1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/blkdev.h> 6 #include <linux/sched/mm.h> 7 #include <linux/atomic.h> 8 #include <linux/vmalloc.h> 9 #include "ctree.h" 10 #include "volumes.h" 11 #include "zoned.h" 12 #include "rcu-string.h" 13 #include "disk-io.h" 14 #include "block-group.h" 15 #include "transaction.h" 16 #include "dev-replace.h" 17 #include "space-info.h" 18 #include "fs.h" 19 #include "accessors.h" 20 21 /* Maximum number of zones to report per blkdev_report_zones() call */ 22 #define BTRFS_REPORT_NR_ZONES 4096 23 /* Invalid allocation pointer value for missing devices */ 24 #define WP_MISSING_DEV ((u64)-1) 25 /* Pseudo write pointer value for conventional zone */ 26 #define WP_CONVENTIONAL ((u64)-2) 27 28 /* 29 * Location of the first zone of superblock logging zone pairs. 30 * 31 * - primary superblock: 0B (zone 0) 32 * - first copy: 512G (zone starting at that offset) 33 * - second copy: 4T (zone starting at that offset) 34 */ 35 #define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL) 36 #define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G) 37 #define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G) 38 39 #define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET) 40 #define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET) 41 42 /* Number of superblock log zones */ 43 #define BTRFS_NR_SB_LOG_ZONES 2 44 45 /* 46 * Minimum of active zones we need: 47 * 48 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors 49 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group 50 * - 1 zone for tree-log dedicated block group 51 * - 1 zone for relocation 52 */ 53 #define BTRFS_MIN_ACTIVE_ZONES (BTRFS_SUPER_MIRROR_MAX + 5) 54 55 /* 56 * Minimum / maximum supported zone size. Currently, SMR disks have a zone 57 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range. 58 * We do not expect the zone size to become larger than 8GiB or smaller than 59 * 4MiB in the near future. 60 */ 61 #define BTRFS_MAX_ZONE_SIZE SZ_8G 62 #define BTRFS_MIN_ZONE_SIZE SZ_4M 63 64 #define SUPER_INFO_SECTORS ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT) 65 66 static inline bool sb_zone_is_full(const struct blk_zone *zone) 67 { 68 return (zone->cond == BLK_ZONE_COND_FULL) || 69 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity); 70 } 71 72 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data) 73 { 74 struct blk_zone *zones = data; 75 76 memcpy(&zones[idx], zone, sizeof(*zone)); 77 78 return 0; 79 } 80 81 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones, 82 u64 *wp_ret) 83 { 84 bool empty[BTRFS_NR_SB_LOG_ZONES]; 85 bool full[BTRFS_NR_SB_LOG_ZONES]; 86 sector_t sector; 87 int i; 88 89 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 90 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL); 91 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY); 92 full[i] = sb_zone_is_full(&zones[i]); 93 } 94 95 /* 96 * Possible states of log buffer zones 97 * 98 * Empty[0] In use[0] Full[0] 99 * Empty[1] * 0 1 100 * In use[1] x x 1 101 * Full[1] 0 0 C 102 * 103 * Log position: 104 * *: Special case, no superblock is written 105 * 0: Use write pointer of zones[0] 106 * 1: Use write pointer of zones[1] 107 * C: Compare super blocks from zones[0] and zones[1], use the latest 108 * one determined by generation 109 * x: Invalid state 110 */ 111 112 if (empty[0] && empty[1]) { 113 /* Special case to distinguish no superblock to read */ 114 *wp_ret = zones[0].start << SECTOR_SHIFT; 115 return -ENOENT; 116 } else if (full[0] && full[1]) { 117 /* Compare two super blocks */ 118 struct address_space *mapping = bdev->bd_inode->i_mapping; 119 struct page *page[BTRFS_NR_SB_LOG_ZONES]; 120 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES]; 121 int i; 122 123 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 124 u64 bytenr; 125 126 bytenr = ((zones[i].start + zones[i].len) 127 << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE; 128 129 page[i] = read_cache_page_gfp(mapping, 130 bytenr >> PAGE_SHIFT, GFP_NOFS); 131 if (IS_ERR(page[i])) { 132 if (i == 1) 133 btrfs_release_disk_super(super[0]); 134 return PTR_ERR(page[i]); 135 } 136 super[i] = page_address(page[i]); 137 } 138 139 if (btrfs_super_generation(super[0]) > 140 btrfs_super_generation(super[1])) 141 sector = zones[1].start; 142 else 143 sector = zones[0].start; 144 145 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) 146 btrfs_release_disk_super(super[i]); 147 } else if (!full[0] && (empty[1] || full[1])) { 148 sector = zones[0].wp; 149 } else if (full[0]) { 150 sector = zones[1].wp; 151 } else { 152 return -EUCLEAN; 153 } 154 *wp_ret = sector << SECTOR_SHIFT; 155 return 0; 156 } 157 158 /* 159 * Get the first zone number of the superblock mirror 160 */ 161 static inline u32 sb_zone_number(int shift, int mirror) 162 { 163 u64 zone; 164 165 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX); 166 switch (mirror) { 167 case 0: zone = 0; break; 168 case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break; 169 case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break; 170 } 171 172 ASSERT(zone <= U32_MAX); 173 174 return (u32)zone; 175 } 176 177 static inline sector_t zone_start_sector(u32 zone_number, 178 struct block_device *bdev) 179 { 180 return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev)); 181 } 182 183 static inline u64 zone_start_physical(u32 zone_number, 184 struct btrfs_zoned_device_info *zone_info) 185 { 186 return (u64)zone_number << zone_info->zone_size_shift; 187 } 188 189 /* 190 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block 191 * device into static sized chunks and fake a conventional zone on each of 192 * them. 193 */ 194 static int emulate_report_zones(struct btrfs_device *device, u64 pos, 195 struct blk_zone *zones, unsigned int nr_zones) 196 { 197 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT; 198 sector_t bdev_size = bdev_nr_sectors(device->bdev); 199 unsigned int i; 200 201 pos >>= SECTOR_SHIFT; 202 for (i = 0; i < nr_zones; i++) { 203 zones[i].start = i * zone_sectors + pos; 204 zones[i].len = zone_sectors; 205 zones[i].capacity = zone_sectors; 206 zones[i].wp = zones[i].start + zone_sectors; 207 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL; 208 zones[i].cond = BLK_ZONE_COND_NOT_WP; 209 210 if (zones[i].wp >= bdev_size) { 211 i++; 212 break; 213 } 214 } 215 216 return i; 217 } 218 219 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos, 220 struct blk_zone *zones, unsigned int *nr_zones) 221 { 222 struct btrfs_zoned_device_info *zinfo = device->zone_info; 223 u32 zno; 224 int ret; 225 226 if (!*nr_zones) 227 return 0; 228 229 if (!bdev_is_zoned(device->bdev)) { 230 ret = emulate_report_zones(device, pos, zones, *nr_zones); 231 *nr_zones = ret; 232 return 0; 233 } 234 235 /* Check cache */ 236 if (zinfo->zone_cache) { 237 unsigned int i; 238 239 ASSERT(IS_ALIGNED(pos, zinfo->zone_size)); 240 zno = pos >> zinfo->zone_size_shift; 241 /* 242 * We cannot report zones beyond the zone end. So, it is OK to 243 * cap *nr_zones to at the end. 244 */ 245 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno); 246 247 for (i = 0; i < *nr_zones; i++) { 248 struct blk_zone *zone_info; 249 250 zone_info = &zinfo->zone_cache[zno + i]; 251 if (!zone_info->len) 252 break; 253 } 254 255 if (i == *nr_zones) { 256 /* Cache hit on all the zones */ 257 memcpy(zones, zinfo->zone_cache + zno, 258 sizeof(*zinfo->zone_cache) * *nr_zones); 259 return 0; 260 } 261 } 262 263 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones, 264 copy_zone_info_cb, zones); 265 if (ret < 0) { 266 btrfs_err_in_rcu(device->fs_info, 267 "zoned: failed to read zone %llu on %s (devid %llu)", 268 pos, rcu_str_deref(device->name), 269 device->devid); 270 return ret; 271 } 272 *nr_zones = ret; 273 if (!ret) 274 return -EIO; 275 276 /* Populate cache */ 277 if (zinfo->zone_cache) 278 memcpy(zinfo->zone_cache + zno, zones, 279 sizeof(*zinfo->zone_cache) * *nr_zones); 280 281 return 0; 282 } 283 284 /* The emulated zone size is determined from the size of device extent */ 285 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info) 286 { 287 struct btrfs_path *path; 288 struct btrfs_root *root = fs_info->dev_root; 289 struct btrfs_key key; 290 struct extent_buffer *leaf; 291 struct btrfs_dev_extent *dext; 292 int ret = 