xref: /linux/fs/btrfs/verity.c (revision c21614d5c0e76cf1d7a864f15d495fd3e5876acc)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/init.h>
4 #include <linux/fs.h>
5 #include <linux/slab.h>
6 #include <linux/rwsem.h>
7 #include <linux/xattr.h>
8 #include <linux/security.h>
9 #include <linux/posix_acl_xattr.h>
10 #include <linux/iversion.h>
11 #include <linux/fsverity.h>
12 #include <linux/sched/mm.h>
13 #include "messages.h"
14 #include "ctree.h"
15 #include "btrfs_inode.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "fs.h"
19 #include "accessors.h"
20 #include "ioctl.h"
21 #include "verity.h"
22 #include "orphan.h"
23 
24 /*
25  * Implementation of the interface defined in struct fsverity_operations.
26  *
27  * The main question is how and where to store the verity descriptor and the
28  * Merkle tree. We store both in dedicated btree items in the filesystem tree,
29  * together with the rest of the inode metadata. This means we'll need to do
30  * extra work to encrypt them once encryption is supported in btrfs, but btrfs
31  * has a lot of careful code around i_size and it seems better to make a new key
32  * type than try and adjust all of our expectations for i_size.
33  *
34  * Note that this differs from the implementation in ext4 and f2fs, where
35  * this data is stored as if it were in the file, but past EOF. However, btrfs
36  * does not have a widespread mechanism for caching opaque metadata pages, so we
37  * do pretend that the Merkle tree pages themselves are past EOF for the
38  * purposes of caching them (as opposed to creating a virtual inode).
39  *
40  * fs verity items are stored under two different key types on disk.
41  * The descriptor items:
42  * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ]
43  *
44  * At offset 0, we store a btrfs_verity_descriptor_item which tracks the
45  * size of the descriptor item and some extra data for encryption.
46  * Starting at offset 1, these hold the generic fs verity descriptor.
47  * The latter are opaque to btrfs, we just read and write them as a blob for
48  * the higher level verity code.  The most common descriptor size is 256 bytes.
49  *
50  * The merkle tree items:
51  * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ]
52  *
53  * These also start at offset 0, and correspond to the merkle tree bytes.
54  * So when fsverity asks for page 0 of the merkle tree, we pull up one page
55  * starting at offset 0 for this key type.  These are also opaque to btrfs,
56  * we're blindly storing whatever fsverity sends down.
57  *
58  * Another important consideration is the fact that the Merkle tree data scales
59  * linearly with the size of the file (with 4K pages/blocks and SHA-256, it's
60  * ~1/127th the size) so for large files, writing the tree can be a lengthy
61  * operation. For that reason, we guard the whole enable verity operation
62  * (between begin_enable_verity and end_enable_verity) with an orphan item.
63  * Again, because the data can be pretty large, it's quite possible that we
64  * could run out of space writing it, so we try our best to handle errors by
65  * stopping and rolling back rather than aborting the victim transaction.
66  */
67 
68 #define MERKLE_START_ALIGN			65536
69 
70 /*
71  * Compute the logical file offset where we cache the Merkle tree.
72  *
73  * @inode:  inode of the verity file
74  *
75  * For the purposes of caching the Merkle tree pages, as required by
76  * fs-verity, it is convenient to do size computations in terms of a file
77  * offset, rather than in terms of page indices.
78  *
79  * Use 64K to be sure it's past the last page in the file, even with 64K pages.
80  * That rounding operation itself can overflow loff_t, so we do it in u64 and
81  * check.
82  *
83  * Returns the file offset on success, negative error code on failure.
84  */
85 static loff_t merkle_file_pos(const struct inode *inode)
86 {
87 	u64 sz = inode->i_size;
88 	u64 rounded = round_up(sz, MERKLE_START_ALIGN);
89 
90 	if (rounded > inode->i_sb->s_maxbytes)
91 		return -EFBIG;
92 
93 	return rounded;
94 }
95 
96 /*
97  * Drop all the items for this inode with this key_type.
