1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/init.h> 4 #include <linux/fs.h> 5 #include <linux/slab.h> 6 #include <linux/rwsem.h> 7 #include <linux/xattr.h> 8 #include <linux/security.h> 9 #include <linux/posix_acl_xattr.h> 10 #include <linux/iversion.h> 11 #include <linux/fsverity.h> 12 #include <linux/sched/mm.h> 13 #include "messages.h" 14 #include "ctree.h" 15 #include "btrfs_inode.h" 16 #include "transaction.h" 17 #include "locking.h" 18 #include "fs.h" 19 #include "accessors.h" 20 #include "ioctl.h" 21 #include "verity.h" 22 #include "orphan.h" 23 24 /* 25 * Implementation of the interface defined in struct fsverity_operations. 26 * 27 * The main question is how and where to store the verity descriptor and the 28 * Merkle tree. We store both in dedicated btree items in the filesystem tree, 29 * together with the rest of the inode metadata. This means we'll need to do 30 * extra work to encrypt them once encryption is supported in btrfs, but btrfs 31 * has a lot of careful code around i_size and it seems better to make a new key 32 * type than try and adjust all of our expectations for i_size. 33 * 34 * Note that this differs from the implementation in ext4 and f2fs, where 35 * this data is stored as if it were in the file, but past EOF. However, btrfs 36 * does not have a widespread mechanism for caching opaque metadata pages, so we 37 * do pretend that the Merkle tree pages themselves are past EOF for the 38 * purposes of caching them (as opposed to creating a virtual inode). 39 * 40 * fs verity items are stored under two different key types on disk. 41 * The descriptor items: 42 * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ] 43 * 44 * At offset 0, we store a btrfs_verity_descriptor_item which tracks the 45 * size of the descriptor item and some extra data for encryption. 46 * Starting at offset 1, these hold the generic fs verity descriptor. 47 * The latter are opaque to btrfs, we just read and write them as a blob for 48 * the higher level verity code. The most common descriptor size is 256 bytes. 49 * 50 * The merkle tree items: 51 * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ] 52 * 53 * These also start at offset 0, and correspond to the merkle tree bytes. 54 * So when fsverity asks for page 0 of the merkle tree, we pull up one page 55 * starting at offset 0 for this key type. These are also opaque to btrfs, 56 * we're blindly storing whatever fsverity sends down. 57 * 58 * Another important consideration is the fact that the Merkle tree data scales 59 * linearly with the size of the file (with 4K pages/blocks and SHA-256, it's 60 * ~1/127th the size) so for large files, writing the tree can be a lengthy 61 * operation. For that reason, we guard the whole enable verity operation 62 * (between begin_enable_verity and end_enable_verity) with an orphan item. 63 * Again, because the data can be pretty large, it's quite possible that we 64 * could run out of space writing it, so we try our best to handle errors by 65 * stopping and rolling back rather than aborting the victim transaction. 66 */ 67 68 #define MERKLE_START_ALIGN 65536 69 70 /* 71 * Compute the logical file offset where we cache the Merkle tree. 72 * 73 * @inode: inode of the verity file 74 * 75 * For the purposes of caching the Merkle tree pages, as required by 76 * fs-verity, it is convenient to do size computations in terms of a file 77 * offset, rather than in terms of page indices. 78 * 79 * Use 64K to be sure it's past the last page in the file, even with 64K pages. 