1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/blkdev.h> 6 #include <linux/sched/mm.h> 7 #include <linux/atomic.h> 8 #include <linux/vmalloc.h> 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "zoned.h" 12 #include "rcu-string.h" 13 #include "disk-io.h" 14 #include "block-group.h" 15 #include "dev-replace.h" 16 #include "space-info.h" 17 #include "fs.h" 18 #include "accessors.h" 19 #include "bio.h" 20 21 /* Maximum number of zones to report per blkdev_report_zones() call */ 22 #define BTRFS_REPORT_NR_ZONES 4096 23 /* Invalid allocation pointer value for missing devices */ 24 #define WP_MISSING_DEV ((u64)-1) 25 /* Pseudo write pointer value for conventional zone */ 26 #define WP_CONVENTIONAL ((u64)-2) 27 28 /* 29 * Location of the first zone of superblock logging zone pairs. 30 * 31 * - primary superblock: 0B (zone 0) 32 * - first copy: 512G (zone starting at that offset) 33 * - second copy: 4T (zone starting at that offset) 34 */ 35 #define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL) 36 #define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G) 37 #define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G) 38 39 #define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET) 40 #define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET) 41 42 /* Number of superblock log zones */ 43 #define BTRFS_NR_SB_LOG_ZONES 2 44 45 /* 46 * Minimum of active zones we need: 47 * 48 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors 49 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group 50 * - 1 zone for tree-log dedicated block group 51 * - 1 zone for relocation 52 */ 53 #define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5) 54 55 /* 56 * Minimum / maximum supported zone size. Currently, SMR disks have a zone 57 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range. 58 * We do not expect the zone size to become larger than 8GiB or smaller than 59 * 4MiB in the near future. 60 */ 61 #define BTRFS_MAX_ZONE_SIZE SZ_8G 62 #define BTRFS_MIN_ZONE_SIZE SZ_4M 63 64 #define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT) 65 66 static void wait_eb_writebacks(struct btrfs_block_group *block_group); 67 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written); 68 69 static inline bool sb_zone_is_full(const struct blk_zone *zone) 70 { 71 return (zone->cond == BLK_ZONE_COND_FULL) || 72 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity); 73 } 74 75 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data) 76 { 77 struct blk_zone *zones = data; 78 79 memcpy(&zones[idx], zone, sizeof(*zone)); 80 81 return 0; 82 } 83 84 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones, 85 u64 *wp_ret) 86 { 87 bool empty[BTRFS_NR_SB_LOG_ZONES]; 88 bool full[BTRFS_NR_SB_LOG_ZONES]; 89 sector_t sector; 90 91 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 92 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL); 93 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY); 94 full[i] = sb_zone_is_full(&zones[i]); 95 } 96 97 /* 98 * Possible states of log buffer zones 99 * 100 * Empty[0] In use[0] Full[0] 101 * Empty[1] * 0 1 102 * In use[1] x x 1 103 * Full[1] 0 0 C 104 * 105 * Log position: 106 * *: Special case, no superblock is written 107 * 0: Use write pointer of zones[0] 108 * 1: Use write pointer of zones[1] 109 * C: Compare super blocks from zones[0] and zones[1], use the latest 110 * one determined by generation 111 * x: Invalid state 112 */ 113 114 if (empty[0] && empty[1]) { 115 /* Special case to distinguish no superblock to read */ 116 *wp_ret = zones[0].start << SECTOR_SHIFT; 117 return -ENOENT; 118 } else if (full[0] && full[1]) { 119 /* Compare two super blocks */ 120 struct address_space *mapping = bdev->bd_mapping; 121 struct page *page[BTRFS_NR_SB_LOG_ZONES]; 122 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES]; 123 124 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 125 u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT; 126 u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) - 127 BTRFS_SUPER_INFO_SIZE; 128 129 page[i] = read_cache_page_gfp(mapping, 130 bytenr >> PAGE_SHIFT, GFP_NOFS); 131 if (IS_ERR(page[i])) { 132 if (i == 1) 133 btrfs_release_disk_super(super[0]); 134 return PTR_ERR(page[i]); 135 } 136 super[i] = page_address(page[i]); 137 } 138 139 if (btrfs_super_generation(super[0]) > 140 btrfs_super_generation(super[1])) 141 sector = zones[1].start; 142 else 143 sector = zones[0].start; 144 145 for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) 146 btrfs_release_disk_super(super[i]); 147 } else if (!full[0] && (empty[1] || full[1])) { 148 sector = zones[0].wp; 149 } else if (full[0]) { 150 sector = zones[1].wp; 151 } else { 152 return -EUCLEAN; 153 } 154 *wp_ret = sector << SECTOR_SHIFT; 155 return 0; 156 } 157 158 /* 159 * Get the first zone number of the superblock mirror 160 */ 161 static inline u32 sb_zone_number(int shift, int mirror) 162 { 163 u64 zone = U64_MAX; 164 165 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX); 166 switch (mirror) { 167 case 0: zone = 0; break; 168 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break; 169 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break; 170 } 171 172 ASSERT(zone <= U32_MAX); 173 174 return (u32)zone; 175 } 176 177 static inline sector_t zone_start_sector(u32 zone_number, 178 struct block_device *bdev) 179 { 180 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev)); 181 } 182 183 static inline u64 zone_start_physical(u32 zone_number, 184 struct btrfs_zoned_device_info *zone_info) 185 { 186 return (u64)zone_number << zone_info->zone_size_shift; 187 } 188 189 /* 190 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block 191 * device into static sized chunks and fake a conventional zone on each of 192 * them. 193 */ 194 static int emulate_report_zones(struct btrfs_device *device, u64 pos, 195 struct blk_zone *zones, unsigned int nr_zones) 196 { 197 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT; 198 sector_t bdev_size = bdev_nr_sectors(device->bdev); 199 unsigned int i; 200 201 pos >>= SECTOR_SHIFT; 202 for (i = 0; i < nr_zones; i++) { 203 zones[i].start = i * zone_sectors + pos; 204 zones[i].len = zone_sectors; 205 zones[i].capacity = zone_sectors; 206 zones[i].wp = zones[i].start + zone_sectors; 207 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL; 208 zones[i].cond = BLK_ZONE_COND_NOT_WP; 209 210 if (zones[i].wp >= bdev_size) { 211 i++; 212 break; 213 } 214 } 215 216 return i; 217 } 218 219 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos, 220 struct blk_zone *zones, unsigned int *nr_zones) 221 { 222 struct btrfs_zoned_device_info *zinfo = device->zone_info; 223 int ret; 224 225 if (!*nr_zones) 226 return 0; 227 228 if (!bdev_is_zoned(device->bdev)) { 229 ret = emulate_report_zones(device, pos, zones, *nr_zones); 230 *nr_zones = ret; 231 return 0; 232 } 233 234 /* Check cache */ 235 if (zinfo->zone_cache) { 236 unsigned int i; 237 u32 zno; 238 239 ASSERT(IS_ALIGNED(pos, zinfo->zone_size)); 240 zno = pos >> zinfo->zone_size_shift; 241 /* 242 * We cannot report zones beyond the zone end. So, it is OK to 243 * cap *nr_zones to at the end. 244 */ 245 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno); 246 247 for (i = 0; i < *nr_zones; i++) { 248 struct blk_zone *zone_info; 249 250 zone_info = &zinfo->zone_cache[zno + i]; 251 if (!zone_info->len) 252 break; 253 } 254 255 if (i == *nr_zones) { 256 /* Cache hit on all the zones */ 257 memcpy(zones, zinfo->zone_cache + zno, 258 sizeof(*zinfo->zone_cache) * *nr_zones); 259 return 0; 260 } 261 } 262 263 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones, 264 copy_zone_info_cb, zones); 265 if (ret < 0) { 266 btrfs_err_in_rcu(device->fs_info, 267 "zoned: failed to read zone %llu on %s (devid %llu)", 268 pos, rcu_str_deref(device->name), 269 device->devid); 270 return ret; 271 } 272 *nr_zones = ret; 273 if (!ret) 274 return -EIO; 275 276 /* Populate cache */ 277 if (zinfo->zone_cache) { 278 u32 zno = pos >> zinfo->zone_size_shift; 279 280 memcpy(zinfo->zone_cache + zno, zones, 281 sizeof(*zinfo->zone_cache) * *nr_zones); 282 } 283 284 return 0; 285 } 286 287 /* The emulated zone size is determined from the size of device extent */ 288 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info) 289 { 290 BTRFS_PATH_AUTO_FREE(path); 291 struct btrfs_root *root = fs_info->dev_root; 292 struct btrfs_key key; 293 struct extent_buffer *leaf; 294 struct btrfs_dev_extent *dext; 295 int ret = 0; 296 297 key.objectid = 1; 298 key.type = BTRFS_DEV_EXTENT_KEY; 299 key.offset = 0; 300 301 path = btrfs_alloc_path(); 302 if (!path) 303 return -ENOMEM; 304 305 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 306 if (ret < 0) 307 return ret; 308 309 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 310 ret = btrfs_next_leaf(root, path); 311 if (ret < 0) 312 return ret; 313 /* No dev extents at all? Not good */ 314 if (ret > 0) 315 return -EUCLEAN; 316 } 317 318 leaf = path->nodes[0]; 319 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 320 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext); 321 return 0; 322 } 323 324 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info) 325 { 326 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 327 struct btrfs_device *device; 328 int ret = 0; 329 330 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */ 331 if (!btrfs_fs_incompat(fs_info, ZONED)) 332 return 0; 333 334 mutex_lock(&fs_devices->device_list_mutex); 335 list_for_each_entry(device, &fs_devices->devices, dev_list) { 336 /* We can skip reading of zone info for missing devices */ 337 if (!device->bdev) 338 continue; 339 340 ret = btrfs_get_dev_zone_info(device, true); 