1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_VOLUMES_H 7 #define BTRFS_VOLUMES_H 8 9 #include <linux/blk_types.h> 10 #include <linux/blkdev.h> 11 #include <linux/sizes.h> 12 #include <linux/atomic.h> 13 #include <linux/sort.h> 14 #include <linux/list.h> 15 #include <linux/mutex.h> 16 #include <linux/log2.h> 17 #include <linux/kobject.h> 18 #include <linux/refcount.h> 19 #include <linux/completion.h> 20 #include <linux/rbtree.h> 21 #include <uapi/linux/btrfs.h> 22 #include <uapi/linux/btrfs_tree.h> 23 #include "messages.h" 24 #include "rcu-string.h" 25 #include "extent-io-tree.h" 26 27 struct block_device; 28 struct bdev_handle; 29 struct btrfs_fs_info; 30 struct btrfs_block_group; 31 struct btrfs_trans_handle; 32 struct btrfs_transaction; 33 struct btrfs_zoned_device_info; 34 35 #define BTRFS_MAX_DATA_CHUNK_SIZE (10ULL * SZ_1G) 36 37 /* 38 * Arbitratry maximum size of one discard request to limit potentially long time 39 * spent in blkdev_issue_discard(). 40 */ 41 #define BTRFS_MAX_DISCARD_CHUNK_SIZE (SZ_1G) 42 43 extern struct mutex uuid_mutex; 44 45 #define BTRFS_STRIPE_LEN SZ_64K 46 #define BTRFS_STRIPE_LEN_SHIFT (16) 47 #define BTRFS_STRIPE_LEN_MASK (BTRFS_STRIPE_LEN - 1) 48 49 static_assert(const_ilog2(BTRFS_STRIPE_LEN) == BTRFS_STRIPE_LEN_SHIFT); 50 51 /* Used by sanity check for btrfs_raid_types. */ 52 #define const_ffs(n) (__builtin_ctzll(n) + 1) 53 54 /* 55 * The conversion from BTRFS_BLOCK_GROUP_* bits to btrfs_raid_type requires 56 * RAID0 always to be the lowest profile bit. 57 * Although it's part of on-disk format and should never change, do extra 58 * compile-time sanity checks. 59 */ 60 static_assert(const_ffs(BTRFS_BLOCK_GROUP_RAID0) < 61 const_ffs(BTRFS_BLOCK_GROUP_PROFILE_MASK & ~BTRFS_BLOCK_GROUP_RAID0)); 62 static_assert(const_ilog2(BTRFS_BLOCK_GROUP_RAID0) > 63 ilog2(BTRFS_BLOCK_GROUP_TYPE_MASK)); 64 65 /* ilog2() can handle both constants and variables */ 66 #define BTRFS_BG_FLAG_TO_INDEX(profile) \ 67 ilog2((profile) >> (ilog2(BTRFS_BLOCK_GROUP_RAID0) - 1)) 68 69 enum btrfs_raid_types { 70 /* SINGLE is the special one as it doesn't have on-disk bit. */ 71 BTRFS_RAID_SINGLE = 0, 72 73 BTRFS_RAID_RAID0 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID0), 74 BTRFS_RAID_RAID1 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1), 75 BTRFS_RAID_DUP = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_DUP), 76 BTRFS_RAID_RAID10 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID10), 77 BTRFS_RAID_RAID5 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID5), 78 BTRFS_RAID_RAID6 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID6), 79 BTRFS_RAID_RAID1C3 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1C3), 80 BTRFS_RAID_RAID1C4 = BTRFS_BG_FLAG_TO_INDEX(BTRFS_BLOCK_GROUP_RAID1C4), 81 82 BTRFS_NR_RAID_TYPES 83 }; 84 85 /* 86 * Use sequence counter to get consistent device stat data on 87 * 32-bit processors. 88 */ 89 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 90 #include <linux/seqlock.h> 91 #define __BTRFS_NEED_DEVICE_DATA_ORDERED 92 #define btrfs_device_data_ordered_init(device) \ 93 seqcount_init(&device->data_seqcount) 94 #else 95 #define btrfs_device_data_ordered_init(device) do { } while (0) 96 #endif 97 98 #define BTRFS_DEV_STATE_WRITEABLE (0) 99 #define BTRFS_DEV_STATE_IN_FS_METADATA (1) 100 #define BTRFS_DEV_STATE_MISSING (2) 101 #define BTRFS_DEV_STATE_REPLACE_TGT (3) 102 #define BTRFS_DEV_STATE_FLUSH_SENT (4) 103 #define BTRFS_DEV_STATE_NO_READA (5) 104 105 /* Special value encoding failure to write primary super block. */ 106 #define BTRFS_SUPER_PRIMARY_WRITE_ERROR (INT_MAX / 2) 107 108 struct btrfs_fs_devices; 109 110 struct btrfs_device { 111 struct list_head dev_list; /* device_list_mutex */ 112 struct list_head dev_alloc_list; /* chunk mutex */ 113 struct list_head post_commit_list; /* chunk mutex */ 114 struct btrfs_fs_devices *fs_devices; 115 struct btrfs_fs_info *fs_info; 116 117 struct rcu_string __rcu *name; 118 119 u64 generation; 120 121 struct file *bdev_file; 122 struct block_device *bdev; 123 124 struct btrfs_zoned_device_info *zone_info; 125 126 /* 127 * Device's major-minor number. Must be set even if the device is not 128 * opened (bdev == NULL), unless the device is missing. 