80 * That rounding operation itself can overflow loff_t, so we do it in u64 and 81 * check. 82 * 83 * Returns the file offset on success, negative error code on failure. 84 */ 85 static loff_t merkle_file_pos(const struct inode *inode) 86 { 87 u64 sz = inode->i_size; 88 u64 rounded = round_up(sz, MERKLE_START_ALIGN); 89 90 if (rounded > inode->i_sb->s_maxbytes) 91 return -EFBIG; 92 93 return rounded; 94 } 95 96 /* 97 * Drop all the items for this inode with this key_type. 98 * 99 * @inode: inode to drop items for 100 * @key_type: type of items to drop (BTRFS_VERITY_DESC_ITEM or 101 * BTRFS_VERITY_MERKLE_ITEM) 102 * 103 * Before doing a verity enable we cleanup any existing verity items. 104 * This is also used to clean up if a verity enable failed half way through. 105 * 106 * Returns number of dropped items on success, negative error code on failure. 107 */ 108 static int drop_verity_items(struct btrfs_inode *inode, u8 key_type) 109 { 110 struct btrfs_trans_handle *trans; 111 struct btrfs_root *root = inode->root; 112 BTRFS_PATH_AUTO_FREE(path); 113 struct btrfs_key key; 114 int count = 0; 115 int ret; 116 117 path = btrfs_alloc_path(); 118 if (!path) 119 return -ENOMEM; 120 121 while (1) { 122 /* 1 for the item being dropped */ 123 trans = btrfs_start_transaction(root, 1); 124 if (IS_ERR(trans)) 125 return PTR_ERR(trans); 126 127 /* 128 * Walk backwards through all the items until we find one that 129 * isn't from our key type or objectid 130 */ 131 key.objectid = btrfs_ino(inode); 132 key.type = key_type; 133 key.offset = (u64)-1; 134 135 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 136 if (ret > 0) { 137 ret = 0; 138 /* No more keys of this type, we're done */ 139 if (path->slots[0] == 0) 140 break; 141 path->slots[0]--; 142 } else if (ret < 0) { 143 btrfs_end_transaction(trans); 144 return ret; 145 } 146 147 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 148 149 /* No more keys of this type, we're done */ 150 if (key.objectid != btrfs_ino(inode) || key.type != key_type) 151 break; 152 153 /* 154 * This shouldn't be a performance sensitive function because 155 * it's not used as part of truncate. If it ever becomes 156 * perf sensitive, change this to walk forward and bulk delete 157 * items 158 */ 159 ret = btrfs_del_items(trans, root, path, path->slots[0], 1); 160 if (ret) { 161 btrfs_end_transaction(trans); 162 return ret; 163 } 164 count++; 165 btrfs_release_path(path); 166 btrfs_end_transaction(trans); 167 } 168 btrfs_end_transaction(trans); 169 return count; 170 } 171 172 /* 173 * Drop all verity items 174 * 175 * @inode: inode to drop verity items for 176 * 177 * In most contexts where we are dropping verity items, we want to do it for all 178 * the types of verity items, not a particular one. 179 * 180 * Returns: 0 on success, negative error code on failure. 181 */ 182 int btrfs_drop_verity_items(struct btrfs_inode *inode) 183 { 184 int ret; 185 186 ret = drop_verity_items(inode, BTRFS_VERITY_DESC_ITEM_KEY); 187 if (ret < 0) 188 return ret; 189 ret = drop_verity_items(inode, BTRFS_VERITY_MERKLE_ITEM_KEY); 190 if (ret < 0) 191 return ret; 192 193 return 0; 194 } 195 196 /* 197 * Insert and write inode items with a given key type and offset. 198 * 199 * @inode: inode to insert for 200 * @key_type: key type to insert 201 * @offset: item offset to insert at 202 * @src: source data to write 203 * @len: length of source data to write 204 * 205 * Write len bytes from src into items of up to 2K length. 