1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_VOLUMES_H 7 #define BTRFS_VOLUMES_H 8 9 #include <linux/blk_types.h> 10 #include <linux/sizes.h> 11 #include <linux/atomic.h> 12 #include <linux/sort.h> 13 #include <linux/list.h> 14 #include <linux/mutex.h> 15 #include <linux/log2.h> 16 #include <linux/kobject.h> 17 #include <linux/refcount.h> 18 #include <linux/completion.h> 19 #include <linux/rbtree.h> 20 #include <uapi/linux/btrfs.h> 21 #include "messages.h" 22 #include "rcu-string.h" 23 24 struct block_device; 25 struct bdev_handle; 26 struct btrfs_fs_info; 27 struct btrfs_block_group; 28 struct btrfs_trans_handle; 29 struct btrfs_zoned_device_info; 30 31 #define BTRFS_MAX_DATA_CHUNK_SIZE (10ULL * SZ_1G) 32 33 extern struct mutex uuid_mutex; 34 35 #define BTRFS_STRIPE_LEN SZ_64K 36 #define BTRFS_STRIPE_LEN_SHIFT (16) 37 #define BTRFS_STRIPE_LEN_MASK (BTRFS_STRIPE_LEN - 1) 38 39 static_assert(const_ilog2(BTRFS_STRIPE_LEN) == BTRFS_STRIPE_LEN_SHIFT); 40 41 /* Used by sanity check for btrfs_raid_types. */ 42 #define const_ffs(n) (__builtin_ctzll(n) + 1) 43 44 /* 45 * The conversion from BTRFS_BLOCK_GROUP_* bits to btrfs_raid_type requires 46 * RAID0 always to be the lowest profile bit. 47 * Although it's part of on-disk format and should never change, do extra 48 * compile-time sanity checks. 49 */ 50 static_assert(const_ffs(BTRFS_BLOCK_GROUP_RAID0) < 51 const_ffs(BTRFS_BLOCK_GROUP_PROFILE_MASK & ~BTRFS_BLOCK_GROUP_RAID0)); 52 static_assert(const_ilog2(BTRFS_BLOCK_GROUP_RAID0) > 53 ilog2(BTRFS_BLOCK_GROUP_TYPE_MASK)); 54 55 /* ilog2() can handle both constants and variables */ 56 #define BTRFS_BG_FLAG_TO_INDEX(profile) \ 57 ilog2((profile) >> (ilog2(BTRFS_BLOCK_GROUP_RAID0) - 1)) 58 59 enum btrfs_raid_types { 60 /* SINGLE is the special one as it doesn't have on-disk bit. */ 61 BTRFS_RAID_SINGLE = 0, 62 63 BTRFS_RAID_RAID0 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID0), 64 BTRFS_RAID_RAID1 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1), 65 BTRFS_RAID_DUP = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_DUP), 66 BTRFS_RAID_RAID10 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID10), 67 BTRFS_RAID_RAID5 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID5), 68 BTRFS_RAID_RAID6 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID6), 69 BTRFS_RAID_RAID1C3 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1C3), 70 BTRFS_RAID_RAID1C4 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1C4), 71 72 BTRFS_NR_RAID_TYPES 73 }; 74 75 /* 76 * Use sequence counter to get consistent device stat data on 77 * 32-bit processors. 78 */ 79 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 80 #include <linux/seqlock.h> 81 #define __BTRFS_NEED_DEVICE_DATA_ORDERED 82 #define btrfs_device_data_ordered_init(device) \ 83 seqcount_init(&device->data_seqcount) 84 #else 85 #define btrfs_device_data_ordered_init(device) do { } while (0) 86 #endif 87 88 #define BTRFS_DEV_STATE_WRITEABLE (0) 89 #define BTRFS_DEV_STATE_IN_FS_METADATA (1) 90 #define BTRFS_DEV_STATE_MISSING (2) 91 #define BTRFS_DEV_STATE_REPLACE_TGT (3) 92 #define BTRFS_DEV_STATE_FLUSH_SENT (4) 93 #define BTRFS_DEV_STATE_NO_READA (5) 94 95 /* Special value encoding failure to write primary super block. */ 96 #define BTRFS_SUPER_PRIMARY_WRITE_ERROR (INT_MAX / 2) 97 98 struct btrfs_fs_devices; 99 100 struct btrfs_device { 101 struct list_head dev_list; /* device_list_mutex */ 102 struct list_head dev_alloc_list; /* chunk mutex */ 103 struct list_head post_commit_list; /* chunk mutex */ 104 struct btrfs_fs_devices *fs_devices; 105 struct btrfs_fs_info *fs_info; 106 107 struct rcu_string __rcu *name; 108 109 u64 generation; 110 111 struct file *bdev_file; 112 struct block_device *bdev; 113 114 struct btrfs_zoned_device_info *zone_info; 115 116 /* 117 * Device's major-minor number. Must be set even if the device is not 118 * opened (bdev == NULL), unless the device is missing. 