xref: /linux/fs/btrfs/zoned.c (revision 364eeb79a213fcf9164208b53764223ad522d6b3)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "rcu-string.h"
13 #include "disk-io.h"
14 #include "block-group.h"
15 #include "dev-replace.h"
16 #include "space-info.h"
17 #include "fs.h"
18 #include "accessors.h"
19 #include "bio.h"
20 
21 /* Maximum number of zones to report per blkdev_report_zones() call */
22 #define BTRFS_REPORT_NR_ZONES   4096
23 /* Invalid allocation pointer value for missing devices */
24 #define WP_MISSING_DEV ((u64)-1)
25 /* Pseudo write pointer value for conventional zone */
26 #define WP_CONVENTIONAL ((u64)-2)
27 
28 /*
29  * Location of the first zone of superblock logging zone pairs.
30  *
31  * - primary superblock:    0B (zone 0)
32  * - first copy:          512G (zone starting at that offset)
33  * - second copy:           4T (zone starting at that offset)
34  */
35 #define BTRFS_SB_LOG_PRIMARY_OFFSET	(0ULL)
36 #define BTRFS_SB_LOG_FIRST_OFFSET	(512ULL * SZ_1G)
37 #define BTRFS_SB_LOG_SECOND_OFFSET	(4096ULL * SZ_1G)
38 
39 #define BTRFS_SB_LOG_FIRST_SHIFT	const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
40 #define BTRFS_SB_LOG_SECOND_SHIFT	const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
41 
42 /* Number of superblock log zones */
43 #define BTRFS_NR_SB_LOG_ZONES 2
44 
45 /*
46  * Minimum of active zones we need:
47  *
48  * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
49  * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
50  * - 1 zone for tree-log dedicated block group
51  * - 1 zone for relocation
52  */
53 #define BTRFS_MIN_ACTIVE_ZONES		(BTRFS_SUPER_MIRROR_MAX + 5)
54 
55 /*
56  * Minimum / maximum supported zone size. Currently, SMR disks have a zone
57  * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
58  * We do not expect the zone size to become larger than 8GiB or smaller than
59  * 4MiB in the near future.
60  */
61 #define BTRFS_MAX_ZONE_SIZE		SZ_8G
62 #define BTRFS_MIN_ZONE_SIZE		SZ_4M
63 
64 #define SUPER_INFO_SECTORS	((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
65 
66 static void wait_eb_writebacks(struct btrfs_block_group *block_group);
67 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written);
68 
69 static inline bool sb_zone_is_full(const struct blk_zone *zone)
70 {
71 	return (zone->cond == BLK_ZONE_COND_FULL) ||
72 		(zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
73 }
74 
75 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
76 {
77 	struct blk_zone *zones = data;
78 
79 	memcpy(&zones[idx], zone, sizeof(*zone));
80 
81 	return 0;
82 }
83 
84 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
85 			    u64 *wp_ret)
86 {
87 	bool empty[BTRFS_NR_SB_LOG_ZONES];
88 	bool full[BTRFS_NR_SB_LOG_ZONES];
89 	sector_t sector;
90 
91 	for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
92 		ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
93 		empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
94 		full[i] = sb_zone_is_full(&zones[i]);
95 	}
96 
97 	/*
98 	 * Possible states of log buffer zones
99 	 *
100 	 *           Empty[0]  In use[0]  Full[0]
101 	 * Empty[1]         *          0        1
102 	 * In use[1]        x          x        1
103 	 * Full[1]          0          0        C
104 	 *
105 	 * Log position:
106 	 *   *: Special case, no superblock is written
107 	 *   0: Use write pointer of zones[0]
108 	 *   1: Use write pointer of zones[1]
109 	 *   C: Compare super blocks from zones[0] and zones[1], use the latest
110 	 *      one determined by generation
111 	 *   x: Invalid state
112 	 */
113 
114 	if (empty[0] && empty[1]) {
115 		/* Special case to distinguish no superblock to read */
116 		*wp_ret = zones[0].start << SECTOR_SHIFT;
117 		return -ENOENT;
118 	} else if (full[0] && full[1]) {
119 		/* Compare two super blocks */
120 		struct address_space *mapping = bdev->bd_mapping;
121 		struct page *page[BTRFS_NR_SB_LOG_ZONES];
122 		struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
123 
124 		for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
125 			u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT;
126 			u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) -
127 						BTRFS_SUPER_INFO_SIZE;
128 
129 			page[i] = read_cache_page_gfp(mapping,
130 					bytenr >> PAGE_SHIFT, GFP_NOFS);
131 			if (IS_ERR(page[i])) {
132 				if (i == 1)
133 					btrfs_release_disk_super(super[0]);
134 				return PTR_ERR(page[i]);
135 			}
136 			super[i] = page_address(page[i]);
137 		}
138 
139 		if (btrfs_super_generation(super[0]) >
140 		    btrfs_super_generation(super[1]))
141 			sector = zones[1].start;
142 		else
143 			sector = zones[0].start;
144 
145 		for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
146 			btrfs_release_disk_super(super[i]);
147 	} else if (!full[0] && (empty[1] || full[1])) {
148 		sector = zones[0].wp;
149 	} else if (full[0]) {
150 		sector = zones[1].wp;
151 	} else {
152 		return -EUCLEAN;
153 	}
154 	*wp_ret = sector << SECTOR_SHIFT;
155 	return 0;
156 }
157 
158 /*
159  * Get the first zone number of the superblock mirror
160  */
161 static inline u32 sb_zone_number(int shift, int mirror)
162 {
163 	u64 zone = U64_MAX;
164 
165 	ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
166 	switch (mirror) {
167 	case 0: zone = 0; break;
168 	case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
169 	case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
170 	}
171 
172 	ASSERT(zone <= U32_MAX);
173 
174 	return (u32)zone;
175 }
176 
177 static inline sector_t zone_start_sector(u32 zone_number,
178 					 struct block_device *bdev)
179 {
180 	return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
181 }
182 
183 static inline u64 zone_start_physical(u32 zone_number,
184 				      struct btrfs_zoned_device_info *zone_info)
185 {
186 	return (u64)zone_number << zone_info->zone_size_shift;
187 }
188 
189 /*
190  * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
191  * device into static sized chunks and fake a conventional zone on each of
192  * them.
193  */
194 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
195 				struct blk_zone *zones, unsigned int nr_zones)
196 {
197 	const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
198 	sector_t bdev_size = bdev_nr_sectors(device->bdev);
199 	unsigned int i;
200 
201 	pos >>= SECTOR_SHIFT;
202 	for (i = 0; i < nr_zones; i++) {
203 		zones[i].start = i * zone_sectors + pos;
204 		zones[i].len = zone_sectors;
205 		zones[i].capacity = zone_sectors;
206 		zones[i].wp = zones[i].start + zone_sectors;
207 		zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
208 		zones[i].cond = BLK_ZONE_COND_NOT_WP;
209 
210 		if (zones[i].wp >= bdev_size) {
211 			i++;
212 			break;
213 		}
214 	}
215 
216 	return i;
217 }
218 
219 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
220 			       struct blk_zone *zones, unsigned int *nr_zones)
221 {
222 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
223 	int ret;
224 
225 	if (!*nr_zones)
226 		return 0;
227 
228 	if (!bdev_is_zoned(device->bdev)) {
229 		ret = emulate_report_zones(device, pos, zones, *nr_zones);
230 		*nr_zones = ret;
231 		return 0;
232 	}
233 
234 	/* Check cache */
235 	if (zinfo->zone_cache) {
236 		unsigned int i;
237 		u32 zno;
238 
239 		ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
240 		zno = pos >> zinfo->zone_size_shift;
241 		/*
242 		 * We cannot report zones beyond the zone end. So, it is OK to
243 		 * cap *nr_zones to at the end.
244 		 */
245 		*nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
246 
247 		for (i = 0; i < *nr_zones; i++) {
248 			struct blk_zone *zone_info;
249 
250 			zone_info = &zinfo->zone_cache[zno + i];
251 			if (!zone_info->len)
252 				break;
253 		}
254 
255 		if (i == *nr_zones) {
256 			/* Cache hit on all the zones */
257 			memcpy(zones, zinfo->zone_cache + zno,
258 			       sizeof(*zinfo->zone_cache) * *nr_zones);
259 			return 0;
260 		}
261 	}
262 
263 	ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
264 				  copy_zone_info_cb, zones);
265 	if (ret < 0) {
266 		btrfs_err_in_rcu(device->fs_info,
267 				 "zoned: failed to read zone %llu on %s (devid %llu)",
268 				 pos, rcu_str_deref(device->name),
269 				 device->devid);
270 		return ret;
271 	}
272 	*nr_zones = ret;
273 	if (!ret)
274 		return -EIO;
275 
276 	/* Populate cache */
277 	if (zinfo->zone_cache) {
278 		u32 zno = pos >> zinfo->zone_size_shift;
279 
280 		memcpy(zinfo->zone_cache + zno, zones,
281 		       sizeof(*zinfo->zone_cache) * *nr_zones);
282 	}
283 
284 	return 0;
285 }
286 
287 /* The emulated zone size is determined from the size of device extent */
288 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
289 {
290 	BTRFS_PATH_AUTO_FREE(path);
291 	struct btrfs_root *root = fs_info->dev_root;
292 	struct btrfs_key key;
293 	struct extent_buffer *leaf;
294 	struct btrfs_dev_extent *dext;
295 	int ret = 0;
296 
297 	key.objectid = 1;
298 	key.type = BTRFS_DEV_EXTENT_KEY;
299 	key.offset = 0;
300 
301 	path = btrfs_alloc_path();
302 	if (!path)
303 		return -ENOMEM;
304 
305 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
306 	if (ret < 0)
307 		return ret;
308 
309 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
310 		ret = btrfs_next_leaf(root, path);
311 		if (ret < 0)
312 			return ret;
313 		/* No dev extents at all? Not good */
314 		if (ret > 0)
315 			return -EUCLEAN;
316 	}
317 
318 	leaf = path->nodes[0];
319 	dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
320 	fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
321 	return 0;
322 }
323 
324 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
325 {
326 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
327 	struct btrfs_device *device;
328 	int ret = 0;
329 
330 	/* fs_info->zone_size might not set yet. Use the incomapt flag here. */
331 	if (!btrfs_fs_incompat(fs_info, ZONED))
332 		return 0;
333 
334 	mutex_lock(&fs_devices->device_list_mutex);
335 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
336 		/* We can skip reading of zone info for missing devices */
337 		if (!device->bdev)
338 			continue;
339 
340 		ret = btrfs_get_dev_zone_info(device, true);
341 		if (ret)
342 			break;
343 	}
344 	mutex_unlock(&fs_devices->device_list_mutex);
345 
346 	return ret;
347 }
348 
349 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
350 {
351 	struct btrfs_fs_info *fs_info = device->fs_info;
352 	struct btrfs_zoned_device_info *zone_info = NULL;
353 	struct block_device *bdev = device->bdev;
354 	unsigned int max_active_zones;
355 	unsigned int nactive;
356 	sector_t nr_sectors;
357 	sector_t sector = 0;
358 	struct blk_zone *zones = NULL;
359 	unsigned int i, nreported = 0, nr_zones;
360 	sector_t zone_sectors;
361 	char *model, *emulated;
362 	int ret;
363 
364 	/*
365 	 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
366 	 * yet be set.