206 * The inserted items will have key (ino, key_type, offset + off) where off is 207 * consecutively increasing from 0 up to the last item ending at offset + len. 208 * 209 * Returns 0 on success and a negative error code on failure. 210 */ 211 static int write_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset, 212 const char *src, u64 len) 213 { 214 struct btrfs_trans_handle *trans; 215 BTRFS_PATH_AUTO_FREE(path); 216 struct btrfs_root *root = inode->root; 217 struct extent_buffer *leaf; 218 struct btrfs_key key; 219 unsigned long copy_bytes; 220 unsigned long src_offset = 0; 221 void *data; 222 int ret = 0; 223 224 path = btrfs_alloc_path(); 225 if (!path) 226 return -ENOMEM; 227 228 while (len > 0) { 229 /* 1 for the new item being inserted */ 230 trans = btrfs_start_transaction(root, 1); 231 if (IS_ERR(trans)) 232 return PTR_ERR(trans); 233 234 key.objectid = btrfs_ino(inode); 235 key.type = key_type; 236 key.offset = offset; 237 238 /* 239 * Insert 2K at a time mostly to be friendly for smaller leaf 240 * size filesystems 241 */ 242 copy_bytes = min_t(u64, len, 2048); 243 244 ret = btrfs_insert_empty_item(trans, root, path, &key, copy_bytes); 245 if (ret) { 246 btrfs_end_transaction(trans); 247 break; 248 } 249 250 leaf = path->nodes[0]; 251 252 data = btrfs_item_ptr(leaf, path->slots[0], void); 253 write_extent_buffer(leaf, src + src_offset, 254 (unsigned long)data, copy_bytes); 255 offset += copy_bytes; 256 src_offset += copy_bytes; 257 len -= copy_bytes; 258 259 btrfs_release_path(path); 260 btrfs_end_transaction(trans); 261 } 262 263 return ret; 264 } 265 266 /* 267 * Read inode items of the given key type and offset from the btree. 268 * 269 * @inode: inode to read items of 270 * @key_type: key type to read 271 * @offset: item offset to read from 272 * @dest: Buffer to read into. This parameter has slightly tricky 273 * semantics. If it is NULL, the function will not do any copying 274 * and will just return the size of all the items up to len bytes. 275 * If dest_page is passed, then the function will kmap_local the 276 * page and ignore dest, but it must still be non-NULL to avoid the 277 * counting-only behavior. 278 * @len: length in bytes to read 279 * @dest_folio: copy into this folio instead of the dest buffer 280 * 281 * Helper function to read items from the btree. This returns the number of 282 * bytes read or < 0 for errors. We can return short reads if the items don't 283 * exist on disk or aren't big enough to fill the desired length. Supports 284 * reading into a provided buffer (dest) or into the page cache 285 * 286 * Returns number of bytes read or a negative error code on failure. 287 */ 288 static int read_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset, 289 char *dest, u64 len, struct folio *dest_folio) 290 { 291 BTRFS_PATH_AUTO_FREE(path); 292 struct btrfs_root *root = inode->root; 293 struct extent_buffer *leaf; 294 struct btrfs_key key; 295 u64 item_end; 296 u64 copy_end; 297 int copied = 0; 298 u32 copy_offset; 299 unsigned long copy_bytes; 300 unsigned long dest_offset = 0; 301 void *data; 302 char *kaddr = dest; 303 int ret; 304 305 path = btrfs_alloc_path(); 306 if (!path) 307 return -ENOMEM; 308 309 if (dest_folio) 310 path->reada = READA_FORWARD; 311 312 key.objectid = btrfs_ino(inode); 313 key.type = key_type; 314 key.offset = offset; 315 316 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 317 if (ret < 0) { 318 goto out; 319 } else if (ret > 0) { 320 ret = 0; 321 if (path->slots[0] == 0) 322 goto out; 323 