1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_VOLUMES_H 7 #define BTRFS_VOLUMES_H 8 9 #include <linux/blk_types.h> 10 #include <linux/sizes.h> 11 #include <linux/atomic.h> 12 #include <linux/sort.h> 13 #include <linux/list.h> 14 #include <linux/mutex.h> 15 #include <linux/log2.h> 16 #include <linux/kobject.h> 17 #include <linux/refcount.h> 18 #include <linux/completion.h> 19 #include <linux/rbtree.h> 20 #include <uapi/linux/btrfs.h> 21 #include "messages.h" 22 #include "rcu-string.h" 23 24 struct block_device; 25 struct bdev_handle; 26 struct btrfs_fs_info; 27 struct btrfs_block_group; 28 struct btrfs_trans_handle; 29 struct btrfs_zoned_device_info; 30 31 #define BTRFS_MAX_DATA_CHUNK_SIZE (10ULL * SZ_1G) 32 33 extern struct mutex uuid_mutex; 34 35 #define BTRFS_STRIPE_LEN SZ_64K 36 #define BTRFS_STRIPE_LEN_SHIFT (16) 37 #define BTRFS_STRIPE_LEN_MASK (BTRFS_STRIPE_LEN - 1) 38 39 static_assert(const_ilog2(BTRFS_STRIPE_LEN) == BTRFS_STRIPE_LEN_SHIFT); 40 41 /* Used by sanity check for btrfs_raid_types. */ 42 #define const_ffs(n) (__builtin_ctzll(n) + 1) 43 44 /* 45 * The conversion from BTRFS_BLOCK_GROUP_* bits to btrfs_raid_type requires 46 * RAID0 always to be the lowest profile bit. 47 * Although it's part of on-disk format and should never change, do extra 48 * compile-time sanity checks. 49 */ 50 static_assert(const_ffs(BTRFS_BLOCK_GROUP_RAID0) < 51 const_ffs(BTRFS_BLOCK_GROUP_PROFILE_MASK & ~BTRFS_BLOCK_GROUP_RAID0)); 52 static_assert(const_ilog2(BTRFS_BLOCK_GROUP_RAID0) > 53 ilog2(BTRFS_BLOCK_GROUP_TYPE_MASK)); 54 55 /* ilog2() can handle both constants and variables */ 56 #define BTRFS_BG_FLAG_TO_INDEX(profile) \ 57 ilog2((profile) >> (ilog2(BTRFS_BLOCK_GROUP_RAID0) - 1)) 58 59 enum btrfs_raid_types { 60 /* SINGLE is the special one as it doesn't have on-disk bit. */ 61 BTRFS_RAID_SINGLE = 0, 62 63 BTRFS_RAID_RAID0 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID0), 64 BTRFS_RAID_RAID1 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1), 65 BTRFS_RAID_DUP = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_DUP), 66 BTRFS_RAID_RAID10 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID10), 67 BTRFS_RAID_RAID5 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID5), 68 BTRFS_RAID_RAID6 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID6), 69 BTRFS_RAID_RAID1C3 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1C3), 70 BTRFS_RAID_RAID1C4 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1C4), 71 72 BTRFS_NR_RAID_TYPES 73 }; 74 75 /* 76 * Use sequence counter to get consistent device stat data on 77 * 32-bit processors. 78 */ 79 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 80 #include <linux/seqlock.h> 81 #define __BTRFS_NEED_DEVICE_DATA_ORDERED 82 #define btrfs_device_data_ordered_init(device) \ 83 seqcount_init(&device->data_seqcount) 84 #else 85 #define btrfs_device_data_ordered_init(device) do { } while (0) 86 #endif 87 88 #define BTRFS_DEV_STATE_WRITEABLE (0) 89 #define BTRFS_DEV_STATE_IN_FS_METADATA (1) 90 #define BTRFS_DEV_STATE_MISSING (2) 91 #define BTRFS_DEV_STATE_REPLACE_TGT (3) 92 #define BTRFS_DEV_STATE_FLUSH_SENT (4) 93 #define BTRFS_DEV_STATE_NO_READA (5) 94 95 struct btrfs_fs_devices; 96 97 struct btrfs_device { 98 struct list_head dev_list; /* device_list_mutex */ 99 struct list_head dev_alloc_list; /* chunk mutex */ 100 struct list_head post_commit_list; /* chunk mutex */ 101 struct btrfs_fs_devices *fs_devices; 102 struct btrfs_fs_info *fs_info; 103 104 struct rcu_string __rcu *name; 105 106 u64 generation; 107 108 struct file *bdev_file; 109 struct block_device *bdev; 110 111 struct btrfs_zoned_device_info *zone_info; 112 113 /* 114 * Device's major-minor number. Must be set even if the device is not 115 * opened (bdev == NULL), unless the device is missing. 