1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_VOLUMES_H 7 #define BTRFS_VOLUMES_H 8 9 #include <linux/sort.h> 10 #include <linux/btrfs.h> 11 #include "async-thread.h" 12 #include "messages.h" 13 #include "tree-checker.h" 14 #include "rcu-string.h" 15 16 #define BTRFS_MAX_DATA_CHUNK_SIZE (10ULL * SZ_1G) 17 18 extern struct mutex uuid_mutex; 19 20 #define BTRFS_STRIPE_LEN SZ_64K 21 #define BTRFS_STRIPE_LEN_SHIFT (16) 22 #define BTRFS_STRIPE_LEN_MASK (BTRFS_STRIPE_LEN - 1) 23 24 static_assert(const_ilog2(BTRFS_STRIPE_LEN) == BTRFS_STRIPE_LEN_SHIFT); 25 26 /* Used by sanity check for btrfs_raid_types. */ 27 #define const_ffs(n) (__builtin_ctzll(n) + 1) 28 29 /* 30 * The conversion from BTRFS_BLOCK_GROUP_* bits to btrfs_raid_type requires 31 * RAID0 always to be the lowest profile bit. 32 * Although it's part of on-disk format and should never change, do extra 33 * compile-time sanity checks. 34 */ 35 static_assert(const_ffs(BTRFS_BLOCK_GROUP_RAID0) < 36 const_ffs(BTRFS_BLOCK_GROUP_PROFILE_MASK & ~BTRFS_BLOCK_GROUP_RAID0)); 37 static_assert(const_ilog2(BTRFS_BLOCK_GROUP_RAID0) > 38 ilog2(BTRFS_BLOCK_GROUP_TYPE_MASK)); 39 40 /* ilog2() can handle both constants and variables */ 41 #define BTRFS_BG_FLAG_TO_INDEX(profile) \ 42 ilog2((profile) >> (ilog2(BTRFS_BLOCK_GROUP_RAID0) - 1)) 43 44 enum btrfs_raid_types { 45 /* SINGLE is the special one as it doesn't have on-disk bit. */ 46 BTRFS_RAID_SINGLE = 0, 47 48 BTRFS_RAID_RAID0 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID0), 49 BTRFS_RAID_RAID1 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1), 50 BTRFS_RAID_DUP = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_DUP), 51 BTRFS_RAID_RAID10 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID10), 52 BTRFS_RAID_RAID5 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID5), 53 BTRFS_RAID_RAID6 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID6), 54 BTRFS_RAID_RAID1C3 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1C3), 55 BTRFS_RAID_RAID1C4 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1C4), 56 57 BTRFS_NR_RAID_TYPES 58 }; 59 60 /* 61 * Use sequence counter to get consistent device stat data on 62 * 32-bit processors. 63 */ 64 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 65 #include <linux/seqlock.h> 66 #define __BTRFS_NEED_DEVICE_DATA_ORDERED 67 #define btrfs_device_data_ordered_init(device) \ 68 seqcount_init(&device->data_seqcount) 69 #else 70 #define btrfs_device_data_ordered_init(device) do { } while (0) 71 #endif 72 73 #define BTRFS_DEV_STATE_WRITEABLE (0) 74 #define BTRFS_DEV_STATE_IN_FS_METADATA (1) 75 #define BTRFS_DEV_STATE_MISSING (2) 76 #define BTRFS_DEV_STATE_REPLACE_TGT (3) 77 #define BTRFS_DEV_STATE_FLUSH_SENT (4) 78 #define BTRFS_DEV_STATE_NO_READA (5) 79 80 struct btrfs_zoned_device_info; 81 82 struct btrfs_device { 83 struct list_head dev_list; /* device_list_mutex */ 84 struct list_head dev_alloc_list; /* chunk mutex */ 85 struct list_head post_commit_list; /* chunk mutex */ 86 struct btrfs_fs_devices *fs_devices; 87 struct btrfs_fs_info *fs_info; 88 89 struct rcu_string __rcu *name; 90 91 u64 generation; 92 93 struct block_device *bdev; 94 95 struct btrfs_zoned_device_info *zone_info; 96 97 /* the mode sent to blkdev_get */ 98 fmode_t mode; 99 100 /* 101 * Device's major-minor number. Must be set even if the device is not 102 * opened (bdev == NULL), unless the device is missing. 