path->slots[0]--; 324 } 325 326 while (len > 0) { 327 leaf = path->nodes[0]; 328 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 329 330 if (key.objectid != btrfs_ino(inode) || key.type != key_type) 331 break; 332 333 item_end = btrfs_item_size(leaf, path->slots[0]) + key.offset; 334 335 if (copied > 0) { 336 /* 337 * Once we've copied something, we want all of the items 338 * to be sequential 339 */ 340 if (key.offset != offset) 341 break; 342 } else { 343 /* 344 * Our initial offset might be in the middle of an 345 * item. Make sure it all makes sense. 346 */ 347 if (key.offset > offset) 348 break; 349 if (item_end <= offset) 350 break; 351 } 352 353 /* desc = NULL to just sum all the item lengths */ 354 if (!dest) 355 copy_end = item_end; 356 else 357 copy_end = min(offset + len, item_end); 358 359 /* Number of bytes in this item we want to copy */ 360 copy_bytes = copy_end - offset; 361 362 /* Offset from the start of item for copying */ 363 copy_offset = offset - key.offset; 364 365 if (dest) { 366 if (dest_folio) 367 kaddr = kmap_local_folio(dest_folio, 0); 368 369 data = btrfs_item_ptr(leaf, path->slots[0], void); 370 read_extent_buffer(leaf, kaddr + dest_offset, 371 (unsigned long)data + copy_offset, 372 copy_bytes); 373 374 if (dest_folio) 375 kunmap_local(kaddr); 376 } 377 378 offset += copy_bytes; 379 dest_offset += copy_bytes; 380 len -= copy_bytes; 381 copied += copy_bytes; 382 383 path->slots[0]++; 384 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 385 /* 386 * We've reached the last slot in this leaf and we need 387 * to go to the next leaf. 388 */ 389 ret = btrfs_next_leaf(root, path); 390 if (ret < 0) { 391 break; 392 } else if (ret > 0) { 393 ret = 0; 394 break; 395 } 396 } 397 } 398 out: 399 if (!ret) 400 ret = copied; 401 return ret; 402 } 403 404 /* 405 * Delete an fsverity orphan 406 * 407 * @trans: transaction to do the delete in 408 * @inode: inode to orphan 409 * 410 * Capture verity orphan specific logic that is repeated in the couple places 411 * we delete verity orphans. Specifically, handling ENOENT and ignoring inodes 412 * with 0 links. 413 * 414 * Returns zero on success or a negative error code on failure. 415 */ 416 static int del_orphan(struct btrfs_trans_handle *trans, struct btrfs_inode *inode) 417 { 418 struct btrfs_root *root = inode->root; 419 int ret; 420 421 /* 422 * If the inode has no links, it is either already unlinked, or was 423 * created with O_TMPFILE. In either case, it should have an orphan from 424 * that other operation. Rather than reference count the orphans, we 425 * simply ignore them here, because we only invoke the verity path in 426 * the orphan logic when i_nlink is 1. 427 */ 428 if (!inode->vfs_inode.i_nlink) 429 return 0; 430 431 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); 432 if (ret == -ENOENT) 433 ret = 0; 434 return ret; 435 } 436 437 /* 438 * Rollback in-progress verity if we encounter an error. 439 * 440 * @inode: inode verity had an error for 441 * 442 * We try to handle recoverable errors while enabling verity by rolling it back 443 * and just failing the operation, rather than having an fs level error no 444 * matter what. However, any error in rollback is unrecoverable. 445 * 446 * Returns 0 on success, negative error code on failure. 