1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/init.h> 4 #include <linux/fs.h> 5 #include <linux/slab.h> 6 #include <linux/rwsem.h> 7 #include <linux/xattr.h> 8 #include <linux/security.h> 9 #include <linux/posix_acl_xattr.h> 10 #include <linux/iversion.h> 11 #include <linux/fsverity.h> 12 #include <linux/sched/mm.h> 13 #include "messages.h" 14 #include "ctree.h" 15 #include "btrfs_inode.h" 16 #include "transaction.h" 17 #include "disk-io.h" 18 #include "locking.h" 19 #include "fs.h" 20 #include "accessors.h" 21 #include "ioctl.h" 22 #include "verity.h" 23 #include "orphan.h" 24 25 /* 26 * Implementation of the interface defined in struct fsverity_operations. 27 * 28 * The main question is how and where to store the verity descriptor and the 29 * Merkle tree. We store both in dedicated btree items in the filesystem tree, 30 * together with the rest of the inode metadata. This means we'll need to do 31 * extra work to encrypt them once encryption is supported in btrfs, but btrfs 32 * has a lot of careful code around i_size and it seems better to make a new key 33 * type than try and adjust all of our expectations for i_size. 34 * 35 * Note that this differs from the implementation in ext4 and f2fs, where 36 * this data is stored as if it were in the file, but past EOF. However, btrfs 37 * does not have a widespread mechanism for caching opaque metadata pages, so we 38 * do pretend that the Merkle tree pages themselves are past EOF for the 39 * purposes of caching them (as opposed to creating a virtual inode). 40 * 41 * fs verity items are stored under two different key types on disk. 42 * The descriptor items: 43 * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ] 44 * 45 * At offset 0, we store a btrfs_verity_descriptor_item which tracks the 46 * size of the descriptor item and some extra data for encryption. 47 * Starting at offset 1, these hold the generic fs verity descriptor. 48 * The latter are opaque to btrfs, we just read and write them as a blob for 49 * the higher level verity code. The most common descriptor size is 256 bytes. 50 * 51 * The merkle tree items: 52 * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ] 53 * 54 * These also start at offset 0, and correspond to the merkle tree bytes. 55 * So when fsverity asks for page 0 of the merkle tree, we pull up one page 56 * starting at offset 0 for this key type. These are also opaque to btrfs, 57 * we're blindly storing whatever fsverity sends down. 58 * 59 * Another important consideration is the fact that the Merkle tree data scales 60 * linearly with the size of the file (with 4K pages/blocks and SHA-256, it's 61 * ~1/127th the size) so for large files, writing the tree can be a lengthy 62 * operation. For that reason, we guard the whole enable verity operation 63 * (between begin_enable_verity and end_enable_verity) with an orphan item. 64 * Again, because the data can be pretty large, it's quite possible that we 65 * could run out of space writing it, so we try our best to handle errors by 66 * stopping and rolling back rather than aborting the victim transaction. 67 */ 68 69 #define MERKLE_START_ALIGN 65536 70 71 /* 72 * Compute the logical file offset where we cache the Merkle tree. 73 * 74 * @inode: inode of the verity file 75 * 76 * For the purposes of caching the Merkle tree pages, as required by 77 * fs-verity, it is convenient to do size computations in terms of a file 78 * offset, rather than in terms of page indices. 79 * 80 * Use 64K to be sure it's past the last page in the file, even with 64K pages. 81 * That rounding operation itself can overflow loff_t, so we do it in u64 and 82 * check. 83 * 84 * Returns the file offset on success, negative error code on failure. 85 */ 86 static loff_t merkle_file_pos(const struct inode *inode) 87 { 88 u64 sz = inode->i_size; 89 u64 rounded = round_up(sz, MERKLE_START_ALIGN); 90 91 if (rounded > inode->i_sb->s_maxbytes) 92 return -EFBIG; 93 94 return rounded; 95 } 96 97 /* 98 * Drop all the items for this inode with this key_type. 99 * 100 * @inode: inode to drop items for 101 * @key_type: type of items to drop (BTRFS_VERITY_DESC_ITEM or 102 * BTRFS_VERITY_MERKLE_ITEM) 103 * 104 * Before doing a verity enable we cleanup any existing verity items. 