129 */ 130 dev_t devt; 131 unsigned long dev_state; 132 blk_status_t last_flush_error; 133 134 #ifdef __BTRFS_NEED_DEVICE_DATA_ORDERED 135 seqcount_t data_seqcount; 136 #endif 137 138 /* the internal btrfs device id */ 139 u64 devid; 140 141 /* size of the device in memory */ 142 u64 total_bytes; 143 144 /* size of the device on disk */ 145 u64 disk_total_bytes; 146 147 /* bytes used */ 148 u64 bytes_used; 149 150 /* optimal io alignment for this device */ 151 u32 io_align; 152 153 /* optimal io width for this device */ 154 u32 io_width; 155 /* type and info about this device */ 156 u64 type; 157 158 /* 159 * Counter of super block write errors, values larger than 160 * BTRFS_SUPER_PRIMARY_WRITE_ERROR encode primary super block write failure. 161 */ 162 atomic_t sb_write_errors; 163 164 /* minimal io size for this device */ 165 u32 sector_size; 166 167 /* physical drive uuid (or lvm uuid) */ 168 u8 uuid[BTRFS_UUID_SIZE]; 169 170 /* 171 * size of the device on the current transaction 172 * 173 * This variant is update when committing the transaction, 174 * and protected by chunk mutex 175 */ 176 u64 commit_total_bytes; 177 178 /* bytes used on the current transaction */ 179 u64 commit_bytes_used; 180 181 /* Bio used for flushing device barriers */ 182 struct bio flush_bio; 183 struct completion flush_wait; 184 185 /* per-device scrub information */ 186 struct scrub_ctx *scrub_ctx; 187 188 /* disk I/O failure stats. For detailed description refer to 189 * enum btrfs_dev_stat_values in ioctl.h */ 190 int dev_stats_valid; 191 192 /* Counter to record the change of device stats */ 193 atomic_t dev_stats_ccnt; 194 atomic_t dev_stat_values[BTRFS_DEV_STAT_VALUES_MAX]; 195 196 struct extent_io_tree alloc_state; 197 198 struct completion kobj_unregister; 199 /* For sysfs/FSID/devinfo/devid/ */ 200 struct kobject devid_kobj; 201 202 /* Bandwidth limit for scrub, in bytes */ 203 u64 scrub_speed_max; 204 }; 205 206 /* 207 * Block group or device which contains an active swapfile. Used for preventing 208 * unsafe operations while a swapfile is active. 209 * 210 * These are sorted on (ptr, inode) (note that a block group or device can 211 * contain more than one swapfile). We compare the pointer values because we 212 * don't actually care what the object is, we just need a quick check whether 213 * the object exists in the rbtree. 214 */ 215 struct btrfs_swapfile_pin { 216 struct rb_node node; 217 void *ptr; 218 struct inode *inode; 219 /* 220 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr 221 * points to a struct btrfs_device. 222 */ 223 bool is_block_group; 224 /* 225 * Only used when 'is_block_group' is true and it is the number of 226 * extents used by a swapfile for this block group ('ptr' field). 227 */ 228 int bg_extent_count; 229 }; 230 231 /* 232 * If we read those variants at the context of their own lock, we needn't 233 * use the following helpers, reading them directly is safe. 234 */ 235 #if BITS_PER_LONG==32 && defined(CONFIG_SMP) 236 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 237 static inline u64 \ 238 btrfs_device_get_##name(const struct btrfs_device *dev) \ 239 { \ 240 u64 size; \ 241 unsigned int seq; \ 242 \ 243 do { \ 244 seq = read_seqcount_begin(&dev->data_seqcount); \ 245 size = dev->name; \ 246 } while (read_seqcount_retry(&dev->data_seqcount, seq)); \ 247 return size; \ 248 } \ 249 \ 250 static inline void \ 251 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 252 { \ 253 preempt_disable(); \ 254 write_seqcount_begin(&dev->data_seqcount); \ 255 dev->name = size; \ 256 write_seqcount_end(&dev->data_seqcount); \ 257 preempt_enable(); \ 258 } 259 #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) 260 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 