447 */ 448 static int rollback_verity(struct btrfs_inode *inode) 449 { 450 struct btrfs_trans_handle *trans = NULL; 451 struct btrfs_root *root = inode->root; 452 int ret; 453 454 btrfs_assert_inode_locked(inode); 455 truncate_inode_pages(inode->vfs_inode.i_mapping, inode->vfs_inode.i_size); 456 clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags); 457 ret = btrfs_drop_verity_items(inode); 458 if (ret) { 459 btrfs_handle_fs_error(root->fs_info, ret, 460 "failed to drop verity items in rollback %llu", 461 (u64)inode->vfs_inode.i_ino); 462 goto out; 463 } 464 465 /* 466 * 1 for updating the inode flag 467 * 1 for deleting the orphan 468 */ 469 trans = btrfs_start_transaction(root, 2); 470 if (IS_ERR(trans)) { 471 ret = PTR_ERR(trans); 472 trans = NULL; 473 btrfs_handle_fs_error(root->fs_info, ret, 474 "failed to start transaction in verity rollback %llu", 475 (u64)inode->vfs_inode.i_ino); 476 goto out; 477 } 478 inode->ro_flags &= ~BTRFS_INODE_RO_VERITY; 479 btrfs_sync_inode_flags_to_i_flags(inode); 480 ret = btrfs_update_inode(trans, inode); 481 if (unlikely(ret)) { 482 btrfs_abort_transaction(trans, ret); 483 goto out; 484 } 485 ret = del_orphan(trans, inode); 486 if (unlikely(ret)) { 487 btrfs_abort_transaction(trans, ret); 488 goto out; 489 } 490 out: 491 if (trans) 492 btrfs_end_transaction(trans); 493 return ret; 494 } 495 496 /* 497 * Finalize making the file a valid verity file 498 * 499 * @inode: inode to be marked as verity 500 * @desc: contents of the verity descriptor to write (not NULL) 501 * @desc_size: size of the verity descriptor 502 * 503 * Do the actual work of finalizing verity after successfully writing the Merkle 504 * tree: 505 * 506 * - write out the descriptor items 507 * - mark the inode with the verity flag 508 * - delete the orphan item 509 * - mark the ro compat bit 510 * - clear the in progress bit 511 * 512 * Returns 0 on success, negative error code on failure. 513 */ 514 static int finish_verity(struct btrfs_inode *inode, const void *desc, 515 size_t desc_size) 516 { 517 struct btrfs_trans_handle *trans = NULL; 518 struct btrfs_root *root = inode->root; 519 struct btrfs_verity_descriptor_item item; 520 int ret; 521 522 /* Write out the descriptor item */ 523 memset(&item, 0, sizeof(item)); 524 btrfs_set_stack_verity_descriptor_size(&item, desc_size); 525 ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 0, 526 (const char *)&item, sizeof(item)); 527 if (ret) 528 goto out; 529 530 /* Write out the descriptor itself */ 531 ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 1, 532 desc, desc_size); 533 if (ret) 534 goto out; 535 536 /* 537 * 1 for updating the inode flag 538 * 1 for deleting the orphan 539 */ 540 trans = btrfs_start_transaction(root, 2); 541 if (IS_ERR(trans)) { 542 ret = PTR_ERR(trans); 543 goto out; 544 } 545 inode->ro_flags |= BTRFS_INODE_RO_VERITY; 546 btrfs_sync_inode_flags_to_i_flags(inode); 547 ret = btrfs_update_inode(trans, inode); 548 if (ret) 549 goto end_trans; 550 ret = del_orphan(trans, inode); 551 if (ret) 552 goto end_trans; 553 clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags); 554 btrfs_set_fs_compat_ro(root->fs_info, VERITY); 555 end_trans: 556 btrfs_end_transaction(trans); 557 out: 558 return ret; 559 560 } 561 562 /* 563 * fsverity op that begins enabling verity. 564 * 565 * @filp: file to enable verity on 566 * 567 * Begin enabling fsverity for the file. We drop any existing verity items, add 568 * an orphan and set the in progress bit. 569 * 570 * Returns 0 on success, negative error code on failure. 