xref: /linux/fs/btrfs/zoned.c (revision 1b0975ee3bdd3eb19a47371c26fd7ef8f7f6b599)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "rcu-string.h"
13 #include "disk-io.h"
14 #include "block-group.h"
15 #include "transaction.h"
16 #include "dev-replace.h"
17 #include "space-info.h"
18 #include "super.h"
19 #include "fs.h"
20 #include "accessors.h"
21 #include "bio.h"
22 
23 /* Maximum number of zones to report per blkdev_report_zones() call */
24 #define BTRFS_REPORT_NR_ZONES   4096
25 /* Invalid allocation pointer value for missing devices */
26 #define WP_MISSING_DEV ((u64)-1)
27 /* Pseudo write pointer value for conventional zone */
28 #define WP_CONVENTIONAL ((u64)-2)
29 
30 /*
31  * Location of the first zone of superblock logging zone pairs.
32  *
33  * - primary superblock:    0B (zone 0)
34  * - first copy:          512G (zone starting at that offset)
35  * - second copy:           4T (zone starting at that offset)
36  */
37 #define BTRFS_SB_LOG_PRIMARY_OFFSET	(0ULL)
38 #define BTRFS_SB_LOG_FIRST_OFFSET	(512ULL * SZ_1G)
39 #define BTRFS_SB_LOG_SECOND_OFFSET	(4096ULL * SZ_1G)
40 
41 #define BTRFS_SB_LOG_FIRST_SHIFT	const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
42 #define BTRFS_SB_LOG_SECOND_SHIFT	const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
43 
44 /* Number of superblock log zones */
45 #define BTRFS_NR_SB_LOG_ZONES 2
46 
47 /*
48  * Minimum of active zones we need:
49  *
50  * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
51  * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
52  * - 1 zone for tree-log dedicated block group
53  * - 1 zone for relocation
54  */
55 #define BTRFS_MIN_ACTIVE_ZONES		(BTRFS_SUPER_MIRROR_MAX + 5)
56 
57 /*
58  * Minimum / maximum supported zone size. Currently, SMR disks have a zone
59  * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
60  * We do not expect the zone size to become larger than 8GiB or smaller than
61  * 4MiB in the near future.
62  */
63 #define BTRFS_MAX_ZONE_SIZE		SZ_8G
64 #define BTRFS_MIN_ZONE_SIZE		SZ_4M
65 
66 #define SUPER_INFO_SECTORS	((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
67 
68 static inline bool sb_zone_is_full(const struct blk_zone *zone)
69 {
70 	return (zone->cond == BLK_ZONE_COND_FULL) ||
71 		(zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
72 }
73 
74 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
75 {
76 	struct blk_zone *zones = data;
77 
78 	memcpy(&zones[idx], zone, sizeof(*zone));
79 
80 	return 0;
81 }
82 
83 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
84 			    u64 *wp_ret)
85 {
86 	bool empty[BTRFS_NR_SB_LOG_ZONES];
87 	bool full[BTRFS_NR_SB_LOG_ZONES];
88 	sector_t sector;
89 	int i;
90 
91 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
92 		ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
93 		empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
94 		full[i] = sb_zone_is_full(&zones[i]);
95 	}
96 
97 	/*
98 	 * Possible states of log buffer zones
99 	 *
100 	 *           Empty[0]  In use[0]  Full[0]
101 	 * Empty[1]         *          0        1
102 	 * In use[1]        x          x        1
103 	 * Full[1]          0          0        C
104 	 *
105 	 * Log position:
106 	 *   *: Special case, no superblock is written
107 	 *   0: Use write pointer of zones[0]
108 	 *   1: Use write pointer of zones[1]
109 	 *   C: Compare super blocks from zones[0] and zones[1], use the latest
110 	 *      one determined by generation
111 	 *   x: Invalid state
112 	 */
113 
114 	if (empty[0] && empty[1]) {
115 		/* Special case to distinguish no superblock to read */
116 		*wp_ret = zones[0].start << SECTOR_SHIFT;
117 		return -ENOENT;
118 	} else if (full[0] && full[1]) {
119 		/* Compare two super blocks */
120 		struct address_space *mapping = bdev->bd_inode->i_mapping;
121 		struct page *page[BTRFS_NR_SB_LOG_ZONES];
122 		struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
123 		int i;
124 
125 		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
126 			u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT;
127 			u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) -
128 						BTRFS_SUPER_INFO_SIZE;
129 
130 			page[i] = read_cache_page_gfp(mapping,
131 					bytenr >> PAGE_SHIFT, GFP_NOFS);
132 			if (IS_ERR(page[i])) {
133 				if (i == 1)
134 					btrfs_release_disk_super(super[0]);
135 				return PTR_ERR(page[i]);
136 			}
137 			super[i] = page_address(page[i]);
138 		}
139 
140 		if (btrfs_super_generation(super[0]) >
141 		    btrfs_super_generation(super[1]))
142 			sector = zones[1].start;
143 		else
144 			sector = zones[0].start;
145 
146 		for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
147 			btrfs_release_disk_super(super[i]);
148 	} else if (!full[0] && (empty[1] || full[1])) {
149 		sector = zones[0].wp;
150 	} else if (full[0]) {
151 		sector = zones[1].wp;
152 	} else {
153 		return -EUCLEAN;
154 	}
155 	*wp_ret = sector << SECTOR_SHIFT;
156 	return 0;
157 }
158 
159 /*
160  * Get the first zone number of the superblock mirror
161  */
162 static inline u32 sb_zone_number(int shift, int mirror)
163 {
164 	u64 zone = U64_MAX;
165 
166 	ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
167 	switch (mirror) {
168 	case 0: zone = 0; break;
169 	case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
170 	case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
171 	}
172 
173 	ASSERT(zone <= U32_MAX);
174 
175 	return (u32)zone;
176 }
177 
178 static inline sector_t zone_start_sector(u32 zone_number,
179 					 struct block_device *bdev)
180 {
181 	return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
182 }
183 
184 static inline u64 zone_start_physical(u32 zone_number,
185 				      struct btrfs_zoned_device_info *zone_info)
186 {
187 	return (u64)zone_number << zone_info->zone_size_shift;
188 }
189 
190 /*
191  * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
192  * device into static sized chunks and fake a conventional zone on each of
193  * them.
194  */
195 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
196 				struct blk_zone *zones, unsigned int nr_zones)
197 {
198 	const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
199 	sector_t bdev_size = bdev_nr_sectors(device->bdev);
200 	unsigned int i;
201 
202 	pos >>= SECTOR_SHIFT;
203 	for (i = 0; i < nr_zones; i++) {
204 		zones[i].start = i * zone_sectors + pos;
205 		zones[i].len = zone_sectors;
206 		zones[i].capacity = zone_sectors;
207 		zones[i].wp = zones[i].start + zone_sectors;
208 		zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
209 		zones[i].cond = BLK_ZONE_COND_NOT_WP;
210 
211 		if (zones[i].wp >= bdev_size) {
212 			i++;
213 			break;
214 		}
215 	}
216 
217 	return i;
218 }
219 
220 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
221 			       struct blk_zone *zones, unsigned int *nr_zones)
222 {
223 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
224 	int ret;
225 
226 	if (!*nr_zones)
227 		return 0;
228 
229 	if (!bdev_is_zoned(device->bdev)) {
230 		ret = emulate_report_zones(device, pos, zones, *nr_zones);
231 		*nr_zones = ret;
232 		return 0;
233 	}
234 
235 	/* Check cache */
236 	if (zinfo->zone_cache) {
237 		unsigned int i;
238 		u32 zno;
239 
240 		ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
241 		zno = pos >> zinfo->zone_size_shift;
242 		/*
243 		 * We cannot report zones beyond the zone end. So, it is OK to
244 		 * cap *nr_zones to at the end.
