1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_VOLUMES_H 7 #define BTRFS_VOLUMES_H 8 9 #include <linux/sort.h> 10 #include <linux/btrfs.h> 11 #include "async-thread.h" 12 #include "messages.h" 13 #include "tree-checker.h" 14 #include "rcu-string.h" 15 16 #define BTRFS_MAX_DATA_CHUNK_SIZE (10ULL * SZ_1G) 17 18 extern struct mutex uuid_mutex; 19 20 #define BTRFS_STRIPE_LEN SZ_64K 21 #define BTRFS_STRIPE_LEN_SHIFT (16) 22 #define BTRFS_STRIPE_LEN_MASK (BTRFS_STRIPE_LEN - 1) 23 24 static_assert(const_ilog2(BTRFS_STRIPE_LEN) == BTRFS_STRIPE_LEN_SHIFT); 25 26 /* Used by sanity check for btrfs_raid_types. */ 27 #define const_ffs(n) (__builtin_ctzll(n) + 1) 28 29 /* 30 * The conversion from BTRFS_BLOCK_GROUP_* bits to btrfs_raid_type requires 31 * RAID0 always to be the lowest profile bit. 32 * Although it's part of on-disk format and should never change, do extra 33 * compile-time sanity checks. 34 */ 35 static_assert(const_ffs(BTRFS_BLOCK_GROUP_RAID0) < 36 const_ffs(BTRFS_BLOCK_GROUP_PROFILE_MASK & ~BTRFS_BLOCK_GROUP_RAID0)); 37 static_assert(const_ilog2(BTRFS_BLOCK_GROUP_RAID0) > 38 ilog2(BTRFS_BLOCK_GROUP_TYPE_MASK)); 39 40 /* ilog2() can handle both constants and variables */ 41 #define BTRFS_BG_FLAG_TO_INDEX(profile) \ 42 ilog2((profile) >> (ilog2(BTRFS_BLOCK_GROUP_RAID0) - 1)) 43 44 enum btrfs_raid_types { 45 /* SINGLE is the special one as it doesn't have on-disk bit. */ 46 BTRFS_RAID_SINGLE = 0, 47 48 BTRFS_RAID_RAID0 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID0), 49 BTRFS_RAID_RAID1 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1), 50 BTRFS_RAID_DUP = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_DUP), 51 BTRFS_RAID_RAID10 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID10), 52 BTRFS_RAID_RAID5 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID5), 53 BTRFS_RAID_RAID6 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID6), 54 BTRFS_RAID_RAID1C3 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1C3), 55 BTRFS_RAID_RAID1C4 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1C4), 56 57 BTRFS_NR_RAID_TYPES 58 }; 59 60 /* 61 * Use sequence counter to get consistent device stat data on 62 * 32-bit processors. 63 */ 64 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 65 #include <linux/seqlock.h> 66 #define __BTRFS_NEED_DEVICE_DATA_ORDERED 67 #define btrfs_device_data_ordered_init(device) \ 68 seqcount_init(&device->data_seqcount) 69 #else 70 #define btrfs_device_data_ordered_init(device) do { } while (0) 71 #endif 72 73 #define BTRFS_DEV_STATE_WRITEABLE (0) 74 #define BTRFS_DEV_STATE_IN_FS_METADATA (1) 75 #define BTRFS_DEV_STATE_MISSING (2) 76 #define BTRFS_DEV_STATE_REPLACE_TGT (3) 77 #define BTRFS_DEV_STATE_FLUSH_SENT (4) 78 #define BTRFS_DEV_STATE_NO_READA (5) 79 80 struct btrfs_zoned_device_info; 81 82 struct btrfs_device { 83 struct list_head dev_list; /* device_list_mutex */ 84 struct list_head dev_alloc_list; /* chunk mutex */ 85 struct list_head post_commit_list; /* chunk mutex */ 86 struct btrfs_fs_devices *fs_devices; 87 struct btrfs_fs_info *fs_info; 88 89 struct rcu_string __rcu *name; 90 91 u64 generation; 92 93 struct bdev_handle *bdev_handle; 94 struct block_device *bdev; 95 96 struct btrfs_zoned_device_info *zone_info; 97 98 /* 99 * Device's major-minor number. Must be set even if the device is not 100 * opened (bdev == NULL), unless the device is missing. 