98  *
99  * @inode:     inode to drop items for
100  * @key_type:  type of items to drop (BTRFS_VERITY_DESC_ITEM or
101  *             BTRFS_VERITY_MERKLE_ITEM)
102  *
103  * Before doing a verity enable we cleanup any existing verity items.
104  * This is also used to clean up if a verity enable failed half way through.
105  *
106  * Returns number of dropped items on success, negative error code on failure.
107  */
108 static int drop_verity_items(struct btrfs_inode *inode, u8 key_type)
109 {
110 	struct btrfs_trans_handle *trans;
111 	struct btrfs_root *root = inode->root;
112 	struct btrfs_path *path;
113 	struct btrfs_key key;
114 	int count = 0;
115 	int ret;
116 
117 	path = btrfs_alloc_path();
118 	if (!path)
119 		return -ENOMEM;
120 
121 	while (1) {
122 		/* 1 for the item being dropped */
123 		trans = btrfs_start_transaction(root, 1);
124 		if (IS_ERR(trans)) {
125 			ret = PTR_ERR(trans);
126 			goto out;
127 		}
128 
129 		/*
130 		 * Walk backwards through all the items until we find one that
131 		 * isn't from our key type or objectid
132 		 */
133 		key.objectid = btrfs_ino(inode);
134 		key.type = key_type;
135 		key.offset = (u64)-1;
136 
137 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
138 		if (ret > 0) {
139 			ret = 0;
140 			/* No more keys of this type, we're done */
141 			if (path->slots[0] == 0)
142 				break;
143 			path->slots[0]--;
144 		} else if (ret < 0) {
145 			btrfs_end_transaction(trans);
146 			goto out;
147 		}
148 
149 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
150 
151 		/* No more keys of this type, we're done */
152 		if (key.objectid != btrfs_ino(inode) || key.type != key_type)
153 			break;
154 
155 		/*
156 		 * This shouldn't be a performance sensitive function because
157 		 * it's not used as part of truncate.  If it ever becomes
158 		 * perf sensitive, change this to walk forward and bulk delete
159 		 * items
160 		 */
161 		ret = btrfs_del_items(trans, root, path, path->slots[0], 1);
162 		if (ret) {
163 			btrfs_end_transaction(trans);
164 			goto out;
165 		}
166 		count++;
167 		btrfs_release_path(path);
168 		btrfs_end_transaction(trans);
169 	}
170 	ret = count;
171 	btrfs_end_transaction(trans);
172 out:
173 	btrfs_free_path(path);
174 	return ret;
175 }
176 
177 /*
178  * Drop all verity items
179  *
180  * @inode:  inode to drop verity items for
181  *
182  * In most contexts where we are dropping verity items, we want to do it for all
183  * the types of verity items, not a particular one.
184  *
185  * Returns: 0 on success, negative error code on failure.
186  */
187 int btrfs_drop_verity_items(struct btrfs_inode *inode)
188 {
189 	int ret;
190 
191 	ret = drop_verity_items(inode, BTRFS_VERITY_DESC_ITEM_KEY);
192 	if (ret < 0)
193 		return ret;
194 	ret = drop_verity_items(inode, BTRFS_VERITY_MERKLE_ITEM_KEY);
195 	if (ret < 0)
196 		return ret;
197 
198 	return 0;
199 }
200 
201 /*
202  * Insert and write inode items with a given key type and offset.
203  *
204  * @inode:     inode to insert for
205  * @key_type:  key type to insert
206  * @offset:    item offset to insert at
207  * @src:       source data to write
208  * @len:       length of source data to write
209  *
210  * Write len bytes from src into items of up to 2K length.
211  * The inserted items will have key (ino, key_type, offset + off) where off is
212  * consecutively increasing from 0 up to the last item ending at offset + len.
213  *
214  * Returns 0 on success and a negative error code on failure.