367 	 */
368 	if (!btrfs_fs_incompat(fs_info, ZONED))
369 		return 0;
370 
371 	if (device->zone_info)
372 		return 0;
373 
374 	zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
375 	if (!zone_info)
376 		return -ENOMEM;
377 
378 	device->zone_info = zone_info;
379 
380 	if (!bdev_is_zoned(bdev)) {
381 		if (!fs_info->zone_size) {
382 			ret = calculate_emulated_zone_size(fs_info);
383 			if (ret)
384 				goto out;
385 		}
386 
387 		ASSERT(fs_info->zone_size);
388 		zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
389 	} else {
390 		zone_sectors = bdev_zone_sectors(bdev);
391 	}
392 
393 	ASSERT(is_power_of_two_u64(zone_sectors));
394 	zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
395 
396 	/* We reject devices with a zone size larger than 8GB */
397 	if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
398 		btrfs_err_in_rcu(fs_info,
399 		"zoned: %s: zone size %llu larger than supported maximum %llu",
400 				 rcu_str_deref(device->name),
401 				 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
402 		ret = -EINVAL;
403 		goto out;
404 	} else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
405 		btrfs_err_in_rcu(fs_info,
406 		"zoned: %s: zone size %llu smaller than supported minimum %u",
407 				 rcu_str_deref(device->name),
408 				 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
409 		ret = -EINVAL;
410 		goto out;
411 	}
412 
413 	nr_sectors = bdev_nr_sectors(bdev);
414 	zone_info->zone_size_shift = ilog2(zone_info->zone_size);
415 	zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
416 	if (!IS_ALIGNED(nr_sectors, zone_sectors))
417 		zone_info->nr_zones++;
418 
419 	max_active_zones = bdev_max_active_zones(bdev);
420 	if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
421 		btrfs_err_in_rcu(fs_info,
422 "zoned: %s: max active zones %u is too small, need at least %u active zones",
423 				 rcu_str_deref(device->name), max_active_zones,
424 				 BTRFS_MIN_ACTIVE_ZONES);
425 		ret = -EINVAL;
426 		goto out;
427 	}
428 	zone_info->max_active_zones = max_active_zones;
429 
430 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
431 	if (!zone_info->seq_zones) {
432 		ret = -ENOMEM;
433 		goto out;
434 	}
435 
436 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
437 	if (!zone_info->empty_zones) {
438 		ret = -ENOMEM;
439 		goto out;
440 	}
441 
442 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
443 	if (!zone_info->active_zones) {
444 		ret = -ENOMEM;
445 		goto out;
446 	}
447 
448 	zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
449 	if (!zones) {
450 		ret = -ENOMEM;
451 		goto out;
452 	}
453 
454 	/*
455 	 * Enable zone cache only for a zoned device. On a non-zoned device, we
456 	 * fill the zone info with emulated CONVENTIONAL zones, so no need to
457 	 * use the cache.
458 	 */
459 	if (populate_cache && bdev_is_zoned(device->bdev)) {
460 		zone_info->zone_cache = vcalloc(zone_info->nr_zones,
461 						sizeof(struct blk_zone));
462 		if (!zone_info->zone_cache) {
463 			btrfs_err_in_rcu(device->fs_info,
464 				"zoned: failed to allocate zone cache for %s",
465 				rcu_str_deref(device->name));
466 			ret = -ENOMEM;
467 			goto out;
468 		}
469 	}
470 
471 	/* Get zones type */
472 	nactive = 0;
473 	while (sector < nr_sectors) {
474 		nr_zones = BTRFS_REPORT_NR_ZONES;
475 		ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
476 					  &nr_zones);
477 		if (ret)
478 			goto out;
479 
480 		for (i = 0; i < nr_zones; i++) {
481 			if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
482 				__set_bit(nreported, zone_info->seq_zones);
483 			switch (zones[i].cond) {
484 			case BLK_ZONE_COND_EMPTY:
485 				__set_bit(nreported, zone_info->empty_zones);
486 				break;
487 			case BLK_ZONE_COND_IMP_OPEN:
488 			case BLK_ZONE_COND_EXP_OPEN:
489 			case BLK_ZONE_COND_CLOSED:
490 				__set_bit(nreported, zone_info->active_zones);
491 				nactive++;
492 				break;
493 			}
494 			nreported++;
495 		}
496 		sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
497 	}
498 
499 	if (nreported != zone_info->nr_zones) {
500 		btrfs_err_in_rcu(device->fs_info,
501 				 "inconsistent number of zones on %s (%u/%u)",
502 				 rcu_str_deref(device->name), nreported,
503 				 zone_info->nr_zones);
504 		ret = -EIO;
505 		goto out;
506 	}
507 
508 	if (max_active_zones) {
509 		if (nactive > max_active_zones) {
510 			btrfs_err_in_rcu(device->fs_info,
511 			"zoned: %u active zones on %s exceeds max_active_zones %u",
512 					 nactive, rcu_str_deref(device->name),
513 					 max_active_zones);
514 			ret = -EIO;
515 			goto out;
516 		}
517 		atomic_set(&zone_info->active_zones_left,
518 			   max_active_zones - nactive);
519 		set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
520 	}
521 
522 	/* Validate superblock log */
523 	nr_zones = BTRFS_NR_SB_LOG_ZONES;
524 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
525 		u32 sb_zone;
526 		u64 sb_wp;
527 		int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
528 
529 		sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
530 		if (sb_zone + 1 >= zone_info->nr_zones)
531 			continue;
532 
533 		ret = btrfs_get_dev_zones(device,
534 					  zone_start_physical(sb_zone, zone_info),
535 					  &zone_info->sb_zones[sb_pos],
536 					  &nr_zones);
537 		if (ret)
538 			goto out;
539 
540 		if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
541 			btrfs_err_in_rcu(device->fs_info,
542 	"zoned: failed to read super block log zone info at devid %llu zone %u",
543 					 device->devid, sb_zone);
544 			ret = -EUCLEAN;
545 			goto out;
546 		}
547 
548 		/*
549 		 * If zones[0] is conventional, always use the beginning of the
550 		 * zone to record superblock. No need to validate in that case.
551 		 */
552 		if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
553 		    BLK_ZONE_TYPE_CONVENTIONAL)
554 			continue;
555 
556 		ret = sb_write_pointer(device->bdev,
557 				       &zone_info->sb_zones[sb_pos], &sb_wp);
558 		if (ret != -ENOENT && ret) {
559 			btrfs_err_in_rcu(device->fs_info,
560 			"zoned: super block log zone corrupted devid %llu zone %u",
561 					 device->devid, sb_zone);
562 			ret = -EUCLEAN;
563 			goto out;
564 		}
565 	}
566 
567 
568 	kvfree(zones);
569 
570 	if (bdev_is_zoned(bdev)) {
571 		model = "host-managed zoned";
572 		emulated = "";
573 	} else {
574 		model = "regular";
575 		emulated = "emulated ";
576 	}
577 
578 	btrfs_info_in_rcu(fs_info,
579 		"%s block device %s, %u %szones of %llu bytes",
580 		model, rcu_str_deref(device->name), zone_info->nr_zones,
581 		emulated, zone_info->zone_size);
582 
583 	return 0;
584 
585 out:
586 	kvfree(zones);
587 	btrfs_destroy_dev_zone_info(device);
588 	return ret;
589 }
590 
591 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
592 {
593 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
594 
595 	if (!zone_info)
596 		return;
597 
598 	bitmap_free(zone_info->active_zones);
599 	bitmap_free(zone_info->seq_zones);
600 	bitmap_free(zone_info->empty_zones);
601 	vfree(zone_info->zone_cache);
602 	kfree(zone_info);
603 	device->zone_info = NULL;
604 }
605 
606 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
607 {
608 	struct btrfs_zoned_device_info *zone_info;
609 
610 	zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
611 	if (!zone_info)
612 		return NULL;
613 
614 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
615 	if (!zone_info->seq_zones)
616 		goto out;
617 
618 	bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
619 		    zone_info->nr_zones);
620 
621 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
622 	if (!zone_info->empty_zones)
623 		goto out;
624 
625 	bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
626 		    zone_info->nr_zones);
627 
628 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
629 	if (!zone_info->active_zones)
630 		goto out;
631 
632 	bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
633 		    zone_info->nr_zones);
634 	zone_info->zone_cache = NULL;
635 
636 	return zone_info;
637 
638 out:
639 	bitmap_free(zone_info->seq_zones);
640 	bitmap_free(zone_info->empty_zones);
641 	bitmap_free(zone_info->active_zones);
642 	kfree(zone_info);
643 	return NULL;
644 }
645 
646 static int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, struct blk_zone *zone)
647 {
648 	unsigned int nr_zones = 1;
649 	int ret;
650 
651 	ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
652 	if (ret != 0 || !nr_zones)
653 		return ret ? ret : -EIO;
654 
655 	return 0;
656 }
657 
658 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
659 {
660 	struct btrfs_device *device;
661 
662 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
663 		if (device->bdev && bdev_is_zoned(device->bdev)) {
664 			btrfs_err(fs_info,
665 				"zoned: mode not enabled but zoned device found: %pg",
666 				device->bdev);
667 			return -EINVAL;
668 		}
669 	}
670 
671 	return 0;
672 }
673 
674 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
675 {
676 	struct queue_limits *lim = &fs_info->limits;
677 	struct btrfs_device *device;
678 	u64 zone_size = 0;
679 	int ret;
680 
681 	/*
682 	 * Host-Managed devices can't be used without the ZONED flag.  With the
683 	 * ZONED all devices can be used, using zone emulation if required.
