xref: /linux/fs/btrfs/zoned.c (revision 8341374f67f6e6350de98baaf5b05bca88f4ad81)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "disk-io.h"
13 #include "block-group.h"
14 #include "dev-replace.h"
15 #include "space-info.h"
16 #include "fs.h"
17 #include "accessors.h"
18 #include "bio.h"
19 #include "transaction.h"
20 #include "sysfs.h"
21 
22 /* Maximum number of zones to report per blkdev_report_zones() call */
23 #define BTRFS_REPORT_NR_ZONES   4096
24 /* Invalid allocation pointer value for missing devices */
25 #define WP_MISSING_DEV ((u64)-1)
26 /* Pseudo write pointer value for conventional zone */
27 #define WP_CONVENTIONAL ((u64)-2)
28 
29 /*
30  * Location of the first zone of superblock logging zone pairs.
31  *
32  * - primary superblock:    0B (zone 0)
33  * - first copy:          512G (zone starting at that offset)
34  * - second copy:           4T (zone starting at that offset)
35  */
36 #define BTRFS_SB_LOG_PRIMARY_OFFSET	(0ULL)
37 #define BTRFS_SB_LOG_FIRST_OFFSET	(512ULL * SZ_1G)
38 #define BTRFS_SB_LOG_SECOND_OFFSET	(4096ULL * SZ_1G)
39 
40 #define BTRFS_SB_LOG_FIRST_SHIFT	const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
41 #define BTRFS_SB_LOG_SECOND_SHIFT	const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
42 
43 /* Number of superblock log zones */
44 #define BTRFS_NR_SB_LOG_ZONES 2
45 
46 /* Default number of max active zones when the device has no limits. */
47 #define BTRFS_DEFAULT_MAX_ACTIVE_ZONES	128
48 
49 /*
50  * Minimum of active zones we need:
51  *
52  * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
53  * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
54  * - 1 zone for tree-log dedicated block group
55  * - 1 zone for relocation
56  */
57 #define BTRFS_MIN_ACTIVE_ZONES		(BTRFS_SUPER_MIRROR_MAX + 5)
58 
59 /*
60  * Minimum / maximum supported zone size. Currently, SMR disks have a zone
61  * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
62  * We do not expect the zone size to become larger than 8GiB or smaller than
63  * 4MiB in the near future.
64  */
65 #define BTRFS_MAX_ZONE_SIZE		SZ_8G
66 #define BTRFS_MIN_ZONE_SIZE		SZ_4M
67 
68 #define SUPER_INFO_SECTORS	((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
69 
70 static void wait_eb_writebacks(struct btrfs_block_group *block_group);
71 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written);
72 
sb_zone_is_full(const struct blk_zone * zone)73 static inline bool sb_zone_is_full(const struct blk_zone *zone)
74 {
75 	return (zone->cond == BLK_ZONE_COND_FULL) ||
76 		(zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
77 }
78 
copy_zone_info_cb(struct blk_zone * zone,unsigned int idx,void * data)79 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
80 {
81 	struct blk_zone *zones = data;
82 
83 	memcpy(&zones[idx], zone, sizeof(*zone));
84 
85 	return 0;
86 }
87 
sb_write_pointer(struct block_device * bdev,struct blk_zone * zones,u64 * wp_ret)88 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
89 			    u64 *wp_ret)
90 {
91 	bool empty[BTRFS_NR_SB_LOG_ZONES];
92 	bool full[BTRFS_NR_SB_LOG_ZONES];
93 	sector_t sector;
94 
95 	for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
96 		ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
97 		empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
98 		full[i] = sb_zone_is_full(&zones[i]);
99 	}
100 
101 	/*
102 	 * Possible states of log buffer zones
103 	 *
104 	 *           Empty[0]  In use[0]  Full[0]
105 	 * Empty[1]         *          0        1
106 	 * In use[1]        x          x        1
107 	 * Full[1]          0          0        C
108 	 *
109 	 * Log position:
110 	 *   *: Special case, no superblock is written
111 	 *   0: Use write pointer of zones[0]
112 	 *   1: Use write pointer of zones[1]
113 	 *   C: Compare super blocks from zones[0] and zones[1], use the latest
114 	 *      one determined by generation
115 	 *   x: Invalid state
116 	 */
117 
118 	if (empty[0] && empty[1]) {
119 		/* Special case to distinguish no superblock to read */
120 		*wp_ret = zones[0].start << SECTOR_SHIFT;
121 		return -ENOENT;
122 	} else if (full[0] && full[1]) {
123 		/* Compare two super blocks */
124 		struct address_space *mapping = bdev->bd_mapping;
125 		struct page *page[BTRFS_NR_SB_LOG_ZONES];
126 		struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
127 
128 		for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
129 			u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT;
130 			u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) -
131 						BTRFS_SUPER_INFO_SIZE;
132 
133 			page[i] = read_cache_page_gfp(mapping,
134 					bytenr >> PAGE_SHIFT, GFP_NOFS);
135 			if (IS_ERR(page[i])) {
136 				if (i == 1)
137 					btrfs_release_disk_super(super[0]);
138 				return PTR_ERR(page[i]);
139 			}
140 			super[i] = page_address(page[i]);
141 		}
142 
143 		if (btrfs_super_generation(super[0]) >
144 		    btrfs_super_generation(super[1]))
145 			sector = zones[1].start;
146 		else
147 			sector = zones[0].start;
148 
149 		for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
150 			btrfs_release_disk_super(super[i]);
151 	} else if (!full[0] && (empty[1] || full[1])) {
152 		sector = zones[0].wp;
153 	} else if (full[0]) {
154 		sector = zones[1].wp;
155 	} else {
156 		return -EUCLEAN;
157 	}
158 	*wp_ret = sector << SECTOR_SHIFT;
159 	return 0;
160 }
161 
162 /*
163  * Get the first zone number of the superblock mirror
164  */
sb_zone_number(int shift,int mirror)165 static inline u32 sb_zone_number(int shift, int mirror)
166 {
167 	u64 zone = U64_MAX;
168 
169 	ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
170 	switch (mirror) {
171 	case 0: zone = 0; break;
172 	case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
173 	case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
174 	}
175 
176 	ASSERT(zone <= U32_MAX);
177 
178 	return (u32)zone;
179 }
180 
zone_start_sector(u32 zone_number,struct block_device * bdev)181 static inline sector_t zone_start_sector(u32 zone_number,
182 					 struct block_device *bdev)
183 {
184 	return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
185 }
186 
zone_start_physical(u32 zone_number,struct btrfs_zoned_device_info * zone_info)187 static inline u64 zone_start_physical(u32 zone_number,
188 				      struct btrfs_zoned_device_info *zone_info)
189 {
190 	return (u64)zone_number << zone_info->zone_size_shift;
191 }
192 
193 /*
194  * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
195  * device into static sized chunks and fake a conventional zone on each of
196  * them.
197  */
emulate_report_zones(struct btrfs_device * device,u64 pos,struct blk_zone * zones,unsigned int nr_zones)198 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
199 				struct blk_zone *zones, unsigned int nr_zones)
200 {
201 	const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
202 	sector_t bdev_size = bdev_nr_sectors(device->bdev);
203 	unsigned int i;
204 
205 	pos >>= SECTOR_SHIFT;
206 	for (i = 0; i < nr_zones; i++) {
207 		zones[i].start = i * zone_sectors + pos;
208 		zones[i].len = zone_sectors;
209 		zones[i].capacity = zone_sectors;
210 		zones[i].wp = zones[i].start + zone_sectors;
211 		zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
212 		zones[i].cond = BLK_ZONE_COND_NOT_WP;
213 
214 		if (zones[i].wp >= bdev_size) {
215 			i++;
216 			break;
217 		}
218 	}
219 
220 	return i;
221 }
222 
btrfs_get_dev_zones(struct btrfs_device * device,u64 pos,struct blk_zone * zones,unsigned int * nr_zones)223 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
224 			       struct blk_zone *zones, unsigned int *nr_zones)
225 {
226 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
227 	int ret;
228 
229 	if (!*nr_zones)
230 		return 0;
231 
232 	if (!bdev_is_zoned(device->bdev)) {
233 		ret = emulate_report_zones(device, pos, zones, *nr_zones);
234 		*nr_zones = ret;
235 		return 0;
236 	}
237 
238 	/* Check cache */
239 	if (zinfo->zone_cache) {
240 		unsigned int i;
241 		u32 zno;
242 
243 		ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
244 		zno = pos >> zinfo->zone_size_shift;
245 		/*
246 		 * We cannot report zones beyond the zone end. So, it is OK to
247 		 * cap *nr_zones to at the end.
248 		 */
249 		*nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
250 
251 		for (i = 0; i < *nr_zones; i++) {
252 			struct blk_zone *zone_info;
253 
254 			zone_info = &zinfo->zone_cache[zno + i];
255 			if (!zone_info->len)
256 				break;
257 		}
258 
259 		if (i == *nr_zones) {
260 			/* Cache hit on all the zones */
261 			memcpy(zones, zinfo->zone_cache + zno,
262 			       sizeof(*zinfo->zone_cache) * *nr_zones);
263 			return 0;
264 		}
265 	}
266 
267 	ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
268 				  copy_zone_info_cb, zones);
269 	if (ret < 0) {
270 		btrfs_err(device->fs_info,
271 				 "zoned: failed to read zone %llu on %s (devid %llu)",
272 				 pos, rcu_dereference(device->name),
273 				 device->devid);
274 		return ret;
275 	}
276 	*nr_zones = ret;
277 	if (unlikely(!ret))
278 		return -EIO;
279 
280 	/* Populate cache */
281 	if (zinfo->zone_cache) {
282 		u32 zno = pos >> zinfo->zone_size_shift;
283 
284 		memcpy(zinfo->zone_cache + zno, zones,
285 		       sizeof(*zinfo->zone_cache) * *nr_zones);
286 	}
287 
288 	return 0;
289 }
290 
291 /* The emulated zone size is determined from the size of device extent */
calculate_emulated_zone_size(struct btrfs_fs_info * fs_info)292 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
293 {
294 	BTRFS_PATH_AUTO_FREE(path);
295 	struct btrfs_root *root = fs_info->dev_root;
296 	struct btrfs_key key;
297 	struct extent_buffer *leaf;
298 	struct btrfs_dev_extent *dext;
299 	int ret = 0;
300 
301 	key.objectid = 1;
302 	key.type = BTRFS_DEV_EXTENT_KEY;
303 	key.offset = 0;
304 
305 	path = btrfs_alloc_path();
306 	if (!path)
307 		return -ENOMEM;
308 
309 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
310 	if (ret < 0)
311 		return ret;
312 
313 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
314 		ret = btrfs_next_leaf(root, path);
315 		if (ret < 0)
316 			return ret;
317 		/* No dev extents at all? Not good */
318 		if (unlikely(ret > 0))
319 			return -EUCLEAN;
320 	}
321 
322 	leaf = path->nodes[0];
323 	dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
324 	fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
325 	return 0;
326 }
327 
btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info * fs_info)328 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
329 {
330 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
331 	struct btrfs_device *device;
332 	int ret = 0;
333 
334 	/* fs_info->zone_size might not set yet. Use the incomapt flag here. */
335 	if (!btrfs_fs_incompat(fs_info, ZONED))
336 		return 0;
337 
338 	mutex_lock(&fs_devices->device_list_mutex);
339 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
340 		/* We can skip reading of zone info for missing devices */
341 		if (!device->bdev)
342 			continue;
343 
344 		ret = btrfs_get_dev_zone_info(device, true);
345 		if (ret)
346 			break;
347 	}
348 	mutex_unlock(&fs_devices->device_list_mutex);
349 
350 	return ret;
351 }
352 
btrfs_get_dev_zone_info(struct btrfs_device * device,bool populate_cache)353 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
354 {
355 	struct btrfs_fs_info *fs_info = device->fs_info;
356 	struct btrfs_zoned_device_info *zone_info = NULL;
357 	struct block_device *bdev = device->bdev;
358 	unsigned int max_active_zones;
359 	unsigned int nactive;
360 	sector_t nr_sectors;
361 	sector_t sector = 0;
362 	struct blk_zone *zones = NULL;
363 	unsigned int i, nreported = 0, nr_zones;
364 	sector_t zone_sectors;
365 	char *model, *emulated;
366 	int ret;
367 
368 	/*
369 	 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
370 	 * yet be set.