116 */ 117 dev_t devt; 118 unsigned long dev_state; 119 blk_status_t last_flush_error; 120 121 #ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED 122 seqcount_t data_seqcount; 123 #endif 124 125 /* the internal btrfs device id */ 126 u64 devid; 127 128 /* size of the device in memory */ 129 u64 total_bytes; 130 131 /* size of the device on disk */ 132 u64 disk_total_bytes; 133 134 /* bytes used */ 135 u64 bytes_used; 136 137 /* optimal io alignment for this device */ 138 u32 io_align; 139 140 /* optimal io width for this device */ 141 u32 io_width; 142 /* type and info about this device */ 143 u64 type; 144 145 /* minimal io size for this device */ 146 u32 sector_size; 147 148 /* physical drive uuid (or lvm uuid) */ 149 u8 uuid[BTRFS_UUID_SIZE]; 150 151 /* 152 * size of the device on the current transaction 153 * 154 * This variant is update when committing the transaction, 155 * and protected by chunk mutex 156 */ 157 u64 commit_total_bytes; 158 159 /* bytes used on the current transaction */ 160 u64 commit_bytes_used; 161 162 /* Bio used for flushing device barriers */ 163 struct bio flush_bio; 164 struct completion flush_wait; 165 166 /* per-device scrub information */ 167 struct scrub_ctx *scrub_ctx; 168 169 /* disk I/O failure stats. For detailed description refer to 170 * enum btrfs_dev_stat_values in ioctl.h */ 171 int dev_stats_valid; 172 173 /* Counter to record the change of device stats */ 174 atomic_t dev_stats_ccnt; 175 atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX]; 176 177 struct extent_io_tree alloc_state; 178 179 struct completion kobj_unregister; 180 /* For sysfs/FSID/devinfo/devid/ */ 181 struct kobject devid_kobj; 182 183 /* Bandwidth limit for scrub, in bytes */ 184 u64 scrub_speed_max; 185 }; 186 187 /* 188 * Block group or device which contains an active swapfile. Used for preventing 189 * unsafe operations while a swapfile is active. 190 * 191 * These are sorted on (ptr, inode) (note that a block group or device can 192 * contain more than one swapfile). We compare the pointer values because we 193 * don't actually care what the object is, we just need a quick check whether 194 * the object exists in the rbtree. 195 */ 196 struct btrfs_swapfile_pin { 197 struct rb_node node; 198 void *ptr; 199 struct inode *inode; 200 /* 201 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr 202 * points to a struct btrfs_device. 203 */ 204 bool is_block_group; 205 /* 206 * Only used when 'is_block_group' is true and it is the number of 207 * extents used by a swapfile for this block group ('ptr' field). 208 */ 209 int bg_extent_count; 210 }; 211 212 /* 213 * If we read those variants at the context of their own lock, we needn't 214 * use the following helpers, reading them directly is safe. 215 */ 216 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 217 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 218 static inline u64 \ 219 btrfs_device_get_##name(const struct btrfs_device *dev) \ 220 { \ 221 u64 size; \ 222 unsigned int seq; \ 223 \ 224 do { \ 225 seq = read_seqcount_begin(&dev->data_seqcount); \ 226 size = dev->name; \ 227 } while (read_seqcount_retry(&dev->data_seqcount, seq)); \ 228 return size; \ 229 } \ 230 \ 231 static inline void \ 232 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 233 { \ 234 preempt_disable(); \ 235 write_seqcount_begin(&dev->data_seqcount); \ 236 dev->name = size; \ 237 write_seqcount_end(&dev->data_seqcount); \ 238 preempt_enable(); \ 239 } 240 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 241 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 242 static inline u64 \ 243 btrfs_device_get_##name(const struct btrfs_device *dev) \ 244 { \ 245 u64 size; \ 246 \ 247 preempt_disable(); \ 248 size = dev->name; \ 249 preempt_enable(); \ 250 return size; \ 251 } \ 252 \ 253 static inline void \ 254 