341 if (ret) 342 break; 343 } 344 mutex_unlock(&fs_devices->device_list_mutex); 345 346 return ret; 347 } 348 349 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache) 350 { 351 struct btrfs_fs_info *fs_info = device->fs_info; 352 struct btrfs_zoned_device_info *zone_info = NULL; 353 struct block_device *bdev = device->bdev; 354 unsigned int max_active_zones; 355 unsigned int nactive; 356 sector_t nr_sectors; 357 sector_t sector = 0; 358 struct blk_zone *zones = NULL; 359 unsigned int i, nreported = 0, nr_zones; 360 sector_t zone_sectors; 361 char *model, *emulated; 362 int ret; 363 364 /* 365 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not 366 * yet be set. 367 */ 368 if (!btrfs_fs_incompat(fs_info, ZONED)) 369 return 0; 370 371 if (device->zone_info) 372 return 0; 373 374 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL); 375 if (!zone_info) 376 return -ENOMEM; 377 378 device->zone_info = zone_info; 379 380 if (!bdev_is_zoned(bdev)) { 381 if (!fs_info->zone_size) { 382 ret = calculate_emulated_zone_size(fs_info); 383 if (ret) 384 goto out; 385 } 386 387 ASSERT(fs_info->zone_size); 388 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT; 389 } else { 390 zone_sectors = bdev_zone_sectors(bdev); 391 } 392 393 ASSERT(is_power_of_two_u64(zone_sectors)); 394 zone_info->zone_size = zone_sectors << SECTOR_SHIFT; 395 396 /* We reject devices with a zone size larger than 8GB */ 397 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) { 398 btrfs_err_in_rcu(fs_info, 399 "zoned: %s: zone size %llu larger than supported maximum %llu", 400 rcu_str_deref(device->name), 401 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE); 402 ret = -EINVAL; 403 goto out; 404 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) { 405 btrfs_err_in_rcu(fs_info, 406 "zoned: %s: zone size %llu smaller than supported minimum %u", 407 rcu_str_deref(device->name), 408 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE); 409 ret = -EINVAL; 410 goto out; 411 } 412 413 nr_sectors = bdev_nr_sectors(bdev); 414 zone_info->zone_size_shift = ilog2(zone_info->zone_size); 415 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors); 416 if (!IS_ALIGNED(nr_sectors, zone_sectors)) 417 zone_info->nr_zones++; 418 419 max_active_zones = bdev_max_active_zones(bdev); 420 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) { 421 btrfs_err_in_rcu(fs_info, 422 "zoned: %s: max active zones %u is too small, need at least %u active zones", 423 rcu_str_deref(device->name), max_active_zones, 424 BTRFS_MIN_ACTIVE_ZONES); 425 ret = -EINVAL; 426 goto out; 427 } 428 zone_info->max_active_zones = max_active_zones; 429 430 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 431 if (!zone_info->seq_zones) { 432 ret = -ENOMEM; 433 goto out; 434 } 435 436 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 437 if (!zone_info->empty_zones) { 438 ret = -ENOMEM; 439 goto out; 440 } 441 442 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 443 if (!zone_info->active_zones) { 444 ret = -ENOMEM; 445 goto out; 446 } 447 448 zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL); 449 if (!zones) { 450 ret = -ENOMEM; 451 goto out; 452 } 453 454 /* 455 * Enable zone cache only for a zoned device. On a non-zoned device, we 456 * fill the zone info with emulated CONVENTIONAL zones, so no need to 457 * use the cache. 458 */ 459 if (populate_cache && bdev_is_zoned(device->bdev)) { 460 zone_info->zone_cache = vcalloc(zone_info->nr_zones, 461 sizeof(struct blk_zone)); 462 if (!zone_info->zone_cache) { 463 btrfs_err_in_rcu(device->fs_info, 464 "zoned: failed to allocate zone cache for %s", 465 rcu_str_deref(device->name)); 466 ret = -ENOMEM; 467 goto out; 468 } 469 } 470 471 /* Get zones type */ 472 nactive = 0; 473 while (sector < nr_sectors) { 474 nr_zones = BTRFS_REPORT_NR_ZONES; 475 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones, 476 &nr_zones); 477 if (ret) 478 goto out; 479 480 for (i = 0; i < nr_zones; i++) { 481 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ) 482 __set_bit(nreported, zone_info->seq_zones); 483 switch (zones[i].cond) { 484 case BLK_ZONE_COND_EMPTY: 485 __set_bit(nreported, zone_info->empty_zones); 486 break; 487 case BLK_ZONE_COND_IMP_OPEN: 488 case BLK_ZONE_COND_EXP_OPEN: 489 case BLK_ZONE_COND_CLOSED: 490 __set_bit(nreported, zone_info->active_zones); 491 nactive++; 492 break; 493 } 494 nreported++; 495 } 496 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len; 497 } 498 499 if (nreported != zone_info->nr_zones) { 500 btrfs_err_in_rcu(device->fs_info, 501 "inconsistent number of zones on %s (%u/%u)", 502 rcu_str_deref(device->name), nreported, 503 zone_info->nr_zones); 504 ret = -EIO; 505 goto out; 506 } 507 508 if (max_active_zones) { 509 if (nactive > max_active_zones) { 510 btrfs_err_in_rcu(device->fs_info, 511 "zoned: %u active zones on %s exceeds max_active_zones %u", 512 nactive, rcu_str_deref(device->name), 513 max_active_zones); 514 ret = -EIO; 515 goto out; 516 } 517 atomic_set(&zone_info->active_zones_left, 518 max_active_zones - nactive); 519 set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags); 520 } 521 522 /* Validate superblock log */ 523 nr_zones = BTRFS_NR_SB_LOG_ZONES; 524 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 525 u32 sb_zone; 526 u64 sb_wp; 527 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i; 528 529 sb_zone = sb_zone_number(zone_info->zone_size_shift, i); 530 if (sb_zone + 1 >= zone_info->nr_zones) 531 continue; 532 533 ret = btrfs_get_dev_zones(device, 534 zone_start_physical(sb_zone, zone_info), 535 &zone_info->sb_zones[sb_pos], 536 &nr_zones); 537 if (ret) 538 goto out; 539 540 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) { 541 btrfs_err_in_rcu(device->fs_info, 542 "zoned: failed to read super block log zone info at devid %llu zone %u", 543 device->devid, sb_zone); 544 ret = -EUCLEAN; 545 goto out; 546 } 547 548 /* 549 * If zones[0] is conventional, always use the beginning of the 550 * zone to record superblock. No need to validate in that case. 551 */ 552 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type == 553 BLK_ZONE_TYPE_CONVENTIONAL) 554 continue; 555 556 ret = sb_write_pointer(device->bdev, 557 &zone_info->sb_zones[sb_pos], &sb_wp); 558 if (ret != -ENOENT && ret) { 559 btrfs_err_in_rcu(device->fs_info, 560 "zoned: super block log zone corrupted devid %llu zone %u", 561 device->devid, sb_zone); 562 ret = -EUCLEAN; 563 goto out; 564 } 565 } 566 567 568 kvfree(zones); 569 570 if (bdev_is_zoned(bdev)) { 571 model = "host-managed zoned"; 572 emulated = ""; 573 } else { 574 model = "regular"; 575 emulated = "emulated "; 576 } 577 578 btrfs_info_in_rcu(fs_info, 579 "%s block device %s, %u %szones of %llu bytes", 580 model, rcu_str_deref(device->name), zone_info->nr_zones, 581 emulated, zone_info->zone_size); 582 583 return 0; 584 585 out: 586 kvfree(zones); 587 btrfs_destroy_dev_zone_info(device); 588 return ret; 589 } 590 591 void btrfs_destroy_dev_zone_info(struct btrfs_device *device) 592 { 593 struct btrfs_zoned_device_info *zone_info = device->zone_info; 594 595 if (!zone_info) 596 return; 597 598 bitmap_free(zone_info->active_zones); 599 bitmap_free(zone_info->seq_zones); 600 bitmap_free(zone_info->empty_zones); 601 vfree(zone_info->zone_cache); 602 kfree(zone_info); 603 device->zone_info = NULL; 604 } 605 606 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev) 607 { 608 struct btrfs_zoned_device_info *zone_info; 609 610 zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL); 611 if (!zone_info) 612 return NULL; 613 614 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 615 if (!zone_info->seq_zones) 616 goto out; 617 618 bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones, 619 zone_info->nr_zones); 620 621 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 622 if (!zone_info->empty_zones) 623 goto out; 624 625 bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones, 626 zone_info->nr_zones); 627 628 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 629 if (!zone_info->active_zones) 630 goto out; 631 632 bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones, 633 zone_info->nr_zones); 634 zone_info->zone_cache = NULL; 635 636 return zone_info; 637 638 out: 639 bitmap_free(zone_info->seq_zones); 640 bitmap_free(zone_info->empty_zones); 641 bitmap_free(zone_info->active_zones); 642 kfree(zone_info); 643 return NULL; 644 } 645 646 static int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, struct blk_zone *zone) 647 { 648 unsigned int nr_zones = 1; 649 int ret; 650 651 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones); 652 if (ret != 0 || !nr_zones) 653 return ret ? ret : -EIO; 654 655 return 0; 656 } 657 658 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info) 659 { 660 struct btrfs_device *device; 661 662 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 663 if (device->bdev && bdev_is_zoned(device->bdev)) { 664 btrfs_err(fs_info, 665 "zoned: mode not enabled but zoned device found: %pg", 666 device->bdev); 667 return -EINVAL; 668 } 669 } 670 671 return 0; 672 } 673 674 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info) 675 { 676 struct queue_limits *lim = &fs_info->limits; 677 struct btrfs_device *device; 678 u64 zone_size = 0; 679 int ret; 680 681 /* 682 * Host-Managed devices can't be used without the ZONED flag. With the 683 * ZONED all devices can be used, using zone emulation if required. 