261 static inline u64 \ 262 btrfs_device_get_##name(const struct btrfs_device *dev) \ 263 { \ 264 u64 size; \ 265 \ 266 preempt_disable(); \ 267 size = dev->name; \ 268 preempt_enable(); \ 269 return size; \ 270 } \ 271 \ 272 static inline void \ 273 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 274 { \ 275 preempt_disable(); \ 276 dev->name = size; \ 277 preempt_enable(); \ 278 } 279 #else 280 #define BTRFS_DEVICE_GETSET_FUNCS(name) \ 281 static inline u64 \ 282 btrfs_device_get_##name(const struct btrfs_device *dev) \ 283 { \ 284 return dev->name; \ 285 } \ 286 \ 287 static inline void \ 288 btrfs_device_set_##name(struct btrfs_device *dev, u64 size) \ 289 { \ 290 dev->name = size; \ 291 } 292 #endif 293 294 BTRFS_DEVICE_GETSET_FUNCS(total_bytes); 295 BTRFS_DEVICE_GETSET_FUNCS(disk_total_bytes); 296 BTRFS_DEVICE_GETSET_FUNCS(bytes_used); 297 298 enum btrfs_chunk_allocation_policy { 299 BTRFS_CHUNK_ALLOC_REGULAR, 300 BTRFS_CHUNK_ALLOC_ZONED, 301 }; 302 303 #define BTRFS_DEFAULT_RR_MIN_CONTIG_READ (SZ_256K) 304 /* Keep in sync with raid_attr table, current maximum is RAID1C4. */ 305 #define BTRFS_RAID1_MAX_MIRRORS (4) 306 /* 307 * Read policies for mirrored block group profiles, read picks the stripe based 308 * on these policies. 309 */ 310 enum btrfs_read_policy { 311 /* Use process PID to choose the stripe */ 312 BTRFS_READ_POLICY_PID, 313 #ifdef CONFIG_BTRFS_EXPERIMENTAL 314 /* Balancing RAID1 reads across all striped devices (round-robin). */ 315 BTRFS_READ_POLICY_RR, 316 /* Read from a specific device. */ 317 BTRFS_READ_POLICY_DEVID, 318 #endif 319 BTRFS_NR_READ_POLICY, 320 }; 321 322 #ifdef CONFIG_BTRFS_EXPERIMENTAL 323 /* 324 * Checksum mode - offload it to workqueues or do it synchronously in 325 * btrfs_submit_chunk(). 326 */ 327 enum btrfs_offload_csum_mode { 328 /* 329 * Choose offloading checksum or do it synchronously automatically. 330 * Do it synchronously if the checksum is fast, or offload to workqueues 331 * otherwise. 332 */ 333 BTRFS_OFFLOAD_CSUM_AUTO, 334 /* Always offload checksum to workqueues. */ 335 BTRFS_OFFLOAD_CSUM_FORCE_ON, 336 /* Never offload checksum to workqueues. */ 337 BTRFS_OFFLOAD_CSUM_FORCE_OFF, 338 }; 339 #endif 340 341 struct btrfs_fs_devices { 342 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 343 344 /* 345 * UUID written into the btree blocks: 346 * 347 * - If metadata_uuid != fsid then super block must have 348 * BTRFS_FEATURE_INCOMPAT_METADATA_UUID flag set. 349 * 350 * - Following shall be true at all times: 351 * - metadata_uuid == btrfs_header::fsid 352 * - metadata_uuid == btrfs_dev_item::fsid 353 * 354 * - Relations between fsid and metadata_uuid in sb and fs_devices: 355 * - Normal: 356 * fs_devices->fsid == fs_devices->metadata_uuid == sb->fsid 357 * sb->metadata_uuid == 0 358 * 359 * - When the BTRFS_FEATURE_INCOMPAT_METADATA_UUID flag is set: 360 * fs_devices->fsid == sb->fsid 361 * fs_devices->metadata_uuid == sb->metadata_uuid 362 * 363 * - When in-memory fs_devices->temp_fsid is true 364 * fs_devices->fsid = random 365 * fs_devices->metadata_uuid == sb->fsid 366 */ 367 u8 metadata_uuid[BTRFS_FSID_SIZE]; 368 369 struct list_head fs_list; 370 371 /* 372 * Number of devices under this fsid including missing and 373 * replace-target device and excludes seed devices. 374 */ 375 u64 num_devices; 376 377 /* 378 * The number of devices that successfully opened, including 379 * replace-target, excludes seed devices. 380 */ 381 u64 open_devices; 382 383 /* The number of devices that are under the chunk allocation list. */ 384 u64 rw_devices; 385 386 /* Count of missing devices under this fsid excluding seed device. */ 387 u64 missing_devices; 388 u64 total_rw_bytes; 389 390 /* 391 * Count of devices from btrfs_super_block::num_devices for this fsid, 392 * which includes the seed device, excludes the transient replace-target 393 * device. 394 */ 395 u64 total_devices; 396 397 /* Highest generation number of seen devices */ 398 u64 latest_generation; 399 400 /* 401 * The mount device or a device with highest generation after removal 402 * or replace. 