2126 	const u64 end = block_group->start + block_group->length;
2127 	struct radix_tree_iter iter;
2128 	struct extent_buffer *eb;
2129 	void __rcu **slot;
2130 
2131 	rcu_read_lock();
2132 	radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
2133 				 block_group->start >> fs_info->sectorsize_bits) {
2134 		eb = radix_tree_deref_slot(slot);
2135 		if (!eb)
2136 			continue;
2137 		if (radix_tree_deref_retry(eb)) {
2138 			slot = radix_tree_iter_retry(&iter);
2139 			continue;
2140 		}
2141 
2142 		if (eb->start < block_group->start)
2143 			continue;
2144 		if (eb->start >= end)
2145 			break;
2146 
2147 		slot = radix_tree_iter_resume(slot, &iter);
2148 		rcu_read_unlock();
2149 		wait_on_extent_buffer_writeback(eb);
2150 		rcu_read_lock();
2151 	}
2152 	rcu_read_unlock();
2153 }
2154 
2155 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
2156 {
2157 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2158 	struct btrfs_chunk_map *map;
2159 	const bool is_metadata = (block_group->flags &
2160 			(BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
2161 	int ret = 0;
2162 	int i;
2163 
2164 	spin_lock(&block_group->lock);
2165 	if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2166 		spin_unlock(&block_group->lock);
2167 		return 0;
2168 	}
2169 
2170 	/* Check if we have unwritten allocated space */
2171 	if (is_metadata &&
2172 	    block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
2173 		spin_unlock(&block_group->lock);
2174 		return -EAGAIN;
2175 	}
2176 
2177 	/*
2178 	 * If we are sure that the block group is full (= no more room left for
2179 	 * new allocation) and the IO for the last usable block is completed, we
2180 	 * don't need to wait for the other IOs. This holds because we ensure
2181 	 * the sequential IO submissions using the ZONE_APPEND command for data
2182 	 * and block_group->meta_write_pointer for metadata.
2183 	 */
2184 	if (!fully_written) {
2185 		if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2186 			spin_unlock(&block_group->lock);
2187 			return -EAGAIN;
2188 		}
2189 		spin_unlock(&block_group->lock);
2190 
2191 		ret = btrfs_inc_block_group_ro(block_group, false);
2192 		if (ret)
2193 			return ret;
2194 
2195 		/* Ensure all writes in this block group finish */
2196 		btrfs_wait_block_group_reservations(block_group);
2197 		/* No need to wait for NOCOW writers. Zoned mode does not allow that */
2198 		btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
2199 					 block_group->length);
2200 		/* Wait for extent buffers to be written. */
2201 		if (is_metadata)
2202 			wait_eb_writebacks(block_group);
2203 
2204 		spin_lock(&block_group->lock);
2205 
2206 		/*
2207 		 * Bail out if someone already deactivated the block group, or
2208 		 * allocated space is left in the block group.
