1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/blkdev.h> 6 #include <linux/sched/mm.h> 7 #include <linux/atomic.h> 8 #include <linux/vmalloc.h> 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "zoned.h" 12 #include "rcu-string.h" 13 #include "disk-io.h" 14 #include "block-group.h" 15 #include "transaction.h" 16 #include "dev-replace.h" 17 #include "space-info.h" 18 #include "super.h" 19 #include "fs.h" 20 #include "accessors.h" 21 #include "bio.h" 22 23 /* Maximum number of zones to report per blkdev_report_zones() call */ 24 #define BTRFS_REPORT_NR_ZONES 4096 25 /* Invalid allocation pointer value for missing devices */ 26 #define WP_MISSING_DEV ((u64)-1) 27 /* Pseudo write pointer value for conventional zone */ 28 #define WP_CONVENTIONAL ((u64)-2) 29 30 /* 31 * Location of the first zone of superblock logging zone pairs. 32 * 33 * - primary superblock: 0B (zone 0) 34 * - first copy: 512G (zone starting at that offset) 35 * - second copy: 4T (zone starting at that offset) 36 */ 37 #define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL) 38 #define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G) 39 #define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G) 40 41 #define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET) 42 #define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET) 43 44 /* Number of superblock log zones */ 45 #define BTRFS_NR_SB_LOG_ZONES 2 46 47 /* 48 * Minimum of active zones we need: 49 * 50 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors 51 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group 52 * - 1 zone for tree-log dedicated block group 53 * - 1 zone for relocation 54 */ 55 #define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5) 56 57 /* 58 * Minimum / maximum supported zone size. Currently, SMR disks have a zone 59 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range. 60 * We do not expect the zone size to become larger than 8GiB or smaller than 61 * 4MiB in the near future. 62 */ 63 #define BTRFS_MAX_ZONE_SIZE SZ_8G 64 #define BTRFS_MIN_ZONE_SIZE SZ_4M 65 66 #define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT) 67 68 static void wait_eb_writebacks(struct btrfs_block_group *block_group); 69 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written); 70 71 static inline bool sb_zone_is_full(const struct blk_zone *zone) 72 { 73 return (zone->cond == BLK_ZONE_COND_FULL) || 74 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity); 75 } 76 77 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data) 78 { 79 struct blk_zone *zones = data; 80 81 memcpy(&zones[idx], zone, sizeof(*zone)); 82 83 return 0; 84 } 85 86 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones, 87 u64 *wp_ret) 88 { 89 bool empty[BTRFS_NR_SB_LOG_ZONES]; 90 bool full[BTRFS_NR_SB_LOG_ZONES]; 91 sector_t sector; 92 int i; 93 94 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 95 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL); 96 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY); 97 full[i] = sb_zone_is_full(&zones[i]); 98 } 99 100 /* 101 * Possible states of log buffer zones 102 * 103 * Empty[0] In use[0] Full[0] 104 * Empty[1] * 0 1 105 * In use[1] x x 1 106 * Full[1] 0 0 C 107 * 108 * Log position: 109 * *: Special case, no superblock is written 110 * 0: Use write pointer of zones[0] 111 * 1: Use write pointer of zones[1] 112 * C: Compare super blocks from zones[0] and zones[1], use the latest 113 * one determined by generation 114 * x: Invalid state 115 */ 116 117 if (empty[0] && empty[1]) { 118 /* Special case to distinguish no superblock to read */ 119 *wp_ret = zones[0].start << SECTOR_SHIFT; 120 return -ENOENT; 121 } else if (full[0] && full[1]) { 122 /* Compare two super blocks */ 123 struct address_space *mapping = bdev->bd_inode->i_mapping; 124 struct page *page[BTRFS_NR_SB_LOG_ZONES]; 125 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES]; 126 int i; 127 128 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 129 u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT; 130 u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) - 131 BTRFS_SUPER_INFO_SIZE; 132 133 page[i] = read_cache_page_gfp(mapping, 134 bytenr >> PAGE_SHIFT, GFP_NOFS); 135 if (IS_ERR(page[i])) { 136 if (i == 1) 137 btrfs_release_disk_super(super[0]); 138 return PTR_ERR(page[i]); 139 } 140 super[i] = page_address(page[i]); 141 } 142 143 if (btrfs_super_generation(super[0]) > 144 btrfs_super_generation(super[1])) 145 sector = zones[1].start; 146 else 147 sector = zones[0].start; 148 149 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) 150 btrfs_release_disk_super(super[i]); 151 } else if (!full[0] && (empty[1] || full[1])) { 152 sector = zones[0].wp; 153 } else if (full[0]) { 154 sector = zones[1].wp; 155 } else { 156 return -EUCLEAN; 157 } 158 *wp_ret = sector << SECTOR_SHIFT; 159 return 0; 160 } 161 162 /* 163 * Get the first zone number of the superblock mirror 164 */ 165 static inline u32 sb_zone_number(int shift, int mirror) 166 { 167 u64 zone = U64_MAX; 168 169 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX); 170 switch (mirror) { 171 case 0: zone = 0; break; 172 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break; 173 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break; 174 } 175 176 ASSERT(zone <= U32_MAX); 177 178 return (u32)zone; 179 } 180 181 static inline sector_t zone_start_sector(u32 zone_number, 182 struct block_device *bdev) 183 { 184 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev)); 185 } 186 187 static inline u64 zone_start_physical(u32 zone_number, 188 struct btrfs_zoned_device_info *zone_info) 189 { 190 return (u64)zone_number << zone_info->zone_size_shift; 191 } 192 193 /* 194 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block 195 * device into static sized chunks and fake a conventional zone on each of 196 * them. 197 */ 198 static int emulate_report_zones(struct btrfs_device *device, u64 pos, 199 struct blk_zone *zones, unsigned int nr_zones) 200 { 201 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT; 202 sector_t bdev_size = bdev_nr_sectors(device->bdev); 203 unsigned int i; 204 205 pos >>= SECTOR_SHIFT; 206 for (i = 0; i < nr_zones; i++) { 207 zones[i].start = i * zone_sectors + pos; 208 zones[i].len = zone_sectors; 209 zones[i].capacity = zone_sectors; 210 zones[i].wp = zones[i].start + zone_sectors; 211 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL; 212 zones[i].cond = BLK_ZONE_COND_NOT_WP; 213 214 if (zones[i].wp >= bdev_size) { 215 i++; 216 break; 217 } 218 } 219 220 return i; 221 } 222 223 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos, 224 struct blk_zone *zones, unsigned int *nr_zones) 225 { 226 struct btrfs_zoned_device_info *zinfo = device->zone_info; 227 int ret; 228 229 if (!*nr_zones) 230 return 0; 231 232 if (!bdev_is_zoned(device->bdev)) { 233 ret = emulate_report_zones(device, pos, zones, *nr_zones); 234 *nr_zones = ret; 235 return 0; 236 } 237 238 /* Check cache */ 239 if (zinfo->zone_cache) { 240 unsigned int i; 241 u32 zno; 242 243 ASSERT(IS_ALIGNED(pos, zinfo->zone_size)); 244 zno = pos >> zinfo->zone_size_shift; 245 /* 246 * We cannot report zones beyond the zone end. So, it is OK to 247 * cap *nr_zones to at the end. 248 */ 249 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno); 250 251 for (i = 0; i < *nr_zones; i++) { 252 struct blk_zone *zone_info; 253 254 zone_info = &zinfo->zone_cache[zno + i]; 255 if (!zone_info->len) 256 break; 257 } 258 259 if (i == *nr_zones) { 260 /* Cache hit on all the zones */ 261 memcpy(zones, zinfo->zone_cache + zno, 262 sizeof(*zinfo->zone_cache) * *nr_zones); 263 return 0; 264 } 265 } 266 267 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones, 268 copy_zone_info_cb, zones); 269 if (ret < 0) { 270 btrfs_err_in_rcu(device->fs_info, 271 "zoned: failed to read zone %llu on %s (devid %llu)", 272 pos, rcu_str_deref(device->name), 273 device->devid); 274 return ret; 275 } 276 *nr_zones = ret; 277 if (!ret) 278 return -EIO; 279 280 /* Populate cache */ 281 if (zinfo->zone_cache) { 282 u32 zno = pos >> zinfo->zone_size_shift; 283 284 memcpy(zinfo->zone_cache + zno, zones, 285 sizeof(*zinfo->zone_cache) * *nr_zones); 286 } 287 288 return 0; 289 } 290 291 /* The emulated zone size is determined from the size of device extent */ 292 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info) 293 { 294 struct btrfs_path *path; 295 struct btrfs_root *root = fs_info->dev_root; 296 struct btrfs_key key; 297 struct extent_buffer *leaf; 298 struct btrfs_dev_extent *dext; 299 int ret = 0; 300 301 key.objectid = 1; 302 key.type = BTRFS_DEV_EXTENT_KEY; 303 key.offset = 0; 304 305 path = btrfs_alloc_path(); 306 if (!path) 307 return -ENOMEM; 308 309 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 310 if (ret < 0) 311 goto out; 312 313 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 314 ret = btrfs_next_leaf(root, path); 315 if (ret < 0) 316 goto out; 317 /* No dev extents at all? Not good */ 318 if (ret > 0) { 319 ret = -EUCLEAN; 320 goto out; 321 } 322 } 323 324 leaf = path->nodes[0]; 325 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 326 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext); 327 ret = 0; 328 329 out: 330 btrfs_free_path(path); 331 332 return ret; 333 } 334 335 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info) 336 { 337 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 338 struct btrfs_device *device; 339 int ret = 0; 340 341 