xref: /linux/fs/btrfs/verity.c (revision 6dfafbd0299a60bfb5d5e277fdf100037c7ded07)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/init.h>
4 #include <linux/fs.h>
5 #include <linux/slab.h>
6 #include <linux/rwsem.h>
7 #include <linux/xattr.h>
8 #include <linux/security.h>
9 #include <linux/posix_acl_xattr.h>
10 #include <linux/iversion.h>
11 #include <linux/fsverity.h>
12 #include <linux/sched/mm.h>
13 #include "messages.h"
14 #include "ctree.h"
15 #include "btrfs_inode.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "fs.h"
19 #include "accessors.h"
20 #include "ioctl.h"
21 #include "verity.h"
22 #include "orphan.h"
23 
24 /*
25  * Implementation of the interface defined in struct fsverity_operations.
26  *
27  * The main question is how and where to store the verity descriptor and the
28  * Merkle tree. We store both in dedicated btree items in the filesystem tree,
29  * together with the rest of the inode metadata. This means we'll need to do
30  * extra work to encrypt them once encryption is supported in btrfs, but btrfs
31  * has a lot of careful code around i_size and it seems better to make a new key
32  * type than try and adjust all of our expectations for i_size.
33  *
34  * Note that this differs from the implementation in ext4 and f2fs, where
35  * this data is stored as if it were in the file, but past EOF. However, btrfs
36  * does not have a widespread mechanism for caching opaque metadata pages, so we
37  * do pretend that the Merkle tree pages themselves are past EOF for the
38  * purposes of caching them (as opposed to creating a virtual inode).
39  *
40  * fs verity items are stored under two different key types on disk.
41  * The descriptor items:
42  * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ]
43  *
44  * At offset 0, we store a btrfs_verity_descriptor_item which tracks the
45  * size of the descriptor item and some extra data for encryption.
46  * Starting at offset 1, these hold the generic fs verity descriptor.
47  * The latter are opaque to btrfs, we just read and write them as a blob for
48  * the higher level verity code.  The most common descriptor size is 256 bytes.
49  *
50  * The merkle tree items:
51  * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ]
52  *
53  * These also start at offset 0, and correspond to the merkle tree bytes.
54  * So when fsverity asks for page 0 of the merkle tree, we pull up one page
55  * starting at offset 0 for this key type.  These are also opaque to btrfs,
56  * we're blindly storing whatever fsverity sends down.
57  *
58  * Another important consideration is the fact that the Merkle tree data scales
59  * linearly with the size of the file (with 4K pages/blocks and SHA-256, it's
60  * ~1/127th the size) so for large files, writing the tree can be a lengthy
61  * operation. For that reason, we guard the whole enable verity operation
62  * (between begin_enable_verity and end_enable_verity) with an orphan item.
63  * Again, because the data can be pretty large, it's quite possible that we
64  * could run out of space writing it, so we try our best to handle errors by
65  * stopping and rolling back rather than aborting the victim transaction.
66  */
67 
68 #define MERKLE_START_ALIGN			65536
69 
70 /*
71  * Compute the logical file offset where we cache the Merkle tree.
72  *
73  * @inode:  inode of the verity file
74  *
75  * For the purposes of caching the Merkle tree pages, as required by
76  * fs-verity, it is convenient to do size computations in terms of a file
77  * offset, rather than in terms of page indices.
78  *
79  * Use 64K to be sure it's past the last page in the file, even with 64K pages.
80  * That rounding operation itself can overflow loff_t, so we do it in u64 and
81  * check.
82  *
83  * Returns the file offset on success, negative error code on failure.
84  */
85 static loff_t merkle_file_pos(const struct inode *inode)
86 {
87 	u64 sz = inode->i_size;
88 	u64 rounded = round_up(sz, MERKLE_START_ALIGN);
89 
90 	if (rounded > inode->i_sb->s_maxbytes)
91 		return -EFBIG;
92 
93 	return rounded;
94 }
95 
96 /*
97  * Drop all the items for this inode with this key_type.