103 */ 104 dev_t devt; 105 unsigned long dev_state; 106 blk_status_t last_flush_error; 107 108 #ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED 109 seqcount_t data_seqcount; 110 #endif 111 112 /* the internal btrfs device id */ 113 u64 devid; 114 115 /* size of the device in memory */ 116 u64 total_bytes; 117 118 /* size of the device on disk */ 119 u64 disk_total_bytes; 120 121 /* bytes used */ 122 u64 bytes_used; 123 124 /* optimal io alignment for this device */ 125 u32 io_align; 126 127 /* optimal io width for this device */ 128 u32 io_width; 129 /* type and info about this device */ 130 u64 type; 131 132 /* minimal io size for this device */ 133 u32 sector_size; 134 135 /* physical drive uuid (or lvm uuid) */ 136 u8 uuid[BTRFS_UUID_SIZE]; 137 138 /* 139 * size of the device on the current transaction 140 * 141 * This variant is update when committing the transaction, 142 * and protected by chunk mutex 143 */ 144 u64 commit_total_bytes; 145 146 /* bytes used on the current transaction */ 147 u64 commit_bytes_used; 148 149 /* Bio used for flushing device barriers */ 150 struct bio flush_bio; 151 struct completion flush_wait; 152 153 /* per-device scrub information */ 154 struct scrub_ctx *scrub_ctx; 155 156 /* disk I/O failure stats. For detailed description refer to 157 * enum btrfs_dev_stat_values in ioctl.h */ 158 int dev_stats_valid; 159 160 /* Counter to record the change of device stats */ 161 atomic_t dev_stats_ccnt; 162 atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX]; 163 164 struct extent_io_tree alloc_state; 165 166 struct completion kobj_unregister; 167 /* For sysfs/FSID/devinfo/devid/ */ 168 struct kobject devid_kobj; 169 170 /* Bandwidth limit for scrub, in bytes */ 171 u64 scrub_speed_max; 172 }; 173 174 /* 175 * Block group or device which contains an active swapfile. Used for preventing 176 * unsafe operations while a swapfile is active. 177 * 178 * These are sorted on (ptr, inode) (note that a block group or device can 179 * contain more than one swapfile). We compare the pointer values because we 180 * don't actually care what the object is, we just need a quick check whether 181 * the object exists in the rbtree. 182 */ 183 struct btrfs_swapfile_pin { 184 struct rb_node node; 185 void *ptr; 186 struct inode *inode; 187 /* 188 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr 189 * points to a struct btrfs_device. 190 */ 191 bool is_block_group; 192 /* 193 * Only used when 'is_block_group' is true and it is the number of 194 * extents used by a swapfile for this block group ('ptr' field). 195 */ 196 int bg_extent_count; 197 }; 198 199 /* 200 * If we read those variants at the context of their own lock, we needn't 201 * use the following helpers, reading them directly is safe. 202 */ 203 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 204 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 205 static inline u64 \ 206 btrfs_device_get_##name(const struct btrfs_device *dev) \ 207 { \ 208 u64 size; \ 209 unsigned int seq; \ 210 \ 211 do { \ 212 seq = read_seqcount_begin(&dev->data_seqcount); \ 213 size = dev->name; \ 214 } while (read_seqcount_retry(&dev->data_seqcount, seq)); \ 215 return size; \ 216 } \ 217 \ 218 static inline void \ 219 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 220 { \ 221 preempt_disable(); \ 222 write_seqcount_begin(&dev->data_seqcount); \ 223 dev->name = size; \ 224 write_seqcount_end(&dev->data_seqcount); \ 225 preempt_enable(); \ 226 } 227 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 228 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 229 static inline u64 \ 230 btrfs_device_get_##name(const struct btrfs_device *dev) \ 231 { \ 232 u64 size; \ 233 \ 234 preempt_disable(); \ 235 size = dev->name; \ 236 preempt_enable(); \ 237 return size; \ 238 } \ 239 \ 240 static inline void \ 241 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 242 { \ 243 preempt_disable(); \ 244 dev->name = size; \ 245 preempt_enable(); \ 246 } 247 #else 248 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 249 static inline u64 \ 250 btrfs_device_get_##name(const struct btrfs_device *dev) \ 251 { \ 252 return dev->name; \ 253 } \ 254 \ 255 static inline void \ 256 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 257 { \ 258 dev->name = size; \ 259 } 260 #endif 261 262 BTRFS_DEVICE_GETSET_FUNCS(total_bytes); 263 BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes); 264 BTRFS_DEVICE_GETSET_FUNCS(bytes_used); 265 266 enum btrfs_chunk_allocation_policy { 267 BTRFS_CHUNK_ALLOC_REGULAR, 268 BTRFS_CHUNK_ALLOC_ZONED, 269 }; 270 271 /* 272 * Read policies for mirrored block group profiles, read picks the stripe based 273 * on these policies. 