245 		 */
246 		*nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
247 
248 		for (i = 0; i < *nr_zones; i++) {
249 			struct blk_zone *zone_info;
250 
251 			zone_info = &zinfo->zone_cache[zno + i];
252 			if (!zone_info->len)
253 				break;
254 		}
255 
256 		if (i == *nr_zones) {
257 			/* Cache hit on all the zones */
258 			memcpy(zones, zinfo->zone_cache + zno,
259 			       sizeof(*zinfo->zone_cache) * *nr_zones);
260 			return 0;
261 		}
262 	}
263 
264 	ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
265 				  copy_zone_info_cb, zones);
266 	if (ret < 0) {
267 		btrfs_err_in_rcu(device->fs_info,
268 				 "zoned: failed to read zone %llu on %s (devid %llu)",
269 				 pos, rcu_str_deref(device->name),
270 				 device->devid);
271 		return ret;
272 	}
273 	*nr_zones = ret;
274 	if (!ret)
275 		return -EIO;
276 
277 	/* Populate cache */
278 	if (zinfo->zone_cache) {
279 		u32 zno = pos >> zinfo->zone_size_shift;
280 
281 		memcpy(zinfo->zone_cache + zno, zones,
282 		       sizeof(*zinfo->zone_cache) * *nr_zones);
283 	}
284 
285 	return 0;
286 }
287 
288 /* The emulated zone size is determined from the size of device extent */
289 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
290 {
291 	struct btrfs_path *path;
292 	struct btrfs_root *root = fs_info->dev_root;
293 	struct btrfs_key key;
294 	struct extent_buffer *leaf;
295 	struct btrfs_dev_extent *dext;
296 	int ret = 0;
297 
298 	key.objectid = 1;
299 	key.type = BTRFS_DEV_EXTENT_KEY;
300 	key.offset = 0;
301 
302 	path = btrfs_alloc_path();
303 	if (!path)
304 		return -ENOMEM;
305 
306 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
307 	if (ret < 0)
308 		goto out;
309 
310 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
311 		ret = btrfs_next_leaf(root, path);
312 		if (ret < 0)
313 			goto out;
314 		/* No dev extents at all? Not good */
315 		if (ret > 0) {
316 			ret = -EUCLEAN;
317 			goto out;
318 		}
319 	}
320 
321 	leaf = path->nodes[0];
322 	dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
323 	fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
324 	ret = 0;
325 
326 out:
327 	btrfs_free_path(path);
328 
329 	return ret;
330 }
331 
332 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
333 {
334 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
335 	struct btrfs_device *device;
336 	int ret = 0;
337 
338 	/* fs_info->zone_size might not set yet. Use the incomapt flag here. */
339 	if (!btrfs_fs_incompat(fs_info, ZONED))
340 		return 0;
341 
342 	mutex_lock(&fs_devices->device_list_mutex);
343 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
344 		/* We can skip reading of zone info for missing devices */
345 		if (!device->bdev)
346 			continue;
347 
348 		ret = btrfs_get_dev_zone_info(device, true);
349 		if (ret)
350 			break;
351 	}
352 	mutex_unlock(&fs_devices->device_list_mutex);
353 
354 	return ret;
355 }
356 
357 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
358 {
359 	struct btrfs_fs_info *fs_info = device->fs_info;
360 	struct btrfs_zoned_device_info *zone_info = NULL;
361 	struct block_device *bdev = device->bdev;
362 	unsigned int max_active_zones;
363 	unsigned int nactive;
364 	sector_t nr_sectors;
365 	sector_t sector = 0;
366 	struct blk_zone *zones = NULL;
367 	unsigned int i, nreported = 0, nr_zones;
368 	sector_t zone_sectors;
369 	char *model, *emulated;
370 	int ret;
371 
372 	/*
373 	 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
374 	 * yet be set.
375 	 */
376 	if (!btrfs_fs_incompat(fs_info, ZONED))
377 		return 0;
378 
379 	if (device->zone_info)
380 		return 0;
381 
382 	zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
383 	if (!zone_info)
384 		return -ENOMEM;
385 
386 	device->zone_info = zone_info;
387 
388 	if (!bdev_is_zoned(bdev)) {
389 		if (!fs_info->zone_size) {
390 			ret = calculate_emulated_zone_size(fs_info);
391 			if (ret)
392 				goto out;
393 		}
394 
395 		ASSERT(fs_info->zone_size);
396 		zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
397 	} else {
398 		zone_sectors = bdev_zone_sectors(bdev);
399 	}
400 
401 	ASSERT(is_power_of_two_u64(zone_sectors));
402 	zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
403 
404 	/* We reject devices with a zone size larger than 8GB */
405 	if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
406 		btrfs_err_in_rcu(fs_info,
407 		"zoned: %s: zone size %llu larger than supported maximum %llu",
408 				 rcu_str_deref(device->name),
409 				 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
410 		ret = -EINVAL;
411 		goto out;
412 	} else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
413 		btrfs_err_in_rcu(fs_info,
414 		"zoned: %s: zone size %llu smaller than supported minimum %u",
415 				 rcu_str_deref(device->name),
416 				 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
417 		ret = -EINVAL;
418 		goto out;
419 	}
420 
421 	nr_sectors = bdev_nr_sectors(bdev);
422 	zone_info->zone_size_shift = ilog2(zone_info->zone_size);
423 	zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
424 	if (!IS_ALIGNED(nr_sectors, zone_sectors))
425 		zone_info->nr_zones++;
426 
427 	max_active_zones = bdev_max_active_zones(bdev);
428 	if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
429 		btrfs_err_in_rcu(fs_info,
430 "zoned: %s: max active zones %u is too small, need at least %u active zones",
431 				 rcu_str_deref(device->name), max_active_zones,
432 				 BTRFS_MIN_ACTIVE_ZONES);
433 		ret = -EINVAL;
434 		goto out;
435 	}
436 	zone_info->max_active_zones = max_active_zones;
437 
438 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
439 	if (!zone_info->seq_zones) {
440 		ret = -ENOMEM;
441 		goto out;
442 	}
443 
444 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
445 	if (!zone_info->empty_zones) {
446 		ret = -ENOMEM;
447 		goto out;
448 	}
449 
450 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
451 	if (!zone_info->active_zones) {
452 		ret = -ENOMEM;
453 		goto out;
454 	}
455 
456 	zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
457 	if (!zones) {
458 		ret = -ENOMEM;
459 		goto out;
460 	}
461 
462 	/*
463 	 * Enable zone cache only for a zoned device. On a non-zoned device, we
464 	 * fill the zone info with emulated CONVENTIONAL zones, so no need to
465 	 * use the cache.
466 	 */
467 	if (populate_cache && bdev_is_zoned(device->bdev)) {
468 		zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) *
469 						zone_info->nr_zones);
470 		if (!zone_info->zone_cache) {
471 			btrfs_err_in_rcu(device->fs_info,
472 				"zoned: failed to allocate zone cache for %s",
473 				rcu_str_deref(device->name));
474 			ret = -ENOMEM;
475 			goto out;
476 		}
477 	}
478 
479 	/* Get zones type */
480 	nactive = 0;
481 	while (sector < nr_sectors) {
482 		nr_zones = BTRFS_REPORT_NR_ZONES;
483 		ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
484 					  &nr_zones);
485 		if (ret)
486 			goto out;
487 
488 		for (i = 0; i < nr_zones; i++) {
489 			if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
490 				__set_bit(nreported, zone_info->seq_zones);
491 			switch (zones[i].cond) {
492 			case BLK_ZONE_COND_EMPTY:
493 				__set_bit(nreported, zone_info->empty_zones);
494 				break;
495 			case BLK_ZONE_COND_IMP_OPEN:
496 			case BLK_ZONE_COND_EXP_OPEN:
497 			case BLK_ZONE_COND_CLOSED:
498 				__set_bit(nreported, zone_info->active_zones);
499 				nactive++;
500 				break;
501 			}
502 			nreported++;
503 		}
504 		sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
505 	}
506 
507 	if (nreported != zone_info->nr_zones) {
508 		btrfs_err_in_rcu(device->fs_info,
509 				 "inconsistent number of zones on %s (%u/%u)",
510 				 rcu_str_deref(device->name), nreported,
511 				 zone_info->nr_zones);
512 		ret = -EIO;
513 		goto out;
514 	}
515 
516 	if (max_active_zones) {
517 		if (nactive > max_active_zones) {
518 			btrfs_err_in_rcu(device->fs_info,
519 			"zoned: %u active zones on %s exceeds max_active_zones %u",
520 					 nactive, rcu_str_deref(device->name),
521 					 max_active_zones);
522 			ret = -EIO;
523 			goto out;
524 		}
525 		atomic_set(&zone_info->active_zones_left,
526 			   max_active_zones - nactive);
527 		set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
528 	}
529 
530 	/* Validate superblock log */
531 	nr_zones = BTRFS_NR_SB_LOG_ZONES;
532 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
533 		u32 sb_zone;
534 		u64 sb_wp;
535 		int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
536 
537 		sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
538 		if (sb_zone + 1 >= zone_info->nr_zones)
539 			continue;
540 
541 		ret = btrfs_get_dev_zones(device,
542 					  zone_start_physical(sb_zone, zone_info),
543 					  &zone_info->sb_zones[sb_pos],
544 					  &nr_zones);
545 		if (ret)
546 			goto out;
547 
548 		if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
549 			btrfs_err_in_rcu(device->fs_info,
550 	"zoned: failed to read super block log zone info at devid %llu zone %u",
551 					 device->devid, sb_zone);
552 			ret = -EUCLEAN;
553 			goto out;
554 		}
555 
556 		/*
557 		 * If zones[0] is conventional, always use the beginning of the
558 		 * zone to record superblock. No need to validate in that case.