0; 293 294 key.objectid = 1; 295 key.type = BTRFS_DEV_EXTENT_KEY; 296 key.offset = 0; 297 298 path = btrfs_alloc_path(); 299 if (!path) 300 return -ENOMEM; 301 302 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 303 if (ret < 0) 304 goto out; 305 306 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 307 ret = btrfs_next_leaf(root, path); 308 if (ret < 0) 309 goto out; 310 /* No dev extents at all? Not good */ 311 if (ret > 0) { 312 ret = -EUCLEAN; 313 goto out; 314 } 315 } 316 317 leaf = path->nodes[0]; 318 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 319 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext); 320 ret = 0; 321 322 out: 323 btrfs_free_path(path); 324 325 return ret; 326 } 327 328 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info) 329 { 330 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 331 struct btrfs_device *device; 332 int ret = 0; 333 334 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */ 335 if (!btrfs_fs_incompat(fs_info, ZONED)) 336 return 0; 337 338 mutex_lock(&fs_devices->device_list_mutex); 339 list_for_each_entry(device, &fs_devices->devices, dev_list) { 340 /* We can skip reading of zone info for missing devices */ 341 if (!device->bdev) 342 continue; 343 344 ret = btrfs_get_dev_zone_info(device, true); 345 if (ret) 346 break; 347 } 348 mutex_unlock(&fs_devices->device_list_mutex); 349 350 return ret; 351 } 352 353 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache) 354 { 355 struct btrfs_fs_info *fs_info = device->fs_info; 356 struct btrfs_zoned_device_info *zone_info = NULL; 357 struct block_device *bdev = device->bdev; 358 unsigned int max_active_zones; 359 unsigned int nactive; 360 sector_t nr_sectors; 361 sector_t sector = 0; 362 struct blk_zone *zones = NULL; 363 unsigned int i, nreported = 0, nr_zones; 364 sector_t zone_sectors; 365 char *model, *emulated; 366 int ret; 367 368 /* 369 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not 370 * yet be set. 371 */ 372 if (!btrfs_fs_incompat(fs_info, ZONED)) 373 return 0; 374 375 if (device->zone_info) 376 return 0; 377 378 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL); 379 if (!zone_info) 380 return -ENOMEM; 381 382 device->zone_info = zone_info; 383 384 if (!bdev_is_zoned(bdev)) { 385 if (!fs_info->zone_size) { 386 ret = calculate_emulated_zone_size(fs_info); 387 if (ret) 388 goto out; 389 } 390 391 ASSERT(fs_info->zone_size); 392 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT; 393 } else { 394 zone_sectors = bdev_zone_sectors(bdev); 395 } 396 397 ASSERT(is_power_of_two_u64(zone_sectors)); 398 zone_info->zone_size = zone_sectors << SECTOR_SHIFT; 399 400 /* We reject devices with a zone size larger than 8GB */ 401 if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) { 402 btrfs_err_in_rcu(fs_info, 403 "zoned: %s: zone size %llu larger than supported maximum %llu", 404 rcu_str_deref(device->name), 405 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE); 406 ret = -EINVAL; 407 goto out; 408 } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) { 409 btrfs_err_in_rcu(fs_info, 410 "zoned: %s: zone size %llu smaller than supported minimum %u", 411 rcu_str_deref(device->name), 412 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE); 413 ret = -EINVAL; 414 goto out; 415 } 416 417 nr_sectors = bdev_nr_sectors(bdev); 418 zone_info->zone_size_shift = ilog2(zone_info->zone_size); 419 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors); 420 /* 421 * We limit max_zone_append_size also by max_segments * 422 * PAGE_SIZE. Technically, we can have multiple pages per segment. But, 423 * since btrfs adds the pages one by one to a bio, and btrfs cannot 424 * increase the metadata reservation even if it increases the number of 425 * extents, it is safe to stick with the limit. 426 * 427 * With the zoned emulation, we can have non-zoned device on the zoned 428 * mode. In this case, we don't have a valid max zone append size. So, 429 * use max_segments * PAGE_SIZE as the pseudo max_zone_append_size. 430 */ 431 if (bdev_is_zoned(bdev)) { 432 zone_info->max_zone_append_size = min_t(u64, 433 (u64)bdev_max_zone_append_sectors(bdev) << SECTOR_SHIFT, 434 (u64)bdev_max_segments(bdev) << PAGE_SHIFT); 435 } else { 436 zone_info->max_zone_append_size = 437 (u64)bdev_max_segments(bdev) << PAGE_SHIFT; 438 } 439 if (!IS_ALIGNED(nr_sectors, zone_sectors)) 440 zone_info->nr_zones++; 441 442 max_active_zones = bdev_max_active_zones(bdev); 443 if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) { 444 btrfs_err_in_rcu(fs_info, 445 "zoned: %s: max active zones %u is too small, need at least %u active zones", 446 rcu_str_deref(device->name), max_active_zones, 447 BTRFS_MIN_ACTIVE_ZONES); 448 ret = -EINVAL; 449 goto out; 450 } 451 zone_info->max_active_zones = max_active_zones; 452 453 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 454 if (!zone_info->seq_zones) { 455 ret = -ENOMEM; 456 goto out; 457 } 458 459 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 460 if (!zone_info->empty_zones) { 461 ret = -ENOMEM; 462 goto out; 463 } 464 465 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 466 if (!zone_info->active_zones) { 467 ret = -ENOMEM; 468 goto out; 469 } 470 471 zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL); 472 if (!zones) { 473 ret = -ENOMEM; 474 goto out; 475 } 476 477 /* 478 * Enable zone cache only for a zoned device. On a non-zoned device, we 479 * fill the zone info with emulated CONVENTIONAL zones, so no need to 480 * use the cache. 481 */ 482 if (populate_cache && bdev_is_zoned(device->bdev)) { 483 zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) * 484 zone_info->nr_zones); 485 if (!zone_info->zone_cache) { 486 btrfs_err_in_rcu(device->fs_info, 487 "zoned: failed to allocate zone cache for %s", 488 rcu_str_deref(device->name)); 489 ret = -ENOMEM; 490 goto out; 491 } 492 } 493 494 /* Get zones type */ 495 nactive = 0; 496 while (sector < nr_sectors) { 497 nr_zones = BTRFS_REPORT_NR_ZONES; 498 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones, 499 &nr_zones); 500 if (ret) 501 goto out; 502 503 for (i = 0; i < nr_zones; i++) { 504 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ) 505 __set_bit(nreported, zone_info->seq_zones); 506 switch (zones[i].cond) { 507 case BLK_ZONE_COND_EMPTY: 508 __set_bit(nreported, zone_info->empty_zones); 509 break; 510 case BLK_ZONE_COND_IMP_OPEN: 511 case BLK_ZONE_COND_EXP_OPEN: 512 case BLK_ZONE_COND_CLOSED: 513 __set_bit(nreported, zone_info->active_zones); 514 nactive++; 515 break; 516 } 517 nreported++; 518 } 519 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len; 520 } 521 522 if (nreported != zone_info->nr_zones) { 523 btrfs_err_in_rcu(device->fs_info, 524 "inconsistent number of zones on %s (%u/%u)", 525 rcu_str_deref(device->name), nreported, 526 zone_info->nr_zones); 527 ret = -EIO; 528 goto out; 529 } 530 531 if (max_active_zones) { 532 if (nactive > max_active_zones) { 533 btrfs_err_in_rcu(device->fs_info, 534 "zoned: %u active zones on %s exceeds max_active_zones %u", 535 nactive, rcu_str_deref(device->name), 536 max_active_zones); 537 ret = -EIO; 538 goto out; 539 } 540 atomic_set(&zone_info->active_zones_left, 541 max_active_zones - nactive); 542 /* Overcommit does not work well with active zone tacking. */ 543 set_bit(BTRFS_FS_NO_OVERCOMMIT, &fs_info->flags); 544 } 545 546 /* Validate superblock log */ 547 nr_zones = BTRFS_NR_SB_LOG_ZONES; 548 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 549 u32 sb_zone; 550 u64 sb_wp; 551 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i; 552 553 sb_zone = sb_zone_number(zone_info->zone_size_shift, i); 554 if (sb_zone + 1 >= zone_info->nr_zones) 555 continue; 556 557 ret = btrfs_get_dev_zones(device, 558 zone_start_physical(sb_zone, zone_info), 559 &zone_info->sb_zones[sb_pos], 560 &nr_zones); 561 if (ret) 562 goto out; 563 564 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) { 565 btrfs_err_in_rcu(device->fs_info, 566 "zoned: failed to read super block log zone info at devid %llu zone %u", 567 device->devid, sb_zone); 568 ret = -EUCLEAN; 569 goto out; 570 } 571 572 /* 573 * If zones[0] is conventional, always use the beginning of the 574 * zone to record superblock. No need to validate in that case. 575 */ 576 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type == 