403 */ 404 struct btrfs_device *latest_dev; 405 406 /* 407 * All of the devices in the filesystem, protected by a mutex so we can 408 * safely walk it to write out the super blocks without worrying about 409 * adding/removing by the multi-device code. Scrubbing super block can 410 * kick off supers writing by holding this mutex lock. 411 */ 412 struct mutex device_list_mutex; 413 414 /* List of all devices, protected by device_list_mutex */ 415 struct list_head devices; 416 417 /* Devices which can satisfy space allocation. Protected by * chunk_mutex. */ 418 struct list_head alloc_list; 419 420 struct list_head seed_list; 421 422 /* Count fs-devices opened. */ 423 int opened; 424 425 /* Set when we find or add a device that doesn't have the nonrot flag set. */ 426 bool rotating; 427 /* Devices support TRIM/discard commands. */ 428 bool discardable; 429 /* The filesystem is a seed filesystem. */ 430 bool seeding; 431 /* The mount needs to use a randomly generated fsid. */ 432 bool temp_fsid; 433 /* Enable/disable the filesystem stats tracking. */ 434 bool collect_fs_stats; 435 436 struct btrfs_fs_info *fs_info; 437 /* sysfs kobjects */ 438 struct kobject fsid_kobj; 439 struct kobject *devices_kobj; 440 struct kobject *devinfo_kobj; 441 struct completion kobj_unregister; 442 443 enum btrfs_chunk_allocation_policy chunk_alloc_policy; 444 445 /* Policy used to read the mirrored stripes. */ 446 enum btrfs_read_policy read_policy; 447 448 #ifdef CONFIG_BTRFS_EXPERIMENTAL 449 /* 450 * Minimum contiguous reads before switching to next device, the unit 451 * is one block/sectorsize. 452 */ 453 u32 rr_min_contig_read; 454 455 /* Device to be used for reading in case of RAID1. */ 456 u64 read_devid; 457 458 /* Checksum mode - offload it or do it synchronously. */ 459 enum btrfs_offload_csum_mode offload_csum_mode; 460 #endif 461 }; 462 463 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \ 464 - sizeof(struct btrfs_chunk)) \ 465 / sizeof(struct btrfs_stripe) + 1) 466 467 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ 468 - 2 * sizeof(struct btrfs_disk_key) \ 469 - 2 * sizeof(struct btrfs_chunk)) \ 470 / sizeof(struct btrfs_stripe) + 1) 471 472 struct btrfs_io_stripe { 473 struct btrfs_device *dev; 474 /* Block mapping. */ 475 u64 physical; 476 u64 length; 477 bool rst_search_commit_root; 478 /* For the endio handler. */ 479 struct btrfs_io_context *bioc; 480 }; 481 482 struct btrfs_discard_stripe { 483 struct btrfs_device *dev; 484 u64 physical; 485 u64 length; 486 }; 487 488 /* 489 * Context for IO subsmission for device stripe. 490 * 491 * - Track the unfinished mirrors for mirror based profiles 492 * Mirror based profiles are SINGLE/DUP/RAID1/RAID10. 493 * 494 * - Contain the logical -> physical mapping info 495 * Used by submit_stripe_bio() for mapping logical bio 496 * into physical device address. 497 * 498 * - Contain device replace info 499 * Used by handle_ops_on_dev_replace() to copy logical bios 500 * into the new device. 501 * 502 * - Contain RAID56 full stripe logical bytenrs 503 */ 504 struct btrfs_io_context { 505 refcount_t refs; 506 struct btrfs_fs_info *fs_info; 507 /* Taken from struct btrfs_chunk_map::type. */ 508 u64 map_type; 509 struct bio *orig_bio; 510 atomic_t error; 511 u16 max_errors; 512 bool use_rst; 513 514 u64 logical; 515 u64 size; 516 /* Raid stripe tree ordered entry. */ 517 struct list_head rst_ordered_entry; 518 519 /* 520 * The total number of stripes, including the extra duplicated 521 * stripe for replace. 522 */ 523 u16 num_stripes; 524 525 /* 526 * The mirror_num of this bioc. 527 * 528 * This is for reads which use 0 as mirror_num, thus we should return a 529 * valid mirror_num (>0) for the reader. 530 */ 531 u16 mirror_num; 532 533 /* 534 * The following two members are for dev-replace case only. 535 * 536 * @replace_nr_stripes: Number of duplicated stripes which need to be 537 * written to replace target. 