559 		 */
560 		if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
561 		    BLK_ZONE_TYPE_CONVENTIONAL)
562 			continue;
563 
564 		ret = sb_write_pointer(device->bdev,
565 				       &zone_info->sb_zones[sb_pos], &sb_wp);
566 		if (ret != -ENOENT && ret) {
567 			btrfs_err_in_rcu(device->fs_info,
568 			"zoned: super block log zone corrupted devid %llu zone %u",
569 					 device->devid, sb_zone);
570 			ret = -EUCLEAN;
571 			goto out;
572 		}
573 	}
574 
575 
576 	kvfree(zones);
577 
578 	switch (bdev_zoned_model(bdev)) {
579 	case BLK_ZONED_HM:
580 		model = "host-managed zoned";
581 		emulated = "";
582 		break;
583 	case BLK_ZONED_HA:
584 		model = "host-aware zoned";
585 		emulated = "";
586 		break;
587 	case BLK_ZONED_NONE:
588 		model = "regular";
589 		emulated = "emulated ";
590 		break;
591 	default:
592 		/* Just in case */
593 		btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
594 				 bdev_zoned_model(bdev),
595 				 rcu_str_deref(device->name));
596 		ret = -EOPNOTSUPP;
597 		goto out_free_zone_info;
598 	}
599 
600 	btrfs_info_in_rcu(fs_info,
601 		"%s block device %s, %u %szones of %llu bytes",
602 		model, rcu_str_deref(device->name), zone_info->nr_zones,
603 		emulated, zone_info->zone_size);
604 
605 	return 0;
606 
607 out:
608 	kvfree(zones);
609 out_free_zone_info:
610 	btrfs_destroy_dev_zone_info(device);
611 
612 	return ret;
613 }
614 
615 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
616 {
617 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
618 
619 	if (!zone_info)
620 		return;
621 
622 	bitmap_free(zone_info->active_zones);
623 	bitmap_free(zone_info->seq_zones);
624 	bitmap_free(zone_info->empty_zones);
625 	vfree(zone_info->zone_cache);
626 	kfree(zone_info);
627 	device->zone_info = NULL;
628 }
629 
630 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
631 {
632 	struct btrfs_zoned_device_info *zone_info;
633 
634 	zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
635 	if (!zone_info)
636 		return NULL;
637 
638 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
639 	if (!zone_info->seq_zones)
640 		goto out;
641 
642 	bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
643 		    zone_info->nr_zones);
644 
645 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
646 	if (!zone_info->empty_zones)
647 		goto out;
648 
649 	bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
650 		    zone_info->nr_zones);
651 
652 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
653 	if (!zone_info->active_zones)
654 		goto out;
655 
656 	bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
657 		    zone_info->nr_zones);
658 	zone_info->zone_cache = NULL;
659 
660 	return zone_info;
661 
662 out:
663 	bitmap_free(zone_info->seq_zones);
664 	bitmap_free(zone_info->empty_zones);
665 	bitmap_free(zone_info->active_zones);
666 	kfree(zone_info);
667 	return NULL;
668 }
669 
670 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
671 		       struct blk_zone *zone)
672 {
673 	unsigned int nr_zones = 1;
674 	int ret;
675 
676 	ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
677 	if (ret != 0 || !nr_zones)
678 		return ret ? ret : -EIO;
679 
680 	return 0;
681 }
682 
683 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
684 {
685 	struct btrfs_device *device;
686 
687 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
688 		if (device->bdev &&
689 		    bdev_zoned_model(device->bdev) == BLK_ZONED_HM) {
690 			btrfs_err(fs_info,
691 				"zoned: mode not enabled but zoned device found: %pg",
692 				device->bdev);
693 			return -EINVAL;
694 		}
695 	}
696 
697 	return 0;
698 }
699 
700 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
701 {
702 	struct queue_limits *lim = &fs_info->limits;
703 	struct btrfs_device *device;
704 	u64 zone_size = 0;
705 	int ret;
706 
707 	/*
708 	 * Host-Managed devices can't be used without the ZONED flag.  With the
709 	 * ZONED all devices can be used, using zone emulation if required.
710 	 */
711 	if (!btrfs_fs_incompat(fs_info, ZONED))
712 		return btrfs_check_for_zoned_device(fs_info);
713 
714 	blk_set_stacking_limits(lim);
715 
716 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
717 		struct btrfs_zoned_device_info *zone_info = device->zone_info;
718 
719 		if (!device->bdev)
720 			continue;
721 
722 		if (!zone_size) {
723 			zone_size = zone_info->zone_size;
724 		} else if (zone_info->zone_size != zone_size) {
725 			btrfs_err(fs_info,
726 		"zoned: unequal block device zone sizes: have %llu found %llu",
727 				  zone_info->zone_size, zone_size);
728 			return -EINVAL;
729 		}
730 
731 		/*
732 		 * With the zoned emulation, we can have non-zoned device on the
733 		 * zoned mode. In this case, we don't have a valid max zone
734 		 * append size.
735 		 */
736 		if (bdev_is_zoned(device->bdev)) {
737 			blk_stack_limits(lim,
738 					 &bdev_get_queue(device->bdev)->limits,
739 					 0);
740 		}
741 	}
742 
743 	/*
744 	 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
745 	 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
746 	 * check the alignment here.
747 	 */
748 	if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
749 		btrfs_err(fs_info,
750 			  "zoned: zone size %llu not aligned to stripe %u",
751 			  zone_size, BTRFS_STRIPE_LEN);
752 		return -EINVAL;
753 	}
754 
755 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
756 		btrfs_err(fs_info, "zoned: mixed block groups not supported");
757 		return -EINVAL;
758 	}
759 
760 	fs_info->zone_size = zone_size;
761 	/*
762 	 * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
763 	 * Technically, we can have multiple pages per segment. But, since
764 	 * we add the pages one by one to a bio, and cannot increase the
765 	 * metadata reservation even if it increases the number of extents, it
766 	 * is safe to stick with the limit.
767 	 */
768 	fs_info->max_zone_append_size = ALIGN_DOWN(
769 		min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
770 		     (u64)lim->max_sectors << SECTOR_SHIFT,
771 		     (u64)lim->max_segments << PAGE_SHIFT),
772 		fs_info->sectorsize);
773 	fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
774 	if (fs_info->max_zone_append_size < fs_info->max_extent_size)
775 		fs_info->max_extent_size = fs_info->max_zone_append_size;
776 
777 	/*
778 	 * Check mount options here, because we might change fs_info->zoned
779 	 * from fs_info->zone_size.
780 	 */
781 	ret = btrfs_check_mountopts_zoned(fs_info);
782 	if (ret)
783 		return ret;
784 
785 	btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
786 	return 0;
787 }
788 
789 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
790 {
791 	if (!btrfs_is_zoned(info))
792 		return 0;
793 
794 	/*
795 	 * Space cache writing is not COWed. Disable that to avoid write errors
796 	 * in sequential zones.
797 	 */
798 	if (btrfs_test_opt(info, SPACE_CACHE)) {
799 		btrfs_err(info, "zoned: space cache v1 is not supported");
800 		return -EINVAL;
801 	}
802 
803 	if (btrfs_test_opt(info, NODATACOW)) {
804 		btrfs_err(info, "zoned: NODATACOW not supported");
805 		return -EINVAL;
806 	}
807 
808 	return 0;
809 }
810 
811 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
812 			   int rw, u64 *bytenr_ret)
813 {
814 	u64 wp;
815 	int ret;
816 
817 	if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
818 		*bytenr_ret = zones[0].start << SECTOR_SHIFT;
819 		return 0;
820 	}
821 
822 	ret = sb_write_pointer(bdev, zones, &wp);
823 	if (ret != -ENOENT && ret < 0)
824 		return ret;
825 
826 	if (rw == WRITE) {
827 		struct blk_zone *reset = NULL;
828 
829 		if (wp == zones[0].start << SECTOR_SHIFT)
830 			reset = &zones[0];
831 		else if (wp == zones[1].start << SECTOR_SHIFT)
832 			reset = &zones[1];
833 
834 		if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
835 			ASSERT(sb_zone_is_full(reset));
836 
837 			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
838 					       reset->start, reset->len,
839 					       GFP_NOFS);
840 			if (ret)
841 				return ret;
842 
843 			reset->cond = BLK_ZONE_COND_EMPTY;
844 			reset->wp = reset->start;
845 		}
846 	} else if (ret != -ENOENT) {
847 		/*
848 		 * For READ, we want the previous one. Move write pointer to
849 		 * the end of a zone, if it is at the head of a zone.
850 		 */
851 		u64 zone_end = 0;
852 
853 		if (wp == zones[0].start << SECTOR_SHIFT)
854 			zone_end = zones[1].start + zones[1].capacity;
855 		else if (wp == zones[1].start << SECTOR_SHIFT)
856 			zone_end = zones[0].start + zones[0].capacity;
857 		if (zone_end)
858 			wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
859 					BTRFS_SUPER_INFO_SIZE);
860 
861 		wp -= BTRFS_SUPER_INFO_SIZE;
862 	}
863 
864 	*bytenr_ret = wp;
865 	return 0;
866 
867 }
868 
869 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
870 			       u64 *bytenr_ret)
871 {
872 	struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
873 	sector_t zone_sectors;
874 	u32 sb_zone;
875 	int ret;
876 	u8 zone_sectors_shift;
877 	sector_t nr_sectors;
878 	u32 nr_zones;
879 
880 	if (!bdev_is_zoned(bdev)) {
881 		*bytenr_ret = btrfs_sb_offset(mirror);
882 		return 0;
883 	}
884 
885 	ASSERT(rw == READ || rw == WRITE);
886 
887 	zone_sectors = bdev_zone_sectors(bdev);
888 	if (!is_power_of_2(zone_sectors))
889 		return -EINVAL;
890 	zone_sectors_shift = ilog2(zone_sectors);
891 	nr_sectors = bdev_nr_sectors(bdev);
892 	nr_zones = nr_sectors >> zone_sectors_shift;
893 
894 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
895 	if (sb_zone + 1 >= nr_zones)
896 		return -ENOENT;
897 
898 	ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
899 				  BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
900 				  zones);
901 	if (ret < 0)
902 		return ret;
903 	if (ret != BTRFS_NR_SB_LOG_ZONES)
904 		return -EIO;
905 
906 	return sb_log_location(bdev, zones, rw, bytenr_ret);
907 }
908 
909 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
910 			  u64 *bytenr_ret)
911 {
912 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
913 	u32 zone_num;
914 
915 	/*
916 	 * For a zoned filesystem on a non-zoned block device, use the same
917 	 * super block locations as regular filesystem. Doing so, the super
918 	 * block can always be retrieved and the zoned flag of the volume
919 	 * detected from the super block information.