577 BLK_ZONE_TYPE_CONVENTIONAL) 578 continue; 579 580 ret = sb_write_pointer(device->bdev, 581 &zone_info->sb_zones[sb_pos], &sb_wp); 582 if (ret != -ENOENT && ret) { 583 btrfs_err_in_rcu(device->fs_info, 584 "zoned: super block log zone corrupted devid %llu zone %u", 585 device->devid, sb_zone); 586 ret = -EUCLEAN; 587 goto out; 588 } 589 } 590 591 592 kvfree(zones); 593 594 switch (bdev_zoned_model(bdev)) { 595 case BLK_ZONED_HM: 596 model = "host-managed zoned"; 597 emulated = ""; 598 break; 599 case BLK_ZONED_HA: 600 model = "host-aware zoned"; 601 emulated = ""; 602 break; 603 case BLK_ZONED_NONE: 604 model = "regular"; 605 emulated = "emulated "; 606 break; 607 default: 608 /* Just in case */ 609 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s", 610 bdev_zoned_model(bdev), 611 rcu_str_deref(device->name)); 612 ret = -EOPNOTSUPP; 613 goto out_free_zone_info; 614 } 615 616 btrfs_info_in_rcu(fs_info, 617 "%s block device %s, %u %szones of %llu bytes", 618 model, rcu_str_deref(device->name), zone_info->nr_zones, 619 emulated, zone_info->zone_size); 620 621 return 0; 622 623 out: 624 kvfree(zones); 625 out_free_zone_info: 626 btrfs_destroy_dev_zone_info(device); 627 628 return ret; 629 } 630 631 void btrfs_destroy_dev_zone_info(struct btrfs_device *device) 632 { 633 struct btrfs_zoned_device_info *zone_info = device->zone_info; 634 635 if (!zone_info) 636 return; 637 638 bitmap_free(zone_info->active_zones); 639 bitmap_free(zone_info->seq_zones); 640 bitmap_free(zone_info->empty_zones); 641 vfree(zone_info->zone_cache); 642 kfree(zone_info); 643 device->zone_info = NULL; 644 } 645 646 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev) 647 { 648 struct btrfs_zoned_device_info *zone_info; 649 650 zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL); 651 if (!zone_info) 652 return NULL; 653 654 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 655 if (!zone_info->seq_zones) 656 goto out; 657 658 bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones, 659 zone_info->nr_zones); 660 661 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 662 if (!zone_info->empty_zones) 663 goto out; 664 665 bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones, 666 zone_info->nr_zones); 667 668 zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 669 if (!zone_info->active_zones) 670 goto out; 671 672 bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones, 673 zone_info->nr_zones); 674 zone_info->zone_cache = NULL; 675 676 return zone_info; 677 678 out: 679 bitmap_free(zone_info->seq_zones); 680 bitmap_free(zone_info->empty_zones); 681 bitmap_free(zone_info->active_zones); 682 kfree(zone_info); 683 return NULL; 684 } 685 686 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, 687 struct blk_zone *zone) 688 { 689 unsigned int nr_zones = 1; 690 int ret; 691 692 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones); 693 if (ret != 0 || !nr_zones) 694 return ret ? ret : -EIO; 695 696 return 0; 697 } 698 699 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info) 700 { 701 struct btrfs_device *device; 702 703 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 704 if (device->bdev && 705 bdev_zoned_model(device->bdev) == BLK_ZONED_HM) { 706 btrfs_err(fs_info, 707 "zoned: mode not enabled but zoned device found: %pg", 708 device->bdev); 709 return -EINVAL; 710 } 711 } 712 713 return 0; 714 } 715 716 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info) 717 { 718 struct btrfs_device *device; 719 u64 zone_size = 0; 720 u64 max_zone_append_size = 0; 721 int ret; 722 723 /* 724 * Host-Managed devices can't be used without the ZONED flag. With the 725 * ZONED all devices can be used, using zone emulation if required. 726 */ 727 if (!btrfs_fs_incompat(fs_info, ZONED)) 728 return btrfs_check_for_zoned_device(fs_info); 729 730 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 731 struct btrfs_zoned_device_info *zone_info = device->zone_info; 732 733 if (!device->bdev) 734 continue; 735 736 if (!zone_size) { 737 zone_size = zone_info->zone_size; 738 } else if (zone_info->zone_size != zone_size) { 739 btrfs_err(fs_info, 740 "zoned: unequal block device zone sizes: have %llu found %llu", 741 zone_info->zone_size, zone_size); 742 return -EINVAL; 743 } 744 if (!max_zone_append_size || 745 (zone_info->max_zone_append_size && 746 zone_info->max_zone_append_size < max_zone_append_size)) 747 max_zone_append_size = zone_info->max_zone_append_size; 748 } 749 750 /* 751 * stripe_size is always aligned to BTRFS_STRIPE_LEN in 752 * btrfs_create_chunk(). Since we want stripe_len == zone_size, 753 * check the alignment here. 754 */ 755 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) { 756 btrfs_err(fs_info, 757 "zoned: zone size %llu not aligned to stripe %u", 758 zone_size, BTRFS_STRIPE_LEN); 759 return -EINVAL; 760 } 761 762 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 763 btrfs_err(fs_info, "zoned: mixed block groups not supported"); 764 return -EINVAL; 765 } 766 767 fs_info->zone_size = zone_size; 768 fs_info->max_zone_append_size = ALIGN_DOWN(max_zone_append_size, 769 fs_info->sectorsize); 770 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED; 771 if (fs_info->max_zone_append_size < fs_info->max_extent_size) 772 fs_info->max_extent_size = fs_info->max_zone_append_size; 773 774 /* 775 * Check mount options here, because we might change fs_info->zoned 776 * from fs_info->zone_size. 777 */ 778 ret = btrfs_check_mountopts_zoned(fs_info); 779 if (ret) 780 return ret; 781 782 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size); 783 return 0; 784 } 785 786 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info) 787 { 788 if (!btrfs_is_zoned(info)) 789 return 0; 790 791 /* 792 * Space cache writing is not COWed. Disable that to avoid write errors 793 * in sequential zones. 794 */ 795 if (btrfs_test_opt(info, SPACE_CACHE)) { 796 btrfs_err(info, "zoned: space cache v1 is not supported"); 797 return -EINVAL; 798 } 799 800 if (btrfs_test_opt(info, NODATACOW)) { 801 btrfs_err(info, "zoned: NODATACOW not supported"); 802 return -EINVAL; 803 } 804 805 return 0; 806 } 807 808 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones, 809 int rw, u64 *bytenr_ret) 810 { 811 u64 wp; 812 int ret; 813 814 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) { 815 *bytenr_ret = zones[0].start << SECTOR_SHIFT; 816 return 0; 817 } 818 819 ret = sb_write_pointer(bdev, zones, &wp); 820 if (ret != -ENOENT && ret < 0) 821 return ret; 822 823 if (rw == WRITE) { 824 struct blk_zone *reset = NULL; 825 826 if (wp == zones[0].start << SECTOR_SHIFT) 827 reset = &zones[0]; 828 else if (wp == zones[1].start << SECTOR_SHIFT) 829 reset = &zones[1]; 830 831 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) { 832 ASSERT(sb_zone_is_full(reset)); 833 834 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 835 reset->start, reset->len, 836 GFP_NOFS); 837 if (ret) 838 return ret; 839 840 reset->cond = BLK_ZONE_COND_EMPTY; 841 reset->wp = reset->start; 842 } 843 } else if (ret != -ENOENT) { 844 /* 845 * For READ, we want the previous one. Move write pointer to 846 * the end of a zone, if it is at the head of a zone. 847 */ 848 u64 zone_end = 0; 849 850 if (wp == zones[0].start << SECTOR_SHIFT) 851 zone_end = zones[1].start + zones[1].capacity; 852 else if (wp == zones[1].start << SECTOR_SHIFT) 853 zone_end = zones[0].start + zones[0].capacity; 854 if (zone_end) 855 wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT, 856 BTRFS_SUPER_INFO_SIZE); 857 858 wp -= BTRFS_SUPER_INFO_SIZE; 859 } 860 861 *bytenr_ret = wp; 862 return 0; 863 864 } 865 866 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw, 867 u64 *bytenr_ret) 868 { 869 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES]; 870 sector_t zone_sectors; 871 u32 sb_zone; 872 int ret; 873 u8 zone_sectors_shift; 874 sector_t nr_sectors; 875 u32 nr_zones; 876 877 if (!bdev_is_zoned(bdev)) { 878 *bytenr_ret = btrfs_sb_offset(mirror); 879 return 0; 880 } 881 882 ASSERT(rw == READ || rw == WRITE); 883 884 zone_sectors = bdev_zone_sectors(bdev); 885 if (!is_power_of_2(zone_sectors)) 886 return -EINVAL; 887 zone_sectors_shift = ilog2(zone_sectors); 888 nr_sectors = bdev_nr_sectors(bdev); 889 nr_zones = nr_sectors >> zone_sectors_shift; 890 891 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 892 if (sb_zone + 1 >= nr_zones) 893 return -ENOENT; 894 895 ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev), 896 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb, 897 zones); 898 if (ret < 0) 899 return ret; 900 if (ret != BTRFS_NR_SB_LOG_ZONES) 901 return -EIO; 902 903 return sb_log_location(bdev, zones, rw, bytenr_ret); 904 } 905 906 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw, 907 u64 *bytenr_ret) 908 { 909 struct btrfs_zoned_device_info *zinfo = device->zone_info; 910 u32 zone_num; 911 912 /* 913 * For a zoned filesystem on a non-zoned block device, use the same 914 * super block locations as regular filesystem. Doing so, the super 915 * block can always be retrieved and the zoned flag of the volume 916 * detected from the super block information. 