98  *
99  * @inode:     inode to drop items for
100  * @key_type:  type of items to drop (BTRFS_VERITY_DESC_ITEM or
101  *             BTRFS_VERITY_MERKLE_ITEM)
102  *
103  * Before doing a verity enable we cleanup any existing verity items.
104  * This is also used to clean up if a verity enable failed half way through.
105  *
106  * Returns number of dropped items on success, negative error code on failure.
107  */
108 static int drop_verity_items(struct btrfs_inode *inode, u8 key_type)
109 {
110 	struct btrfs_trans_handle *trans;
111 	struct btrfs_root *root = inode->root;
112 	BTRFS_PATH_AUTO_FREE(path);
113 	struct btrfs_key key;
114 	int count = 0;
115 	int ret;
116 
117 	path = btrfs_alloc_path();
118 	if (!path)
119 		return -ENOMEM;
120 
121 	while (1) {
122 		/* 1 for the item being dropped */
123 		trans = btrfs_start_transaction(root, 1);
124 		if (IS_ERR(trans))
125 			return PTR_ERR(trans);
126 
127 		/*
128 		 * Walk backwards through all the items until we find one that
129 		 * isn't from our key type or objectid
130 		 */
131 		key.objectid = btrfs_ino(inode);
132 		key.type = key_type;
133 		key.offset = (u64)-1;
134 
135 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
136 		if (ret > 0) {
137 			ret = 0;
138 			/* No more keys of this type, we're done */
139 			if (path->slots[0] == 0)
140 				break;
141 			path->slots[0]--;
142 		} else if (ret < 0) {
143 			btrfs_end_transaction(trans);
144 			return ret;
145 		}
146 
147 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
148 
149 		/* No more keys of this type, we're done */
150 		if (key.objectid != btrfs_ino(inode) || key.type != key_type)
151 			break;
152 
153 		/*
154 		 * This shouldn't be a performance sensitive function because
155 		 * it's not used as part of truncate.  If it ever becomes
156 		 * perf sensitive, change this to walk forward and bulk delete
157 		 * items
158 		 */
159 		ret = btrfs_del_items(trans, root, path, path->slots[0], 1);
160 		if (ret) {
161 			btrfs_end_transaction(trans);
162 			return ret;
163 		}
164 		count++;
165 		btrfs_release_path(path);
166 		btrfs_end_transaction(trans);
167 	}
168 	btrfs_end_transaction(trans);
169 	return count;
170 }
171 
172 /*
173  * Drop all verity items
174  *
175  * @inode:  inode to drop verity items for
176  *
177  * In most contexts where we are dropping verity items, we want to do it for all
178  * the types of verity items, not a particular one.
179  *
180  * Returns: 0 on success, negative error code on failure.
181  */
182 int btrfs_drop_verity_items(struct btrfs_inode *inode)
183 {
184 	int ret;
185 
186 	ret = drop_verity_items(inode, BTRFS_VERITY_DESC_ITEM_KEY);
187 	if (ret < 0)
188 		return ret;
189 	ret = drop_verity_items(inode, BTRFS_VERITY_MERKLE_ITEM_KEY);
190 	if (ret < 0)
191 		return ret;
192 
193 	return 0;
194 }
195 
196 /*
197  * Insert and write inode items with a given key type and offset.
198  *
199  * @inode:     inode to insert for
200  * @key_type:  key type to insert
201  * @offset:    item offset to insert at
202  * @src:       source data to write
203  * @len:       length of source data to write
204  *
205  * Write len bytes from src into items of up to 2K length.
206  * The inserted items will have key (ino, key_type, offset + off) where off is
207  * consecutively increasing from 0 up to the last item ending at offset + len.
208  *
209  * Returns 0 on success and a negative error code on failure.