920 	 */
921 	if (!bdev_is_zoned(device->bdev)) {
922 		*bytenr_ret = btrfs_sb_offset(mirror);
923 		return 0;
924 	}
925 
926 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
927 	if (zone_num + 1 >= zinfo->nr_zones)
928 		return -ENOENT;
929 
930 	return sb_log_location(device->bdev,
931 			       &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
932 			       rw, bytenr_ret);
933 }
934 
935 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
936 				  int mirror)
937 {
938 	u32 zone_num;
939 
940 	if (!zinfo)
941 		return false;
942 
943 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
944 	if (zone_num + 1 >= zinfo->nr_zones)
945 		return false;
946 
947 	if (!test_bit(zone_num, zinfo->seq_zones))
948 		return false;
949 
950 	return true;
951 }
952 
953 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
954 {
955 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
956 	struct blk_zone *zone;
957 	int i;
958 
959 	if (!is_sb_log_zone(zinfo, mirror))
960 		return 0;
961 
962 	zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
963 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
964 		/* Advance the next zone */
965 		if (zone->cond == BLK_ZONE_COND_FULL) {
966 			zone++;
967 			continue;
968 		}
969 
970 		if (zone->cond == BLK_ZONE_COND_EMPTY)
971 			zone->cond = BLK_ZONE_COND_IMP_OPEN;
972 
973 		zone->wp += SUPER_INFO_SECTORS;
974 
975 		if (sb_zone_is_full(zone)) {
976 			/*
977 			 * No room left to write new superblock. Since
978 			 * superblock is written with REQ_SYNC, it is safe to
979 			 * finish the zone now.
980 			 *
981 			 * If the write pointer is exactly at the capacity,
982 			 * explicit ZONE_FINISH is not necessary.
983 			 */
984 			if (zone->wp != zone->start + zone->capacity) {
985 				int ret;
986 
987 				ret = blkdev_zone_mgmt(device->bdev,
988 						REQ_OP_ZONE_FINISH, zone->start,
989 						zone->len, GFP_NOFS);
990 				if (ret)
991 					return ret;
992 			}
993 
994 			zone->wp = zone->start + zone->len;
995 			zone->cond = BLK_ZONE_COND_FULL;
996 		}
997 		return 0;
998 	}
999 
1000 	/* All the zones are FULL. Should not reach here. */
1001 	ASSERT(0);
1002 	return -EIO;
1003 }
1004 
1005 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
1006 {
1007 	sector_t zone_sectors;
1008 	sector_t nr_sectors;
1009 	u8 zone_sectors_shift;
1010 	u32 sb_zone;
1011 	u32 nr_zones;
1012 
1013 	zone_sectors = bdev_zone_sectors(bdev);
1014 	zone_sectors_shift = ilog2(zone_sectors);
1015 	nr_sectors = bdev_nr_sectors(bdev);
1016 	nr_zones = nr_sectors >> zone_sectors_shift;
1017 
1018 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1019 	if (sb_zone + 1 >= nr_zones)
1020 		return -ENOENT;
1021 
1022 	return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1023 				zone_start_sector(sb_zone, bdev),
1024 				zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
1025 }
1026 
1027 /*
1028  * Find allocatable zones within a given region.
1029  *
1030  * @device:	the device to allocate a region on
1031  * @hole_start: the position of the hole to allocate the region
1032  * @num_bytes:	size of wanted region
1033  * @hole_end:	the end of the hole
1034  * @return:	position of allocatable zones
1035  *
1036  * Allocatable region should not contain any superblock locations.
1037  */
1038 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1039 				 u64 hole_end, u64 num_bytes)
1040 {
1041 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1042 	const u8 shift = zinfo->zone_size_shift;
1043 	u64 nzones = num_bytes >> shift;
1044 	u64 pos = hole_start;
1045 	u64 begin, end;
1046 	bool have_sb;
1047 	int i;
1048 
1049 	ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1050 	ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1051 
1052 	while (pos < hole_end) {
1053 		begin = pos >> shift;
1054 		end = begin + nzones;
1055 
1056 		if (end > zinfo->nr_zones)
1057 			return hole_end;
1058 
1059 		/* Check if zones in the region are all empty */
1060 		if (btrfs_dev_is_sequential(device, pos) &&
1061 		    !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) {
1062 			pos += zinfo->zone_size;
1063 			continue;
1064 		}
1065 
1066 		have_sb = false;
1067 		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1068 			u32 sb_zone;
1069 			u64 sb_pos;
1070 
1071 			sb_zone = sb_zone_number(shift, i);
1072 			if (!(end <= sb_zone ||
1073 			      sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1074 				have_sb = true;
1075 				pos = zone_start_physical(
1076 					sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1077 				break;
1078 			}
1079 
1080 			/* We also need to exclude regular superblock positions */
1081 			sb_pos = btrfs_sb_offset(i);
1082 			if (!(pos + num_bytes <= sb_pos ||
1083 			      sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1084 				have_sb = true;
1085 				pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1086 					    zinfo->zone_size);
1087 				break;
1088 			}
1089 		}
1090 		if (!have_sb)
1091 			break;
1092 	}
1093 
1094 	return pos;
1095 }
1096 
1097 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1098 {
1099 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1100 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1101 
1102 	/* We can use any number of zones */
1103 	if (zone_info->max_active_zones == 0)
1104 		return true;
1105 
1106 	if (!test_bit(zno, zone_info->active_zones)) {
1107 		/* Active zone left? */
1108 		if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1109 			return false;
1110 		if (test_and_set_bit(zno, zone_info->active_zones)) {
1111 			/* Someone already set the bit */
1112 			atomic_inc(&zone_info->active_zones_left);
1113 		}
1114 	}
1115 
1116 	return true;
1117 }
1118 
1119 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1120 {
1121 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1122 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1123 
1124 	/* We can use any number of zones */
1125 	if (zone_info->max_active_zones == 0)
1126 		return;
1127 
1128 	if (test_and_clear_bit(zno, zone_info->active_zones))
1129 		atomic_inc(&zone_info->active_zones_left);
1130 }
1131 
1132 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1133 			    u64 length, u64 *bytes)
1134 {
1135 	int ret;
1136 
1137 	*bytes = 0;
1138 	ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1139 			       physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1140 			       GFP_NOFS);
1141 	if (ret)
1142 		return ret;
1143 
1144 	*bytes = length;
1145 	while (length) {
1146 		btrfs_dev_set_zone_empty(device, physical);
1147 		btrfs_dev_clear_active_zone(device, physical);
1148 		physical += device->zone_info->zone_size;
1149 		length -= device->zone_info->zone_size;
1150 	}
1151 
1152 	return 0;
1153 }
1154 
1155 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1156 {
1157 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1158 	const u8 shift = zinfo->zone_size_shift;
1159 	unsigned long begin = start >> shift;
1160 	unsigned long nbits = size >> shift;
1161 	u64 pos;
1162 	int ret;
1163 
1164 	ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1165 	ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1166 
1167 	if (begin + nbits > zinfo->nr_zones)
1168 		return -ERANGE;
1169 
1170 	/* All the zones are conventional */
1171 	if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits))
1172 		return 0;
1173 
1174 	/* All the zones are sequential and empty */
1175 	if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) &&
1176 	    bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits))
1177 		return 0;
1178 
1179 	for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1180 		u64 reset_bytes;
1181 
1182 		if (!btrfs_dev_is_sequential(device, pos) ||
1183 		    btrfs_dev_is_empty_zone(device, pos))
1184 			continue;
1185 
1186 		/* Free regions should be empty */
1187 		btrfs_warn_in_rcu(
1188 			device->fs_info,
1189 		"zoned: resetting device %s (devid %llu) zone %llu for allocation",
1190 			rcu_str_deref(device->name), device->devid, pos >> shift);
1191 		WARN_ON_ONCE(1);
1192 
1193 		ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1194 					      &reset_bytes);
1195 		if (ret)
1196 			return ret;
1197 	}
1198 
1199 	return 0;
1200 }
1201 
1202 /*
1203  * Calculate an allocation pointer from the extent allocation information
1204  * for a block group consist of conventional zones. It is pointed to the
1205  * end of the highest addressed extent in the block group as an allocation
1206  * offset.
1207  */
1208 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1209 				   u64 *offset_ret, bool new)
1210 {
1211 	struct btrfs_fs_info *fs_info = cache->fs_info;
1212 	struct btrfs_root *root;
1213 	struct btrfs_path *path;
1214 	struct btrfs_key key;
1215 	struct btrfs_key found_key;
1216 	int ret;
1217 	u64 length;
1218 
1219 	/*
1220 	 * Avoid  tree lookups for a new block group, there's no use for it.
1221 	 * It must always be 0.
1222 	 *
1223 	 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1224 	 * For new a block group, this function is called from
1225 	 * btrfs_make_block_group() which is already taking the chunk mutex.
1226 	 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1227 	 * buffer locks to avoid deadlock.