917 */ 918 if (!bdev_is_zoned(device->bdev)) { 919 *bytenr_ret = btrfs_sb_offset(mirror); 920 return 0; 921 } 922 923 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 924 if (zone_num + 1 >= zinfo->nr_zones) 925 return -ENOENT; 926 927 return sb_log_location(device->bdev, 928 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror], 929 rw, bytenr_ret); 930 } 931 932 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo, 933 int mirror) 934 { 935 u32 zone_num; 936 937 if (!zinfo) 938 return false; 939 940 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 941 if (zone_num + 1 >= zinfo->nr_zones) 942 return false; 943 944 if (!test_bit(zone_num, zinfo->seq_zones)) 945 return false; 946 947 return true; 948 } 949 950 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror) 951 { 952 struct btrfs_zoned_device_info *zinfo = device->zone_info; 953 struct blk_zone *zone; 954 int i; 955 956 if (!is_sb_log_zone(zinfo, mirror)) 957 return 0; 958 959 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror]; 960 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 961 /* Advance the next zone */ 962 if (zone->cond == BLK_ZONE_COND_FULL) { 963 zone++; 964 continue; 965 } 966 967 if (zone->cond == BLK_ZONE_COND_EMPTY) 968 zone->cond = BLK_ZONE_COND_IMP_OPEN; 969 970 zone->wp += SUPER_INFO_SECTORS; 971 972 if (sb_zone_is_full(zone)) { 973 /* 974 * No room left to write new superblock. Since 975 * superblock is written with REQ_SYNC, it is safe to 976 * finish the zone now. 977 * 978 * If the write pointer is exactly at the capacity, 979 * explicit ZONE_FINISH is not necessary. 980 */ 981 if (zone->wp != zone->start + zone->capacity) { 982 int ret; 983 984 ret = blkdev_zone_mgmt(device->bdev, 985 REQ_OP_ZONE_FINISH, zone->start, 986 zone->len, GFP_NOFS); 987 if (ret) 988 return ret; 989 } 990 991 zone->wp = zone->start + zone->len; 992 zone->cond = BLK_ZONE_COND_FULL; 993 } 994 return 0; 995 } 996 997 /* All the zones are FULL. Should not reach here. */ 998 ASSERT(0); 999 return -EIO; 1000 } 1001 1002 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror) 1003 { 1004 sector_t zone_sectors; 1005 sector_t nr_sectors; 1006 u8 zone_sectors_shift; 1007 u32 sb_zone; 1008 u32 nr_zones; 1009 1010 zone_sectors = bdev_zone_sectors(bdev); 1011 zone_sectors_shift = ilog2(zone_sectors); 1012 nr_sectors = bdev_nr_sectors(bdev); 1013 nr_zones = nr_sectors >> zone_sectors_shift; 1014 1015 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 1016 if (sb_zone + 1 >= nr_zones) 1017 return -ENOENT; 1018 1019 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1020 zone_start_sector(sb_zone, bdev), 1021 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS); 1022 } 1023 1024 /* 1025 * Find allocatable zones within a given region. 1026 * 1027 * @device: the device to allocate a region on 1028 * @hole_start: the position of the hole to allocate the region 1029 * @num_bytes: size of wanted region 1030 * @hole_end: the end of the hole 1031 * @return: position of allocatable zones 1032 * 1033 * Allocatable region should not contain any superblock locations. 1034 */ 1035 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start, 1036 u64 hole_end, u64 num_bytes) 1037 { 1038 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1039 const u8 shift = zinfo->zone_size_shift; 1040 u64 nzones = num_bytes >> shift; 1041 u64 pos = hole_start; 1042 u64 begin, end; 1043 bool have_sb; 1044 int i; 1045 1046 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size)); 1047 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size)); 1048 1049 while (pos < hole_end) { 1050 begin = pos >> shift; 1051 end = begin + nzones; 1052 1053 if (end > zinfo->nr_zones) 1054 return hole_end; 1055 1056 /* Check if zones in the region are all empty */ 1057 if (btrfs_dev_is_sequential(device, pos) && 1058 find_next_zero_bit(zinfo->empty_zones, end, begin) != end) { 1059 pos += zinfo->zone_size; 1060 continue; 1061 } 1062 1063 have_sb = false; 1064 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1065 u32 sb_zone; 1066 u64 sb_pos; 1067 1068 sb_zone = sb_zone_number(shift, i); 1069 if (!(end <= sb_zone || 1070 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) { 1071 have_sb = true; 1072 pos = zone_start_physical( 1073 sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo); 1074 break; 1075 } 1076 1077 /* We also need to exclude regular superblock positions */ 1078 sb_pos = btrfs_sb_offset(i); 1079 if (!(pos + num_bytes <= sb_pos || 1080 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) { 1081 have_sb = true; 1082 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE, 1083 zinfo->zone_size); 1084 break; 1085 } 1086 } 1087 if (!have_sb) 1088 break; 1089 } 1090 1091 return pos; 1092 } 1093 1094 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos) 1095 { 1096 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1097 unsigned int zno = (pos >> zone_info->zone_size_shift); 1098 1099 /* We can use any number of zones */ 1100 if (zone_info->max_active_zones == 0) 1101 return true; 1102 1103 if (!test_bit(zno, zone_info->active_zones)) { 1104 /* Active zone left? */ 1105 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0) 1106 return false; 1107 if (test_and_set_bit(zno, zone_info->active_zones)) { 1108 /* Someone already set the bit */ 1109 atomic_inc(&zone_info->active_zones_left); 1110 } 1111 } 1112 1113 return true; 1114 } 1115 1116 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos) 1117 { 1118 struct btrfs_zoned_device_info *zone_info = device->zone_info; 1119 unsigned int zno = (pos >> zone_info->zone_size_shift); 1120 1121 /* We can use any number of zones */ 1122 if (zone_info->max_active_zones == 0) 1123 return; 1124 1125 if (test_and_clear_bit(zno, zone_info->active_zones)) 1126 atomic_inc(&zone_info->active_zones_left); 1127 } 1128 1129 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical, 1130 u64 length, u64 *bytes) 1131 { 1132 int ret; 1133 1134 *bytes = 0; 1135 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET, 1136 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT, 1137 GFP_NOFS); 1138 if (ret) 1139 return ret; 1140 1141 *bytes = length; 1142 while (length) { 1143 btrfs_dev_set_zone_empty(device, physical); 1144 btrfs_dev_clear_active_zone(device, physical); 1145 physical += device->zone_info->zone_size; 1146 length -= device->zone_info->zone_size; 1147 } 1148 1149 return 0; 1150 } 1151 1152 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size) 1153 { 1154 struct btrfs_zoned_device_info *zinfo = device->zone_info; 1155 const u8 shift = zinfo->zone_size_shift; 1156 unsigned long begin = start >> shift; 1157 unsigned long end = (start + size) >> shift; 1158 u64 pos; 1159 int ret; 1160 1161 ASSERT(IS_ALIGNED(start, zinfo->zone_size)); 1162 ASSERT(IS_ALIGNED(size, zinfo->zone_size)); 1163 1164 if (end > zinfo->nr_zones) 1165 return -ERANGE; 1166 1167 /* All the zones are conventional */ 1168 if (find_next_bit(zinfo->seq_zones, begin, end) == end) 1169 return 0; 1170 1171 /* All the zones are sequential and empty */ 1172 if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end && 1173 find_next_zero_bit(zinfo->empty_zones, begin, end) == end) 1174 return 0; 1175 1176 for (pos = start; pos < start + size; pos += zinfo->zone_size) { 1177 u64 reset_bytes; 1178 1179 if (!btrfs_dev_is_sequential(device, pos) || 1180 btrfs_dev_is_empty_zone(device, pos)) 1181 continue; 1182 1183 /* Free regions should be empty */ 1184 btrfs_warn_in_rcu( 1185 device->fs_info, 1186 "zoned: resetting device %s (devid %llu) zone %llu for allocation", 1187 rcu_str_deref(device->name), device->devid, pos >> shift); 1188 WARN_ON_ONCE(1); 1189 1190 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size, 1191 &reset_bytes); 1192 if (ret) 1193 return ret; 1194 } 1195 1196 return 0; 1197 } 1198 1199 /* 1200 * Calculate an allocation pointer from the extent allocation information 1201 * for a block group consist of conventional zones. It is pointed to the 1202 * end of the highest addressed extent in the block group as an allocation 1203 * offset. 