371 	 */
372 	if (!btrfs_fs_incompat(fs_info, ZONED))
373 		return 0;
374 
375 	if (device->zone_info)
376 		return 0;
377 
378 	zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
379 	if (!zone_info)
380 		return -ENOMEM;
381 
382 	device->zone_info = zone_info;
383 
384 	if (!bdev_is_zoned(bdev)) {
385 		if (!fs_info->zone_size) {
386 			ret = calculate_emulated_zone_size(fs_info);
387 			if (ret)
388 				goto out;
389 		}
390 
391 		ASSERT(fs_info->zone_size);
392 		zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
393 	} else {
394 		zone_sectors = bdev_zone_sectors(bdev);
395 	}
396 
397 	ASSERT(is_power_of_two_u64(zone_sectors));
398 	zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
399 
400 	/* We reject devices with a zone size larger than 8GB */
401 	if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
402 		btrfs_err(fs_info,
403 		"zoned: %s: zone size %llu larger than supported maximum %llu",
404 				 rcu_dereference(device->name),
405 				 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
406 		ret = -EINVAL;
407 		goto out;
408 	} else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
409 		btrfs_err(fs_info,
410 		"zoned: %s: zone size %llu smaller than supported minimum %u",
411 				 rcu_dereference(device->name),
412 				 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
413 		ret = -EINVAL;
414 		goto out;
415 	}
416 
417 	nr_sectors = bdev_nr_sectors(bdev);
418 	zone_info->zone_size_shift = ilog2(zone_info->zone_size);
419 	zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
420 	if (!IS_ALIGNED(nr_sectors, zone_sectors))
421 		zone_info->nr_zones++;
422 
423 	max_active_zones = min_not_zero(bdev_max_active_zones(bdev),
424 					bdev_max_open_zones(bdev));
425 	if (!max_active_zones && zone_info->nr_zones > BTRFS_DEFAULT_MAX_ACTIVE_ZONES)
426 		max_active_zones = BTRFS_DEFAULT_MAX_ACTIVE_ZONES;
427 	if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
428 		btrfs_err(fs_info,
429 "zoned: %s: max active zones %u is too small, need at least %u active zones",
430 				 rcu_dereference(device->name), max_active_zones,
431 				 BTRFS_MIN_ACTIVE_ZONES);
432 		ret = -EINVAL;
433 		goto out;
434 	}
435 	zone_info->max_active_zones = max_active_zones;
436 
437 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
438 	if (!zone_info->seq_zones) {
439 		ret = -ENOMEM;
440 		goto out;
441 	}
442 
443 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
444 	if (!zone_info->empty_zones) {
445 		ret = -ENOMEM;
446 		goto out;
447 	}
448 
449 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
450 	if (!zone_info->active_zones) {
451 		ret = -ENOMEM;
452 		goto out;
453 	}
454 
455 	zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
456 	if (!zones) {
457 		ret = -ENOMEM;
458 		goto out;
459 	}
460 
461 	/*
462 	 * Enable zone cache only for a zoned device. On a non-zoned device, we
463 	 * fill the zone info with emulated CONVENTIONAL zones, so no need to
464 	 * use the cache.
465 	 */
466 	if (populate_cache && bdev_is_zoned(device->bdev)) {
467 		zone_info->zone_cache = vcalloc(zone_info->nr_zones,
468 						sizeof(struct blk_zone));
469 		if (!zone_info->zone_cache) {
470 			btrfs_err(device->fs_info,
471 				"zoned: failed to allocate zone cache for %s",
472 				rcu_dereference(device->name));
473 			ret = -ENOMEM;
474 			goto out;
475 		}
476 	}
477 
478 	/* Get zones type */
479 	nactive = 0;
480 	while (sector < nr_sectors) {
481 		nr_zones = BTRFS_REPORT_NR_ZONES;
482 		ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
483 					  &nr_zones);
484 		if (ret)
485 			goto out;
486 
487 		for (i = 0; i < nr_zones; i++) {
488 			if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
489 				__set_bit(nreported, zone_info->seq_zones);
490 			switch (zones[i].cond) {
491 			case BLK_ZONE_COND_EMPTY:
492 				__set_bit(nreported, zone_info->empty_zones);
493 				break;
494 			case BLK_ZONE_COND_IMP_OPEN:
495 			case BLK_ZONE_COND_EXP_OPEN:
496 			case BLK_ZONE_COND_CLOSED:
497 				__set_bit(nreported, zone_info->active_zones);
498 				nactive++;
499 				break;
500 			}
501 			nreported++;
502 		}
503 		sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
504 	}
505 
506 	if (unlikely(nreported != zone_info->nr_zones)) {
507 		btrfs_err(device->fs_info,
508 				 "inconsistent number of zones on %s (%u/%u)",
509 				 rcu_dereference(device->name), nreported,
510 				 zone_info->nr_zones);
511 		ret = -EIO;
512 		goto out;
513 	}
514 
515 	if (max_active_zones) {
516 		if (unlikely(nactive > max_active_zones)) {
517 			if (bdev_max_active_zones(bdev) == 0) {
518 				max_active_zones = 0;
519 				zone_info->max_active_zones = 0;
520 				goto validate;
521 			}
522 			btrfs_err(device->fs_info,
523 			"zoned: %u active zones on %s exceeds max_active_zones %u",
524 					 nactive, rcu_dereference(device->name),
525 					 max_active_zones);
526 			ret = -EIO;
527 			goto out;
528 		}
529 		atomic_set(&zone_info->active_zones_left,
530 			   max_active_zones - nactive);
531 		set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
532 	}
533 
534 validate:
535 	/* Validate superblock log */
536 	nr_zones = BTRFS_NR_SB_LOG_ZONES;
537 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
538 		u32 sb_zone;
539 		u64 sb_wp;
540 		int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
541 
542 		sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
543 		if (sb_zone + 1 >= zone_info->nr_zones)
544 			continue;
545 
546 		ret = btrfs_get_dev_zones(device,
547 					  zone_start_physical(sb_zone, zone_info),
548 					  &zone_info->sb_zones[sb_pos],
549 					  &nr_zones);
550 		if (ret)
551 			goto out;
552 
553 		if (unlikely(nr_zones != BTRFS_NR_SB_LOG_ZONES)) {
554 			btrfs_err(device->fs_info,
555 	"zoned: failed to read super block log zone info at devid %llu zone %u",
556 					 device->devid, sb_zone);
557 			ret = -EUCLEAN;
558 			goto out;
559 		}
560 
561 		/*
562 		 * If zones[0] is conventional, always use the beginning of the
563 		 * zone to record superblock. No need to validate in that case.
564 		 */
565 		if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
566 		    BLK_ZONE_TYPE_CONVENTIONAL)
567 			continue;
568 
569 		ret = sb_write_pointer(device->bdev,
570 				       &zone_info->sb_zones[sb_pos], &sb_wp);
571 		if (unlikely(ret != -ENOENT && ret)) {
572 			btrfs_err(device->fs_info,
573 			"zoned: super block log zone corrupted devid %llu zone %u",
574 					 device->devid, sb_zone);
575 			ret = -EUCLEAN;
576 			goto out;
577 		}
578 	}
579 
580 
581 	kvfree(zones);
582 
583 	if (bdev_is_zoned(bdev)) {
584 		model = "host-managed zoned";
585 		emulated = "";
586 	} else {
587 		model = "regular";
588 		emulated = "emulated ";
589 	}
590 
591 	btrfs_info(fs_info,
592 		"%s block device %s, %u %szones of %llu bytes",
593 		model, rcu_dereference(device->name), zone_info->nr_zones,
594 		emulated, zone_info->zone_size);
595 
596 	return 0;
597 
598 out:
599 	kvfree(zones);
600 	btrfs_destroy_dev_zone_info(device);
601 	return ret;
602 }
603 
btrfs_destroy_dev_zone_info(struct btrfs_device * device)604 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
605 {
606 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
607 
608 	if (!zone_info)
609 		return;
610 
611 	bitmap_free(zone_info->active_zones);
612 	bitmap_free(zone_info->seq_zones);
613 	bitmap_free(zone_info->empty_zones);
614 	vfree(zone_info->zone_cache);
615 	kfree(zone_info);
616 	device->zone_info = NULL;
617 }
618 
btrfs_clone_dev_zone_info(struct btrfs_device * orig_dev)619 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
620 {
621 	struct btrfs_zoned_device_info *zone_info;
622 
623 	zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
624 	if (!zone_info)
625 		return NULL;
626 
627 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
628 	if (!zone_info->seq_zones)
629 		goto out;
630 
631 	bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
632 		    zone_info->nr_zones);
633 
634 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
635 	if (!zone_info->empty_zones)
636 		goto out;
637 
638 	bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
639 		    zone_info->nr_zones);
640 
641 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
642 	if (!zone_info->active_zones)
643 		goto out;
644 
645 	bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
646 		    zone_info->nr_zones);
647 	zone_info->zone_cache = NULL;
648 
649 	return zone_info;
650 
651 out:
652 	bitmap_free(zone_info->seq_zones);
653 	bitmap_free(zone_info->empty_zones);
654 	bitmap_free(zone_info->active_zones);
655 	kfree(zone_info);
656 	return NULL;
657 }
658 
btrfs_get_dev_zone(struct btrfs_device * device,u64 pos,struct blk_zone * zone)659 static int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, struct blk_zone *zone)
660 {
661 	unsigned int nr_zones = 1;
662 	int ret;
663 
664 	ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
665 	if (ret != 0 || !nr_zones)
666 		return ret ? ret : -EIO;
667 
668 	return 0;
669 }
670 
btrfs_check_for_zoned_device(struct btrfs_fs_info * fs_info)671 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
672 {
673 	struct btrfs_device *device;
674 
675 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
676 		if (device->bdev && bdev_is_zoned(device->bdev)) {
677 			btrfs_err(fs_info,
678 				"zoned: mode not enabled but zoned device found: %pg",
679 				device->bdev);
680 			return -EINVAL;
681 		}
682 	}
683 
684 	return 0;
685 }
686 
btrfs_check_zoned_mode(struct btrfs_fs_info * fs_info)687 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
688 {
689 	struct queue_limits *lim = &fs_info->limits;
690 	struct btrfs_device *device;
691 	u64 zone_size = 0;
692 	int ret;
693 
694 	/*
695 	 * Host-Managed devices can't be used without the ZONED flag.  With the
696 	 * ZONED all devices can be used, using zone emulation if required.
697 	 */
698 	if (!btrfs_fs_incompat(fs_info, ZONED))
699 		return btrfs_check_for_zoned_device(fs_info);
700 
701 	blk_set_stacking_limits(lim);
702 
703 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
704 		struct btrfs_zoned_device_info *zone_info = device->zone_info;
705 
706 		if (!device->bdev)
707 			continue;
708 
709 		if (!zone_size) {
710 			zone_size = zone_info->zone_size;
711 		} else if (zone_info->zone_size != zone_size) {
712 			btrfs_err(fs_info,
713 		"zoned: unequal block device zone sizes: have %llu found %llu",
714 				  zone_info->zone_size, zone_size);
715 			return -EINVAL;
716 		}
717 
718 		/*
719 		 * With the zoned emulation, we can have non-zoned device on the
720 		 * zoned mode. In this case, we don't have a valid max zone
721 		 * append size.
722 		 */
723 		if (bdev_is_zoned(device->bdev))
724 			blk_stack_limits(lim, bdev_limits(device->bdev), 0);
725 	}
726 
727 	ret = blk_validate_limits(lim);
728 	if (ret) {
729 		btrfs_err(fs_info, "zoned: failed to validate queue limits");
730 		return ret;
731 	}
732 
733 	/*
734 	 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
735 	 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
736 	 * check the alignment here.
737 	 */
738 	if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
739 		btrfs_err(fs_info,
740 			  "zoned: zone size %llu not aligned to stripe %u",
741 			  zone_size, BTRFS_STRIPE_LEN);
742 		return -EINVAL;
743 	}
744 
745 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
746 		btrfs_err(fs_info, "zoned: mixed block groups not supported");
747 		return -EINVAL;
748 	}
749 
750 	fs_info->zone_size = zone_size;
751 	/*
752 	 * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
753 	 * Technically, we can have multiple pages per segment. But, since
754 	 * we add the pages one by one to a bio, and cannot increase the
755 	 * metadata reservation even if it increases the number of extents, it
756 	 * is safe to stick with the limit.
757 	 */
758 	fs_info->max_zone_append_size = ALIGN_DOWN(
759 		min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
760 		     (u64)lim->max_sectors << SECTOR_SHIFT,
761 		     (u64)lim->max_segments << PAGE_SHIFT),
762 		fs_info->sectorsize);
763 	fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
764 
765 	fs_info->max_extent_size = min_not_zero(fs_info->max_extent_size,
766 						fs_info->max_zone_append_size);
767 
768 	/*
769 	 * Check mount options here, because we might change fs_info->zoned
770 	 * from fs_info->zone_size.
771 	 */
772 	ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt);
773 	if (ret)
774 		return ret;
775 
776 	btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
777 	return 0;
778 }
779 
btrfs_check_mountopts_zoned(const struct btrfs_fs_info * info,unsigned long long * mount_opt)780 int btrfs_check_mountopts_zoned(const struct btrfs_fs_info *info,
781 				unsigned long long *mount_opt)
782 {
783 	if (!btrfs_is_zoned(info))
784 		return 0;
785 
786 	/*
787 	 * Space cache writing is not COWed. Disable that to avoid write errors
788 	 * in sequential zones.