2209 		 */
2210 		if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2211 			      &block_group->runtime_flags)) {
2212 			spin_unlock(&block_group->lock);
2213 			btrfs_dec_block_group_ro(block_group);
2214 			return 0;
2215 		}
2216 
2217 		if (block_group->reserved ||
2218 		    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2219 			     &block_group->runtime_flags)) {
2220 			spin_unlock(&block_group->lock);
2221 			btrfs_dec_block_group_ro(block_group);
2222 			return -EAGAIN;
2223 		}
2224 	}
2225 
2226 	clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2227 	block_group->alloc_offset = block_group->zone_capacity;
2228 	if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))
2229 		block_group->meta_write_pointer = block_group->start +
2230 						  block_group->zone_capacity;
2231 	block_group->free_space_ctl->free_space = 0;
2232 	btrfs_clear_treelog_bg(block_group);
2233 	btrfs_clear_data_reloc_bg(block_group);
2234 	spin_unlock(&block_group->lock);
2235 
2236 	map = block_group->physical_map;
2237 	for (i = 0; i < map->num_stripes; i++) {
2238 		struct btrfs_device *device = map->stripes[i].dev;
2239 		const u64 physical = map->stripes[i].physical;
2240 		struct btrfs_zoned_device_info *zinfo = device->zone_info;
2241 
2242 		if (zinfo->max_active_zones == 0)
2243 			continue;
2244 
2245 		ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2246 				       physical >> SECTOR_SHIFT,
2247 				       zinfo->zone_size >> SECTOR_SHIFT,
2248 				       GFP_NOFS);
2249 
2250 		if (ret)
2251 			return ret;
2252 
2253 		if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA))
2254 			zinfo->reserved_active_zones++;
2255 		btrfs_dev_clear_active_zone(device, physical);
2256 	}
2257 
2258 	if (!fully_written)
2259 		btrfs_dec_block_group_ro(block_group);
2260 
2261 	spin_lock(&fs_info->zone_active_bgs_lock);
2262 	ASSERT(!list_empty(&block_group->active_bg_list));
2263 	list_del_init(&block_group->active_bg_list);
2264 	spin_unlock(&fs_info->zone_active_bgs_lock);
2265 
2266 	/* For active_bg_list */
2267 	btrfs_put_block_group(block_group);
2268 
2269 	clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2270 
2271 	return 0;
2272 }
2273 
2274 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2275 {
2276 	if (!btrfs_is_zoned(block_group->fs_info))
2277 		return 0;
2278 
2279 	return do_zone_finish(block_group, false);
2280 }
2281 
2282 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2283 {
2284 	struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2285 	struct btrfs_device *device;
2286 	bool ret = false;
2287 
2288 	if (!btrfs_is_zoned(fs_info))
2289 		return true;
2290 
2291 	/* Check if there is a device with active zones left */
2292 	mutex_lock(&fs_info->chunk_mutex);
2293 	spin_lock(&fs_info->zone_active_bgs_lock);
2294 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2295 		struct btrfs_zoned_device_info *zinfo = device->zone_info;
2296 		int reserved = 0;
2297 
2298 		if (!device->bdev)
2299 			continue;
2300 
2301 		if (!zinfo->max_active_zones) {
2302 			ret = true;
2303 			break;
2304 		}
2305 
2306 		if (flags & BTRFS_BLOCK_GROUP_DATA)
2307 			reserved = zinfo->reserved_active_zones;
2308 
2309 		switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2310 		case 0: /* single */
2311 			ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved));
2312 			break;
2313 		case BTRFS_BLOCK_GROUP_DUP:
2314 			ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved));
2315 			break;
2316 		}
2317 		if (ret)
2318 			break;
2319 	}
2320 	spin_unlock(&fs_info->zone_active_bgs_lock);
2321 	mutex_unlock(&fs_info->chunk_mutex);
2322 
2323 	if (!ret)
2324 		set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2325 
2326 	return ret;
2327 }
2328 
2329 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2330 {
2331 	struct btrfs_block_group *block_group;
2332 	u64 min_alloc_bytes;
2333 
2334 	if (!btrfs_is_zoned(fs_info))
2335 		return;
2336 
2337 	block_group = btrfs_lookup_block_group(fs_info, logical);