101 */ 102 dev_t devt; 103 unsigned long dev_state; 104 blk_status_t last_flush_error; 105 106 #ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED 107 seqcount_t data_seqcount; 108 #endif 109 110 /* the internal btrfs device id */ 111 u64 devid; 112 113 /* size of the device in memory */ 114 u64 total_bytes; 115 116 /* size of the device on disk */ 117 u64 disk_total_bytes; 118 119 /* bytes used */ 120 u64 bytes_used; 121 122 /* optimal io alignment for this device */ 123 u32 io_align; 124 125 /* optimal io width for this device */ 126 u32 io_width; 127 /* type and info about this device */ 128 u64 type; 129 130 /* minimal io size for this device */ 131 u32 sector_size; 132 133 /* physical drive uuid (or lvm uuid) */ 134 u8 uuid[BTRFS_UUID_SIZE]; 135 136 /* 137 * size of the device on the current transaction 138 * 139 * This variant is update when committing the transaction, 140 * and protected by chunk mutex 141 */ 142 u64 commit_total_bytes; 143 144 /* bytes used on the current transaction */ 145 u64 commit_bytes_used; 146 147 /* Bio used for flushing device barriers */ 148 struct bio flush_bio; 149 struct completion flush_wait; 150 151 /* per-device scrub information */ 152 struct scrub_ctx *scrub_ctx; 153 154 /* disk I/O failure stats. For detailed description refer to 155 * enum btrfs_dev_stat_values in ioctl.h */ 156 int dev_stats_valid; 157 158 /* Counter to record the change of device stats */ 159 atomic_t dev_stats_ccnt; 160 atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX]; 161 162 struct extent_io_tree alloc_state; 163 164 struct completion kobj_unregister; 165 /* For sysfs/FSID/devinfo/devid/ */ 166 struct kobject devid_kobj; 167 168 /* Bandwidth limit for scrub, in bytes */ 169 u64 scrub_speed_max; 170 }; 171 172 /* 173 * Block group or device which contains an active swapfile. Used for preventing 174 * unsafe operations while a swapfile is active. 175 * 176 * These are sorted on (ptr, inode) (note that a block group or device can 177 * contain more than one swapfile). We compare the pointer values because we 178 * don't actually care what the object is, we just need a quick check whether 179 * the object exists in the rbtree. 180 */ 181 struct btrfs_swapfile_pin { 182 struct rb_node node; 183 void *ptr; 184 struct inode *inode; 185 /* 186 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr 187 * points to a struct btrfs_device. 188 */ 189 bool is_block_group; 190 /* 191 * Only used when 'is_block_group' is true and it is the number of 192 * extents used by a swapfile for this block group ('ptr' field). 193 */ 194 int bg_extent_count; 195 }; 196 197 /* 198 * If we read those variants at the context of their own lock, we needn't 199 * use the following helpers, reading them directly is safe. 200 */ 201 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 202 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 203 static inline u64 \ 204 btrfs_device_get_##name(const struct btrfs_device *dev) \ 205 { \ 206 u64 size; \ 207 unsigned int seq; \ 208 \ 209 do { \ 210 seq = read_seqcount_begin(&dev->data_seqcount); \ 211 size = dev->name; \ 212 } while (read_seqcount_retry(&dev->data_seqcount, seq)); \ 213 return size; \ 214 } \ 215 \ 216 static inline void \ 217 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 218 { \ 219 preempt_disable(); \ 220 write_seqcount_begin(&dev->data_seqcount); \ 221 dev->name = size; \ 222 write_seqcount_end(&dev->data_seqcount); \ 223 preempt_enable(); \ 224 } 225 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 226 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 227 static inline u64 \ 228 btrfs_device_get_##name(const struct btrfs_device *dev) \ 229 { \ 230 u64 size; \ 231 \ 232 preempt_disable(); \ 233 size = dev->name; \ 234 preempt_enable(); \ 235 return size; \ 236 } \ 237 \ 238 static inline void \ 239 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 240 { \ 241 preempt_disable(); \ 242 dev->name = size; \ 243 