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */ 342 if (!btrfs_fs_incompat(fs_info, ZONED)) 343 return 0; 344 345 mutex_lock(&fs_devices->device_list_mutex); 346 list_for_each_entry(device, &fs_devices->devices, dev_list) { 347 /* We can skip reading of zone info for missing devices */ 348 if (!device->bdev) 349 continue; 350 351 ret = btrfs_get_dev_zone_info(device, true); 352 if (ret) 353 break; 354 } 355 mutex_unlock(&fs_devices->device_list_mutex); 356 357 return ret; 358 } 359 360 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache) 361 { 362 struct btrfs_fs_info *fs_info = device->fs_info; 363 struct btrfs_zoned_device_info *zone_info = NULL; 364 struct block_device *bdev = device->bdev; 365 unsigned int max_active_zones; 366 unsigned int nactive; 367 sector_t nr_sectors; 368 sector_t sector = 0; 369 struct blk_zone *zones = NULL; 370 unsigned int i, nreported = 0, nr_zones; 371 sector_t zone_sectors; 372 char *model, *emulated; 373 int ret; 374 375 /* 376 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not 377 * yet be set. 378 */ 379 if (!btrfs_fs_incompat(fs_info, ZONED)) 380 return 0; 381 382 if (device->zone_info) 383 return 0; 384 385 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL); 386 if (!zone_info) 387 return -ENOMEM; 388 389 device->zone_info = zone_info; 390 391 if (!bdev_is_zoned(bdev)) { 392 if (!fs_info->zone_size) { 393 ret = calculate_emulated_zone_size(fs_info); 394 if (ret) 395 goto out; 396 } 397 398 ASSERT(fs_info->zone_size); 399 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT; 400 } else { 401 zone_sectors = bdev_zone_sectors(bdev); 402 } 403 404 ASSERT(is_power_of_two_u64(zone_sectors)); 405 zone_info->zone_size = zone_sectors << SECTOR_SHIFT; 406 407 /* We reject devices with a zone size larger than 8GB */ 408 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) { 409 btrfs_err_in_rcu(fs_info, 410 "zoned: %s: zone size %llu larger than supported maximum %llu", 411 rcu_str_deref(device->name), 412 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE); 413 ret = -EINVAL; 414 goto out; 415 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) { 416 btrfs_err_in_rcu(fs_info, 417 "zoned: %s: zone size %llu smaller than supported minimum %u", 418 rcu_str_deref(device->name), 419 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE); 420 ret = -EINVAL; 421 goto out; 422 } 423 424 nr_sectors = bdev_nr_sectors(bdev); 425 zone_info->zone_size_shift = ilog2(zone_info->zone_size); 426 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors); 427 if (!IS_ALIGNED(nr_sectors, zone_sectors)) 428 zone_info->nr_zones++; 429 430 max_active_zones = bdev_max_active_zones(bdev); 431 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) { 432 btrfs_err_in_rcu(fs_info, 433 "zoned: %s: max active zones %u is too small, need at least %u active zones", 434 rcu_str_deref(device->name), max_active_zones, 435 BTRFS_MIN_ACTIVE_ZONES); 436 ret = -EINVAL; 437 goto out; 438 } 439 zone_info->max_active_zones = max_active_zones; 440 441 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 442 if (!zone_info->seq_zones) { 443 ret = -ENOMEM; 444 goto out; 445 } 446 447 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 448 if (!zone_info->empty_zones) { 449 ret = -ENOMEM; 450 goto out; 451 } 452 453 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 454 if (!zone_info->active_zones) { 455 ret = -ENOMEM; 456 goto out; 457 } 458 459 zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL); 460 if (!zones) { 461 ret = -ENOMEM; 462 goto out; 463 } 464 465 /* 466 * Enable zone cache only for a zoned device. On a non-zoned device, we 467 * fill the zone info with emulated CONVENTIONAL zones, so no need to 468 * use the cache. 469 */ 470 if (populate_cache && bdev_is_zoned(device->bdev)) { 471 zone_info->zone_cache = vcalloc(zone_info->nr_zones, 472 sizeof(struct blk_zone)); 473 if (!zone_info->zone_cache) { 474 btrfs_err_in_rcu(device->fs_info, 475 "zoned: failed to allocate zone cache for %s", 476 rcu_str_deref(device->name)); 477 ret = -ENOMEM; 478 goto out; 479 } 480 } 481 482 /* Get zones type */ 483 nactive = 0; 484 while (sector < nr_sectors) { 485 nr_zones = BTRFS_REPORT_NR_ZONES; 486 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones, 487 &nr_zones); 488 if (ret) 489 goto out; 490 491 for (i = 0; i < nr_zones; i++) { 492 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ) 493 __set_bit(nreported, zone_info->seq_zones); 494 switch (zones[i].cond) { 495 case BLK_ZONE_COND_EMPTY: 496 __set_bit(nreported, zone_info->empty_zones); 497 break; 498 case BLK_ZONE_COND_IMP_OPEN: 499 case BLK_ZONE_COND_EXP_OPEN: 500 case BLK_ZONE_COND_CLOSED: 501 __set_bit(nreported, zone_info->active_zones); 502 nactive++; 503 break; 504 } 505 nreported++; 506 } 507 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len; 508 } 509 510 if (nreported != zone_info->nr_zones) { 511 btrfs_err_in_rcu(device->fs_info, 512 "inconsistent number of zones on %s (%u/%u)", 513 rcu_str_deref(device->name), nreported, 514 zone_info->nr_zones); 515 ret = -EIO; 516 goto out; 517 } 518 519 if (max_active_zones) { 520 if (nactive > max_active_zones) { 521 btrfs_err_in_rcu(device->fs_info, 522 "zoned: %u active zones on %s exceeds max_active_zones %u", 523 nactive, rcu_str_deref(device->name), 524 max_active_zones); 525 ret = -EIO; 526 goto out; 527 } 528 atomic_set(&zone_info->active_zones_left, 529 max_active_zones - nactive); 530 set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags); 531 } 532 533 /* Validate superblock log */ 534 nr_zones = BTRFS_NR_SB_LOG_ZONES; 535 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 536 u32 sb_zone; 537 u64 sb_wp; 538 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i; 539 540 sb_zone = sb_zone_number(zone_info->zone_size_shift, i); 541 if (sb_zone + 1 >= zone_info->nr_zones) 542 continue; 543 544 ret = btrfs_get_dev_zones(device, 545 zone_start_physical(sb_zone, zone_info), 546 &zone_info->sb_zones[sb_pos], 547 &nr_zones); 548 if (ret) 549 goto out; 550 551 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) { 552 btrfs_err_in_rcu(device->fs_info, 553 "zoned: failed to read super block log zone info at devid %llu zone %u", 554 device->devid, sb_zone); 555 ret = -EUCLEAN; 556 goto out; 557 } 558 559 /* 560 * If zones[0] is conventional, always use the beginning of the 561 * zone to record superblock. No need to validate in that case. 562 */ 563 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type == 564 BLK_ZONE_TYPE_CONVENTIONAL) 565 continue; 566 567 ret = sb_write_pointer(device->bdev, 568 &zone_info->sb_zones[sb_pos], &sb_wp); 569 if (ret != -ENOENT && ret) { 570 btrfs_err_in_rcu(device->fs_info, 571 "zoned: super block log zone corrupted devid %llu zone %u", 572 device->devid, sb_zone); 573 ret = -EUCLEAN; 574 goto out; 575 } 576 } 577 578 579 kvfree(zones); 580 581 if (bdev_is_zoned(bdev)) { 582 model = "host-managed zoned"; 583 emulated = ""; 584 } else { 585 model = "regular"; 586 emulated = "emulated "; 587 } 588 589 btrfs_info_in_rcu(fs_info, 590 "%s block device %s, %u %szones of %llu bytes", 591 model, rcu_str_deref(device->name), zone_info->nr_zones, 592 emulated, zone_info->zone_size); 593 594 return 0; 595 596 out: 597 kvfree(zones); 598 btrfs_destroy_dev_zone_info(device); 599 return ret; 600 } 601 602 void btrfs_destroy_dev_zone_info(struct btrfs_device *device) 603 { 604 struct btrfs_zoned_device_info *zone_info = device->zone_info; 605 606 if (!zone_info) 607 return; 608 609 bitmap_free(zone_info->active_zones); 610 bitmap_free(zone_info->seq_zones); 611 bitmap_free(zone_info->empty_zones); 612 vfree(zone_info->zone_cache); 613 kfree(zone_info); 614 device->zone_info = NULL; 615 } 616 617 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev) 618 { 619 struct btrfs_zoned_device_info *zone_info; 620 621 zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL); 622 if (!zone_info) 623 return NULL; 624 625 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 626 if (!zone_info->seq_zones) 627 goto out; 628 629 bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones, 630 zone_info->nr_zones); 631 632 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 633 if (!zone_info->empty_zones) 634 goto out; 635 636 bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones, 637 zone_info->nr_zones); 638 639 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 640 if (!zone_info->active_zones) 641 goto out; 642 643 bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones, 644 zone_info->nr_zones); 645 zone_info->zone_cache = NULL; 646 647 return zone_info; 648 649 out: 650 bitmap_free(zone_info->seq_zones); 651 bitmap_free(zone_info->empty_zones); 652 bitmap_free(zone_info->active_zones); 653 kfree(zone_info); 654 return NULL; 655 } 656 657 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, 658 struct blk_zone *zone) 659 { 660 unsigned int nr_zones = 1; 661 int ret; 662 663 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones); 664 if (ret != 0 || !nr_zones) 665 return ret ? ret : -EIO; 666 667 return 0; 668 } 669 670 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info) 671 { 672 struct btrfs_device *device; 673 674 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 675 if (device->bdev && bdev_is_zoned(device->bdev)) { 676 btrfs_err(fs_info, 677 "zoned: mode not enabled but zoned device found: %pg", 678 device->bdev); 679 return -EINVAL; 680 } 681 } 682 683 return 0; 684 } 685 686 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info) 687 { 688 struct queue_limits *lim = &fs_info->limits; 689 struct btrfs_device *device; 690 u64 zone_size = 0; 691 int ret; 692 693 /* 694 * Host-Managed devices can't be used without the ZONED flag. With the 695 * ZONED all devices can be used, using zone emulation if required. 