684 	 */
685 	if (!btrfs_fs_incompat(fs_info, ZONED))
686 		return btrfs_check_for_zoned_device(fs_info);
687 
688 	blk_set_stacking_limits(lim);
689 
690 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
691 		struct btrfs_zoned_device_info *zone_info = device->zone_info;
692 
693 		if (!device->bdev)
694 			continue;
695 
696 		if (!zone_size) {
697 			zone_size = zone_info->zone_size;
698 		} else if (zone_info->zone_size != zone_size) {
699 			btrfs_err(fs_info,
700 		"zoned: unequal block device zone sizes: have %llu found %llu",
701 				  zone_info->zone_size, zone_size);
702 			return -EINVAL;
703 		}
704 
705 		/*
706 		 * With the zoned emulation, we can have non-zoned device on the
707 		 * zoned mode. In this case, we don't have a valid max zone
708 		 * append size.
709 		 */
710 		if (bdev_is_zoned(device->bdev))
711 			blk_stack_limits(lim, bdev_limits(device->bdev), 0);
712 	}
713 
714 	ret = blk_validate_limits(lim);
715 	if (ret) {
716 		btrfs_err(fs_info, "zoned: failed to validate queue limits");
717 		return ret;
718 	}
719 
720 	/*
721 	 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
722 	 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
723 	 * check the alignment here.
724 	 */
725 	if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
726 		btrfs_err(fs_info,
727 			  "zoned: zone size %llu not aligned to stripe %u",
728 			  zone_size, BTRFS_STRIPE_LEN);
729 		return -EINVAL;
730 	}
731 
732 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
733 		btrfs_err(fs_info, "zoned: mixed block groups not supported");
734 		return -EINVAL;
735 	}
736 
737 	fs_info->zone_size = zone_size;
738 	/*
739 	 * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
740 	 * Technically, we can have multiple pages per segment. But, since
741 	 * we add the pages one by one to a bio, and cannot increase the
742 	 * metadata reservation even if it increases the number of extents, it
743 	 * is safe to stick with the limit.
744 	 */
745 	fs_info->max_zone_append_size = ALIGN_DOWN(
746 		min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
747 		     (u64)lim->max_sectors << SECTOR_SHIFT,
748 		     (u64)lim->max_segments << PAGE_SHIFT),
749 		fs_info->sectorsize);
750 	fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
751 	if (fs_info->max_zone_append_size < fs_info->max_extent_size)
752 		fs_info->max_extent_size = fs_info->max_zone_append_size;
753 
754 	/*
755 	 * Check mount options here, because we might change fs_info->zoned
756 	 * from fs_info->zone_size.
757 	 */
758 	ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt);
759 	if (ret)
760 		return ret;
761 
762 	btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
763 	return 0;
764 }
765 
766 int btrfs_check_mountopts_zoned(const struct btrfs_fs_info *info,
767 				unsigned long long *mount_opt)
768 {
769 	if (!btrfs_is_zoned(info))
770 		return 0;
771 
772 	/*
773 	 * Space cache writing is not COWed. Disable that to avoid write errors
774 	 * in sequential zones.
775 	 */
776 	if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
777 		btrfs_err(info, "zoned: space cache v1 is not supported");
778 		return -EINVAL;
779 	}
780 
781 	if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) {
782 		btrfs_err(info, "zoned: NODATACOW not supported");
783 		return -EINVAL;
784 	}
785 
786 	if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) {
787 		btrfs_info(info,
788 			   "zoned: async discard ignored and disabled for zoned mode");
789 		btrfs_clear_opt(*mount_opt, DISCARD_ASYNC);
790 	}
791 
792 	return 0;
793 }
794 
795 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
796 			   int rw, u64 *bytenr_ret)
797 {
798 	u64 wp;
799 	int ret;
800 
801 	if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
802 		*bytenr_ret = zones[0].start << SECTOR_SHIFT;
803 		return 0;
804 	}
805 
806 	ret = sb_write_pointer(bdev, zones, &wp);
807 	if (ret != -ENOENT && ret < 0)
808 		return ret;
809 
810 	if (rw == WRITE) {
811 		struct blk_zone *reset = NULL;
812 
813 		if (wp == zones[0].start << SECTOR_SHIFT)
814 			reset = &zones[0];
815 		else if (wp == zones[1].start << SECTOR_SHIFT)
816 			reset = &zones[1];
817 
818 		if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
819 			unsigned int nofs_flags;
820 
821 			ASSERT(sb_zone_is_full(reset));
822 
823 			nofs_flags = memalloc_nofs_save();
824 			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
825 					       reset->start, reset->len);
826 			memalloc_nofs_restore(nofs_flags);
827 			if (ret)
828 				return ret;
829 
830 			reset->cond = BLK_ZONE_COND_EMPTY;
831 			reset->wp = reset->start;
832 		}
833 	} else if (ret != -ENOENT) {
834 		/*
835 		 * For READ, we want the previous one. Move write pointer to
836 		 * the end of a zone, if it is at the head of a zone.
837 		 */
838 		u64 zone_end = 0;
839 
840 		if (wp == zones[0].start << SECTOR_SHIFT)
841 			zone_end = zones[1].start + zones[1].capacity;
842 		else if (wp == zones[1].start << SECTOR_SHIFT)
843 			zone_end = zones[0].start + zones[0].capacity;
844 		if (zone_end)
845 			wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
846 					BTRFS_SUPER_INFO_SIZE);
847 
848 		wp -= BTRFS_SUPER_INFO_SIZE;
849 	}
850 
851 	*bytenr_ret = wp;
852 	return 0;
853 
854 }
855 
856 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
857 			       u64 *bytenr_ret)
858 {
859 	struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
860 	sector_t zone_sectors;
861 	u32 sb_zone;
862 	int ret;
863 	u8 zone_sectors_shift;
864 	sector_t nr_sectors;
865 	u32 nr_zones;
866 
867 	if (!bdev_is_zoned(bdev)) {
868 		*bytenr_ret = btrfs_sb_offset(mirror);
869 		return 0;
870 	}
871 
872 	ASSERT(rw == READ || rw == WRITE);
873 
874 	zone_sectors = bdev_zone_sectors(bdev);
875 	if (!is_power_of_2(zone_sectors))
876 		return -EINVAL;
877 	zone_sectors_shift = ilog2(zone_sectors);
878 	nr_sectors = bdev_nr_sectors(bdev);
879 	nr_zones = nr_sectors >> zone_sectors_shift;
880 
881 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
882 	if (sb_zone + 1 >= nr_zones)
883 		return -ENOENT;
884 
885 	ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
886 				  BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
887 				  zones);
888 	if (ret < 0)
889 		return ret;
890 	if (ret != BTRFS_NR_SB_LOG_ZONES)
891 		return -EIO;
892 
893 	return sb_log_location(bdev, zones, rw, bytenr_ret);
894 }
895 
896 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
897 			  u64 *bytenr_ret)
898 {
899 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
900 	u32 zone_num;
901 
902 	/*
903 	 * For a zoned filesystem on a non-zoned block device, use the same
904 	 * super block locations as regular filesystem. Doing so, the super
905 	 * block can always be retrieved and the zoned flag of the volume
906 	 * detected from the super block information.
907 	 */
908 	if (!bdev_is_zoned(device->bdev)) {
909 		*bytenr_ret = btrfs_sb_offset(mirror);
910 		return 0;
911 	}
912 
913 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
914 	if (zone_num + 1 >= zinfo->nr_zones)
915 		return -ENOENT;
916 
917 	return sb_log_location(device->bdev,
918 			       &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
919 			       rw, bytenr_ret);
920 }
921 
922 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
923 				  int mirror)
924 {
925 	u32 zone_num;
926 
927 	if (!zinfo)
928 		return false;
929 
930 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
931 	if (zone_num + 1 >= zinfo->nr_zones)
932 		return false;
933 
934 	if (!test_bit(zone_num, zinfo->seq_zones))
935 		return false;
936 
937 	return true;
938 }
939 
940 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
941 {
942 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
943 	struct blk_zone *zone;
944 	int i;
945 
946 	if (!is_sb_log_zone(zinfo, mirror))
947 		return 0;
948 
949 	zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
950 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
951 		/* Advance the next zone */
952 		if (zone->cond == BLK_ZONE_COND_FULL) {
953 			zone++;
954 			continue;
955 		}
956 
957 		if (zone->cond == BLK_ZONE_COND_EMPTY)
958 			zone->cond = BLK_ZONE_COND_IMP_OPEN;
959 
960 		zone->wp += SUPER_INFO_SECTORS;
961 
962 		if (sb_zone_is_full(zone)) {
963 			/*
964 			 * No room left to write new superblock. Since
965 			 * superblock is written with REQ_SYNC, it is safe to
966 			 * finish the zone now.
967 			 *
968 			 * If the write pointer is exactly at the capacity,
969 			 * explicit ZONE_FINISH is not necessary.
970 			 */
971 			if (zone->wp != zone->start + zone->capacity) {
972 				unsigned int nofs_flags;
973 				int ret;
974 
975 				nofs_flags = memalloc_nofs_save();
976 				ret = blkdev_zone_mgmt(device->bdev,
977 						REQ_OP_ZONE_FINISH, zone->start,
978 						zone->len);
979 				memalloc_nofs_restore(nofs_flags);
980 				if (ret)
981 					return ret;
982 			}
983 
984 			zone->wp = zone->start + zone->len;
985 			zone->cond = BLK_ZONE_COND_FULL;
986 		}
987 		return 0;
988 	}
989 
990 	/* All the zones are FULL. Should not reach here. */
991 	ASSERT(0);
992 	return -EIO;
993 }
994 
995 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
996 {
997 	unsigned int nofs_flags;
998 	sector_t zone_sectors;
999 	sector_t nr_sectors;
1000 	u8 zone_sectors_shift;
1001 	u32 sb_zone;
1002 	u32 nr_zones;
1003 	int ret;
1004 
1005 	zone_sectors = bdev_zone_sectors(bdev);
1006 	zone_sectors_shift = ilog2(zone_sectors);
1007 	nr_sectors = bdev_nr_sectors(bdev);
1008 	nr_zones = nr_sectors >> zone_sectors_shift;
1009 
1010 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1011 	if (sb_zone + 1 >= nr_zones)
1012 		return -ENOENT;
1013 
1014 	nofs_flags = memalloc_nofs_save();
1015 	ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1016 			       zone_start_sector(sb_zone, bdev),
1017 			       zone_sectors * BTRFS_NR_SB_LOG_ZONES);
1018 	memalloc_nofs_restore(nofs_flags);
1019 	return ret;
1020 }
1021 
1022 /*
1023  * Find allocatable zones within a given region.
1024  *
1025  * @device:	the device to allocate a region on
1026  * @hole_start: the position of the hole to allocate the region
1027  * @num_bytes:	size of wanted region
1028  * @hole_end:	the end of the hole
1029  * @return:	position of allocatable zones
1030  *
1031  * Allocatable region should not contain any superblock locations.