1204 */ 1205 static int calculate_alloc_pointer(struct btrfs_block_group *cache, 1206 u64 *offset_ret, bool new) 1207 { 1208 struct btrfs_fs_info *fs_info = cache->fs_info; 1209 struct btrfs_root *root; 1210 struct btrfs_path *path; 1211 struct btrfs_key key; 1212 struct btrfs_key found_key; 1213 int ret; 1214 u64 length; 1215 1216 /* 1217 * Avoid tree lookups for a new block group, there's no use for it. 1218 * It must always be 0. 1219 * 1220 * Also, we have a lock chain of extent buffer lock -> chunk mutex. 1221 * For new a block group, this function is called from 1222 * btrfs_make_block_group() which is already taking the chunk mutex. 1223 * Thus, we cannot call calculate_alloc_pointer() which takes extent 1224 * buffer locks to avoid deadlock. 1225 */ 1226 if (new) { 1227 *offset_ret = 0; 1228 return 0; 1229 } 1230 1231 path = btrfs_alloc_path(); 1232 if (!path) 1233 return -ENOMEM; 1234 1235 key.objectid = cache->start + cache->length; 1236 key.type = 0; 1237 key.offset = 0; 1238 1239 root = btrfs_extent_root(fs_info, key.objectid); 1240 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1241 /* We should not find the exact match */ 1242 if (!ret) 1243 ret = -EUCLEAN; 1244 if (ret < 0) 1245 goto out; 1246 1247 ret = btrfs_previous_extent_item(root, path, cache->start); 1248 if (ret) { 1249 if (ret == 1) { 1250 ret = 0; 1251 *offset_ret = 0; 1252 } 1253 goto out; 1254 } 1255 1256 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 1257 1258 if (found_key.type == BTRFS_EXTENT_ITEM_KEY) 1259 length = found_key.offset; 1260 else 1261 length = fs_info->nodesize; 1262 1263 if (!(found_key.objectid >= cache->start && 1264 found_key.objectid + length <= cache->start + cache->length)) { 1265 ret = -EUCLEAN; 1266 goto out; 1267 } 1268 *offset_ret = found_key.objectid + length - cache->start; 1269 ret = 0; 1270 1271 out: 1272 btrfs_free_path(path); 1273 return ret; 1274 } 1275 1276 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new) 1277 { 1278 struct btrfs_fs_info *fs_info = cache->fs_info; 1279 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 1280 struct extent_map *em; 1281 struct map_lookup *map; 1282 struct btrfs_device *device; 1283 u64 logical = cache->start; 1284 u64 length = cache->length; 1285 int ret; 1286 int i; 1287 unsigned int nofs_flag; 1288 u64 *alloc_offsets = NULL; 1289 u64 *caps = NULL; 1290 u64 *physical = NULL; 1291 unsigned long *active = NULL; 1292 u64 last_alloc = 0; 1293 u32 num_sequential = 0, num_conventional = 0; 1294 1295 if (!btrfs_is_zoned(fs_info)) 1296 return 0; 1297 1298 /* Sanity check */ 1299 if (!IS_ALIGNED(length, fs_info->zone_size)) { 1300 btrfs_err(fs_info, 1301 "zoned: block group %llu len %llu unaligned to zone size %llu", 1302 logical, length, fs_info->zone_size); 1303 return -EIO; 1304 } 1305 1306 /* Get the chunk mapping */ 1307 read_lock(&em_tree->lock); 1308 em = lookup_extent_mapping(em_tree, logical, length); 1309 read_unlock(&em_tree->lock); 1310 1311 if (!em) 1312 return -EINVAL; 1313 1314 map = em->map_lookup; 1315 1316 cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS); 1317 if (!cache->physical_map) { 1318 ret = -ENOMEM; 1319 goto out; 1320 } 1321 1322 alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS); 1323 if (!alloc_offsets) { 1324 ret = -ENOMEM; 1325 goto out; 1326 } 1327 1328 caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS); 1329 if (!caps) { 1330 ret = -ENOMEM; 1331 goto out; 1332 } 1333 1334 physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS); 1335 if (!physical) { 1336 ret = -ENOMEM; 1337 goto out; 1338 } 1339 1340 active = bitmap_zalloc(map->num_stripes, GFP_NOFS); 1341 if (!active) { 1342 ret = -ENOMEM; 1343 goto out; 1344 } 1345 1346 for (i = 0; i < map->num_stripes; i++) { 1347 bool is_sequential; 1348 struct blk_zone zone; 1349 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1350 int dev_replace_is_ongoing = 0; 1351 1352 device = map->stripes[i].dev; 1353 physical[i] = map->stripes[i].physical; 1354 1355 if (device->bdev == NULL) { 1356 alloc_offsets[i] = WP_MISSING_DEV; 1357 continue; 1358 } 1359 1360 is_sequential = btrfs_dev_is_sequential(device, physical[i]); 1361 if (is_sequential) 1362 num_sequential++; 1363 else 1364 num_conventional++; 1365 1366 /* 1367 * Consider a zone as active if we can allow any number of 1368 * active zones. 1369 */ 1370 if (!device->zone_info->max_active_zones) 1371 __set_bit(i, active); 1372 1373 if (!is_sequential) { 1374 alloc_offsets[i] = WP_CONVENTIONAL; 1375 continue; 1376 } 1377 1378 /* 1379 * This zone will be used for allocation, so mark this zone 1380 * non-empty. 1381 */ 1382 btrfs_dev_clear_zone_empty(device, physical[i]); 1383 1384 down_read(&dev_replace->rwsem); 1385 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 1386 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 1387 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]); 1388 up_read(&dev_replace->rwsem); 1389 1390 /* 1391 * The group is mapped to a sequential zone. Get the zone write 1392 * pointer to determine the allocation offset within the zone. 1393 */ 1394 WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size)); 1395 nofs_flag = memalloc_nofs_save(); 1396 ret = btrfs_get_dev_zone(device, physical[i], &zone); 1397 memalloc_nofs_restore(nofs_flag); 1398 if (ret == -EIO || ret == -EOPNOTSUPP) { 1399 ret = 0; 1400 alloc_offsets[i] = WP_MISSING_DEV; 1401 continue; 1402 } else if (ret) { 1403 goto out; 1404 } 1405 1406 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) { 1407 btrfs_err_in_rcu(fs_info, 1408 "zoned: unexpected conventional zone %llu on device %s (devid %llu)", 1409 zone.start << SECTOR_SHIFT, 1410 rcu_str_deref(device->name), device->devid); 1411 ret = -EIO; 1412 goto out; 1413 } 1414 1415 caps[i] = (zone.capacity << SECTOR_SHIFT); 1416 1417 switch (zone.cond) { 1418 case BLK_ZONE_COND_OFFLINE: 1419 case BLK_ZONE_COND_READONLY: 1420 btrfs_err(fs_info, 1421 "zoned: offline/readonly zone %llu on device %s (devid %llu)", 1422 physical[i] >> device->zone_info->zone_size_shift, 1423 rcu_str_deref(device->name), device->devid); 1424 alloc_offsets[i] = WP_MISSING_DEV; 1425 break; 1426 case BLK_ZONE_COND_EMPTY: 1427 alloc_offsets[i] = 0; 1428 break; 1429 case BLK_ZONE_COND_FULL: 1430 alloc_offsets[i] = caps[i]; 1431 break; 1432 default: 1433 /* Partially used zone */ 1434 alloc_offsets[i] = 1435 ((zone.wp - zone.start) << SECTOR_SHIFT); 1436 __set_bit(i, active); 1437 break; 1438 } 1439 } 1440 1441 if (num_sequential > 0) 1442 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); 1443 1444 if (num_conventional > 0) { 1445 /* Zone capacity is always zone size in emulation */ 1446 cache->zone_capacity = cache->length; 1447 ret = calculate_alloc_pointer(cache, &last_alloc, new); 1448 if (ret) { 1449 btrfs_err(fs_info, 1450 "zoned: failed to determine allocation offset of bg %llu", 1451 cache->start); 1452 goto out; 1453 } else if (map->num_stripes == num_conventional) { 1454 cache->alloc_offset = last_alloc; 1455 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags); 1456 goto out; 1457 } 1458 } 1459 1460 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 1461 case 0: /* single */ 1462 if (alloc_offsets[0] == WP_MISSING_DEV) { 1463 btrfs_err(fs_info, 1464 "zoned: cannot recover write pointer for zone %llu", 1465 physical[0]); 1466 ret = -EIO; 1467 goto out; 1468 } 1469 cache->alloc_offset = alloc_offsets[0]; 1470 cache->zone_capacity = caps[0]; 1471 if (test_bit(0, active)) 1472 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags); 1473 break; 1474 case BTRFS_BLOCK_GROUP_DUP: 1475 if (map->type & BTRFS_BLOCK_GROUP_DATA) { 1476 btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg"); 1477 ret = -EINVAL; 1478 goto out; 1479 } 1480 if (alloc_offsets[0] == WP_MISSING_DEV) { 1481 btrfs_err(fs_info, 