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 255 { \ 256 preempt_disable(); \ 257 dev->name = size; \ 258 preempt_enable(); \ 259 } 260 #else 261 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 262 static inline u64 \ 263 btrfs_device_get_##name(const struct btrfs_device *dev) \ 264 { \ 265 return dev->name; \ 266 } \ 267 \ 268 static inline void \ 269 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 270 { \ 271 dev->name = size; \ 272 } 273 #endif 274 275 BTRFS_DEVICE_GETSET_FUNCS(total_bytes); 276 BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes); 277 BTRFS_DEVICE_GETSET_FUNCS(bytes_used); 278 279 enum btrfs_chunk_allocation_policy { 280 BTRFS_CHUNK_ALLOC_REGULAR, 281 BTRFS_CHUNK_ALLOC_ZONED, 282 }; 283 284 /* 285 * Read policies for mirrored block group profiles, read picks the stripe based 286 * on these policies. 287 */ 288 enum btrfs_read_policy { 289 /* Use process PID to choose the stripe */ 290 BTRFS_READ_POLICY_PID, 291 BTRFS_NR_READ_POLICY, 292 }; 293 294 #ifdef CONFIG_BTRFS_DEBUG 295 /* 296 * Checksum mode - offload it to workqueues or do it synchronously in 297 * btrfs_submit_chunk(). 298 */ 299 enum btrfs_offload_csum_mode { 300 /* 301 * Choose offloading checksum or do it synchronously automatically. 302 * Do it synchronously if the checksum is fast, or offload to workqueues 303 * otherwise. 304 */ 305 BTRFS_OFFLOAD_CSUM_AUTO, 306 /* Always offload checksum to workqueues. */ 307 BTRFS_OFFLOAD_CSUM_FORCE_ON, 308 /* Never offload checksum to workqueues. */ 309 BTRFS_OFFLOAD_CSUM_FORCE_OFF, 310 }; 311 #endif 312 313 struct btrfs_fs_devices { 314 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 315 316 /* 317 * UUID written into the btree blocks: 318 * 319 * - If metadata_uuid != fsid then super block must have 320 * BTRFS_FEATURE_INCOMPAT_METADATA_UUID flag set. 321 * 322 * - Following shall be true at all times: 323 * - metadata_uuid == btrfs_header::fsid 324 * - metadata_uuid == btrfs_dev_item::fsid 325 * 326 * - Relations between fsid and metadata_uuid in sb and fs_devices: 327 * - Normal: 328 * fs_devices->fsid == fs_devices->metadata_uuid == sb->fsid 329 * sb->metadata_uuid == 0 330 * 331 * - When the BTRFS_FEATURE_INCOMPAT_METADATA_UUID flag is set: 332 * fs_devices->fsid == sb->fsid 333 * fs_devices->metadata_uuid == sb->metadata_uuid 334 * 335 * - When in-memory fs_devices->temp_fsid is true 336 * fs_devices->fsid = random 337 * fs_devices->metadata_uuid == sb->fsid 338 */ 339 u8 metadata_uuid[BTRFS_FSID_SIZE]; 340 341 struct list_head fs_list; 342 343 /* 344 * Number of devices under this fsid including missing and 345 * replace-target device and excludes seed devices. 346 */ 347 u64 num_devices; 348 349 /* 350 * The number of devices that successfully opened, including 351 * replace-target, excludes seed devices. 352 */ 353 u64 open_devices; 354 355 /* The number of devices that are under the chunk allocation list. */ 356 u64 rw_devices; 357 358 /* Count of missing devices under this fsid excluding seed device. */ 359 u64 missing_devices; 360 u64 total_rw_bytes; 361 362 /* 363 * Count of devices from btrfs_super_block::num_devices for this fsid, 364 * which includes the seed device, excludes the transient replace-target 365 * device. 366 */ 367 u64 total_devices; 368 369 /* Highest generation number of seen devices */ 370 u64 latest_generation; 371 372 /* 373 * The mount device or a device with highest generation after removal 374 * or replace. 