2338 	ASSERT(block_group);
2339 
2340 	/* No MIXED_BG on zoned btrfs. */
2341 	if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2342 		min_alloc_bytes = fs_info->sectorsize;
2343 	else
2344 		min_alloc_bytes = fs_info->nodesize;
2345 
2346 	/* Bail out if we can allocate more data from this block group. */
2347 	if (logical + length + min_alloc_bytes <=
2348 	    block_group->start + block_group->zone_capacity)
2349 		goto out;
2350 
2351 	do_zone_finish(block_group, true);
2352 
2353 out:
2354 	btrfs_put_block_group(block_group);
2355 }
2356 
2357 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2358 {
2359 	struct btrfs_block_group *bg =
2360 		container_of(work, struct btrfs_block_group, zone_finish_work);
2361 
2362 	wait_on_extent_buffer_writeback(bg->last_eb);
2363 	free_extent_buffer(bg->last_eb);
2364 	btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2365 	btrfs_put_block_group(bg);
2366 }
2367 
2368 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2369 				   struct extent_buffer *eb)
2370 {
2371 	if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2372 	    eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2373 		return;
2374 
2375 	if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2376 		btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2377 			  bg->start);
2378 		return;
2379 	}
2380 
2381 	/* For the work */
2382 	btrfs_get_block_group(bg);
2383 	atomic_inc(&eb->refs);
2384 	bg->last_eb = eb;
2385 	INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2386 	queue_work(system_unbound_wq, &bg->zone_finish_work);
2387 }
2388 
2389 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2390 {
2391 	struct btrfs_fs_info *fs_info = bg->fs_info;
2392 
2393 	spin_lock(&fs_info->relocation_bg_lock);
2394 	if (fs_info->data_reloc_bg == bg->start)
2395 		fs_info->data_reloc_bg = 0;
2396 	spin_unlock(&fs_info->relocation_bg_lock);
2397 }
2398 
2399 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2400 {
2401 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2402 	struct btrfs_device *device;
2403 
2404 	if (!btrfs_is_zoned(fs_info))
2405 		return;
2406 
2407 	mutex_lock(&fs_devices->device_list_mutex);
2408 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2409 		if (device->zone_info) {
2410 			vfree(device->zone_info->zone_cache);
2411 			device->zone_info->zone_cache = NULL;
2412 		}
2413 	}
2414 	mutex_unlock(&fs_devices->device_list_mutex);
2415 }
2416 
2417 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2418 {
2419 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2420 	struct btrfs_device *device;
2421 	u64 used = 0;
2422 	u64 total = 0;
2423 	u64 factor;
2424 
2425 	ASSERT(btrfs_is_zoned(fs_info));
2426 
2427 	if (fs_info->bg_reclaim_threshold == 0)
2428 		return false;
2429 
2430 	mutex_lock(&fs_devices->device_list_mutex);
2431 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2432 		if (!device->bdev)
2433 			continue;
2434 
2435 		total += device->disk_total_bytes;
2436 		used += device->bytes_used;
2437 	}
2438 	mutex_unlock(&fs_devices->device_list_mutex);
2439 
2440 	factor = div64_u64(used * 100, total);
2441 	return factor >= fs_info->bg_reclaim_threshold;
2442 }
2443 
2444 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2445 				       u64 length)
2446 {
2447 	struct btrfs_block_group *block_group;
2448 
2449 	if (!btrfs_is_zoned(fs_info))
2450 		return;
2451 
2452 	block_group = btrfs_lookup_block_group(fs_info, logical);
2453 	/* It should be called on a previous data relocation block group. */
2454 	ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2455 
2456 	spin_lock(&block_group->lock);
2457 	if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2458 		goto out;
2459 
2460 	/* All relocation extents are written. */
2461 	if (block_group->start + block_group->alloc_offset == logical + length) {
2462 		/*
2463 		 * Now, release this block group for further allocations and
2464 		 * zone finish.
