1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_VOLUMES_H 7 #define BTRFS_VOLUMES_H 8 9 #include <linux/blk_types.h> 10 #include <linux/sizes.h> 11 #include <linux/atomic.h> 12 #include <linux/sort.h> 13 #include <linux/list.h> 14 #include <linux/mutex.h> 15 #include <linux/log2.h> 16 #include <linux/kobject.h> 17 #include <linux/refcount.h> 18 #include <linux/completion.h> 19 #include <linux/rbtree.h> 20 #include <uapi/linux/btrfs.h> 21 #include "messages.h" 22 #include "rcu-string.h" 23 24 struct block_device; 25 struct bdev_handle; 26 struct btrfs_fs_info; 27 struct btrfs_block_group; 28 struct btrfs_trans_handle; 29 struct btrfs_zoned_device_info; 30 31 #define BTRFS_MAX_DATA_CHUNK_SIZE (10ULL * SZ_1G) 32 33 /* 34 * Arbitratry maximum size of one discard request to limit potentially long time 35 * spent in blkdev_issue_discard(). 36 */ 37 #define BTRFS_MAX_DISCARD_CHUNK_SIZE (SZ_1G) 38 39 extern struct mutex uuid_mutex; 40 41 #define BTRFS_STRIPE_LEN SZ_64K 42 #define BTRFS_STRIPE_LEN_SHIFT (16) 43 #define BTRFS_STRIPE_LEN_MASK (BTRFS_STRIPE_LEN - 1) 44 45 static_assert(const_ilog2(BTRFS_STRIPE_LEN) == BTRFS_STRIPE_LEN_SHIFT); 46 47 /* Used by sanity check for btrfs_raid_types. */ 48 #define const_ffs(n) (__builtin_ctzll(n) + 1) 49 50 /* 51 * The conversion from BTRFS_BLOCK_GROUP_* bits to btrfs_raid_type requires 52 * RAID0 always to be the lowest profile bit. 53 * Although it's part of on-disk format and should never change, do extra 54 * compile-time sanity checks. 55 */ 56 static_assert(const_ffs(BTRFS_BLOCK_GROUP_RAID0) < 57 const_ffs(BTRFS_BLOCK_GROUP_PROFILE_MASK & ~BTRFS_BLOCK_GROUP_RAID0)); 58 static_assert(const_ilog2(BTRFS_BLOCK_GROUP_RAID0) > 59 ilog2(BTRFS_BLOCK_GROUP_TYPE_MASK)); 60 61 /* ilog2() can handle both constants and variables */ 62 #define BTRFS_BG_FLAG_TO_INDEX(profile) \ 63 ilog2((profile) >> (ilog2(BTRFS_BLOCK_GROUP_RAID0) - 1)) 64 65 enum btrfs_raid_types { 66 /* SINGLE is the special one as it doesn't have on-disk bit. */ 67 BTRFS_RAID_SINGLE = 0, 68 69 BTRFS_RAID_RAID0 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID0), 70 BTRFS_RAID_RAID1 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1), 71 BTRFS_RAID_DUP = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_DUP), 72 BTRFS_RAID_RAID10 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID10), 73 BTRFS_RAID_RAID5 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID5), 74 BTRFS_RAID_RAID6 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID6), 75 BTRFS_RAID_RAID1C3 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1C3), 76 BTRFS_RAID_RAID1C4 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1C4), 77 78 BTRFS_NR_RAID_TYPES 79 }; 80 81 /* 82 * Use sequence counter to get consistent device stat data on 83 * 32-bit processors. 84 */ 85 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 86 #include <linux/seqlock.h> 87 #define __BTRFS_NEED_DEVICE_DATA_ORDERED 88 #define btrfs_device_data_ordered_init(device) \ 89 seqcount_init(&device->data_seqcount) 90 #else 91 #define btrfs_device_data_ordered_init(device) do { } while (0) 92 #endif 93 94 #define BTRFS_DEV_STATE_WRITEABLE (0) 95 #define BTRFS_DEV_STATE_IN_FS_METADATA (1) 96 #define BTRFS_DEV_STATE_MISSING (2) 97 #define BTRFS_DEV_STATE_REPLACE_TGT (3) 98 #define BTRFS_DEV_STATE_FLUSH_SENT (4) 99 #define BTRFS_DEV_STATE_NO_READA (5) 100 101 /* Special value encoding failure to write primary super block. */ 102 #define BTRFS_SUPER_PRIMARY_WRITE_ERROR (INT_MAX / 2) 103 104 struct btrfs_fs_devices; 105 106 struct btrfs_device { 107 struct list_head dev_list; /* device_list_mutex */ 108 struct list_head dev_alloc_list; /* chunk mutex */ 109 struct list_head post_commit_list; /* chunk mutex */ 110 struct btrfs_fs_devices *fs_devices; 111 struct btrfs_fs_info *fs_info; 112 113 struct rcu_string __rcu *name; 114 115 u64 generation; 116 117 struct file *bdev_file; 118 struct block_device *bdev; 119 120 struct btrfs_zoned_device_info *zone_info; 121 122 /* 123 * Device's major-minor number. Must be set even if the device is not 124 * opened (bdev == NULL), unless the device is missing. 