789 	 */
790 	if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
791 		btrfs_err(info, "zoned: space cache v1 is not supported");
792 		return -EINVAL;
793 	}
794 
795 	if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) {
796 		btrfs_err(info, "zoned: NODATACOW not supported");
797 		return -EINVAL;
798 	}
799 
800 	if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) {
801 		btrfs_info(info,
802 			   "zoned: async discard ignored and disabled for zoned mode");
803 		btrfs_clear_opt(*mount_opt, DISCARD_ASYNC);
804 	}
805 
806 	return 0;
807 }
808 
sb_log_location(struct block_device * bdev,struct blk_zone * zones,int rw,u64 * bytenr_ret)809 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
810 			   int rw, u64 *bytenr_ret)
811 {
812 	u64 wp;
813 	int ret;
814 
815 	if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
816 		*bytenr_ret = zones[0].start << SECTOR_SHIFT;
817 		return 0;
818 	}
819 
820 	ret = sb_write_pointer(bdev, zones, &wp);
821 	if (ret != -ENOENT && ret < 0)
822 		return ret;
823 
824 	if (rw == WRITE) {
825 		struct blk_zone *reset = NULL;
826 
827 		if (wp == zones[0].start << SECTOR_SHIFT)
828 			reset = &zones[0];
829 		else if (wp == zones[1].start << SECTOR_SHIFT)
830 			reset = &zones[1];
831 
832 		if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
833 			unsigned int nofs_flags;
834 
835 			ASSERT(sb_zone_is_full(reset));
836 
837 			nofs_flags = memalloc_nofs_save();
838 			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
839 					       reset->start, reset->len);
840 			memalloc_nofs_restore(nofs_flags);
841 			if (ret)
842 				return ret;
843 
844 			reset->cond = BLK_ZONE_COND_EMPTY;
845 			reset->wp = reset->start;
846 		}
847 	} else if (ret != -ENOENT) {
848 		/*
849 		 * For READ, we want the previous one. Move write pointer to
850 		 * the end of a zone, if it is at the head of a zone.
851 		 */
852 		u64 zone_end = 0;
853 
854 		if (wp == zones[0].start << SECTOR_SHIFT)
855 			zone_end = zones[1].start + zones[1].capacity;
856 		else if (wp == zones[1].start << SECTOR_SHIFT)
857 			zone_end = zones[0].start + zones[0].capacity;
858 		if (zone_end)
859 			wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
860 					BTRFS_SUPER_INFO_SIZE);
861 
862 		wp -= BTRFS_SUPER_INFO_SIZE;
863 	}
864 
865 	*bytenr_ret = wp;
866 	return 0;
867 
868 }
869 
btrfs_sb_log_location_bdev(struct block_device * bdev,int mirror,int rw,u64 * bytenr_ret)870 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
871 			       u64 *bytenr_ret)
872 {
873 	struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
874 	sector_t zone_sectors;
875 	u32 sb_zone;
876 	int ret;
877 	u8 zone_sectors_shift;
878 	sector_t nr_sectors;
879 	u32 nr_zones;
880 
881 	if (!bdev_is_zoned(bdev)) {
882 		*bytenr_ret = btrfs_sb_offset(mirror);
883 		return 0;
884 	}
885 
886 	ASSERT(rw == READ || rw == WRITE);
887 
888 	zone_sectors = bdev_zone_sectors(bdev);
889 	if (!is_power_of_2(zone_sectors))
890 		return -EINVAL;
891 	zone_sectors_shift = ilog2(zone_sectors);
892 	nr_sectors = bdev_nr_sectors(bdev);
893 	nr_zones = nr_sectors >> zone_sectors_shift;
894 
895 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
896 	if (sb_zone + 1 >= nr_zones)
897 		return -ENOENT;
898 
899 	ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
900 				  BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
901 				  zones);
902 	if (ret < 0)
903 		return ret;
904 	if (unlikely(ret != BTRFS_NR_SB_LOG_ZONES))
905 		return -EIO;
906 
907 	return sb_log_location(bdev, zones, rw, bytenr_ret);
908 }
909 
btrfs_sb_log_location(struct btrfs_device * device,int mirror,int rw,u64 * bytenr_ret)910 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
911 			  u64 *bytenr_ret)
912 {
913 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
914 	u32 zone_num;
915 
916 	/*
917 	 * For a zoned filesystem on a non-zoned block device, use the same
918 	 * super block locations as regular filesystem. Doing so, the super
919 	 * block can always be retrieved and the zoned flag of the volume
920 	 * detected from the super block information.
921 	 */
922 	if (!bdev_is_zoned(device->bdev)) {
923 		*bytenr_ret = btrfs_sb_offset(mirror);
924 		return 0;
925 	}
926 
927 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
928 	if (zone_num + 1 >= zinfo->nr_zones)
929 		return -ENOENT;
930 
931 	return sb_log_location(device->bdev,
932 			       &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
933 			       rw, bytenr_ret);
934 }
935 
is_sb_log_zone(struct btrfs_zoned_device_info * zinfo,int mirror)936 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
937 				  int mirror)
938 {
939 	u32 zone_num;
940 
941 	if (!zinfo)
942 		return false;
943 
944 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
945 	if (zone_num + 1 >= zinfo->nr_zones)
946 		return false;
947 
948 	if (!test_bit(zone_num, zinfo->seq_zones))
949 		return false;
950 
951 	return true;
952 }
953 
btrfs_advance_sb_log(struct btrfs_device * device,int mirror)954 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
955 {
956 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
957 	struct blk_zone *zone;
958 	int i;
959 
960 	if (!is_sb_log_zone(zinfo, mirror))
961 		return 0;
962 
963 	zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
964 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
965 		/* Advance the next zone */
966 		if (zone->cond == BLK_ZONE_COND_FULL) {
967 			zone++;
968 			continue;
969 		}
970 
971 		if (zone->cond == BLK_ZONE_COND_EMPTY)
972 			zone->cond = BLK_ZONE_COND_IMP_OPEN;
973 
974 		zone->wp += SUPER_INFO_SECTORS;
975 
976 		if (sb_zone_is_full(zone)) {
977 			/*
978 			 * No room left to write new superblock. Since
979 			 * superblock is written with REQ_SYNC, it is safe to
980 			 * finish the zone now.
981 			 *
982 			 * If the write pointer is exactly at the capacity,
983 			 * explicit ZONE_FINISH is not necessary.
984 			 */
985 			if (zone->wp != zone->start + zone->capacity) {
986 				unsigned int nofs_flags;
987 				int ret;
988 
989 				nofs_flags = memalloc_nofs_save();
990 				ret = blkdev_zone_mgmt(device->bdev,
991 						REQ_OP_ZONE_FINISH, zone->start,
992 						zone->len);
993 				memalloc_nofs_restore(nofs_flags);
994 				if (ret)
995 					return ret;
996 			}
997 
998 			zone->wp = zone->start + zone->len;
999 			zone->cond = BLK_ZONE_COND_FULL;
1000 		}
1001 		return 0;
1002 	}
1003 
1004 	/* All the zones are FULL. Should not reach here. */
1005 	DEBUG_WARN("unexpected state, all zones full");
1006 	return -EIO;
1007 }
1008 
btrfs_reset_sb_log_zones(struct block_device * bdev,int mirror)1009 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
1010 {
1011 	unsigned int nofs_flags;
1012 	sector_t zone_sectors;
1013 	sector_t nr_sectors;
1014 	u8 zone_sectors_shift;
1015 	u32 sb_zone;
1016 	u32 nr_zones;
1017 	int ret;
1018 
1019 	zone_sectors = bdev_zone_sectors(bdev);
1020 	zone_sectors_shift = ilog2(zone_sectors);
1021 	nr_sectors = bdev_nr_sectors(bdev);
1022 	nr_zones = nr_sectors >> zone_sectors_shift;
1023 
1024 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1025 	if (sb_zone + 1 >= nr_zones)
1026 		return -ENOENT;
1027 
1028 	nofs_flags = memalloc_nofs_save();
1029 	ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1030 			       zone_start_sector(sb_zone, bdev),
1031 			       zone_sectors * BTRFS_NR_SB_LOG_ZONES);
1032 	memalloc_nofs_restore(nofs_flags);
1033 	return ret;
1034 }
1035 
1036 /*
1037  * Find allocatable zones within a given region.
1038  *
1039  * @device:	the device to allocate a region on
1040  * @hole_start: the position of the hole to allocate the region
1041  * @num_bytes:	size of wanted region
1042  * @hole_end:	the end of the hole
1043  * @return:	position of allocatable zones
1044  *
1045  * Allocatable region should not contain any superblock locations.
1046  */
btrfs_find_allocatable_zones(struct btrfs_device * device,u64 hole_start,u64 hole_end,u64 num_bytes)1047 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1048 				 u64 hole_end, u64 num_bytes)
1049 {
1050 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1051 	const u8 shift = zinfo->zone_size_shift;
1052 	u64 nzones = num_bytes >> shift;
1053 	u64 pos = hole_start;
1054 	u64 begin, end;
1055 	bool have_sb;
1056 	int i;
1057 
1058 	ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1059 	ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1060 
1061 	while (pos < hole_end) {
1062 		begin = pos >> shift;
1063 		end = begin + nzones;
1064 
1065 		if (end > zinfo->nr_zones)
1066 			return hole_end;
1067 
1068 		/* Check if zones in the region are all empty */
1069 		if (btrfs_dev_is_sequential(device, pos) &&
1070 		    !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) {
1071 			pos += zinfo->zone_size;
1072 			continue;
1073 		}
1074 
1075 		have_sb = false;
1076 		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1077 			u32 sb_zone;
1078 			u64 sb_pos;
1079 
1080 			sb_zone = sb_zone_number(shift, i);
1081 			if (!(end <= sb_zone ||
1082 			      sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1083 				have_sb = true;
1084 				pos = zone_start_physical(
1085 					sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1086 				break;
1087 			}
1088 
1089 			/* We also need to exclude regular superblock positions */
1090 			sb_pos = btrfs_sb_offset(i);
1091 			if (!(pos + num_bytes <= sb_pos ||
1092 			      sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1093 				have_sb = true;
1094 				pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1095 					    zinfo->zone_size);
1096 				break;
1097 			}
1098 		}
1099 		if (!have_sb)
1100 			break;
1101 	}
1102 
1103 	return pos;
1104 }
1105 
btrfs_dev_set_active_zone(struct btrfs_device * device,u64 pos)1106 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1107 {
1108 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1109 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1110 
1111 	/* We can use any number of zones */
1112 	if (zone_info->max_active_zones == 0)
1113 		return true;
1114 
1115 	if (!test_bit(zno, zone_info->active_zones)) {
1116 		/* Active zone left? */
1117 		if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1118 			return false;
1119 		if (test_and_set_bit(zno, zone_info->active_zones)) {
1120 			/* Someone already set the bit */
1121 			atomic_inc(&zone_info->active_zones_left);
1122 		}
1123 	}
1124 
1125 	return true;
1126 }
1127 
btrfs_dev_clear_active_zone(struct btrfs_device * device,u64 pos)1128 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1129 {
1130 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1131 	unsigned int zno = (pos >> zone_info->zone_size_shift);
1132 
1133 	/* We can use any number of zones */
1134 	if (zone_info->max_active_zones == 0)
1135 		return;
1136 
1137 	if (test_and_clear_bit(zno, zone_info->active_zones))
1138 		atomic_inc(&zone_info->active_zones_left);
1139 }
1140 
btrfs_reset_device_zone(struct btrfs_device * device,u64 physical,u64 length,u64 * bytes)1141 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1142 			    u64 length, u64 *bytes)
1143 {
1144 	unsigned int nofs_flags;
1145 	int ret;
1146 
1147 	*bytes = 0;
1148 	nofs_flags = memalloc_nofs_save();
1149 	ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1150 			       physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT);
1151 	memalloc_nofs_restore(nofs_flags);
1152 	if (ret)
1153 		return ret;
1154 
1155 	*bytes = length;
1156 	while (length) {
1157 		btrfs_dev_set_zone_empty(device, physical);
1158 		btrfs_dev_clear_active_zone(device, physical);
1159 		physical += device->zone_info->zone_size;
1160 		length -= device->zone_info->zone_size;
1161 	}
1162 
1163 	return 0;
1164 }
1165 
btrfs_ensure_empty_zones(struct btrfs_device * device,u64 start,u64 size)1166 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1167 {
1168 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1169 	const u8 shift = zinfo->zone_size_shift;
1170 	unsigned long begin = start >> shift;
1171 	unsigned long nbits = size >> shift;
1172 	u64 pos;
1173 	int ret;
1174 
1175 	ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1176 	ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1177 
1178 	if (begin + nbits > zinfo->nr_zones)
1179 		return -ERANGE;
1180 
1181 	/* All the zones are conventional */
1182 	if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits))
1183 		return 0;
1184 
1185 	/* All the zones are sequential and empty */
1186 	if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) &&
1187 	    bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits))
1188 		return 0;
1189 
1190 	for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1191 		u64 reset_bytes;
1192 
1193 		if (!btrfs_dev_is_sequential(device, pos) ||
1194 		    btrfs_dev_is_empty_zone(device, pos))
1195 			continue;
1196 
1197 		/* Free regions should be empty */
1198 		btrfs_warn(
1199 			device->fs_info,
1200 		"zoned: resetting device %s (devid %llu) zone %llu for allocation",
1201 			rcu_dereference(device->name), device->devid, pos >> shift);
1202 		WARN_ON_ONCE(1);
1203 
1204 		ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1205 					      &reset_bytes);
1206 		if (ret)
1207 			return ret;
1208 	}
1209 
1210 	return 0;
1211 }
1212 
1213 /*
1214  * Calculate an allocation pointer from the extent allocation information
1215  * for a block group consist of conventional zones. It is pointed to the
1216  * end of the highest addressed extent in the block group as an allocation
1217  * offset.