215  */
216 static int write_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset,
217 			   const char *src, u64 len)
218 {
219 	struct btrfs_trans_handle *trans;
220 	struct btrfs_path *path;
221 	struct btrfs_root *root = inode->root;
222 	struct extent_buffer *leaf;
223 	struct btrfs_key key;
224 	unsigned long copy_bytes;
225 	unsigned long src_offset = 0;
226 	void *data;
227 	int ret = 0;
228 
229 	path = btrfs_alloc_path();
230 	if (!path)
231 		return -ENOMEM;
232 
233 	while (len > 0) {
234 		/* 1 for the new item being inserted */
235 		trans = btrfs_start_transaction(root, 1);
236 		if (IS_ERR(trans)) {
237 			ret = PTR_ERR(trans);
238 			break;
239 		}
240 
241 		key.objectid = btrfs_ino(inode);
242 		key.type = key_type;
243 		key.offset = offset;
244 
245 		/*
246 		 * Insert 2K at a time mostly to be friendly for smaller leaf
247 		 * size filesystems
248 		 */
249 		copy_bytes = min_t(u64, len, 2048);
250 
251 		ret = btrfs_insert_empty_item(trans, root, path, &key, copy_bytes);
252 		if (ret) {
253 			btrfs_end_transaction(trans);
254 			break;
255 		}
256 
257 		leaf = path->nodes[0];
258 
259 		data = btrfs_item_ptr(leaf, path->slots[0], void);
260 		write_extent_buffer(leaf, src + src_offset,
261 				    (unsigned long)data, copy_bytes);
262 		offset += copy_bytes;
263 		src_offset += copy_bytes;
264 		len -= copy_bytes;
265 
266 		btrfs_release_path(path);
267 		btrfs_end_transaction(trans);
268 	}
269 
270 	btrfs_free_path(path);
271 	return ret;
272 }
273 
274 /*
275  * Read inode items of the given key type and offset from the btree.
276  *
277  * @inode:      inode to read items of
278  * @key_type:   key type to read
279  * @offset:     item offset to read from
280  * @dest:       Buffer to read into. This parameter has slightly tricky
281  *              semantics.  If it is NULL, the function will not do any copying
282  *              and will just return the size of all the items up to len bytes.
283  *              If dest_page is passed, then the function will kmap_local the
284  *              page and ignore dest, but it must still be non-NULL to avoid the
285  *              counting-only behavior.
286  * @len:        length in bytes to read
287  * @dest_page:  copy into this page instead of the dest buffer
288  *
289  * Helper function to read items from the btree.  This returns the number of
290  * bytes read or < 0 for errors.  We can return short reads if the items don't
291  * exist on disk or aren't big enough to fill the desired length.  Supports
292  * reading into a provided buffer (dest) or into the page cache
293  *
294  * Returns number of bytes read or a negative error code on failure.
295  */
296 static int read_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset,
297 			  char *dest, u64 len, struct page *dest_page)
298 {
299 	struct btrfs_path *path;
300 	struct btrfs_root *root = inode->root;
301 	struct extent_buffer *leaf;
302 	struct btrfs_key key;
303 	u64 item_end;
304 	u64 copy_end;
305 	int copied = 0;
306 	u32 copy_offset;
307 	unsigned long copy_bytes;
308 	unsigned long dest_offset = 0;
309 	void *data;
310 	char *kaddr = dest;
311 	int ret;
312 
313 	path = btrfs_alloc_path();
314 	if (!path)
315 		return -ENOMEM;
316 
317 	if (dest_page)
318 		path->reada = READA_FORWARD;
319 
320 	key.objectid = btrfs_ino(inode);
321 	key.type = key_type;
322 	key.offset = offset;
323 
324 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
325 	if (ret < 0) {
326 		goto out;
327 	} else if (ret > 0) {
328 		ret = 0;
329 		if (path->slots[0] == 0)
330 			goto out;
331 		path->slots[0]--;
332 	}
333 
334 	while (len > 0) {
335 		leaf = path->nodes[0];
336 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
337 
338 		if (key.objectid != btrfs_ino(inode) || key.type != key_type)
339 			break;
340 
341 		item_end = btrfs_item_size(leaf, path->slots[0]) + key.offset;
342 
343 		if (copied > 0) {
344 			/*
345 			 * Once we've copied something, we want all of the items
346 			 * to be sequential
347 			 */
348 			if (key.offset != offset)
349 				break;
350 		} else {
351 			/*
352 			 * Our initial offset might be in the middle of an
353 			 * item.  Make sure it all makes sense.