538 * Should be <= 2 (2 for DUP, otherwise <= 1). 539 * @replace_stripe_src: The array indicates where the duplicated stripes 540 * are from. 541 * 542 * The @replace_stripe_src[] array is mostly for RAID56 cases. 543 * As non-RAID56 stripes share the same contents of the mapped range, 544 * thus no need to bother where the duplicated ones are from. 545 * 546 * But for RAID56 case, all stripes contain different contents, thus 547 * we need a way to know the mapping. 548 * 549 * There is an example for the two members, using a RAID5 write: 550 * 551 * num_stripes: 4 (3 + 1 duplicated write) 552 * stripes[0]: dev = devid 1, physical = X 553 * stripes[1]: dev = devid 2, physical = Y 554 * stripes[2]: dev = devid 3, physical = Z 555 * stripes[3]: dev = devid 0, physical = Y 556 * 557 * replace_nr_stripes = 1 558 * replace_stripe_src = 1 <- Means stripes[1] is involved in replace. 559 * The duplicated stripe index would be 560 * (@num_stripes - 1). 561 * 562 * Note, that we can still have cases replace_nr_stripes = 2 for DUP. 563 * In that case, all stripes share the same content, thus we don't 564 * need to bother @replace_stripe_src value at all. 565 */ 566 u16 replace_nr_stripes; 567 s16 replace_stripe_src; 568 /* 569 * Logical bytenr of the full stripe start, only for RAID56 cases. 570 * 571 * When this value is set to other than (u64)-1, the stripes[] should 572 * follow this pattern: 573 * 574 * (real_stripes = num_stripes - replace_nr_stripes) 575 * (data_stripes = (is_raid6) ? (real_stripes - 2) : (real_stripes - 1)) 576 * 577 * stripes[0]: The first data stripe 578 * stripes[1]: The second data stripe 579 * ... 580 * stripes[data_stripes - 1]: The last data stripe 581 * stripes[data_stripes]: The P stripe 582 * stripes[data_stripes + 1]: The Q stripe (only for RAID6). 583 */ 584 u64 full_stripe_logical; 585 struct btrfs_io_stripe stripes[]; 586 }; 587 588 struct btrfs_device_info { 589 struct btrfs_device *dev; 590 u64 dev_offset; 591 u64 max_avail; 592 u64 total_avail; 593 }; 594 595 struct btrfs_raid_attr { 596 u8 sub_stripes; /* sub_stripes info for map */ 597 u8 dev_stripes; /* stripes per dev */ 598 u8 devs_max; /* max devs to use */ 599 u8 devs_min; /* min devs needed */ 600 u8 tolerated_failures; /* max tolerated fail devs */ 601 u8 devs_increment; /* ndevs has to be a multiple of this */ 602 u8 ncopies; /* how many copies to data has */ 603 u8 nparity; /* number of stripes worth of bytes to store 604 * parity information */ 605 u8 mindev_error; /* error code if min devs requisite is unmet */ 606 const char raid_name[8]; /* name of the raid */ 607 u64 bg_flag; /* block group flag of the raid */ 608 }; 609 610 extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES]; 611 612 struct btrfs_chunk_map { 613 struct rb_node rb_node; 614 /* For mount time dev extent verification. */ 615 int verified_stripes; 616 refcount_t refs; 617 u64 start; 618 u64 chunk_len; 619 u64 stripe_size; 620 u64 type; 621 int io_align; 622 int io_width; 623 int num_stripes; 624 int sub_stripes; 625 struct btrfs_io_stripe stripes[]; 626 }; 627 628 #define btrfs_chunk_map_size(n) (sizeof(struct btrfs_chunk_map) + \ 629 (sizeof(struct btrfs_io_stripe) * (n))) 630 631 static inline void btrfs_free_chunk_map(struct btrfs_chunk_map *map) 632 { 633 if (map && refcount_dec_and_test(&map->refs)) { 634 ASSERT(RB_EMPTY_NODE(&map->rb_node)); 635 kfree(map); 636 } 637 } 638 639 struct btrfs_balance_control { 640 struct btrfs_balance_args data; 641 struct btrfs_balance_args meta; 642 struct btrfs_balance_args sys; 643 644 u64 flags; 645 646 struct btrfs_balance_progress stat; 647 }; 648 649 /* 650 * Search for a given device by the set parameters 651 */ 652 struct btrfs_dev_lookup_args { 653 u64 devid; 654 u8 *uuid; 655 u8 *fsid; 656 bool missing; 657 }; 658 659 /* We have to initialize to -1 because BTRFS_DEV_REPLACE_DEVID is 0 */ 660 #define BTRFS_DEV_LOOKUP_ARGS_INIT { .devid = (u64)-1 } 661 662 #define BTRFS_DEV_LOOKUP_ARGS(name) \ 663 struct