1482 "zoned: cannot recover write pointer for zone %llu", 1483 physical[0]); 1484 ret = -EIO; 1485 goto out; 1486 } 1487 if (alloc_offsets[1] == WP_MISSING_DEV) { 1488 btrfs_err(fs_info, 1489 "zoned: cannot recover write pointer for zone %llu", 1490 physical[1]); 1491 ret = -EIO; 1492 goto out; 1493 } 1494 if (alloc_offsets[0] != alloc_offsets[1]) { 1495 btrfs_err(fs_info, 1496 "zoned: write pointer offset mismatch of zones in DUP profile"); 1497 ret = -EIO; 1498 goto out; 1499 } 1500 if (test_bit(0, active) != test_bit(1, active)) { 1501 if (!btrfs_zone_activate(cache)) { 1502 ret = -EIO; 1503 goto out; 1504 } 1505 } else { 1506 if (test_bit(0, active)) 1507 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 1508 &cache->runtime_flags); 1509 } 1510 cache->alloc_offset = alloc_offsets[0]; 1511 cache->zone_capacity = min(caps[0], caps[1]); 1512 break; 1513 case BTRFS_BLOCK_GROUP_RAID1: 1514 case BTRFS_BLOCK_GROUP_RAID0: 1515 case BTRFS_BLOCK_GROUP_RAID10: 1516 case BTRFS_BLOCK_GROUP_RAID5: 1517 case BTRFS_BLOCK_GROUP_RAID6: 1518 /* non-single profiles are not supported yet */ 1519 default: 1520 btrfs_err(fs_info, "zoned: profile %s not yet supported", 1521 btrfs_bg_type_to_raid_name(map->type)); 1522 ret = -EINVAL; 1523 goto out; 1524 } 1525 1526 out: 1527 if (cache->alloc_offset > fs_info->zone_size) { 1528 btrfs_err(fs_info, 1529 "zoned: invalid write pointer %llu in block group %llu", 1530 cache->alloc_offset, cache->start); 1531 ret = -EIO; 1532 } 1533 1534 if (cache->alloc_offset > cache->zone_capacity) { 1535 btrfs_err(fs_info, 1536 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu", 1537 cache->alloc_offset, cache->zone_capacity, 1538 cache->start); 1539 ret = -EIO; 1540 } 1541 1542 /* An extent is allocated after the write pointer */ 1543 if (!ret && num_conventional && last_alloc > cache->alloc_offset) { 1544 btrfs_err(fs_info, 1545 "zoned: got wrong write pointer in BG %llu: %llu > %llu", 1546 logical, last_alloc, cache->alloc_offset); 1547 ret = -EIO; 1548 } 1549 1550 if (!ret) { 1551 cache->meta_write_pointer = cache->alloc_offset + cache->start; 1552 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) { 1553 btrfs_get_block_group(cache); 1554 spin_lock(&fs_info->zone_active_bgs_lock); 1555 list_add_tail(&cache->active_bg_list, 1556 &fs_info->zone_active_bgs); 1557 spin_unlock(&fs_info->zone_active_bgs_lock); 1558 } 1559 } else { 1560 kfree(cache->physical_map); 1561 cache->physical_map = NULL; 1562 } 1563 bitmap_free(active); 1564 kfree(physical); 1565 kfree(caps); 1566 kfree(alloc_offsets); 1567 free_extent_map(em); 1568 1569 return ret; 1570 } 1571 1572 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache) 1573 { 1574 u64 unusable, free; 1575 1576 if (!btrfs_is_zoned(cache->fs_info)) 1577 return; 1578 1579 WARN_ON(cache->bytes_super != 0); 1580 unusable = (cache->alloc_offset - cache->used) + 1581 (cache->length - cache->zone_capacity); 1582 free = cache->zone_capacity - cache->alloc_offset; 1583 1584 /* We only need ->free_space in ALLOC_SEQ block groups */ 1585 cache->cached = BTRFS_CACHE_FINISHED; 1586 cache->free_space_ctl->free_space = free; 1587 cache->zone_unusable = unusable; 1588 } 1589 1590 void btrfs_redirty_list_add(struct btrfs_transaction *trans, 1591 struct extent_buffer *eb) 1592 { 1593 struct btrfs_fs_info *fs_info = eb->fs_info; 1594 1595 if (!btrfs_is_zoned(fs_info) || 1596 btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) || 1597 !list_empty(&eb->release_list)) 1598 return; 1599 1600 set_extent_buffer_dirty(eb); 1601 set_extent_bits_nowait(&trans->dirty_pages, eb->start, 1602 eb->start + eb->len - 1, EXTENT_DIRTY); 1603 memzero_extent_buffer(eb, 0, eb->len); 1604 set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags); 1605 1606 spin_lock(&trans->releasing_ebs_lock); 1607 list_add_tail(&eb->release_list, &trans->releasing_ebs); 1608 spin_unlock(&trans->releasing_ebs_lock); 1609 atomic_inc(&eb->refs); 1610 } 1611 1612 void btrfs_free_redirty_list(struct btrfs_transaction *trans) 1613 { 1614 spin_lock(&trans->releasing_ebs_lock); 1615 while (!list_empty(&trans->releasing_ebs)) { 1616 struct extent_buffer *eb; 1617 1618 eb = list_first_entry(&trans->releasing_ebs, 1619 struct extent_buffer, release_list); 1620 list_del_init(&eb->release_list); 1621 free_extent_buffer(eb); 1622 } 1623 spin_unlock(&trans->releasing_ebs_lock); 1624 } 1625 1626 bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start) 1627 { 1628 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1629 struct btrfs_block_group *cache; 1630 bool ret = false; 1631 1632 if (!btrfs_is_zoned(fs_info)) 1633 return false; 1634 1635 if (!is_data_inode(&inode->vfs_inode)) 1636 return false; 1637 1638 /* 1639 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the 1640 * extent layout the relocation code has. 1641 * Furthermore we have set aside own block-group from which only the 1642 * relocation "process" can allocate and make sure only one process at a 1643 * time can add pages to an extent that gets relocated, so it's safe to 1644 * use regular REQ_OP_WRITE for this special case. 1645 */ 1646 if (btrfs_is_data_reloc_root(inode->root)) 1647 return false; 1648 1649 cache = btrfs_lookup_block_group(fs_info, start); 1650 ASSERT(cache); 1651 if (!cache) 1652 return false; 1653 1654 ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags); 1655 btrfs_put_block_group(cache); 1656 1657 return ret; 1658 } 1659 1660 void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset, 1661 struct bio *bio) 1662 { 1663 struct btrfs_ordered_extent *ordered; 1664 const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 1665 1666 if (bio_op(bio) != REQ_OP_ZONE_APPEND) 1667 return; 1668 1669 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset); 1670 if (WARN_ON(!ordered)) 1671 return; 1672 1673 ordered->physical = physical; 1674 ordered->bdev = bio->bi_bdev; 1675 1676 btrfs_put_ordered_extent(ordered); 1677 } 1678 1679 void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered) 1680 { 1681 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 1682 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1683 struct extent_map_tree *em_tree; 1684 struct extent_map *em; 1685 struct btrfs_ordered_sum *sum; 1686 u64 orig_logical = ordered->disk_bytenr; 1687 u64 *logical = NULL; 1688 int nr, stripe_len; 1689 1690 /* Zoned devices should not have partitions. So, we can assume it is 0 */ 1691 ASSERT(!bdev_is_partition(ordered->bdev)); 1692 if (WARN_ON(!ordered->bdev)) 1693 return; 1694 1695 if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev, 1696 ordered->physical, &logical, &nr, 1697 &stripe_len))) 1698 goto out; 1699 1700 WARN_ON(nr != 1); 1701 1702 if (orig_logical == *logical) 1703 goto out; 1704 1705 ordered->disk_bytenr = *logical; 1706 1707 em_tree = &inode->extent_tree; 1708 write_lock(&em_tree->lock); 1709 em = search_extent_mapping(em_tree, ordered->file_offset, 1710 ordered->num_bytes); 1711 em->block_start = *logical; 1712 free_extent_map(em); 1713 write_unlock(&em_tree->lock); 1714 1715 list_for_each_entry(sum, &ordered->list, list) { 1716 if (*logical < orig_logical) 1717 sum->bytenr -= orig_logical - *logical; 1718 else 1719 sum->bytenr += *logical - orig_logical; 1720 } 1721 1722 out: 1723 kfree(logical); 1724 } 1725 1726 bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info, 1727 struct extent_buffer *eb, 1728 struct btrfs_block_group **cache_ret) 1729 { 1730 struct btrfs_block_group *cache; 1731 bool ret = true; 1732 1733 if (!btrfs_is_zoned(fs_info)) 1734 return true; 1735 1736 cache = btrfs_lookup_block_group(fs_info, eb->start); 1737 if (!cache) 1738 return true; 1739 1740 if (cache->meta_write_pointer != eb->start) { 1741 btrfs_put_block_group(cache); 1742 cache = NULL; 1743 ret = false; 1744 } else { 1745 cache->meta_write_pointer = eb->start + eb->len; 1746 } 1747 1748 *cache_ret = cache; 1749 1750 return ret; 1751 } 1752 1753 void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache, 1754 struct extent_buffer *eb) 1755 { 1756 if (!btrfs_is_zoned(eb->fs_info) || !cache) 1757 return; 1758 1759 ASSERT(cache->meta_write_pointer == eb->start + eb->len); 1760 cache->meta_write_pointer = eb->start; 1761 } 1762 1763 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length) 1764 { 1765 if (!btrfs_dev_is_sequential(device, physical)) 