274 */ 275 enum btrfs_read_policy { 276 /* Use process PID to choose the stripe */ 277 BTRFS_READ_POLICY_PID, 278 BTRFS_NR_READ_POLICY, 279 }; 280 281 struct btrfs_fs_devices { 282 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 283 u8 metadata_uuid[BTRFS_FSID_SIZE]; 284 bool fsid_change; 285 struct list_head fs_list; 286 287 /* 288 * Number of devices under this fsid including missing and 289 * replace-target device and excludes seed devices. 290 */ 291 u64 num_devices; 292 293 /* 294 * The number of devices that successfully opened, including 295 * replace-target, excludes seed devices. 296 */ 297 u64 open_devices; 298 299 /* The number of devices that are under the chunk allocation list. */ 300 u64 rw_devices; 301 302 /* Count of missing devices under this fsid excluding seed device. */ 303 u64 missing_devices; 304 u64 total_rw_bytes; 305 306 /* 307 * Count of devices from btrfs_super_block::num_devices for this fsid, 308 * which includes the seed device, excludes the transient replace-target 309 * device. 310 */ 311 u64 total_devices; 312 313 /* Highest generation number of seen devices */ 314 u64 latest_generation; 315 316 /* 317 * The mount device or a device with highest generation after removal 318 * or replace. 319 */ 320 struct btrfs_device *latest_dev; 321 322 /* all of the devices in the FS, protected by a mutex 323 * so we can safely walk it to write out the supers without 324 * worrying about add/remove by the multi-device code. 325 * Scrubbing super can kick off supers writing by holding 326 * this mutex lock. 327 */ 328 struct mutex device_list_mutex; 329 330 /* List of all devices, protected by device_list_mutex */ 331 struct list_head devices; 332 333 /* 334 * Devices which can satisfy space allocation. Protected by 335 * chunk_mutex 336 */ 337 struct list_head alloc_list; 338 339 struct list_head seed_list; 340 bool seeding; 341 342 int opened; 343 344 /* set when we find or add a device that doesn't have the 345 * nonrot flag set 346 */ 347 bool rotating; 348 /* Devices support TRIM/discard commands */ 349 bool discardable; 350 351 struct btrfs_fs_info *fs_info; 352 /* sysfs kobjects */ 353 struct kobject fsid_kobj; 354 struct kobject *devices_kobj; 355 struct kobject *devinfo_kobj; 356 struct completion kobj_unregister; 357 358 enum btrfs_chunk_allocation_policy chunk_alloc_policy; 359 360 /* Policy used to read the mirrored stripes */ 361 enum btrfs_read_policy read_policy; 362 }; 363 364 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \ 365 - sizeof(struct btrfs_chunk)) \ 366 / sizeof(struct btrfs_stripe) + 1) 367 368 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ 369 - 2 * sizeof(struct btrfs_disk_key) \ 370 - 2 * sizeof(struct btrfs_chunk)) \ 371 / sizeof(struct btrfs_stripe) + 1) 372 373 struct btrfs_io_stripe { 374 struct btrfs_device *dev; 375 union { 376 /* Block mapping */ 377 u64 physical; 378 /* For the endio handler */ 379 struct btrfs_io_context *bioc; 380 }; 381 }; 382 383 struct btrfs_discard_stripe { 384 struct btrfs_device *dev; 385 u64 physical; 386 u64 length; 387 }; 388 389 /* 390 * Context for IO subsmission for device stripe. 391 * 392 * - Track the unfinished mirrors for mirror based profiles 393 * Mirror based profiles are SINGLE/DUP/RAID1/RAID10. 394 * 395 * - Contain the logical -> physical mapping info 396 * Used by submit_stripe_bio() for mapping logical bio 397 * into physical device address. 398 * 399 * - Contain device replace info 400 * Used by handle_ops_on_dev_replace() to copy logical bios 401 * into the new device. 402 * 403 * - Contain RAID56 full stripe logical bytenrs 404 */ 405 struct btrfs_io_context { 406 refcount_t refs; 407 struct btrfs_fs_info *fs_info; 408 u64 map_type; /* get from map_lookup->type */ 409 struct bio *orig_bio; 410 atomic_t error; 411 u16 max_errors; 412 413 /* 414 * The total number of stripes, including the extra duplicated 415 * stripe for replace. 