preempt_enable(); \ 244 } 245 #else 246 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 247 static inline u64 \ 248 btrfs_device_get_##name(const struct btrfs_device *dev) \ 249 { \ 250 return dev->name; \ 251 } \ 252 \ 253 static inline void \ 254 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 255 { \ 256 dev->name = size; \ 257 } 258 #endif 259 260 BTRFS_DEVICE_GETSET_FUNCS(total_bytes); 261 BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes); 262 BTRFS_DEVICE_GETSET_FUNCS(bytes_used); 263 264 enum btrfs_chunk_allocation_policy { 265 BTRFS_CHUNK_ALLOC_REGULAR, 266 BTRFS_CHUNK_ALLOC_ZONED, 267 }; 268 269 /* 270 * Read policies for mirrored block group profiles, read picks the stripe based 271 * on these policies. 272 */ 273 enum btrfs_read_policy { 274 /* Use process PID to choose the stripe */ 275 BTRFS_READ_POLICY_PID, 276 BTRFS_NR_READ_POLICY, 277 }; 278 279 struct btrfs_fs_devices { 280 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 281 282 /* 283 * UUID written into the btree blocks: 284 * 285 * - If metadata_uuid != fsid then super block must have 286 * BTRFS_FEATURE_INCOMPAT_METADATA_UUID flag set. 287 * 288 * - Following shall be true at all times: 289 * - metadata_uuid == btrfs_header::fsid 290 * - metadata_uuid == btrfs_dev_item::fsid 291 * 292 * - Relations between fsid and metadata_uuid in sb and fs_devices: 293 * - Normal: 294 * fs_devices->fsid == fs_devices->metadata_uuid == sb->fsid 295 * sb->metadata_uuid == 0 296 * 297 * - When the BTRFS_FEATURE_INCOMPAT_METADATA_UUID flag is set: 298 * fs_devices->fsid == sb->fsid 299 * fs_devices->metadata_uuid == sb->metadata_uuid 300 * 301 * - When in-memory fs_devices->temp_fsid is true 302 * fs_devices->fsid = random 303 * fs_devices->metadata_uuid == sb->fsid 304 */ 305 u8 metadata_uuid[BTRFS_FSID_SIZE]; 306 307 struct list_head fs_list; 308 309 /* 310 * Number of devices under this fsid including missing and 311 * replace-target device and excludes seed devices. 312 */ 313 u64 num_devices; 314 315 /* 316 * The number of devices that successfully opened, including 317 * replace-target, excludes seed devices. 318 */ 319 u64 open_devices; 320 321 /* The number of devices that are under the chunk allocation list. */ 322 u64 rw_devices; 323 324 /* Count of missing devices under this fsid excluding seed device. */ 325 u64 missing_devices; 326 u64 total_rw_bytes; 327 328 /* 329 * Count of devices from btrfs_super_block::num_devices for this fsid, 330 * which includes the seed device, excludes the transient replace-target 331 * device. 332 */ 333 u64 total_devices; 334 335 /* Highest generation number of seen devices */ 336 u64 latest_generation; 337 338 /* 339 * The mount device or a device with highest generation after removal 340 * or replace. 341 */ 342 struct btrfs_device *latest_dev; 343 344 /* 345 * All of the devices in the filesystem, protected by a mutex so we can 346 * safely walk it to write out the super blocks without worrying about 347 * adding/removing by the multi-device code. Scrubbing super block can 348 * kick off supers writing by holding this mutex lock. 349 */ 350 struct mutex device_list_mutex; 351 352 /* List of all devices, protected by device_list_mutex */ 353 struct list_head devices; 354 355 /* Devices which can satisfy space allocation. Protected by * chunk_mutex. */ 356 struct list_head alloc_list; 357 358 struct list_head seed_list; 359 360 /* Count fs-devices opened. */ 361 int opened; 362 363 /* Set when we find or add a device that doesn't have the nonrot flag set. */ 364 bool rotating; 365 /* Devices support TRIM/discard commands. */ 366 bool discardable; 367 /* The filesystem is a seed filesystem. */ 