1228 	 */
1229 	if (new) {
1230 		*offset_ret = 0;
1231 		return 0;
1232 	}
1233 
1234 	path = btrfs_alloc_path();
1235 	if (!path)
1236 		return -ENOMEM;
1237 
1238 	key.objectid = cache->start + cache->length;
1239 	key.type = 0;
1240 	key.offset = 0;
1241 
1242 	root = btrfs_extent_root(fs_info, key.objectid);
1243 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1244 	/* We should not find the exact match */
1245 	if (!ret)
1246 		ret = -EUCLEAN;
1247 	if (ret < 0)
1248 		goto out;
1249 
1250 	ret = btrfs_previous_extent_item(root, path, cache->start);
1251 	if (ret) {
1252 		if (ret == 1) {
1253 			ret = 0;
1254 			*offset_ret = 0;
1255 		}
1256 		goto out;
1257 	}
1258 
1259 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1260 
1261 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1262 		length = found_key.offset;
1263 	else
1264 		length = fs_info->nodesize;
1265 
1266 	if (!(found_key.objectid >= cache->start &&
1267 	       found_key.objectid + length <= cache->start + cache->length)) {
1268 		ret = -EUCLEAN;
1269 		goto out;
1270 	}
1271 	*offset_ret = found_key.objectid + length - cache->start;
1272 	ret = 0;
1273 
1274 out:
1275 	btrfs_free_path(path);
1276 	return ret;
1277 }
1278 
1279 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1280 {
1281 	struct btrfs_fs_info *fs_info = cache->fs_info;
1282 	struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1283 	struct extent_map *em;
1284 	struct map_lookup *map;
1285 	struct btrfs_device *device;
1286 	u64 logical = cache->start;
1287 	u64 length = cache->length;
1288 	int ret;
1289 	int i;
1290 	unsigned int nofs_flag;
1291 	u64 *alloc_offsets = NULL;
1292 	u64 *caps = NULL;
1293 	u64 *physical = NULL;
1294 	unsigned long *active = NULL;
1295 	u64 last_alloc = 0;
1296 	u32 num_sequential = 0, num_conventional = 0;
1297 
1298 	if (!btrfs_is_zoned(fs_info))
1299 		return 0;
1300 
1301 	/* Sanity check */
1302 	if (!IS_ALIGNED(length, fs_info->zone_size)) {
1303 		btrfs_err(fs_info,
1304 		"zoned: block group %llu len %llu unaligned to zone size %llu",
1305 			  logical, length, fs_info->zone_size);
1306 		return -EIO;
1307 	}
1308 
1309 	/* Get the chunk mapping */
1310 	read_lock(&em_tree->lock);
1311 	em = lookup_extent_mapping(em_tree, logical, length);
1312 	read_unlock(&em_tree->lock);
1313 
1314 	if (!em)
1315 		return -EINVAL;
1316 
1317 	map = em->map_lookup;
1318 
1319 	cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
1320 	if (!cache->physical_map) {
1321 		ret = -ENOMEM;
1322 		goto out;
1323 	}
1324 
1325 	alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
1326 	if (!alloc_offsets) {
1327 		ret = -ENOMEM;
1328 		goto out;
1329 	}
1330 
1331 	caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS);
1332 	if (!caps) {
1333 		ret = -ENOMEM;
1334 		goto out;
1335 	}
1336 
1337 	physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS);
1338 	if (!physical) {
1339 		ret = -ENOMEM;
1340 		goto out;
1341 	}
1342 
1343 	active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1344 	if (!active) {
1345 		ret = -ENOMEM;
1346 		goto out;
1347 	}
1348 
1349 	for (i = 0; i < map->num_stripes; i++) {
1350 		bool is_sequential;
1351 		struct blk_zone zone;
1352 		struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1353 		int dev_replace_is_ongoing = 0;
1354 
1355 		device = map->stripes[i].dev;
1356 		physical[i] = map->stripes[i].physical;
1357 
1358 		if (device->bdev == NULL) {
1359 			alloc_offsets[i] = WP_MISSING_DEV;
1360 			continue;
1361 		}
1362 
1363 		is_sequential = btrfs_dev_is_sequential(device, physical[i]);
1364 		if (is_sequential)
1365 			num_sequential++;
1366 		else
1367 			num_conventional++;
1368 
1369 		/*
1370 		 * Consider a zone as active if we can allow any number of
1371 		 * active zones.
1372 		 */
1373 		if (!device->zone_info->max_active_zones)
1374 			__set_bit(i, active);
1375 
1376 		if (!is_sequential) {
1377 			alloc_offsets[i] = WP_CONVENTIONAL;
1378 			continue;
1379 		}
1380 
1381 		/*
1382 		 * This zone will be used for allocation, so mark this zone
1383 		 * non-empty.
1384 		 */
1385 		btrfs_dev_clear_zone_empty(device, physical[i]);
1386 
1387 		down_read(&dev_replace->rwsem);
1388 		dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1389 		if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1390 			btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]);
1391 		up_read(&dev_replace->rwsem);
1392 
1393 		/*
1394 		 * The group is mapped to a sequential zone. Get the zone write
1395 		 * pointer to determine the allocation offset within the zone.
1396 		 */
1397 		WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size));
1398 		nofs_flag = memalloc_nofs_save();
1399 		ret = btrfs_get_dev_zone(device, physical[i], &zone);
1400 		memalloc_nofs_restore(nofs_flag);
1401 		if (ret == -EIO || ret == -EOPNOTSUPP) {
1402 			ret = 0;
1403 			alloc_offsets[i] = WP_MISSING_DEV;
1404 			continue;
1405 		} else if (ret) {
1406 			goto out;
1407 		}
1408 
1409 		if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1410 			btrfs_err_in_rcu(fs_info,
1411 	"zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1412 				zone.start << SECTOR_SHIFT,
1413 				rcu_str_deref(device->name), device->devid);
1414 			ret = -EIO;
1415 			goto out;
1416 		}
1417 
1418 		caps[i] = (zone.capacity << SECTOR_SHIFT);
1419 
1420 		switch (zone.cond) {
1421 		case BLK_ZONE_COND_OFFLINE:
1422 		case BLK_ZONE_COND_READONLY:
1423 			btrfs_err(fs_info,
1424 		"zoned: offline/readonly zone %llu on device %s (devid %llu)",
1425 				  physical[i] >> device->zone_info->zone_size_shift,
1426 				  rcu_str_deref(device->name), device->devid);
1427 			alloc_offsets[i] = WP_MISSING_DEV;
1428 			break;
1429 		case BLK_ZONE_COND_EMPTY:
1430 			alloc_offsets[i] = 0;
1431 			break;
1432 		case BLK_ZONE_COND_FULL:
1433 			alloc_offsets[i] = caps[i];
1434 			break;
1435 		default:
1436 			/* Partially used zone */
1437 			alloc_offsets[i] =
1438 					((zone.wp - zone.start) << SECTOR_SHIFT);
1439 			__set_bit(i, active);
1440 			break;
1441 		}
1442 	}
1443 
1444 	if (num_sequential > 0)
1445 		set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1446 
1447 	if (num_conventional > 0) {
1448 		/* Zone capacity is always zone size in emulation */
1449 		cache->zone_capacity = cache->length;
1450 		ret = calculate_alloc_pointer(cache, &last_alloc, new);
1451 		if (ret) {
1452 			btrfs_err(fs_info,
1453 			"zoned: failed to determine allocation offset of bg %llu",
1454 				  cache->start);
1455 			goto out;
1456 		} else if (map->num_stripes == num_conventional) {
1457 			cache->alloc_offset = last_alloc;
1458 			set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1459 			goto out;
1460 		}
1461 	}
1462 
1463 	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1464 	case 0: /* single */
1465 		if (alloc_offsets[0] == WP_MISSING_DEV) {
1466 			btrfs_err(fs_info,
1467 			"zoned: cannot recover write pointer for zone %llu",
1468 				physical[0]);
1469 			ret = -EIO;
1470 			goto out;
1471 		}
1472 		cache->alloc_offset = alloc_offsets[0];
1473 		cache->zone_capacity = caps[0];
1474 		if (test_bit(0, active))
1475 			set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1476 		break;
1477 	case BTRFS_BLOCK_GROUP_DUP:
1478 		if (map->type & BTRFS_BLOCK_GROUP_DATA) {
1479 			btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg");
1480 			ret = -EINVAL;
1481 			goto out;
1482 		}
1483 		if (alloc_offsets[0] == WP_MISSING_DEV) {
1484 			btrfs_err(fs_info,
1485 			"zoned: cannot recover write pointer for zone %llu",
1486 				physical[0]);
1487 			ret = -EIO;
1488 			goto out;
1489 		}
1490 		if (alloc_offsets[1] == WP_MISSING_DEV) {
1491 			btrfs_err(fs_info,
1492 			"zoned: cannot recover write pointer for zone %llu",
1493 				physical[1]);
1494 			ret = -EIO;
1495 			goto out;
1496 		}
1497 		if (alloc_offsets[0] != alloc_offsets[1]) {