696 */ 697 if (!btrfs_fs_incompat(fs_info, ZONED)) 698 return btrfs_check_for_zoned_device(fs_info); 699 700 blk_set_stacking_limits(lim); 701 702 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 703 struct btrfs_zoned_device_info *zone_info = device->zone_info; 704 705 if (!device->bdev) 706 continue; 707 708 if (!zone_size) { 709 zone_size = zone_info->zone_size; 710 } else if (zone_info->zone_size != zone_size) { 711 btrfs_err(fs_info, 712 "zoned: unequal block device zone sizes: have %llu found %llu", 713 zone_info->zone_size, zone_size); 714 return -EINVAL; 715 } 716 717 /* 718 * With the zoned emulation, we can have non-zoned device on the 719 * zoned mode. In this case, we don't have a valid max zone 720 * append size. 721 */ 722 if (bdev_is_zoned(device->bdev)) { 723 blk_stack_limits(lim, 724 &bdev_get_queue(device->bdev)->limits, 725 0); 726 } 727 } 728 729 /* 730 * stripe_size is always aligned to BTRFS_STRIPE_LEN in 731 * btrfs_create_chunk(). Since we want stripe_len == zone_size, 732 * check the alignment here. 733 */ 734 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) { 735 btrfs_err(fs_info, 736 "zoned: zone size %llu not aligned to stripe %u", 737 zone_size, BTRFS_STRIPE_LEN); 738 return -EINVAL; 739 } 740 741 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 742 btrfs_err(fs_info, "zoned: mixed block groups not supported"); 743 return -EINVAL; 744 } 745 746 fs_info->zone_size = zone_size; 747 /* 748 * Also limit max_zone_append_size by max_segments * PAGE_SIZE. 749 * Technically, we can have multiple pages per segment. But, since 750 * we add the pages one by one to a bio, and cannot increase the 751 * metadata reservation even if it increases the number of extents, it 752 * is safe to stick with the limit. 753 */ 754 fs_info->max_zone_append_size = ALIGN_DOWN( 755 min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT, 756 (u64)lim->max_sectors << SECTOR_SHIFT, 757 (u64)lim->max_segments << PAGE_SHIFT), 758 fs_info->sectorsize); 759 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED; 760 if (fs_info->max_zone_append_size < fs_info->max_extent_size) 761 fs_info->max_extent_size = fs_info->max_zone_append_size; 762 763 /* 764 * Check mount options here, because we might change fs_info->zoned 765 * from fs_info->zone_size. 766 */ 767 ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt); 768 if (ret) 769 return ret; 770 771 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size); 772 return 0; 773 } 774 775 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info, unsigned long *mount_opt) 776 { 777 if (!btrfs_is_zoned(info)) 778 return 0; 779 780 /* 781 * Space cache writing is not COWed. Disable that to avoid write errors 782 * in sequential zones. 783 */ 784 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) { 785 btrfs_err(info, "zoned: space cache v1 is not supported"); 786 return -EINVAL; 787 } 788 789 if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) { 790 btrfs_err(info, "zoned: NODATACOW not supported"); 791 return -EINVAL; 792 } 793 794 if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) { 795 btrfs_info(info, 796 "zoned: async discard ignored and disabled for zoned mode"); 797 btrfs_clear_opt(*mount_opt, DISCARD_ASYNC); 798 } 799 800 return 0; 801 } 802 803 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones, 804 int rw, u64 *bytenr_ret) 805 { 806 u64 wp; 807 int ret; 808 809 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) { 810 *bytenr_ret = zones[0].start << SECTOR_SHIFT; 811 return 0; 812 } 813 814 ret = sb_write_pointer(bdev, zones, &wp); 815 if (ret != -ENOENT && ret < 0) 816 return ret; 817 818 if (rw == WRITE) { 819 struct blk_zone *reset = NULL; 820 821 if (wp == zones[0].start << SECTOR_SHIFT) 822 reset = &zones[0]; 823 else if (wp == zones[1].start << SECTOR_SHIFT) 824 reset = &zones[1]; 825 826 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) { 827 ASSERT(sb_zone_is_full(reset)); 828 829 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 830 reset->start, reset->len, 831 GFP_NOFS); 832 if (ret) 833 return ret; 834 835 reset->cond = BLK_ZONE_COND_EMPTY; 836 reset->wp = reset->start; 837 } 838 } else if (ret != -ENOENT) { 839 /* 840 * For READ, we want the previous one. Move write pointer to 841 * the end of a zone, if it is at the head of a zone. 842 */ 843 u64 zone_end = 0; 844 845 if (wp == zones[0].start << SECTOR_SHIFT) 846 zone_end = zones[1].start + zones[1].capacity; 847 else if (wp == zones[1].start << SECTOR_SHIFT) 848 zone_end = zones[0].start + zones[0].capacity; 849 if (zone_end) 850 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT, 851 BTRFS_SUPER_INFO_SIZE); 852 853 wp -= BTRFS_SUPER_INFO_SIZE; 854 } 855 856 *bytenr_ret = wp; 857 return 0; 858 859 } 860 861 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw, 862 u64 *bytenr_ret) 863 { 864 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES]; 865 sector_t zone_sectors; 866 u32 sb_zone; 867 int ret; 868 u8 zone_sectors_shift; 869 sector_t nr_sectors; 870 u32 nr_zones; 871 872 if (!bdev_is_zoned(bdev)) { 873 *bytenr_ret = btrfs_sb_offset(mirror); 874 return 0; 875 } 876 877 ASSERT(rw == READ || rw == WRITE); 878 879 zone_sectors = bdev_zone_sectors(bdev); 880 if (!is_power_of_2(zone_sectors)) 881 return -EINVAL; 882 zone_sectors_shift = ilog2(zone_sectors); 883 nr_sectors = bdev_nr_sectors(bdev); 884 nr_zones = nr_sectors >> zone_sectors_shift; 885 886 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 887 if (sb_zone + 1 >= nr_zones) 888 return -ENOENT; 889 890 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev), 891 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb, 892 zones); 893 if (ret < 0) 894 return ret; 895 if (ret != BTRFS_NR_SB_LOG_ZONES) 896 return -EIO; 897 898 return sb_log_location(bdev, zones, rw, bytenr_ret); 899 } 900 901 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw, 902 u64 *bytenr_ret) 903 { 904 struct btrfs_zoned_device_info *zinfo = device->zone_info; 905 u32 zone_num; 906 907 /* 908 * For a zoned filesystem on a non-zoned block device, use the same 909 * super block locations as regular filesystem. Doing so, the super 910 * block can always be retrieved and the zoned flag of the volume 911 * detected from the super block information. 912 */ 913 if (!bdev_is_zoned(device->bdev)) { 914 *bytenr_ret = btrfs_sb_offset(mirror); 915 return 0; 916 } 917 918 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 919 if (zone_num + 1 >= zinfo->nr_zones) 920 return -ENOENT; 921 922 return sb_log_location(device->bdev, 923 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror], 924 rw, bytenr_ret); 925 } 926 927 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo, 928 int mirror) 929 { 930 u32 zone_num; 931 932 if (!zinfo) 933 return false; 934 935 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 936 if (zone_num + 1 >= zinfo->nr_zones) 937 return false; 938 939 if (!test_bit(zone_num, zinfo->seq_zones)) 940 return false; 941 942 return true; 943 } 944 945 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror) 946 { 947 struct btrfs_zoned_device_info *zinfo = device->zone_info; 948 struct blk_zone *zone; 949 int i; 950 951 if (!is_sb_log_zone(zinfo, mirror)) 952 return 0; 953 954 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror]; 955 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 956 /* Advance the next zone */ 957 if (zone->cond == BLK_ZONE_COND_FULL) { 958 zone++; 959 continue; 960 } 961 962 if (zone->cond == BLK_ZONE_COND_EMPTY) 963 zone->cond = BLK_ZONE_COND_IMP_OPEN; 964 965 zone->wp += SUPER_INFO_SECTORS; 966 967 if (sb_zone_is_full(zone)) { 968 /* 969 * No room left to write new superblock. Since 970 * superblock is written with REQ_SYNC, it is safe to 971 * finish the zone now. 972 * 973 * If the write pointer is exactly at the capacity, 974 * explicit ZONE_FINISH is not necessary. 975 */ 976 if (zone->wp != zone->start + zone->capacity) { 977 int ret; 978 979 ret = blkdev_zone_mgmt(device->bdev, 980 REQ_OP_ZONE_FINISH, zone->start, 981 zone->len, GFP_NOFS); 982 if (ret) 983 return ret; 984 } 985 986 zone->wp = zone->start + zone->len; 987 zone->cond = BLK_ZONE_COND_FULL; 988 } 989 return 0; 990 } 991 992 /* All the zones are FULL. Should not reach here. */ 993 ASSERT(0); 994 return -EIO; 995 } 996 997 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror) 998 { 999 sector_t zone_sectors; 1000 sector_t nr_sectors; 1001 u8 zone_sectors_shift; 1002 u32 sb_zone; 1003 u32 nr_zones; 1004 1005 zone_sectors = bdev_zone_sectors(bdev); 1006 zone_sectors_shift = ilog2(zone_sectors); 1007 nr_sectors = bdev_nr_sectors(bdev); 1008 nr_zones = nr_sectors >> zone_sectors_shift; 1009 1010 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 1011 if (sb_zone + 1 >= nr_zones) 1012 return -ENOENT; 1013 1014 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1015 zone_start_sector(sb_zone, bdev), 1016 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS); 1017 } 1018 1019 /* 1020 * Find allocatable zones within a given region. 1021 * 1022 * @device: the device to allocate a region on 1023 * @hole_start: the position of the hole to allocate the region 1024 * @num_bytes: size of wanted region 1025 * @hole_end: the end of the hole 1026 * @return: position of allocatable zones 1027 * 1028 * Allocatable region should not contain any superblock locations. 