354 			 */
355 			if (key.offset > offset)
356 				break;
357 			if (item_end <= offset)
358 				break;
359 		}
360 
361 		/* desc = NULL to just sum all the item lengths */
362 		if (!dest)
363 			copy_end = item_end;
364 		else
365 			copy_end = min(offset + len, item_end);
366 
367 		/* Number of bytes in this item we want to copy */
368 		copy_bytes = copy_end - offset;
369 
370 		/* Offset from the start of item for copying */
371 		copy_offset = offset - key.offset;
372 
373 		if (dest) {
374 			if (dest_page)
375 				kaddr = kmap_local_page(dest_page);
376 
377 			data = btrfs_item_ptr(leaf, path->slots[0], void);
378 			read_extent_buffer(leaf, kaddr + dest_offset,
379 					   (unsigned long)data + copy_offset,
380 					   copy_bytes);
381 
382 			if (dest_page)
383 				kunmap_local(kaddr);
384 		}
385 
386 		offset += copy_bytes;
387 		dest_offset += copy_bytes;
388 		len -= copy_bytes;
389 		copied += copy_bytes;
390 
391 		path->slots[0]++;
392 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
393 			/*
394 			 * We've reached the last slot in this leaf and we need
395 			 * to go to the next leaf.
396 			 */
397 			ret = btrfs_next_leaf(root, path);
398 			if (ret < 0) {
399 				break;
400 			} else if (ret > 0) {
401 				ret = 0;
402 				break;
403 			}
404 		}
405 	}
406 out:
407 	btrfs_free_path(path);
408 	if (!ret)
409 		ret = copied;
410 	return ret;
411 }
412 
413 /*
414  * Delete an fsverity orphan
415  *
416  * @trans:  transaction to do the delete in
417  * @inode:  inode to orphan
418  *
419  * Capture verity orphan specific logic that is repeated in the couple places
420  * we delete verity orphans. Specifically, handling ENOENT and ignoring inodes
421  * with 0 links.
422  *
423  * Returns zero on success or a negative error code on failure.
424  */
425 static int del_orphan(struct btrfs_trans_handle *trans, struct btrfs_inode *inode)
426 {
427 	struct btrfs_root *root = inode->root;
428 	int ret;
429 
430 	/*
431 	 * If the inode has no links, it is either already unlinked, or was
432 	 * created with O_TMPFILE. In either case, it should have an orphan from
433 	 * that other operation. Rather than reference count the orphans, we
434 	 * simply ignore them here, because we only invoke the verity path in
435 	 * the orphan logic when i_nlink is 1.
436 	 */
437 	if (!inode->vfs_inode.i_nlink)
438 		return 0;
439 
440 	ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
441 	if (ret == -ENOENT)
442 		ret = 0;
443 	return ret;
444 }
445 
446 /*
447  * Rollback in-progress verity if we encounter an error.
448  *
449  * @inode:  inode verity had an error for
450  *
451  * We try to handle recoverable errors while enabling verity by rolling it back
452  * and just failing the operation, rather than having an fs level error no
453  * matter what. However, any error in rollback is unrecoverable.
454  *
455  * Returns 0 on success, negative error code on failure.