368 bool seeding; 369 /* The mount needs to use a randomly generated fsid. */ 370 bool temp_fsid; 371 372 struct btrfs_fs_info *fs_info; 373 /* sysfs kobjects */ 374 struct kobject fsid_kobj; 375 struct kobject *devices_kobj; 376 struct kobject *devinfo_kobj; 377 struct completion kobj_unregister; 378 379 enum btrfs_chunk_allocation_policy chunk_alloc_policy; 380 381 /* Policy used to read the mirrored stripes. */ 382 enum btrfs_read_policy read_policy; 383 }; 384 385 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \ 386 - sizeof(struct btrfs_chunk)) \ 387 / sizeof(struct btrfs_stripe) + 1) 388 389 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ 390 - 2 * sizeof(struct btrfs_disk_key) \ 391 - 2 * sizeof(struct btrfs_chunk)) \ 392 / sizeof(struct btrfs_stripe) + 1) 393 394 struct btrfs_io_stripe { 395 struct btrfs_device *dev; 396 /* Block mapping. */ 397 u64 physical; 398 u64 length; 399 bool is_scrub; 400 /* For the endio handler. */ 401 struct btrfs_io_context *bioc; 402 }; 403 404 struct btrfs_discard_stripe { 405 struct btrfs_device *dev; 406 u64 physical; 407 u64 length; 408 }; 409 410 /* 411 * Context for IO subsmission for device stripe. 412 * 413 * - Track the unfinished mirrors for mirror based profiles 414 * Mirror based profiles are SINGLE/DUP/RAID1/RAID10. 415 * 416 * - Contain the logical -> physical mapping info 417 * Used by submit_stripe_bio() for mapping logical bio 418 * into physical device address. 419 * 420 * - Contain device replace info 421 * Used by handle_ops_on_dev_replace() to copy logical bios 422 * into the new device. 423 * 424 * - Contain RAID56 full stripe logical bytenrs 425 */ 426 struct btrfs_io_context { 427 refcount_t refs; 428 struct btrfs_fs_info *fs_info; 429 /* Taken from struct btrfs_chunk_map::type. */ 430 u64 map_type; 431 struct bio *orig_bio; 432 atomic_t error; 433 u16 max_errors; 434 435 u64 logical; 436 u64 size; 437 /* Raid stripe tree ordered entry. */ 438 struct list_head rst_ordered_entry; 439 440 /* 441 * The total number of stripes, including the extra duplicated 442 * stripe for replace. 443 */ 444 u16 num_stripes; 445 446 /* 447 * The mirror_num of this bioc. 448 * 449 * This is for reads which use 0 as mirror_num, thus we should return a 450 * valid mirror_num (>0) for the reader. 451 */ 452 u16 mirror_num; 453 454 /* 455 * The following two members are for dev-replace case only. 456 * 457 * @replace_nr_stripes: Number of duplicated stripes which need to be 458 * written to replace target. 459 * Should be <= 2 (2 for DUP, otherwise <= 1). 460 * @replace_stripe_src: The array indicates where the duplicated stripes 461 * are from. 462 * 463 * The @replace_stripe_src[] array is mostly for RAID56 cases. 464 * As non-RAID56 stripes share the same contents of the mapped range, 465 * thus no need to bother where the duplicated ones are from. 466 * 467 * But for RAID56 case, all stripes contain different contents, thus 468 * we need a way to know the mapping. 469 * 470 * There is an example for the two members, using a RAID5 write: 471 * 472 * num_stripes: 4 (3 + 1 duplicated write) 473 * stripes[0]: dev = devid 1, physical = X 474 * stripes[1]: dev = devid 2, physical = Y 475 * stripes[2]: dev = devid 3, physical = Z 476 * stripes[3]: dev = devid 0, physical = Y 477 * 478 * replace_nr_stripes = 1 479 * replace_stripe_src = 1 <- Means stripes[1] is involved in replace. 480 * The duplicated stripe index would be 481 * (@num_stripes - 1). 482 * 483 * Note, that we can still have cases replace_nr_stripes = 2 for DUP. 484 * In that case, all stripes share the same content, thus we don't 485 * need to bother @replace_stripe_src value at all. 486 */ 487 u16 replace_nr_stripes; 488 s16 replace_stripe_src; 489 /* 490 * Logical bytenr of the full stripe start, only for RAID56 cases. 