1032  */
1033 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1034 				 u64 hole_end, u64 num_bytes)
1035 {
1036 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1037 	const u8 shift = zinfo->zone_size_shift;
1038 	u64 nzones = num_bytes >> shift;
1039 	u64 pos = hole_start;
1040 	u64 begin, end;
1041 	bool have_sb;
1042 	int i;
1043 
1044 	ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1045 	ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1046 
1047 	while (pos < hole_end) {
1048 		begin = pos >> shift;
1049 		end = begin + nzones;
1050 
1051 		if (end > zinfo->nr_zones)
1052 			return hole_end;
1053 
1054 		/* Check if zones in the region are all empty */
1055 		if (btrfs_dev_is_sequential(device, pos) &&
1056 		    !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) {
1057 			pos += zinfo->zone_size;
1058 			continue;
1059 		}
1060 
1061 		have_sb = false;
1062 		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1063 			u32 sb_zone;
1064 			u64 sb_pos;
1065 
1066 			sb_zone = sb_zone_number(shift, i);
1067 			if (!(end <= sb_zone ||
1068 			      sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1069 				have_sb = true;
1070 				pos = zone_start_physical(
1071 					sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1072 				break;
1073 			}
1074 
1075 			/* We also need to exclude regular superblock positions */
1076 			sb_pos = btrfs_sb_offset(i);
1077 			if (!(pos + num_bytes <= sb_pos ||
1078 			      sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1079 				have_sb = true;
1080 				pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1081 					    zinfo->zone_size);
1082 				break;
1083 			}
1084 		}
1085 		if (!have_sb)
1086 			break;
1087 	}
1088 
1089 	return pos;
1090 }
1091 
1092 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1093 {
1094 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1095 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1096 
1097 	/* We can use any number of zones */
1098 	if (zone_info->max_active_zones == 0)
1099 		return true;
1100 
1101 	if (!test_bit(zno, zone_info->active_zones)) {
1102 		/* Active zone left? */
1103 		if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1104 			return false;
1105 		if (test_and_set_bit(zno, zone_info->active_zones)) {
1106 			/* Someone already set the bit */
1107 			atomic_inc(&zone_info->active_zones_left);
1108 		}
1109 	}
1110 
1111 	return true;
1112 }
1113 
1114 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1115 {
1116 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1117 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1118 
1119 	/* We can use any number of zones */
1120 	if (zone_info->max_active_zones == 0)
1121 		return;
1122 
1123 	if (test_and_clear_bit(zno, zone_info->active_zones))
1124 		atomic_inc(&zone_info->active_zones_left);
1125 }
1126 
1127 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1128 			    u64 length, u64 *bytes)
1129 {
1130 	unsigned int nofs_flags;
1131 	int ret;
1132 
1133 	*bytes = 0;
1134 	nofs_flags = memalloc_nofs_save();
1135 	ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1136 			       physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT);
1137 	memalloc_nofs_restore(nofs_flags);
1138 	if (ret)
1139 		return ret;
1140 
1141 	*bytes = length;
1142 	while (length) {
1143 		btrfs_dev_set_zone_empty(device, physical);
1144 		btrfs_dev_clear_active_zone(device, physical);
1145 		physical += device->zone_info->zone_size;
1146 		length -= device->zone_info->zone_size;
1147 	}
1148 
1149 	return 0;
1150 }
1151 
1152 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1153 {
1154 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1155 	const u8 shift = zinfo->zone_size_shift;
1156 	unsigned long begin = start >> shift;
1157 	unsigned long nbits = size >> shift;
1158 	u64 pos;
1159 	int ret;
1160 
1161 	ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1162 	ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1163 
1164 	if (begin + nbits > zinfo->nr_zones)
1165 		return -ERANGE;
1166 
1167 	/* All the zones are conventional */
1168 	if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits))
1169 		return 0;
1170 
1171 	/* All the zones are sequential and empty */
1172 	if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) &&
1173 	    bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits))
1174 		return 0;
1175 
1176 	for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1177 		u64 reset_bytes;
1178 
1179 		if (!btrfs_dev_is_sequential(device, pos) ||
1180 		    btrfs_dev_is_empty_zone(device, pos))
1181 			continue;
1182 
1183 		/* Free regions should be empty */
1184 		btrfs_warn_in_rcu(
1185 			device->fs_info,
1186 		"zoned: resetting device %s (devid %llu) zone %llu for allocation",
1187 			rcu_str_deref(device->name), device->devid, pos >> shift);
1188 		WARN_ON_ONCE(1);
1189 
1190 		ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1191 					      &reset_bytes);
1192 		if (ret)
1193 			return ret;
1194 	}
1195 
1196 	return 0;
1197 }
1198 
1199 /*
1200  * Calculate an allocation pointer from the extent allocation information
1201  * for a block group consist of conventional zones. It is pointed to the
1202  * end of the highest addressed extent in the block group as an allocation
1203  * offset.
1204  */
1205 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1206 				   u64 *offset_ret, bool new)
1207 {
1208 	struct btrfs_fs_info *fs_info = cache->fs_info;
1209 	struct btrfs_root *root;
1210 	BTRFS_PATH_AUTO_FREE(path);
1211 	struct btrfs_key key;
1212 	struct btrfs_key found_key;
1213 	int ret;
1214 	u64 length;
1215 
1216 	/*
1217 	 * Avoid  tree lookups for a new block group, there's no use for it.
1218 	 * It must always be 0.
1219 	 *
1220 	 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1221 	 * For new a block group, this function is called from
1222 	 * btrfs_make_block_group() which is already taking the chunk mutex.
1223 	 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1224 	 * buffer locks to avoid deadlock.
1225 	 */
1226 	if (new) {
1227 		*offset_ret = 0;
1228 		return 0;
1229 	}
1230 
1231 	path = btrfs_alloc_path();
1232 	if (!path)
1233 		return -ENOMEM;
1234 
1235 	key.objectid = cache->start + cache->length;
1236 	key.type = 0;
1237 	key.offset = 0;
1238 
1239 	root = btrfs_extent_root(fs_info, key.objectid);
1240 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1241 	/* We should not find the exact match */
1242 	if (!ret)
1243 		ret = -EUCLEAN;
1244 	if (ret < 0)
1245 		return ret;
1246 
1247 	ret = btrfs_previous_extent_item(root, path, cache->start);
1248 	if (ret) {
1249 		if (ret == 1) {
1250 			ret = 0;
1251 			*offset_ret = 0;
1252 		}
1253 		return ret;
1254 	}
1255 
1256 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1257 
1258 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1259 		length = found_key.offset;
1260 	else
1261 		length = fs_info->nodesize;
1262 
1263 	if (!(found_key.objectid >= cache->start &&
1264 	       found_key.objectid + length <= cache->start + cache->length)) {
1265 		return -EUCLEAN;
1266 	}
1267 	*offset_ret = found_key.objectid + length - cache->start;
1268 	return 0;
1269 }
1270 
1271 struct zone_info {
1272 	u64 physical;
1273 	u64 capacity;
1274 	u64 alloc_offset;
1275 };
1276 
1277 static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx,
1278 				struct zone_info *info, unsigned long *active,
1279 				struct btrfs_chunk_map *map)
1280 {
1281 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1282 	struct btrfs_device *device;
1283 	int dev_replace_is_ongoing = 0;
1284 	unsigned int nofs_flag;
1285 	struct blk_zone zone;
1286 	int ret;
1287 
1288 	info->physical = map->stripes[zone_idx].physical;
1289 
1290 	down_read(&dev_replace->rwsem);
1291 	device = map->stripes[zone_idx].dev;
1292 
1293 	if (!device->bdev) {
1294 		up_read(&dev_replace->rwsem);
1295 		info->alloc_offset = WP_MISSING_DEV;
1296 		return 0;
1297 	}
1298 
1299 	/* Consider a zone as active if we can allow any number of active zones. */
1300 	if (!device->zone_info->max_active_zones)
1301 		__set_bit(zone_idx, active);
1302 
1303 	if (!btrfs_dev_is_sequential(device, info->physical)) {
1304 		up_read(&dev_replace->rwsem);
1305 		info->alloc_offset = WP_CONVENTIONAL;
1306 		return 0;
1307 	}
1308 
1309 	/* This zone will be used for allocation, so mark this zone non-empty. */
1310 	btrfs_dev_clear_zone_empty(device, info->physical);
1311 
1312 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1313 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1314 		btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical);
1315 
1316 	/*
1317 	 * The group is mapped to a sequential zone. Get the zone write pointer
1318 	 * to determine the allocation offset within the zone.