210  */
211 static int write_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset,
212 			   const char *src, u64 len)
213 {
214 	struct btrfs_trans_handle *trans;
215 	BTRFS_PATH_AUTO_FREE(path);
216 	struct btrfs_root *root = inode->root;
217 	struct extent_buffer *leaf;
218 	struct btrfs_key key;
219 	unsigned long copy_bytes;
220 	unsigned long src_offset = 0;
221 	void *data;
222 	int ret = 0;
223 
224 	path = btrfs_alloc_path();
225 	if (!path)
226 		return -ENOMEM;
227 
228 	while (len > 0) {
229 		/* 1 for the new item being inserted */
230 		trans = btrfs_start_transaction(root, 1);
231 		if (IS_ERR(trans))
232 			return PTR_ERR(trans);
233 
234 		key.objectid = btrfs_ino(inode);
235 		key.type = key_type;
236 		key.offset = offset;
237 
238 		/*
239 		 * Insert 2K at a time mostly to be friendly for smaller leaf
240 		 * size filesystems
241 		 */
242 		copy_bytes = min_t(u64, len, 2048);
243 
244 		ret = btrfs_insert_empty_item(trans, root, path, &key, copy_bytes);
245 		if (ret) {
246 			btrfs_end_transaction(trans);
247 			break;
248 		}
249 
250 		leaf = path->nodes[0];
251 
252 		data = btrfs_item_ptr(leaf, path->slots[0], void);
253 		write_extent_buffer(leaf, src + src_offset,
254 				    (unsigned long)data, copy_bytes);
255 		offset += copy_bytes;
256 		src_offset += copy_bytes;
257 		len -= copy_bytes;
258 
259 		btrfs_release_path(path);
260 		btrfs_end_transaction(trans);
261 	}
262 
263 	return ret;
264 }
265 
266 /*
267  * Read inode items of the given key type and offset from the btree.
268  *
269  * @inode:      inode to read items of
270  * @key_type:   key type to read
271  * @offset:     item offset to read from
272  * @dest:       Buffer to read into. This parameter has slightly tricky
273  *              semantics.  If it is NULL, the function will not do any copying
274  *              and will just return the size of all the items up to len bytes.
275  *              If dest_page is passed, then the function will kmap_local the
276  *              page and ignore dest, but it must still be non-NULL to avoid the
277  *              counting-only behavior.
278  * @len:        length in bytes to read
279  * @dest_folio: copy into this folio instead of the dest buffer
280  *
281  * Helper function to read items from the btree.  This returns the number of
282  * bytes read or < 0 for errors.  We can return short reads if the items don't
283  * exist on disk or aren't big enough to fill the desired length.  Supports
284  * reading into a provided buffer (dest) or into the page cache
285  *
286  * Returns number of bytes read or a negative error code on failure.
287  */
288 static int read_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset,
289 			  char *dest, u64 len, struct folio *dest_folio)
290 {
291 	BTRFS_PATH_AUTO_FREE(path);
292 	struct btrfs_root *root = inode->root;
293 	struct extent_buffer *leaf;
294 	struct btrfs_key key;
295 	u64 item_end;
296 	u64 copy_end;
297 	int copied = 0;
298 	u32 copy_offset;
299 	unsigned long copy_bytes;
300 	unsigned long dest_offset = 0;
301 	void *data;
302 	char *kaddr = dest;
303 	int ret;
304 
305 	path = btrfs_alloc_path();
306 	if (!path)
307 		return -ENOMEM;
308 
309 	if (dest_folio)
310 		path->reada = READA_FORWARD;
311 
312 	key.objectid = btrfs_ino(inode);
313 	key.type = key_type;
314 	key.offset = offset;
315 
316 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
317 	if (ret < 0) {
318 		goto out;
319 	} else if (ret > 0) {
320 		ret = 0;
321 		if (path->slots[0] == 0)
322 			goto out;
323 		path->slots[0]--;
324 	}
325 
326 	while (len > 0) {
327 		leaf = path->nodes[0];
328 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
329 
330 		if (key.objectid != btrfs_ino(inode) || key.type != key_type)
331 			break;
332 
333 		item_end = btrfs_item_size(leaf, path->slots[0]) + key.offset;
334 
335 		if (copied > 0) {
336 			/*
337 			 * Once we've copied something, we want all of the items
338 			 * to be sequential
339 			 */
340 			if (key.offset != offset)
341 				break;
342 		} else {
343 			/*
344 			 * Our initial offset might be in the middle of an
345 			 * item.  Make sure it all makes sense.