684 */ 685 if (!btrfs_fs_incompat(fs_info, ZONED)) 686 return btrfs_check_for_zoned_device(fs_info); 687 688 blk_set_stacking_limits(lim); 689 690 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 691 struct btrfs_zoned_device_info *zone_info = device->zone_info; 692 693 if (!device->bdev) 694 continue; 695 696 if (!zone_size) { 697 zone_size = zone_info->zone_size; 698 } else if (zone_info->zone_size != zone_size) { 699 btrfs_err(fs_info, 700 "zoned: unequal block device zone sizes: have %llu found %llu", 701 zone_info->zone_size, zone_size); 702 return -EINVAL; 703 } 704 705 /* 706 * With the zoned emulation, we can have non-zoned device on the 707 * zoned mode. In this case, we don't have a valid max zone 708 * append size. 709 */ 710 if (bdev_is_zoned(device->bdev)) 711 blk_stack_limits(lim, bdev_limits(device->bdev), 0); 712 } 713 714 ret = blk_validate_limits(lim); 715 if (ret) { 716 btrfs_err(fs_info, "zoned: failed to validate queue limits"); 717 return ret; 718 } 719 720 /* 721 * stripe_size is always aligned to BTRFS_STRIPE_LEN in 722 * btrfs_create_chunk(). Since we want stripe_len == zone_size, 723 * check the alignment here. 724 */ 725 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) { 726 btrfs_err(fs_info, 727 "zoned: zone size %llu not aligned to stripe %u", 728 zone_size, BTRFS_STRIPE_LEN); 729 return -EINVAL; 730 } 731 732 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 733 btrfs_err(fs_info, "zoned: mixed block groups not supported"); 734 return -EINVAL; 735 } 736 737 fs_info->zone_size = zone_size; 738 /* 739 * Also limit max_zone_append_size by max_segments * PAGE_SIZE. 740 * Technically, we can have multiple pages per segment. But, since 741 * we add the pages one by one to a bio, and cannot increase the 742 * metadata reservation even if it increases the number of extents, it 743 * is safe to stick with the limit. 744 */ 745 fs_info->max_zone_append_size = ALIGN_DOWN( 746 min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT, 747 (u64)lim->max_sectors << SECTOR_SHIFT, 748 (u64)lim->max_segments << PAGE_SHIFT), 749 fs_info->sectorsize); 750 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED; 751 if (fs_info->max_zone_append_size < fs_info->max_extent_size) 752 fs_info->max_extent_size = fs_info->max_zone_append_size; 753 754 /* 755 * Check mount options here, because we might change fs_info->zoned 756 * from fs_info->zone_size. 757 */ 758 ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt); 759 if (ret) 760 return ret; 761 762 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size); 763 return 0; 764 } 765 766 int btrfs_check_mountopts_zoned(const struct btrfs_fs_info *info, 767 unsigned long long *mount_opt) 768 { 769 if (!btrfs_is_zoned(info)) 770 return 0; 771 772 /* 773 * Space cache writing is not COWed. Disable that to avoid write errors 774 * in sequential zones. 775 */ 776 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) { 777 btrfs_err(info, "zoned: space cache v1 is not supported"); 778 return -EINVAL; 779 } 780 781 if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) { 782 btrfs_err(info, "zoned: NODATACOW not supported"); 783 return -EINVAL; 784 } 785 786 if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) { 787 btrfs_info(info, 788 "zoned: async discard ignored and disabled for zoned mode"); 789 btrfs_clear_opt(*mount_opt, DISCARD_ASYNC); 790 } 791 792 return 0; 793 } 794 795 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones, 796 int rw, u64 *bytenr_ret) 797 { 798 u64 wp; 799 int ret; 800 801 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) { 802 *bytenr_ret = zones[0].start << SECTOR_SHIFT; 803 return 0; 804 } 805 806 ret = sb_write_pointer(bdev, zones, &wp); 807 if (ret != -ENOENT && ret < 0) 808 return ret; 809 810 if (rw == WRITE) { 811 struct blk_zone *reset = NULL; 812 813 if (wp == zones[0].start << SECTOR_SHIFT) 814 reset = &zones[0]; 815 else if (wp == zones[1].start << SECTOR_SHIFT) 816 reset = &zones[1]; 817 818 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) { 819 unsigned int nofs_flags; 820 821 ASSERT(sb_zone_is_full(reset)); 822 823 nofs_flags = memalloc_nofs_save(); 824 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 825 reset->start, reset->len); 826 memalloc_nofs_restore(nofs_flags); 827 if (ret) 828 return ret; 829 830 reset->cond = BLK_ZONE_COND_EMPTY; 831 reset->wp = reset->start; 832 } 833 } else if (ret != -ENOENT) { 834 /* 835 * For READ, we want the previous one. Move write pointer to 836 * the end of a zone, if it is at the head of a zone. 837 */ 838 u64 zone_end = 0; 839 840 if (wp == zones[0].start << SECTOR_SHIFT) 841 zone_end = zones[1].start + zones[1].capacity; 842 else if (wp == zones[1].start << SECTOR_SHIFT) 843 zone_end = zones[0].start + zones[0].capacity; 844 if (zone_end) 845 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT, 846 BTRFS_SUPER_INFO_SIZE); 847 848 wp -= BTRFS_SUPER_INFO_SIZE; 849 } 850 851 *bytenr_ret = wp; 852 return 0; 853 854 } 855 856 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw, 857 u64 *bytenr_ret) 858 { 859 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES]; 860 sector_t zone_sectors; 861 u32 sb_zone; 862 int ret; 863 u8 zone_sectors_shift; 864 sector_t nr_sectors; 865 u32 nr_zones; 866 867 if (!bdev_is_zoned(bdev)) { 868 *bytenr_ret = btrfs_sb_offset(mirror); 869 return 0; 870 } 871 872 ASSERT(rw == READ || rw == WRITE); 873 874 zone_sectors = bdev_zone_sectors(bdev); 875 if (!is_power_of_2(zone_sectors)) 876 return -EINVAL; 877 zone_sectors_shift = ilog2(zone_sectors); 878 nr_sectors = bdev_nr_sectors(bdev); 879 nr_zones = nr_sectors >> zone_sectors_shift; 880 881 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 882 if (sb_zone + 1 >= nr_zones) 883 return -ENOENT; 884 885 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev), 886 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb, 887 zones); 888 if (ret < 0) 889 return ret; 890 if (ret != BTRFS_NR_SB_LOG_ZONES) 891 return -EIO; 892 893 return sb_log_location(bdev, zones, rw, bytenr_ret); 894 } 895 896 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw, 897 u64 *bytenr_ret) 898 { 899 struct btrfs_zoned_device_info *zinfo = device->zone_info; 900 u32 zone_num; 901 902 /* 903 * For a zoned filesystem on a non-zoned block device, use the same 904 * super block locations as regular filesystem. Doing so, the super 905 * block can always be retrieved and the zoned flag of the volume 906 * detected from the super block information. 907 */ 908 if (!bdev_is_zoned(device->bdev)) { 909 *bytenr_ret = btrfs_sb_offset(mirror); 910 return 0; 911 } 912 913 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 914 if (zone_num + 1 >= zinfo->nr_zones) 915 return -ENOENT; 916 917 return sb_log_location(device->bdev, 918 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror], 919 rw, bytenr_ret); 920 } 921 922 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo, 923 int mirror) 924 { 925 u32 zone_num; 926 927 if (!zinfo) 928 return false; 929 930 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 931 if (zone_num + 1 >= zinfo->nr_zones) 932 return false; 933 934 if (!test_bit(zone_num, zinfo->seq_zones)) 935 return false; 936 937 return true; 938 } 939 940 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror) 941 { 942 struct btrfs_zoned_device_info *zinfo = device->zone_info; 943 struct blk_zone *zone; 944 int i; 945 946 if (!is_sb_log_zone(zinfo, mirror)) 947 return 0; 948 949 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror]; 950 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 951 /* Advance the next zone */ 952 if (zone->cond == BLK_ZONE_COND_FULL) { 953 zone++; 954 continue; 955 } 956 957 if (zone->cond == BLK_ZONE_COND_EMPTY) 958 zone->cond = BLK_ZONE_COND_IMP_OPEN; 959 960 zone->wp += SUPER_INFO_SECTORS; 961 962 if (sb_zone_is_full(zone)) { 963 /* 964 * No room left to write new superblock. Since 965 * superblock is written with REQ_SYNC, it is safe to 966 * finish the zone now. 967 * 968 * If the write pointer is exactly at the capacity, 969 * explicit ZONE_FINISH is not necessary. 970 */ 971 if (zone->wp != zone->start + zone->capacity) { 972 unsigned int nofs_flags; 973 int ret; 974 975 nofs_flags = memalloc_nofs_save(); 976 ret = blkdev_zone_mgmt(device->bdev, 977 REQ_OP_ZONE_FINISH, zone->start, 978 zone->len); 979 memalloc_nofs_restore(nofs_flags); 980 if (ret) 981 return ret; 982 } 983 984 zone->wp = zone->start + zone->len; 985 zone->cond = BLK_ZONE_COND_FULL; 986 } 987 return 0; 988 } 989 990 /* All the zones are FULL. Should not reach here. */ 991 ASSERT(0); 992 return -EIO; 993 } 994 995 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror) 996 { 997 unsigned int nofs_flags; 998 sector_t zone_sectors; 999 sector_t nr_sectors; 1000 u8 zone_sectors_shift; 1001 u32 sb_zone; 1002 u32 nr_zones; 1003 int ret; 1004 1005 zone_sectors = bdev_zone_sectors(bdev); 1006 zone_sectors_shift = ilog2(zone_sectors); 1007 nr_sectors = bdev_nr_sectors(bdev); 1008 nr_zones = nr_sectors >> zone_sectors_shift; 1009 1010 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 1011 if (sb_zone + 1 >= nr_zones) 1012 return -ENOENT; 1013 1014 nofs_flags = memalloc_nofs_save(); 1015 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1016 zone_start_sector(sb_zone, bdev), 1017 zone_sectors * BTRFS_NR_SB_LOG_ZONES); 1018 memalloc_nofs_restore(nofs_flags); 1019 return ret; 1020 } 1021 1022 /* 1023 * Find allocatable zones within a given region. 1024 * 1025 * @device: the device to allocate a region on 1026 * @hole_start: the position of the hole to allocate the region 1027 * @num_bytes: size of wanted region 1028 * @hole_end: the end of the hole 1029 * @return: position of allocatable zones 1030 * 1031 * Allocatable region should not contain any superblock locations. 