416 */ 417 u16 num_stripes; 418 419 /* 420 * The mirror_num of this bioc. 421 * 422 * This is for reads which use 0 as mirror_num, thus we should return a 423 * valid mirror_num (>0) for the reader. 424 */ 425 u16 mirror_num; 426 427 /* 428 * The following two members are for dev-replace case only. 429 * 430 * @replace_nr_stripes: Number of duplicated stripes which need to be 431 * written to replace target. 432 * Should be <= 2 (2 for DUP, otherwise <= 1). 433 * @replace_stripe_src: The array indicates where the duplicated stripes 434 * are from. 435 * 436 * The @replace_stripe_src[] array is mostly for RAID56 cases. 437 * As non-RAID56 stripes share the same contents of the mapped range, 438 * thus no need to bother where the duplicated ones are from. 439 * 440 * But for RAID56 case, all stripes contain different contents, thus 441 * we need a way to know the mapping. 442 * 443 * There is an example for the two members, using a RAID5 write: 444 * 445 * num_stripes: 4 (3 + 1 duplicated write) 446 * stripes[0]: dev = devid 1, physical = X 447 * stripes[1]: dev = devid 2, physical = Y 448 * stripes[2]: dev = devid 3, physical = Z 449 * stripes[3]: dev = devid 0, physical = Y 450 * 451 * replace_nr_stripes = 1 452 * replace_stripe_src = 1 <- Means stripes[1] is involved in replace. 453 * The duplicated stripe index would be 454 * (@num_stripes - 1). 455 * 456 * Note, that we can still have cases replace_nr_stripes = 2 for DUP. 457 * In that case, all stripes share the same content, thus we don't 458 * need to bother @replace_stripe_src value at all. 459 */ 460 u16 replace_nr_stripes; 461 s16 replace_stripe_src; 462 /* 463 * Logical bytenr of the full stripe start, only for RAID56 cases. 464 * 465 * When this value is set to other than (u64)-1, the stripes[] should 466 * follow this pattern: 467 * 468 * (real_stripes = num_stripes - replace_nr_stripes) 469 * (data_stripes = (is_raid6) ? (real_stripes - 2) : (real_stripes - 1)) 470 * 471 * stripes[0]: The first data stripe 472 * stripes[1]: The second data stripe 473 * ... 474 * stripes[data_stripes - 1]: The last data stripe 475 * stripes[data_stripes]: The P stripe 476 * stripes[data_stripes + 1]: The Q stripe (only for RAID6). 477 */ 478 u64 full_stripe_logical; 479 struct btrfs_io_stripe stripes[]; 480 }; 481 482 struct btrfs_device_info { 483 struct btrfs_device *dev; 484 u64 dev_offset; 485 u64 max_avail; 486 u64 total_avail; 487 }; 488 489 struct btrfs_raid_attr { 490 u8 sub_stripes; /* sub_stripes info for map */ 491 u8 dev_stripes; /* stripes per dev */ 492 u8 devs_max; /* max devs to use */ 493 u8 devs_min; /* min devs needed */ 494 u8 tolerated_failures; /* max tolerated fail devs */ 495 u8 devs_increment; /* ndevs has to be a multiple of this */ 496 u8 ncopies; /* how many copies to data has */ 497 u8 nparity; /* number of stripes worth of bytes to store 498 * parity information */ 499 u8 mindev_error; /* error code if min devs requisite is unmet */ 500 const char raid_name[8]; /* name of the raid */ 501 u64 bg_flag; /* block group flag of the raid */ 502 }; 503 504 extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES]; 505 506 struct map_lookup { 507 u64 type; 508 int io_align; 509 int io_width; 510 int num_stripes; 511 int sub_stripes; 512 int verified_stripes; /* For mount time dev extent verification */ 513 struct btrfs_io_stripe stripes[]; 514 }; 515 516 #define map_lookup_size(n) (sizeof(struct map_lookup) + \ 517 (sizeof(struct btrfs_io_stripe) * (n))) 518 519 struct btrfs_balance_args; 520 struct btrfs_balance_progress; 521 struct btrfs_balance_control { 522 struct btrfs_balance_args data; 523 struct btrfs_balance_args meta; 524 struct btrfs_balance_args sys; 525 526 u64 flags; 527 528 struct btrfs_balance_progress stat; 529 }; 530 531 /* 532 * Search for a given device by the set parameters 533 */ 534 struct btrfs_dev_lookup_args { 535 u64 devid; 536 u8 *uuid; 537 u8 *fsid; 538 bool missing; 539 }; 540 541 /* We have to initialize to -1 because BTRFS_DEV_REPLACE_DEVID is 0 */ 542 #define BTRFS_DEV_LOOKUP_ARGS_INIT { .devid = (u64)-1 } 543 544 #define BTRFS_DEV_LOOKUP_ARGS(name) \ 545 struct btrfs_dev_lookup_args name = BTRFS_DEV_LOOKUP_ARGS_INIT 546 547 enum btrfs_map_op { 548 BTRFS_MAP_READ, 549 BTRFS_MAP_WRITE, 550 BTRFS_MAP_DISCARD, 551 BTRFS_MAP_GET_READ_MIRRORS, 552 }; 553 554 static inline enum btrfs_map_op btrfs_op(struct bio *bio) 555 { 556 switch (bio_op(bio)) { 557 case REQ_OP_DISCARD: 558 return BTRFS_MAP_DISCARD; 559 case REQ_OP_WRITE: 560 case REQ_OP_ZONE_APPEND: 561 return BTRFS_MAP_WRITE; 562 default: 563 WARN_ON_ONCE(1); 564 fallthrough; 565 case REQ_OP_READ: 566 return BTRFS_MAP_READ; 567 } 568 } 569 570 static inline unsigned long btrfs_chunk_item_size(int num_stripes) 571 { 572 ASSERT(num_stripes); 573 return sizeof(struct btrfs_chunk) + 574 sizeof(struct btrfs_stripe) * (num_stripes - 1); 575 } 576 577 void btrfs_get_bioc(struct btrfs_io_context *bioc); 578 void btrfs_put_bioc(struct btrfs_io_context *bioc); 579 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 580 u64 logical, u64 *length, 581 struct btrfs_io_context **bioc_ret, int mirror_num); 582 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 583 u64 logical, u64 *length, 584 struct btrfs_io_context **bioc_ret); 585 int __btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 586 u64 logical, u64 *length, 587 struct btrfs_io_context **bioc_ret, 588 struct btrfs_io_stripe *smap, int *mirror_num_ret, 589 int need_raid_map); 590 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 591 struct btrfs_io_stripe *smap, u64 logical, 592 u32 length, int mirror_num); 593 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 594 u64 logical, u64 *length_ret, 595 u32 *num_stripes); 596 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info); 597 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info); 598 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 599 u64 type); 600 void btrfs_mapping_tree_free(struct extent_map_tree *tree); 601 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 602 fmode_t flags, void *holder); 603 struct btrfs_device *btrfs_scan_one_device(const char *path, 604 fmode_t flags, void *holder); 605 int btrfs_forget_devices(dev_t devt); 606 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices); 607 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices); 608 void btrfs_assign_next_active_device(struct btrfs_device *device, 609 struct btrfs_device *this_dev); 610 struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, 611 u64 devid, 612 const char *devpath); 613 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 614 struct btrfs_dev_lookup_args *args, 615 const char *path); 616 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 617 const u64 *devid, const u8 *uuid, 618 const char *path); 619 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args); 620 void btrfs_free_device(struct btrfs_device *device); 621 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 622 struct btrfs_dev_lookup_args *args, 623 struct block_device **bdev, fmode_t *mode); 624 void __exit btrfs_cleanup_fs_uuids(void); 625 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len); 626 int btrfs_grow_device(struct btrfs_trans_handle *trans, 627 struct btrfs_device *device, u64 new_size); 628 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 629 const struct btrfs_dev_lookup_args *args); 630 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size); 631 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path); 632 int btrfs_balance(struct btrfs_fs_info *fs_info, 633 struct btrfs_balance_control *bctl, 634 struct btrfs_ioctl_balance_args *bargs); 635 void btrfs_describe_block_groups(u64 flags, char *buf, u32 size_buf); 636 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info); 637 int btrfs_recover_balance(struct btrfs_fs_info *fs_info); 638 int