119 */ 120 dev_t devt; 121 unsigned long dev_state; 122 blk_status_t last_flush_error; 123 124 #ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED 125 seqcount_t data_seqcount; 126 #endif 127 128 /* the internal btrfs device id */ 129 u64 devid; 130 131 /* size of the device in memory */ 132 u64 total_bytes; 133 134 /* size of the device on disk */ 135 u64 disk_total_bytes; 136 137 /* bytes used */ 138 u64 bytes_used; 139 140 /* optimal io alignment for this device */ 141 u32 io_align; 142 143 /* optimal io width for this device */ 144 u32 io_width; 145 /* type and info about this device */ 146 u64 type; 147 148 /* 149 * Counter of super block write errors, values larger than 150 * BTRFS_SUPER_PRIMARY_WRITE_ERROR encode primary super block write failure. 151 */ 152 atomic_t sb_write_errors; 153 154 /* minimal io size for this device */ 155 u32 sector_size; 156 157 /* physical drive uuid (or lvm uuid) */ 158 u8 uuid[BTRFS_UUID_SIZE]; 159 160 /* 161 * size of the device on the current transaction 162 * 163 * This variant is update when committing the transaction, 164 * and protected by chunk mutex 165 */ 166 u64 commit_total_bytes; 167 168 /* bytes used on the current transaction */ 169 u64 commit_bytes_used; 170 171 /* Bio used for flushing device barriers */ 172 struct bio flush_bio; 173 struct completion flush_wait; 174 175 /* per-device scrub information */ 176 struct scrub_ctx *scrub_ctx; 177 178 /* disk I/O failure stats. For detailed description refer to 179 * enum btrfs_dev_stat_values in ioctl.h */ 180 int dev_stats_valid; 181 182 /* Counter to record the change of device stats */ 183 atomic_t dev_stats_ccnt; 184 atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX]; 185 186 struct extent_io_tree alloc_state; 187 188 struct completion kobj_unregister; 189 /* For sysfs/FSID/devinfo/devid/ */ 190 struct kobject devid_kobj; 191 192 /* Bandwidth limit for scrub, in bytes */ 193 u64 scrub_speed_max; 194 }; 195 196 /* 197 * Block group or device which contains an active swapfile. Used for preventing 198 * unsafe operations while a swapfile is active. 199 * 200 * These are sorted on (ptr, inode) (note that a block group or device can 201 * contain more than one swapfile). We compare the pointer values because we 202 * don't actually care what the object is, we just need a quick check whether 203 * the object exists in the rbtree. 204 */ 205 struct btrfs_swapfile_pin { 206 struct rb_node node; 207 void *ptr; 208 struct inode *inode; 209 /* 210 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr 211 * points to a struct btrfs_device. 212 */ 213 bool is_block_group; 214 /* 215 * Only used when 'is_block_group' is true and it is the number of 216 * extents used by a swapfile for this block group ('ptr' field). 217 */ 218 int bg_extent_count; 219 }; 220 221 /* 222 * If we read those variants at the context of their own lock, we needn't 223 * use the following helpers, reading them directly is safe. 224 */ 225 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 226 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 227 static inline u64 \ 228 btrfs_device_get_##name(const struct btrfs_device *dev) \ 229 { \ 230 u64 size; \ 231 unsigned int seq; \ 232 \ 233 do { \ 234 seq = read_seqcount_begin(&dev->data_seqcount); \ 235 size = dev->name; \ 236 } while (read_seqcount_retry(&dev->data_seqcount, seq)); \ 237 return size; \ 238 } \ 239 \ 240 static inline void \ 241 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 242 { \ 243 preempt_disable(); \ 244 write_seqcount_begin(&dev->data_seqcount); \ 245 dev->name = size; \ 246 write_seqcount_end(&dev->data_seqcount); \ 247 preempt_enable(); \ 248 } 249 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 250 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 