1218  */
calculate_alloc_pointer(struct btrfs_block_group * cache,u64 * offset_ret,bool new)1219 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1220 				   u64 *offset_ret, bool new)
1221 {
1222 	struct btrfs_fs_info *fs_info = cache->fs_info;
1223 	struct btrfs_root *root;
1224 	BTRFS_PATH_AUTO_FREE(path);
1225 	struct btrfs_key key;
1226 	struct btrfs_key found_key;
1227 	int ret;
1228 	u64 length;
1229 
1230 	/*
1231 	 * Avoid  tree lookups for a new block group, there's no use for it.
1232 	 * It must always be 0.
1233 	 *
1234 	 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1235 	 * For new a block group, this function is called from
1236 	 * btrfs_make_block_group() which is already taking the chunk mutex.
1237 	 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1238 	 * buffer locks to avoid deadlock.
1239 	 */
1240 	if (new) {
1241 		*offset_ret = 0;
1242 		return 0;
1243 	}
1244 
1245 	path = btrfs_alloc_path();
1246 	if (!path)
1247 		return -ENOMEM;
1248 
1249 	key.objectid = cache->start + cache->length;
1250 	key.type = 0;
1251 	key.offset = 0;
1252 
1253 	root = btrfs_extent_root(fs_info, key.objectid);
1254 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1255 	/* We should not find the exact match */
1256 	if (unlikely(!ret))
1257 		ret = -EUCLEAN;
1258 	if (ret < 0)
1259 		return ret;
1260 
1261 	ret = btrfs_previous_extent_item(root, path, cache->start);
1262 	if (ret) {
1263 		if (ret == 1) {
1264 			ret = 0;
1265 			*offset_ret = 0;
1266 		}
1267 		return ret;
1268 	}
1269 
1270 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1271 
1272 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1273 		length = found_key.offset;
1274 	else
1275 		length = fs_info->nodesize;
1276 
1277 	if (unlikely(!(found_key.objectid >= cache->start &&
1278 		       found_key.objectid + length <= cache->start + cache->length))) {
1279 		return -EUCLEAN;
1280 	}
1281 	*offset_ret = found_key.objectid + length - cache->start;
1282 	return 0;
1283 }
1284 
1285 struct zone_info {
1286 	u64 physical;
1287 	u64 capacity;
1288 	u64 alloc_offset;
1289 };
1290 
btrfs_load_zone_info(struct btrfs_fs_info * fs_info,int zone_idx,struct zone_info * info,unsigned long * active,struct btrfs_chunk_map * map,bool new)1291 static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx,
1292 				struct zone_info *info, unsigned long *active,
1293 				struct btrfs_chunk_map *map, bool new)
1294 {
1295 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1296 	struct btrfs_device *device;
1297 	int dev_replace_is_ongoing = 0;
1298 	unsigned int nofs_flag;
1299 	struct blk_zone zone;
1300 	int ret;
1301 
1302 	info->physical = map->stripes[zone_idx].physical;
1303 
1304 	down_read(&dev_replace->rwsem);
1305 	device = map->stripes[zone_idx].dev;
1306 
1307 	if (!device->bdev) {
1308 		up_read(&dev_replace->rwsem);
1309 		info->alloc_offset = WP_MISSING_DEV;
1310 		return 0;
1311 	}
1312 
1313 	/* Consider a zone as active if we can allow any number of active zones. */
1314 	if (!device->zone_info->max_active_zones)
1315 		__set_bit(zone_idx, active);
1316 
1317 	if (!btrfs_dev_is_sequential(device, info->physical)) {
1318 		up_read(&dev_replace->rwsem);
1319 		info->alloc_offset = WP_CONVENTIONAL;
1320 		info->capacity = device->zone_info->zone_size;
1321 		return 0;
1322 	}
1323 
1324 	ASSERT(!new || btrfs_dev_is_empty_zone(device, info->physical));
1325 
1326 	/* This zone will be used for allocation, so mark this zone non-empty. */
1327 	btrfs_dev_clear_zone_empty(device, info->physical);
1328 
1329 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1330 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1331 		btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical);
1332 
1333 	/*
1334 	 * The group is mapped to a sequential zone. Get the zone write pointer
1335 	 * to determine the allocation offset within the zone.
1336 	 */
1337 	WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size));
1338 
1339 	if (new) {
1340 		sector_t capacity;
1341 
1342 		capacity = bdev_zone_capacity(device->bdev, info->physical >> SECTOR_SHIFT);
1343 		up_read(&dev_replace->rwsem);
1344 		info->alloc_offset = 0;
1345 		info->capacity = capacity << SECTOR_SHIFT;
1346 
1347 		return 0;
1348 	}
1349 
1350 	nofs_flag = memalloc_nofs_save();
1351 	ret = btrfs_get_dev_zone(device, info->physical, &zone);
1352 	memalloc_nofs_restore(nofs_flag);
1353 	if (ret) {
1354 		up_read(&dev_replace->rwsem);
1355 		if (ret != -EIO && ret != -EOPNOTSUPP)
1356 			return ret;
1357 		info->alloc_offset = WP_MISSING_DEV;
1358 		return 0;
1359 	}
1360 
1361 	if (unlikely(zone.type == BLK_ZONE_TYPE_CONVENTIONAL)) {
1362 		btrfs_err(fs_info,
1363 		"zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1364 			zone.start << SECTOR_SHIFT, rcu_dereference(device->name),
1365 			device->devid);
1366 		up_read(&dev_replace->rwsem);
1367 		return -EIO;
1368 	}
1369 
1370 	info->capacity = (zone.capacity << SECTOR_SHIFT);
1371 
1372 	switch (zone.cond) {
1373 	case BLK_ZONE_COND_OFFLINE:
1374 	case BLK_ZONE_COND_READONLY:
1375 		btrfs_err(fs_info,
1376 		"zoned: offline/readonly zone %llu on device %s (devid %llu)",
1377 			  (info->physical >> device->zone_info->zone_size_shift),
1378 			  rcu_dereference(device->name), device->devid);
1379 		info->alloc_offset = WP_MISSING_DEV;
1380 		break;
1381 	case BLK_ZONE_COND_EMPTY:
1382 		info->alloc_offset = 0;
1383 		break;
1384 	case BLK_ZONE_COND_FULL:
1385 		info->alloc_offset = info->capacity;
1386 		break;
1387 	default:
1388 		/* Partially used zone. */
1389 		info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT);
1390 		__set_bit(zone_idx, active);
1391 		break;
1392 	}
1393 
1394 	up_read(&dev_replace->rwsem);
1395 
1396 	return 0;
1397 }
1398 
btrfs_load_block_group_single(struct btrfs_block_group * bg,struct zone_info * info,unsigned long * active)1399 static int btrfs_load_block_group_single(struct btrfs_block_group *bg,
1400 					 struct zone_info *info,
1401 					 unsigned long *active)
1402 {
1403 	if (unlikely(info->alloc_offset == WP_MISSING_DEV)) {
1404 		btrfs_err(bg->fs_info,
1405 			"zoned: cannot recover write pointer for zone %llu",
1406 			info->physical);
1407 		return -EIO;
1408 	}
1409 
1410 	bg->alloc_offset = info->alloc_offset;
1411 	bg->zone_capacity = info->capacity;
1412 	if (test_bit(0, active))
1413 		set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1414 	return 0;
1415 }
1416 
btrfs_load_block_group_dup(struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct zone_info * zone_info,unsigned long * active,u64 last_alloc)1417 static int btrfs_load_block_group_dup(struct btrfs_block_group *bg,
1418 				      struct btrfs_chunk_map *map,
1419 				      struct zone_info *zone_info,
1420 				      unsigned long *active,
1421 				      u64 last_alloc)
1422 {
1423 	struct btrfs_fs_info *fs_info = bg->fs_info;
1424 
1425 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1426 		btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree");
1427 		return -EINVAL;
1428 	}
1429 
1430 	bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity);
1431 
1432 	if (unlikely(zone_info[0].alloc_offset == WP_MISSING_DEV)) {
1433 		btrfs_err(bg->fs_info,
1434 			  "zoned: cannot recover write pointer for zone %llu",
1435 			  zone_info[0].physical);
1436 		return -EIO;
1437 	}
1438 	if (unlikely(zone_info[1].alloc_offset == WP_MISSING_DEV)) {
1439 		btrfs_err(bg->fs_info,
1440 			  "zoned: cannot recover write pointer for zone %llu",
1441 			  zone_info[1].physical);
1442 		return -EIO;
1443 	}
1444 
1445 	if (zone_info[0].alloc_offset == WP_CONVENTIONAL)
1446 		zone_info[0].alloc_offset = last_alloc;
1447 
1448 	if (zone_info[1].alloc_offset == WP_CONVENTIONAL)
1449 		zone_info[1].alloc_offset = last_alloc;
1450 
1451 	if (unlikely(zone_info[0].alloc_offset != zone_info[1].alloc_offset)) {
1452 		btrfs_err(bg->fs_info,
1453 			  "zoned: write pointer offset mismatch of zones in DUP profile");
1454 		return -EIO;
1455 	}
1456 
1457 	if (test_bit(0, active) != test_bit(1, active)) {
1458 		if (unlikely(!btrfs_zone_activate(bg)))
1459 			return -EIO;
1460 	} else if (test_bit(0, active)) {
1461 		set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1462 	}
1463 
1464 	bg->alloc_offset = zone_info[0].alloc_offset;
1465 	return 0;
1466 }
1467 
btrfs_load_block_group_raid1(struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct zone_info * zone_info,unsigned long * active,u64 last_alloc)1468 static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg,
1469 					struct btrfs_chunk_map *map,
1470 					struct zone_info *zone_info,
1471 					unsigned long *active,
1472 					u64 last_alloc)
1473 {
1474 	struct btrfs_fs_info *fs_info = bg->fs_info;
1475 	int i;
1476 
1477 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1478 		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1479 			  btrfs_bg_type_to_raid_name(map->type));
1480 		return -EINVAL;
1481 	}
1482 
1483 	/* In case a device is missing we have a cap of 0, so don't use it. */
1484 	bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity);
1485 
1486 	for (i = 0; i < map->num_stripes; i++) {
1487 		if (zone_info[i].alloc_offset == WP_MISSING_DEV)
1488 			continue;
1489 
1490 		if (zone_info[i].alloc_offset == WP_CONVENTIONAL)
1491 			zone_info[i].alloc_offset = last_alloc;
1492 
1493 		if (unlikely((zone_info[0].alloc_offset != zone_info[i].alloc_offset) &&
1494 			     !btrfs_test_opt(fs_info, DEGRADED))) {
1495 			btrfs_err(fs_info,
1496 			"zoned: write pointer offset mismatch of zones in %s profile",
1497 				  btrfs_bg_type_to_raid_name(map->type));
1498 			return -EIO;
1499 		}
1500 		if (test_bit(0, active) != test_bit(i, active)) {
1501 			if (unlikely(!btrfs_test_opt(fs_info, DEGRADED) &&
1502 				     !btrfs_zone_activate(bg))) {
1503 				return -EIO;
1504 			}
1505 		} else {
1506 			if (test_bit(0, active))
1507 				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1508 		}
1509 	}
1510 
1511 	if (zone_info[0].alloc_offset != WP_MISSING_DEV)
1512 		bg->alloc_offset = zone_info[0].alloc_offset;
1513 	else
1514 		bg->alloc_offset = zone_info[i - 1].alloc_offset;
1515 
1516 	return 0;
1517 }
1518 
btrfs_load_block_group_raid0(struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct zone_info * zone_info,unsigned long * active,u64 last_alloc)1519 static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg,
1520 					struct btrfs_chunk_map *map,
1521 					struct zone_info *zone_info,
1522 					unsigned long *active,
1523 					u64 last_alloc)
1524 {
1525 	struct btrfs_fs_info *fs_info = bg->fs_info;
1526 	u64 stripe_nr = 0, stripe_offset = 0;
1527 	u32 stripe_index = 0;
1528 
1529 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1530 		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1531 			  btrfs_bg_type_to_raid_name(map->type));
1532 		return -EINVAL;
1533 	}
1534 
1535 	if (last_alloc) {
1536 		u32 factor = map->num_stripes;
1537 
1538 		stripe_nr = last_alloc >> BTRFS_STRIPE_LEN_SHIFT;
1539 		stripe_offset = last_alloc & BTRFS_STRIPE_LEN_MASK;
1540 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
1541 	}
1542 
1543 	for (int i = 0; i < map->num_stripes; i++) {
1544 		if (zone_info[i].alloc_offset == WP_MISSING_DEV)
1545 			continue;
1546 
1547 		if (zone_info[i].alloc_offset == WP_CONVENTIONAL) {
1548 
1549 			zone_info[i].alloc_offset = btrfs_stripe_nr_to_offset(stripe_nr);
1550 
1551 			if (stripe_index > i)
1552 				zone_info[i].alloc_offset += BTRFS_STRIPE_LEN;
1553 			else if (stripe_index == i)
1554 				zone_info[i].alloc_offset += stripe_offset;
1555 		}
1556 
1557 		if (test_bit(0, active) != test_bit(i, active)) {
1558 			if (unlikely(!btrfs_zone_activate(bg)))
1559 				return -EIO;
1560 		} else {
1561 			if (test_bit(0, active))