1498 			btrfs_err(fs_info,
1499 			"zoned: write pointer offset mismatch of zones in DUP profile");
1500 			ret = -EIO;
1501 			goto out;
1502 		}
1503 		if (test_bit(0, active) != test_bit(1, active)) {
1504 			if (!btrfs_zone_activate(cache)) {
1505 				ret = -EIO;
1506 				goto out;
1507 			}
1508 		} else {
1509 			if (test_bit(0, active))
1510 				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
1511 					&cache->runtime_flags);
1512 		}
1513 		cache->alloc_offset = alloc_offsets[0];
1514 		cache->zone_capacity = min(caps[0], caps[1]);
1515 		break;
1516 	case BTRFS_BLOCK_GROUP_RAID1:
1517 	case BTRFS_BLOCK_GROUP_RAID0:
1518 	case BTRFS_BLOCK_GROUP_RAID10:
1519 	case BTRFS_BLOCK_GROUP_RAID5:
1520 	case BTRFS_BLOCK_GROUP_RAID6:
1521 		/* non-single profiles are not supported yet */
1522 	default:
1523 		btrfs_err(fs_info, "zoned: profile %s not yet supported",
1524 			  btrfs_bg_type_to_raid_name(map->type));
1525 		ret = -EINVAL;
1526 		goto out;
1527 	}
1528 
1529 out:
1530 	if (cache->alloc_offset > fs_info->zone_size) {
1531 		btrfs_err(fs_info,
1532 			"zoned: invalid write pointer %llu in block group %llu",
1533 			cache->alloc_offset, cache->start);
1534 		ret = -EIO;
1535 	}
1536 
1537 	if (cache->alloc_offset > cache->zone_capacity) {
1538 		btrfs_err(fs_info,
1539 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1540 			  cache->alloc_offset, cache->zone_capacity,
1541 			  cache->start);
1542 		ret = -EIO;
1543 	}
1544 
1545 	/* An extent is allocated after the write pointer */
1546 	if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1547 		btrfs_err(fs_info,
1548 			  "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1549 			  logical, last_alloc, cache->alloc_offset);
1550 		ret = -EIO;
1551 	}
1552 
1553 	if (!ret) {
1554 		cache->meta_write_pointer = cache->alloc_offset + cache->start;
1555 		if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1556 			btrfs_get_block_group(cache);
1557 			spin_lock(&fs_info->zone_active_bgs_lock);
1558 			list_add_tail(&cache->active_bg_list,
1559 				      &fs_info->zone_active_bgs);
1560 			spin_unlock(&fs_info->zone_active_bgs_lock);
1561 		}
1562 	} else {
1563 		kfree(cache->physical_map);
1564 		cache->physical_map = NULL;
1565 	}
1566 	bitmap_free(active);
1567 	kfree(physical);
1568 	kfree(caps);
1569 	kfree(alloc_offsets);
1570 	free_extent_map(em);
1571 
1572 	return ret;
1573 }
1574 
1575 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1576 {
1577 	u64 unusable, free;
1578 
1579 	if (!btrfs_is_zoned(cache->fs_info))
1580 		return;
1581 
1582 	WARN_ON(cache->bytes_super != 0);
1583 
1584 	/* Check for block groups never get activated */
1585 	if (test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &cache->fs_info->flags) &&
1586 	    cache->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM) &&
1587 	    !test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags) &&
1588 	    cache->alloc_offset == 0) {
1589 		unusable = cache->length;
1590 		free = 0;
1591 	} else {
1592 		unusable = (cache->alloc_offset - cache->used) +
1593 			   (cache->length - cache->zone_capacity);
1594 		free = cache->zone_capacity - cache->alloc_offset;
1595 	}
1596 
1597 	/* We only need ->free_space in ALLOC_SEQ block groups */
1598 	cache->cached = BTRFS_CACHE_FINISHED;
1599 	cache->free_space_ctl->free_space = free;
1600 	cache->zone_unusable = unusable;
1601 }
1602 
1603 void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1604 			    struct extent_buffer *eb)
1605 {
1606 	if (!btrfs_is_zoned(eb->fs_info) ||
1607 	    btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN))
1608 		return;
1609 
1610 	ASSERT(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1611 
1612 	memzero_extent_buffer(eb, 0, eb->len);
1613 	set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1614 	set_extent_buffer_dirty(eb);
1615 	set_extent_bit(&trans->dirty_pages, eb->start, eb->start + eb->len - 1,
1616 			EXTENT_DIRTY | EXTENT_NOWAIT, NULL);
1617 }
1618 
1619 bool btrfs_use_zone_append(struct btrfs_bio *bbio)
1620 {
1621 	u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1622 	struct btrfs_inode *inode = bbio->inode;
1623 	struct btrfs_fs_info *fs_info = bbio->fs_info;
1624 	struct btrfs_block_group *cache;
1625 	bool ret = false;
1626 
1627 	if (!btrfs_is_zoned(fs_info))
1628 		return false;
1629 
1630 	if (!inode || !is_data_inode(&inode->vfs_inode))
1631 		return false;
1632 
1633 	if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
1634 		return false;
1635 
1636 	/*
1637 	 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1638 	 * extent layout the relocation code has.
1639 	 * Furthermore we have set aside own block-group from which only the
1640 	 * relocation "process" can allocate and make sure only one process at a
1641 	 * time can add pages to an extent that gets relocated, so it's safe to
1642 	 * use regular REQ_OP_WRITE for this special case.
1643 	 */
1644 	if (btrfs_is_data_reloc_root(inode->root))
1645 		return false;
1646 
1647 	cache = btrfs_lookup_block_group(fs_info, start);
1648 	ASSERT(cache);
1649 	if (!cache)
1650 		return false;
1651 
1652 	ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1653 	btrfs_put_block_group(cache);
1654 
1655 	return ret;
1656 }
1657 
1658 void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
1659 {
1660 	const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
1661 	struct btrfs_ordered_sum *sum = bbio->sums;
1662 
1663 	if (physical < bbio->orig_physical)
1664 		sum->logical -= bbio->orig_physical - physical;
1665 	else
1666 		sum->logical += physical - bbio->orig_physical;
1667 }
1668 
1669 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered,
1670 					u64 logical)
1671 {
1672 	struct extent_map_tree *em_tree = &BTRFS_I(ordered->inode)->extent_tree;
1673 	struct extent_map *em;
1674 
1675 	ordered->disk_bytenr = logical;
1676 
1677 	write_lock(&em_tree->lock);
1678 	em = search_extent_mapping(em_tree, ordered->file_offset,
1679 				   ordered->num_bytes);
1680 	em->block_start = logical;
1681 	free_extent_map(em);
1682 	write_unlock(&em_tree->lock);
1683 }
1684 
1685 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered,
1686 				      u64 logical, u64 len)
1687 {
1688 	struct btrfs_ordered_extent *new;
1689 
1690 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
1691 	    split_extent_map(BTRFS_I(ordered->inode), ordered->file_offset,
1692 			     ordered->num_bytes, len, logical))
1693 		return false;
1694 
1695 	new = btrfs_split_ordered_extent(ordered, len);
1696 	if (IS_ERR(new))
1697 		return false;
1698 	new->disk_bytenr = logical;
1699 	btrfs_finish_one_ordered(new);
1700 	return true;
1701 }
1702 
1703 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered)
1704 {
1705 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1706 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1707 	struct btrfs_ordered_sum *sum =
1708 		list_first_entry(&ordered->list, typeof(*sum), list);
1709 	u64 logical = sum->logical;
1710 	u64 len = sum->len;
1711 
1712 	while (len < ordered->disk_num_bytes) {
1713 		sum = list_next_entry(sum, list);
1714 		if (sum->logical == logical + len) {
1715 			len += sum->len;
1716 			continue;
1717 		}
1718 		if (!btrfs_zoned_split_ordered(ordered, logical, len)) {
1719 			set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
1720 			btrfs_err(fs_info, "failed to split ordered extent");
1721 			goto out;
1722 		}
1723 		logical = sum->logical;
1724 		len = sum->len;
1725 	}
1726 
1727 	if (ordered->disk_bytenr != logical)
1728 		btrfs_rewrite_logical_zoned(ordered, logical);
1729 
1730 out:
1731 	/*
1732 	 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures
1733 	 * were allocated by btrfs_alloc_dummy_sum only to record the logical
1734 	 * addresses and don't contain actual checksums.  We thus must free them
1735 	 * here so that we don't attempt to log the csums later.