1766 return -EOPNOTSUPP; 1767 1768 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT, 1769 length >> SECTOR_SHIFT, GFP_NOFS, 0); 1770 } 1771 1772 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical, 1773 struct blk_zone *zone) 1774 { 1775 struct btrfs_io_context *bioc = NULL; 1776 u64 mapped_length = PAGE_SIZE; 1777 unsigned int nofs_flag; 1778 int nmirrors; 1779 int i, ret; 1780 1781 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 1782 &mapped_length, &bioc); 1783 if (ret || !bioc || mapped_length < PAGE_SIZE) { 1784 ret = -EIO; 1785 goto out_put_bioc; 1786 } 1787 1788 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1789 ret = -EINVAL; 1790 goto out_put_bioc; 1791 } 1792 1793 nofs_flag = memalloc_nofs_save(); 1794 nmirrors = (int)bioc->num_stripes; 1795 for (i = 0; i < nmirrors; i++) { 1796 u64 physical = bioc->stripes[i].physical; 1797 struct btrfs_device *dev = bioc->stripes[i].dev; 1798 1799 /* Missing device */ 1800 if (!dev->bdev) 1801 continue; 1802 1803 ret = btrfs_get_dev_zone(dev, physical, zone); 1804 /* Failing device */ 1805 if (ret == -EIO || ret == -EOPNOTSUPP) 1806 continue; 1807 break; 1808 } 1809 memalloc_nofs_restore(nofs_flag); 1810 out_put_bioc: 1811 btrfs_put_bioc(bioc); 1812 return ret; 1813 } 1814 1815 /* 1816 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by 1817 * filling zeros between @physical_pos to a write pointer of dev-replace 1818 * source device. 1819 */ 1820 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical, 1821 u64 physical_start, u64 physical_pos) 1822 { 1823 struct btrfs_fs_info *fs_info = tgt_dev->fs_info; 1824 struct blk_zone zone; 1825 u64 length; 1826 u64 wp; 1827 int ret; 1828 1829 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos)) 1830 return 0; 1831 1832 ret = read_zone_info(fs_info, logical, &zone); 1833 if (ret) 1834 return ret; 1835 1836 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT); 1837 1838 if (physical_pos == wp) 1839 return 0; 1840 1841 if (physical_pos > wp) 1842 return -EUCLEAN; 1843 1844 length = wp - physical_pos; 1845 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length); 1846 } 1847 1848 struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info, 1849 u64 logical, u64 length) 1850 { 1851 struct btrfs_device *device; 1852 struct extent_map *em; 1853 struct map_lookup *map; 1854 1855 em = btrfs_get_chunk_map(fs_info, logical, length); 1856 if (IS_ERR(em)) 1857 return ERR_CAST(em); 1858 1859 map = em->map_lookup; 1860 /* We only support single profile for now */ 1861 device = map->stripes[0].dev; 1862 1863 free_extent_map(em); 1864 1865 return device; 1866 } 1867 1868 /* 1869 * Activate block group and underlying device zones 1870 * 1871 * @block_group: the block group to activate 1872 * 1873 * Return: true on success, false otherwise 1874 */ 1875 bool btrfs_zone_activate(struct btrfs_block_group *block_group) 1876 { 1877 struct btrfs_fs_info *fs_info = block_group->fs_info; 1878 struct btrfs_space_info *space_info = block_group->space_info; 1879 struct map_lookup *map; 1880 struct btrfs_device *device; 1881 u64 physical; 1882 bool ret; 1883 int i; 1884 1885 if (!btrfs_is_zoned(block_group->fs_info)) 1886 return true; 1887 1888 map = block_group->physical_map; 1889 1890 spin_lock(&space_info->lock); 1891 spin_lock(&block_group->lock); 1892 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 1893 ret = true; 1894 goto out_unlock; 1895 } 1896 1897 /* No space left */ 1898 if (btrfs_zoned_bg_is_full(block_group)) { 1899 ret = false; 1900 goto out_unlock; 1901 } 1902 1903 for (i = 0; i < map->num_stripes; i++) { 1904 device = map->stripes[i].dev; 1905 physical = map->stripes[i].physical; 1906 1907 if (device->zone_info->max_active_zones == 0) 1908 continue; 1909 1910 if (!btrfs_dev_set_active_zone(device, physical)) { 1911 /* Cannot activate the zone */ 1912 ret = false; 1913 goto out_unlock; 1914 } 1915 } 1916 1917 /* Successfully activated all the zones */ 1918 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 1919 space_info->active_total_bytes += block_group->length; 1920 spin_unlock(&block_group->lock); 1921 btrfs_try_granting_tickets(fs_info, space_info); 1922 spin_unlock(&space_info->lock); 1923 1924 /* For the active block group list */ 1925 btrfs_get_block_group(block_group); 1926 1927 spin_lock(&fs_info->zone_active_bgs_lock); 1928 list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs); 1929 spin_unlock(&fs_info->zone_active_bgs_lock); 1930 1931 return true; 1932 1933 out_unlock: 1934 spin_unlock(&block_group->lock); 1935 spin_unlock(&space_info->lock); 1936 return ret; 1937 } 1938 1939 static void wait_eb_writebacks(struct btrfs_block_group *block_group) 1940 { 1941 struct btrfs_fs_info *fs_info = block_group->fs_info; 1942 const u64 end = block_group->start + block_group->length; 1943 struct radix_tree_iter iter; 1944 struct extent_buffer *eb; 1945 void __rcu **slot; 1946 1947 rcu_read_lock(); 1948 radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter, 1949 block_group->start >> fs_info->sectorsize_bits) { 1950 eb = radix_tree_deref_slot(slot); 1951 if (!eb) 1952 continue; 1953 if (radix_tree_deref_retry(eb)) { 1954 slot = radix_tree_iter_retry(&iter); 1955 continue; 1956 } 1957 1958 if (eb->start < block_group->start) 1959 continue; 1960 if (eb->start >= end) 1961 break; 1962 1963 slot = radix_tree_iter_resume(slot, &iter); 1964 rcu_read_unlock(); 1965 wait_on_extent_buffer_writeback(eb); 1966 rcu_read_lock(); 1967 } 1968 rcu_read_unlock(); 1969 } 1970 1971 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written) 1972 { 1973 struct btrfs_fs_info *fs_info = block_group->fs_info; 1974 struct map_lookup *map; 1975 const bool is_metadata = (block_group->flags & 1976 (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)); 1977 int ret = 0; 1978 int i; 1979 1980 spin_lock(&block_group->lock); 1981 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) { 1982 spin_unlock(&block_group->lock); 1983 return 0; 1984 } 1985 1986 /* Check if we have unwritten allocated space */ 1987 if (is_metadata && 1988 block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) { 1989 spin_unlock(&block_group->lock); 1990 return -EAGAIN; 1991 } 1992 1993 /* 1994 * If we are sure that the block group is full (= no more room left for 1995 * new allocation) and the IO for the last usable block is completed, we 1996 * don't need to wait for the other IOs. This holds because we ensure 1997 * the sequential IO submissions using the ZONE_APPEND command for data 1998 * and block_group->meta_write_pointer for metadata. 1999 */ 2000 if (!fully_written) { 2001 spin_unlock(&block_group->lock); 2002 2003 ret = btrfs_inc_block_group_ro(block_group, false); 2004 if (ret) 2005 return ret; 2006 2007 /* Ensure all writes in this block group finish */ 2008 btrfs_wait_block_group_reservations(block_group); 2009 /* No need to wait for NOCOW writers. Zoned mode does not allow that */ 2010 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start, 2011 block_group->length); 2012 /* Wait for extent buffers to be written. */ 2013 if (is_metadata) 2014 wait_eb_writebacks(block_group); 2015 2016 spin_lock(&block_group->lock); 2017 2018 /* 2019 * Bail out if someone already deactivated the block group, or 2020 * allocated space is left in the block group. 