1029 */ 1030 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start, 1031 u64 hole_end, u64 num_bytes) 1032 { 1033 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1034 const u8 shift = zinfo->zone_size_shift; 1035 u64 nzones = num_bytes >> shift; 1036 u64 pos = hole_start; 1037 u64 begin, end; 1038 bool have_sb; 1039 int i; 1040 1041 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size)); 1042 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size)); 1043 1044 while (pos < hole_end) { 1045 begin = pos >> shift; 1046 end = begin + nzones; 1047 1048 if (end > zinfo->nr_zones) 1049 return hole_end; 1050 1051 /* Check if zones in the region are all empty */ 1052 if (btrfs_dev_is_sequential(device, pos) && 1053 !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) { 1054 pos += zinfo->zone_size; 1055 continue; 1056 } 1057 1058 have_sb = false; 1059 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1060 u32 sb_zone; 1061 u64 sb_pos; 1062 1063 sb_zone = sb_zone_number(shift, i); 1064 if (!(end <= sb_zone || 1065 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) { 1066 have_sb = true; 1067 pos = zone_start_physical( 1068 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo); 1069 break; 1070 } 1071 1072 /* We also need to exclude regular superblock positions */ 1073 sb_pos = btrfs_sb_offset(i); 1074 if (!(pos + num_bytes <= sb_pos || 1075 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) { 1076 have_sb = true; 1077 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE, 1078 zinfo->zone_size); 1079 break; 1080 } 1081 } 1082 if (!have_sb) 1083 break; 1084 } 1085 1086 return pos; 1087 } 1088 1089 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos) 1090 { 1091 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1092 unsigned int zno = (pos >> zone_info->zone_size_shift); 1093 1094 /* We can use any number of zones */ 1095 if (zone_info->max_active_zones == 0) 1096 return true; 1097 1098 if (!test_bit(zno, zone_info->active_zones)) { 1099 /* Active zone left? */ 1100 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0) 1101 return false; 1102 if (test_and_set_bit(zno, zone_info->active_zones)) { 1103 /* Someone already set the bit */ 1104 atomic_inc(&zone_info->active_zones_left); 1105 } 1106 } 1107 1108 return true; 1109 } 1110 1111 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos) 1112 { 1113 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1114 unsigned int zno = (pos >> zone_info->zone_size_shift); 1115 1116 /* We can use any number of zones */ 1117 if (zone_info->max_active_zones == 0) 1118 return; 1119 1120 if (test_and_clear_bit(zno, zone_info->active_zones)) 1121 atomic_inc(&zone_info->active_zones_left); 1122 } 1123 1124 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical, 1125 u64 length, u64 *bytes) 1126 { 1127 int ret; 1128 1129 *bytes = 0; 1130 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET, 1131 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT, 1132 GFP_NOFS); 1133 if (ret) 1134 return ret; 1135 1136 *bytes = length; 1137 while (length) { 1138 btrfs_dev_set_zone_empty(device, physical); 1139 btrfs_dev_clear_active_zone(device, physical); 1140 physical += device->zone_info->zone_size; 1141 length -= device->zone_info->zone_size; 1142 } 1143 1144 return 0; 1145 } 1146 1147 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size) 1148 { 1149 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1150 const u8 shift = zinfo->zone_size_shift; 1151 unsigned long begin = start >> shift; 1152 unsigned long nbits = size >> shift; 1153 u64 pos; 1154 int ret; 1155 1156 ASSERT(IS_ALIGNED(start, zinfo->zone_size)); 1157 ASSERT(IS_ALIGNED(size, zinfo->zone_size)); 1158 1159 if (begin + nbits > zinfo->nr_zones) 1160 return -ERANGE; 1161 1162 /* All the zones are conventional */ 1163 if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits)) 1164 return 0; 1165 1166 /* All the zones are sequential and empty */ 1167 if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) && 1168 bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits)) 1169 return 0; 1170 1171 for (pos = start; pos < start + size; pos += zinfo->zone_size) { 1172 u64 reset_bytes; 1173 1174 if (!btrfs_dev_is_sequential(device, pos) || 1175 btrfs_dev_is_empty_zone(device, pos)) 1176 continue; 1177 1178 /* Free regions should be empty */ 1179 btrfs_warn_in_rcu( 1180 device->fs_info, 1181 "zoned: resetting device %s (devid %llu) zone %llu for allocation", 1182 rcu_str_deref(device->name), device->devid, pos >> shift); 1183 WARN_ON_ONCE(1); 1184 1185 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size, 1186 &reset_bytes); 1187 if (ret) 1188 return ret; 1189 } 1190 1191 return 0; 1192 } 1193 1194 /* 1195 * Calculate an allocation pointer from the extent allocation information 1196 * for a block group consist of conventional zones. It is pointed to the 1197 * end of the highest addressed extent in the block group as an allocation 1198 * offset. 1199 */ 1200 static int calculate_alloc_pointer(struct btrfs_block_group *cache, 1201 u64 *offset_ret, bool new) 1202 { 1203 struct btrfs_fs_info *fs_info = cache->fs_info; 1204 struct btrfs_root *root; 1205 struct btrfs_path *path; 1206 struct btrfs_key key; 1207 struct btrfs_key found_key; 1208 int ret; 1209 u64 length; 1210 1211 /* 1212 * Avoid tree lookups for a new block group, there's no use for it. 1213 * It must always be 0. 1214 * 1215 * Also, we have a lock chain of extent buffer lock -> chunk mutex. 1216 * For new a block group, this function is called from 1217 * btrfs_make_block_group() which is already taking the chunk mutex. 1218 * Thus, we cannot call calculate_alloc_pointer() which takes extent 1219 * buffer locks to avoid deadlock. 1220 */ 1221 if (new) { 1222 *offset_ret = 0; 1223 return 0; 1224 } 1225 1226 path = btrfs_alloc_path(); 1227 if (!path) 1228 return -ENOMEM; 1229 1230 key.objectid = cache->start + cache->length; 1231 key.type = 0; 1232 key.offset = 0; 1233 1234 root = btrfs_extent_root(fs_info, key.objectid); 1235 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1236 /* We should not find the exact match */ 1237 if (!ret) 1238 ret = -EUCLEAN; 1239 if (ret < 0) 1240 goto out; 1241 1242 ret = btrfs_previous_extent_item(root, path, cache->start); 1243 if (ret) { 1244 if (ret == 1) { 1245 ret = 0; 1246 *offset_ret = 0; 1247 } 1248 goto out; 1249 } 1250 1251 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 1252 1253 if (found_key.type == BTRFS_EXTENT_ITEM_KEY) 1254 length = found_key.offset; 1255 else 1256 length = fs_info->nodesize; 1257 1258 if (!(found_key.objectid >= cache->start && 1259 found_key.objectid + length <= cache->start + cache->length)) { 1260 ret = -EUCLEAN; 1261 goto out; 1262 } 1263 *offset_ret = found_key.objectid + length - cache->start; 1264 ret = 0; 1265 1266 out: 1267 btrfs_free_path(path); 1268 return ret; 1269 } 1270 1271 struct zone_info { 1272 u64 physical; 1273 u64 capacity; 1274 u64 alloc_offset; 1275 }; 1276 1277 static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx, 1278 struct zone_info *info, unsigned long *active, 1279 struct btrfs_chunk_map *map) 1280 { 1281 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1282 struct btrfs_device *device = map->stripes[zone_idx].dev; 1283 int dev_replace_is_ongoing = 0; 1284 unsigned int nofs_flag; 1285 struct blk_zone zone; 1286 int ret; 1287 1288 info->physical = map->stripes[zone_idx].physical; 1289 1290 if (!device->bdev) { 1291 info->alloc_offset = WP_MISSING_DEV; 1292 return 0; 1293 } 1294 1295 /* Consider a zone as active if we can allow any number of active zones. */ 1296 if (!device->zone_info->max_active_zones) 1297 __set_bit(zone_idx, active); 1298 1299 if (!btrfs_dev_is_sequential(device, info->physical)) { 1300 info->alloc_offset = WP_CONVENTIONAL; 1301 return 0; 1302 } 1303 1304 /* This zone will be used for allocation, so mark this zone non-empty. */ 1305 btrfs_dev_clear_zone_empty(device, info->physical); 1306 1307 down_read(&dev_replace->rwsem); 1308 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 1309 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 1310 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical); 1311 up_read(&dev_replace->rwsem); 1312 1313 /* 1314 * The group is mapped to a sequential zone. Get the zone write pointer 1315 * to determine the allocation offset within the zone. 1316 */ 1317 WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size)); 1318 nofs_flag = memalloc_nofs_save(); 1319 ret = btrfs_get_dev_zone(device, info->physical, &zone); 1320 memalloc_nofs_restore(nofs_flag); 1321 if (ret) { 1322 if (ret != -EIO && ret != -EOPNOTSUPP) 1323 return ret; 1324 info->alloc_offset = WP_MISSING_DEV; 1325 return 0; 1326 } 1327 1328 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) { 1329 btrfs_err_in_rcu(fs_info, 1330 "zoned: unexpected conventional zone %llu on device %s (devid %llu)", 1331 zone.start << SECTOR_SHIFT, rcu_str_deref(device->name), 1332 device->devid); 1333 return -EIO; 1334 } 1335 1336 info->capacity = (zone.capacity << SECTOR_SHIFT); 1337 1338 switch (zone.cond) { 1339 case BLK_ZONE_COND_OFFLINE: 1340 case BLK_ZONE_COND_READONLY: 1341 btrfs_err(fs_info, 1342 "zoned: offline/readonly zone %llu on device %s (devid %llu)", 1343 (info->physical >> device->zone_info->zone_size_shift), 1344 rcu_str_deref(device->name), device->devid); 