491 * 492 * When this value is set to other than (u64)-1, the stripes[] should 493 * follow this pattern: 494 * 495 * (real_stripes = num_stripes - replace_nr_stripes) 496 * (data_stripes = (is_raid6) ? (real_stripes - 2) : (real_stripes - 1)) 497 * 498 * stripes[0]: The first data stripe 499 * stripes[1]: The second data stripe 500 * ... 501 * stripes[data_stripes - 1]: The last data stripe 502 * stripes[data_stripes]: The P stripe 503 * stripes[data_stripes + 1]: The Q stripe (only for RAID6). 504 */ 505 u64 full_stripe_logical; 506 struct btrfs_io_stripe stripes[]; 507 }; 508 509 struct btrfs_device_info { 510 struct btrfs_device *dev; 511 u64 dev_offset; 512 u64 max_avail; 513 u64 total_avail; 514 }; 515 516 struct btrfs_raid_attr { 517 u8 sub_stripes; /* sub_stripes info for map */ 518 u8 dev_stripes; /* stripes per dev */ 519 u8 devs_max; /* max devs to use */ 520 u8 devs_min; /* min devs needed */ 521 u8 tolerated_failures; /* max tolerated fail devs */ 522 u8 devs_increment; /* ndevs has to be a multiple of this */ 523 u8 ncopies; /* how many copies to data has */ 524 u8 nparity; /* number of stripes worth of bytes to store 525 * parity information */ 526 u8 mindev_error; /* error code if min devs requisite is unmet */ 527 const char raid_name[8]; /* name of the raid */ 528 u64 bg_flag; /* block group flag of the raid */ 529 }; 530 531 extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES]; 532 533 struct btrfs_chunk_map { 534 struct rb_node rb_node; 535 /* For mount time dev extent verification. */ 536 int verified_stripes; 537 refcount_t refs; 538 u64 start; 539 u64 chunk_len; 540 u64 stripe_size; 541 u64 type; 542 int io_align; 543 int io_width; 544 int num_stripes; 545 int sub_stripes; 546 struct btrfs_io_stripe stripes[]; 547 }; 548 549 #define btrfs_chunk_map_size(n) (sizeof(struct btrfs_chunk_map) + \ 550 (sizeof(struct btrfs_io_stripe) * (n))) 551 552 static inline void btrfs_free_chunk_map(struct btrfs_chunk_map *map) 553 { 554 if (map && refcount_dec_and_test(&map->refs)) { 555 ASSERT(RB_EMPTY_NODE(&map->rb_node)); 556 kfree(map); 557 } 558 } 559 560 struct btrfs_balance_args; 561 struct btrfs_balance_progress; 562 struct btrfs_balance_control { 563 struct btrfs_balance_args data; 564 struct btrfs_balance_args meta; 565 struct btrfs_balance_args sys; 566 567 u64 flags; 568 569 struct btrfs_balance_progress stat; 570 }; 571 572 /* 573 * Search for a given device by the set parameters 574 */ 575 struct btrfs_dev_lookup_args { 576 u64 devid; 577 u8 *uuid; 578 u8 *fsid; 579 bool missing; 580 }; 581 582 /* We have to initialize to -1 because BTRFS_DEV_REPLACE_DEVID is 0 */ 583 #define BTRFS_DEV_LOOKUP_ARGS_INIT { .devid = (u64)-1 } 584 585 #define BTRFS_DEV_LOOKUP_ARGS(name) \ 586 struct btrfs_dev_lookup_args name = BTRFS_DEV_LOOKUP_ARGS_INIT 587 588 enum btrfs_map_op { 589 BTRFS_MAP_READ, 590 BTRFS_MAP_WRITE, 591 BTRFS_MAP_GET_READ_MIRRORS, 592 }; 593 594 static inline enum btrfs_map_op btrfs_op(struct bio *bio) 595 { 596 switch (bio_op(bio)) { 597 case REQ_OP_WRITE: 598 case REQ_OP_ZONE_APPEND: 599 return BTRFS_MAP_WRITE; 600 default: 601 WARN_ON_ONCE(1); 602 fallthrough; 603 case REQ_OP_READ: 604 return BTRFS_MAP_READ; 605 } 606 } 607 608 static inline unsigned long btrfs_chunk_item_size(int num_stripes) 609 { 610 ASSERT(num_stripes); 611 return sizeof(struct btrfs_chunk) + 612 sizeof(struct btrfs_stripe) * (num_stripes - 1); 613 } 614 615 /* 616 * Do the type safe conversion from stripe_nr to offset inside the chunk. 