571 */ 572 static int btrfs_begin_enable_verity(struct file *filp) 573 { 574 struct btrfs_inode *inode = BTRFS_I(file_inode(filp)); 575 struct btrfs_root *root = inode->root; 576 struct btrfs_trans_handle *trans; 577 int ret; 578 579 btrfs_assert_inode_locked(inode); 580 581 if (IS_ENCRYPTED(&inode->vfs_inode)) 582 return -EOPNOTSUPP; 583 584 if (test_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags)) 585 return -EBUSY; 586 587 /* 588 * This should almost never do anything, but theoretically, it's 589 * possible that we failed to enable verity on a file, then were 590 * interrupted or failed while rolling back, failed to cleanup the 591 * orphan, and finally attempt to enable verity again. 592 */ 593 ret = btrfs_drop_verity_items(inode); 594 if (ret) 595 return ret; 596 597 /* 1 for the orphan item */ 598 trans = btrfs_start_transaction(root, 1); 599 if (IS_ERR(trans)) 600 return PTR_ERR(trans); 601 602 ret = btrfs_orphan_add(trans, inode); 603 if (!ret) 604 set_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags); 605 btrfs_end_transaction(trans); 606 607 return 0; 608 } 609 610 /* 611 * fsverity op that ends enabling verity. 612 * 613 * @filp: file we are finishing enabling verity on 614 * @desc: verity descriptor to write out (NULL in error conditions) 615 * @desc_size: size of the verity descriptor (variable with signatures) 616 * @merkle_tree_size: size of the merkle tree in bytes 617 * 618 * If desc is null, then VFS is signaling an error occurred during verity 619 * enable, and we should try to rollback. Otherwise, attempt to finish verity. 620 * 621 * Returns 0 on success, negative error code on error. 622 */ 623 static int btrfs_end_enable_verity(struct file *filp, const void *desc, 624 size_t desc_size, u64 merkle_tree_size) 625 { 626 struct btrfs_inode *inode = BTRFS_I(file_inode(filp)); 627 int ret = 0; 628 int rollback_ret; 629 630 btrfs_assert_inode_locked(inode); 631 632 if (desc == NULL) 633 goto rollback; 634 635 ret = finish_verity(inode, desc, desc_size); 636 if (ret) 637 goto rollback; 638 return ret; 639 640 rollback: 641 rollback_ret = rollback_verity(inode); 642 if (rollback_ret) 643 btrfs_err(inode->root->fs_info, 644 "failed to rollback verity items: %d", rollback_ret); 645 return ret; 646 } 647 648 /* 649 * fsverity op that gets the struct fsverity_descriptor. 650 * 651 * @inode: inode to get the descriptor of 652 * @buf: output buffer for the descriptor contents 653 * @buf_size: size of the output buffer. 0 to query the size 654 * 655 * fsverity does a two pass setup for reading the descriptor, in the first pass 656 * it calls with buf_size = 0 to query the size of the descriptor, and then in 657 * the second pass it actually reads the descriptor off disk. 658 * 659 * Returns the size on success or a negative error code on failure. 660 */ 661 int btrfs_get_verity_descriptor(struct inode *inode, void *buf, size_t buf_size) 662 { 663 u64 true_size; 664 int ret = 0; 665 struct btrfs_verity_descriptor_item item; 666 667 memset(&item, 0, sizeof(item)); 668 ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 0, 669 (char *)&item, sizeof(item), NULL); 670 if (ret < 0) 671 return ret; 672 673 if (unlikely(item.reserved[0] != 0 || item.reserved[1] != 0)) 674 return -EUCLEAN; 675 676 true_size = btrfs_stack_verity_descriptor_size(&item); 677 if (unlikely(true_size > INT_MAX)) 678 return -EUCLEAN; 679 680 if (buf_size == 0) 681 return true_size; 682 if (buf_size < true_size) 683 return -ERANGE; 684 685 ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 1, 686 buf, buf_size, NULL); 687 if (ret < 0) 688 return ret; 689 if (ret != true_size) 690 return -EIO; 691 692 return true_size; 693 } 694 695 /* 696 * fsverity op that reads and caches a merkle tree page. 697 * 698 * @inode: inode to read a merkle tree page for 699 * @index: page index relative to the start of the merkle tree 700 * @num_ra_pages: number of pages to readahead. Optional, we ignore it 701 * 702 * The Merkle tree is stored in the filesystem btree, but its pages are cached 703 * with a logical position past EOF in the inode's mapping. 