456  */
457 static int rollback_verity(struct btrfs_inode *inode)
458 {
459 	struct btrfs_trans_handle *trans = NULL;
460 	struct btrfs_root *root = inode->root;
461 	int ret;
462 
463 	ASSERT(inode_is_locked(&inode->vfs_inode));
464 	truncate_inode_pages(inode->vfs_inode.i_mapping, inode->vfs_inode.i_size);
465 	clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
466 	ret = btrfs_drop_verity_items(inode);
467 	if (ret) {
468 		btrfs_handle_fs_error(root->fs_info, ret,
469 				"failed to drop verity items in rollback %llu",
470 				(u64)inode->vfs_inode.i_ino);
471 		goto out;
472 	}
473 
474 	/*
475 	 * 1 for updating the inode flag
476 	 * 1 for deleting the orphan
477 	 */
478 	trans = btrfs_start_transaction(root, 2);
479 	if (IS_ERR(trans)) {
480 		ret = PTR_ERR(trans);
481 		trans = NULL;
482 		btrfs_handle_fs_error(root->fs_info, ret,
483 			"failed to start transaction in verity rollback %llu",
484 			(u64)inode->vfs_inode.i_ino);
485 		goto out;
486 	}
487 	inode->ro_flags &= ~BTRFS_INODE_RO_VERITY;
488 	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
489 	ret = btrfs_update_inode(trans, inode);
490 	if (ret) {
491 		btrfs_abort_transaction(trans, ret);
492 		goto out;
493 	}
494 	ret = del_orphan(trans, inode);
495 	if (ret) {
496 		btrfs_abort_transaction(trans, ret);
497 		goto out;
498 	}
499 out:
500 	if (trans)
501 		btrfs_end_transaction(trans);
502 	return ret;
503 }
504 
505 /*
506  * Finalize making the file a valid verity file
507  *
508  * @inode:      inode to be marked as verity
509  * @desc:       contents of the verity descriptor to write (not NULL)
510  * @desc_size:  size of the verity descriptor
511  *
512  * Do the actual work of finalizing verity after successfully writing the Merkle
513  * tree:
514  *
515  * - write out the descriptor items
516  * - mark the inode with the verity flag
517  * - delete the orphan item
518  * - mark the ro compat bit
519  * - clear the in progress bit
520  *
521  * Returns 0 on success, negative error code on failure.
522  */
523 static int finish_verity(struct btrfs_inode *inode, const void *desc,
524 			 size_t desc_size)
525 {
526 	struct btrfs_trans_handle *trans = NULL;
527 	struct btrfs_root *root = inode->root;
528 	struct btrfs_verity_descriptor_item item;
529 	int ret;
530 
531 	/* Write out the descriptor item */
532 	memset(&item, 0, sizeof(item));
533 	btrfs_set_stack_verity_descriptor_size(&item, desc_size);
534 	ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 0,
535 			      (const char *)&item, sizeof(item));
536 	if (ret)
537 		goto out;
538 
539 	/* Write out the descriptor itself */
540 	ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 1,
541 			      desc, desc_size);
542 	if (ret)
543 		goto out;
544 
545 	/*
546 	 * 1 for updating the inode flag
547 	 * 1 for deleting the orphan
548 	 */
549 	trans = btrfs_start_transaction(root, 2);
550 	if (IS_ERR(trans)) {
551 		ret = PTR_ERR(trans);
552 		goto out;
553 	}
554 	inode->ro_flags |= BTRFS_INODE_RO_VERITY;
555 	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
556 	ret = btrfs_update_inode(trans, inode);
557 	if (ret)
558 		goto end_trans;
559 	ret = del_orphan(trans, inode);
560 	if (ret)
561 		goto end_trans;
562 	clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
563 	btrfs_set_fs_compat_ro(root->fs_info, VERITY);
564 end_trans:
565 	btrfs_end_transaction(trans);
566 out:
567 	return ret;
568 
569 }
570 
571 /*
572  * fsverity op that begins enabling verity.
573  *
574  * @filp:  file to enable verity on
575  *
576  * Begin enabling fsverity for the file. We drop any existing verity items, add
577  * an orphan and set the in progress bit.
578  *
579  * Returns 0 on success, negative error code on failure.
580  */
581 static int btrfs_begin_enable_verity(struct file *filp)
582 {
583 	struct btrfs_inode *inode = BTRFS_I(file_inode(filp));
584 	struct btrfs_root *root = inode->root;
585 	struct btrfs_trans_handle *trans;
586 	int ret;
587 
588 	ASSERT(inode_is_locked(file_inode(filp)));
589 
590 	if (test_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags))
591 		return -EBUSY;
592 
593 	/*
594 	 * This should almost never do anything, but theoretically, it's
595 	 * possible that we failed to enable verity on a file, then were
596 	 * interrupted or failed while rolling back, failed to cleanup the
597 	 * orphan, and finally attempt to enable verity again.