1345 info->alloc_offset = WP_MISSING_DEV; 1346 break; 1347 case BLK_ZONE_COND_EMPTY: 1348 info->alloc_offset = 0; 1349 break; 1350 case BLK_ZONE_COND_FULL: 1351 info->alloc_offset = info->capacity; 1352 break; 1353 default: 1354 /* Partially used zone. */ 1355 info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT); 1356 __set_bit(zone_idx, active); 1357 break; 1358 } 1359 1360 return 0; 1361 } 1362 1363 static int btrfs_load_block_group_single(struct btrfs_block_group *bg, 1364 struct zone_info *info, 1365 unsigned long *active) 1366 { 1367 if (info->alloc_offset == WP_MISSING_DEV) { 1368 btrfs_err(bg->fs_info, 1369 "zoned: cannot recover write pointer for zone %llu", 1370 info->physical); 1371 return -EIO; 1372 } 1373 1374 bg->alloc_offset = info->alloc_offset; 1375 bg->zone_capacity = info->capacity; 1376 if (test_bit(0, active)) 1377 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1378 return 0; 1379 } 1380 1381 static int btrfs_load_block_group_dup(struct btrfs_block_group *bg, 1382 struct btrfs_chunk_map *map, 1383 struct zone_info *zone_info, 1384 unsigned long *active) 1385 { 1386 struct btrfs_fs_info *fs_info = bg->fs_info; 1387 1388 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1389 btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree"); 1390 return -EINVAL; 1391 } 1392 1393 if (zone_info[0].alloc_offset == WP_MISSING_DEV) { 1394 btrfs_err(bg->fs_info, 1395 "zoned: cannot recover write pointer for zone %llu", 1396 zone_info[0].physical); 1397 return -EIO; 1398 } 1399 if (zone_info[1].alloc_offset == WP_MISSING_DEV) { 1400 btrfs_err(bg->fs_info, 1401 "zoned: cannot recover write pointer for zone %llu", 1402 zone_info[1].physical); 1403 return -EIO; 1404 } 1405 if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) { 1406 btrfs_err(bg->fs_info, 1407 "zoned: write pointer offset mismatch of zones in DUP profile"); 1408 return -EIO; 1409 } 1410 1411 if (test_bit(0, active) != test_bit(1, active)) { 1412 if (!btrfs_zone_activate(bg)) 1413 return -EIO; 1414 } else if (test_bit(0, active)) { 1415 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1416 } 1417 1418 bg->alloc_offset = zone_info[0].alloc_offset; 1419 bg->zone_capacity = min(zone_info[0].capacity, zone_info[1].capacity); 1420 return 0; 1421 } 1422 1423 static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg, 1424 struct btrfs_chunk_map *map, 1425 struct zone_info *zone_info, 1426 unsigned long *active) 1427 { 1428 struct btrfs_fs_info *fs_info = bg->fs_info; 1429 int i; 1430 1431 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1432 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1433 btrfs_bg_type_to_raid_name(map->type)); 1434 return -EINVAL; 1435 } 1436 1437 for (i = 0; i < map->num_stripes; i++) { 1438 if (zone_info[i].alloc_offset == WP_MISSING_DEV || 1439 zone_info[i].alloc_offset == WP_CONVENTIONAL) 1440 continue; 1441 1442 if ((zone_info[0].alloc_offset != zone_info[i].alloc_offset) && 1443 !btrfs_test_opt(fs_info, DEGRADED)) { 1444 btrfs_err(fs_info, 1445 "zoned: write pointer offset mismatch of zones in %s profile", 1446 btrfs_bg_type_to_raid_name(map->type)); 1447 return -EIO; 1448 } 1449 if (test_bit(0, active) != test_bit(i, active)) { 1450 if (!btrfs_test_opt(fs_info, DEGRADED) && 1451 !btrfs_zone_activate(bg)) { 1452 return -EIO; 1453 } 1454 } else { 1455 if (test_bit(0, active)) 1456 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1457 } 1458 /* In case a device is missing we have a cap of 0, so don't use it. */ 1459 bg->zone_capacity = min_not_zero(zone_info[0].capacity, 1460 zone_info[1].capacity); 1461 } 1462 1463 if (zone_info[0].alloc_offset != WP_MISSING_DEV) 1464 bg->alloc_offset = zone_info[0].alloc_offset; 1465 else 1466 bg->alloc_offset = zone_info[i - 1].alloc_offset; 1467 1468 return 0; 1469 } 1470 1471 static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg, 1472 struct btrfs_chunk_map *map, 1473 struct zone_info *zone_info, 1474 unsigned long *active) 1475 { 1476 struct btrfs_fs_info *fs_info = bg->fs_info; 1477 1478 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1479 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1480 btrfs_bg_type_to_raid_name(map->type)); 1481 return -EINVAL; 1482 } 1483 1484 for (int i = 0; i < map->num_stripes; i++) { 1485 if (zone_info[i].alloc_offset == WP_MISSING_DEV || 1486 zone_info[i].alloc_offset == WP_CONVENTIONAL) 1487 continue; 1488 1489 if (test_bit(0, active) != test_bit(i, active)) { 1490 if (!btrfs_zone_activate(bg)) 1491 return -EIO; 1492 } else { 1493 if (test_bit(0, active)) 1494 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1495 } 1496 bg->zone_capacity += zone_info[i].capacity; 1497 bg->alloc_offset += zone_info[i].alloc_offset; 1498 } 1499 1500 return 0; 1501 } 1502 1503 static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg, 1504 struct btrfs_chunk_map *map, 1505 struct zone_info *zone_info, 1506 unsigned long *active) 1507 { 1508 struct btrfs_fs_info *fs_info = bg->fs_info; 1509 1510 if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) { 1511 btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree", 1512 btrfs_bg_type_to_raid_name(map->type)); 1513 return -EINVAL; 1514 } 1515 1516 for (int i = 0; i < map->num_stripes; i++) { 1517 if (zone_info[i].alloc_offset == WP_MISSING_DEV || 1518 zone_info[i].alloc_offset == WP_CONVENTIONAL) 1519 continue; 1520 1521 if (test_bit(0, active) != test_bit(i, active)) { 1522 if (!btrfs_zone_activate(bg)) 1523 return -EIO; 1524 } else { 1525 if (test_bit(0, active)) 1526 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags); 1527 } 1528 1529 if ((i % map->sub_stripes) == 0) { 1530 bg->zone_capacity += zone_info[i].capacity; 1531 bg->alloc_offset += zone_info[i].alloc_offset; 1532 } 1533 } 1534 1535 return 0; 1536 } 1537 1538 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new) 1539 { 1540 struct btrfs_fs_info *fs_info = cache->fs_info; 1541 struct btrfs_chunk_map *map; 1542 u64 logical = cache->start; 1543 u64 length = cache->length; 1544 struct zone_info *zone_info = NULL; 1545 int ret; 1546 int i; 1547 unsigned long *active = NULL; 1548 u64 last_alloc = 0; 1549 u32 num_sequential = 0, num_conventional = 0; 1550 1551 if (!btrfs_is_zoned(fs_info)) 1552 return 0; 1553 1554 /* Sanity check */ 1555 if (!IS_ALIGNED(length, fs_info->zone_size)) { 1556 btrfs_err(fs_info, 1557 "zoned: block group %llu len %llu unaligned to zone size %llu", 1558 logical, length, fs_info->zone_size); 1559 return -EIO; 1560 } 1561 1562 map = btrfs_find_chunk_map(fs_info, logical, length); 1563 if (!map) 1564 return -EINVAL; 1565 1566 cache->physical_map = btrfs_clone_chunk_map(map, GFP_NOFS); 1567 if (!cache->physical_map) { 1568 ret = -ENOMEM; 1569 goto out; 1570 } 1571 1572 zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS); 1573 if (!zone_info) { 1574 ret = -ENOMEM; 1575 goto out; 1576 } 1577 1578 active = bitmap_zalloc(map->num_stripes, GFP_NOFS); 1579 if (!active) { 1580 ret = -ENOMEM; 1581 goto out; 1582 } 1583 1584 for (i = 0; i < map->num_stripes; i++) { 1585 ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map); 1586 if (ret) 1587 goto out; 1588 1589 if (zone_info[i].alloc_offset == WP_CONVENTIONAL) 1590 num_conventional++; 1591 else 1592 num_sequential++; 1593 } 1594 1595 if (num_sequential > 0) 1596 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); 1597 1598 if (num_conventional > 0) { 1599 /* Zone capacity is always zone size in emulation */ 1600 cache->zone_capacity = cache->length; 1601 ret = calculate_alloc_pointer(cache, &last_alloc, new); 1602 if (ret) { 1603 btrfs_err(fs_info, 1604 "zoned: failed to determine allocation offset of bg %llu", 1605 cache->start); 1606 goto out; 1607 } else if (map->num_stripes == num_conventional) { 1608 cache->alloc_offset = last_alloc; 1609 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags); 1610 goto out; 1611 } 1612 } 1613 1614 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 1615 case 0: /* single */ 1616 ret = btrfs_load_block_group_single(cache, &zone_info[0], active); 1617 break; 1618 case BTRFS_BLOCK_GROUP_DUP: 1619 ret = btrfs_load_block_group_dup(cache, map, zone_info, active); 1620 break; 1621 case BTRFS_BLOCK_GROUP_RAID1: 1622 case BTRFS_BLOCK_GROUP_RAID1C3: 1623 case BTRFS_BLOCK_GROUP_RAID1C4: 1624 ret = btrfs_load_block_group_raid1(cache, map, zone_info, active); 1625 break; 1626 case BTRFS_BLOCK_GROUP_RAID0: 1627 ret = btrfs_load_block_group_raid0(cache, map, zone_info, active); 1628 break; 1629 case BTRFS_BLOCK_GROUP_RAID10: 1630 ret = btrfs_load_block_group_raid10(cache, map, zone_info, active); 1631 break; 1632 case BTRFS_BLOCK_GROUP_RAID5: 1633 case BTRFS_BLOCK_GROUP_RAID6: 1634 default: 1635 btrfs_err(fs_info, "zoned: profile %s not yet supported", 1636 btrfs_bg_type_to_raid_name(map->type)); 1637 ret = -EINVAL; 1638 goto out; 1639 } 1640 1641 out: 1642 if (cache->alloc_offset > cache->zone_capacity) { 1643 btrfs_err(fs_info, 1644 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu", 1645 cache->alloc_offset, cache->zone_capacity, 1646 cache->start); 1647 ret = -EIO; 1648 } 1649 1650 /* An extent is allocated after the write pointer */ 1651 if (!ret && num_conventional && last_alloc > cache->alloc_offset) { 1652 btrfs_err(fs_info, 1653 "zoned: got wrong write pointer in BG %llu: %llu > %llu", 1654 logical, last_alloc, cache->alloc_offset); 1655 ret = -EIO; 1656 } 1657 1658 if (!ret) { 1659 cache->meta_write_pointer = cache->alloc_offset + cache->start; 1660 