375 */ 376 struct btrfs_device *latest_dev; 377 378 /* 379 * All of the devices in the filesystem, protected by a mutex so we can 380 * safely walk it to write out the super blocks without worrying about 381 * adding/removing by the multi-device code. Scrubbing super block can 382 * kick off supers writing by holding this mutex lock. 383 */ 384 struct mutex device_list_mutex; 385 386 /* List of all devices, protected by device_list_mutex */ 387 struct list_head devices; 388 389 /* Devices which can satisfy space allocation. Protected by * chunk_mutex. */ 390 struct list_head alloc_list; 391 392 struct list_head seed_list; 393 394 /* Count fs-devices opened. */ 395 int opened; 396 397 /* Set when we find or add a device that doesn't have the nonrot flag set. */ 398 bool rotating; 399 /* Devices support TRIM/discard commands. */ 400 bool discardable; 401 /* The filesystem is a seed filesystem. */ 402 bool seeding; 403 /* The mount needs to use a randomly generated fsid. */ 404 bool temp_fsid; 405 406 struct btrfs_fs_info *fs_info; 407 /* sysfs kobjects */ 408 struct kobject fsid_kobj; 409 struct kobject *devices_kobj; 410 struct kobject *devinfo_kobj; 411 struct completion kobj_unregister; 412 413 enum btrfs_chunk_allocation_policy chunk_alloc_policy; 414 415 /* Policy used to read the mirrored stripes. */ 416 enum btrfs_read_policy read_policy; 417 418 #ifdef CONFIG_BTRFS_DEBUG 419 /* Checksum mode - offload it or do it synchronously. */ 420 enum btrfs_offload_csum_mode offload_csum_mode; 421 #endif 422 }; 423 424 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \ 425 - sizeof(struct btrfs_chunk)) \ 426 / sizeof(struct btrfs_stripe) + 1) 427 428 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ 429 - 2 * sizeof(struct btrfs_disk_key) \ 430 - 2 * sizeof(struct btrfs_chunk)) \ 431 / sizeof(struct btrfs_stripe) + 1) 432 433 struct btrfs_io_stripe { 434 struct btrfs_device *dev; 435 /* Block mapping. */ 436 u64 physical; 437 u64 length; 438 bool is_scrub; 439 /* For the endio handler. */ 440 struct btrfs_io_context *bioc; 441 }; 442 443 struct btrfs_discard_stripe { 444 struct btrfs_device *dev; 445 u64 physical; 446 u64 length; 447 }; 448 449 /* 450 * Context for IO subsmission for device stripe. 451 * 452 * - Track the unfinished mirrors for mirror based profiles 453 * Mirror based profiles are SINGLE/DUP/RAID1/RAID10. 454 * 455 * - Contain the logical -> physical mapping info 456 * Used by submit_stripe_bio() for mapping logical bio 457 * into physical device address. 458 * 459 * - Contain device replace info 460 * Used by handle_ops_on_dev_replace() to copy logical bios 461 * into the new device. 462 * 463 * - Contain RAID56 full stripe logical bytenrs 464 */ 465 struct btrfs_io_context { 466 refcount_t refs; 467 struct btrfs_fs_info *fs_info; 468 /* Taken from struct btrfs_chunk_map::type. */ 469 u64 map_type; 470 struct bio *orig_bio; 471 atomic_t error; 472 u16 max_errors; 473 474 u64 logical; 475 u64 size; 476 /* Raid stripe tree ordered entry. */ 477 struct list_head rst_ordered_entry; 478 479 /* 480 * The total number of stripes, including the extra duplicated 481 * stripe for replace. 482 */ 483 u16 num_stripes; 484 485 /* 486 * The mirror_num of this bioc. 487 * 488 * This is for reads which use 0 as mirror_num, thus we should return a 489 * valid mirror_num (>0) for the reader. 490 */ 491 u16 mirror_num; 492 493 /* 494 * The following two members are for dev-replace case only. 495 * 496 * @replace_nr_stripes: Number of duplicated stripes which need to be 497 * written to replace target. 498 * Should be <= 2 (2 for DUP, otherwise <= 1). 499 * @replace_stripe_src: The array indicates where the duplicated stripes 500 * are from. 501 * 502 * The @replace_stripe_src[] array is mostly for RAID56 cases. 503 * As non-RAID56 stripes share the same contents of the mapped range, 504 * thus no need to bother where the duplicated ones are from. 505 * 506 * But for RAID56 case, all stripes contain different contents, thus 507 * we need a way to know the mapping. 