125 */ 126 dev_t devt; 127 unsigned long dev_state; 128 blk_status_t last_flush_error; 129 130 #ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED 131 seqcount_t data_seqcount; 132 #endif 133 134 /* the internal btrfs device id */ 135 u64 devid; 136 137 /* size of the device in memory */ 138 u64 total_bytes; 139 140 /* size of the device on disk */ 141 u64 disk_total_bytes; 142 143 /* bytes used */ 144 u64 bytes_used; 145 146 /* optimal io alignment for this device */ 147 u32 io_align; 148 149 /* optimal io width for this device */ 150 u32 io_width; 151 /* type and info about this device */ 152 u64 type; 153 154 /* 155 * Counter of super block write errors, values larger than 156 * BTRFS_SUPER_PRIMARY_WRITE_ERROR encode primary super block write failure. 157 */ 158 atomic_t sb_write_errors; 159 160 /* minimal io size for this device */ 161 u32 sector_size; 162 163 /* physical drive uuid (or lvm uuid) */ 164 u8 uuid[BTRFS_UUID_SIZE]; 165 166 /* 167 * size of the device on the current transaction 168 * 169 * This variant is update when committing the transaction, 170 * and protected by chunk mutex 171 */ 172 u64 commit_total_bytes; 173 174 /* bytes used on the current transaction */ 175 u64 commit_bytes_used; 176 177 /* Bio used for flushing device barriers */ 178 struct bio flush_bio; 179 struct completion flush_wait; 180 181 /* per-device scrub information */ 182 struct scrub_ctx *scrub_ctx; 183 184 /* disk I/O failure stats. For detailed description refer to 185 * enum btrfs_dev_stat_values in ioctl.h */ 186 int dev_stats_valid; 187 188 /* Counter to record the change of device stats */ 189 atomic_t dev_stats_ccnt; 190 atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX]; 191 192 struct extent_io_tree alloc_state; 193 194 struct completion kobj_unregister; 195 /* For sysfs/FSID/devinfo/devid/ */ 196 struct kobject devid_kobj; 197 198 /* Bandwidth limit for scrub, in bytes */ 199 u64 scrub_speed_max; 200 }; 201 202 /* 203 * Block group or device which contains an active swapfile. Used for preventing 204 * unsafe operations while a swapfile is active. 205 * 206 * These are sorted on (ptr, inode) (note that a block group or device can 207 * contain more than one swapfile). We compare the pointer values because we 208 * don't actually care what the object is, we just need a quick check whether 209 * the object exists in the rbtree. 210 */ 211 struct btrfs_swapfile_pin { 212 struct rb_node node; 213 void *ptr; 214 struct inode *inode; 215 /* 216 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr 217 * points to a struct btrfs_device. 218 */ 219 bool is_block_group; 220 /* 221 * Only used when 'is_block_group' is true and it is the number of 222 * extents used by a swapfile for this block group ('ptr' field). 223 */ 224 int bg_extent_count; 225 }; 226 227 /* 228 * If we read those variants at the context of their own lock, we needn't 229 * use the following helpers, reading them directly is safe. 230 */ 231 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 232 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 233 static inline u64 \ 234 btrfs_device_get_##name(const struct btrfs_device *dev) \ 235 { \ 236 u64 size; \ 237 unsigned int seq; \ 238 \ 239 do { \ 240 seq = read_seqcount_begin(&dev->data_seqcount); \ 241 size = dev->name; \ 242 } while (read_seqcount_retry(&dev->data_seqcount, seq)); \ 243 return size; \ 244 } \ 245 \ 246 static inline void \ 247 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 248 { \ 249 preempt_disable(); \ 250 write_seqcount_begin(&dev->data_seqcount); \ 251 dev->name = size; \ 252 write_seqcount_end(&dev->data_seqcount); \ 253 preempt_enable(); \ 254 } 255 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 256 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 257 static inline u64 \ 258 btrfs_device_get_##name(const struct