704 * 705 * Returns the page we read, or an ERR_PTR on error. 706 */ 707 static struct page *btrfs_read_merkle_tree_page(struct inode *inode, 708 pgoff_t index, 709 unsigned long num_ra_pages) 710 { 711 struct folio *folio; 712 u64 off = (u64)index << PAGE_SHIFT; 713 loff_t merkle_pos = merkle_file_pos(inode); 714 int ret; 715 716 if (merkle_pos < 0) 717 return ERR_PTR(merkle_pos); 718 if (merkle_pos > inode->i_sb->s_maxbytes - off - PAGE_SIZE) 719 return ERR_PTR(-EFBIG); 720 index += merkle_pos >> PAGE_SHIFT; 721 again: 722 folio = __filemap_get_folio(inode->i_mapping, index, FGP_ACCESSED, 0); 723 if (!IS_ERR(folio)) { 724 if (folio_test_uptodate(folio)) 725 goto out; 726 727 folio_lock(folio); 728 /* If it's not uptodate after we have the lock, we got a read error. */ 729 if (!folio_test_uptodate(folio)) { 730 folio_unlock(folio); 731 folio_put(folio); 732 return ERR_PTR(-EIO); 733 } 734 folio_unlock(folio); 735 goto out; 736 } 737 738 folio = filemap_alloc_folio(mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS), 739 0); 740 if (!folio) 741 return ERR_PTR(-ENOMEM); 742 743 ret = filemap_add_folio(inode->i_mapping, folio, index, GFP_NOFS); 744 if (ret) { 745 folio_put(folio); 746 /* Did someone else insert a folio here? */ 747 if (ret == -EEXIST) 748 goto again; 749 return ERR_PTR(ret); 750 } 751 752 /* 753 * Merkle item keys are indexed from byte 0 in the merkle tree. 754 * They have the form: 755 * 756 * [ inode objectid, BTRFS_MERKLE_ITEM_KEY, offset in bytes ] 757 */ 758 ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY, off, 759 folio_address(folio), PAGE_SIZE, folio); 760 if (ret < 0) { 761 folio_put(folio); 762 return ERR_PTR(ret); 763 } 764 if (ret < PAGE_SIZE) 765 folio_zero_segment(folio, ret, PAGE_SIZE); 766 767 folio_mark_uptodate(folio); 768 folio_unlock(folio); 769 770 out: 771 return folio_file_page(folio, index); 772 } 773 774 /* 775 * fsverity op that writes a Merkle tree block into the btree. 776 * 777 * @inode: inode to write a Merkle tree block for 778 * @buf: Merkle tree block to write 779 * @pos: the position of the block in the Merkle tree (in bytes) 780 * @size: the Merkle tree block size (in bytes) 781 * 782 * Returns 0 on success or negative error code on failure 783 */ 784 static int btrfs_write_merkle_tree_block(struct inode *inode, const void *buf, 785 u64 pos, unsigned int size) 786 { 787 loff_t merkle_pos = merkle_file_pos(inode); 788 789 if (merkle_pos < 0) 790 return merkle_pos; 791 if (merkle_pos > inode->i_sb->s_maxbytes - pos - size) 792 return -EFBIG; 793 794 return write_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY, 795 pos, buf, size); 796 } 797 798 const struct fsverity_operations btrfs_verityops = { 799 .inode_info_offs = (int)offsetof(struct btrfs_inode, i_verity_info) - 800 (int)offsetof(struct btrfs_inode, vfs_inode), 801 .begin_enable_verity = btrfs_begin_enable_verity, 802 .end_enable_verity = btrfs_end_enable_verity, 803 .get_verity_descriptor = btrfs_get_verity_descriptor, 804 .read_merkle_tree_page = btrfs_read_merkle_tree_page, 805 .write_merkle_tree_block = btrfs_write_merkle_tree_block, 806 }; 807