251 static inline u64 \ 252 btrfs_device_get_##name(const struct btrfs_device *dev) \ 253 { \ 254 u64 size; \ 255 \ 256 preempt_disable(); \ 257 size = dev->name; \ 258 preempt_enable(); \ 259 return size; \ 260 } \ 261 \ 262 static inline void \ 263 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 264 { \ 265 preempt_disable(); \ 266 dev->name = size; \ 267 preempt_enable(); \ 268 } 269 #else 270 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 271 static inline u64 \ 272 btrfs_device_get_##name(const struct btrfs_device *dev) \ 273 { \ 274 return dev->name; \ 275 } \ 276 \ 277 static inline void \ 278 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 279 { \ 280 dev->name = size; \ 281 } 282 #endif 283 284 BTRFS_DEVICE_GETSET_FUNCS(total_bytes); 285 BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes); 286 BTRFS_DEVICE_GETSET_FUNCS(bytes_used); 287 288 enum btrfs_chunk_allocation_policy { 289 BTRFS_CHUNK_ALLOC_REGULAR, 290 BTRFS_CHUNK_ALLOC_ZONED, 291 }; 292 293 /* 294 * Read policies for mirrored block group profiles, read picks the stripe based 295 * on these policies. 296 */ 297 enum btrfs_read_policy { 298 /* Use process PID to choose the stripe */ 299 BTRFS_READ_POLICY_PID, 300 BTRFS_NR_READ_POLICY, 301 }; 302 303 #ifdef CONFIG_BTRFS_DEBUG 304 /* 305 * Checksum mode - offload it to workqueues or do it synchronously in 306 * btrfs_submit_chunk(). 307 */ 308 enum btrfs_offload_csum_mode { 309 /* 310 * Choose offloading checksum or do it synchronously automatically. 311 * Do it synchronously if the checksum is fast, or offload to workqueues 312 * otherwise. 313 */ 314 BTRFS_OFFLOAD_CSUM_AUTO, 315 /* Always offload checksum to workqueues. */ 316 BTRFS_OFFLOAD_CSUM_FORCE_ON, 317 /* Never offload checksum to workqueues. */ 318 BTRFS_OFFLOAD_CSUM_FORCE_OFF, 319 }; 320 #endif 321 322 struct btrfs_fs_devices { 323 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 324 325 /* 326 * UUID written into the btree blocks: 327 * 328 * - If metadata_uuid != fsid then super block must have 329 * BTRFS_FEATURE_INCOMPAT_METADATA_UUID flag set. 330 * 331 * - Following shall be true at all times: 332 * - metadata_uuid == btrfs_header::fsid 333 * - metadata_uuid == btrfs_dev_item::fsid 334 * 335 * - Relations between fsid and metadata_uuid in sb and fs_devices: 336 * - Normal: 337 * fs_devices->fsid == fs_devices->metadata_uuid == sb->fsid 338 * sb->metadata_uuid == 0 339 * 340 * - When the BTRFS_FEATURE_INCOMPAT_METADATA_UUID flag is set: 341 * fs_devices->fsid == sb->fsid 342 * fs_devices->metadata_uuid == sb->metadata_uuid 343 * 344 * - When in-memory fs_devices->temp_fsid is true 345 * fs_devices->fsid = random 346 * fs_devices->metadata_uuid == sb->fsid 347 */ 348 u8 metadata_uuid[BTRFS_FSID_SIZE]; 349 350 struct list_head fs_list; 351 352 /* 353 * Number of devices under this fsid including missing and 354 * replace-target device and excludes seed devices. 355 */ 356 u64 num_devices; 357 358 /* 359 * The number of devices that successfully opened, including 360 * replace-target, excludes seed devices. 361 */ 362 u64 open_devices; 363 364 /* The number of devices that are under the chunk allocation list. */ 365 u64 rw_devices; 366 367 /* Count of missing devices under this fsid excluding seed device. */ 368 u64 missing_devices; 369 u64 total_rw_bytes; 370 371 /* 372 * Count of devices from btrfs_super_block::num_devices for this fsid, 373 * which includes the seed device, excludes the transient replace-target 374 * device. 375 */ 376 u64 total_devices; 377 378 /* Highest generation number of seen devices */ 379 u64 latest_generation; 380 381 /* 382 * The mount device or a device with highest generation after removal 383 * or replace. 