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) { 1661 btrfs_get_block_group(cache); 1662 spin_lock(&fs_info->zone_active_bgs_lock); 1663 list_add_tail(&cache->active_bg_list, 1664 &fs_info->zone_active_bgs); 1665 spin_unlock(&fs_info->zone_active_bgs_lock); 1666 } 1667 } else { 1668 btrfs_free_chunk_map(cache->physical_map); 1669 cache->physical_map = NULL; 1670 } 1671 bitmap_free(active); 1672 kfree(zone_info); 1673 btrfs_free_chunk_map(map); 1674 1675 return ret; 1676 } 1677 1678 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache) 1679 { 1680 u64 unusable, free; 1681 1682 if (!btrfs_is_zoned(cache->fs_info)) 1683 return; 1684 1685 WARN_ON(cache->bytes_super != 0); 1686 unusable = (cache->alloc_offset - cache->used) + 1687 (cache->length - cache->zone_capacity); 1688 free = cache->zone_capacity - cache->alloc_offset; 1689 1690 /* We only need ->free_space in ALLOC_SEQ block groups */ 1691 cache->cached = BTRFS_CACHE_FINISHED; 1692 cache->free_space_ctl->free_space = free; 1693 cache->zone_unusable = unusable; 1694 } 1695 1696 bool btrfs_use_zone_append(struct btrfs_bio *bbio) 1697 { 1698 u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT); 1699 struct btrfs_inode *inode = bbio->inode; 1700 struct btrfs_fs_info *fs_info = bbio->fs_info; 1701 struct btrfs_block_group *cache; 1702 bool ret = false; 1703 1704 if (!btrfs_is_zoned(fs_info)) 1705 return false; 1706 1707 if (!inode || !is_data_inode(&inode->vfs_inode)) 1708 return false; 1709 1710 if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE) 1711 return false; 1712 1713 /* 1714 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the 1715 * extent layout the relocation code has. 1716 * Furthermore we have set aside own block-group from which only the 1717 * relocation "process" can allocate and make sure only one process at a 1718 * time can add pages to an extent that gets relocated, so it's safe to 1719 * use regular REQ_OP_WRITE for this special case. 1720 */ 1721 if (btrfs_is_data_reloc_root(inode->root)) 1722 return false; 1723 1724 cache = btrfs_lookup_block_group(fs_info, start); 1725 ASSERT(cache); 1726 if (!cache) 1727 return false; 1728 1729 ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); 1730 btrfs_put_block_group(cache); 1731 1732 return ret; 1733 } 1734 1735 void btrfs_record_physical_zoned(struct btrfs_bio *bbio) 1736 { 1737 const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 1738 struct btrfs_ordered_sum *sum = bbio->sums; 1739 1740 if (physical < bbio->orig_physical) 1741 sum->logical -= bbio->orig_physical - physical; 1742 else 1743 sum->logical += physical - bbio->orig_physical; 1744 } 1745 1746 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered, 1747 u64 logical) 1748 { 1749 struct extent_map_tree *em_tree = &BTRFS_I(ordered->inode)->extent_tree; 1750 struct extent_map *em; 1751 1752 ordered->disk_bytenr = logical; 1753 1754 write_lock(&em_tree->lock); 1755 em = search_extent_mapping(em_tree, ordered->file_offset, 1756 ordered->num_bytes); 1757 em->block_start = logical; 1758 free_extent_map(em); 1759 write_unlock(&em_tree->lock); 1760 } 1761 1762 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered, 1763 u64 logical, u64 len) 1764 { 1765 struct btrfs_ordered_extent *new; 1766 1767 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) && 1768 split_extent_map(BTRFS_I(ordered->inode), ordered->file_offset, 1769 ordered->num_bytes, len, logical)) 1770 return false; 1771 1772 new = btrfs_split_ordered_extent(ordered, len); 1773 if (IS_ERR(new)) 1774 return false; 1775 new->disk_bytenr = logical; 1776 btrfs_finish_one_ordered(new); 1777 return true; 1778 } 1779 1780 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered) 1781 { 1782 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 1783 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1784 struct btrfs_ordered_sum *sum; 1785 u64 logical, len; 1786 1787 /* 1788 * Write to pre-allocated region is for the data relocation, and so 1789 * it should use WRITE operation. No split/rewrite are necessary. 1790 */ 1791 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) 1792 return; 1793 1794 ASSERT(!list_empty(&ordered->list)); 1795 /* The ordered->list can be empty in the above pre-alloc case. */ 1796 sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list); 1797 logical = sum->logical; 1798 len = sum->len; 1799 1800 while (len < ordered->disk_num_bytes) { 1801 sum = list_next_entry(sum, list); 1802 if (sum->logical == logical + len) { 1803 len += sum->len; 1804 continue; 1805 } 1806 if (!btrfs_zoned_split_ordered(ordered, logical, len)) { 1807 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 1808 btrfs_err(fs_info, "failed to split ordered extent"); 1809 goto out; 1810 } 1811 logical = sum->logical; 1812 len = sum->len; 1813 } 1814 1815 if (ordered->disk_bytenr != logical) 1816 btrfs_rewrite_logical_zoned(ordered, logical); 1817 1818 out: 1819 /* 1820 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures 1821 * were allocated by btrfs_alloc_dummy_sum only to record the logical 1822 * addresses and don't contain actual checksums. We thus must free them 1823 * here so that we don't attempt to log the csums later. 1824 */ 1825 if ((inode->flags & BTRFS_INODE_NODATASUM) || 1826 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) { 1827 while ((sum = list_first_entry_or_null(&ordered->list, 1828 typeof(*sum), list))) { 1829 list_del(&sum->list); 1830 kfree(sum); 1831 } 1832 } 1833 } 1834 1835 static bool check_bg_is_active(struct btrfs_eb_write_context *ctx, 1836 struct btrfs_block_group **active_bg) 1837 { 1838 const struct writeback_control *wbc = ctx->wbc; 1839 struct btrfs_block_group *block_group = ctx->zoned_bg; 1840 struct btrfs_fs_info *fs_info = block_group->fs_info; 1841 1842 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) 1843 return true; 1844 1845 if (fs_info->treelog_bg == block_group->start) { 1846 if (!btrfs_zone_activate(block_group)) { 1847 int ret_fin = btrfs_zone_finish_one_bg(fs_info); 1848 1849 if (ret_fin != 1 || !btrfs_zone_activate(block_group)) 1850 return false; 1851 } 1852 } else if (*active_bg != block_group) { 1853 struct btrfs_block_group *tgt = *active_bg; 1854 1855 /* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */ 1856 lockdep_assert_held(&fs_info->zoned_meta_io_lock); 1857 1858 if (tgt) { 1859 /* 1860 * If there is an unsent IO left in the allocated area, 1861 * we cannot wait for them as it may cause a deadlock. 1862 */ 1863 if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) { 1864 if (wbc->sync_mode == WB_SYNC_NONE || 1865 (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)) 1866 return false; 1867 } 1868 1869 /* Pivot active metadata/system block group. */ 1870 btrfs_zoned_meta_io_unlock(fs_info); 1871 wait_eb_writebacks(tgt); 1872 do_zone_finish(tgt, true); 1873 btrfs_zoned_meta_io_lock(fs_info); 1874 if (*active_bg == tgt) { 1875 btrfs_put_block_group(tgt); 1876 *active_bg = NULL; 1877 } 1878 } 1879 if (!btrfs_zone_activate(block_group)) 1880 return false; 1881 if (*active_bg != block_group) { 1882 ASSERT(*active_bg == NULL); 1883 *active_bg = block_group; 1884 btrfs_get_block_group(block_group); 1885 } 1886 } 1887 1888 return true; 1889 } 1890 1891 /* 1892 * Check if @ctx->eb is aligned to the write pointer. 1893 * 1894 * Return: 1895 * 0: @ctx->eb is at the write pointer. You can write it. 1896 * -EAGAIN: There is a hole. The caller should handle the case. 1897 * -EBUSY: There is a hole, but the caller can just bail out. 1898 */ 1899 int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info, 1900 struct btrfs_eb_write_context *ctx) 1901 { 1902 const struct writeback_control *wbc = ctx->wbc; 1903 const struct extent_buffer *eb = ctx->eb; 1904 struct btrfs_block_group *block_group = ctx->zoned_bg; 1905 1906 if (!btrfs_is_zoned(fs_info)) 1907 return 0; 1908 1909 if (block_group) { 1910 if (block_group->start > eb->start || 1911 block_group->start + block_group->length <= eb->start) { 1912 btrfs_put_block_group(block_group); 1913 block_group = NULL; 1914 ctx->zoned_bg = NULL; 1915 } 1916 } 1917 1918 if (!block_group) { 1919 block_group = btrfs_lookup_block_group(fs_info, eb->start); 1920 if (!block_group) 1921 return 0; 1922 ctx->zoned_bg = block_group; 1923 } 1924 1925 if (block_group->meta_write_pointer == eb->start) { 1926 struct btrfs_block_group **tgt; 1927 1928 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags)) 1929 return 0; 1930 1931 if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) 1932 tgt = &fs_info->active_system_bg; 1933 else 1934 tgt = &fs_info->active_meta_bg; 1935 if (check_bg_is_active(ctx, tgt)) 1936 return 0; 1937 } 1938 1939 /* 1940 * Since we may release fs_info->zoned_meta_io_lock, someone can already 1941 * start writing this eb. In that case, we can just bail out. 1942 */ 1943 if (block_group->meta_write_pointer > eb->start) 1944 return -EBUSY; 1945 1946 /* If for_sync, this hole will be filled with trasnsaction commit. */ 1947 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 1948 return -EAGAIN; 1949 return -EBUSY; 1950 } 1951 1952 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length) 1953 { 1954 if (!btrfs_dev_is_sequential(device, physical)) 1955 return -EOPNOTSUPP; 1956 1957 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT, 1958 length >> SECTOR_SHIFT, GFP_NOFS, 0); 1959 } 1960 1961 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical, 1962 struct blk_zone *zone) 1963 { 1964 struct btrfs_io_context *bioc = NULL; 1965 u64 mapped_length = PAGE_SIZE; 1966 unsigned int nofs_flag; 1967 int nmirrors; 1968 int i, ret; 1969 1970 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 1971 &mapped_length, &bioc, NULL, NULL); 1972 if (ret || !bioc || mapped_length < PAGE_SIZE) { 1973 ret = -EIO; 1974 goto out_put_bioc; 1975 } 1976 1977 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1978 ret = -EINVAL; 1979 goto out_put_bioc; 1980 } 1981 1982 nofs_flag = memalloc_nofs_save(); 1983 nmirrors = (int)bioc->num_stripes; 1984 for (i = 0; i < nmirrors; i++) { 1985 u64 physical = bioc->stripes[i].physical; 1986 struct btrfs_device *dev = bioc->stripes[i].dev; 1987 1988 /* Missing device */ 1989 if (!dev->bdev) 1990 continue; 1991 1992 ret = btrfs_get_dev_zone(dev, physical, zone); 1993 /* Failing device */ 1994 if (ret == -EIO || ret == -EOPNOTSUPP) 1995 continue; 1996 break; 1997 } 1998 memalloc_nofs_restore(nofs_flag); 1999 out_put_bioc: 2000 btrfs_put_bioc(bioc); 2001 return ret; 2002 } 2003 2004 /* 2005 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by 2006 * filling zeros between @physical_pos to a write pointer of dev-replace 2007 * source device. 