508 * 509 * There is an example for the two members, using a RAID5 write: 510 * 511 * num_stripes: 4 (3 + 1 duplicated write) 512 * stripes[0]: dev = devid 1, physical = X 513 * stripes[1]: dev = devid 2, physical = Y 514 * stripes[2]: dev = devid 3, physical = Z 515 * stripes[3]: dev = devid 0, physical = Y 516 * 517 * replace_nr_stripes = 1 518 * replace_stripe_src = 1 <- Means stripes[1] is involved in replace. 519 * The duplicated stripe index would be 520 * (@num_stripes - 1). 521 * 522 * Note, that we can still have cases replace_nr_stripes = 2 for DUP. 523 * In that case, all stripes share the same content, thus we don't 524 * need to bother @replace_stripe_src value at all. 525 */ 526 u16 replace_nr_stripes; 527 s16 replace_stripe_src; 528 /* 529 * Logical bytenr of the full stripe start, only for RAID56 cases. 530 * 531 * When this value is set to other than (u64)-1, the stripes[] should 532 * follow this pattern: 533 * 534 * (real_stripes = num_stripes - replace_nr_stripes) 535 * (data_stripes = (is_raid6) ? (real_stripes - 2) : (real_stripes - 1)) 536 * 537 * stripes[0]: The first data stripe 538 * stripes[1]: The second data stripe 539 * ... 540 * stripes[data_stripes - 1]: The last data stripe 541 * stripes[data_stripes]: The P stripe 542 * stripes[data_stripes + 1]: The Q stripe (only for RAID6). 543 */ 544 u64 full_stripe_logical; 545 struct btrfs_io_stripe stripes[]; 546 }; 547 548 struct btrfs_device_info { 549 struct btrfs_device *dev; 550 u64 dev_offset; 551 u64 max_avail; 552 u64 total_avail; 553 }; 554 555 struct btrfs_raid_attr { 556 u8 sub_stripes; /* sub_stripes info for map */ 557 u8 dev_stripes; /* stripes per dev */ 558 u8 devs_max; /* max devs to use */ 559 u8 devs_min; /* min devs needed */ 560 u8 tolerated_failures; /* max tolerated fail devs */ 561 u8 devs_increment; /* ndevs has to be a multiple of this */ 562 u8 ncopies; /* how many copies to data has */ 563 u8 nparity; /* number of stripes worth of bytes to store 564 * parity information */ 565 u8 mindev_error; /* error code if min devs requisite is unmet */ 566 const char raid_name[8]; /* name of the raid */ 567 u64 bg_flag; /* block group flag of the raid */ 568 }; 569 570 extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES]; 571 572 struct btrfs_chunk_map { 573 struct rb_node rb_node; 574 /* For mount time dev extent verification. */ 575 int verified_stripes; 576 refcount_t refs; 577 u64 start; 578 u64 chunk_len; 579 u64 stripe_size; 580 u64 type; 581 int io_align; 582 int io_width; 583 int num_stripes; 584 int sub_stripes; 585 struct btrfs_io_stripe stripes[]; 586 }; 587 588 #define btrfs_chunk_map_size(n) (sizeof(struct btrfs_chunk_map) + \ 589 (sizeof(struct btrfs_io_stripe) * (n))) 590 591 static inline void btrfs_free_chunk_map(struct btrfs_chunk_map *map) 592 { 593 if (map && refcount_dec_and_test(&map->refs)) { 594 ASSERT(RB_EMPTY_NODE(&map->rb_node)); 595 kfree(map); 596 } 597 } 598 599 struct btrfs_balance_control { 600 struct btrfs_balance_args data; 601 struct btrfs_balance_args meta; 602 struct btrfs_balance_args sys; 603 604 u64 flags; 605 606 struct btrfs_balance_progress stat; 607 }; 608 609 /* 610 * Search for a given device by the set parameters 611 */ 612 struct btrfs_dev_lookup_args { 613 u64 devid; 614 u8 *uuid; 615 u8 *fsid; 616 bool missing; 617 }; 618 619 /* We have to initialize to -1 because BTRFS_DEV_REPLACE_DEVID is 0 */ 620 #define BTRFS_DEV_LOOKUP_ARGS_INIT { .devid = (u64)-1 } 621 622 #define BTRFS_DEV_LOOKUP_ARGS(name) \ 623 struct btrfs_dev_lookup_args name = BTRFS_DEV_LOOKUP_ARGS_INIT 624 625 enum btrfs_map_op { 626 BTRFS_MAP_READ, 627 BTRFS_MAP_WRITE, 628 BTRFS_MAP_GET_READ_MIRRORS, 629 }; 630 631 static inline enum btrfs_map_op btrfs_op(struct bio *bio) 632 { 633 switch (bio_op(bio)) { 634 case REQ_OP_WRITE: 635 case REQ_OP_ZONE_APPEND: 636 return BTRFS_MAP_WRITE; 637 default: 638 WARN_ON_ONCE(1); 639 fallthrough; 640 case REQ_OP_READ: 641 return BTRFS_MAP_READ; 642 } 643 } 644 645 static inline unsigned long btrfs_chunk_item_size(int num_stripes) 646 { 647 ASSERT(num_stripes); 648 return sizeof(struct btrfs_chunk) + 649 sizeof(struct btrfs_stripe) * (num_stripes - 1); 650 } 651 652 /* 653 * Do the type safe conversion from stripe_nr to offset inside the chunk. 