1319 	 */
1320 	WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size));
1321 	nofs_flag = memalloc_nofs_save();
1322 	ret = btrfs_get_dev_zone(device, info->physical, &zone);
1323 	memalloc_nofs_restore(nofs_flag);
1324 	if (ret) {
1325 		up_read(&dev_replace->rwsem);
1326 		if (ret != -EIO && ret != -EOPNOTSUPP)
1327 			return ret;
1328 		info->alloc_offset = WP_MISSING_DEV;
1329 		return 0;
1330 	}
1331 
1332 	if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1333 		btrfs_err_in_rcu(fs_info,
1334 		"zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1335 			zone.start << SECTOR_SHIFT, rcu_str_deref(device->name),
1336 			device->devid);
1337 		up_read(&dev_replace->rwsem);
1338 		return -EIO;
1339 	}
1340 
1341 	info->capacity = (zone.capacity << SECTOR_SHIFT);
1342 
1343 	switch (zone.cond) {
1344 	case BLK_ZONE_COND_OFFLINE:
1345 	case BLK_ZONE_COND_READONLY:
1346 		btrfs_err_in_rcu(fs_info,
1347 		"zoned: offline/readonly zone %llu on device %s (devid %llu)",
1348 			  (info->physical >> device->zone_info->zone_size_shift),
1349 			  rcu_str_deref(device->name), device->devid);
1350 		info->alloc_offset = WP_MISSING_DEV;
1351 		break;
1352 	case BLK_ZONE_COND_EMPTY:
1353 		info->alloc_offset = 0;
1354 		break;
1355 	case BLK_ZONE_COND_FULL:
1356 		info->alloc_offset = info->capacity;
1357 		break;
1358 	default:
1359 		/* Partially used zone. */
1360 		info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT);
1361 		__set_bit(zone_idx, active);
1362 		break;
1363 	}
1364 
1365 	up_read(&dev_replace->rwsem);
1366 
1367 	return 0;
1368 }
1369 
1370 static int btrfs_load_block_group_single(struct btrfs_block_group *bg,
1371 					 struct zone_info *info,
1372 					 unsigned long *active)
1373 {
1374 	if (info->alloc_offset == WP_MISSING_DEV) {
1375 		btrfs_err(bg->fs_info,
1376 			"zoned: cannot recover write pointer for zone %llu",
1377 			info->physical);
1378 		return -EIO;
1379 	}
1380 
1381 	bg->alloc_offset = info->alloc_offset;
1382 	bg->zone_capacity = info->capacity;
1383 	if (test_bit(0, active))
1384 		set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1385 	return 0;
1386 }
1387 
1388 static int btrfs_load_block_group_dup(struct btrfs_block_group *bg,
1389 				      struct btrfs_chunk_map *map,
1390 				      struct zone_info *zone_info,
1391 				      unsigned long *active)
1392 {
1393 	struct btrfs_fs_info *fs_info = bg->fs_info;
1394 
1395 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1396 		btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree");
1397 		return -EINVAL;
1398 	}
1399 
1400 	bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity);
1401 
1402 	if (zone_info[0].alloc_offset == WP_MISSING_DEV) {
1403 		btrfs_err(bg->fs_info,
1404 			  "zoned: cannot recover write pointer for zone %llu",
1405 			  zone_info[0].physical);
1406 		return -EIO;
1407 	}
1408 	if (zone_info[1].alloc_offset == WP_MISSING_DEV) {
1409 		btrfs_err(bg->fs_info,
1410 			  "zoned: cannot recover write pointer for zone %llu",
1411 			  zone_info[1].physical);
1412 		return -EIO;
1413 	}
1414 	if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) {
1415 		btrfs_err(bg->fs_info,
1416 			  "zoned: write pointer offset mismatch of zones in DUP profile");
1417 		return -EIO;
1418 	}
1419 
1420 	if (test_bit(0, active) != test_bit(1, active)) {
1421 		if (!btrfs_zone_activate(bg))
1422 			return -EIO;
1423 	} else if (test_bit(0, active)) {
1424 		set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1425 	}
1426 
1427 	bg->alloc_offset = zone_info[0].alloc_offset;
1428 	return 0;
1429 }
1430 
1431 static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg,
1432 					struct btrfs_chunk_map *map,
1433 					struct zone_info *zone_info,
1434 					unsigned long *active)
1435 {
1436 	struct btrfs_fs_info *fs_info = bg->fs_info;
1437 	int i;
1438 
1439 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1440 		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1441 			  btrfs_bg_type_to_raid_name(map->type));
1442 		return -EINVAL;
1443 	}
1444 
1445 	/* In case a device is missing we have a cap of 0, so don't use it. */
1446 	bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity);
1447 
1448 	for (i = 0; i < map->num_stripes; i++) {
1449 		if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1450 		    zone_info[i].alloc_offset == WP_CONVENTIONAL)
1451 			continue;
1452 
1453 		if ((zone_info[0].alloc_offset != zone_info[i].alloc_offset) &&
1454 		    !btrfs_test_opt(fs_info, DEGRADED)) {
1455 			btrfs_err(fs_info,
1456 			"zoned: write pointer offset mismatch of zones in %s profile",
1457 				  btrfs_bg_type_to_raid_name(map->type));
1458 			return -EIO;
1459 		}
1460 		if (test_bit(0, active) != test_bit(i, active)) {
1461 			if (!btrfs_test_opt(fs_info, DEGRADED) &&
1462 			    !btrfs_zone_activate(bg)) {
1463 				return -EIO;
1464 			}
1465 		} else {
1466 			if (test_bit(0, active))
1467 				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1468 		}
1469 	}
1470 
1471 	if (zone_info[0].alloc_offset != WP_MISSING_DEV)
1472 		bg->alloc_offset = zone_info[0].alloc_offset;
1473 	else
1474 		bg->alloc_offset = zone_info[i - 1].alloc_offset;
1475 
1476 	return 0;
1477 }
1478 
1479 static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg,
1480 					struct btrfs_chunk_map *map,
1481 					struct zone_info *zone_info,
1482 					unsigned long *active)
1483 {
1484 	struct btrfs_fs_info *fs_info = bg->fs_info;
1485 
1486 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1487 		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1488 			  btrfs_bg_type_to_raid_name(map->type));
1489 		return -EINVAL;
1490 	}
1491 
1492 	for (int i = 0; i < map->num_stripes; i++) {
1493 		if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1494 		    zone_info[i].alloc_offset == WP_CONVENTIONAL)
1495 			continue;
1496 
1497 		if (test_bit(0, active) != test_bit(i, active)) {
1498 			if (!btrfs_zone_activate(bg))
1499 				return -EIO;
1500 		} else {
1501 			if (test_bit(0, active))
1502 				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1503 		}
1504 		bg->zone_capacity += zone_info[i].capacity;
1505 		bg->alloc_offset += zone_info[i].alloc_offset;
1506 	}
1507 
1508 	return 0;
1509 }
1510 
1511 static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg,
1512 					 struct btrfs_chunk_map *map,
1513 					 struct zone_info *zone_info,
1514 					 unsigned long *active)
1515 {
1516 	struct btrfs_fs_info *fs_info = bg->fs_info;
1517 
1518 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1519 		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1520 			  btrfs_bg_type_to_raid_name(map->type));
1521 		return -EINVAL;
1522 	}
1523 
1524 	for (int i = 0; i < map->num_stripes; i++) {
1525 		if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1526 		    zone_info[i].alloc_offset == WP_CONVENTIONAL)
1527 			continue;
1528 
1529 		if (test_bit(0, active) != test_bit(i, active)) {
1530 			if (!btrfs_zone_activate(bg))
1531 				return -EIO;
1532 		} else {
1533 			if (test_bit(0, active))
1534 				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1535 		}
1536 
1537 		if ((i % map->sub_stripes) == 0) {
1538 			bg->zone_capacity += zone_info[i].capacity;
1539 			bg->alloc_offset += zone_info[i].alloc_offset;
1540 		}
1541 	}
1542 
1543 	return 0;
1544 }
1545 
1546 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1547 {
1548 	struct btrfs_fs_info *fs_info = cache->fs_info;
1549 	struct btrfs_chunk_map *map;
1550 	u64 logical = cache->start;
1551 	u64 length = cache->length;
1552 	struct zone_info *zone_info = NULL;
1553 	int ret;
1554 	int i;
1555 	unsigned long *active = NULL;
1556 	u64 last_alloc = 0;
1557 	u32 num_sequential = 0, num_conventional = 0;
1558 	u64 profile;
1559 
1560 	if (!btrfs_is_zoned(fs_info))
1561 		return 0;
1562 
1563 	/* Sanity check */
1564 	if (!IS_ALIGNED(length, fs_info->zone_size)) {
1565 		btrfs_err(fs_info,
1566 		"zoned: block group %llu len %llu unaligned to zone size %llu",
1567 			  logical, length, fs_info->zone_size);
1568 		return -EIO;
1569 	}
1570 
1571 	map = btrfs_find_chunk_map(fs_info, logical, length);
1572 	if (!map)
1573 		return -EINVAL;
1574 
1575 	cache->physical_map = map;
1576 
1577 	zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS);
1578 	if (!zone_info) {
1579 		ret = -ENOMEM;
1580 		goto out;
1581 	}
1582 
1583 	active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1584 	if (!active) {
1585 		ret = -ENOMEM;
1586 		goto out;
1587 	}
1588 
1589 	for (i = 0; i < map->num_stripes; i++) {
1590 		ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map);
1591 		if (ret)
1592 			goto out;
1593 
1594 		if (zone_info[i].alloc_offset == WP_CONVENTIONAL)
1595 			num_conventional++;
1596 		else
1597 			num_sequential++;
1598 	}
1599 
1600 	if (num_sequential > 0)
1601 		set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1602 
1603 	if (num_conventional > 0) {
1604 		/* Zone capacity is always zone size in emulation */
1605 		cache->zone_capacity = cache->length;
1606 		ret = calculate_alloc_pointer(cache, &last_alloc, new);
1607 		if (ret) {
1608 			btrfs_err(fs_info,
1609 			"zoned: failed to determine allocation offset of bg %llu",
1610 				  cache->start);
1611 			goto out;
1612 		} else if (map->num_stripes == num_conventional) {
1613 			cache->alloc_offset = last_alloc;
1614 			set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1615 			goto out;
1616 		}
1617 	}
1618 
1619 	profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
1620 	switch (profile) {
1621 	case 0: /* single */
1622 		ret = btrfs_load_block_group_single(cache, &zone_info[0], active);
1623 		break;
1624 	case BTRFS_BLOCK_GROUP_DUP:
1625 		ret = btrfs_load_block_group_dup(cache, map, zone_info, active);
1626 		break;
1627 	case BTRFS_BLOCK_GROUP_RAID1:
1628 	case BTRFS_BLOCK_GROUP_RAID1C3:
1629 	case BTRFS_BLOCK_GROUP_RAID1C4:
1630 		ret = btrfs_load_block_group_raid1(cache, map, zone_info, active);
1631 		break;
1632 	case BTRFS_BLOCK_GROUP_RAID0:
1633 		ret = btrfs_load_block_group_raid0(cache, map, zone_info, active);
1634 		break;
1635 	case BTRFS_BLOCK_GROUP_RAID10:
1636 		ret = btrfs_load_block_group_raid10(cache, map, zone_info, active);
1637 		break;
1638 	case BTRFS_BLOCK_GROUP_RAID5:
1639 	case BTRFS_BLOCK_GROUP_RAID6:
1640 	default:
1641 		btrfs_err(fs_info, "zoned: profile %s not yet supported",
1642 			  btrfs_bg_type_to_raid_name(map->type));
1643 		ret = -EINVAL;
1644 		goto out;
1645 	}
1646 
1647 	if (ret == -EIO && profile != 0 && profile != BTRFS_BLOCK_GROUP_RAID0 &&
1648 	    profile != BTRFS_BLOCK_GROUP_RAID10) {
1649 		/*
1650 		 * Detected broken write pointer.  Make this block group
1651 		 * unallocatable by setting the allocation pointer at the end of
1652 		 * allocatable region. Relocating this block group will fix the
1653 		 * mismatch.
1654 		 *
1655 		 * Currently, we cannot handle RAID0 or RAID10 case like this
1656 		 * because we don't have a proper zone_capacity value. But,
1657 		 * reading from this block group won't work anyway by a missing
1658 		 * stripe.