2008 */ 2009 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical, 2010 u64 physical_start, u64 physical_pos) 2011 { 2012 struct btrfs_fs_info *fs_info = tgt_dev->fs_info; 2013 struct blk_zone zone; 2014 u64 length; 2015 u64 wp; 2016 int ret; 2017 2018 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos)) 2019 return 0; 2020 2021 ret = read_zone_info(fs_info, logical, &zone); 2022 if (ret) 2023 return ret; 2024 2025 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT); 2026 2027 if (physical_pos == wp) 2028 return 0; 2029 2030 if (physical_pos > wp) 2031 return -EUCLEAN; 2032 2033 length = wp - physical_pos; 2034 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length); 2035 } 2036 2037 /* 2038 * Activate block group and underlying device zones 2039 * 2040 * @block_group: the block group to activate 2041 * 2042 * Return: true on success, false otherwise 2043 */ 2044 bool btrfs_zone_activate(struct btrfs_block_group *block_group) 2045 { 2046 struct btrfs_fs_info *fs_info = block_group->fs_info; 2047 struct btrfs_chunk_map *map; 2048 struct btrfs_device *device; 2049 u64 physical; 2050 const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA); 2051 bool ret; 2052 int i; 2053 2054 if (!btrfs_is_zoned(block_group->fs_info)) 2055 return true; 2056 2057 map = block_group->physical_map; 2058 2059 spin_lock(&fs_info->zone_active_bgs_lock); 2060 spin_lock(&block_group->lock); 2061 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 2062 ret = true; 2063 goto out_unlock; 2064 } 2065 2066 /* No space left */ 2067 if (btrfs_zoned_bg_is_full(block_group)) { 2068 ret = false; 2069 goto out_unlock; 2070 } 2071 2072 for (i = 0; i < map->num_stripes; i++) { 2073 struct btrfs_zoned_device_info *zinfo; 2074 int reserved = 0; 2075 2076 device = map->stripes[i].dev; 2077 physical = map->stripes[i].physical; 2078 zinfo = device->zone_info; 2079 2080 if (zinfo->max_active_zones == 0) 2081 continue; 2082 2083 if (is_data) 2084 reserved = zinfo->reserved_active_zones; 2085 /* 2086 * For the data block group, leave active zones for one 2087 * metadata block group and one system block group. 2088 */ 2089 if (atomic_read(&zinfo->active_zones_left) <= reserved) { 2090 ret = false; 2091 goto out_unlock; 2092 } 2093 2094 if (!btrfs_dev_set_active_zone(device, physical)) { 2095 /* Cannot activate the zone */ 2096 ret = false; 2097 goto out_unlock; 2098 } 2099 if (!is_data) 2100 zinfo->reserved_active_zones--; 2101 } 2102 2103 /* Successfully activated all the zones */ 2104 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 2105 spin_unlock(&block_group->lock); 2106 2107 /* For the active block group list */ 2108 btrfs_get_block_group(block_group); 2109 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs); 2110 spin_unlock(&fs_info->zone_active_bgs_lock); 2111 2112 return true; 2113 2114 out_unlock: 2115 spin_unlock(&block_group->lock); 2116 spin_unlock(&fs_info->zone_active_bgs_lock); 2117 return ret; 2118 } 2119 2120 static void wait_eb_writebacks(struct btrfs_block_group *block_group) 2121 { 2122 struct btrfs_fs_info *fs_info = block_group->fs_info; 2123 const u64 end = block_group->start + block_group->length; 2124 struct radix_tree_iter iter; 2125 struct extent_buffer *eb; 2126 void __rcu **slot; 2127 2128 rcu_read_lock(); 2129 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter, 2130 block_group->start >> fs_info->sectorsize_bits) { 2131 eb = radix_tree_deref_slot(slot); 2132 if (!eb) 2133 continue; 2134 if (radix_tree_deref_retry(eb)) { 2135 slot = radix_tree_iter_retry(&iter); 2136 continue; 2137 } 2138 2139 if (eb->start < block_group->start) 2140 continue; 2141 if (eb->start >= end) 2142 break; 2143 2144 slot = radix_tree_iter_resume(slot, &iter); 2145 rcu_read_unlock(); 2146 wait_on_extent_buffer_writeback(eb); 2147 rcu_read_lock(); 2148 } 2149 rcu_read_unlock(); 2150 } 2151 2152 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written) 2153 { 2154 struct btrfs_fs_info *fs_info = block_group->fs_info; 2155 struct btrfs_chunk_map *map; 2156 const bool is_metadata = (block_group->flags & 2157 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)); 2158 int ret = 0; 2159 int i; 2160 2161 spin_lock(&block_group->lock); 2162 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 2163 spin_unlock(&block_group->lock); 2164 return 0; 2165 } 2166 2167 /* Check if we have unwritten allocated space */ 2168 if (is_metadata && 2169 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) { 2170 spin_unlock(&block_group->lock); 2171 return -EAGAIN; 2172 } 2173 2174 /* 2175 * If we are sure that the block group is full (= no more room left for 2176 * new allocation) and the IO for the last usable block is completed, we 2177 * don't need to wait for the other IOs. This holds because we ensure 2178 * the sequential IO submissions using the ZONE_APPEND command for data 2179 * and block_group->meta_write_pointer for metadata. 2180 */ 2181 if (!fully_written) { 2182 if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) { 2183 spin_unlock(&block_group->lock); 2184 return -EAGAIN; 2185 } 2186 spin_unlock(&block_group->lock); 2187 2188 ret = btrfs_inc_block_group_ro(block_group, false); 2189 if (ret) 2190 return ret; 2191 2192 /* Ensure all writes in this block group finish */ 2193 btrfs_wait_block_group_reservations(block_group); 2194 /* No need to wait for NOCOW writers. Zoned mode does not allow that */ 2195 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start, 2196 block_group->length); 2197 /* Wait for extent buffers to be written. */ 2198 if (is_metadata) 2199 wait_eb_writebacks(block_group); 2200 2201 spin_lock(&block_group->lock); 2202 2203 /* 2204 * Bail out if someone already deactivated the block group, or 2205 * allocated space is left in the block group. 2206 */ 2207 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2208 &block_group->runtime_flags)) { 2209 spin_unlock(&block_group->lock); 2210 btrfs_dec_block_group_ro(block_group); 2211 return 0; 2212 } 2213 2214 if (block_group->reserved || 2215 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, 2216 &block_group->runtime_flags)) { 2217 spin_unlock(&block_group->lock); 2218 btrfs_dec_block_group_ro(block_group); 2219 return -EAGAIN; 2220 } 2221 } 2222 2223 clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 2224 block_group->alloc_offset = block_group->zone_capacity; 2225 if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)) 2226 block_group->meta_write_pointer = block_group->start + 2227 block_group->zone_capacity; 2228 block_group->free_space_ctl->free_space = 0; 2229 btrfs_clear_treelog_bg(block_group); 2230 btrfs_clear_data_reloc_bg(block_group); 2231 spin_unlock(&block_group->lock); 2232 2233 map = block_group->physical_map; 2234 for (i = 0; i < map->num_stripes; i++) { 2235 struct btrfs_device *device = map->stripes[i].dev; 2236 const u64 physical = map->stripes[i].physical; 2237 struct btrfs_zoned_device_info *zinfo = device->zone_info; 2238 2239 if (zinfo->max_active_zones == 0) 2240 continue; 2241 2242 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH, 2243 physical >> SECTOR_SHIFT, 2244 zinfo->zone_size >> SECTOR_SHIFT, 2245 GFP_NOFS); 2246 2247 if (ret) 2248 return ret; 2249 2250 if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA)) 2251 zinfo->reserved_active_zones++; 2252 btrfs_dev_clear_active_zone(device, physical); 2253 } 2254 2255 if (!fully_written) 2256 btrfs_dec_block_group_ro(block_group); 2257 2258 spin_lock(&fs_info->zone_active_bgs_lock); 2259 ASSERT(!list_empty(&block_group->active_bg_list)); 2260 list_del_init(&block_group->active_bg_list); 2261 spin_unlock(&fs_info->zone_active_bgs_lock); 2262 2263 /* For active_bg_list */ 2264 btrfs_put_block_group(block_group); 2265 2266 clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2267 2268 return 0; 2269 } 2270 2271 int btrfs_zone_finish(struct btrfs_block_group *block_group) 2272 { 2273 if (!btrfs_is_zoned(block_group->fs_info)) 2274 return 0; 2275 2276 return do_zone_finish(block_group, false); 2277 } 2278 2279 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags) 2280 { 2281 struct btrfs_fs_info *fs_info = fs_devices->fs_info; 2282 struct btrfs_device *device; 2283 bool ret = false; 2284 2285 if (!btrfs_is_zoned(fs_info)) 2286 return true; 2287 2288 /* Check if there is a device with active zones left */ 2289 mutex_lock(&fs_info->chunk_mutex); 