654 * 655 * @stripe_nr is u32, with left shift it can overflow u32 for chunks larger 656 * than 4G. This does the proper type cast to avoid overflow. 657 */ 658 static inline u64 btrfs_stripe_nr_to_offset(u32 stripe_nr) 659 { 660 return (u64)stripe_nr << BTRFS_STRIPE_LEN_SHIFT; 661 } 662 663 void btrfs_get_bioc(struct btrfs_io_context *bioc); 664 void btrfs_put_bioc(struct btrfs_io_context *bioc); 665 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 666 u64 logical, u64 *length, 667 struct btrfs_io_context **bioc_ret, 668 struct btrfs_io_stripe *smap, int *mirror_num_ret); 669 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 670 struct btrfs_io_stripe *smap, u64 logical, 671 u32 length, int mirror_num); 672 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 673 u64 logical, u64 *length_ret, 674 u32 *num_stripes); 675 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info); 676 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info); 677 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 678 u64 type); 679 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info); 680 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 681 blk_mode_t flags, void *holder); 682 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags, 683 bool mount_arg_dev); 684 int btrfs_forget_devices(dev_t devt); 685 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices); 686 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices); 687 void btrfs_assign_next_active_device(struct btrfs_device *device, 688 struct btrfs_device *this_dev); 689 struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, 690 u64 devid, 691 const char *devpath); 692 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 693 struct btrfs_dev_lookup_args *args, 694 const char *path); 695 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 696 const u64 *devid, const u8 *uuid, 697 const char *path); 698 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args); 699 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 700 struct btrfs_dev_lookup_args *args, 701 struct file **bdev_file); 702 void __exit btrfs_cleanup_fs_uuids(void); 703 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len); 704 int btrfs_grow_device(struct btrfs_trans_handle *trans, 705 struct btrfs_device *device, u64 new_size); 706 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 707 const struct btrfs_dev_lookup_args *args); 708 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size); 709 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path); 710 int btrfs_balance(struct btrfs_fs_info *fs_info, 711 struct btrfs_balance_control *bctl, 712 struct btrfs_ioctl_balance_args *bargs); 713 void btrfs_describe_block_groups(u64 flags, char *buf, u32 size_buf); 714 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info); 715 int btrfs_recover_balance(struct btrfs_fs_info *fs_info); 716 int btrfs_pause_balance(struct btrfs_fs_info *fs_info); 717 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset); 718 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info); 719 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info); 720 int btrfs_uuid_scan_kthread(void *data); 721 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset); 722 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index); 723 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 724 struct btrfs_ioctl_get_dev_stats *stats); 725 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info); 726 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info); 