btrfs_device *dev) \ 259 { \ 260 u64 size; \ 261 \ 262 preempt_disable(); \ 263 size = dev->name; \ 264 preempt_enable(); \ 265 return size; \ 266 } \ 267 \ 268 static inline void \ 269 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 270 { \ 271 preempt_disable(); \ 272 dev->name = size; \ 273 preempt_enable(); \ 274 } 275 #else 276 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 277 static inline u64 \ 278 btrfs_device_get_##name(const struct btrfs_device *dev) \ 279 { \ 280 return dev->name; \ 281 } \ 282 \ 283 static inline void \ 284 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 285 { \ 286 dev->name = size; \ 287 } 288 #endif 289 290 BTRFS_DEVICE_GETSET_FUNCS(total_bytes); 291 BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes); 292 BTRFS_DEVICE_GETSET_FUNCS(bytes_used); 293 294 enum btrfs_chunk_allocation_policy { 295 BTRFS_CHUNK_ALLOC_REGULAR, 296 BTRFS_CHUNK_ALLOC_ZONED, 297 }; 298 299 #define BTRFS_DEFAULT_RR_MIN_CONTIG_READ (SZ_256K) 300 /* Keep in sync with raid_attr table, current maximum is RAID1C4. */ 301 #define BTRFS_RAID1_MAX_MIRRORS (4) 302 /* 303 * Read policies for mirrored block group profiles, read picks the stripe based 304 * on these policies. 305 */ 306 enum btrfs_read_policy { 307 /* Use process PID to choose the stripe */ 308 BTRFS_READ_POLICY_PID, 309 #ifdef CONFIG_BTRFS_EXPERIMENTAL 310 /* Balancing RAID1 reads across all striped devices (round-robin). */ 311 BTRFS_READ_POLICY_RR, 312 /* Read from a specific device. */ 313 BTRFS_READ_POLICY_DEVID, 314 #endif 315 BTRFS_NR_READ_POLICY, 316 }; 317 318 #ifdef CONFIG_BTRFS_EXPERIMENTAL 319 /* 320 * Checksum mode - offload it to workqueues or do it synchronously in 321 * btrfs_submit_chunk(). 322 */ 323 enum btrfs_offload_csum_mode { 324 /* 325 * Choose offloading checksum or do it synchronously automatically. 326 * Do it synchronously if the checksum is fast, or offload to workqueues 327 * otherwise. 328 */ 329 BTRFS_OFFLOAD_CSUM_AUTO, 330 /* Always offload checksum to workqueues. */ 331 BTRFS_OFFLOAD_CSUM_FORCE_ON, 332 /* Never offload checksum to workqueues. */ 333 BTRFS_OFFLOAD_CSUM_FORCE_OFF, 334 }; 335 #endif 336 337 struct btrfs_fs_devices { 338 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 339 340 /* 341 * UUID written into the btree blocks: 342 * 343 * - If metadata_uuid != fsid then super block must have 344 * BTRFS_FEATURE_INCOMPAT_METADATA_UUID flag set. 345 * 346 * - Following shall be true at all times: 347 * - metadata_uuid == btrfs_header::fsid 348 * - metadata_uuid == btrfs_dev_item::fsid 349 * 350 * - Relations between fsid and metadata_uuid in sb and fs_devices: 351 * - Normal: 352 * fs_devices->fsid == fs_devices->metadata_uuid == sb->fsid 353 * sb->metadata_uuid == 0 354 * 355 * - When the BTRFS_FEATURE_INCOMPAT_METADATA_UUID flag is set: 356 * fs_devices->fsid == sb->fsid 357 * fs_devices->metadata_uuid == sb->metadata_uuid 358 * 359 * - When in-memory fs_devices->temp_fsid is true 360 * fs_devices->fsid = random 361 * fs_devices->metadata_uuid == sb->fsid 362 */ 363 u8 metadata_uuid[BTRFS_FSID_SIZE]; 364 365 struct list_head fs_list; 366 367 /* 368 * Number of devices under this fsid including missing and 369 * replace-target device and excludes seed devices. 370 */ 371 u64 num_devices; 372 373 /* 374 * The number of devices that successfully opened, including 375 * replace-target, excludes seed devices. 376 */ 377 u64 open_devices; 378 379 /* The number of devices that are under the chunk allocation list. */ 380 u64 rw_devices; 381 382 /* Count of missing devices under this fsid excluding seed device. */ 383 u64 missing_devices; 384 u64 total_rw_bytes; 385 386 /* 387 * Count of devices from btrfs_super_block::num_devices for this fsid, 388 * which includes the seed device, excludes the transient replace-target 389 * device. 390 */ 391 u64 total_devices; 392 393 /* Highest generation number of seen devices */ 394 u64 latest_generation; 395 396 /* 397 * The mount device or a device with highest generation after removal 398 * or replace. 