2290 spin_lock(&fs_info->zone_active_bgs_lock); 2291 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 2292 struct btrfs_zoned_device_info *zinfo = device->zone_info; 2293 int reserved = 0; 2294 2295 if (!device->bdev) 2296 continue; 2297 2298 if (!zinfo->max_active_zones) { 2299 ret = true; 2300 break; 2301 } 2302 2303 if (flags & BTRFS_BLOCK_GROUP_DATA) 2304 reserved = zinfo->reserved_active_zones; 2305 2306 switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 2307 case 0: /* single */ 2308 ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved)); 2309 break; 2310 case BTRFS_BLOCK_GROUP_DUP: 2311 ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved)); 2312 break; 2313 } 2314 if (ret) 2315 break; 2316 } 2317 spin_unlock(&fs_info->zone_active_bgs_lock); 2318 mutex_unlock(&fs_info->chunk_mutex); 2319 2320 if (!ret) 2321 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2322 2323 return ret; 2324 } 2325 2326 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length) 2327 { 2328 struct btrfs_block_group *block_group; 2329 u64 min_alloc_bytes; 2330 2331 if (!btrfs_is_zoned(fs_info)) 2332 return; 2333 2334 block_group = btrfs_lookup_block_group(fs_info, logical); 2335 ASSERT(block_group); 2336 2337 /* No MIXED_BG on zoned btrfs. */ 2338 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA) 2339 min_alloc_bytes = fs_info->sectorsize; 2340 else 2341 min_alloc_bytes = fs_info->nodesize; 2342 2343 /* Bail out if we can allocate more data from this block group. */ 2344 if (logical + length + min_alloc_bytes <= 2345 block_group->start + block_group->zone_capacity) 2346 goto out; 2347 2348 do_zone_finish(block_group, true); 2349 2350 out: 2351 btrfs_put_block_group(block_group); 2352 } 2353 2354 static void btrfs_zone_finish_endio_workfn(struct work_struct *work) 2355 { 2356 struct btrfs_block_group *bg = 2357 container_of(work, struct btrfs_block_group, zone_finish_work); 2358 2359 wait_on_extent_buffer_writeback(bg->last_eb); 2360 free_extent_buffer(bg->last_eb); 2361 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length); 2362 btrfs_put_block_group(bg); 2363 } 2364 2365 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg, 2366 struct extent_buffer *eb) 2367 { 2368 if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) || 2369 eb->start + eb->len * 2 <= bg->start + bg->zone_capacity) 2370 return; 2371 2372 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) { 2373 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing", 2374 bg->start); 2375 return; 2376 } 2377 2378 /* For the work */ 2379 btrfs_get_block_group(bg); 2380 atomic_inc(&eb->refs); 2381 bg->last_eb = eb; 2382 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn); 2383 queue_work(system_unbound_wq, &bg->zone_finish_work); 2384 } 2385 2386 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg) 2387 { 2388 struct btrfs_fs_info *fs_info = bg->fs_info; 2389 2390 spin_lock(&fs_info->relocation_bg_lock); 2391 if (fs_info->data_reloc_bg == bg->start) 2392 fs_info->data_reloc_bg = 0; 2393 spin_unlock(&fs_info->relocation_bg_lock); 2394 } 2395 2396 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info) 2397 { 2398 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2399 struct btrfs_device *device; 2400 2401 if (!btrfs_is_zoned(fs_info)) 2402 return; 2403 2404 mutex_lock(&fs_devices->device_list_mutex); 2405 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2406 if (device->zone_info) { 2407 vfree(device->zone_info->zone_cache); 2408 device->zone_info->zone_cache = NULL; 2409 } 2410 } 2411 mutex_unlock(&fs_devices->device_list_mutex); 2412 } 2413 2414 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info) 2415 { 2416 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2417 struct btrfs_device *device; 2418 u64 used = 0; 2419 u64 total = 0; 2420 u64 factor; 2421 2422 ASSERT(btrfs_is_zoned(fs_info)); 2423 2424 if (fs_info->bg_reclaim_threshold == 0) 2425 return false; 2426 2427 mutex_lock(&fs_devices->device_list_mutex); 2428 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2429 if (!device->bdev) 2430 continue; 2431 2432 total += device->disk_total_bytes; 2433 used += device->bytes_used; 2434 } 2435 mutex_unlock(&fs_devices->device_list_mutex); 2436 2437 factor = div64_u64(used * 100, total); 2438 return factor >= fs_info->bg_reclaim_threshold; 2439 } 2440 2441 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical, 2442 u64 length) 2443 { 2444 struct btrfs_block_group *block_group; 2445 2446 if (!btrfs_is_zoned(fs_info)) 2447 return; 2448 2449 block_group = btrfs_lookup_block_group(fs_info, logical); 2450 /* It should be called on a previous data relocation block group. */ 2451 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)); 2452 2453 spin_lock(&block_group->lock); 2454 if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) 2455 goto out; 2456 2457 /* All relocation extents are written. */ 2458 if (block_group->start + block_group->alloc_offset == logical + length) { 2459 /* 2460 * Now, release this block group for further allocations and 2461 * zone finish. 2462 */ 2463 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, 2464 &block_group->runtime_flags); 2465 } 2466 2467 out: 2468 spin_unlock(&block_group->lock); 2469 btrfs_put_block_group(block_group); 2470 } 2471 2472 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info) 2473 { 2474 struct btrfs_block_group *block_group; 2475 struct btrfs_block_group *min_bg = NULL; 2476 u64 min_avail = U64_MAX; 2477 int ret; 2478 2479 spin_lock(&fs_info->zone_active_bgs_lock); 2480 list_for_each_entry(block_group, &fs_info->zone_active_bgs, 2481 active_bg_list) { 2482 u64 avail; 2483 2484 spin_lock(&block_group->lock); 2485 if (block_group->reserved || block_group->alloc_offset == 0 || 2486 (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) || 2487 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) { 2488 spin_unlock(&block_group->lock); 2489 continue; 2490 } 2491 2492 avail = block_group->zone_capacity - block_group->alloc_offset; 2493 if (min_avail > avail) { 2494 if (min_bg) 2495 btrfs_put_block_group(min_bg); 2496 min_bg = block_group; 2497 min_avail = avail; 2498 btrfs_get_block_group(min_bg); 2499 } 2500 spin_unlock(&block_group->lock); 2501 } 2502 spin_unlock(&fs_info->zone_active_bgs_lock); 2503 2504 if (!min_bg) 2505 return 0; 2506 2507 ret = btrfs_zone_finish(min_bg); 2508 btrfs_put_block_group(min_bg); 2509 2510 return ret < 0 ? ret : 1; 2511 } 2512 2513 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info, 2514 struct btrfs_space_info *space_info, 2515 bool do_finish) 2516 { 2517 struct btrfs_block_group *bg; 2518 int index; 2519 2520 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA)) 2521 return 0; 2522 2523 for (;;) { 2524 int ret; 2525 bool need_finish = false; 2526 2527 down_read(&space_info->groups_sem); 2528 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) { 2529 list_for_each_entry(bg, &space_info->block_groups[index], 2530 list) { 2531 if (!spin_trylock(&bg->lock)) 2532 continue; 2533 if (btrfs_zoned_bg_is_full(bg) || 2534 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2535 &bg->runtime_flags)) { 2536 spin_unlock(&bg->lock); 2537 continue; 2538 } 2539 spin_unlock(&bg->lock); 2540 2541 if (btrfs_zone_activate(bg)) { 2542 up_read(&space_info->groups_sem); 2543 return 1; 2544 } 2545 2546 need_finish = true; 2547 } 2548 } 2549 up_read(&space_info->groups_sem); 2550 2551 if (!do_finish || !need_finish) 2552 break; 2553 2554 ret = btrfs_zone_finish_one_bg(fs_info); 2555 if (ret == 0) 2556 break; 2557 if (ret < 0) 2558 return ret; 2559 } 2560 2561 return 0; 2562 } 2563 2564 /* 2565 * Reserve zones for one metadata block group, one tree-log block group, and one 2566 * system block group. 2567 */ 2568 void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info) 2569 { 2570 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2571 struct btrfs_block_group *block_group; 2572 struct btrfs_device *device; 2573 /* Reserve zones for normal SINGLE metadata and tree-log block group. */ 2574 unsigned int metadata_reserve = 2; 2575 /* Reserve a zone for SINGLE system block group. */ 2576 unsigned int system_reserve = 1; 2577 2578 if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags)) 2579 return; 2580 2581 /* 2582 * This function is called from the mount context. So, there is no 2583 * parallel process touching the bits. No need for read_seqretry(). 2584 */ 2585 if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP) 2586 metadata_reserve = 4; 2587 if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP) 2588 system_reserve = 2; 2589 2590 /* Apply the reservation on all the devices. */ 2591 mutex_lock(&fs_devices->device_list_mutex); 2592 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2593 if (!device->bdev) 2594 continue; 2595 2596 device->zone_info->reserved_active_zones = 2597 metadata_reserve + system_reserve; 2598 } 2599 mutex_unlock(&fs_devices->device_list_mutex); 2600 2601 /* Release reservation for currently active block groups. */ 2602 spin_lock(&fs_info->zone_active_bgs_lock); 2603 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) { 2604 struct btrfs_chunk_map *map = block_group->physical_map; 2605 2606 if (!(block_group->flags & 2607 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))) 2608 continue; 2609 2610 for (int i = 0; i < map->num_stripes; i++) 2611 map->stripes[i].dev->zone_info->reserved_active_zones--; 2612 } 2613 spin_unlock(&fs_info->zone_active_bgs_lock); 2614 } 2615