105 * This is also used to clean up if a verity enable failed half way through. 106 * 107 * Returns number of dropped items on success, negative error code on failure. 108 */ 109 static int drop_verity_items(struct btrfs_inode *inode, u8 key_type) 110 { 111 struct btrfs_trans_handle *trans; 112 struct btrfs_root *root = inode->root; 113 struct btrfs_path *path; 114 struct btrfs_key key; 115 int count = 0; 116 int ret; 117 118 path = btrfs_alloc_path(); 119 if (!path) 120 return -ENOMEM; 121 122 while (1) { 123 /* 1 for the item being dropped */ 124 trans = btrfs_start_transaction(root, 1); 125 if (IS_ERR(trans)) { 126 ret = PTR_ERR(trans); 127 goto out; 128 } 129 130 /* 131 * Walk backwards through all the items until we find one that 132 * isn't from our key type or objectid 133 */ 134 key.objectid = btrfs_ino(inode); 135 key.type = key_type; 136 key.offset = (u64)-1; 137 138 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 139 if (ret > 0) { 140 ret = 0; 141 /* No more keys of this type, we're done */ 142 if (path->slots[0] == 0) 143 break; 144 path->slots[0]--; 145 } else if (ret < 0) { 146 btrfs_end_transaction(trans); 147 goto out; 148 } 149 150 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 151 152 /* No more keys of this type, we're done */ 153 if (key.objectid != btrfs_ino(inode) || key.type != key_type) 154 break; 155 156 /* 157 * This shouldn't be a performance sensitive function because 158 * it's not used as part of truncate. If it ever becomes 159 * perf sensitive, change this to walk forward and bulk delete 160 * items 161 */ 162 ret = btrfs_del_items(trans, root, path, path->slots[0], 1); 163 if (ret) { 164 btrfs_end_transaction(trans); 165 goto out; 166 } 167 count++; 168 btrfs_release_path(path); 169 btrfs_end_transaction(trans); 170 } 171 ret = count; 172 btrfs_end_transaction(trans); 173 out: 174 btrfs_free_path(path); 175 return ret; 176 } 177 178 /* 179 * Drop all verity items 180 * 181 * @inode: inode to drop verity items for 182 * 183 * In most contexts where we are dropping verity items, we want to do it for all 184 * the types of verity items, not a particular one. 185 * 186 * Returns: 0 on success, negative error code on failure. 187 */ 188 int btrfs_drop_verity_items(struct btrfs_inode *inode) 189 { 190 int ret; 191 192 ret = drop_verity_items(inode, BTRFS_VERITY_DESC_ITEM_KEY); 193 if (ret < 0) 194 return ret; 195 ret = drop_verity_items(inode, BTRFS_VERITY_MERKLE_ITEM_KEY); 196 if (ret < 0) 197 return ret; 198 199 return 0; 200 } 201 202 /* 203 * Insert and write inode items with a given key type and offset. 204 * 205 * @inode: inode to insert for 206 * @key_type: key type to insert 207 * @offset: item offset to insert at 208 * @src: source data to write 209 * @len: length of source data to write 210 * 211 * Write len bytes from src into items of up to 2K length. 212 * The inserted items will have key (ino, key_type, offset + off) where off is 213 * consecutively increasing from 0 up to the last item ending at offset + len. 214 * 215 * Returns 0 on success and a negative error code on failure. 216 */ 217 static int write_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset, 218 const char *src, u64 len) 219 { 220 struct btrfs_trans_handle *trans; 221 struct btrfs_path *path; 222 struct btrfs_root *root = inode->root; 223 struct extent_buffer *leaf; 224 struct btrfs_key key; 225 unsigned long copy_bytes; 226 unsigned long src_offset = 0; 227 void *data; 228 int ret = 0; 229 230 path = btrfs_alloc_path(); 231 if (!path) 232 return -ENOMEM; 233 234 while (len > 0) { 235 /* 1 for the new item being inserted */ 236 trans = btrfs_start_transaction(root, 1); 237 if (IS_ERR(trans)) { 238 ret = PTR_ERR(trans); 239 break; 240 } 241 242 key.objectid = btrfs_ino(inode); 243 key.type = key_type; 