384 */ 385 struct btrfs_device *latest_dev; 386 387 /* 388 * All of the devices in the filesystem, protected by a mutex so we can 389 * safely walk it to write out the super blocks without worrying about 390 * adding/removing by the multi-device code. Scrubbing super block can 391 * kick off supers writing by holding this mutex lock. 392 */ 393 struct mutex device_list_mutex; 394 395 /* List of all devices, protected by device_list_mutex */ 396 struct list_head devices; 397 398 /* Devices which can satisfy space allocation. Protected by * chunk_mutex. */ 399 struct list_head alloc_list; 400 401 struct list_head seed_list; 402 403 /* Count fs-devices opened. */ 404 int opened; 405 406 /* Set when we find or add a device that doesn't have the nonrot flag set. */ 407 bool rotating; 408 /* Devices support TRIM/discard commands. */ 409 bool discardable; 410 /* The filesystem is a seed filesystem. */ 411 bool seeding; 412 /* The mount needs to use a randomly generated fsid. */ 413 bool temp_fsid; 414 415 struct btrfs_fs_info *fs_info; 416 /* sysfs kobjects */ 417 struct kobject fsid_kobj; 418 struct kobject *devices_kobj; 419 struct kobject *devinfo_kobj; 420 struct completion kobj_unregister; 421 422 enum btrfs_chunk_allocation_policy chunk_alloc_policy; 423 424 /* Policy used to read the mirrored stripes. */ 425 enum btrfs_read_policy read_policy; 426 427 #ifdef CONFIG_BTRFS_DEBUG 428 /* Checksum mode - offload it or do it synchronously. */ 429 enum btrfs_offload_csum_mode offload_csum_mode; 430 #endif 431 }; 432 433 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \ 434 - sizeof(struct btrfs_chunk)) \ 435 / sizeof(struct btrfs_stripe) + 1) 436 437 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ 438 - 2 * sizeof(struct btrfs_disk_key) \ 439 - 2 * sizeof(struct btrfs_chunk)) \ 440 / sizeof(struct btrfs_stripe) + 1) 441 442 struct btrfs_io_stripe { 443 struct btrfs_device *dev; 444 /* Block mapping. */ 445 u64 physical; 446 u64 length; 447 bool is_scrub; 448 /* For the endio handler. */ 449 struct btrfs_io_context *bioc; 450 }; 451 452 struct btrfs_discard_stripe { 453 struct btrfs_device *dev; 454 u64 physical; 455 u64 length; 456 }; 457 458 /* 459 * Context for IO subsmission for device stripe. 460 * 461 * - Track the unfinished mirrors for mirror based profiles 462 * Mirror based profiles are SINGLE/DUP/RAID1/RAID10. 463 * 464 * - Contain the logical -> physical mapping info 465 * Used by submit_stripe_bio() for mapping logical bio 466 * into physical device address. 467 * 468 * - Contain device replace info 469 * Used by handle_ops_on_dev_replace() to copy logical bios 470 * into the new device. 471 * 472 * - Contain RAID56 full stripe logical bytenrs 473 */ 474 struct btrfs_io_context { 475 refcount_t refs; 476 struct btrfs_fs_info *fs_info; 477 /* Taken from struct btrfs_chunk_map::type. */ 478 u64 map_type; 479 struct bio *orig_bio; 480 atomic_t error; 481 u16 max_errors; 482 483 u64 logical; 484 u64 size; 485 /* Raid stripe tree ordered entry. */ 486 struct list_head rst_ordered_entry; 487 488 /* 489 * The total number of stripes, including the extra duplicated 490 * stripe for replace. 491 */ 492 u16 num_stripes; 493 494 /* 495 * The mirror_num of this bioc. 496 * 497 * This is for reads which use 0 as mirror_num, thus we should return a 498 * valid mirror_num (>0) for the reader. 499 */ 500 u16 mirror_num; 501 502 /* 503 * The following two members are for dev-replace case only. 504 * 505 * @replace_nr_stripes: Number of duplicated stripes which need to be 506 * written to replace target. 507 * Should be <= 2 (2 for DUP, otherwise <= 1). 508 * @replace_stripe_src: The array indicates where the duplicated stripes 509 * are from. 510 * 511 * The @replace_stripe_src[] array is mostly for RAID56 cases. 512 * As non-RAID56 stripes share the same contents of the mapped range, 513 * thus no need to bother where the duplicated ones are from. 514 * 515 * But for RAID56 case, all stripes contain different contents, thus 516 * we need a way to know the mapping. 