399 */ 400 struct btrfs_device *latest_dev; 401 402 /* 403 * All of the devices in the filesystem, protected by a mutex so we can 404 * safely walk it to write out the super blocks without worrying about 405 * adding/removing by the multi-device code. Scrubbing super block can 406 * kick off supers writing by holding this mutex lock. 407 */ 408 struct mutex device_list_mutex; 409 410 /* List of all devices, protected by device_list_mutex */ 411 struct list_head devices; 412 413 /* Devices which can satisfy space allocation. Protected by * chunk_mutex. */ 414 struct list_head alloc_list; 415 416 struct list_head seed_list; 417 418 /* Count fs-devices opened. */ 419 int opened; 420 421 /* Set when we find or add a device that doesn't have the nonrot flag set. */ 422 bool rotating; 423 /* Devices support TRIM/discard commands. */ 424 bool discardable; 425 /* The filesystem is a seed filesystem. */ 426 bool seeding; 427 /* The mount needs to use a randomly generated fsid. */ 428 bool temp_fsid; 429 /* Enable/disable the filesystem stats tracking. */ 430 bool collect_fs_stats; 431 432 struct btrfs_fs_info *fs_info; 433 /* sysfs kobjects */ 434 struct kobject fsid_kobj; 435 struct kobject *devices_kobj; 436 struct kobject *devinfo_kobj; 437 struct completion kobj_unregister; 438 439 enum btrfs_chunk_allocation_policy chunk_alloc_policy; 440 441 /* Policy used to read the mirrored stripes. */ 442 enum btrfs_read_policy read_policy; 443 444 #ifdef CONFIG_BTRFS_EXPERIMENTAL 445 /* 446 * Minimum contiguous reads before switching to next device, the unit 447 * is one block/sectorsize. 448 */ 449 u32 rr_min_contig_read; 450 451 /* Device to be used for reading in case of RAID1. */ 452 u64 read_devid; 453 454 /* Checksum mode - offload it or do it synchronously. */ 455 enum btrfs_offload_csum_mode offload_csum_mode; 456 #endif 457 }; 458 459 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \ 460 - sizeof(struct btrfs_chunk)) \ 461 / sizeof(struct btrfs_stripe) + 1) 462 463 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ 464 - 2 * sizeof(struct btrfs_disk_key) \ 465 - 2 * sizeof(struct btrfs_chunk)) \ 466 / sizeof(struct btrfs_stripe) + 1) 467 468 struct btrfs_io_stripe { 469 struct btrfs_device *dev; 470 /* Block mapping. */ 471 u64 physical; 472 u64 length; 473 bool rst_search_commit_root; 474 /* For the endio handler. */ 475 struct btrfs_io_context *bioc; 476 }; 477 478 struct btrfs_discard_stripe { 479 struct btrfs_device *dev; 480 u64 physical; 481 u64 length; 482 }; 483 484 /* 485 * Context for IO subsmission for device stripe. 486 * 487 * - Track the unfinished mirrors for mirror based profiles 488 * Mirror based profiles are SINGLE/DUP/RAID1/RAID10. 489 * 490 * - Contain the logical -> physical mapping info 491 * Used by submit_stripe_bio() for mapping logical bio 492 * into physical device address. 493 * 494 * - Contain device replace info 495 * Used by handle_ops_on_dev_replace() to copy logical bios 496 * into the new device. 497 * 498 * - Contain RAID56 full stripe logical bytenrs 499 */ 500 struct btrfs_io_context { 501 refcount_t refs; 502 struct btrfs_fs_info *fs_info; 503 /* Taken from struct btrfs_chunk_map::type. */ 504 u64 map_type; 505 struct bio *orig_bio; 506 atomic_t error; 507 u16 max_errors; 508 bool use_rst; 509 510 u64 logical; 511 u64 size; 512 /* Raid stripe tree ordered entry. */ 513 struct list_head rst_ordered_entry; 514 515 /* 516 * The total number of stripes, including the extra duplicated 517 * stripe for replace. 518 */ 519 u16 num_stripes; 520 521 /* 522 * The mirror_num of this bioc. 523 * 524 * This is for reads which use 0 as mirror_num, thus we should return a 525 * valid mirror_num (>0) for the reader. 526 */ 527 u16 mirror_num; 528 529 /* 530 * The following two members are for dev-replace case only. 531 * 532 * @replace_nr_stripes: Number of duplicated stripes which need to be 533 * written to replace target. 