1562 				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1563 		}
1564 		bg->zone_capacity += zone_info[i].capacity;
1565 		bg->alloc_offset += zone_info[i].alloc_offset;
1566 	}
1567 
1568 	return 0;
1569 }
1570 
btrfs_load_block_group_raid10(struct btrfs_block_group * bg,struct btrfs_chunk_map * map,struct zone_info * zone_info,unsigned long * active,u64 last_alloc)1571 static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg,
1572 					 struct btrfs_chunk_map *map,
1573 					 struct zone_info *zone_info,
1574 					 unsigned long *active,
1575 					 u64 last_alloc)
1576 {
1577 	struct btrfs_fs_info *fs_info = bg->fs_info;
1578 	u64 stripe_nr = 0, stripe_offset = 0;
1579 	u32 stripe_index = 0;
1580 
1581 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1582 		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1583 			  btrfs_bg_type_to_raid_name(map->type));
1584 		return -EINVAL;
1585 	}
1586 
1587 	if (last_alloc) {
1588 		u32 factor = map->num_stripes / map->sub_stripes;
1589 
1590 		stripe_nr = last_alloc >> BTRFS_STRIPE_LEN_SHIFT;
1591 		stripe_offset = last_alloc & BTRFS_STRIPE_LEN_MASK;
1592 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
1593 	}
1594 
1595 	for (int i = 0; i < map->num_stripes; i++) {
1596 		if (zone_info[i].alloc_offset == WP_MISSING_DEV)
1597 			continue;
1598 
1599 		if (test_bit(0, active) != test_bit(i, active)) {
1600 			if (unlikely(!btrfs_zone_activate(bg)))
1601 				return -EIO;
1602 		} else {
1603 			if (test_bit(0, active))
1604 				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1605 		}
1606 
1607 		if (zone_info[i].alloc_offset == WP_CONVENTIONAL) {
1608 			zone_info[i].alloc_offset = btrfs_stripe_nr_to_offset(stripe_nr);
1609 
1610 			if (stripe_index > (i / map->sub_stripes))
1611 				zone_info[i].alloc_offset += BTRFS_STRIPE_LEN;
1612 			else if (stripe_index == (i / map->sub_stripes))
1613 				zone_info[i].alloc_offset += stripe_offset;
1614 		}
1615 
1616 		if ((i % map->sub_stripes) == 0) {
1617 			bg->zone_capacity += zone_info[i].capacity;
1618 			bg->alloc_offset += zone_info[i].alloc_offset;
1619 		}
1620 	}
1621 
1622 	return 0;
1623 }
1624 
btrfs_load_block_group_zone_info(struct btrfs_block_group * cache,bool new)1625 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1626 {
1627 	struct btrfs_fs_info *fs_info = cache->fs_info;
1628 	struct btrfs_chunk_map *map;
1629 	u64 logical = cache->start;
1630 	u64 length = cache->length;
1631 	struct zone_info *zone_info = NULL;
1632 	int ret;
1633 	int i;
1634 	unsigned long *active = NULL;
1635 	u64 last_alloc = 0;
1636 	u32 num_sequential = 0, num_conventional = 0;
1637 	u64 profile;
1638 
1639 	if (!btrfs_is_zoned(fs_info))
1640 		return 0;
1641 
1642 	/* Sanity check */
1643 	if (unlikely(!IS_ALIGNED(length, fs_info->zone_size))) {
1644 		btrfs_err(fs_info,
1645 		"zoned: block group %llu len %llu unaligned to zone size %llu",
1646 			  logical, length, fs_info->zone_size);
1647 		return -EIO;
1648 	}
1649 
1650 	map = btrfs_find_chunk_map(fs_info, logical, length);
1651 	if (!map)
1652 		return -EINVAL;
1653 
1654 	cache->physical_map = map;
1655 
1656 	zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS);
1657 	if (!zone_info) {
1658 		ret = -ENOMEM;
1659 		goto out;
1660 	}
1661 
1662 	active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1663 	if (!active) {
1664 		ret = -ENOMEM;
1665 		goto out;
1666 	}
1667 
1668 	for (i = 0; i < map->num_stripes; i++) {
1669 		ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map, new);
1670 		if (ret)
1671 			goto out;
1672 
1673 		if (zone_info[i].alloc_offset == WP_CONVENTIONAL)
1674 			num_conventional++;
1675 		else
1676 			num_sequential++;
1677 	}
1678 
1679 	if (num_sequential > 0)
1680 		set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1681 
1682 	if (num_conventional > 0) {
1683 		ret = calculate_alloc_pointer(cache, &last_alloc, new);
1684 		if (ret) {
1685 			btrfs_err(fs_info,
1686 			"zoned: failed to determine allocation offset of bg %llu",
1687 				  cache->start);
1688 			goto out;
1689 		} else if (map->num_stripes == num_conventional) {
1690 			cache->alloc_offset = last_alloc;
1691 			cache->zone_capacity = cache->length;
1692 			set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1693 			goto out;
1694 		}
1695 	}
1696 
1697 	profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
1698 	switch (profile) {
1699 	case 0: /* single */
1700 		ret = btrfs_load_block_group_single(cache, &zone_info[0], active);
1701 		break;
1702 	case BTRFS_BLOCK_GROUP_DUP:
1703 		ret = btrfs_load_block_group_dup(cache, map, zone_info, active,
1704 						 last_alloc);
1705 		break;
1706 	case BTRFS_BLOCK_GROUP_RAID1:
1707 	case BTRFS_BLOCK_GROUP_RAID1C3:
1708 	case BTRFS_BLOCK_GROUP_RAID1C4:
1709 		ret = btrfs_load_block_group_raid1(cache, map, zone_info,
1710 						   active, last_alloc);
1711 		break;
1712 	case BTRFS_BLOCK_GROUP_RAID0:
1713 		ret = btrfs_load_block_group_raid0(cache, map, zone_info,
1714 						   active, last_alloc);
1715 		break;
1716 	case BTRFS_BLOCK_GROUP_RAID10:
1717 		ret = btrfs_load_block_group_raid10(cache, map, zone_info,
1718 						    active, last_alloc);
1719 		break;
1720 	case BTRFS_BLOCK_GROUP_RAID5:
1721 	case BTRFS_BLOCK_GROUP_RAID6:
1722 	default:
1723 		btrfs_err(fs_info, "zoned: profile %s not yet supported",
1724 			  btrfs_bg_type_to_raid_name(map->type));
1725 		ret = -EINVAL;
1726 		goto out;
1727 	}
1728 
1729 	if (ret == -EIO && profile != 0 && profile != BTRFS_BLOCK_GROUP_RAID0 &&
1730 	    profile != BTRFS_BLOCK_GROUP_RAID10) {
1731 		/*
1732 		 * Detected broken write pointer.  Make this block group
1733 		 * unallocatable by setting the allocation pointer at the end of
1734 		 * allocatable region. Relocating this block group will fix the
1735 		 * mismatch.
1736 		 *
1737 		 * Currently, we cannot handle RAID0 or RAID10 case like this
1738 		 * because we don't have a proper zone_capacity value. But,
1739 		 * reading from this block group won't work anyway by a missing
1740 		 * stripe.
1741 		 */
1742 		cache->alloc_offset = cache->zone_capacity;
1743 	}
1744 
1745 out:
1746 	/* Reject non SINGLE data profiles without RST */
1747 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) &&
1748 	    (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
1749 	    !fs_info->stripe_root) {
1750 		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1751 			  btrfs_bg_type_to_raid_name(map->type));
1752 		ret = -EINVAL;
1753 	}
1754 
1755 	if (unlikely(cache->alloc_offset > cache->zone_capacity)) {
1756 		btrfs_err(fs_info,
1757 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1758 			  cache->alloc_offset, cache->zone_capacity,
1759 			  cache->start);
1760 		ret = -EIO;
1761 	}
1762 
1763 	/* An extent is allocated after the write pointer */
1764 	if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1765 		btrfs_err(fs_info,
1766 			  "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1767 			  logical, last_alloc, cache->alloc_offset);
1768 		ret = -EIO;
1769 	}
1770 
1771 	if (!ret) {
1772 		cache->meta_write_pointer = cache->alloc_offset + cache->start;
1773 		if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1774 			btrfs_get_block_group(cache);
1775 			spin_lock(&fs_info->zone_active_bgs_lock);
1776 			list_add_tail(&cache->active_bg_list,
1777 				      &fs_info->zone_active_bgs);
1778 			spin_unlock(&fs_info->zone_active_bgs_lock);
1779 		}
1780 	} else {
1781 		btrfs_free_chunk_map(cache->physical_map);
1782 		cache->physical_map = NULL;
1783 	}
1784 	bitmap_free(active);
1785 	kfree(zone_info);
1786 
1787 	return ret;
1788 }
1789 
btrfs_calc_zone_unusable(struct btrfs_block_group * cache)1790 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1791 {
1792 	u64 unusable, free;
1793 
1794 	if (!btrfs_is_zoned(cache->fs_info))
1795 		return;
1796 
1797 	WARN_ON(cache->bytes_super != 0);
1798 	unusable = (cache->alloc_offset - cache->used) +
1799 		   (cache->length - cache->zone_capacity);
1800 	free = cache->zone_capacity - cache->alloc_offset;
1801 
1802 	/* We only need ->free_space in ALLOC_SEQ block groups */
1803 	cache->cached = BTRFS_CACHE_FINISHED;
1804 	cache->free_space_ctl->free_space = free;
1805 	cache->zone_unusable = unusable;
1806 }
1807 
btrfs_use_zone_append(struct btrfs_bio * bbio)1808 bool btrfs_use_zone_append(struct btrfs_bio *bbio)
1809 {
1810 	u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1811 	struct btrfs_inode *inode = bbio->inode;
1812 	struct btrfs_fs_info *fs_info = bbio->fs_info;
1813 	struct btrfs_block_group *cache;
1814 	bool ret = false;
1815 
1816 	if (!btrfs_is_zoned(fs_info))
1817 		return false;
1818 
1819 	if (!inode || !is_data_inode(inode))
1820 		return false;
1821 
1822 	if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
1823 		return false;
1824 
1825 	/*
1826 	 * Using REQ_OP_ZONE_APPEND for relocation can break assumptions on the
1827 	 * extent layout the relocation code has.
1828 	 * Furthermore we have set aside own block-group from which only the
1829 	 * relocation "process" can allocate and make sure only one process at a
1830 	 * time can add pages to an extent that gets relocated, so it's safe to
1831 	 * use regular REQ_OP_WRITE for this special case.
1832 	 */
1833 	if (btrfs_is_data_reloc_root(inode->root))
1834 		return false;
1835 
1836 	cache = btrfs_lookup_block_group(fs_info, start);
1837 	ASSERT(cache);
1838 	if (!cache)
1839 		return false;
1840 
1841 	ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1842 	btrfs_put_block_group(cache);
1843 
1844 	return ret;
1845 }
1846 
btrfs_record_physical_zoned(struct btrfs_bio * bbio)1847 void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
1848 {
1849 	const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
1850 	struct btrfs_ordered_sum *sum = bbio->sums;
1851 
1852 	if (physical < bbio->orig_physical)
1853 		sum->logical -= bbio->orig_physical - physical;
1854 	else
1855 		sum->logical += physical - bbio->orig_physical;
1856 }
1857 
btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent * ordered,u64 logical)1858 static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered,
1859 					u64 logical)
1860 {
1861 	struct extent_map_tree *em_tree = &ordered->inode->extent_tree;
1862 	struct extent_map *em;
1863 
1864 	ordered->disk_bytenr = logical;
1865 
1866 	write_lock(&em_tree->lock);
1867 	em = btrfs_search_extent_mapping(em_tree, ordered->file_offset,
1868 					 ordered->num_bytes);
1869 	/* The em should be a new COW extent, thus it should not have an offset. */
1870 	ASSERT(em->offset == 0);
1871 	em->disk_bytenr = logical;
1872 	btrfs_free_extent_map(em);
1873 	write_unlock(&em_tree->lock);
1874 }
1875 
btrfs_zoned_split_ordered(struct btrfs_ordered_extent * ordered,u64 logical,u64 len)1876 static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered,
1877 				      u64 logical, u64 len)
1878 {
1879 	struct btrfs_ordered_extent *new;
1880 
1881 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
1882 	    btrfs_split_extent_map(ordered->inode, ordered->file_offset,
1883 				   ordered->num_bytes, len, logical))
1884 		return false;
1885 
1886 	new = btrfs_split_ordered_extent(ordered, len);
1887 	if (IS_ERR(new))
1888 		return false;
1889 	new->disk_bytenr = logical;
1890 	btrfs_finish_one_ordered(new);
1891 	return true;
1892 }
1893 
btrfs_finish_ordered_zoned(struct btrfs_ordered_extent * ordered)1894 void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered)
1895 {
1896 	struct btrfs_inode *inode = ordered->inode;
1897 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1898 	struct btrfs_ordered_sum *sum;
1899 	u64 logical, len;
1900 
1901 	/*
1902 	 * Write to pre-allocated region is for the data relocation, and so
1903 	 * it should use WRITE operation. No split/rewrite are necessary.