517 * 518 * There is an example for the two members, using a RAID5 write: 519 * 520 * num_stripes: 4 (3 + 1 duplicated write) 521 * stripes[0]: dev = devid 1, physical = X 522 * stripes[1]: dev = devid 2, physical = Y 523 * stripes[2]: dev = devid 3, physical = Z 524 * stripes[3]: dev = devid 0, physical = Y 525 * 526 * replace_nr_stripes = 1 527 * replace_stripe_src = 1 <- Means stripes[1] is involved in replace. 528 * The duplicated stripe index would be 529 * (@num_stripes - 1). 530 * 531 * Note, that we can still have cases replace_nr_stripes = 2 for DUP. 532 * In that case, all stripes share the same content, thus we don't 533 * need to bother @replace_stripe_src value at all. 534 */ 535 u16 replace_nr_stripes; 536 s16 replace_stripe_src; 537 /* 538 * Logical bytenr of the full stripe start, only for RAID56 cases. 539 * 540 * When this value is set to other than (u64)-1, the stripes[] should 541 * follow this pattern: 542 * 543 * (real_stripes = num_stripes - replace_nr_stripes) 544 * (data_stripes = (is_raid6) ? (real_stripes - 2) : (real_stripes - 1)) 545 * 546 * stripes[0]: The first data stripe 547 * stripes[1]: The second data stripe 548 * ... 549 * stripes[data_stripes - 1]: The last data stripe 550 * stripes[data_stripes]: The P stripe 551 * stripes[data_stripes + 1]: The Q stripe (only for RAID6). 552 */ 553 u64 full_stripe_logical; 554 struct btrfs_io_stripe stripes[]; 555 }; 556 557 struct btrfs_device_info { 558 struct btrfs_device *dev; 559 u64 dev_offset; 560 u64 max_avail; 561 u64 total_avail; 562 }; 563 564 struct btrfs_raid_attr { 565 u8 sub_stripes; /* sub_stripes info for map */ 566 u8 dev_stripes; /* stripes per dev */ 567 u8 devs_max; /* max devs to use */ 568 u8 devs_min; /* min devs needed */ 569 u8 tolerated_failures; /* max tolerated fail devs */ 570 u8 devs_increment; /* ndevs has to be a multiple of this */ 571 u8 ncopies; /* how many copies to data has */ 572 u8 nparity; /* number of stripes worth of bytes to store 573 * parity information */ 574 u8 mindev_error; /* error code if min devs requisite is unmet */ 575 const char raid_name[8]; /* name of the raid */ 576 u64 bg_flag; /* block group flag of the raid */ 577 }; 578 579 extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES]; 580 581 struct btrfs_chunk_map { 582 struct rb_node rb_node; 583 /* For mount time dev extent verification. */ 584 int verified_stripes; 585 refcount_t refs; 586 u64 start; 587 u64 chunk_len; 588 u64 stripe_size; 589 u64 type; 590 int io_align; 591 int io_width; 592 int num_stripes; 593 int sub_stripes; 594 struct btrfs_io_stripe stripes[]; 595 }; 596 597 #define btrfs_chunk_map_size(n) (sizeof(struct btrfs_chunk_map) + \ 598 (sizeof(struct btrfs_io_stripe) * (n))) 599 600 static inline void btrfs_free_chunk_map(struct btrfs_chunk_map *map) 601 { 602 if (map && refcount_dec_and_test(&map->refs)) { 603 ASSERT(RB_EMPTY_NODE(&map->rb_node)); 604 kfree(map); 605 } 606 } 607 608 struct btrfs_balance_control { 609 struct btrfs_balance_args data; 610 struct btrfs_balance_args meta; 611 struct btrfs_balance_args sys; 612 613 u64 flags; 614 615 struct btrfs_balance_progress stat; 616 }; 617 618 /* 619 * Search for a given device by the set parameters 620 */ 621 struct btrfs_dev_lookup_args { 622 u64 devid; 623 u8 *uuid; 624 u8 *fsid; 625 bool missing; 626 }; 627 628 /* We have to initialize to -1 because BTRFS_DEV_REPLACE_DEVID is 0 */ 629 #define BTRFS_DEV_LOOKUP_ARGS_INIT { .devid = (u64)-1 } 630 631 #define BTRFS_DEV_LOOKUP_ARGS(name) \ 632 struct btrfs_dev_lookup_args name = BTRFS_DEV_LOOKUP_ARGS_INIT 633 634 enum btrfs_map_op { 635 BTRFS_MAP_READ, 636 BTRFS_MAP_WRITE, 637 BTRFS_MAP_GET_READ_MIRRORS, 638 }; 639 640 static inline enum btrfs_map_op btrfs_op(struct bio *bio) 641 { 642 switch (bio_op(bio)) { 643 case REQ_OP_WRITE: 644 case REQ_OP_ZONE_APPEND: 645 return BTRFS_MAP_WRITE; 646 default: 647 WARN_ON_ONCE(1); 648 fallthrough; 649 case REQ_OP_READ: 650 return BTRFS_MAP_READ; 651 } 652 } 653 654 static inline unsigned long btrfs_chunk_item_size(int num_stripes) 655 { 656 ASSERT(num_stripes); 657 return sizeof(struct btrfs_chunk) + 658 sizeof(struct btrfs_stripe) * (num_stripes - 1); 659 } 660 661 /* 662 * Do the type safe conversion from stripe_nr to offset inside the chunk. 