2021 */ 2022 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2023 &block_group->runtime_flags)) { 2024 spin_unlock(&block_group->lock); 2025 btrfs_dec_block_group_ro(block_group); 2026 return 0; 2027 } 2028 2029 if (block_group->reserved) { 2030 spin_unlock(&block_group->lock); 2031 btrfs_dec_block_group_ro(block_group); 2032 return -EAGAIN; 2033 } 2034 } 2035 2036 clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags); 2037 block_group->alloc_offset = block_group->zone_capacity; 2038 block_group->free_space_ctl->free_space = 0; 2039 btrfs_clear_treelog_bg(block_group); 2040 btrfs_clear_data_reloc_bg(block_group); 2041 spin_unlock(&block_group->lock); 2042 2043 map = block_group->physical_map; 2044 for (i = 0; i < map->num_stripes; i++) { 2045 struct btrfs_device *device = map->stripes[i].dev; 2046 const u64 physical = map->stripes[i].physical; 2047 2048 if (device->zone_info->max_active_zones == 0) 2049 continue; 2050 2051 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH, 2052 physical >> SECTOR_SHIFT, 2053 device->zone_info->zone_size >> SECTOR_SHIFT, 2054 GFP_NOFS); 2055 2056 if (ret) 2057 return ret; 2058 2059 btrfs_dev_clear_active_zone(device, physical); 2060 } 2061 2062 if (!fully_written) 2063 btrfs_dec_block_group_ro(block_group); 2064 2065 spin_lock(&fs_info->zone_active_bgs_lock); 2066 ASSERT(!list_empty(&block_group->active_bg_list)); 2067 list_del_init(&block_group->active_bg_list); 2068 spin_unlock(&fs_info->zone_active_bgs_lock); 2069 2070 /* For active_bg_list */ 2071 btrfs_put_block_group(block_group); 2072 2073 clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2074 2075 return 0; 2076 } 2077 2078 int btrfs_zone_finish(struct btrfs_block_group *block_group) 2079 { 2080 if (!btrfs_is_zoned(block_group->fs_info)) 2081 return 0; 2082 2083 return do_zone_finish(block_group, false); 2084 } 2085 2086 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags) 2087 { 2088 struct btrfs_fs_info *fs_info = fs_devices->fs_info; 2089 struct btrfs_device *device; 2090 bool ret = false; 2091 2092 if (!btrfs_is_zoned(fs_info)) 2093 return true; 2094 2095 /* Check if there is a device with active zones left */ 2096 mutex_lock(&fs_info->chunk_mutex); 2097 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 2098 struct btrfs_zoned_device_info *zinfo = device->zone_info; 2099 2100 if (!device->bdev) 2101 continue; 2102 2103 if (!zinfo->max_active_zones || 2104 atomic_read(&zinfo->active_zones_left)) { 2105 ret = true; 2106 break; 2107 } 2108 } 2109 mutex_unlock(&fs_info->chunk_mutex); 2110 2111 if (!ret) 2112 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags); 2113 2114 return ret; 2115 } 2116 2117 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length) 2118 { 2119 struct btrfs_block_group *block_group; 2120 u64 min_alloc_bytes; 2121 2122 if (!btrfs_is_zoned(fs_info)) 2123 return; 2124 2125 block_group = btrfs_lookup_block_group(fs_info, logical); 2126 ASSERT(block_group); 2127 2128 /* No MIXED_BG on zoned btrfs. */ 2129 if (block_group->flags & BTRFS_BLOCK_GROUP_DATA) 2130 min_alloc_bytes = fs_info->sectorsize; 2131 else 2132 min_alloc_bytes = fs_info->nodesize; 2133 2134 /* Bail out if we can allocate more data from this block group. */ 2135 if (logical + length + min_alloc_bytes <= 2136 block_group->start + block_group->zone_capacity) 2137 goto out; 2138 2139 do_zone_finish(block_group, true); 2140 2141 out: 2142 btrfs_put_block_group(block_group); 2143 } 2144 2145 static void btrfs_zone_finish_endio_workfn(struct work_struct *work) 2146 { 2147 struct btrfs_block_group *bg = 2148 container_of(work, struct btrfs_block_group, zone_finish_work); 2149 2150 wait_on_extent_buffer_writeback(bg->last_eb); 2151 free_extent_buffer(bg->last_eb); 2152 btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length); 2153 btrfs_put_block_group(bg); 2154 } 2155 2156 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg, 2157 struct extent_buffer *eb) 2158 { 2159 if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) || 2160 eb->start + eb->len * 2 <= bg->start + bg->zone_capacity) 2161 return; 2162 2163 if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) { 2164 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing", 2165 bg->start); 2166 return; 2167 } 2168 2169 /* For the work */ 2170 btrfs_get_block_group(bg); 2171 atomic_inc(&eb->refs); 2172 bg->last_eb = eb; 2173 INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn); 2174 queue_work(system_unbound_wq, &bg->zone_finish_work); 2175 } 2176 2177 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg) 2178 { 2179 struct btrfs_fs_info *fs_info = bg->fs_info; 2180 2181 spin_lock(&fs_info->relocation_bg_lock); 2182 if (fs_info->data_reloc_bg == bg->start) 2183 fs_info->data_reloc_bg = 0; 2184 spin_unlock(&fs_info->relocation_bg_lock); 2185 } 2186 2187 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info) 2188 { 2189 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2190 struct btrfs_device *device; 2191 2192 if (!btrfs_is_zoned(fs_info)) 2193 return; 2194 2195 mutex_lock(&fs_devices->device_list_mutex); 2196 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2197 if (device->zone_info) { 2198 vfree(device->zone_info->zone_cache); 2199 device->zone_info->zone_cache = NULL; 2200 } 2201 } 2202 mutex_unlock(&fs_devices->device_list_mutex); 2203 } 2204 2205 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info) 2206 { 2207 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2208 struct btrfs_device *device; 2209 u64 used = 0; 2210 u64 total = 0; 2211 u64 factor; 2212 2213 ASSERT(btrfs_is_zoned(fs_info)); 2214 2215 if (fs_info->bg_reclaim_threshold == 0) 2216 return false; 2217 2218 mutex_lock(&fs_devices->device_list_mutex); 2219 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2220 if (!device->bdev) 2221 continue; 2222 2223 total += device->disk_total_bytes; 2224 used += device->bytes_used; 2225 } 2226 mutex_unlock(&fs_devices->device_list_mutex); 2227 2228 factor = div64_u64(used * 100, total); 2229 return factor >= fs_info->bg_reclaim_threshold; 2230 } 2231 2232 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical, 2233 u64 length) 2234 { 2235 struct btrfs_block_group *block_group; 2236 2237 if (!btrfs_is_zoned(fs_info)) 2238 return; 2239 2240 block_group = btrfs_lookup_block_group(fs_info, logical); 2241 /* It should be called on a previous data relocation block group. */ 2242 ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)); 2243 2244 spin_lock(&block_group->lock); 2245 if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) 2246 goto out; 2247 2248 /* All relocation extents are written. */ 2249 if (block_group->start + block_group->alloc_offset == logical + length) { 2250 /* Now, release this block group for further allocations. */ 2251 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, 2252 &block_group->runtime_flags); 2253 } 2254 2255 out: 2256 spin_unlock(&block_group->lock); 2257 btrfs_put_block_group(block_group); 2258 } 2259 2260 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info) 2261 { 2262 struct btrfs_block_group *block_group; 2263 struct btrfs_block_group *min_bg = NULL; 2264 u64 min_avail = U64_MAX; 2265 int ret; 2266 2267 spin_lock(&fs_info->zone_active_bgs_lock); 2268 list_for_each_entry(block_group, &fs_info->zone_active_bgs, 2269 active_bg_list) { 2270 u64 avail; 2271 2272 spin_lock(&block_group->lock); 2273 if (block_group->reserved || 2274 (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)) { 2275 spin_unlock(&block_group->lock); 2276 continue; 2277 } 2278 2279 avail = block_group->zone_capacity - block_group->alloc_offset; 2280 if (min_avail > avail) { 2281 if (min_bg) 2282 btrfs_put_block_group(min_bg); 2283 min_bg = block_group; 2284 min_avail = avail; 2285 btrfs_get_block_group(min_bg); 2286 } 2287 spin_unlock(&block_group->lock); 2288 } 2289 spin_unlock(&fs_info->zone_active_bgs_lock); 2290 2291 if (!min_bg) 2292 return 0; 2293 2294 ret = btrfs_zone_finish(min_bg); 2295 btrfs_put_block_group(min_bg); 2296 2297 return ret < 0 ? ret : 1; 2298 } 2299 2300 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info, 2301 struct btrfs_space_info *space_info, 2302 bool do_finish) 2303 { 2304 struct btrfs_block_group *bg; 2305 int index; 2306 2307 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA)) 2308 return 0; 2309 2310 /* No more block groups to activate */ 2311 if (space_info->active_total_bytes == space_info->total_bytes) 2312 return 0; 2313 2314 for (;;) { 2315 int ret; 2316 bool need_finish = false; 2317 2318 down_read(&space_info->groups_sem); 2319 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) { 2320 list_for_each_entry(bg, &space_info->block_groups[index], 2321 list) { 2322 if (!spin_trylock(&bg->lock)) 2323 continue; 2324 if (btrfs_zoned_bg_is_full(bg) || 2325 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, 2326 &bg->runtime_flags)) { 2327 spin_unlock(&bg->lock); 2328 continue; 2329 } 2330 spin_unlock(&bg->lock); 2331 2332 if (btrfs_zone_activate(bg)) { 2333 up_read(&space_info->groups_sem); 2334 return 1; 2335 } 2336 2337 need_finish = true; 2338 } 2339 } 2340 up_read(&space_info->groups_sem); 2341 2342 if (!do_finish || !need_finish) 2343 break; 2344 2345 ret = btrfs_zone_finish_one_bg(fs_info); 2346 if (ret == 0) 2347 break; 2348 if (ret < 0) 2349 return ret; 2350 } 2351 2352 return 0; 2353 } 2354