1904 	 */
1905 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1906 		return;
1907 
1908 	ASSERT(!list_empty(&ordered->list));
1909 	/* The ordered->list can be empty in the above pre-alloc case. */
1910 	sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list);
1911 	logical = sum->logical;
1912 	len = sum->len;
1913 
1914 	while (len < ordered->disk_num_bytes) {
1915 		sum = list_next_entry(sum, list);
1916 		if (sum->logical == logical + len) {
1917 			len += sum->len;
1918 			continue;
1919 		}
1920 		if (!btrfs_zoned_split_ordered(ordered, logical, len)) {
1921 			set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
1922 			btrfs_err(fs_info, "failed to split ordered extent");
1923 			goto out;
1924 		}
1925 		logical = sum->logical;
1926 		len = sum->len;
1927 	}
1928 
1929 	if (ordered->disk_bytenr != logical)
1930 		btrfs_rewrite_logical_zoned(ordered, logical);
1931 
1932 out:
1933 	/*
1934 	 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures
1935 	 * were allocated by btrfs_alloc_dummy_sum only to record the logical
1936 	 * addresses and don't contain actual checksums.  We thus must free them
1937 	 * here so that we don't attempt to log the csums later.
1938 	 */
1939 	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
1940 	    test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state)) {
1941 		while ((sum = list_first_entry_or_null(&ordered->list,
1942 						       typeof(*sum), list))) {
1943 			list_del(&sum->list);
1944 			kfree(sum);
1945 		}
1946 	}
1947 }
1948 
check_bg_is_active(struct btrfs_eb_write_context * ctx,struct btrfs_block_group ** active_bg)1949 static bool check_bg_is_active(struct btrfs_eb_write_context *ctx,
1950 			       struct btrfs_block_group **active_bg)
1951 {
1952 	const struct writeback_control *wbc = ctx->wbc;
1953 	struct btrfs_block_group *block_group = ctx->zoned_bg;
1954 	struct btrfs_fs_info *fs_info = block_group->fs_info;
1955 
1956 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1957 		return true;
1958 
1959 	if (fs_info->treelog_bg == block_group->start) {
1960 		if (!btrfs_zone_activate(block_group)) {
1961 			int ret_fin = btrfs_zone_finish_one_bg(fs_info);
1962 
1963 			if (ret_fin != 1 || !btrfs_zone_activate(block_group))
1964 				return false;
1965 		}
1966 	} else if (*active_bg != block_group) {
1967 		struct btrfs_block_group *tgt = *active_bg;
1968 
1969 		/* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */
1970 		lockdep_assert_held(&fs_info->zoned_meta_io_lock);
1971 
1972 		if (tgt) {
1973 			/*
1974 			 * If there is an unsent IO left in the allocated area,
1975 			 * we cannot wait for them as it may cause a deadlock.
1976 			 */
1977 			if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) {
1978 				if (wbc->sync_mode == WB_SYNC_NONE ||
1979 				    (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync))
1980 					return false;
1981 			}
1982 
1983 			/* Pivot active metadata/system block group. */
1984 			btrfs_zoned_meta_io_unlock(fs_info);
1985 			wait_eb_writebacks(tgt);
1986 			do_zone_finish(tgt, true);
1987 			btrfs_zoned_meta_io_lock(fs_info);
1988 			if (*active_bg == tgt) {
1989 				btrfs_put_block_group(tgt);
1990 				*active_bg = NULL;
1991 			}
1992 		}
1993 		if (!btrfs_zone_activate(block_group))
1994 			return false;
1995 		if (*active_bg != block_group) {
1996 			ASSERT(*active_bg == NULL);
1997 			*active_bg = block_group;
1998 			btrfs_get_block_group(block_group);
1999 		}
2000 	}
2001 
2002 	return true;
2003 }
2004 
2005 /*
2006  * Check if @ctx->eb is aligned to the write pointer.
2007  *
2008  * Return:
2009  *   0:        @ctx->eb is at the write pointer. You can write it.
2010  *   -EAGAIN:  There is a hole. The caller should handle the case.
2011  *   -EBUSY:   There is a hole, but the caller can just bail out.
2012  */
btrfs_check_meta_write_pointer(struct btrfs_fs_info * fs_info,struct btrfs_eb_write_context * ctx)2013 int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
2014 				   struct btrfs_eb_write_context *ctx)
2015 {
2016 	const struct writeback_control *wbc = ctx->wbc;
2017 	const struct extent_buffer *eb = ctx->eb;
2018 	struct btrfs_block_group *block_group = ctx->zoned_bg;
2019 
2020 	if (!btrfs_is_zoned(fs_info))
2021 		return 0;
2022 
2023 	if (block_group) {
2024 		if (block_group->start > eb->start ||
2025 		    block_group->start + block_group->length <= eb->start) {
2026 			btrfs_put_block_group(block_group);
2027 			block_group = NULL;
2028 			ctx->zoned_bg = NULL;
2029 		}
2030 	}
2031 
2032 	if (!block_group) {
2033 		block_group = btrfs_lookup_block_group(fs_info, eb->start);
2034 		if (!block_group)
2035 			return 0;
2036 		ctx->zoned_bg = block_group;
2037 	}
2038 
2039 	if (block_group->meta_write_pointer == eb->start) {
2040 		struct btrfs_block_group **tgt;
2041 
2042 		if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
2043 			return 0;
2044 
2045 		if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)
2046 			tgt = &fs_info->active_system_bg;
2047 		else
2048 			tgt = &fs_info->active_meta_bg;
2049 		if (check_bg_is_active(ctx, tgt))
2050 			return 0;
2051 	}
2052 
2053 	/*
2054 	 * Since we may release fs_info->zoned_meta_io_lock, someone can already
2055 	 * start writing this eb. In that case, we can just bail out.
2056 	 */
2057 	if (block_group->meta_write_pointer > eb->start)
2058 		return -EBUSY;
2059 
2060 	/* If for_sync, this hole will be filled with transaction commit. */
2061 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
2062 		return -EAGAIN;
2063 	return -EBUSY;
2064 }
2065 
btrfs_zoned_issue_zeroout(struct btrfs_device * device,u64 physical,u64 length)2066 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
2067 {
2068 	if (!btrfs_dev_is_sequential(device, physical))
2069 		return -EOPNOTSUPP;
2070 
2071 	return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
2072 				    length >> SECTOR_SHIFT, GFP_NOFS, 0);
2073 }
2074 
read_zone_info(struct btrfs_fs_info * fs_info,u64 logical,struct blk_zone * zone)2075 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
2076 			  struct blk_zone *zone)
2077 {
2078 	struct btrfs_io_context *bioc = NULL;
2079 	u64 mapped_length = PAGE_SIZE;
2080 	unsigned int nofs_flag;
2081 	int nmirrors;
2082 	int i, ret;
2083 
2084 	ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2085 			      &mapped_length, &bioc, NULL, NULL);
2086 	if (unlikely(ret || !bioc || mapped_length < PAGE_SIZE)) {
2087 		ret = -EIO;
2088 		goto out_put_bioc;
2089 	}
2090 
2091 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2092 		ret = -EINVAL;
2093 		goto out_put_bioc;
2094 	}
2095 
2096 	nofs_flag = memalloc_nofs_save();
2097 	nmirrors = (int)bioc->num_stripes;
2098 	for (i = 0; i < nmirrors; i++) {
2099 		u64 physical = bioc->stripes[i].physical;
2100 		struct btrfs_device *dev = bioc->stripes[i].dev;
2101 
2102 		/* Missing device */
2103 		if (!dev->bdev)
2104 			continue;
2105 
2106 		ret = btrfs_get_dev_zone(dev, physical, zone);
2107 		/* Failing device */
2108 		if (ret == -EIO || ret == -EOPNOTSUPP)
2109 			continue;
2110 		break;
2111 	}
2112 	memalloc_nofs_restore(nofs_flag);
2113 out_put_bioc:
2114 	btrfs_put_bioc(bioc);
2115 	return ret;
2116 }
2117 
2118 /*
2119  * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
2120  * filling zeros between @physical_pos to a write pointer of dev-replace
2121  * source device.
2122  */
btrfs_sync_zone_write_pointer(struct btrfs_device * tgt_dev,u64 logical,u64 physical_start,u64 physical_pos)2123 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
2124 				    u64 physical_start, u64 physical_pos)
2125 {
2126 	struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
2127 	struct blk_zone zone;
2128 	u64 length;
2129 	u64 wp;
2130 	int ret;
2131 
2132 	if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
2133 		return 0;
2134 
2135 	ret = read_zone_info(fs_info, logical, &zone);
2136 	if (ret)
2137 		return ret;
2138 
2139 	wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
2140 
2141 	if (physical_pos == wp)
2142 		return 0;
2143 
2144 	if (unlikely(physical_pos > wp))
2145 		return -EUCLEAN;
2146 
2147 	length = wp - physical_pos;
2148 	return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
2149 }
2150 
2151 /*
2152  * Activate block group and underlying device zones
2153  *
2154  * @block_group: the block group to activate
2155  *
2156  * Return: true on success, false otherwise
2157  */
btrfs_zone_activate(struct btrfs_block_group * block_group)2158 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
2159 {
2160 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2161 	struct btrfs_chunk_map *map;
2162 	struct btrfs_device *device;
2163 	u64 physical;
2164 	const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA);
2165 	bool ret;
2166 	int i;
2167 
2168 	if (!btrfs_is_zoned(block_group->fs_info))
2169 		return true;
2170 
2171 	map = block_group->physical_map;
2172 
2173 	spin_lock(&fs_info->zone_active_bgs_lock);
2174 	spin_lock(&block_group->lock);
2175 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2176 		ret = true;
2177 		goto out_unlock;
2178 	}
2179 
2180 	if (block_group->flags & BTRFS_BLOCK_GROUP_DATA) {
2181 		/* The caller should check if the block group is full. */
2182 		if (WARN_ON_ONCE(btrfs_zoned_bg_is_full(block_group))) {
2183 			ret = false;
2184 			goto out_unlock;
2185 		}
2186 	} else {
2187 		/* Since it is already written, it should have been active. */
2188 		WARN_ON_ONCE(block_group->meta_write_pointer != block_group->start);
2189 	}
2190 
2191 	for (i = 0; i < map->num_stripes; i++) {
2192 		struct btrfs_zoned_device_info *zinfo;
2193 		int reserved = 0;
2194 
2195 		device = map->stripes[i].dev;
2196 		physical = map->stripes[i].physical;
2197 		zinfo = device->zone_info;
2198 
2199 		if (!device->bdev)
2200 			continue;
2201 
2202 		if (zinfo->max_active_zones == 0)
2203 			continue;
2204 
2205 		if (is_data)
2206 			reserved = zinfo->reserved_active_zones;
2207 		/*
2208 		 * For the data block group, leave active zones for one
2209 		 * metadata block group and one system block group.