534 * Should be <= 2 (2 for DUP, otherwise <= 1). 535 * @replace_stripe_src: The array indicates where the duplicated stripes 536 * are from. 537 * 538 * The @replace_stripe_src[] array is mostly for RAID56 cases. 539 * As non-RAID56 stripes share the same contents of the mapped range, 540 * thus no need to bother where the duplicated ones are from. 541 * 542 * But for RAID56 case, all stripes contain different contents, thus 543 * we need a way to know the mapping. 544 * 545 * There is an example for the two members, using a RAID5 write: 546 * 547 * num_stripes: 4 (3 + 1 duplicated write) 548 * stripes[0]: dev = devid 1, physical = X 549 * stripes[1]: dev = devid 2, physical = Y 550 * stripes[2]: dev = devid 3, physical = Z 551 * stripes[3]: dev = devid 0, physical = Y 552 * 553 * replace_nr_stripes = 1 554 * replace_stripe_src = 1 <- Means stripes[1] is involved in replace. 555 * The duplicated stripe index would be 556 * (@num_stripes - 1). 557 * 558 * Note, that we can still have cases replace_nr_stripes = 2 for DUP. 559 * In that case, all stripes share the same content, thus we don't 560 * need to bother @replace_stripe_src value at all. 561 */ 562 u16 replace_nr_stripes; 563 s16 replace_stripe_src; 564 /* 565 * Logical bytenr of the full stripe start, only for RAID56 cases. 566 * 567 * When this value is set to other than (u64)-1, the stripes[] should 568 * follow this pattern: 569 * 570 * (real_stripes = num_stripes - replace_nr_stripes) 571 * (data_stripes = (is_raid6) ? (real_stripes - 2) : (real_stripes - 1)) 572 * 573 * stripes[0]: The first data stripe 574 * stripes[1]: The second data stripe 575 * ... 576 * stripes[data_stripes - 1]: The last data stripe 577 * stripes[data_stripes]: The P stripe 578 * stripes[data_stripes + 1]: The Q stripe (only for RAID6). 579 */ 580 u64 full_stripe_logical; 581 struct btrfs_io_stripe stripes[]; 582 }; 583 584 struct btrfs_device_info { 585 struct btrfs_device *dev; 586 u64 dev_offset; 587 u64 max_avail; 588 u64 total_avail; 589 }; 590 591 struct btrfs_raid_attr { 592 u8 sub_stripes; /* sub_stripes info for map */ 593 u8 dev_stripes; /* stripes per dev */ 594 u8 devs_max; /* max devs to use */ 595 u8 devs_min; /* min devs needed */ 596 u8 tolerated_failures; /* max tolerated fail devs */ 597 u8 devs_increment; /* ndevs has to be a multiple of this */ 598 u8 ncopies; /* how many copies to data has */ 599 u8 nparity; /* number of stripes worth of bytes to store 600 * parity information */ 601 u8 mindev_error; /* error code if min devs requisite is unmet */ 602 const char raid_name[8]; /* name of the raid */ 603 u64 bg_flag; /* block group flag of the raid */ 604 }; 605 606 extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES]; 607 608 struct btrfs_chunk_map { 609 struct rb_node rb_node; 610 /* For mount time dev extent verification. */ 611 int verified_stripes; 612 refcount_t refs; 613 u64 start; 614 u64 chunk_len; 615 u64 stripe_size; 616 u64 type; 617 int io_align; 618 int io_width; 619 int num_stripes; 620 int sub_stripes; 621 struct btrfs_io_stripe stripes[]; 622 }; 623 624 #define btrfs_chunk_map_size(n) (sizeof(struct btrfs_chunk_map) + \ 625 (sizeof(struct btrfs_io_stripe) * (n))) 626 627 static inline void btrfs_free_chunk_map(struct btrfs_chunk_map *map) 628 { 629 if (map && refcount_dec_and_test(&map->refs)) { 630 ASSERT(RB_EMPTY_NODE(&map->rb_node)); 631 kfree(map); 632 } 633 } 634 635 struct btrfs_balance_control { 636 struct btrfs_balance_args data; 637 struct btrfs_balance_args meta; 638 struct btrfs_balance_args sys; 639 640 u64 flags; 641 642 struct btrfs_balance_progress stat; 643 }; 644 645 /* 646 * Search for a given device by the set parameters 647 */ 648 struct btrfs_dev_lookup_args { 649 u64 devid; 650 u8 *uuid; 651 u8 *fsid; 652 bool missing; 653 }; 654 655 /* We have to initialize to -1 because BTRFS_DEV_REPLACE_DEVID is 0 */ 656 #define BTRFS_DEV_LOOKUP_ARGS_INIT { .devid = (u64)-1 } 657 658 #define BTRFS_DEV_LOOKUP_ARGS(name) \ 659 struct