1659 		 */
1660 		cache->alloc_offset = cache->zone_capacity;
1661 		ret = 0;
1662 	}
1663 
1664 out:
1665 	/* Reject non SINGLE data profiles without RST */
1666 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) &&
1667 	    (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
1668 	    !fs_info->stripe_root) {
1669 		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1670 			  btrfs_bg_type_to_raid_name(map->type));
1671 		return -EINVAL;
1672 	}
1673 
1674 	if (cache->alloc_offset > cache->zone_capacity) {
1675 		btrfs_err(fs_info,
1676 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1677 			  cache->alloc_offset, cache->zone_capacity,
1678 			  cache->start);
1679 		ret = -EIO;
1680 	}
1681 
1682 	/* An extent is allocated after the write pointer */
1683 	if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1684 		btrfs_err(fs_info,
1685 			  "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1686 			  logical, last_alloc, cache->alloc_offset);
1687 		ret = -EIO;
1688 	}
1689 
1690 	if (!ret) {
1691 		cache->meta_write_pointer = cache->alloc_offset + cache->start;
1692 		if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1693 			btrfs_get_block_group(cache);
1694 			spin_lock(&fs_info->zone_active_bgs_lock);
1695 			list_add_tail(&cache->active_bg_list,
1696 				      &fs_info->zone_active_bgs);
1697 			spin_unlock(&fs_info->zone_active_bgs_lock);
1698 		}
1699 	} else {
1700 		btrfs_free_chunk_map(cache->physical_map);
1701 		cache->physical_map = NULL;
1702 	}
1703 	bitmap_free(active);
1704 	kfree(zone_info);
1705 
1706 	return ret;
1707 }
1708 
1709 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1710 {
1711 	u64 unusable, free;
1712 
1713 	if (!btrfs_is_zoned(cache->fs_info))
1714 		return;
1715 
1716 	WARN_ON(cache->bytes_super != 0);
1717 	unusable = (cache->alloc_offset - cache->used) +
1718 		   (cache->length - cache->zone_capacity);
1719 	free = cache->zone_capacity - cache->alloc_offset;
1720 
1721 	/* We only need ->free_space in ALLOC_SEQ block groups */
1722 	cache->cached = BTRFS_CACHE_FINISHED;
1723 	cache->free_space_ctl->free_space = free;
1724 	cache->zone_unusable = unusable;
1725 }
1726 
1727 bool btrfs_use_zone_append(struct btrfs_bio *bbio)
1728 {
1729 	u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1730 	struct btrfs_inode *inode = bbio->inode;
1731 	struct btrfs_fs_info *fs_info = bbio->fs_info;
1732 	struct btrfs_block_group *cache;
1733 	bool ret = false;
1734 
1735 	if (!btrfs_is_zoned(fs_info))
1736 		return false;
1737 
1738 	if (!inode || !is_data_inode(inode))
1739 		return false;
1740 
1741 	if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
1742 		return false;
1743 
1744 	/*
1745 	 * Using REQ_OP_ZONE_APPEND for relocation can break assumptions on the
1746 	 * extent layout the relocation code has.
1747 	 * Furthermore we have set aside own block-group from which only the
1748 	 * relocation "process" can allocate and make sure only one process at a
1749 	 * time can add pages to an extent that gets relocated, so it's safe to
1750 	 * use regular REQ_OP_WRITE for this special case.
1751 	 */
1752 	if (btrfs_is_data_reloc_root(inode->root))
1753 		return false;
1754 
1755 	cache = btrfs_lookup_block_group(fs_info, start);
1756 	ASSERT(cache);
1757 	if (!cache)
1758 		return false;
1759 
1760 	ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1761 	btrfs_put_block_group(cache);
1762 
1763 	return ret;
1764 }
1765 
1766 void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
1767 {
1768 	const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
1769 	struct btrfs_ordered_sum *sum = bbio->sums;
1770 
1771 	if (physical < bbio->orig_physical)
1772 		sum->logical -= bbio->orig_physical - physical;
1773 	else
1774 		sum->logical += physical - bbio->orig_physical;
1775 }
1776 
1777 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered,
1778 					u64 logical)
1779 {
1780 	struct extent_map_tree *em_tree = &ordered->inode->extent_tree;
1781 	struct extent_map *em;
1782 
1783 	ordered->disk_bytenr = logical;
1784 
1785 	write_lock(&em_tree->lock);
1786 	em = search_extent_mapping(em_tree, ordered->file_offset,
1787 				   ordered->num_bytes);
1788 	/* The em should be a new COW extent, thus it should not have an offset. */
1789 	ASSERT(em->offset == 0);
1790 	em->disk_bytenr = logical;
1791 	free_extent_map(em);
1792 	write_unlock(&em_tree->lock);
1793 }
1794 
1795 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered,
1796 				      u64 logical, u64 len)
1797 {
1798 	struct btrfs_ordered_extent *new;
1799 
1800 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
1801 	    split_extent_map(ordered->inode, ordered->file_offset,
1802 			     ordered->num_bytes, len, logical))
1803 		return false;
1804 
1805 	new = btrfs_split_ordered_extent(ordered, len);
1806 	if (IS_ERR(new))
1807 		return false;
1808 	new->disk_bytenr = logical;
1809 	btrfs_finish_one_ordered(new);
1810 	return true;
1811 }
1812 
1813 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered)
1814 {
1815 	struct btrfs_inode *inode = ordered->inode;
1816 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1817 	struct btrfs_ordered_sum *sum;
1818 	u64 logical, len;
1819 
1820 	/*
1821 	 * Write to pre-allocated region is for the data relocation, and so
1822 	 * it should use WRITE operation. No split/rewrite are necessary.
1823 	 */
1824 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1825 		return;
1826 
1827 	ASSERT(!list_empty(&ordered->list));
1828 	/* The ordered->list can be empty in the above pre-alloc case. */
1829 	sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list);
1830 	logical = sum->logical;
1831 	len = sum->len;
1832 
1833 	while (len < ordered->disk_num_bytes) {
1834 		sum = list_next_entry(sum, list);
1835 		if (sum->logical == logical + len) {
1836 			len += sum->len;
1837 			continue;
1838 		}
1839 		if (!btrfs_zoned_split_ordered(ordered, logical, len)) {
1840 			set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
1841 			btrfs_err(fs_info, "failed to split ordered extent");
1842 			goto out;
1843 		}
1844 		logical = sum->logical;
1845 		len = sum->len;
1846 	}
1847 
1848 	if (ordered->disk_bytenr != logical)
1849 		btrfs_rewrite_logical_zoned(ordered, logical);
1850 
1851 out:
1852 	/*
1853 	 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures
1854 	 * were allocated by btrfs_alloc_dummy_sum only to record the logical
1855 	 * addresses and don't contain actual checksums.  We thus must free them
1856 	 * here so that we don't attempt to log the csums later.
1857 	 */
1858 	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
1859 	    test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state)) {
1860 		while ((sum = list_first_entry_or_null(&ordered->list,
1861 						       typeof(*sum), list))) {
1862 			list_del(&sum->list);
1863 			kfree(sum);
1864 		}
1865 	}
1866 }
1867 
1868 static bool check_bg_is_active(struct btrfs_eb_write_context *ctx,
1869 			       struct btrfs_block_group **active_bg)
1870 {
1871 	const struct writeback_control *wbc = ctx->wbc;
1872 	struct btrfs_block_group *block_group = ctx->zoned_bg;
1873 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1874 
1875 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1876 		return true;
1877 
1878 	if (fs_info->treelog_bg == block_group->start) {
1879 		if (!btrfs_zone_activate(block_group)) {
1880 			int ret_fin = btrfs_zone_finish_one_bg(fs_info);
1881 
1882 			if (ret_fin != 1 || !btrfs_zone_activate(block_group))
1883 				return false;
1884 		}
1885 	} else if (*active_bg != block_group) {
1886 		struct btrfs_block_group *tgt = *active_bg;
1887 
1888 		/* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */
1889 		lockdep_assert_held(&fs_info->zoned_meta_io_lock);
1890 
1891 		if (tgt) {
1892 			/*
1893 			 * If there is an unsent IO left in the allocated area,
1894 			 * we cannot wait for them as it may cause a deadlock.
1895 			 */
1896 			if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) {
1897 				if (wbc->sync_mode == WB_SYNC_NONE ||
1898 				    (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync))
1899 					return false;
1900 			}
1901 
1902 			/* Pivot active metadata/system block group. */
1903 			btrfs_zoned_meta_io_unlock(fs_info);
1904 			wait_eb_writebacks(tgt);
1905 			do_zone_finish(tgt, true);
1906 			btrfs_zoned_meta_io_lock(fs_info);
1907 			if (*active_bg == tgt) {
1908 				btrfs_put_block_group(tgt);
1909 				*active_bg = NULL;
1910 			}
1911 		}
1912 		if (!btrfs_zone_activate(block_group))
1913 			return false;
1914 		if (*active_bg != block_group) {
1915 			ASSERT(*active_bg == NULL);
1916 			*active_bg = block_group;
1917 			btrfs_get_block_group(block_group);
1918 		}
1919 	}
1920 
1921 	return true;
1922 }
1923 
1924 /*
1925  * Check if @ctx->eb is aligned to the write pointer.
1926  *
1927  * Return:
1928  *   0:        @ctx->eb is at the write pointer. You can write it.
1929  *   -EAGAIN:  There is a hole. The caller should handle the case.
1930  *   -EBUSY:   There is a hole, but the caller can just bail out.
1931  */
1932 int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1933 				   struct btrfs_eb_write_context *ctx)
1934 {
1935 	const struct writeback_control *wbc = ctx->wbc;
1936 	const struct extent_buffer *eb = ctx->eb;
1937 	struct btrfs_block_group *block_group = ctx->zoned_bg;
1938 
1939 	if (!btrfs_is_zoned(fs_info))
1940 		return 0;
1941 
1942 	if (block_group) {
1943 		if (block_group->start > eb->start ||
1944 		    block_group->start + block_group->length <= eb->start) {
1945 			btrfs_put_block_group(block_group);
1946 			block_group = NULL;
1947 			ctx->zoned_bg = NULL;
1948 		}
1949 	}
1950 
1951 	if (!block_group) {
1952 		block_group = btrfs_lookup_block_group(fs_info, eb->start);
1953 		if (!block_group)
1954 			return 0;
1955 		ctx->zoned_bg = block_group;
1956 	}
1957 
1958 	if (block_group->meta_write_pointer == eb->start) {
1959 		struct btrfs_block_group **tgt;
1960 
1961 		if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
1962 			return 0;
1963 
1964 		if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)
1965 			tgt = &fs_info->active_system_bg;
1966 		else
1967 			tgt = &fs_info->active_meta_bg;
1968 		if (check_bg_is_active(ctx, tgt))
1969 			return 0;
1970 	}
1971 
1972 	/*
1973 	 * Since we may release fs_info->zoned_meta_io_lock, someone can already
1974 	 * start writing this eb. In that case, we can just bail out.