346 			 */
347 			if (key.offset > offset)
348 				break;
349 			if (item_end <= offset)
350 				break;
351 		}
352 
353 		/* desc = NULL to just sum all the item lengths */
354 		if (!dest)
355 			copy_end = item_end;
356 		else
357 			copy_end = min(offset + len, item_end);
358 
359 		/* Number of bytes in this item we want to copy */
360 		copy_bytes = copy_end - offset;
361 
362 		/* Offset from the start of item for copying */
363 		copy_offset = offset - key.offset;
364 
365 		if (dest) {
366 			if (dest_folio)
367 				kaddr = kmap_local_folio(dest_folio, 0);
368 
369 			data = btrfs_item_ptr(leaf, path->slots[0], void);
370 			read_extent_buffer(leaf, kaddr + dest_offset,
371 					   (unsigned long)data + copy_offset,
372 					   copy_bytes);
373 
374 			if (dest_folio)
375 				kunmap_local(kaddr);
376 		}
377 
378 		offset += copy_bytes;
379 		dest_offset += copy_bytes;
380 		len -= copy_bytes;
381 		copied += copy_bytes;
382 
383 		path->slots[0]++;
384 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
385 			/*
386 			 * We've reached the last slot in this leaf and we need
387 			 * to go to the next leaf.
388 			 */
389 			ret = btrfs_next_leaf(root, path);
390 			if (ret < 0) {
391 				break;
392 			} else if (ret > 0) {
393 				ret = 0;
394 				break;
395 			}
396 		}
397 	}
398 out:
399 	if (!ret)
400 		ret = copied;
401 	return ret;
402 }
403 
404 /*
405  * Delete an fsverity orphan
406  *
407  * @trans:  transaction to do the delete in
408  * @inode:  inode to orphan
409  *
410  * Capture verity orphan specific logic that is repeated in the couple places
411  * we delete verity orphans. Specifically, handling ENOENT and ignoring inodes
412  * with 0 links.
413  *
414  * Returns zero on success or a negative error code on failure.
415  */
416 static int del_orphan(struct btrfs_trans_handle *trans, struct btrfs_inode *inode)
417 {
418 	struct btrfs_root *root = inode->root;
419 	int ret;
420 
421 	/*
422 	 * If the inode has no links, it is either already unlinked, or was
423 	 * created with O_TMPFILE. In either case, it should have an orphan from
424 	 * that other operation. Rather than reference count the orphans, we
425 	 * simply ignore them here, because we only invoke the verity path in
426 	 * the orphan logic when i_nlink is 1.
427 	 */
428 	if (!inode->vfs_inode.i_nlink)
429 		return 0;
430 
431 	ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
432 	if (ret == -ENOENT)
433 		ret = 0;
434 	return ret;
435 }
436 
437 /*
438  * Rollback in-progress verity if we encounter an error.
439  *
440  * @inode:  inode verity had an error for
441  *
442  * We try to handle recoverable errors while enabling verity by rolling it back
443  * and just failing the operation, rather than having an fs level error no
444  * matter what. However, any error in rollback is unrecoverable.
445  *
446  * Returns 0 on success, negative error code on failure.