btrfs_dev_lookup_args name = BTRFS_DEV_LOOKUP_ARGS_INIT 660 661 enum btrfs_map_op { 662 BTRFS_MAP_READ, 663 BTRFS_MAP_WRITE, 664 BTRFS_MAP_GET_READ_MIRRORS, 665 }; 666 667 static inline enum btrfs_map_op btrfs_op(struct bio *bio) 668 { 669 switch (bio_op(bio)) { 670 case REQ_OP_WRITE: 671 case REQ_OP_ZONE_APPEND: 672 return BTRFS_MAP_WRITE; 673 default: 674 WARN_ON_ONCE(1); 675 fallthrough; 676 case REQ_OP_READ: 677 return BTRFS_MAP_READ; 678 } 679 } 680 681 static inline unsigned long btrfs_chunk_item_size(int num_stripes) 682 { 683 ASSERT(num_stripes); 684 return sizeof(struct btrfs_chunk) + 685 sizeof(struct btrfs_stripe) * (num_stripes - 1); 686 } 687 688 /* 689 * Do the type safe conversion from stripe_nr to offset inside the chunk. 690 * 691 * @stripe_nr is u32, with left shift it can overflow u32 for chunks larger 692 * than 4G. This does the proper type cast to avoid overflow. 693 */ 694 static inline u64 btrfs_stripe_nr_to_offset(u32 stripe_nr) 695 { 696 return (u64)stripe_nr << BTRFS_STRIPE_LEN_SHIFT; 697 } 698 699 void btrfs_get_bioc(struct btrfs_io_context *bioc); 700 void btrfs_put_bioc(struct btrfs_io_context *bioc); 701 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 702 u64 logical, u64 *length, 703 struct btrfs_io_context **bioc_ret, 704 struct btrfs_io_stripe *smap, int *mirror_num_ret); 705 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 706 struct btrfs_io_stripe *smap, u64 logical, 707 u32 length, int mirror_num); 708 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 709 u64 logical, u64 *length_ret, 710 u32 *num_stripes); 711 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info); 712 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info); 713 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 714 u64 type); 715 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info); 716 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 717 blk_mode_t flags, void *holder); 718 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags, 719 bool mount_arg_dev); 720 int btrfs_forget_devices(dev_t devt); 721 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices); 722 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices); 723 void btrfs_assign_next_active_device(struct btrfs_device *device, 724 struct btrfs_device *this_dev); 725 struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, 726 u64 devid, 727 const char *devpath); 728 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 729 struct btrfs_dev_lookup_args *args, 730 const char *path); 731 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 732 const u64 *devid, const u8 *uuid, 733 const char *path); 734 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args); 735 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 736 struct btrfs_dev_lookup_args *args, 737 struct file **bdev_file); 738 void __exit btrfs_cleanup_fs_uuids(void); 739 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len); 740 int btrfs_grow_device(struct btrfs_trans_handle *trans, 741 struct btrfs_device *device, u64 new_size); 742 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 743 const struct btrfs_dev_lookup_args *args); 744 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size); 745 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path); 746 int btrfs_balance(struct btrfs_fs_info *fs_info, 747 struct btrfs_balance_control *bctl, 748 struct btrfs_ioctl_balance_args *bargs); 749 void btrfs_describe_block_groups(u64 flags, char *buf, u32 size_buf); 750 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info); 751 int btrfs_recover_balance(struct btrfs_fs_info *fs_info); 752 int btrfs_pause_balance(struct btrfs_fs_info *fs_info); 753 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset); 754 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info); 755 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset); 756 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index); 757 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 