1032 */ 1033 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start, 1034 u64 hole_end, u64 num_bytes) 1035 { 1036 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1037 const u8 shift = zinfo->zone_size_shift; 1038 u64 nzones = num_bytes >> shift; 1039 u64 pos = hole_start; 1040 u64 begin, end; 1041 bool have_sb; 1042 int i; 1043 1044 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size)); 1045 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size)); 1046 1047 while (pos < hole_end) { 1048 begin = pos >> shift; 1049 end = begin + nzones; 1050 1051 if (end > zinfo->nr_zones) 1052 return hole_end; 1053 1054 /* Check if zones in the region are all empty */ 1055 if (btrfs_dev_is_sequential(device, pos) && 1056 !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) { 1057 pos += zinfo->zone_size; 1058 continue; 1059 } 1060 1061 have_sb = false; 1062 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1063 u32 sb_zone; 1064 u64 sb_pos; 1065 1066 sb_zone = sb_zone_number(shift, i); 1067 if (!(end <= sb_zone || 1068 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) { 1069 have_sb = true; 1070 pos = zone_start_physical( 1071 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo); 1072 break; 1073 } 1074 1075 /* We also need to exclude regular superblock positions */ 1076 sb_pos = btrfs_sb_offset(i); 1077 if (!(pos + num_bytes <= sb_pos || 1078 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) { 1079 have_sb = true; 1080 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE, 1081 zinfo->zone_size); 1082 break; 1083 } 1084 } 1085 if (!have_sb) 1086 break; 1087 } 1088 1089 return pos; 1090 } 1091 1092 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos) 1093 { 1094 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1095 unsigned int zno = (pos >> zone_info->zone_size_shift); 1096 1097 /* We can use any number of zones */ 1098 if (zone_info->max_active_zones == 0) 1099 return true; 1100 1101 if (!test_bit(zno, zone_info->active_zones)) { 1102 /* Active zone left? */ 1103 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0) 1104 return false; 1105 if (test_and_set_bit(zno, zone_info->active_zones)) { 1106 /* Someone already set the bit */ 1107 atomic_inc(&zone_info->active_zones_left); 1108 } 1109 } 1110 1111 return true; 1112 } 1113 1114 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos) 1115 { 1116 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1117 unsigned int zno = (pos >> zone_info->zone_size_shift); 1118 1119 /* We can use any number of zones */ 1120 if (zone_info->max_active_zones == 0) 1121 return; 1122 1123 if (test_and_clear_bit(zno, zone_info->active_zones)) 1124 atomic_inc(&zone_info->active_zones_left); 1125 } 1126 1127 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical, 1128 u64 length, u64 *bytes) 1129 { 1130 unsigned int nofs_flags; 1131 int ret; 1132 1133 *bytes = 0; 1134 nofs_flags = memalloc_nofs_save(); 1135 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET, 1136 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT); 1137 memalloc_nofs_restore(nofs_flags); 1138 if (ret) 1139 return ret; 1140 1141 *bytes = length; 1142 while (length) { 1143 btrfs_dev_set_zone_empty(device, physical); 1144 btrfs_dev_clear_active_zone(device, physical); 1145 physical += device->zone_info->zone_size; 1146 length -= device->zone_info->zone_size; 1147 } 1148 1149 return 0; 1150 } 1151 1152 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size) 1153 { 1154 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1155 const u8 shift = zinfo->zone_size_shift; 1156 unsigned long begin = start >> shift; 1157 unsigned long nbits = size >> shift; 1158 u64 pos; 1159 int ret; 1160 1161 ASSERT(IS_ALIGNED(start, zinfo->zone_size)); 1162 ASSERT(IS_ALIGNED(size, zinfo->zone_size)); 1163 1164 if (begin + nbits > zinfo->nr_zones) 1165 return -ERANGE; 1166 1167 /* All the zones are conventional */ 1168 if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits)) 1169 return 0; 1170 1171 /* All the zones are sequential and empty */ 1172 if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) && 1173 bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits)) 1174 return 0; 1175 1176 for (pos = start; pos < start + size; pos += zinfo->zone_size) { 1177 u64 reset_bytes; 1178 1179 if (!btrfs_dev_is_sequential(device, pos) || 1180 btrfs_dev_is_empty_zone(device, pos)) 1181 continue; 1182 1183 /* Free regions should be empty */ 1184 btrfs_warn_in_rcu( 1185 device->fs_info, 1186 "zoned: resetting device %s (devid %llu) zone %llu for allocation", 1187 rcu_str_deref(device->name), device->devid, pos >> shift); 1188 WARN_ON_ONCE(1); 1189 1190 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size, 1191 &reset_bytes); 1192 if (ret) 1193 return ret; 1194 } 1195 1196 return 0; 1197 } 1198 1199 /* 1200 * Calculate an allocation pointer from the extent allocation information 1201 * for a block group consist of conventional zones. It is pointed to the 1202 * end of the highest addressed extent in the block group as an allocation 1203 * offset. 1204 */ 1205 static int calculate_alloc_pointer(struct btrfs_block_group *cache, 1206 u64 *offset_ret, bool new) 1207 { 1208 struct btrfs_fs_info *fs_info = cache->fs_info; 1209 struct btrfs_root *root; 1210 BTRFS_PATH_AUTO_FREE(path); 1211 struct btrfs_key key; 1212 struct btrfs_key found_key; 1213 int ret; 1214 u64 length; 1215 1216 /* 1217 * Avoid tree lookups for a new block group, there's no use for it. 1218 * It must always be 0. 1219 * 1220 * Also, we have a lock chain of extent buffer lock -> chunk mutex. 1221 * For new a block group, this function is called from 1222 * btrfs_make_block_group() which is already taking the chunk mutex. 1223 * Thus, we cannot call calculate_alloc_pointer() which takes extent 1224 * buffer locks to avoid deadlock. 1225 */ 1226 if (new) { 1227 *offset_ret = 0; 1228 return 0; 1229 } 1230 1231 path = btrfs_alloc_path(); 1232 if (!path) 1233 return -ENOMEM; 1234 1235 key.objectid = cache->start + cache->length; 1236 key.type = 0; 1237 key.offset = 0; 1238 1239 root = btrfs_extent_root(fs_info, key.objectid); 1240 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1241 /* We should not find the exact match */ 1242 if (!ret) 1243 ret = -EUCLEAN; 1244 if (ret < 0) 1245 return ret; 1246 1247 ret = btrfs_previous_extent_item(root, path, cache->start); 1248 if (ret) { 1249 if (ret == 1) { 1250 ret = 0; 1251 *offset_ret = 0; 1252 } 1253 return ret; 1254 } 1255 1256 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 1257 1258 if (found_key.type == BTRFS_EXTENT_ITEM_KEY) 1259 length = found_key.offset; 1260 else 1261 length = fs_info->nodesize; 1262 1263 if (!(found_key.objectid >= cache->start && 1264 found_key.objectid + length <= cache->start + cache->length)) { 1265 return -EUCLEAN; 1266 } 1267 *offset_ret = found_key.objectid + length - cache->start; 1268 return 0; 1269 } 1270 1271 struct zone_info { 1272 u64 physical; 1273 u64 capacity; 1274 u64 alloc_offset; 1275 }; 1276 1277 static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx, 1278 struct zone_info *info, unsigned long *active, 1279 struct btrfs_chunk_map *map) 1280 { 1281 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1282 struct btrfs_device *device; 1283 int dev_replace_is_ongoing = 0; 1284 unsigned int nofs_flag; 1285 struct blk_zone zone; 1286 int ret; 1287 1288 info->physical = map->stripes[zone_idx].physical; 1289 1290 down_read(&dev_replace->rwsem); 1291 device = map->stripes[zone_idx].dev; 1292 1293 if (!device->bdev) { 1294 up_read(&dev_replace->rwsem); 1295 info->alloc_offset = WP_MISSING_DEV; 1296 return 0; 1297 } 1298 1299 /* Consider a zone as active if we can allow any number of active zones. */ 1300 if (!device->zone_info->max_active_zones) 1301 __set_bit(zone_idx, active); 1302 1303 if (!btrfs_dev_is_sequential(device, info->physical)) { 1304 up_read(&dev_replace->rwsem); 1305 info->alloc_offset = WP_CONVENTIONAL; 1306 return 0; 1307 } 1308 1309 /* This zone will be used for allocation, so mark this zone non-empty. */ 1310 btrfs_dev_clear_zone_empty(device, info->physical); 1311 1312 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 1313 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 1314 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical); 1315 1316 /* 1317 * The group is mapped to a sequential zone. Get the zone write pointer 1318 * to determine the allocation offset within the zone. 1319 */ 1320 WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size)); 1321 nofs_flag = memalloc_nofs_save(); 1322 ret = btrfs_get_dev_zone(device, info->physical, &zone); 1323 memalloc_nofs_restore(nofs_flag); 1324 if (ret) { 1325 up_read(&dev_replace->rwsem); 1326 if (ret != -EIO && ret != -EOPNOTSUPP) 1327 return ret; 1328 info->alloc_offset = WP_MISSING_DEV; 1329 return 0; 1330 } 1331 1332 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) { 1333 btrfs_err_in_rcu(fs_info, 1334 "zoned: unexpected conventional zone %llu on device %s (devid %llu)", 1335 zone.start << SECTOR_SHIFT, rcu_str_deref(device->name), 1336 device->devid); 1337 up_read(&dev_replace->rwsem); 1338 return -EIO; 1339 } 1340 1341 info->capacity = (zone.capacity << SECTOR_SHIFT); 1342 1343 switch (zone.cond) { 1344 case BLK_ZONE_COND_OFFLINE: 1345 case BLK_ZONE_COND_READONLY: 1346 btrfs_err_in_rcu(fs_info, 1347 "zoned: offline/readonly zone %llu on device %s (devid %llu)", 1348 (info->physical >> device->zone_info->zone_size_shift), 1349 rcu_str_deref(device->name), device->devid); 1350 info->alloc_offset = WP_MISSING_DEV; 1351 break; 1352 case BLK_ZONE_COND_EMPTY: 1353 info->alloc_offset = 0; 1354 break; 1355 case BLK_ZONE_COND_FULL: 1356 info->alloc_offset = info->capacity; 1357 break; 1358 default: 1359 /* Partially used zone. */ 1360 info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT); 1361 __set_bit(zone_idx, active); 1362 break; 1363 } 