727 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans); 728 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev); 729 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev); 730 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev); 731 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, 732 u64 logical, u64 len); 733 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 734 u64 logical); 735 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map); 736 int btrfs_nr_parity_stripes(u64 type); 737 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 738 struct btrfs_block_group *bg); 739 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset); 740 741 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 742 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp); 743 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map); 744 #endif 745 746 struct btrfs_chunk_map *btrfs_clone_chunk_map(struct btrfs_chunk_map *map, gfp_t gfp); 747 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info, 748 u64 logical, u64 length); 749 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info, 750 u64 logical, u64 length); 751 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 752 u64 logical, u64 length); 753 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map); 754 void btrfs_release_disk_super(struct btrfs_super_block *super); 755 756 static inline void btrfs_dev_stat_inc(struct btrfs_device *dev, 757 int index) 758 { 759 atomic_inc(dev->dev_stat_values + index); 760 /* 761 * This memory barrier orders stores updating statistics before stores 762 * updating dev_stats_ccnt. 763 * 764 * It pairs with smp_rmb() in btrfs_run_dev_stats(). 765 */ 766 smp_mb__before_atomic(); 767 atomic_inc(&dev->dev_stats_ccnt); 768 } 769 770 static inline int btrfs_dev_stat_read(struct btrfs_device *dev, 771 int index) 772 { 773 return atomic_read(dev->dev_stat_values + index); 774 } 775 776 static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev, 777 int index) 778 { 779 int ret; 780 781 ret = atomic_xchg(dev->dev_stat_values + index, 0); 782 /* 783 * atomic_xchg implies a full memory barriers as per atomic_t.txt: 784 * - RMW operations that have a return value are fully ordered; 785 * 786 * This implicit memory barriers is paired with the smp_rmb in 787 * btrfs_run_dev_stats 788 */ 789 atomic_inc(&dev->dev_stats_ccnt); 790 return ret; 791 } 792 793 static inline void btrfs_dev_stat_set(struct btrfs_device *dev, 794 int index, unsigned long val) 795 { 796 atomic_set(dev->dev_stat_values + index, val); 797 /* 798 * This memory barrier orders stores updating statistics before stores 799 * updating dev_stats_ccnt. 800 * 801 * It pairs with smp_rmb() in btrfs_run_dev_stats(). 802 */ 803 smp_mb__before_atomic(); 804 atomic_inc(&dev->dev_stats_ccnt); 805 } 806 807 static inline const char *btrfs_dev_name(const struct btrfs_device *device) 808 { 809 if (!device || test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 810 return "<missing disk>"; 811 else 812 return rcu_str_deref(device->name); 813 } 814 815 void btrfs_commit_device_sizes(struct btrfs_transaction *trans); 816 817 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void); 818 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 819 struct btrfs_device *failing_dev); 820 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device); 821 822 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags); 823 int btrfs_bg_type_to_factor(u64 flags); 824 const char *btrfs_bg_type_to_raid_name(u64 flags); 825 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info); 826 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical); 827 828 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr); 829 u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb); 830 831 #endif 832