617 * 618 * @stripe_nr is u32, with left shift it can overflow u32 for chunks larger 619 * than 4G. This does the proper type cast to avoid overflow. 620 */ 621 static inline u64 btrfs_stripe_nr_to_offset(u32 stripe_nr) 622 { 623 return (u64)stripe_nr << BTRFS_STRIPE_LEN_SHIFT; 624 } 625 626 void btrfs_get_bioc(struct btrfs_io_context *bioc); 627 void btrfs_put_bioc(struct btrfs_io_context *bioc); 628 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 629 u64 logical, u64 *length, 630 struct btrfs_io_context **bioc_ret, 631 struct btrfs_io_stripe *smap, int *mirror_num_ret); 632 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 633 struct btrfs_io_stripe *smap, u64 logical, 634 u32 length, int mirror_num); 635 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 636 u64 logical, u64 *length_ret, 637 u32 *num_stripes); 638 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info); 639 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info); 640 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 641 u64 type); 642 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info); 643 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 644 blk_mode_t flags, void *holder); 645 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags, 646 bool mount_arg_dev); 647 int btrfs_forget_devices(dev_t devt); 648 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices); 649 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices); 650 void btrfs_assign_next_active_device(struct btrfs_device *device, 651 struct btrfs_device *this_dev); 652 struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, 653 u64 devid, 654 const char *devpath); 655 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 656 struct btrfs_dev_lookup_args *args, 657 const char *path); 658 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 659 const u64 *devid, const u8 *uuid, 660 const char *path); 661 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args); 662 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 663 struct btrfs_dev_lookup_args *args, 664 struct bdev_handle **bdev_handle); 665 void __exit btrfs_cleanup_fs_uuids(void); 666 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len); 667 int btrfs_grow_device(struct btrfs_trans_handle *trans, 668 struct btrfs_device *device, u64 new_size); 669 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 670 const struct btrfs_dev_lookup_args *args); 671 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size); 672 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path); 673 int btrfs_balance(struct btrfs_fs_info *fs_info, 674 struct btrfs_balance_control *bctl, 675 struct btrfs_ioctl_balance_args *bargs); 676 void btrfs_describe_block_groups(u64 flags, char *buf, u32 size_buf); 677 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info); 678 int btrfs_recover_balance(struct btrfs_fs_info *fs_info); 679 int btrfs_pause_balance(struct btrfs_fs_info *fs_info); 680 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset); 681 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info); 682 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info); 683 int btrfs_uuid_scan_kthread(void *data); 684 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset); 685 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index); 686 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 687 struct btrfs_ioctl_get_dev_stats *stats); 688 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info); 689 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info); 690 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans); 691 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev); 692 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev); 