447  */
448 static int rollback_verity(struct btrfs_inode *inode)
449 {
450 	struct btrfs_trans_handle *trans = NULL;
451 	struct btrfs_root *root = inode->root;
452 	int ret;
453 
454 	btrfs_assert_inode_locked(inode);
455 	truncate_inode_pages(inode->vfs_inode.i_mapping, inode->vfs_inode.i_size);
456 	clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
457 	ret = btrfs_drop_verity_items(inode);
458 	if (ret) {
459 		btrfs_handle_fs_error(root->fs_info, ret,
460 				"failed to drop verity items in rollback %llu",
461 				(u64)inode->vfs_inode.i_ino);
462 		goto out;
463 	}
464 
465 	/*
466 	 * 1 for updating the inode flag
467 	 * 1 for deleting the orphan
468 	 */
469 	trans = btrfs_start_transaction(root, 2);
470 	if (IS_ERR(trans)) {
471 		ret = PTR_ERR(trans);
472 		trans = NULL;
473 		btrfs_handle_fs_error(root->fs_info, ret,
474 			"failed to start transaction in verity rollback %llu",
475 			(u64)inode->vfs_inode.i_ino);
476 		goto out;
477 	}
478 	inode->ro_flags &= ~BTRFS_INODE_RO_VERITY;
479 	btrfs_sync_inode_flags_to_i_flags(inode);
480 	ret = btrfs_update_inode(trans, inode);
481 	if (unlikely(ret)) {
482 		btrfs_abort_transaction(trans, ret);
483 		goto out;
484 	}
485 	ret = del_orphan(trans, inode);
486 	if (unlikely(ret)) {
487 		btrfs_abort_transaction(trans, ret);
488 		goto out;
489 	}
490 out:
491 	if (trans)
492 		btrfs_end_transaction(trans);
493 	return ret;
494 }
495 
496 /*
497  * Finalize making the file a valid verity file
498  *
499  * @inode:      inode to be marked as verity
500  * @desc:       contents of the verity descriptor to write (not NULL)
501  * @desc_size:  size of the verity descriptor
502  *
503  * Do the actual work of finalizing verity after successfully writing the Merkle
504  * tree:
505  *
506  * - write out the descriptor items
507  * - mark the inode with the verity flag
508  * - delete the orphan item
509  * - mark the ro compat bit
510  * - clear the in progress bit
511  *
512  * Returns 0 on success, negative error code on failure.
513  */
514 static int finish_verity(struct btrfs_inode *inode, const void *desc,
515 			 size_t desc_size)
516 {
517 	struct btrfs_trans_handle *trans = NULL;
518 	struct btrfs_root *root = inode->root;
519 	struct btrfs_verity_descriptor_item item;
520 	int ret;
521 
522 	/* Write out the descriptor item */
523 	memset(&item, 0, sizeof(item));
524 	btrfs_set_stack_verity_descriptor_size(&item, desc_size);
525 	ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 0,
526 			      (const char *)&item, sizeof(item));
527 	if (ret)
528 		goto out;
529 
530 	/* Write out the descriptor itself */
531 	ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 1,
532 			      desc, desc_size);
533 	if (ret)
534 		goto out;
535 
536 	/*
537 	 * 1 for updating the inode flag
538 	 * 1 for deleting the orphan
539 	 */
540 	trans = btrfs_start_transaction(root, 2);
541 	if (IS_ERR(trans)) {
542 		ret = PTR_ERR(trans);
543 		goto out;
544 	}
545 	inode->ro_flags |= BTRFS_INODE_RO_VERITY;
546 	btrfs_sync_inode_flags_to_i_flags(inode);
547 	ret = btrfs_update_inode(trans, inode);
548 	if (ret)
549 		goto end_trans;
550 	ret = del_orphan(trans, inode);
551 	if (ret)
552 		goto end_trans;
553 	clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
554 	btrfs_set_fs_compat_ro(root->fs_info, VERITY);
555 end_trans:
556 	btrfs_end_transaction(trans);
557 out:
558 	return ret;
559 
560 }
561 
562 /*
563  * fsverity op that begins enabling verity.
564  *
565  * @filp:  file to enable verity on
566  *
567  * Begin enabling fsverity for the file. We drop any existing verity items, add
568  * an orphan and set the in progress bit.
569  *
570  * Returns 0 on success, negative error code on failure.
571  */
572 static int btrfs_begin_enable_verity(struct file *filp)
573 {
574 	struct btrfs_inode *inode = BTRFS_I(file_inode(filp));
575 	struct btrfs_root *root = inode->root;
576 	struct btrfs_trans_handle *trans;
577 	int ret;
578 
579 	btrfs_assert_inode_locked(inode);
580 
581 	if (IS_ENCRYPTED(&inode->vfs_inode))
582 		return -EOPNOTSUPP;
583 
584 	if (test_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags))
585 		return -EBUSY;
586 
587 	/*
588 	 * This should almost never do anything, but theoretically, it's
589 	 * possible that we failed to enable verity on a file, then were
590 	 * interrupted or failed while rolling back, failed to cleanup the
591 	 * orphan, and finally attempt to enable verity again.