2465 		 */
2466 		clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2467 			  &block_group->runtime_flags);
2468 	}
2469 
2470 out:
2471 	spin_unlock(&block_group->lock);
2472 	btrfs_put_block_group(block_group);
2473 }
2474 
2475 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2476 {
2477 	struct btrfs_block_group *block_group;
2478 	struct btrfs_block_group *min_bg = NULL;
2479 	u64 min_avail = U64_MAX;
2480 	int ret;
2481 
2482 	spin_lock(&fs_info->zone_active_bgs_lock);
2483 	list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2484 			    active_bg_list) {
2485 		u64 avail;
2486 
2487 		spin_lock(&block_group->lock);
2488 		if (block_group->reserved || block_group->alloc_offset == 0 ||
2489 		    (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) ||
2490 		    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2491 			spin_unlock(&block_group->lock);
2492 			continue;
2493 		}
2494 
2495 		avail = block_group->zone_capacity - block_group->alloc_offset;
2496 		if (min_avail > avail) {
2497 			if (min_bg)
2498 				btrfs_put_block_group(min_bg);
2499 			min_bg = block_group;
2500 			min_avail = avail;
2501 			btrfs_get_block_group(min_bg);
2502 		}
2503 		spin_unlock(&block_group->lock);
2504 	}
2505 	spin_unlock(&fs_info->zone_active_bgs_lock);
2506 
2507 	if (!min_bg)
2508 		return 0;
2509 
2510 	ret = btrfs_zone_finish(min_bg);
2511 	btrfs_put_block_group(min_bg);
2512 
2513 	return ret < 0 ? ret : 1;
2514 }
2515 
2516 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2517 				struct btrfs_space_info *space_info,
2518 				bool do_finish)
2519 {
2520 	struct btrfs_block_group *bg;
2521 	int index;
2522 
2523 	if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2524 		return 0;
2525 
2526 	for (;;) {
2527 		int ret;
2528 		bool need_finish = false;
2529 
2530 		down_read(&space_info->groups_sem);
2531 		for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2532 			list_for_each_entry(bg, &space_info->block_groups[index],
2533 					    list) {
2534 				if (!spin_trylock(&bg->lock))
2535 					continue;
2536 				if (btrfs_zoned_bg_is_full(bg) ||
2537 				    test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2538 					     &bg->runtime_flags)) {
2539 					spin_unlock(&bg->lock);
2540 					continue;
2541 				}
2542 				spin_unlock(&bg->lock);
2543 
2544 				if (btrfs_zone_activate(bg)) {
2545 					up_read(&space_info->groups_sem);
2546 					return 1;
2547 				}
2548 
2549 				need_finish = true;
2550 			}
2551 		}
2552 		up_read(&space_info->groups_sem);
2553 
2554 		if (!do_finish || !need_finish)
2555 			break;
2556 
2557 		ret = btrfs_zone_finish_one_bg(fs_info);
2558 		if (ret == 0)
2559 			break;
2560 		if (ret < 0)
2561 			return ret;
2562 	}
2563 
2564 	return 0;
2565 }
2566 
2567 /*
2568  * Reserve zones for one metadata block group, one tree-log block group, and one
2569  * system block group.
2570  */
2571 void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info)
2572 {
2573 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2574 	struct btrfs_block_group *block_group;
2575 	struct btrfs_device *device;
2576 	/* Reserve zones for normal SINGLE metadata and tree-log block group. */
2577 	unsigned int metadata_reserve = 2;
2578 	/* Reserve a zone for SINGLE system block group. */
2579 	unsigned int system_reserve = 1;
2580 
2581 	if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
2582 		return;
2583 
2584 	/*
2585 	 * This function is called from the mount context. So, there is no
2586 	 * parallel process touching the bits. No need for read_seqretry().
2587 	 */
2588 	if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2589 		metadata_reserve = 4;
2590 	if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2591 		system_reserve = 2;
2592 
2593 	/* Apply the reservation on all the devices. */
2594 	mutex_lock(&fs_devices->device_list_mutex);
2595 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2596 		if (!device->bdev)
2597 			continue;
2598 
2599 		device->zone_info->reserved_active_zones =
2600 			metadata_reserve + system_reserve;
2601 	}
2602 	mutex_unlock(&fs_devices->device_list_mutex);
2603 
2604 	/* Release reservation for currently active block groups. */
2605 	spin_lock(&fs_info->zone_active_bgs_lock);
2606 	list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
2607 		struct btrfs_chunk_map *map = block_group->physical_map;
2608 
2609 		if (!(block_group->flags &
2610 		      (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
2611 			continue;
2612 
2613 		for (int i = 0; i < map->num_stripes; i++)
2614 			map->stripes[i].dev->zone_info->reserved_active_zones--;
2615 	}
2616 	spin_unlock(&fs_info->zone_active_bgs_lock);
2617 }
2618