1975 	 */
1976 	if (block_group->meta_write_pointer > eb->start)
1977 		return -EBUSY;
1978 
1979 	/* If for_sync, this hole will be filled with transaction commit. */
1980 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
1981 		return -EAGAIN;
1982 	return -EBUSY;
1983 }
1984 
1985 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1986 {
1987 	if (!btrfs_dev_is_sequential(device, physical))
1988 		return -EOPNOTSUPP;
1989 
1990 	return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1991 				    length >> SECTOR_SHIFT, GFP_NOFS, 0);
1992 }
1993 
1994 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1995 			  struct blk_zone *zone)
1996 {
1997 	struct btrfs_io_context *bioc = NULL;
1998 	u64 mapped_length = PAGE_SIZE;
1999 	unsigned int nofs_flag;
2000 	int nmirrors;
2001 	int i, ret;
2002 
2003 	ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2004 			      &mapped_length, &bioc, NULL, NULL);
2005 	if (ret || !bioc || mapped_length < PAGE_SIZE) {
2006 		ret = -EIO;
2007 		goto out_put_bioc;
2008 	}
2009 
2010 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2011 		ret = -EINVAL;
2012 		goto out_put_bioc;
2013 	}
2014 
2015 	nofs_flag = memalloc_nofs_save();
2016 	nmirrors = (int)bioc->num_stripes;
2017 	for (i = 0; i < nmirrors; i++) {
2018 		u64 physical = bioc->stripes[i].physical;
2019 		struct btrfs_device *dev = bioc->stripes[i].dev;
2020 
2021 		/* Missing device */
2022 		if (!dev->bdev)
2023 			continue;
2024 
2025 		ret = btrfs_get_dev_zone(dev, physical, zone);
2026 		/* Failing device */
2027 		if (ret == -EIO || ret == -EOPNOTSUPP)
2028 			continue;
2029 		break;
2030 	}
2031 	memalloc_nofs_restore(nofs_flag);
2032 out_put_bioc:
2033 	btrfs_put_bioc(bioc);
2034 	return ret;
2035 }
2036 
2037 /*
2038  * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
2039  * filling zeros between @physical_pos to a write pointer of dev-replace
2040  * source device.
2041  */
2042 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
2043 				    u64 physical_start, u64 physical_pos)
2044 {
2045 	struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
2046 	struct blk_zone zone;
2047 	u64 length;
2048 	u64 wp;
2049 	int ret;
2050 
2051 	if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
2052 		return 0;
2053 
2054 	ret = read_zone_info(fs_info, logical, &zone);
2055 	if (ret)
2056 		return ret;
2057 
2058 	wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
2059 
2060 	if (physical_pos == wp)
2061 		return 0;
2062 
2063 	if (physical_pos > wp)
2064 		return -EUCLEAN;
2065 
2066 	length = wp - physical_pos;
2067 	return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
2068 }
2069 
2070 /*
2071  * Activate block group and underlying device zones
2072  *
2073  * @block_group: the block group to activate
2074  *
2075  * Return: true on success, false otherwise
2076  */
2077 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
2078 {
2079 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2080 	struct btrfs_chunk_map *map;
2081 	struct btrfs_device *device;
2082 	u64 physical;
2083 	const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA);
2084 	bool ret;
2085 	int i;
2086 
2087 	if (!btrfs_is_zoned(block_group->fs_info))
2088 		return true;
2089 
2090 	map = block_group->physical_map;
2091 
2092 	spin_lock(&fs_info->zone_active_bgs_lock);
2093 	spin_lock(&block_group->lock);
2094 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2095 		ret = true;
2096 		goto out_unlock;
2097 	}
2098 
2099 	/* No space left */
2100 	if (btrfs_zoned_bg_is_full(block_group)) {
2101 		ret = false;
2102 		goto out_unlock;
2103 	}
2104 
2105 	for (i = 0; i < map->num_stripes; i++) {
2106 		struct btrfs_zoned_device_info *zinfo;
2107 		int reserved = 0;
2108 
2109 		device = map->stripes[i].dev;
2110 		physical = map->stripes[i].physical;
2111 		zinfo = device->zone_info;
2112 
2113 		if (zinfo->max_active_zones == 0)
2114 			continue;
2115 
2116 		if (is_data)
2117 			reserved = zinfo->reserved_active_zones;
2118 		/*
2119 		 * For the data block group, leave active zones for one
2120 		 * metadata block group and one system block group.
2121 		 */
2122 		if (atomic_read(&zinfo->active_zones_left) <= reserved) {
2123 			ret = false;
2124 			goto out_unlock;
2125 		}
2126 
2127 		if (!btrfs_dev_set_active_zone(device, physical)) {
2128 			/* Cannot activate the zone */
2129 			ret = false;
2130 			goto out_unlock;
2131 		}
2132 		if (!is_data)
2133 			zinfo->reserved_active_zones--;
2134 	}
2135 
2136 	/* Successfully activated all the zones */
2137 	set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2138 	spin_unlock(&block_group->lock);
2139 
2140 	/* For the active block group list */
2141 	btrfs_get_block_group(block_group);
2142 	list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
2143 	spin_unlock(&fs_info->zone_active_bgs_lock);
2144 
2145 	return true;
2146 
2147 out_unlock:
2148 	spin_unlock(&block_group->lock);
2149 	spin_unlock(&fs_info->zone_active_bgs_lock);
2150 	return ret;
2151 }
2152 
2153 static void wait_eb_writebacks(struct btrfs_block_group *block_group)
2154 {
2155 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2156 	const u64 end = block_group->start + block_group->length;
2157 	struct radix_tree_iter iter;
2158 	struct extent_buffer *eb;
2159 	void __rcu **slot;
2160 
2161 	rcu_read_lock();
2162 	radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
2163 				 block_group->start >> fs_info->sectorsize_bits) {
2164 		eb = radix_tree_deref_slot(slot);
2165 		if (!eb)
2166 			continue;
2167 		if (radix_tree_deref_retry(eb)) {
2168 			slot = radix_tree_iter_retry(&iter);
2169 			continue;
2170 		}
2171 
2172 		if (eb->start < block_group->start)
2173 			continue;
2174 		if (eb->start >= end)
2175 			break;
2176 
2177 		slot = radix_tree_iter_resume(slot, &iter);
2178 		rcu_read_unlock();
2179 		wait_on_extent_buffer_writeback(eb);
2180 		rcu_read_lock();
2181 	}
2182 	rcu_read_unlock();
2183 }
2184 
2185 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
2186 {
2187 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2188 	struct btrfs_chunk_map *map;
2189 	const bool is_metadata = (block_group->flags &
2190 			(BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
2191 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2192 	int ret = 0;
2193 	int i;
2194 
2195 	spin_lock(&block_group->lock);
2196 	if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2197 		spin_unlock(&block_group->lock);
2198 		return 0;
2199 	}
2200 
2201 	/* Check if we have unwritten allocated space */
2202 	if (is_metadata &&
2203 	    block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
2204 		spin_unlock(&block_group->lock);
2205 		return -EAGAIN;
2206 	}
2207 
2208 	/*
2209 	 * If we are sure that the block group is full (= no more room left for
2210 	 * new allocation) and the IO for the last usable block is completed, we
2211 	 * don't need to wait for the other IOs. This holds because we ensure
2212 	 * the sequential IO submissions using the ZONE_APPEND command for data
2213 	 * and block_group->meta_write_pointer for metadata.
2214 	 */
2215 	if (!fully_written) {
2216 		if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2217 			spin_unlock(&block_group->lock);
2218 			return -EAGAIN;
2219 		}
2220 		spin_unlock(&block_group->lock);
2221 
2222 		ret = btrfs_inc_block_group_ro(block_group, false);
2223 		if (ret)
2224 			return ret;
2225 
2226 		/* Ensure all writes in this block group finish */
2227 		btrfs_wait_block_group_reservations(block_group);
2228 		/* No need to wait for NOCOW writers. Zoned mode does not allow that */
2229 		btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group);
2230 		/* Wait for extent buffers to be written. */
2231 		if (is_metadata)
2232 			wait_eb_writebacks(block_group);
2233 
2234 		spin_lock(&block_group->lock);
2235 
2236 		/*
2237 		 * Bail out if someone already deactivated the block group, or
2238 		 * allocated space is left in the block group.