598 	 */
599 	ret = btrfs_drop_verity_items(inode);
600 	if (ret)
601 		return ret;
602 
603 	/* 1 for the orphan item */
604 	trans = btrfs_start_transaction(root, 1);
605 	if (IS_ERR(trans))
606 		return PTR_ERR(trans);
607 
608 	ret = btrfs_orphan_add(trans, inode);
609 	if (!ret)
610 		set_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
611 	btrfs_end_transaction(trans);
612 
613 	return 0;
614 }
615 
616 /*
617  * fsverity op that ends enabling verity.
618  *
619  * @filp:              file we are finishing enabling verity on
620  * @desc:              verity descriptor to write out (NULL in error conditions)
621  * @desc_size:         size of the verity descriptor (variable with signatures)
622  * @merkle_tree_size:  size of the merkle tree in bytes
623  *
624  * If desc is null, then VFS is signaling an error occurred during verity
625  * enable, and we should try to rollback. Otherwise, attempt to finish verity.
626  *
627  * Returns 0 on success, negative error code on error.
628  */
629 static int btrfs_end_enable_verity(struct file *filp, const void *desc,
630 				   size_t desc_size, u64 merkle_tree_size)
631 {
632 	struct btrfs_inode *inode = BTRFS_I(file_inode(filp));
633 	int ret = 0;
634 	int rollback_ret;
635 
636 	ASSERT(inode_is_locked(file_inode(filp)));
637 
638 	if (desc == NULL)
639 		goto rollback;
640 
641 	ret = finish_verity(inode, desc, desc_size);
642 	if (ret)
643 		goto rollback;
644 	return ret;
645 
646 rollback:
647 	rollback_ret = rollback_verity(inode);
648 	if (rollback_ret)
649 		btrfs_err(inode->root->fs_info,
650 			  "failed to rollback verity items: %d", rollback_ret);
651 	return ret;
652 }
653 
654 /*
655  * fsverity op that gets the struct fsverity_descriptor.
656  *
657  * @inode:     inode to get the descriptor of
658  * @buf:       output buffer for the descriptor contents
659  * @buf_size:  size of the output buffer. 0 to query the size
660  *
661  * fsverity does a two pass setup for reading the descriptor, in the first pass
662  * it calls with buf_size = 0 to query the size of the descriptor, and then in
663  * the second pass it actually reads the descriptor off disk.
664  *
665  * Returns the size on success or a negative error code on failure.
666  */
667 int btrfs_get_verity_descriptor(struct inode *inode, void *buf, size_t buf_size)
668 {
669 	u64 true_size;
670 	int ret = 0;
671 	struct btrfs_verity_descriptor_item item;
672 
673 	memset(&item, 0, sizeof(item));
674 	ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 0,
675 			     (char *)&item, sizeof(item), NULL);
676 	if (ret < 0)
677 		return ret;
678 
679 	if (item.reserved[0] != 0 || item.reserved[1] != 0)
680 		return -EUCLEAN;
681 
682 	true_size = btrfs_stack_verity_descriptor_size(&item);
683 	if (true_size > INT_MAX)
684 		return -EUCLEAN;
685 
686 	if (buf_size == 0)
687 		return true_size;
688 	if (buf_size < true_size)
689 		return -ERANGE;
690 
691 	ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 1,
692 			     buf, buf_size, NULL);
693 	if (ret < 0)
694 		return ret;
695 	if (ret != true_size)
696 		return -EIO;
697 
698 	return true_size;
699 }
700 
701 /*
702  * fsverity op that reads and caches a merkle tree page.
703  *
704  * @inode:         inode to read a merkle tree page for
705  * @index:         page index relative to the start of the merkle tree
706  * @num_ra_pages:  number of pages to readahead. Optional, we ignore it
707  *
708  * The Merkle tree is stored in the filesystem btree, but its pages are cached
709  * with a logical position past EOF in the inode's mapping.