1736 	 */
1737 	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
1738 	    test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)) {
1739 		while ((sum = list_first_entry_or_null(&ordered->list,
1740 						       typeof(*sum), list))) {
1741 			list_del(&sum->list);
1742 			kfree(sum);
1743 		}
1744 	}
1745 }
1746 
1747 bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1748 				    struct extent_buffer *eb,
1749 				    struct btrfs_block_group **cache_ret)
1750 {
1751 	struct btrfs_block_group *cache;
1752 	bool ret = true;
1753 
1754 	if (!btrfs_is_zoned(fs_info))
1755 		return true;
1756 
1757 	cache = btrfs_lookup_block_group(fs_info, eb->start);
1758 	if (!cache)
1759 		return true;
1760 
1761 	if (cache->meta_write_pointer != eb->start) {
1762 		btrfs_put_block_group(cache);
1763 		cache = NULL;
1764 		ret = false;
1765 	} else {
1766 		cache->meta_write_pointer = eb->start + eb->len;
1767 	}
1768 
1769 	*cache_ret = cache;
1770 
1771 	return ret;
1772 }
1773 
1774 void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
1775 				     struct extent_buffer *eb)
1776 {
1777 	if (!btrfs_is_zoned(eb->fs_info) || !cache)
1778 		return;
1779 
1780 	ASSERT(cache->meta_write_pointer == eb->start + eb->len);
1781 	cache->meta_write_pointer = eb->start;
1782 }
1783 
1784 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1785 {
1786 	if (!btrfs_dev_is_sequential(device, physical))
1787 		return -EOPNOTSUPP;
1788 
1789 	return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1790 				    length >> SECTOR_SHIFT, GFP_NOFS, 0);
1791 }
1792 
1793 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1794 			  struct blk_zone *zone)
1795 {
1796 	struct btrfs_io_context *bioc = NULL;
1797 	u64 mapped_length = PAGE_SIZE;
1798 	unsigned int nofs_flag;
1799 	int nmirrors;
1800 	int i, ret;
1801 
1802 	ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1803 			      &mapped_length, &bioc, NULL, NULL, 1);
1804 	if (ret || !bioc || mapped_length < PAGE_SIZE) {
1805 		ret = -EIO;
1806 		goto out_put_bioc;
1807 	}
1808 
1809 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1810 		ret = -EINVAL;
1811 		goto out_put_bioc;
1812 	}
1813 
1814 	nofs_flag = memalloc_nofs_save();
1815 	nmirrors = (int)bioc->num_stripes;
1816 	for (i = 0; i < nmirrors; i++) {
1817 		u64 physical = bioc->stripes[i].physical;
1818 		struct btrfs_device *dev = bioc->stripes[i].dev;
1819 
1820 		/* Missing device */
1821 		if (!dev->bdev)
1822 			continue;
1823 
1824 		ret = btrfs_get_dev_zone(dev, physical, zone);
1825 		/* Failing device */
1826 		if (ret == -EIO || ret == -EOPNOTSUPP)
1827 			continue;
1828 		break;
1829 	}
1830 	memalloc_nofs_restore(nofs_flag);
1831 out_put_bioc:
1832 	btrfs_put_bioc(bioc);
1833 	return ret;
1834 }
1835 
1836 /*
1837  * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
1838  * filling zeros between @physical_pos to a write pointer of dev-replace
1839  * source device.
1840  */
1841 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1842 				    u64 physical_start, u64 physical_pos)
1843 {
1844 	struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1845 	struct blk_zone zone;
1846 	u64 length;
1847 	u64 wp;
1848 	int ret;
1849 
1850 	if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1851 		return 0;
1852 
1853 	ret = read_zone_info(fs_info, logical, &zone);
1854 	if (ret)
1855 		return ret;
1856 
1857 	wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1858 
1859 	if (physical_pos == wp)
1860 		return 0;
1861 
1862 	if (physical_pos > wp)
1863 		return -EUCLEAN;
1864 
1865 	length = wp - physical_pos;
1866 	return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1867 }
1868 
1869 /*
1870  * Activate block group and underlying device zones
1871  *
1872  * @block_group: the block group to activate
1873  *
1874  * Return: true on success, false otherwise
1875  */
1876 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
1877 {
1878 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1879 	struct btrfs_space_info *space_info = block_group->space_info;
1880 	struct map_lookup *map;
1881 	struct btrfs_device *device;
1882 	u64 physical;
1883 	bool ret;
1884 	int i;
1885 
1886 	if (!btrfs_is_zoned(block_group->fs_info))
1887 		return true;
1888 
1889 	map = block_group->physical_map;
1890 
1891 	spin_lock(&space_info->lock);
1892 	spin_lock(&block_group->lock);
1893 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
1894 		ret = true;
1895 		goto out_unlock;
1896 	}
1897 
1898 	/* No space left */
1899 	if (btrfs_zoned_bg_is_full(block_group)) {
1900 		ret = false;
1901 		goto out_unlock;
1902 	}
1903 
1904 	for (i = 0; i < map->num_stripes; i++) {
1905 		device = map->stripes[i].dev;
1906 		physical = map->stripes[i].physical;
1907 
1908 		if (device->zone_info->max_active_zones == 0)
1909 			continue;
1910 
1911 		if (!btrfs_dev_set_active_zone(device, physical)) {
1912 			/* Cannot activate the zone */
1913 			ret = false;
1914 			goto out_unlock;
1915 		}
1916 	}
1917 
1918 	/* Successfully activated all the zones */
1919 	set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
1920 	WARN_ON(block_group->alloc_offset != 0);
1921 	if (block_group->zone_unusable == block_group->length) {
1922 		block_group->zone_unusable = block_group->length - block_group->zone_capacity;
1923 		space_info->bytes_zone_unusable -= block_group->zone_capacity;
1924 	}
1925 	spin_unlock(&block_group->lock);
1926 	btrfs_try_granting_tickets(fs_info, space_info);
1927 	spin_unlock(&space_info->lock);
1928 
1929 	/* For the active block group list */
1930 	btrfs_get_block_group(block_group);
1931 
1932 	spin_lock(&fs_info->zone_active_bgs_lock);
1933 	list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
1934 	spin_unlock(&fs_info->zone_active_bgs_lock);
1935 
1936 	return true;
1937 
1938 out_unlock:
1939 	spin_unlock(&block_group->lock);
1940 	spin_unlock(&space_info->lock);
1941 	return ret;
1942 }
1943 
1944 static void wait_eb_writebacks(struct btrfs_block_group *block_group)
1945 {
1946 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1947 	const u64 end = block_group->start + block_group->length;
1948 	struct radix_tree_iter iter;
1949 	struct extent_buffer *eb;
1950 	void __rcu **slot;
1951 
1952 	rcu_read_lock();
1953 	radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
1954 				 block_group->start >> fs_info->sectorsize_bits) {
1955 		eb = radix_tree_deref_slot(slot);
1956 		if (!eb)
1957 			continue;
1958 		if (radix_tree_deref_retry(eb)) {
1959 			slot = radix_tree_iter_retry(&iter);
1960 			continue;
1961 		}
1962 
1963 		if (eb->start < block_group->start)
1964 			continue;
1965 		if (eb->start >= end)
1966 			break;
1967 
1968 		slot = radix_tree_iter_resume(slot, &iter);
1969 		rcu_read_unlock();
1970 		wait_on_extent_buffer_writeback(eb);
1971 		rcu_read_lock();
1972 	}
1973 	rcu_read_unlock();
1974 }
1975 
1976 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
1977 {
1978 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1979 	struct map_lookup *map;
1980 	const bool is_metadata = (block_group->flags &
1981 			(BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
1982 	int ret = 0;
1983 	int i;
1984 
1985 	spin_lock(&block_group->lock);
1986 	if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
1987 		spin_unlock(&block_group->lock);
1988 		return 0;
1989 	}
1990 
1991 	/* Check if we have unwritten allocated space */
1992 	if (is_metadata &&
1993 	    block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
1994 		spin_unlock(&block_group->lock);
1995 		return -EAGAIN;
1996 	}
1997 
1998 	/*
1999 	 * If we are sure that the block group is full (= no more room left for
2000 	 * new allocation) and the IO for the last usable block is completed, we
2001 	 * don't need to wait for the other IOs. This holds because we ensure
2002 	 * the sequential IO submissions using the ZONE_APPEND command for data
2003 	 * and block_group->meta_write_pointer for metadata.
2004 	 */
2005 	if (!fully_written) {
2006 		spin_unlock(&block_group->lock);
2007 
2008 		ret = btrfs_inc_block_group_ro(block_group, false);
2009 		if (ret)
2010 			return ret;
2011 
2012 		/* Ensure all writes in this block group finish */
2013 		btrfs_wait_block_group_reservations(block_group);
2014 		/* No need to wait for NOCOW writers. Zoned mode does not allow that */
2015 		btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
2016 					 block_group->length);
2017 		/* Wait for extent buffers to be written. */
2018 		if (is_metadata)
2019 			wait_eb_writebacks(block_group);
2020 
2021 		spin_lock(&block_group->lock);
2022 
2023 		/*
2024 		 * Bail out if someone already deactivated the block group, or
2025 		 * allocated space is left in the block group.