663 * 664 * @stripe_nr is u32, with left shift it can overflow u32 for chunks larger 665 * than 4G. This does the proper type cast to avoid overflow. 666 */ 667 static inline u64 btrfs_stripe_nr_to_offset(u32 stripe_nr) 668 { 669 return (u64)stripe_nr << BTRFS_STRIPE_LEN_SHIFT; 670 } 671 672 void btrfs_get_bioc(struct btrfs_io_context *bioc); 673 void btrfs_put_bioc(struct btrfs_io_context *bioc); 674 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 675 u64 logical, u64 *length, 676 struct btrfs_io_context **bioc_ret, 677 struct btrfs_io_stripe *smap, int *mirror_num_ret); 678 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 679 struct btrfs_io_stripe *smap, u64 logical, 680 u32 length, int mirror_num); 681 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 682 u64 logical, u64 *length_ret, 683 u32 *num_stripes); 684 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info); 685 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info); 686 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 687 u64 type); 688 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info); 689 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 690 blk_mode_t flags, void *holder); 691 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags, 692 bool mount_arg_dev); 693 int btrfs_forget_devices(dev_t devt); 694 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices); 695 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices); 696 void btrfs_assign_next_active_device(struct btrfs_device *device, 697 struct btrfs_device *this_dev); 698 struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, 699 u64 devid, 700 const char *devpath); 701 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 702 struct btrfs_dev_lookup_args *args, 703 const char *path); 704 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 705 const u64 *devid, const u8 *uuid, 706 const char *path); 707 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args); 708 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 709 struct btrfs_dev_lookup_args *args, 710 struct file **bdev_file); 711 void __exit btrfs_cleanup_fs_uuids(void); 712 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len); 713 int btrfs_grow_device(struct btrfs_trans_handle *trans, 714 struct btrfs_device *device, u64 new_size); 715 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 716 const struct btrfs_dev_lookup_args *args); 717 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size); 718 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path); 719 int btrfs_balance(struct btrfs_fs_info *fs_info, 720 struct btrfs_balance_control *bctl, 721 struct btrfs_ioctl_balance_args *bargs); 722 void btrfs_describe_block_groups(u64 flags, char *buf, u32 size_buf); 723 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info); 724 int btrfs_recover_balance(struct btrfs_fs_info *fs_info); 725 int btrfs_pause_balance(struct btrfs_fs_info *fs_info); 726 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset); 727 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info); 728 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info); 729 int btrfs_uuid_scan_kthread(void *data); 730 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset); 731 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index); 732 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 733 struct btrfs_ioctl_get_dev_stats *stats); 734 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info); 735 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info); 736 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans); 737 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev); 738 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev); 739 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev); 740 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, 741 u64 logical, u64 len); 742 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 743 u64 logical); 744 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map); 745 int btrfs_nr_parity_stripes(u64 type); 746 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 747 struct btrfs_block_group *bg); 748 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset); 749 750 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 751 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp); 752 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map); 753 #endif 754 755 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info, 756 u64 logical, u64 length); 757 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info, 758 u64 logical, u64 length); 759 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 760 u64 logical, u64 length); 761 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map); 762 void btrfs_release_disk_super(struct btrfs_super_block *super); 763 764 static inline void btrfs_dev_stat_inc(struct btrfs_device *dev, 765 int index) 766 { 767 atomic_inc(dev->dev_stat_values + index); 768 /* 769 * This memory barrier orders stores updating statistics before stores 770 * updating dev_stats_ccnt. 771 * 772 * It pairs with smp_rmb() in btrfs_run_dev_stats(). 773 */ 774 smp_mb__before_atomic(); 775 atomic_inc(&dev->dev_stats_ccnt); 776 } 777 778 static inline int btrfs_dev_stat_read(struct btrfs_device *dev, 779 int index) 780 { 781 return atomic_read(dev->dev_stat_values + index); 782 } 783 784 static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev, 785 int index) 786 { 787 int ret; 788 789 ret = atomic_xchg(dev->dev_stat_values + index, 0); 790 /* 791 * atomic_xchg implies a full memory barriers as per atomic_t.txt: 792 * - RMW operations that have a return value are fully ordered; 793 * 794 * This implicit memory barriers is paired with the smp_rmb in 795 * btrfs_run_dev_stats 796 */ 797 atomic_inc(&dev->dev_stats_ccnt); 798 return ret; 799 } 800 801 static inline void btrfs_dev_stat_set(struct btrfs_device *dev, 802 int index, unsigned long val) 803 { 804 atomic_set(dev->dev_stat_values + index, val); 805 /* 806 * This memory barrier orders stores updating statistics before stores 807 * updating dev_stats_ccnt. 808 * 809 * It pairs with smp_rmb() in btrfs_run_dev_stats(). 810 */ 811 smp_mb__before_atomic(); 812 atomic_inc(&dev->dev_stats_ccnt); 813 } 814 815 static inline const char *btrfs_dev_name(const struct btrfs_device *device) 816 { 817 if (!device || test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 818 return "<missing disk>"; 819 else 820 return rcu_str_deref(device->name); 821 } 822 823 void btrfs_commit_device_sizes(struct btrfs_transaction *trans); 824 825 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void); 826 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 827 struct btrfs_device *failing_dev); 828 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device); 829 830 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags); 831 int btrfs_bg_type_to_factor(u64 flags); 832 const char *btrfs_bg_type_to_raid_name(u64 flags); 833 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info); 834 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical); 835 836 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr); 837 u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb); 838 839 #endif 840