592 	 */
593 	ret = btrfs_drop_verity_items(inode);
594 	if (ret)
595 		return ret;
596 
597 	/* 1 for the orphan item */
598 	trans = btrfs_start_transaction(root, 1);
599 	if (IS_ERR(trans))
600 		return PTR_ERR(trans);
601 
602 	ret = btrfs_orphan_add(trans, inode);
603 	if (!ret)
604 		set_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
605 	btrfs_end_transaction(trans);
606 
607 	return 0;
608 }
609 
610 /*
611  * fsverity op that ends enabling verity.
612  *
613  * @filp:              file we are finishing enabling verity on
614  * @desc:              verity descriptor to write out (NULL in error conditions)
615  * @desc_size:         size of the verity descriptor (variable with signatures)
616  * @merkle_tree_size:  size of the merkle tree in bytes
617  *
618  * If desc is null, then VFS is signaling an error occurred during verity
619  * enable, and we should try to rollback. Otherwise, attempt to finish verity.
620  *
621  * Returns 0 on success, negative error code on error.
622  */
623 static int btrfs_end_enable_verity(struct file *filp, const void *desc,
624 				   size_t desc_size, u64 merkle_tree_size)
625 {
626 	struct btrfs_inode *inode = BTRFS_I(file_inode(filp));
627 	int ret = 0;
628 	int rollback_ret;
629 
630 	btrfs_assert_inode_locked(inode);
631 
632 	if (desc == NULL)
633 		goto rollback;
634 
635 	ret = finish_verity(inode, desc, desc_size);
636 	if (ret)
637 		goto rollback;
638 	return ret;
639 
640 rollback:
641 	rollback_ret = rollback_verity(inode);
642 	if (rollback_ret)
643 		btrfs_err(inode->root->fs_info,
644 			  "failed to rollback verity items: %d", rollback_ret);
645 	return ret;
646 }
647 
648 /*
649  * fsverity op that gets the struct fsverity_descriptor.
650  *
651  * @inode:     inode to get the descriptor of
652  * @buf:       output buffer for the descriptor contents
653  * @buf_size:  size of the output buffer. 0 to query the size
654  *
655  * fsverity does a two pass setup for reading the descriptor, in the first pass
656  * it calls with buf_size = 0 to query the size of the descriptor, and then in
657  * the second pass it actually reads the descriptor off disk.
658  *
659  * Returns the size on success or a negative error code on failure.
660  */
661 int btrfs_get_verity_descriptor(struct inode *inode, void *buf, size_t buf_size)
662 {
663 	u64 true_size;
664 	int ret = 0;
665 	struct btrfs_verity_descriptor_item item;
666 
667 	memset(&item, 0, sizeof(item));
668 	ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 0,
669 			     (char *)&item, sizeof(item), NULL);
670 	if (ret < 0)
671 		return ret;
672 
673 	if (unlikely(item.reserved[0] != 0 || item.reserved[1] != 0))
674 		return -EUCLEAN;
675 
676 	true_size = btrfs_stack_verity_descriptor_size(&item);
677 	if (unlikely(true_size > INT_MAX))
678 		return -EUCLEAN;
679 
680 	if (buf_size == 0)
681 		return true_size;
682 	if (buf_size < true_size)
683 		return -ERANGE;
684 
685 	ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 1,
686 			     buf, buf_size, NULL);
687 	if (ret < 0)
688 		return ret;
689 	if (ret != true_size)
690 		return -EIO;
691 
692 	return true_size;
693 }
694 
695 /*
696  * fsverity op that reads and caches a merkle tree page.
697  *
698  * @inode:         inode to read a merkle tree page for
699  * @index:         page index relative to the start of the merkle tree
700  * @num_ra_pages:  number of pages to readahead. Optional, we ignore it
701  *
702  * The Merkle tree is stored in the filesystem btree, but its pages are cached
703  * with a logical position past EOF in the inode's mapping.