758 struct btrfs_ioctl_get_dev_stats *stats); 759 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info); 760 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info); 761 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans); 762 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev); 763 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev); 764 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev); 765 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 766 u64 logical); 767 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map); 768 int btrfs_nr_parity_stripes(u64 type); 769 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 770 struct btrfs_block_group *bg); 771 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset); 772 773 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 774 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp); 775 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map); 776 #endif 777 778 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info, 779 u64 logical, u64 length); 780 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info, 781 u64 logical, u64 length); 782 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 783 u64 logical, u64 length); 784 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map); 785 void btrfs_release_disk_super(struct btrfs_super_block *super); 786 787 static inline void btrfs_dev_stat_inc(struct btrfs_device *dev, 788 int index) 789 { 790 atomic_inc(dev->dev_stat_values + index); 791 /* 792 * This memory barrier orders stores updating statistics before stores 793 * updating dev_stats_ccnt. 794 * 795 * It pairs with smp_rmb() in btrfs_run_dev_stats(). 796 */ 797 smp_mb__before_atomic(); 798 atomic_inc(&dev->dev_stats_ccnt); 799 } 800 801 static inline int btrfs_dev_stat_read(struct btrfs_device *dev, 802 int index) 803 { 804 return atomic_read(dev->dev_stat_values + index); 805 } 806 807 static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev, 808 int index) 809 { 810 int ret; 811 812 ret = atomic_xchg(dev->dev_stat_values + index, 0); 813 /* 814 * atomic_xchg implies a full memory barriers as per atomic_t.txt: 815 * - RMW operations that have a return value are fully ordered; 816 * 817 * This implicit memory barriers is paired with the smp_rmb in 818 * btrfs_run_dev_stats 819 */ 820 atomic_inc(&dev->dev_stats_ccnt); 821 return ret; 822 } 823 824 static inline void btrfs_dev_stat_set(struct btrfs_device *dev, 825 int index, unsigned long val) 826 { 827 atomic_set(dev->dev_stat_values + index, val); 828 /* 829 * This memory barrier orders stores updating statistics before stores 830 * updating dev_stats_ccnt. 831 * 832 * It pairs with smp_rmb() in btrfs_run_dev_stats(). 833 */ 834 smp_mb__before_atomic(); 835 atomic_inc(&dev->dev_stats_ccnt); 836 } 837 838 static inline const char *btrfs_dev_name(const struct btrfs_device *device) 839 { 840 if (!device || test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 841 return "<missing disk>"; 842 else 843 return rcu_str_deref(device->name); 844 } 845 846 void btrfs_commit_device_sizes(struct btrfs_transaction *trans); 847 848 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void); 849 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 850 struct btrfs_device *failing_dev); 851 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device); 852 853 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags); 854 int btrfs_bg_type_to_factor(u64 flags); 855 const char *btrfs_bg_type_to_raid_name(u64 flags); 856 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info); 857 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical); 858 859 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr); 860 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb); 861 862 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 863 struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 864 u64 logical, u16 total_stripes); 865 #endif 866 867 #endif 868