1364 1365 up_read(&dev_replace->rwsem); 1366 1367 return 0; 1368 } 1369 1370 static int btrfs_load_block_group_single(struct btrfs_block_group *bg, 1371 struct zone_info *info, 1372 unsigned long *active) 1373 { 1374 if (info->alloc_offset == WP_MISSING_DEV) { 1375 btrfs_err(bg->fs_info, 1376 "zoned: cannot recover write pointer for zone %llu", 1377 info->physical); 1378 return -EIO; 1379 } 1380 1381 bg->alloc_offset = info->alloc_offset; 1382 bg->zone_capacity = info->capacity; 1383 if (test_bit(0, active)) 1384 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1385 return 0; 1386 } 1387 1388 static int btrfs_load_block_group_dup(struct btrfs_block_group *bg, 1389 struct btrfs_chunk_map *map, 1390 struct zone_info *zone_info, 1391 unsigned long *active) 1392 { 1393 struct btrfs_fs_info *fs_info = bg->fs_info; 1394 1395 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1396 btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree"); 1397 return -EINVAL; 1398 } 1399 1400 bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity); 1401 1402 if (zone_info[0].alloc_offset == WP_MISSING_DEV) { 1403 btrfs_err(bg->fs_info, 1404 "zoned: cannot recover write pointer for zone %llu", 1405 zone_info[0].physical); 1406 return -EIO; 1407 } 1408 if (zone_info[1].alloc_offset == WP_MISSING_DEV) { 1409 btrfs_err(bg->fs_info, 1410 "zoned: cannot recover write pointer for zone %llu", 1411 zone_info[1].physical); 1412 return -EIO; 1413 } 1414 if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) { 1415 btrfs_err(bg->fs_info, 1416 "zoned: write pointer offset mismatch of zones in DUP profile"); 1417 return -EIO; 1418 } 1419 1420 if (test_bit(0, active) != test_bit(1, active)) { 1421 if (!btrfs_zone_activate(bg)) 1422 return -EIO; 1423 } else if (test_bit(0, active)) { 1424 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1425 } 1426 1427 bg->alloc_offset = zone_info[0].alloc_offset; 1428 return 0; 1429 } 1430 1431 static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg, 1432 struct btrfs_chunk_map *map, 1433 struct zone_info *zone_info, 1434 unsigned long *active) 1435 { 1436 struct btrfs_fs_info *fs_info = bg->fs_info; 1437 int i; 1438 1439 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1440 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1441 btrfs_bg_type_to_raid_name(map->type)); 1442 return -EINVAL; 1443 } 1444 1445 /* In case a device is missing we have a cap of 0, so don't use it. */ 1446 bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity); 1447 1448 for (i = 0; i < map->num_stripes; i++) { 1449 if (zone_info[i].alloc_offset == WP_MISSING_DEV || 1450 zone_info[i].alloc_offset == WP_CONVENTIONAL) 1451 continue; 1452 1453 if ((zone_info[0].alloc_offset != zone_info[i].alloc_offset) && 1454 !btrfs_test_opt(fs_info, DEGRADED)) { 1455 btrfs_err(fs_info, 1456 "zoned: write pointer offset mismatch of zones in %s profile", 1457 btrfs_bg_type_to_raid_name(map->type)); 1458 return -EIO; 1459 } 1460 if (test_bit(0, active) != test_bit(i, active)) { 1461 if (!btrfs_test_opt(fs_info, DEGRADED) && 1462 !btrfs_zone_activate(bg)) { 1463 return -EIO; 1464 } 1465 } else { 1466 if (test_bit(0, active)) 1467 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1468 } 1469 } 1470 1471 if (zone_info[0].alloc_offset != WP_MISSING_DEV) 1472 bg->alloc_offset = zone_info[0].alloc_offset; 1473 else 1474 bg->alloc_offset = zone_info[i - 1].alloc_offset; 1475 1476 return 0; 1477 } 1478 1479 static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg, 1480 struct btrfs_chunk_map *map, 1481 struct zone_info *zone_info, 1482 unsigned long *active) 1483 { 1484 struct btrfs_fs_info *fs_info = bg->fs_info; 1485 1486 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1487 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1488 btrfs_bg_type_to_raid_name(map->type)); 1489 return -EINVAL; 1490 } 1491 1492 for (int i = 0; i < map->num_stripes; i++) { 1493 if (zone_info[i].alloc_offset == WP_MISSING_DEV || 1494 zone_info[i].alloc_offset == WP_CONVENTIONAL) 1495 continue; 1496 1497 if (test_bit(0, active) != test_bit(i, active)) { 1498 if (!btrfs_zone_activate(bg)) 1499 return -EIO; 1500 } else { 1501 if (test_bit(0, active)) 1502 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1503 } 1504 bg->zone_capacity += zone_info[i].capacity; 1505 bg->alloc_offset += zone_info[i].alloc_offset; 1506 } 1507 1508 return 0; 1509 } 1510 1511 static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg, 1512 struct btrfs_chunk_map *map, 1513 struct zone_info *zone_info, 1514 unsigned long *active) 1515 { 1516 struct btrfs_fs_info *fs_info = bg->fs_info; 1517 1518 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1519 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1520 btrfs_bg_type_to_raid_name(map->type)); 1521 return -EINVAL; 1522 } 1523 1524 for (int i = 0; i < map->num_stripes; i++) { 1525 if (zone_info[i].alloc_offset == WP_MISSING_DEV || 1526 zone_info[i].alloc_offset == WP_CONVENTIONAL) 1527 continue; 1528 1529 if (test_bit(0, active) != test_bit(i, active)) { 1530 if (!btrfs_zone_activate(bg)) 1531 return -EIO; 1532 } else { 1533 if (test_bit(0, active)) 1534 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1535 } 1536 1537 if ((i % map->sub_stripes) == 0) { 1538 bg->zone_capacity += zone_info[i].capacity; 1539 bg->alloc_offset += zone_info[i].alloc_offset; 1540 } 1541 } 1542 1543 return 0; 1544 } 1545 1546 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new) 1547 { 1548 struct btrfs_fs_info *fs_info = cache->fs_info; 1549 struct btrfs_chunk_map *map; 1550 u64 logical = cache->start; 1551 u64 length = cache->length; 1552 struct zone_info *zone_info = NULL; 1553 int ret; 1554 int i; 1555 unsigned long *active = NULL; 1556 u64 last_alloc = 0; 1557 u32 num_sequential = 0, num_conventional = 0; 1558 u64 profile; 1559 1560 if (!btrfs_is_zoned(fs_info)) 1561 return 0; 1562 1563 /* Sanity check */ 1564 if (!IS_ALIGNED(length, fs_info->zone_size)) { 1565 btrfs_err(fs_info, 1566 "zoned: block group %llu len %llu unaligned to zone size %llu", 1567 logical, length, fs_info->zone_size); 1568 return -EIO; 1569 } 1570 1571 map = btrfs_find_chunk_map(fs_info, logical, length); 1572 if (!map) 1573 return -EINVAL; 1574 1575 cache->physical_map = map; 1576 1577 zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS); 1578 if (!zone_info) { 1579 ret = -ENOMEM; 1580 goto out; 1581 } 1582 1583 active = bitmap_zalloc(map->num_stripes, GFP_NOFS); 1584 if (!active) { 1585 ret = -ENOMEM; 1586 goto out; 1587 } 1588 1589 for (i = 0; i < map->num_stripes; i++) { 1590 ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map); 1591 if (ret) 1592 goto out; 1593 1594 if (zone_info[i].alloc_offset == WP_CONVENTIONAL) 1595 num_conventional++; 1596 else 1597 num_sequential++; 1598 } 1599 1600 if (num_sequential > 0) 1601 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); 1602 1603 if (num_conventional > 0) { 1604 /* Zone capacity is always zone size in emulation */ 1605 cache->zone_capacity = cache->length; 1606 ret = calculate_alloc_pointer(cache, &last_alloc, new); 1607 if (ret) { 1608 btrfs_err(fs_info, 1609 "zoned: failed to determine allocation offset of bg %llu", 1610 cache->start); 1611 goto out; 1612 } else if (map->num_stripes == num_conventional) { 1613 cache->alloc_offset = last_alloc; 1614 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags); 1615 goto out; 1616 } 1617 } 1618 1619 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK; 1620 switch (profile) { 1621 case 0: /* single */ 1622 ret = btrfs_load_block_group_single(cache, &zone_info[0], active); 1623 break; 1624 case BTRFS_BLOCK_GROUP_DUP: 1625 ret = btrfs_load_block_group_dup(cache, map, zone_info, active); 1626 break; 1627 case BTRFS_BLOCK_GROUP_RAID1: 1628 case BTRFS_BLOCK_GROUP_RAID1C3: 1629 case BTRFS_BLOCK_GROUP_RAID1C4: 1630 ret = btrfs_load_block_group_raid1(cache, map, zone_info, active); 1631 break; 1632 case BTRFS_BLOCK_GROUP_RAID0: 1633 ret = btrfs_load_block_group_raid0(cache, map, zone_info, active); 1634 break; 1635 case BTRFS_BLOCK_GROUP_RAID10: 1636 ret = btrfs_load_block_group_raid10(cache, map, zone_info, active); 1637 break; 1638 case BTRFS_BLOCK_GROUP_RAID5: 1639 case BTRFS_BLOCK_GROUP_RAID6: 1640 default: 1641 btrfs_err(fs_info, "zoned: profile %s not yet supported", 1642 btrfs_bg_type_to_raid_name(map->type)); 1643 ret = -EINVAL; 1644 goto out; 1645 } 1646 1647 if (ret == -EIO && profile != 0 && profile != BTRFS_BLOCK_GROUP_RAID0 && 1648 profile != BTRFS_BLOCK_GROUP_RAID10) { 1649 /* 1650 * Detected broken write pointer. Make this block group 1651 * unallocatable by setting the allocation pointer at the end of 1652 * allocatable region. Relocating this block group will fix the 1653 * mismatch. 1654 * 1655 * Currently, we cannot handle RAID0 or RAID10 case like this 1656 * because we don't have a proper zone_capacity value. But, 1657 * reading from this block group won't work anyway by a missing 1658 * stripe. 