693 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev); 694 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, 695 u64 logical, u64 len); 696 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 697 u64 logical); 698 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map); 699 int btrfs_nr_parity_stripes(u64 type); 700 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 701 struct btrfs_block_group *bg); 702 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset); 703 704 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 705 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp); 706 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map); 707 #endif 708 709 struct btrfs_chunk_map *btrfs_clone_chunk_map(struct btrfs_chunk_map *map, gfp_t gfp); 710 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info, 711 u64 logical, u64 length); 712 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info, 713 u64 logical, u64 length); 714 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 715 u64 logical, u64 length); 716 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map); 717 void btrfs_release_disk_super(struct btrfs_super_block *super); 718 719 static inline void btrfs_dev_stat_inc(struct btrfs_device *dev, 720 int index) 721 { 722 atomic_inc(dev->dev_stat_values + index); 723 /* 724 * This memory barrier orders stores updating statistics before stores 725 * updating dev_stats_ccnt. 726 * 727 * It pairs with smp_rmb() in btrfs_run_dev_stats(). 728 */ 729 smp_mb__before_atomic(); 730 atomic_inc(&dev->dev_stats_ccnt); 731 } 732 733 static inline int btrfs_dev_stat_read(struct btrfs_device *dev, 734 int index) 735 { 736 return atomic_read(dev->dev_stat_values + index); 737 } 738 739 static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev, 740 int index) 741 { 742 int ret; 743 744 ret = atomic_xchg(dev->dev_stat_values + index, 0); 745 /* 746 * atomic_xchg implies a full memory barriers as per atomic_t.txt: 747 * - RMW operations that have a return value are fully ordered; 748 * 749 * This implicit memory barriers is paired with the smp_rmb in 750 * btrfs_run_dev_stats 751 */ 752 atomic_inc(&dev->dev_stats_ccnt); 753 return ret; 754 } 755 756 static inline void btrfs_dev_stat_set(struct btrfs_device *dev, 757 int index, unsigned long val) 758 { 759 atomic_set(dev->dev_stat_values + index, val); 760 /* 761 * This memory barrier orders stores updating statistics before stores 762 * updating dev_stats_ccnt. 763 * 764 * It pairs with smp_rmb() in btrfs_run_dev_stats(). 765 */ 766 smp_mb__before_atomic(); 767 atomic_inc(&dev->dev_stats_ccnt); 768 } 769 770 static inline const char *btrfs_dev_name(const struct btrfs_device *device) 771 { 772 if (!device || test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 773 return "<missing disk>"; 774 else 775 return rcu_str_deref(device->name); 776 } 777 778 void btrfs_commit_device_sizes(struct btrfs_transaction *trans); 779 780 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void); 781 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 782 struct btrfs_device *failing_dev); 783 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, 784 struct block_device *bdev, 785 const char *device_path); 786 787 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags); 788 int btrfs_bg_type_to_factor(u64 flags); 789 const char *btrfs_bg_type_to_raid_name(u64 flags); 790 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info); 791 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical); 792 793 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr); 794 u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb); 795 796 #endif 797