710  *
711  * Returns the page we read, or an ERR_PTR on error.
712  */
713 static struct page *btrfs_read_merkle_tree_page(struct inode *inode,
714 						pgoff_t index,
715 						unsigned long num_ra_pages)
716 {
717 	struct folio *folio;
718 	u64 off = (u64)index << PAGE_SHIFT;
719 	loff_t merkle_pos = merkle_file_pos(inode);
720 	int ret;
721 
722 	if (merkle_pos < 0)
723 		return ERR_PTR(merkle_pos);
724 	if (merkle_pos > inode->i_sb->s_maxbytes - off - PAGE_SIZE)
725 		return ERR_PTR(-EFBIG);
726 	index += merkle_pos >> PAGE_SHIFT;
727 again:
728 	folio = __filemap_get_folio(inode->i_mapping, index, FGP_ACCESSED, 0);
729 	if (!IS_ERR(folio)) {
730 		if (folio_test_uptodate(folio))
731 			goto out;
732 
733 		folio_lock(folio);
734 		/* If it's not uptodate after we have the lock, we got a read error. */
735 		if (!folio_test_uptodate(folio)) {
736 			folio_unlock(folio);
737 			folio_put(folio);
738 			return ERR_PTR(-EIO);
739 		}
740 		folio_unlock(folio);
741 		goto out;
742 	}
743 
744 	folio = filemap_alloc_folio(mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS),
745 				    0);
746 	if (!folio)
747 		return ERR_PTR(-ENOMEM);
748 
749 	ret = filemap_add_folio(inode->i_mapping, folio, index, GFP_NOFS);
750 	if (ret) {
751 		folio_put(folio);
752 		/* Did someone else insert a folio here? */
753 		if (ret == -EEXIST)
754 			goto again;
755 		return ERR_PTR(ret);
756 	}
757 
758 	/*
759 	 * Merkle item keys are indexed from byte 0 in the merkle tree.
760 	 * They have the form:
761 	 *
762 	 * [ inode objectid, BTRFS_MERKLE_ITEM_KEY, offset in bytes ]
763 	 */
764 	ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY, off,
765 			     folio_address(folio), PAGE_SIZE, &folio->page);
766 	if (ret < 0) {
767 		folio_put(folio);
768 		return ERR_PTR(ret);
769 	}
770 	if (ret < PAGE_SIZE)
771 		folio_zero_segment(folio, ret, PAGE_SIZE);
772 
773 	folio_mark_uptodate(folio);
774 	folio_unlock(folio);
775 
776 out:
777 	return folio_file_page(folio, index);
778 }
779 
780 /*
781  * fsverity op that writes a Merkle tree block into the btree.
782  *
783  * @inode:	inode to write a Merkle tree block for
784  * @buf:	Merkle tree block to write
785  * @pos:	the position of the block in the Merkle tree (in bytes)
786  * @size:	the Merkle tree block size (in bytes)
787  *
788  * Returns 0 on success or negative error code on failure
789  */
790 static int btrfs_write_merkle_tree_block(struct inode *inode, const void *buf,
791 					 u64 pos, unsigned int size)
792 {
793 	loff_t merkle_pos = merkle_file_pos(inode);
794 
795 	if (merkle_pos < 0)
796 		return merkle_pos;
797 	if (merkle_pos > inode->i_sb->s_maxbytes - pos - size)
798 		return -EFBIG;
799 
800 	return write_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY,
801 			       pos, buf, size);
802 }
803 
804 const struct fsverity_operations btrfs_verityops = {
805 	.begin_enable_verity     = btrfs_begin_enable_verity,
806 	.end_enable_verity       = btrfs_end_enable_verity,
807 	.get_verity_descriptor   = btrfs_get_verity_descriptor,
808 	.read_merkle_tree_page   = btrfs_read_merkle_tree_page,
809 	.write_merkle_tree_block = btrfs_write_merkle_tree_block,
810 };
811