1659 */ 1660 cache->alloc_offset = cache->zone_capacity; 1661 ret = 0; 1662 } 1663 1664 out: 1665 /* Reject non SINGLE data profiles without RST */ 1666 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && 1667 (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) && 1668 !fs_info->stripe_root) { 1669 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1670 btrfs_bg_type_to_raid_name(map->type)); 1671 return -EINVAL; 1672 } 1673 1674 if (cache->alloc_offset > cache->zone_capacity) { 1675 btrfs_err(fs_info, 1676 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu", 1677 cache->alloc_offset, cache->zone_capacity, 1678 cache->start); 1679 ret = -EIO; 1680 } 1681 1682 /* An extent is allocated after the write pointer */ 1683 if (!ret && num_conventional && last_alloc > cache->alloc_offset) { 1684 btrfs_err(fs_info, 1685 "zoned: got wrong write pointer in BG %llu: %llu > %llu", 1686 logical, last_alloc, cache->alloc_offset); 1687 ret = -EIO; 1688 } 1689 1690 if (!ret) { 1691 cache->meta_write_pointer = cache->alloc_offset + cache->start; 1692 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) { 1693 btrfs_get_block_group(cache); 1694 spin_lock(&fs_info->zone_active_bgs_lock); 1695 list_add_tail(&cache->active_bg_list, 1696 &fs_info->zone_active_bgs); 1697 spin_unlock(&fs_info->zone_active_bgs_lock); 1698 } 1699 } else { 1700 btrfs_free_chunk_map(cache->physical_map); 1701 cache->physical_map = NULL; 1702 } 1703 bitmap_free(active); 1704 kfree(zone_info); 1705 1706 return ret; 1707 } 1708 1709 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache) 1710 { 1711 u64 unusable, free; 1712 1713 if (!btrfs_is_zoned(cache->fs_info)) 1714 return; 1715 1716 WARN_ON(cache->bytes_super != 0); 1717 unusable = (cache->alloc_offset - cache->used) + 1718 (cache->length - cache->zone_capacity); 1719 free = cache->zone_capacity - cache->alloc_offset; 1720 1721 /* We only need ->free_space in ALLOC_SEQ block groups */ 1722 cache->cached = BTRFS_CACHE_FINISHED; 1723 cache->free_space_ctl->free_space = free; 1724 cache->zone_unusable = unusable; 1725 } 1726 1727 bool btrfs_use_zone_append(struct btrfs_bio *bbio) 1728 { 1729 u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT); 1730 struct btrfs_inode *inode = bbio->inode; 1731 struct btrfs_fs_info *fs_info = bbio->fs_info; 1732 struct btrfs_block_group *cache; 1733 bool ret = false; 1734 1735 if (!btrfs_is_zoned(fs_info)) 1736 return false; 1737 1738 if (!inode || !is_data_inode(inode)) 1739 return false; 1740 1741 if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE) 1742 return false; 1743 1744 /* 1745 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the 1746 * extent layout the relocation code has. 1747 * Furthermore we have set aside own block-group from which only the 1748 * relocation "process" can allocate and make sure only one process at a 1749 * time can add pages to an extent that gets relocated, so it's safe to 1750 * use regular REQ_OP_WRITE for this special case. 1751 */ 1752 if (btrfs_is_data_reloc_root(inode->root)) 1753 return false; 1754 1755 cache = btrfs_lookup_block_group(fs_info, start); 1756 ASSERT(cache); 1757 if (!cache) 1758 return false; 1759 1760 ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); 1761 btrfs_put_block_group(cache); 1762 1763 return ret; 1764 } 1765 1766 void btrfs_record_physical_zoned(struct btrfs_bio *bbio) 1767 { 1768 const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 1769 struct btrfs_ordered_sum *sum = bbio->sums; 1770 1771 if (physical < bbio->orig_physical) 1772 sum->logical -= bbio->orig_physical - physical; 1773 else 1774 sum->logical += physical - bbio->orig_physical; 1775 } 1776 1777 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered, 1778 u64 logical) 1779 { 1780 struct extent_map_tree *em_tree = &ordered->inode->extent_tree; 1781 struct extent_map *em; 1782 1783 ordered->disk_bytenr = logical; 1784 1785 write_lock(&em_tree->lock); 1786 em = search_extent_mapping(em_tree, ordered->file_offset, 1787 ordered->num_bytes); 1788 /* The em should be a new COW extent, thus it should not have an offset. */ 1789 ASSERT(em->offset == 0); 1790 em->disk_bytenr = logical; 1791 free_extent_map(em); 1792 write_unlock(&em_tree->lock); 1793 } 1794 1795 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered, 1796 u64 logical, u64 len) 1797 { 1798 struct btrfs_ordered_extent *new; 1799 1800 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) && 1801 split_extent_map(ordered->inode, ordered->file_offset, 1802 ordered->num_bytes, len, logical)) 1803 return false; 1804 1805 new = btrfs_split_ordered_extent(ordered, len); 1806 if (IS_ERR(new)) 1807 return false; 1808 new->disk_bytenr = logical; 1809 btrfs_finish_one_ordered(new); 1810 return true; 1811 } 1812 1813 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered) 1814 { 1815 struct btrfs_inode *inode = ordered->inode; 1816 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1817 struct btrfs_ordered_sum *sum; 1818 u64 logical, len; 1819 1820 /* 1821 * Write to pre-allocated region is for the data relocation, and so 1822 * it should use WRITE operation. No split/rewrite are necessary. 1823 */ 1824 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) 1825 return; 1826 1827 ASSERT(!list_empty(&ordered->list)); 1828 /* The ordered->list can be empty in the above pre-alloc case. */ 1829 sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list); 1830 logical = sum->logical; 1831 len = sum->len; 1832 1833 while (len < ordered->disk_num_bytes) { 1834 sum = list_next_entry(sum, list); 1835 if (sum->logical == logical + len) { 1836 len += sum->len; 1837 continue; 1838 } 1839 if (!btrfs_zoned_split_ordered(ordered, logical, len)) { 1840 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 1841 btrfs_err(fs_info, "failed to split ordered extent"); 1842 goto out; 1843 } 1844 logical = sum->logical; 1845 len = sum->len; 1846 } 1847 1848 if (ordered->disk_bytenr != logical) 1849 btrfs_rewrite_logical_zoned(ordered, logical); 1850 1851 out: 1852 /* 1853 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures 1854 * were allocated by btrfs_alloc_dummy_sum only to record the logical 1855 * addresses and don't contain actual checksums. We thus must free them 1856 * here so that we don't attempt to log the csums later. 1857 */ 1858 if ((inode->flags & BTRFS_INODE_NODATASUM) || 1859 test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state)) { 1860 while ((sum = list_first_entry_or_null(&ordered->list, 1861 typeof(*sum), list))) { 1862 list_del(&sum->list); 1863 kfree(sum); 1864 } 1865 } 1866 } 1867 1868 static bool check_bg_is_active(struct btrfs_eb_write_context *ctx, 1869 struct btrfs_block_group **active_bg) 1870 { 1871 const struct writeback_control *wbc = ctx->wbc; 1872 struct btrfs_block_group *block_group = ctx->zoned_bg; 1873 struct btrfs_fs_info *fs_info = block_group->fs_info; 1874 1875 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) 1876 return true; 1877 1878 if (fs_info->treelog_bg == block_group->start) { 1879 if (!btrfs_zone_activate(block_group)) { 1880 int ret_fin = btrfs_zone_finish_one_bg(fs_info); 1881 1882 if (ret_fin != 1 || !btrfs_zone_activate(block_group)) 1883 return false; 1884 } 1885 } else if (*active_bg != block_group) { 1886 struct btrfs_block_group *tgt = *active_bg; 1887 1888 /* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */ 1889 lockdep_assert_held(&fs_info->zoned_meta_io_lock); 1890 1891 if (tgt) { 1892 /* 1893 * If there is an unsent IO left in the allocated area, 1894 * we cannot wait for them as it may cause a deadlock. 1895 */ 1896 if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) { 1897 if (wbc->sync_mode == WB_SYNC_NONE || 1898 (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)) 1899 return false; 1900 } 1901 1902 /* Pivot active metadata/system block group. */ 1903 btrfs_zoned_meta_io_unlock(fs_info); 1904 wait_eb_writebacks(tgt); 1905 do_zone_finish(tgt, true); 1906 btrfs_zoned_meta_io_lock(fs_info); 1907 if (*active_bg == tgt) { 1908 btrfs_put_block_group(tgt); 1909 *active_bg = NULL; 1910 } 1911 } 1912 if (!btrfs_zone_activate(block_group)) 1913 return false; 1914 if (*active_bg != block_group) { 1915 ASSERT(*active_bg == NULL); 1916 *active_bg = block_group; 1917 btrfs_get_block_group(block_group); 1918 } 1919 } 1920 1921 return true; 1922 } 1923 1924 /* 1925 * Check if @ctx->eb is aligned to the write pointer. 1926 * 1927 * Return: 1928 * 0: @ctx->eb is at the write pointer. You can write it. 1929 * -EAGAIN: There is a hole. The caller should handle the case. 1930 * -EBUSY: There is a hole, but the caller can just bail out. 1931 */ 1932 int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info, 1933 struct btrfs_eb_write_context *ctx) 1934 { 1935 const struct writeback_control *wbc = ctx->wbc; 1936 const struct extent_buffer *eb = ctx->eb; 1937 struct btrfs_block_group *block_group = ctx->zoned_bg; 1938 1939 if (!btrfs_is_zoned(fs_info)) 1940 return 0; 1941 1942 if (block_group) { 1943 if (block_group->start > eb->start || 1944 block_group->start + block_group->length <= eb->start) { 1945 btrfs_put_block_group(block_group); 1946 block_group = NULL; 1947 ctx->zoned_bg = NULL; 1948 } 1949 } 1950 1951 if (!block_group) { 1952 block_group = btrfs_lookup_block_group(fs_info, eb->start); 1953 if (!block_group) 1954 return 0; 1955 ctx->zoned_bg = block_group; 1956 } 1957 1958 if (block_group->meta_write_pointer == eb->start) { 1959 struct btrfs_block_group **tgt; 1960 1961 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags)) 1962 return 0; 1963 1964 if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) 1965 tgt = &fs_info->active_system_bg; 1966 else 1967 tgt = &fs_info->active_meta_bg; 1968 if (check_bg_is_active(ctx, tgt)) 1969 return 0; 1970 } 1971 1972 /* 1973 * Since we may release fs_info->zoned_meta_io_lock, someone can already 1974 * start writing this eb. In that case, we can just bail out. 1975 */ 1976 if (block_group->meta_write_pointer > eb->start) 1977 return -EBUSY; 1978 1979 /* If for_sync, this hole will be filled with trasnsaction commit. */ 1980 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 1981 return -EAGAIN; 1982 return -EBUSY; 1983 } 1984 1985 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length) 1986 { 1987 if (!btrfs_dev_is_sequential(device, physical)) 1988 return -EOPNOTSUPP; 1989 1990 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT, 1991 length >> SECTOR_SHIFT, GFP_NOFS, 0); 1992 } 1993 1994 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical, 1995 struct blk_zone *zone) 1996 { 1997 struct btrfs_io_context *bioc = NULL; 1998 u64 mapped_length = PAGE_SIZE; 1999 unsigned int nofs_flag; 2000 int nmirrors; 2001 int i, ret; 2002 2003 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 2004 &mapped_length, &bioc, NULL, NULL); 2005 if (ret || !bioc || mapped_length < PAGE_SIZE) { 2006 ret = -EIO; 2007 goto out_put_bioc; 2008 } 2009 2010 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 2011 ret = -EINVAL; 2012 goto out_put_bioc; 2013 } 2014 2015 nofs_flag = memalloc_nofs_save(); 2016 nmirrors = (int)bioc->num_stripes; 2017 for (i = 0; i < nmirrors; i++) { 2018 u64 physical = bioc->stripes[i].physical; 2019 struct btrfs_device *dev = bioc->stripes[i].dev; 2020 2021 /* Missing device */ 2022 if (!dev->bdev) 2023 continue; 2024 2025 ret = btrfs_get_dev_zone(dev, physical, zone); 2026 /* Failing device */ 2027 if (ret == -EIO || ret == -EOPNOTSUPP) 2028 continue; 2029 break; 2030 } 2031 memalloc_nofs_restore(nofs_flag); 2032 out_put_bioc: 2033 btrfs_put_bioc(bioc); 2034 return ret; 2035 } 2036 2037 /* 2038 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by 2039 * filling zeros between @physical_pos to a write pointer of dev-replace 2040 * source device. 