2210 		 */
2211 		if (atomic_read(&zinfo->active_zones_left) <= reserved) {
2212 			ret = false;
2213 			goto out_unlock;
2214 		}
2215 
2216 		if (!btrfs_dev_set_active_zone(device, physical)) {
2217 			/* Cannot activate the zone */
2218 			ret = false;
2219 			goto out_unlock;
2220 		}
2221 		if (!is_data)
2222 			zinfo->reserved_active_zones--;
2223 	}
2224 
2225 	/* Successfully activated all the zones */
2226 	set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2227 	spin_unlock(&block_group->lock);
2228 
2229 	/* For the active block group list */
2230 	btrfs_get_block_group(block_group);
2231 	list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
2232 	spin_unlock(&fs_info->zone_active_bgs_lock);
2233 
2234 	return true;
2235 
2236 out_unlock:
2237 	spin_unlock(&block_group->lock);
2238 	spin_unlock(&fs_info->zone_active_bgs_lock);
2239 	return ret;
2240 }
2241 
wait_eb_writebacks(struct btrfs_block_group * block_group)2242 static void wait_eb_writebacks(struct btrfs_block_group *block_group)
2243 {
2244 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2245 	const u64 end = block_group->start + block_group->length;
2246 	struct extent_buffer *eb;
2247 	unsigned long index, start = (block_group->start >> fs_info->nodesize_bits);
2248 
2249 	rcu_read_lock();
2250 	xa_for_each_start(&fs_info->buffer_tree, index, eb, start) {
2251 		if (eb->start < block_group->start)
2252 			continue;
2253 		if (eb->start >= end)
2254 			break;
2255 		rcu_read_unlock();
2256 		wait_on_extent_buffer_writeback(eb);
2257 		rcu_read_lock();
2258 	}
2259 	rcu_read_unlock();
2260 }
2261 
call_zone_finish(struct btrfs_block_group * block_group,struct btrfs_io_stripe * stripe)2262 static int call_zone_finish(struct btrfs_block_group *block_group,
2263 			    struct btrfs_io_stripe *stripe)
2264 {
2265 	struct btrfs_device *device = stripe->dev;
2266 	const u64 physical = stripe->physical;
2267 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
2268 	int ret;
2269 
2270 	if (!device->bdev)
2271 		return 0;
2272 
2273 	if (zinfo->max_active_zones == 0)
2274 		return 0;
2275 
2276 	if (btrfs_dev_is_sequential(device, physical)) {
2277 		unsigned int nofs_flags;
2278 
2279 		nofs_flags = memalloc_nofs_save();
2280 		ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2281 				       physical >> SECTOR_SHIFT,
2282 				       zinfo->zone_size >> SECTOR_SHIFT);
2283 		memalloc_nofs_restore(nofs_flags);
2284 
2285 		if (ret)
2286 			return ret;
2287 	}
2288 
2289 	if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA))
2290 		zinfo->reserved_active_zones++;
2291 	btrfs_dev_clear_active_zone(device, physical);
2292 
2293 	return 0;
2294 }
2295 
do_zone_finish(struct btrfs_block_group * block_group,bool fully_written)2296 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
2297 {
2298 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2299 	struct btrfs_chunk_map *map;
2300 	const bool is_metadata = (block_group->flags &
2301 			(BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
2302 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2303 	int ret = 0;
2304 	int i;
2305 
2306 	spin_lock(&block_group->lock);
2307 	if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2308 		spin_unlock(&block_group->lock);
2309 		return 0;
2310 	}
2311 
2312 	/* Check if we have unwritten allocated space */
2313 	if (is_metadata &&
2314 	    block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
2315 		spin_unlock(&block_group->lock);
2316 		return -EAGAIN;
2317 	}
2318 
2319 	/*
2320 	 * If we are sure that the block group is full (= no more room left for
2321 	 * new allocation) and the IO for the last usable block is completed, we
2322 	 * don't need to wait for the other IOs. This holds because we ensure
2323 	 * the sequential IO submissions using the ZONE_APPEND command for data
2324 	 * and block_group->meta_write_pointer for metadata.
2325 	 */
2326 	if (!fully_written) {
2327 		if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2328 			spin_unlock(&block_group->lock);
2329 			return -EAGAIN;
2330 		}
2331 		spin_unlock(&block_group->lock);
2332 
2333 		ret = btrfs_inc_block_group_ro(block_group, false);
2334 		if (ret)
2335 			return ret;
2336 
2337 		/* Ensure all writes in this block group finish */
2338 		btrfs_wait_block_group_reservations(block_group);
2339 		/* No need to wait for NOCOW writers. Zoned mode does not allow that */
2340 		btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group);
2341 		/* Wait for extent buffers to be written. */
2342 		if (is_metadata)
2343 			wait_eb_writebacks(block_group);
2344 
2345 		spin_lock(&block_group->lock);
2346 
2347 		/*
2348 		 * Bail out if someone already deactivated the block group, or
2349 		 * allocated space is left in the block group.
2350 		 */
2351 		if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2352 			      &block_group->runtime_flags)) {
2353 			spin_unlock(&block_group->lock);
2354 			btrfs_dec_block_group_ro(block_group);
2355 			return 0;
2356 		}
2357 
2358 		if (block_group->reserved ||
2359 		    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2360 			     &block_group->runtime_flags)) {
2361 			spin_unlock(&block_group->lock);
2362 			btrfs_dec_block_group_ro(block_group);
2363 			return -EAGAIN;
2364 		}
2365 	}
2366 
2367 	clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2368 	block_group->alloc_offset = block_group->zone_capacity;
2369 	if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))
2370 		block_group->meta_write_pointer = block_group->start +
2371 						  block_group->zone_capacity;
2372 	block_group->free_space_ctl->free_space = 0;
2373 	btrfs_clear_treelog_bg(block_group);
2374 	btrfs_clear_data_reloc_bg(block_group);
2375 	spin_unlock(&block_group->lock);
2376 
2377 	down_read(&dev_replace->rwsem);
2378 	map = block_group->physical_map;
2379 	for (i = 0; i < map->num_stripes; i++) {
2380 
2381 		ret = call_zone_finish(block_group, &map->stripes[i]);
2382 		if (ret) {
2383 			up_read(&dev_replace->rwsem);
2384 			return ret;
2385 		}
2386 	}
2387 	up_read(&dev_replace->rwsem);
2388 
2389 	if (!fully_written)
2390 		btrfs_dec_block_group_ro(block_group);
2391 
2392 	spin_lock(&fs_info->zone_active_bgs_lock);
2393 	ASSERT(!list_empty(&block_group->active_bg_list));
2394 	list_del_init(&block_group->active_bg_list);
2395 	spin_unlock(&fs_info->zone_active_bgs_lock);
2396 
2397 	/* For active_bg_list */
2398 	btrfs_put_block_group(block_group);
2399 
2400 	clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2401 
2402 	return 0;
2403 }
2404 
btrfs_zone_finish(struct btrfs_block_group * block_group)2405 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2406 {
2407 	if (!btrfs_is_zoned(block_group->fs_info))
2408 		return 0;
2409 
2410 	return do_zone_finish(block_group, false);
2411 }
2412 
btrfs_can_activate_zone(struct btrfs_fs_devices * fs_devices,u64 flags)2413 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2414 {
2415 	struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2416 	struct btrfs_device *device;
2417 	bool ret = false;
2418 
2419 	if (!btrfs_is_zoned(fs_info))
2420 		return true;
2421 
2422 	if (test_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags))
2423 		return false;
2424 
2425 	/* Check if there is a device with active zones left */
2426 	mutex_lock(&fs_info->chunk_mutex);
2427 	spin_lock(&fs_info->zone_active_bgs_lock);
2428 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2429 		struct btrfs_zoned_device_info *zinfo = device->zone_info;
2430 		int reserved = 0;
2431 
2432 		if (!device->bdev)
2433 			continue;
2434 
2435 		if (!zinfo->max_active_zones) {
2436 			ret = true;
2437 			break;
2438 		}
2439 
2440 		if (flags & BTRFS_BLOCK_GROUP_DATA)
2441 			reserved = zinfo->reserved_active_zones;
2442 
2443 		switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2444 		case 0: /* single */
2445 			ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved));
2446 			break;
2447 		case BTRFS_BLOCK_GROUP_DUP:
2448 			ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved));
2449 			break;
2450 		}
2451 		if (ret)
2452 			break;
2453 	}
2454 	spin_unlock(&fs_info->zone_active_bgs_lock);
2455 	mutex_unlock(&fs_info->chunk_mutex);
2456 
2457 	if (!ret)
2458 		set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2459 
2460 	return ret;
2461 }
2462 
btrfs_zone_finish_endio(struct btrfs_fs_info * fs_info,u64 logical,u64 length)2463 int btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2464 {
2465 	struct btrfs_block_group *block_group;
2466 	u64 min_alloc_bytes;
2467 
2468 	if (!btrfs_is_zoned(fs_info))
2469 		return 0;
2470 
2471 	block_group = btrfs_lookup_block_group(fs_info, logical);
2472 	if (WARN_ON_ONCE(!block_group))
2473 		return -ENOENT;
2474 
2475 	/* No MIXED_BG on zoned btrfs. */
2476 	if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2477 		min_alloc_bytes = fs_info->sectorsize;
2478 	else
2479 		min_alloc_bytes = fs_info->nodesize;
2480 
2481 	/* Bail out if we can allocate more data from this block group. */
2482 	if (logical + length + min_alloc_bytes <=
2483 	    block_group->start + block_group->zone_capacity)
2484 		goto out;
2485 
2486 	do_zone_finish(block_group, true);
2487 
2488 out:
2489 	btrfs_put_block_group(block_group);
2490 	return 0;
2491 }
2492 
btrfs_zone_finish_endio_workfn(struct work_struct * work)2493 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2494 {
2495 	int ret;
2496 	struct btrfs_block_group *bg =
2497 		container_of(work, struct btrfs_block_group, zone_finish_work);
2498 
2499 	wait_on_extent_buffer_writeback(bg->last_eb);
2500 	free_extent_buffer(bg->last_eb);
2501 	ret = do_zone_finish(bg, true);
2502 	if (ret)
2503 		btrfs_handle_fs_error(bg->fs_info, ret,
2504 				      "Failed to finish block-group's zone");
2505 	btrfs_put_block_group(bg);
2506 }
2507 
btrfs_schedule_zone_finish_bg(struct btrfs_block_group * bg,struct extent_buffer * eb)2508 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2509 				   struct extent_buffer *eb)
2510 {
2511 	if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2512 	    eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2513 		return;
2514 
2515 	if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2516 		btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2517 			  bg->start);
2518 		return;
2519 	}
2520 
2521 	/* For the work */
2522 	btrfs_get_block_group(bg);
2523 	refcount_inc(&eb->refs);
2524 	bg->last_eb = eb;
2525 	INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2526 	queue_work(system_dfl_wq, &bg->zone_finish_work);
2527 }
2528 
btrfs_clear_data_reloc_bg(struct btrfs_block_group * bg)2529 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2530 {
2531 	struct btrfs_fs_info *fs_info = bg->fs_info;
2532 
2533 	spin_lock(&fs_info->relocation_bg_lock);
2534 	if (fs_info->data_reloc_bg == bg->start)
2535 		fs_info->data_reloc_bg = 0;
2536 	spin_unlock(&fs_info->relocation_bg_lock);
2537 }
2538 
btrfs_zoned_reserve_data_reloc_bg(struct btrfs_fs_info * fs_info)2539 void btrfs_zoned_reserve_data_reloc_bg(struct btrfs_fs_info *fs_info)
2540 {
2541 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
2542 	struct btrfs_space_info *space_info = data_sinfo;
2543 	struct btrfs_trans_handle *trans;
2544 	struct btrfs_block_group *bg;
2545 	struct list_head *bg_list;
2546 	u64 alloc_flags;
2547 	bool first = true;
2548 	bool did_chunk_alloc = false;
2549 	int index;
2550 	int ret;
2551 
2552 	if (!btrfs_is_zoned(fs_info))
2553 		return;
2554 
2555 	if (fs_info->data_reloc_bg)
2556 		return;
2557 
2558 	if (sb_rdonly(fs_info->sb))
2559 		return;
2560 
2561 	alloc_flags = btrfs_get_alloc_profile(fs_info, space_info->flags);
2562 	index = btrfs_bg_flags_to_raid_index(alloc_flags);
2563 
2564 	/* Scan the data space_info to find empty block groups. Take the second one. */
2565 again:
2566 	bg_list = &space_info->block_groups[index];
2567 	list_for_each_entry(bg, bg_list, list) {
2568 		if (bg->alloc_offset != 0)
2569 			continue;
2570 
2571 		if (first) {
2572 			first = false;
2573 			continue;
2574 		}
2575 
2576 		if (space_info == data_sinfo) {
2577 			/* Migrate the block group to the data relocation space_info. */
2578 			struct btrfs_space_info *reloc_sinfo = data_sinfo->sub_group[0];
2579 			int factor;
2580 
2581 			ASSERT(reloc_sinfo->subgroup_id == BTRFS_SUB_GROUP_DATA_RELOC);
2582 			factor = btrfs_bg_type_to_factor(bg->flags);
2583 
2584 			down_write(&space_info->groups_sem);
2585 			list_del_init(&bg->list);
2586 			/* We can assume this as we choose the second empty one. */
2587 			ASSERT(!list_empty(&space_info->block_groups[index]));
2588 			up_write(&space_info->groups_sem);
2589 
2590 			spin_lock(&space_info->lock);
2591 			space_info->total_bytes -= bg->length;
2592 			space_info->disk_total -= bg->length * factor;
2593 			space_info->disk_total -= bg->zone_unusable;
2594 			/* There is no allocation ever happened. */
2595 			ASSERT(bg->used == 0);
2596 			/* No super block in a block group on the zoned setup. */
2597 			ASSERT(bg->bytes_super == 0);
2598 			spin_unlock(&space_info->lock);
2599 
2600 			bg->space_info = reloc_sinfo;
2601 			if (reloc_sinfo->block_group_kobjs[index] == NULL)
2602 				btrfs_sysfs_add_block_group_type(bg);
2603 
2604 			btrfs_add_bg_to_space_info(fs_info, bg);
2605 		}
2606 
2607 		fs_info->data_reloc_bg = bg->start;
2608 		set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &bg->runtime_flags);
2609 		btrfs_zone_activate(bg);
2610 
2611 		return;
2612 	}
2613 
2614 	if (did_chunk_alloc)
2615 		return;
2616 
2617 	trans = btrfs_join_transaction(fs_info->tree_root);
2618 	if (IS_ERR(trans))
2619 		return;
2620 
2621 	/* Allocate new BG in the data relocation space_info. */
2622 	space_info = data_sinfo->sub_group[0];
2623 	ASSERT(space_info->subgroup_id == BTRFS_SUB_GROUP_DATA_RELOC);
2624 	ret = btrfs_chunk_alloc(trans, space_info, alloc_flags, CHUNK_ALLOC_FORCE);
2625 	btrfs_end_transaction(trans);
2626 	if (ret == 1) {
2627 		/*
2628 		 * We allocated a new block group in the data relocation space_info. We
2629 		 * can take that one.