704  *
705  * Returns the page we read, or an ERR_PTR on error.
706  */
707 static struct page *btrfs_read_merkle_tree_page(struct inode *inode,
708 						pgoff_t index,
709 						unsigned long num_ra_pages)
710 {
711 	struct folio *folio;
712 	u64 off = (u64)index << PAGE_SHIFT;
713 	loff_t merkle_pos = merkle_file_pos(inode);
714 	int ret;
715 
716 	if (merkle_pos < 0)
717 		return ERR_PTR(merkle_pos);
718 	if (merkle_pos > inode->i_sb->s_maxbytes - off - PAGE_SIZE)
719 		return ERR_PTR(-EFBIG);
720 	index += merkle_pos >> PAGE_SHIFT;
721 again:
722 	folio = __filemap_get_folio(inode->i_mapping, index, FGP_ACCESSED, 0);
723 	if (!IS_ERR(folio)) {
724 		if (folio_test_uptodate(folio))
725 			goto out;
726 
727 		folio_lock(folio);
728 		/* If it's not uptodate after we have the lock, we got a read error. */
729 		if (!folio_test_uptodate(folio)) {
730 			folio_unlock(folio);
731 			folio_put(folio);
732 			return ERR_PTR(-EIO);
733 		}
734 		folio_unlock(folio);
735 		goto out;
736 	}
737 
738 	folio = filemap_alloc_folio(mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS),
739 				    0);
740 	if (!folio)
741 		return ERR_PTR(-ENOMEM);
742 
743 	ret = filemap_add_folio(inode->i_mapping, folio, index, GFP_NOFS);
744 	if (ret) {
745 		folio_put(folio);
746 		/* Did someone else insert a folio here? */
747 		if (ret == -EEXIST)
748 			goto again;
749 		return ERR_PTR(ret);
750 	}
751 
752 	/*
753 	 * Merkle item keys are indexed from byte 0 in the merkle tree.
754 	 * They have the form:
755 	 *
756 	 * [ inode objectid, BTRFS_MERKLE_ITEM_KEY, offset in bytes ]
757 	 */
758 	ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY, off,
759 			     folio_address(folio), PAGE_SIZE, folio);
760 	if (ret < 0) {
761 		folio_put(folio);
762 		return ERR_PTR(ret);
763 	}
764 	if (ret < PAGE_SIZE)
765 		folio_zero_segment(folio, ret, PAGE_SIZE);
766 
767 	folio_mark_uptodate(folio);
768 	folio_unlock(folio);
769 
770 out:
771 	return folio_file_page(folio, index);
772 }
773 
774 /*
775  * fsverity op that writes a Merkle tree block into the btree.
776  *
777  * @inode:	inode to write a Merkle tree block for
778  * @buf:	Merkle tree block to write
779  * @pos:	the position of the block in the Merkle tree (in bytes)
780  * @size:	the Merkle tree block size (in bytes)
781  *
782  * Returns 0 on success or negative error code on failure
783  */
784 static int btrfs_write_merkle_tree_block(struct inode *inode, const void *buf,
785 					 u64 pos, unsigned int size)
786 {
787 	loff_t merkle_pos = merkle_file_pos(inode);
788 
789 	if (merkle_pos < 0)
790 		return merkle_pos;
791 	if (merkle_pos > inode->i_sb->s_maxbytes - pos - size)
792 		return -EFBIG;
793 
794 	return write_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY,
795 			       pos, buf, size);
796 }
797 
798 const struct fsverity_operations btrfs_verityops = {
799 	.inode_info_offs         = (int)offsetof(struct btrfs_inode, i_verity_info) -
800 				   (int)offsetof(struct btrfs_inode, vfs_inode),
801 	.begin_enable_verity     = btrfs_begin_enable_verity,
802 	.end_enable_verity       = btrfs_end_enable_verity,
803 	.get_verity_descriptor   = btrfs_get_verity_descriptor,
804 	.read_merkle_tree_page   = btrfs_read_merkle_tree_page,
805 	.write_merkle_tree_block = btrfs_write_merkle_tree_block,
806 };
807