2041 */ 2042 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical, 2043 u64 physical_start, u64 physical_pos) 2044 { 2045 struct btrfs_fs_info *fs_info = tgt_dev->fs_info; 2046 struct blk_zone zone; 2047 u64 length; 2048 u64 wp; 2049 int ret; 2050 2051 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos)) 2052 return 0; 2053 2054 ret = read_zone_info(fs_info, logical, &zone); 2055 if (ret) 2056 return ret; 2057 2058 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT); 2059 2060 if (physical_pos == wp) 2061 return 0; 2062 2063 if (physical_pos > wp) 2064 return -EUCLEAN; 2065 2066 length = wp - physical_pos; 2067 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length); 2068 } 2069 2070 /* 2071 * Activate block group and underlying device zones 2072 * 2073 * @block_group: the block group to activate 2074 * 2075 * Return: true on success, false otherwise 2076 */ 2077 bool btrfs_zone_activate(struct btrfs_block_group *block_group) 2078 { 2079 struct btrfs_fs_info *fs_info = block_group->fs_info; 2080 struct btrfs_chunk_map *map; 2081 struct btrfs_device *device; 2082 u64 physical; 2083 const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA); 2084 bool ret; 2085 int i; 2086 2087 if (!btrfs_is_zoned(block_group->fs_info)) 2088 return true; 2089 2090 map = block_group->physical_map; 2091 2092 spin_lock(&fs_info->zone_active_bgs_lock); 2093 spin_lock(&block_group->lock); 2094 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 2095 ret = true; 2096 goto out_unlock; 2097 } 2098 2099 /* No space left */ 2100 if (btrfs_zoned_bg_is_full(block_group)) { 2101 ret = false; 2102 goto out_unlock; 2103 } 2104 2105 for (i = 0; i < map->num_stripes; i++) { 2106 struct btrfs_zoned_device_info *zinfo; 2107 int reserved = 0; 2108 2109 device = map->stripes[i].dev; 2110 physical = map->stripes[i].physical; 2111 zinfo = device->zone_info; 2112 2113 if (zinfo->max_active_zones == 0) 2114 continue; 2115 2116 if (is_data) 2117 reserved = zinfo->reserved_active_zones; 2118 /* 2119 * For the data block group, leave active zones for one 2120 * metadata block group and one system block group. 2121 */ 2122 if (atomic_read(&zinfo->active_zones_left) <= reserved) { 2123 ret = false; 2124 goto out_unlock; 2125 } 2126 2127 if (!btrfs_dev_set_active_zone(device, physical)) { 2128 /* Cannot activate the zone */ 2129 ret = false; 2130 goto out_unlock; 2131 } 2132 if (!is_data) 2133 zinfo->reserved_active_zones--; 2134 } 2135 2136 /* Successfully activated all the zones */ 2137 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 2138 spin_unlock(&block_group->lock); 2139 2140 /* For the active block group list */ 2141 btrfs_get_block_group(block_group); 2142 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs); 2143 spin_unlock(&fs_info->zone_active_bgs_lock); 2144 2145 return true; 2146 2147 out_unlock: 2148 spin_unlock(&block_group->lock); 2149 spin_unlock(&fs_info->zone_active_bgs_lock); 2150 return ret; 2151 } 2152 2153 static void wait_eb_writebacks(struct btrfs_block_group *block_group) 2154 { 2155 struct btrfs_fs_info *fs_info = block_group->fs_info; 2156 const u64 end = block_group->start + block_group->length; 2157 struct radix_tree_iter iter; 2158 struct extent_buffer *eb; 2159 void __rcu **slot; 2160 2161 rcu_read_lock(); 2162 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter, 2163 block_group->start >> fs_info->sectorsize_bits) { 2164 eb = radix_tree_deref_slot(slot); 2165 if (!eb) 2166 continue; 2167 if (radix_tree_deref_retry(eb)) { 2168 slot = radix_tree_iter_retry(&iter); 2169 continue; 2170 } 2171 2172 if (eb->start < block_group->start) 2173 continue; 2174 if (eb->start >= end) 2175 break; 2176 2177 slot = radix_tree_iter_resume(slot, &iter); 2178 rcu_read_unlock(); 2179 wait_on_extent_buffer_writeback(eb); 2180 rcu_read_lock(); 2181 } 2182 rcu_read_unlock(); 2183 } 2184 2185 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written) 2186 { 2187 struct btrfs_fs_info *fs_info = block_group->fs_info; 2188 struct btrfs_chunk_map *map; 2189 const bool is_metadata = (block_group->flags & 2190 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)); 2191 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 2192 int ret = 0; 2193 int i; 2194 2195 spin_lock(&block_group->lock); 2196 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 2197 spin_unlock(&block_group->lock); 2198 return 0; 2199 } 2200 2201 /* Check if we have unwritten allocated space */ 2202 if (is_metadata && 2203 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) { 2204 spin_unlock(&block_group->lock); 2205 return -EAGAIN; 2206 } 2207 2208 /* 2209 * If we are sure that the block group is full (= no more room left for 2210 * new allocation) and the IO for the last usable block is completed, we 2211 * don't need to wait for the other IOs. This holds because we ensure 2212 * the sequential IO submissions using the ZONE_APPEND command for data 2213 * and block_group->meta_write_pointer for metadata. 2214 */ 2215 if (!fully_written) { 2216 if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) { 2217 spin_unlock(&block_group->lock); 2218 return -EAGAIN; 2219 } 2220 spin_unlock(&block_group->lock); 2221 2222 ret = btrfs_inc_block_group_ro(block_group, false); 2223 if (ret) 2224 return ret; 2225 2226 /* Ensure all writes in this block group finish */ 2227 btrfs_wait_block_group_reservations(block_group); 2228 /* No need to wait for NOCOW writers. Zoned mode does not allow that */ 2229 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group); 2230 /* Wait for extent buffers to be written. */ 2231 if (is_metadata) 2232 wait_eb_writebacks(block_group); 2233 2234 spin_lock(&block_group->lock); 2235 2236 /* 2237 * Bail out if someone already deactivated the block group, or 2238 * allocated space is left in the block group. 2239 */ 2240 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2241 &block_group->runtime_flags)) { 2242 spin_unlock(&block_group->lock); 2243 btrfs_dec_block_group_ro(block_group); 2244 return 0; 2245 } 2246 2247 if (block_group->reserved || 2248 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, 2249 &block_group->runtime_flags)) { 2250 spin_unlock(&block_group->lock); 2251 btrfs_dec_block_group_ro(block_group); 2252 return -EAGAIN; 2253 } 2254 } 2255 2256 clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 2257 block_group->alloc_offset = block_group->zone_capacity; 2258 if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)) 2259 block_group->meta_write_pointer = block_group->start + 2260 block_group->zone_capacity; 2261 block_group->free_space_ctl->free_space = 0; 2262 btrfs_clear_treelog_bg(block_group); 2263 btrfs_clear_data_reloc_bg(block_group); 2264 spin_unlock(&block_group->lock); 2265 2266 down_read(&dev_replace->rwsem); 2267 map = block_group->physical_map; 2268 for (i = 0; i < map->num_stripes; i++) { 2269 struct btrfs_device *device = map->stripes[i].dev; 2270 const u64 physical = map->stripes[i].physical; 2271 struct btrfs_zoned_device_info *zinfo = device->zone_info; 2272 unsigned int nofs_flags; 2273 2274 if (zinfo->max_active_zones == 0) 2275 continue; 2276 2277 nofs_flags = memalloc_nofs_save(); 2278 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH, 2279 physical >> SECTOR_SHIFT, 2280 zinfo->zone_size >> SECTOR_SHIFT); 2281 memalloc_nofs_restore(nofs_flags); 2282 2283 if (ret) { 2284 up_read(&dev_replace->rwsem); 2285 return ret; 2286 } 2287 2288 if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 2289 zinfo->reserved_active_zones++; 2290 btrfs_dev_clear_active_zone(device, physical); 2291 } 2292 up_read(&dev_replace->rwsem); 2293 2294 if (!fully_written) 2295 btrfs_dec_block_group_ro(block_group); 2296 2297 spin_lock(&fs_info->zone_active_bgs_lock); 2298 ASSERT(!list_empty(&block_group->active_bg_list)); 2299 list_del_init(&block_group->active_bg_list); 2300 spin_unlock(&fs_info->zone_active_bgs_lock); 2301 2302 /* For active_bg_list */ 2303 btrfs_put_block_group(block_group); 2304 2305 clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2306 2307 return 0; 2308 } 2309 2310 int btrfs_zone_finish(struct btrfs_block_group *block_group) 2311 { 2312 if (!btrfs_is_zoned(block_group->fs_info)) 2313 return 0; 2314 2315 return do_zone_finish(block_group, false); 2316 } 2317 2318 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags) 2319 { 2320 struct btrfs_fs_info *fs_info = fs_devices->fs_info; 2321 struct