2630 		 */
2631 		first = false;
2632 		did_chunk_alloc = true;
2633 		goto again;
2634 	}
2635 }
2636 
btrfs_free_zone_cache(struct btrfs_fs_info * fs_info)2637 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2638 {
2639 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2640 	struct btrfs_device *device;
2641 
2642 	if (!btrfs_is_zoned(fs_info))
2643 		return;
2644 
2645 	mutex_lock(&fs_devices->device_list_mutex);
2646 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2647 		if (device->zone_info) {
2648 			vfree(device->zone_info->zone_cache);
2649 			device->zone_info->zone_cache = NULL;
2650 		}
2651 	}
2652 	mutex_unlock(&fs_devices->device_list_mutex);
2653 }
2654 
btrfs_zoned_should_reclaim(const struct btrfs_fs_info * fs_info)2655 bool btrfs_zoned_should_reclaim(const struct btrfs_fs_info *fs_info)
2656 {
2657 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2658 	struct btrfs_device *device;
2659 	u64 total = btrfs_super_total_bytes(fs_info->super_copy);
2660 	u64 used = 0;
2661 	u64 factor;
2662 
2663 	ASSERT(btrfs_is_zoned(fs_info));
2664 
2665 	if (fs_info->bg_reclaim_threshold == 0)
2666 		return false;
2667 
2668 	mutex_lock(&fs_devices->device_list_mutex);
2669 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2670 		if (!device->bdev)
2671 			continue;
2672 
2673 		used += device->bytes_used;
2674 	}
2675 	mutex_unlock(&fs_devices->device_list_mutex);
2676 
2677 	factor = div64_u64(used * 100, total);
2678 	return factor >= fs_info->bg_reclaim_threshold;
2679 }
2680 
btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info * fs_info,u64 logical,u64 length)2681 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2682 				       u64 length)
2683 {
2684 	struct btrfs_block_group *block_group;
2685 
2686 	if (!btrfs_is_zoned(fs_info))
2687 		return;
2688 
2689 	block_group = btrfs_lookup_block_group(fs_info, logical);
2690 	/* It should be called on a previous data relocation block group. */
2691 	ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2692 
2693 	spin_lock(&block_group->lock);
2694 	if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2695 		goto out;
2696 
2697 	/* All relocation extents are written. */
2698 	if (block_group->start + block_group->alloc_offset == logical + length) {
2699 		/*
2700 		 * Now, release this block group for further allocations and
2701 		 * zone finish.
2702 		 */
2703 		clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2704 			  &block_group->runtime_flags);
2705 	}
2706 
2707 out:
2708 	spin_unlock(&block_group->lock);
2709 	btrfs_put_block_group(block_group);
2710 }
2711 
btrfs_zone_finish_one_bg(struct btrfs_fs_info * fs_info)2712 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2713 {
2714 	struct btrfs_block_group *block_group;
2715 	struct btrfs_block_group *min_bg = NULL;
2716 	u64 min_avail = U64_MAX;
2717 	int ret;
2718 
2719 	spin_lock(&fs_info->zone_active_bgs_lock);
2720 	list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2721 			    active_bg_list) {
2722 		u64 avail;
2723 
2724 		spin_lock(&block_group->lock);
2725 		if (block_group->reserved || block_group->alloc_offset == 0 ||
2726 		    !(block_group->flags & BTRFS_BLOCK_GROUP_DATA) ||
2727 		    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2728 			spin_unlock(&block_group->lock);
2729 			continue;
2730 		}
2731 
2732 		avail = block_group->zone_capacity - block_group->alloc_offset;
2733 		if (min_avail > avail) {
2734 			if (min_bg)
2735 				btrfs_put_block_group(min_bg);
2736 			min_bg = block_group;
2737 			min_avail = avail;
2738 			btrfs_get_block_group(min_bg);
2739 		}
2740 		spin_unlock(&block_group->lock);
2741 	}
2742 	spin_unlock(&fs_info->zone_active_bgs_lock);
2743 
2744 	if (!min_bg)
2745 		return 0;
2746 
2747 	ret = btrfs_zone_finish(min_bg);
2748 	btrfs_put_block_group(min_bg);
2749 
2750 	return ret < 0 ? ret : 1;
2751 }
2752 
btrfs_zoned_activate_one_bg(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,bool do_finish)2753 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2754 				struct btrfs_space_info *space_info,
2755 				bool do_finish)
2756 {
2757 	struct btrfs_block_group *bg;
2758 	int index;
2759 
2760 	if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2761 		return 0;
2762 
2763 	for (;;) {
2764 		int ret;
2765 		bool need_finish = false;
2766 
2767 		down_read(&space_info->groups_sem);
2768 		for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2769 			list_for_each_entry(bg, &space_info->block_groups[index],
2770 					    list) {
2771 				if (!spin_trylock(&bg->lock))
2772 					continue;
2773 				if (btrfs_zoned_bg_is_full(bg) ||
2774 				    test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2775 					     &bg->runtime_flags)) {
2776 					spin_unlock(&bg->lock);
2777 					continue;
2778 				}
2779 				spin_unlock(&bg->lock);
2780 
2781 				if (btrfs_zone_activate(bg)) {
2782 					up_read(&space_info->groups_sem);
2783 					return 1;
2784 				}
2785 
2786 				need_finish = true;
2787 			}
2788 		}
2789 		up_read(&space_info->groups_sem);
2790 
2791 		if (!do_finish || !need_finish)
2792 			break;
2793 
2794 		ret = btrfs_zone_finish_one_bg(fs_info);
2795 		if (ret == 0)
2796 			break;
2797 		if (ret < 0)
2798 			return ret;
2799 	}
2800 
2801 	return 0;
2802 }
2803 
2804 /*
2805  * Reserve zones for one metadata block group, one tree-log block group, and one
2806  * system block group.
2807  */
btrfs_check_active_zone_reservation(struct btrfs_fs_info * fs_info)2808 void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info)
2809 {
2810 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2811 	struct btrfs_block_group *block_group;
2812 	struct btrfs_device *device;
2813 	/* Reserve zones for normal SINGLE metadata and tree-log block group. */
2814 	unsigned int metadata_reserve = 2;
2815 	/* Reserve a zone for SINGLE system block group. */
2816 	unsigned int system_reserve = 1;
2817 
2818 	if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
2819 		return;
2820 
2821 	/*
2822 	 * This function is called from the mount context. So, there is no
2823 	 * parallel process touching the bits. No need for read_seqretry().
2824 	 */
2825 	if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2826 		metadata_reserve = 4;
2827 	if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2828 		system_reserve = 2;
2829 
2830 	/* Apply the reservation on all the devices. */
2831 	mutex_lock(&fs_devices->device_list_mutex);
2832 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2833 		if (!device->bdev)
2834 			continue;
2835 
2836 		device->zone_info->reserved_active_zones =
2837 			metadata_reserve + system_reserve;
2838 	}
2839 	mutex_unlock(&fs_devices->device_list_mutex);
2840 
2841 	/* Release reservation for currently active block groups. */
2842 	spin_lock(&fs_info->zone_active_bgs_lock);
2843 	list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
2844 		struct btrfs_chunk_map *map = block_group->physical_map;
2845 
2846 		if (!(block_group->flags &
2847 		      (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
2848 			continue;
2849 
2850 		for (int i = 0; i < map->num_stripes; i++)
2851 			map->stripes[i].dev->zone_info->reserved_active_zones--;
2852 	}
2853 	spin_unlock(&fs_info->zone_active_bgs_lock);
2854 }
2855 
2856 /*
2857  * Reset the zones of unused block groups from @space_info->bytes_zone_unusable.
2858  *
2859  * @space_info:	the space to work on
2860  * @num_bytes:	targeting reclaim bytes
2861  *
2862  * This one resets the zones of a block group, so we can reuse the region
2863  * without removing the block group. On the other hand, btrfs_delete_unused_bgs()
2864  * just removes a block group and frees up the underlying zones. So, we still
2865  * need to allocate a new block group to reuse the zones.
2866  *
2867  * Resetting is faster than deleting/recreating a block group. It is similar
2868  * to freeing the logical space on the regular mode. However, we cannot change
2869  * the block group's profile with this operation.
2870  */
btrfs_reset_unused_block_groups(struct btrfs_space_info * space_info,u64 num_bytes)2871 int btrfs_reset_unused_block_groups(struct btrfs_space_info *space_info, u64 num_bytes)
2872 {
2873 	struct btrfs_fs_info *fs_info = space_info->fs_info;
2874 	const sector_t zone_size_sectors = fs_info->zone_size >> SECTOR_SHIFT;
2875 
2876 	if (!btrfs_is_zoned(fs_info))
2877 		return 0;
2878 
2879 	while (num_bytes > 0) {
2880 		struct btrfs_chunk_map *map;
2881 		struct btrfs_block_group *bg = NULL;
2882 		bool found = false;
2883 		u64 reclaimed = 0;
2884 
2885 		/*
2886 		 * Here, we choose a fully zone_unusable block group. It's
2887 		 * technically possible to reset a partly zone_unusable block
2888 		 * group, which still has some free space left. However,
2889 		 * handling that needs to cope with the allocation side, which
2890 		 * makes the logic more complex. So, let's handle the easy case
2891 		 * for now.
2892 		 */
2893 		spin_lock(&fs_info->unused_bgs_lock);
2894 		list_for_each_entry(bg, &fs_info->unused_bgs, bg_list) {
2895 			if ((bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != space_info->flags)
2896 				continue;
2897 
2898 			/*
2899 			 * Use trylock to avoid locking order violation. In
2900 			 * btrfs_reclaim_bgs_work(), the lock order is
2901 			 * &bg->lock -> &fs_info->unused_bgs_lock. We skip a
2902 			 * block group if we cannot take its lock.
2903 			 */
2904 			if (!spin_trylock(&bg->lock))
2905 				continue;
2906 			if (btrfs_is_block_group_used(bg) || bg->zone_unusable < bg->length) {
2907 				spin_unlock(&bg->lock);
2908 				continue;
2909 			}
2910 			spin_unlock(&bg->lock);
2911 			found = true;
2912 			break;
2913 		}
2914 		if (!found) {
2915 			spin_unlock(&fs_info->unused_bgs_lock);
2916 			return 0;
2917 		}
2918 
2919 		list_del_init(&bg->bg_list);
2920 		btrfs_put_block_group(bg);
2921 		spin_unlock(&fs_info->unused_bgs_lock);
2922 
2923 		/*
2924 		 * Since the block group is fully zone_unusable and we cannot
2925 		 * allocate from this block group anymore, we don't need to set
2926 		 * this block group read-only.
2927 		 */
2928 
2929 		down_read(&fs_info->dev_replace.rwsem);
2930 		map = bg->physical_map;
2931 		for (int i = 0; i < map->num_stripes; i++) {
2932 			struct btrfs_io_stripe *stripe = &map->stripes[i];
2933 			unsigned int nofs_flags;
2934 			int ret;
2935 
2936 			nofs_flags = memalloc_nofs_save();
2937 			ret = blkdev_zone_mgmt(stripe->dev->bdev, REQ_OP_ZONE_RESET,
2938 					       stripe->physical >> SECTOR_SHIFT,
2939 					       zone_size_sectors);
2940 			memalloc_nofs_restore(nofs_flags);
2941 
2942 			if (ret) {
2943 				up_read(&fs_info->dev_replace.rwsem);
2944 				return ret;
2945 			}
2946 		}
2947 		up_read(&fs_info->dev_replace.rwsem);
2948 
2949 		spin_lock(&space_info->lock);
2950 		spin_lock(&bg->lock);
2951 		ASSERT(!btrfs_is_block_group_used(bg));
2952 		if (bg->ro) {
2953 			spin_unlock(&bg->lock);
2954 			spin_unlock(&space_info->lock);
2955 			continue;
2956 		}
2957 
2958 		reclaimed = bg->alloc_offset;
2959 		bg->zone_unusable = bg->length - bg->zone_capacity;
2960 		bg->alloc_offset = 0;
2961 		/*
2962 		 * This holds because we currently reset fully used then freed
2963 		 * block group.
2964 		 */
2965 		ASSERT(reclaimed == bg->zone_capacity);
2966 		bg->free_space_ctl->free_space += reclaimed;
2967 		space_info->bytes_zone_unusable -= reclaimed;
2968 		spin_unlock(&bg->lock);
2969 		btrfs_return_free_space(space_info, reclaimed);
2970 		spin_unlock(&space_info->lock);
2971 
2972 		if (num_bytes <= reclaimed)
2973 			break;
2974 		num_bytes -= reclaimed;
2975 	}
2976 
2977 	return 0;
2978 }
2979