btrfs_dev_lookup_args name = BTRFS_DEV_LOOKUP_ARGS_INIT 664 665 enum btrfs_map_op { 666 BTRFS_MAP_READ, 667 BTRFS_MAP_WRITE, 668 BTRFS_MAP_GET_READ_MIRRORS, 669 }; 670 671 static inline enum btrfs_map_op btrfs_op(struct bio *bio) 672 { 673 switch (bio_op(bio)) { 674 case REQ_OP_WRITE: 675 case REQ_OP_ZONE_APPEND: 676 return BTRFS_MAP_WRITE; 677 default: 678 WARN_ON_ONCE(1); 679 fallthrough; 680 case REQ_OP_READ: 681 return BTRFS_MAP_READ; 682 } 683 } 684 685 static inline unsigned long btrfs_chunk_item_size(int num_stripes) 686 { 687 ASSERT(num_stripes); 688 return sizeof(struct btrfs_chunk) + 689 sizeof(struct btrfs_stripe) * (num_stripes - 1); 690 } 691 692 /* 693 * Do the type safe conversion from stripe_nr to offset inside the chunk. 694 * 695 * @stripe_nr is u32, with left shift it can overflow u32 for chunks larger 696 * than 4G. This does the proper type cast to avoid overflow. 697 */ 698 static inline u64 btrfs_stripe_nr_to_offset(u32 stripe_nr) 699 { 700 return (u64)stripe_nr << BTRFS_STRIPE_LEN_SHIFT; 701 } 702 703 void btrfs_get_bioc(struct btrfs_io_context *bioc); 704 void btrfs_put_bioc(struct btrfs_io_context *bioc); 705 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 706 u64 logical, u64 *length, 707 struct btrfs_io_context **bioc_ret, 708 struct btrfs_io_stripe *smap, int *mirror_num_ret); 709 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, 710 struct btrfs_io_stripe *smap, u64 logical, 711 u32 length, int mirror_num); 712 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 713 u64 logical, u64 *length_ret, 714 u32 *num_stripes); 715 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info); 716 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info); 717 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 718 u64 type); 719 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info); 720 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 721 blk_mode_t flags, void *holder); 722 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags, 723 bool mount_arg_dev); 724 int btrfs_forget_devices(dev_t devt); 725 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices); 726 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices); 727 void btrfs_assign_next_active_device(struct btrfs_device *device, 728 struct btrfs_device *this_dev); 729 struct btrfs_device *btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, 730 u64 devid, 731 const char *devpath); 732 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 733 struct btrfs_dev_lookup_args *args, 734 const char *path); 735 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 736 const u64 *devid, const u8 *uuid, 737 const char *path); 738 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args); 739 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 740 struct btrfs_dev_lookup_args *args, 741 struct file **bdev_file); 742 void __exit btrfs_cleanup_fs_uuids(void); 743 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len); 744 int btrfs_grow_device(struct btrfs_trans_handle *trans, 745 struct btrfs_device *device, u64 new_size); 746 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 747 const struct btrfs_dev_lookup_args *args); 748 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size); 749 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *path); 750 int btrfs_balance(struct btrfs_fs_info *fs_info, 751 struct btrfs_balance_control *bctl, 752 struct btrfs_ioctl_balance_args *bargs); 753 void btrfs_describe_block_groups(u64 flags, char *buf, u32 size_buf); 754 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info); 755 int btrfs_recover_balance(struct btrfs_fs_info *fs_info); 756 int btrfs_pause_balance(struct btrfs_fs_info *fs_info); 757 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset); 758 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info); 759 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset); 760 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index); 761 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 