2239 		 */
2240 		if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2241 			      &block_group->runtime_flags)) {
2242 			spin_unlock(&block_group->lock);
2243 			btrfs_dec_block_group_ro(block_group);
2244 			return 0;
2245 		}
2246 
2247 		if (block_group->reserved ||
2248 		    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2249 			     &block_group->runtime_flags)) {
2250 			spin_unlock(&block_group->lock);
2251 			btrfs_dec_block_group_ro(block_group);
2252 			return -EAGAIN;
2253 		}
2254 	}
2255 
2256 	clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2257 	block_group->alloc_offset = block_group->zone_capacity;
2258 	if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))
2259 		block_group->meta_write_pointer = block_group->start +
2260 						  block_group->zone_capacity;
2261 	block_group->free_space_ctl->free_space = 0;
2262 	btrfs_clear_treelog_bg(block_group);
2263 	btrfs_clear_data_reloc_bg(block_group);
2264 	spin_unlock(&block_group->lock);
2265 
2266 	down_read(&dev_replace->rwsem);
2267 	map = block_group->physical_map;
2268 	for (i = 0; i < map->num_stripes; i++) {
2269 		struct btrfs_device *device = map->stripes[i].dev;
2270 		const u64 physical = map->stripes[i].physical;
2271 		struct btrfs_zoned_device_info *zinfo = device->zone_info;
2272 		unsigned int nofs_flags;
2273 
2274 		if (zinfo->max_active_zones == 0)
2275 			continue;
2276 
2277 		nofs_flags = memalloc_nofs_save();
2278 		ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2279 				       physical >> SECTOR_SHIFT,
2280 				       zinfo->zone_size >> SECTOR_SHIFT);
2281 		memalloc_nofs_restore(nofs_flags);
2282 
2283 		if (ret) {
2284 			up_read(&dev_replace->rwsem);
2285 			return ret;
2286 		}
2287 
2288 		if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA))
2289 			zinfo->reserved_active_zones++;
2290 		btrfs_dev_clear_active_zone(device, physical);
2291 	}
2292 	up_read(&dev_replace->rwsem);
2293 
2294 	if (!fully_written)
2295 		btrfs_dec_block_group_ro(block_group);
2296 
2297 	spin_lock(&fs_info->zone_active_bgs_lock);
2298 	ASSERT(!list_empty(&block_group->active_bg_list));
2299 	list_del_init(&block_group->active_bg_list);
2300 	spin_unlock(&fs_info->zone_active_bgs_lock);
2301 
2302 	/* For active_bg_list */
2303 	btrfs_put_block_group(block_group);
2304 
2305 	clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2306 
2307 	return 0;
2308 }
2309 
2310 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2311 {
2312 	if (!btrfs_is_zoned(block_group->fs_info))
2313 		return 0;
2314 
2315 	return do_zone_finish(block_group, false);
2316 }
2317 
2318 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2319 {
2320 	struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2321 	struct btrfs_device *device;
2322 	bool ret = false;
2323 
2324 	if (!btrfs_is_zoned(fs_info))
2325 		return true;
2326 
2327 	/* Check if there is a device with active zones left */
2328 	mutex_lock(&fs_info->chunk_mutex);
2329 	spin_lock(&fs_info->zone_active_bgs_lock);
2330 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2331 		struct btrfs_zoned_device_info *zinfo = device->zone_info;
2332 		int reserved = 0;
2333 
2334 		if (!device->bdev)
2335 			continue;
2336 
2337 		if (!zinfo->max_active_zones) {
2338 			ret = true;
2339 			break;
2340 		}
2341 
2342 		if (flags & BTRFS_BLOCK_GROUP_DATA)
2343 			reserved = zinfo->reserved_active_zones;
2344 
2345 		switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2346 		case 0: /* single */
2347 			ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved));
2348 			break;
2349 		case BTRFS_BLOCK_GROUP_DUP:
2350 			ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved));
2351 			break;
2352 		}
2353 		if (ret)
2354 			break;
2355 	}
2356 	spin_unlock(&fs_info->zone_active_bgs_lock);
2357 	mutex_unlock(&fs_info->chunk_mutex);
2358 
2359 	if (!ret)
2360 		set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2361 
2362 	return ret;
2363 }
2364 
2365 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2366 {
2367 	struct btrfs_block_group *block_group;
2368 	u64 min_alloc_bytes;
2369 
2370 	if (!btrfs_is_zoned(fs_info))
2371 		return;
2372 
2373 	block_group = btrfs_lookup_block_group(fs_info, logical);
2374 	ASSERT(block_group);
2375 
2376 	/* No MIXED_BG on zoned btrfs. */
2377 	if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2378 		min_alloc_bytes = fs_info->sectorsize;
2379 	else
2380 		min_alloc_bytes = fs_info->nodesize;
2381 
2382 	/* Bail out if we can allocate more data from this block group. */
2383 	if (logical + length + min_alloc_bytes <=
2384 	    block_group->start + block_group->zone_capacity)
2385 		goto out;
2386 
2387 	do_zone_finish(block_group, true);
2388 
2389 out:
2390 	btrfs_put_block_group(block_group);
2391 }
2392 
2393 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2394 {
2395 	struct btrfs_block_group *bg =
2396 		container_of(work, struct btrfs_block_group, zone_finish_work);
2397 
2398 	wait_on_extent_buffer_writeback(bg->last_eb);
2399 	free_extent_buffer(bg->last_eb);
2400 	btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2401 	btrfs_put_block_group(bg);
2402 }
2403 
2404 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2405 				   struct extent_buffer *eb)
2406 {
2407 	if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2408 	    eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2409 		return;
2410 
2411 	if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2412 		btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2413 			  bg->start);
2414 		return;
2415 	}
2416 
2417 	/* For the work */
2418 	btrfs_get_block_group(bg);
2419 	atomic_inc(&eb->refs);
2420 	bg->last_eb = eb;
2421 	INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2422 	queue_work(system_unbound_wq, &bg->zone_finish_work);
2423 }
2424 
2425 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2426 {
2427 	struct btrfs_fs_info *fs_info = bg->fs_info;
2428 
2429 	spin_lock(&fs_info->relocation_bg_lock);
2430 	if (fs_info->data_reloc_bg == bg->start)
2431 		fs_info->data_reloc_bg = 0;
2432 	spin_unlock(&fs_info->relocation_bg_lock);
2433 }
2434 
2435 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2436 {
2437 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2438 	struct btrfs_device *device;
2439 
2440 	if (!btrfs_is_zoned(fs_info))
2441 		return;
2442 
2443 	mutex_lock(&fs_devices->device_list_mutex);
2444 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2445 		if (device->zone_info) {
2446 			vfree(device->zone_info->zone_cache);
2447 			device->zone_info->zone_cache = NULL;
2448 		}
2449 	}
2450 	mutex_unlock(&fs_devices->device_list_mutex);
2451 }
2452 
2453 bool btrfs_zoned_should_reclaim(const struct btrfs_fs_info *fs_info)
2454 {
2455 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2456 	struct btrfs_device *device;
2457 	u64 used = 0;
2458 	u64 total = 0;
2459 	u64 factor;
2460 
2461 	ASSERT(btrfs_is_zoned(fs_info));
2462 
2463 	if (fs_info->bg_reclaim_threshold == 0)
2464 		return false;
2465 
2466 	mutex_lock(&fs_devices->device_list_mutex);
2467 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2468 		if (!device->bdev)
2469 			continue;
2470 
2471 		total += device->disk_total_bytes;
2472 		used += device->bytes_used;
2473 	}
2474 	mutex_unlock(&fs_devices->device_list_mutex);
2475 
2476 	factor = div64_u64(used * 100, total);
2477 	return factor >= fs_info->bg_reclaim_threshold;
2478 }
2479 
2480 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2481 				       u64 length)
2482 {
2483 	struct btrfs_block_group *block_group;
2484 
2485 	if (!btrfs_is_zoned(fs_info))
2486 		return;
2487 
2488 	block_group = btrfs_lookup_block_group(fs_info, logical);
2489 	/* It should be called on a previous data relocation block group. */
2490 	ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2491 
2492 	spin_lock(&block_group->lock);
2493 	if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2494 		goto out;
2495 
2496 	/* All relocation extents are written. */
2497 	if (block_group->start + block_group->alloc_offset == logical + length) {
2498 		/*
2499 		 * Now, release this block group for further allocations and
2500 		 * zone finish.
2501 		 */
2502 		clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2503 			  &block_group->runtime_flags);
2504 	}
2505 
2506 out:
2507 	spin_unlock(&block_group->lock);
2508 	btrfs_put_block_group(block_group);
2509 }
2510 
2511 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2512 {
2513 	struct btrfs_block_group *block_group;
2514 	struct btrfs_block_group *min_bg = NULL;
2515 	u64 min_avail = U64_MAX;
2516 	int ret;
2517 
2518 	spin_lock(&fs_info->zone_active_bgs_lock);
2519 	list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2520 			    active_bg_list) {
2521 		u64 avail;
2522 
2523 		spin_lock(&block_group->lock);
2524 		if (block_group->reserved || block_group->alloc_offset == 0 ||
2525 		    (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) ||
2526 		    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2527 			spin_unlock(&block_group->lock);
2528 			continue;
2529 		}
2530 
2531 		avail = block_group->zone_capacity - block_group->alloc_offset;
2532 		if (min_avail > avail) {
2533 			if (min_bg)
2534 				btrfs_put_block_group(min_bg);
2535 			min_bg = block_group;
2536 			min_avail = avail;
2537 			btrfs_get_block_group(min_bg);
2538 		}
2539 		spin_unlock(&block_group->lock);
2540 	}
2541 	spin_unlock(&fs_info->zone_active_bgs_lock);
2542 
2543 	if (!min_bg)
2544 		return 0;
2545 
2546 	ret = btrfs_zone_finish(min_bg);
2547 	btrfs_put_block_group(min_bg);
2548 
2549 	return ret < 0 ? ret : 1;
2550 }
2551 
2552 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2553 				struct btrfs_space_info *space_info,
2554 				bool do_finish)
2555 {
2556 	struct btrfs_block_group *bg;
2557 	int index;
2558 
2559 	if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2560 		return 0;
2561 
2562 	for (;;) {
2563 		int ret;
2564 		bool need_finish = false;
2565 
2566 		down_read(&space_info->groups_sem);
2567 		for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2568 			list_for_each_entry(bg, &space_info->block_groups[index],
2569 					    list) {
2570 				if (!spin_trylock(&bg->lock))
2571 					continue;
2572 				if (btrfs_zoned_bg_is_full(bg) ||
2573 				    test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2574 					     &bg->runtime_flags)) {
2575 					spin_unlock(&bg->lock);
2576 					continue;
2577 				}
2578 				spin_unlock(&bg->lock);
2579 
2580 				if (btrfs_zone_activate(bg)) {
2581 					up_read(&space_info->groups_sem);
2582 					return 1;
2583 				}
2584 
2585 				need_finish = true;
2586 			}
2587 		}
2588 		up_read(&space_info->groups_sem);
2589 
2590 		if (!do_finish || !need_finish)
2591 			break;
2592 
2593 		ret = btrfs_zone_finish_one_bg(fs_info);
2594 		if (ret == 0)
2595 			break;
2596 		if (ret < 0)
2597 			return ret;
2598 	}
2599 
2600 	return 0;
2601 }
2602 
2603 /*
2604  * Reserve zones for one metadata block group, one tree-log block group, and one
2605  * system block group.
2606  */
2607 void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info)
2608 {
2609 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2610 	struct btrfs_block_group *block_group;
2611 	struct btrfs_device *device;
2612 	/* Reserve zones for normal SINGLE metadata and tree-log block group. */
2613 	unsigned int metadata_reserve = 2;
2614 	/* Reserve a zone for SINGLE system block group. */
2615 	unsigned int system_reserve = 1;
2616 
2617 	if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
2618 		return;
2619 
2620 	/*
2621 	 * This function is called from the mount context. So, there is no
2622 	 * parallel process touching the bits. No need for read_seqretry().
2623 	 */
2624 	if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2625 		metadata_reserve = 4;
2626 	if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2627 		system_reserve = 2;
2628 
2629 	/* Apply the reservation on all the devices. */
2630 	mutex_lock(&fs_devices->device_list_mutex);
2631 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2632 		if (!device->bdev)
2633 			continue;
2634 
2635 		device->zone_info->reserved_active_zones =
2636 			metadata_reserve + system_reserve;
2637 	}
2638 	mutex_unlock(&fs_devices->device_list_mutex);
2639 
2640 	/* Release reservation for currently active block groups. */
2641 	spin_lock(&fs_info->zone_active_bgs_lock);
2642 	list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
2643 		struct btrfs_chunk_map *map = block_group->physical_map;
2644 
2645 		if (!(block_group->flags &
2646 		      (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
2647 			continue;
2648 
2649 		for (int i = 0; i < map->num_stripes; i++)
2650 			map->stripes[i].dev->zone_info->reserved_active_zones--;
2651 	}
2652 	spin_unlock(&fs_info->zone_active_bgs_lock);
2653 }
2654