2026 		 */
2027 		if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2028 			      &block_group->runtime_flags)) {
2029 			spin_unlock(&block_group->lock);
2030 			btrfs_dec_block_group_ro(block_group);
2031 			return 0;
2032 		}
2033 
2034 		if (block_group->reserved) {
2035 			spin_unlock(&block_group->lock);
2036 			btrfs_dec_block_group_ro(block_group);
2037 			return -EAGAIN;
2038 		}
2039 	}
2040 
2041 	clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2042 	block_group->alloc_offset = block_group->zone_capacity;
2043 	block_group->free_space_ctl->free_space = 0;
2044 	btrfs_clear_treelog_bg(block_group);
2045 	btrfs_clear_data_reloc_bg(block_group);
2046 	spin_unlock(&block_group->lock);
2047 
2048 	map = block_group->physical_map;
2049 	for (i = 0; i < map->num_stripes; i++) {
2050 		struct btrfs_device *device = map->stripes[i].dev;
2051 		const u64 physical = map->stripes[i].physical;
2052 
2053 		if (device->zone_info->max_active_zones == 0)
2054 			continue;
2055 
2056 		ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2057 				       physical >> SECTOR_SHIFT,
2058 				       device->zone_info->zone_size >> SECTOR_SHIFT,
2059 				       GFP_NOFS);
2060 
2061 		if (ret)
2062 			return ret;
2063 
2064 		btrfs_dev_clear_active_zone(device, physical);
2065 	}
2066 
2067 	if (!fully_written)
2068 		btrfs_dec_block_group_ro(block_group);
2069 
2070 	spin_lock(&fs_info->zone_active_bgs_lock);
2071 	ASSERT(!list_empty(&block_group->active_bg_list));
2072 	list_del_init(&block_group->active_bg_list);
2073 	spin_unlock(&fs_info->zone_active_bgs_lock);
2074 
2075 	/* For active_bg_list */
2076 	btrfs_put_block_group(block_group);
2077 
2078 	clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2079 
2080 	return 0;
2081 }
2082 
2083 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2084 {
2085 	if (!btrfs_is_zoned(block_group->fs_info))
2086 		return 0;
2087 
2088 	return do_zone_finish(block_group, false);
2089 }
2090 
2091 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2092 {
2093 	struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2094 	struct btrfs_device *device;
2095 	bool ret = false;
2096 
2097 	if (!btrfs_is_zoned(fs_info))
2098 		return true;
2099 
2100 	/* Check if there is a device with active zones left */
2101 	mutex_lock(&fs_info->chunk_mutex);
2102 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2103 		struct btrfs_zoned_device_info *zinfo = device->zone_info;
2104 
2105 		if (!device->bdev)
2106 			continue;
2107 
2108 		if (!zinfo->max_active_zones) {
2109 			ret = true;
2110 			break;
2111 		}
2112 
2113 		switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2114 		case 0: /* single */
2115 			ret = (atomic_read(&zinfo->active_zones_left) >= 1);
2116 			break;
2117 		case BTRFS_BLOCK_GROUP_DUP:
2118 			ret = (atomic_read(&zinfo->active_zones_left) >= 2);
2119 			break;
2120 		}
2121 		if (ret)
2122 			break;
2123 	}
2124 	mutex_unlock(&fs_info->chunk_mutex);
2125 
2126 	if (!ret)
2127 		set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2128 
2129 	return ret;
2130 }
2131 
2132 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2133 {
2134 	struct btrfs_block_group *block_group;
2135 	u64 min_alloc_bytes;
2136 
2137 	if (!btrfs_is_zoned(fs_info))
2138 		return;
2139 
2140 	block_group = btrfs_lookup_block_group(fs_info, logical);
2141 	ASSERT(block_group);
2142 
2143 	/* No MIXED_BG on zoned btrfs. */
2144 	if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2145 		min_alloc_bytes = fs_info->sectorsize;
2146 	else
2147 		min_alloc_bytes = fs_info->nodesize;
2148 
2149 	/* Bail out if we can allocate more data from this block group. */
2150 	if (logical + length + min_alloc_bytes <=
2151 	    block_group->start + block_group->zone_capacity)
2152 		goto out;
2153 
2154 	do_zone_finish(block_group, true);
2155 
2156 out:
2157 	btrfs_put_block_group(block_group);
2158 }
2159 
2160 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2161 {
2162 	struct btrfs_block_group *bg =
2163 		container_of(work, struct btrfs_block_group, zone_finish_work);
2164 
2165 	wait_on_extent_buffer_writeback(bg->last_eb);
2166 	free_extent_buffer(bg->last_eb);
2167 	btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2168 	btrfs_put_block_group(bg);
2169 }
2170 
2171 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2172 				   struct extent_buffer *eb)
2173 {
2174 	if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2175 	    eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2176 		return;
2177 
2178 	if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2179 		btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2180 			  bg->start);
2181 		return;
2182 	}
2183 
2184 	/* For the work */
2185 	btrfs_get_block_group(bg);
2186 	atomic_inc(&eb->refs);
2187 	bg->last_eb = eb;
2188 	INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2189 	queue_work(system_unbound_wq, &bg->zone_finish_work);
2190 }
2191 
2192 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2193 {
2194 	struct btrfs_fs_info *fs_info = bg->fs_info;
2195 
2196 	spin_lock(&fs_info->relocation_bg_lock);
2197 	if (fs_info->data_reloc_bg == bg->start)
2198 		fs_info->data_reloc_bg = 0;
2199 	spin_unlock(&fs_info->relocation_bg_lock);
2200 }
2201 
2202 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2203 {
2204 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2205 	struct btrfs_device *device;
2206 
2207 	if (!btrfs_is_zoned(fs_info))
2208 		return;
2209 
2210 	mutex_lock(&fs_devices->device_list_mutex);
2211 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2212 		if (device->zone_info) {
2213 			vfree(device->zone_info->zone_cache);
2214 			device->zone_info->zone_cache = NULL;
2215 		}
2216 	}
2217 	mutex_unlock(&fs_devices->device_list_mutex);
2218 }
2219 
2220 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2221 {
2222 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2223 	struct btrfs_device *device;
2224 	u64 used = 0;
2225 	u64 total = 0;
2226 	u64 factor;
2227 
2228 	ASSERT(btrfs_is_zoned(fs_info));
2229 
2230 	if (fs_info->bg_reclaim_threshold == 0)
2231 		return false;
2232 
2233 	mutex_lock(&fs_devices->device_list_mutex);
2234 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2235 		if (!device->bdev)
2236 			continue;
2237 
2238 		total += device->disk_total_bytes;
2239 		used += device->bytes_used;
2240 	}
2241 	mutex_unlock(&fs_devices->device_list_mutex);
2242 
2243 	factor = div64_u64(used * 100, total);
2244 	return factor >= fs_info->bg_reclaim_threshold;
2245 }
2246 
2247 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2248 				       u64 length)
2249 {
2250 	struct btrfs_block_group *block_group;
2251 
2252 	if (!btrfs_is_zoned(fs_info))
2253 		return;
2254 
2255 	block_group = btrfs_lookup_block_group(fs_info, logical);
2256 	/* It should be called on a previous data relocation block group. */
2257 	ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2258 
2259 	spin_lock(&block_group->lock);
2260 	if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2261 		goto out;
2262 
2263 	/* All relocation extents are written. */
2264 	if (block_group->start + block_group->alloc_offset == logical + length) {
2265 		/* Now, release this block group for further allocations. */
2266 		clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2267 			  &block_group->runtime_flags);
2268 	}
2269 
2270 out:
2271 	spin_unlock(&block_group->lock);
2272 	btrfs_put_block_group(block_group);
2273 }
2274 
2275 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2276 {
2277 	struct btrfs_block_group *block_group;
2278 	struct btrfs_block_group *min_bg = NULL;
2279 	u64 min_avail = U64_MAX;
2280 	int ret;
2281 
2282 	spin_lock(&fs_info->zone_active_bgs_lock);
2283 	list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2284 			    active_bg_list) {
2285 		u64 avail;
2286 
2287 		spin_lock(&block_group->lock);
2288 		if (block_group->reserved || block_group->alloc_offset == 0 ||
2289 		    (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)) {
2290 			spin_unlock(&block_group->lock);
2291 			continue;
2292 		}
2293 
2294 		avail = block_group->zone_capacity - block_group->alloc_offset;
2295 		if (min_avail > avail) {
2296 			if (min_bg)
2297 				btrfs_put_block_group(min_bg);
2298 			min_bg = block_group;
2299 			min_avail = avail;
2300 			btrfs_get_block_group(min_bg);
2301 		}
2302 		spin_unlock(&block_group->lock);
2303 	}
2304 	spin_unlock(&fs_info->zone_active_bgs_lock);
2305 
2306 	if (!min_bg)
2307 		return 0;
2308 
2309 	ret = btrfs_zone_finish(min_bg);
2310 	btrfs_put_block_group(min_bg);
2311 
2312 	return ret < 0 ? ret : 1;
2313 }
2314 
2315 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2316 				struct btrfs_space_info *space_info,
2317 				bool do_finish)
2318 {
2319 	struct btrfs_block_group *bg;
2320 	int index;
2321 
2322 	if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2323 		return 0;
2324 
2325 	for (;;) {
2326 		int ret;
2327 		bool need_finish = false;
2328 
2329 		down_read(&space_info->groups_sem);
2330 		for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2331 			list_for_each_entry(bg, &space_info->block_groups[index],
2332 					    list) {
2333 				if (!spin_trylock(&bg->lock))
2334 					continue;
2335 				if (btrfs_zoned_bg_is_full(bg) ||
2336 				    test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2337 					     &bg->runtime_flags)) {
2338 					spin_unlock(&bg->lock);
2339 					continue;
2340 				}
2341 				spin_unlock(&bg->lock);
2342 
2343 				if (btrfs_zone_activate(bg)) {
2344 					up_read(&space_info->groups_sem);
2345 					return 1;
2346 				}
2347 
2348 				need_finish = true;
2349 			}
2350 		}
2351 		up_read(&space_info->groups_sem);
2352 
2353 		if (!do_finish || !need_finish)
2354 			break;
2355 
2356 		ret = btrfs_zone_finish_one_bg(fs_info);
2357 		if (ret == 0)
2358 			break;
2359 		if (ret < 0)
2360 			return ret;
2361 	}
2362 
2363 	return 0;
2364 }
2365