762 struct btrfs_ioctl_get_dev_stats *stats); 763 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info); 764 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info); 765 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans); 766 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev); 767 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev); 768 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev); 769 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 770 u64 logical); 771 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map); 772 int btrfs_nr_parity_stripes(u64 type); 773 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 774 struct btrfs_block_group *bg); 775 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset); 776 777 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 778 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp); 779 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map); 780 #endif 781 782 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info, 783 u64 logical, u64 length); 784 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info, 785 u64 logical, u64 length); 786 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 787 u64 logical, u64 length); 788 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map); 789 void btrfs_release_disk_super(struct btrfs_super_block *super); 790 791 static inline void btrfs_dev_stat_inc(struct btrfs_device *dev, 792 int index) 793 { 794 atomic_inc(dev->dev_stat_values + index); 795 /* 796 * This memory barrier orders stores updating statistics before stores 797 * updating dev_stats_ccnt. 798 * 799 * It pairs with smp_rmb() in btrfs_run_dev_stats(). 800 */ 801 smp_mb__before_atomic(); 802 atomic_inc(&dev->dev_stats_ccnt); 803 } 804 805 static inline int btrfs_dev_stat_read(struct btrfs_device *dev, 806 int index) 807 { 808 return atomic_read(dev->dev_stat_values + index); 809 } 810 811 static inline int btrfs_dev_stat_read_and_reset(struct btrfs_device *dev, 812 int index) 813 { 814 int ret; 815 816 ret = atomic_xchg(dev->dev_stat_values + index, 0); 817 /* 818 * atomic_xchg implies a full memory barriers as per atomic_t.txt: 819 * - RMW operations that have a return value are fully ordered; 820 * 821 * This implicit memory barriers is paired with the smp_rmb in 822 * btrfs_run_dev_stats 823 */ 824 atomic_inc(&dev->dev_stats_ccnt); 825 return ret; 826 } 827 828 static inline void btrfs_dev_stat_set(struct btrfs_device *dev, 829 int index, unsigned long val) 830 { 831 atomic_set(dev->dev_stat_values + index, val); 832 /* 833 * This memory barrier orders stores updating statistics before stores 834 * updating dev_stats_ccnt. 835 * 836 * It pairs with smp_rmb() in btrfs_run_dev_stats(). 837 */ 838 smp_mb__before_atomic(); 839 atomic_inc(&dev->dev_stats_ccnt); 840 } 841 842 static inline const char *btrfs_dev_name(const struct btrfs_device *device) 843 { 844 if (!device || test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 845 return "<missing disk>"; 846 else 847 return rcu_str_deref(device->name); 848 } 849 850 void btrfs_commit_device_sizes(struct btrfs_transaction *trans); 851 852 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void); 853 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 854 struct btrfs_device *failing_dev); 855 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device); 856 857 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags); 858 int btrfs_bg_type_to_factor(u64 flags); 859 const char *btrfs_bg_type_to_raid_name(u64 flags); 860 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info); 861 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical); 862 863 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr); 864 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb); 865 866 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 867 struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 868 u64 logical, u16 total_stripes); 869 #endif 870 871 #endif 872