btrfs_pause_balance(struct btrfs_fs_info *fs_info); 639 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset); 640 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info); 641 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info); 642 int btrfs_uuid_scan_kthread(void *data); 643 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset); 644 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 645 u64 *start, u64 *max_avail); 646 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index); 647 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 648 struct btrfs_ioctl_get_dev_stats *stats); 649 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info); 650 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info); 651 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans); 652 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev); 653 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev); 654 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev); 655 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, 656 u64 logical, u64 len); 657 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 658 u64 logical); 659 u64 btrfs_calc_stripe_length(const struct extent_map *em); 660 int btrfs_nr_parity_stripes(u64 type); 661 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 662 struct btrfs_block_group *bg); 663 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset); 664 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 665 u64 logical, u64 length); 666 void btrfs_release_disk_super(struct btrfs_super_block *super); 667 668 static inline void btrfs_dev_stat_inc(struct btrfs_device *dev, 669 int index) 670 { 671 atomic_inc(dev->dev_stat_values + index); 672 /* 673 * This memory barrier orders stores updating statistics before stores 674 * updating dev_stats_ccnt. 675 * 676 * It pairs with smp_rmb() in btrfs_run_dev_stats(). 677 */ 678 smp_mb__before_atomic(); 679 atomic_inc(&dev->dev_stats_ccnt); 680 } 681 682 static inline int btrfs_dev_stat_read(struct btrfs_device *dev, 683 int index) 684 { 685 return atomic_read(dev->dev_stat_values + index); 686 } 687 688 static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev, 689 int index) 690 { 691 int ret; 692 693 ret = atomic_xchg(dev->dev_stat_values + index, 0); 694 /* 695 * atomic_xchg implies a full memory barriers as per atomic_t.txt: 696 * - RMW operations that have a return value are fully ordered; 697 * 698 * This implicit memory barriers is paired with the smp_rmb in 699 * btrfs_run_dev_stats 700 */ 701 atomic_inc(&dev->dev_stats_ccnt); 702 return ret; 703 } 704 705 static inline void btrfs_dev_stat_set(struct btrfs_device *dev, 706 int index, unsigned long val) 707 { 708 atomic_set(dev->dev_stat_values + index, val); 709 /* 710 * This memory barrier orders stores updating statistics before stores 711 * updating dev_stats_ccnt. 712 * 713 * It pairs with smp_rmb() in btrfs_run_dev_stats(). 714 */ 715 smp_mb__before_atomic(); 716 atomic_inc(&dev->dev_stats_ccnt); 717 } 718 719 static inline const char *btrfs_dev_name(const struct btrfs_device *device) 720 { 721 if (!device || test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 722 return "<missing disk>"; 723 else 724 return rcu_str_deref(device->name); 725 } 726 727 void btrfs_commit_device_sizes(struct btrfs_transaction *trans); 728 729 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void); 730 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 731 struct btrfs_device *failing_dev); 732 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, 733 struct block_device *bdev, 734 const char *device_path); 735 736 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags); 737 int btrfs_bg_type_to_factor(u64 flags); 738 const char *btrfs_bg_type_to_raid_name(u64 flags); 739 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info); 740 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical); 741 742 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr); 743 744 #endif 745