btrfs_device *device; 2322 bool ret = false; 2323 2324 if (!btrfs_is_zoned(fs_info)) 2325 return true; 2326 2327 /* Check if there is a device with active zones left */ 2328 mutex_lock(&fs_info->chunk_mutex); 2329 spin_lock(&fs_info->zone_active_bgs_lock); 2330 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 2331 struct btrfs_zoned_device_info *zinfo = device->zone_info; 2332 int reserved = 0; 2333 2334 if (!device->bdev) 2335 continue; 2336 2337 if (!zinfo->max_active_zones) { 2338 ret = true; 2339 break; 2340 } 2341 2342 if (flags & BTRFS_BLOCK_GROUP_DATA) 2343 reserved = zinfo->reserved_active_zones; 2344 2345 switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 2346 case 0: /* single */ 2347 ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved)); 2348 break; 2349 case BTRFS_BLOCK_GROUP_DUP: 2350 ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved)); 2351 break; 2352 } 2353 if (ret) 2354 break; 2355 } 2356 spin_unlock(&fs_info->zone_active_bgs_lock); 2357 mutex_unlock(&fs_info->chunk_mutex); 2358 2359 if (!ret) 2360 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2361 2362 return ret; 2363 } 2364 2365 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length) 2366 { 2367 struct btrfs_block_group *block_group; 2368 u64 min_alloc_bytes; 2369 2370 if (!btrfs_is_zoned(fs_info)) 2371 return; 2372 2373 block_group = btrfs_lookup_block_group(fs_info, logical); 2374 ASSERT(block_group); 2375 2376 /* No MIXED_BG on zoned btrfs. */ 2377 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA) 2378 min_alloc_bytes = fs_info->sectorsize; 2379 else 2380 min_alloc_bytes = fs_info->nodesize; 2381 2382 /* Bail out if we can allocate more data from this block group. */ 2383 if (logical + length + min_alloc_bytes <= 2384 block_group->start + block_group->zone_capacity) 2385 goto out; 2386 2387 do_zone_finish(block_group, true); 2388 2389 out: 2390 btrfs_put_block_group(block_group); 2391 } 2392 2393 static void btrfs_zone_finish_endio_workfn(struct work_struct *work) 2394 { 2395 struct btrfs_block_group *bg = 2396 container_of(work, struct btrfs_block_group, zone_finish_work); 2397 2398 wait_on_extent_buffer_writeback(bg->last_eb); 2399 free_extent_buffer(bg->last_eb); 2400 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length); 2401 btrfs_put_block_group(bg); 2402 } 2403 2404 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg, 2405 struct extent_buffer *eb) 2406 { 2407 if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) || 2408 eb->start + eb->len * 2 <= bg->start + bg->zone_capacity) 2409 return; 2410 2411 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) { 2412 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing", 2413 bg->start); 2414 return; 2415 } 2416 2417 /* For the work */ 2418 btrfs_get_block_group(bg); 2419 atomic_inc(&eb->refs); 2420 bg->last_eb = eb; 2421 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn); 2422 queue_work(system_unbound_wq, &bg->zone_finish_work); 2423 } 2424 2425 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg) 2426 { 2427 struct btrfs_fs_info *fs_info = bg->fs_info; 2428 2429 spin_lock(&fs_info->relocation_bg_lock); 2430 if (fs_info->data_reloc_bg == bg->start) 2431 fs_info->data_reloc_bg = 0; 2432 spin_unlock(&fs_info->relocation_bg_lock); 2433 } 2434 2435 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info) 2436 { 2437 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2438 struct btrfs_device *device; 2439 2440 if (!btrfs_is_zoned(fs_info)) 2441 return; 2442 2443 mutex_lock(&fs_devices->device_list_mutex); 2444 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2445 if (device->zone_info) { 2446 vfree(device->zone_info->zone_cache); 2447 device->zone_info->zone_cache = NULL; 2448 } 2449 } 2450 mutex_unlock(&fs_devices->device_list_mutex); 2451 } 2452 2453 bool btrfs_zoned_should_reclaim(const struct btrfs_fs_info *fs_info) 2454 { 2455 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2456 struct btrfs_device *device; 2457 u64 used = 0; 2458 u64 total = 0; 2459 u64 factor; 2460 2461 ASSERT(btrfs_is_zoned(fs_info)); 2462 2463 if (fs_info->bg_reclaim_threshold == 0) 2464 return false; 2465 2466 mutex_lock(&fs_devices->device_list_mutex); 2467 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2468 if (!device->bdev) 2469 continue; 2470 2471 total += device->disk_total_bytes; 2472 used += device->bytes_used; 2473 } 2474 mutex_unlock(&fs_devices->device_list_mutex); 2475 2476 factor = div64_u64(used * 100, total); 2477 return factor >= fs_info->bg_reclaim_threshold; 2478 } 2479 2480 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical, 2481 u64 length) 2482 { 2483 struct btrfs_block_group *block_group; 2484 2485 if (!btrfs_is_zoned(fs_info)) 2486 return; 2487 2488 block_group = btrfs_lookup_block_group(fs_info, logical); 2489 /* It should be called on a previous data relocation block group. */ 2490 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)); 2491 2492 spin_lock(&block_group->lock); 2493 if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) 2494 goto out; 2495 2496 /* All relocation extents are written. */ 2497 if (block_group->start + block_group->alloc_offset == logical + length) { 2498 /* 2499 * Now, release this block group for further allocations and 2500 * zone finish. 2501 */ 2502 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, 2503 &block_group->runtime_flags); 2504 } 2505 2506 out: 2507 spin_unlock(&block_group->lock); 2508 btrfs_put_block_group(block_group); 2509 } 2510 2511 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info) 2512 { 2513 struct btrfs_block_group *block_group; 2514 struct btrfs_block_group *min_bg = NULL; 2515 u64 min_avail = U64_MAX; 2516 int ret; 2517 2518 spin_lock(&fs_info->zone_active_bgs_lock); 2519 list_for_each_entry(block_group, &fs_info->zone_active_bgs, 2520 active_bg_list) { 2521 u64 avail; 2522 2523 spin_lock(&block_group->lock); 2524 if (block_group->reserved || block_group->alloc_offset == 0 || 2525 (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) || 2526 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) { 2527 spin_unlock(&block_group->lock); 2528 continue; 2529 } 2530 2531 avail = block_group->zone_capacity - block_group->alloc_offset; 2532 if (min_avail > avail) { 2533 if (min_bg) 2534 btrfs_put_block_group(min_bg); 2535 min_bg = block_group; 2536 min_avail = avail; 2537 btrfs_get_block_group(min_bg); 2538 } 2539 spin_unlock(&block_group->lock); 2540 } 2541 spin_unlock(&fs_info->zone_active_bgs_lock); 2542 2543 if (!min_bg) 2544 return 0; 2545 2546 ret = btrfs_zone_finish(min_bg); 2547 btrfs_put_block_group(min_bg); 2548 2549 return ret < 0 ? ret : 1; 2550 } 2551 2552 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info, 2553 struct btrfs_space_info *space_info, 2554 bool do_finish) 2555 { 2556 struct btrfs_block_group *bg; 2557 int index; 2558 2559 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA)) 2560 return 0; 2561 2562 for (;;) { 2563 int ret; 2564 bool need_finish = false; 2565 2566 down_read(&space_info->groups_sem); 2567 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) { 2568 list_for_each_entry(bg, &space_info->block_groups[index], 2569 list) { 2570 if (!spin_trylock(&bg->lock)) 2571 continue; 2572 if (btrfs_zoned_bg_is_full(bg) || 2573 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2574 &bg->runtime_flags)) { 2575 spin_unlock(&bg->lock); 2576 continue; 2577 } 2578 spin_unlock(&bg->lock); 2579 2580 if (btrfs_zone_activate(bg)) { 2581 up_read(&space_info->groups_sem); 2582 return 1; 2583 } 2584 2585 need_finish = true; 2586 } 2587 } 2588 up_read(&space_info->groups_sem); 2589 2590 if (!do_finish || !need_finish) 2591 break; 2592 2593 ret = btrfs_zone_finish_one_bg(fs_info); 2594 if (ret == 0) 2595 break; 2596 if (ret < 0) 2597 return ret; 2598 } 2599 2600 return 0; 2601 } 2602 2603 /* 2604 * Reserve zones for one metadata block group, one tree-log block group, and one 2605 * system block group. 2606 */ 2607 void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info) 2608 { 2609 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2610 struct btrfs_block_group *block_group; 2611 struct btrfs_device *device; 2612 /* Reserve zones for normal SINGLE metadata and tree-log block group. */ 2613 unsigned int metadata_reserve = 2; 2614 /* Reserve a zone for SINGLE system block group. */ 2615 unsigned int system_reserve = 1; 2616 2617 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags)) 2618 return; 2619 2620 /* 2621 * This function is called from the mount context. So, there is no 2622 * parallel process touching the bits. No need for read_seqretry(). 2623 */ 2624 if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP) 2625 metadata_reserve = 4; 2626 if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP) 2627 system_reserve = 2; 2628 2629 /* Apply the reservation on all the devices. */ 2630 mutex_lock(&fs_devices->device_list_mutex); 2631 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2632 if (!device->bdev) 2633 continue; 2634 2635 device->zone_info->reserved_active_zones = 2636 metadata_reserve + system_reserve; 2637 } 2638 mutex_unlock(&fs_devices->device_list_mutex); 2639 2640 /* Release reservation for currently active block groups. */ 2641 spin_lock(&fs_info->zone_active_bgs_lock); 2642 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) { 2643 struct btrfs_chunk_map *map = block_group->physical_map; 2644 2645 if (!(block_group->flags & 2646 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))) 2647 continue; 2648 2649 for (int i = 0; i < map->num_stripes; i++) 2650 map->stripes[i].dev->zone_info->reserved_active_zones--; 2651 } 2652 spin_unlock(&fs_info->zone_active_bgs_lock); 2653 } 2654