244 key.offset = offset; 245 246 /* 247 * Insert 2K at a time mostly to be friendly for smaller leaf 248 * size filesystems 249 */ 250 copy_bytes = min_t(u64, len, 2048); 251 252 ret = btrfs_insert_empty_item(trans, root, path, &key, copy_bytes); 253 if (ret) { 254 btrfs_end_transaction(trans); 255 break; 256 } 257 258 leaf = path->nodes[0]; 259 260 data = btrfs_item_ptr(leaf, path->slots[0], void); 261 write_extent_buffer(leaf, src + src_offset, 262 (unsigned long)data, copy_bytes); 263 offset += copy_bytes; 264 src_offset += copy_bytes; 265 len -= copy_bytes; 266 267 btrfs_release_path(path); 268 btrfs_end_transaction(trans); 269 } 270 271 btrfs_free_path(path); 272 return ret; 273 } 274 275 /* 276 * Read inode items of the given key type and offset from the btree. 277 * 278 * @inode: inode to read items of 279 * @key_type: key type to read 280 * @offset: item offset to read from 281 * @dest: Buffer to read into. This parameter has slightly tricky 282 * semantics. If it is NULL, the function will not do any copying 283 * and will just return the size of all the items up to len bytes. 284 * If dest_page is passed, then the function will kmap_local the 285 * page and ignore dest, but it must still be non-NULL to avoid the 286 * counting-only behavior. 287 * @len: length in bytes to read 288 * @dest_page: copy into this page instead of the dest buffer 289 * 290 * Helper function to read items from the btree. This returns the number of 291 * bytes read or < 0 for errors. We can return short reads if the items don't 292 * exist on disk or aren't big enough to fill the desired length. Supports 293 * reading into a provided buffer (dest) or into the page cache 294 * 295 * Returns number of bytes read or a negative error code on failure. 296 */ 297 static int read_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset, 298 char *dest, u64 len, struct page *dest_page) 299 { 300 struct btrfs_path *path; 301 struct btrfs_root *root = inode->root; 302 struct extent_buffer *leaf; 303 struct btrfs_key key; 304 u64 item_end; 305 u64 copy_end; 306 int copied = 0; 307 u32 copy_offset; 308 unsigned long copy_bytes; 309 unsigned long dest_offset = 0; 310 void *data; 311 char *kaddr = dest; 312 int ret; 313 314 path = btrfs_alloc_path(); 315 if (!path) 316 return -ENOMEM; 317 318 if (dest_page) 319 path->reada = READA_FORWARD; 320 321 key.objectid = btrfs_ino(inode); 322 key.type = key_type; 323 key.offset = offset; 324 325 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 326 if (ret < 0) { 327 goto out; 328 } else if (ret > 0) { 329 ret = 0; 330 if (path->slots[0] == 0) 331 goto out; 332 path->slots[0]--; 333 } 334 335 while (len > 0) { 336 leaf = path->nodes[0]; 337 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 338 339 if (key.objectid != btrfs_ino(inode) || key.type != key_type) 340 break; 341 342 item_end = btrfs_item_size(leaf, path->slots[0]) + key.offset; 343 344 if (copied > 0) { 345 /* 346 * Once we've copied something, we want all of the items 347 * to be sequential 348 */ 349 if (key.offset != offset) 350 break; 351 } else { 352 /* 353 * Our initial offset might be in the middle of an 354 * item. Make sure it all makes sense. 355 */ 356 if (key.offset > offset) 357 break; 358 if (item_end <= offset) 359 break; 360 } 361 362 /* desc = NULL to just sum all the item lengths */ 363 if (!dest) 364 copy_end = item_end; 365 else 366 copy_end = min(offset + len, item_end); 367 368 /* Number of bytes in this item we want to copy */ 369 copy_bytes = copy_end - offset; 370 371 /* Offset from the start of item for copying */ 372 copy_offset = offset - key.offset; 373 374 if (dest) { 375 if (dest_page) 376 kaddr = kmap_local_page(dest_page); 377 378 data = btrfs_item_ptr(leaf, path->slots[0], void); 379 read_extent_buffer(leaf, kaddr + dest_offset, 380 (unsigned long)data + copy_offset, 381 copy_bytes); 382 383 if (dest_page) 384 kunmap_local(kaddr); 385 } 386 387 offset += copy_bytes; 388 dest_offset += copy_bytes; 389 len -= copy_bytes; 390 copied += copy_bytes; 391 392 path->slots[0]++; 393 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 394 /* 395 * We've reached the last slot in this leaf and we need 396 * to go to the next leaf. 397 */ 398 ret = btrfs_next_leaf(root, path); 399 if (ret < 0) { 400 break; 401 } else if (ret > 0) { 402 ret = 0; 403 break; 404 } 405 } 406 } 407 out: 408 btrfs_free_path(path); 409 if (!ret) 410 ret = copied; 411 return ret; 412 } 413 414 /* 415 * Delete an fsverity orphan 416 * 417 * @trans: transaction to do the delete in 418 * @inode: inode to orphan 419 * 420 * Capture verity orphan specific logic that is repeated in the couple places 421 * we delete verity orphans. Specifically, handling ENOENT and ignoring inodes 422 * with 0 links. 423 * 424 * Returns zero on success or a negative error code on failure. 425 */ 426 static int del_orphan(struct btrfs_trans_handle *trans, struct btrfs_inode *inode) 427 { 428 struct btrfs_root *root = inode->root; 429 int ret; 430 431 /* 432 * If the inode has no links, it is either already unlinked, or was 433 * created with O_TMPFILE. In either case, it should have an orphan from 434 * that other operation. Rather than reference count the orphans, we 435 * simply ignore them here, because we only invoke the verity path in 436 * the orphan logic when i_nlink is 1. 437 */ 438 if (!inode->vfs_inode.i_nlink) 439 return 0; 440 441 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); 442 if (ret == -ENOENT) 443 ret = 0; 444 return ret; 445 } 446 447 /* 448 * Rollback in-progress verity if we encounter an error. 449 * 450 * @inode: inode verity had an error for 451 * 452 * We try to handle recoverable errors while enabling verity by rolling it back 453 * and just failing the operation, rather than having an fs level error no 454 * matter what. However, any error in rollback is unrecoverable. 455 * 456 * Returns 0 on success, negative error code on failure. 457 */ 458 static int rollback_verity(struct btrfs_inode *inode) 459 { 460 struct btrfs_trans_handle *trans = NULL; 461 struct btrfs_root *root = inode->root; 462 int ret; 463 464 ASSERT(inode_is_locked(&inode->vfs_inode)); 465 truncate_inode_pages(inode->vfs_inode.i_mapping, inode->vfs_inode.i_size); 466 clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags); 467 ret = btrfs_drop_verity_items(inode); 468 if (ret) { 469 btrfs_handle_fs_error(root->fs_info, ret, 470 "failed to drop verity items in rollback %llu", 471 (u64)inode->vfs_inode.i_ino); 472 goto out; 473 } 474 475 /* 476 * 1 for updating the inode flag 477 * 1 for deleting the orphan 478 */ 479 trans = btrfs_start_transaction(root, 2); 480 if (IS_ERR(trans)) { 481 ret = PTR_ERR(trans); 482 trans = NULL; 483 btrfs_handle_fs_error(root->fs_info, ret, 484 "failed to start transaction in verity rollback %llu", 485 (u64)inode->vfs_inode.i_ino); 486 goto out; 487 } 488 inode->ro_flags &= ~BTRFS_INODE_RO_VERITY; 489 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); 490 ret = btrfs_update_inode(trans, inode); 491 if (ret) { 492 btrfs_abort_transaction(trans, ret); 493 goto out; 494 } 495 ret = del_orphan(trans, inode); 496 if (ret) { 497 btrfs_abort_transaction(trans, ret); 498 goto out; 499 } 500 out: 501 if (trans) 502 btrfs_end_transaction(trans); 503 return ret; 504 } 505 506 /* 507 * Finalize making the file a valid verity file 508 * 509 * @inode: inode to be marked as verity 510 * @desc: contents of the verity descriptor to write (not NULL) 511 * @desc_size: size of the verity descriptor 512 * 513 * Do the actual work of finalizing verity after successfully writing the Merkle 514 * tree: 515 * 516 * - write out the descriptor items 517 * - mark the inode with the verity flag 518 * - delete the orphan item 519 * - mark the ro compat bit 520 * - clear the in progress bit 521 * 522 * Returns 0 on success, negative error code on failure. 523 */ 524 static int finish_verity(struct btrfs_inode *inode, const void *desc, 525 size_t desc_size) 526 { 527 struct btrfs_trans_handle *trans = NULL; 528 struct btrfs_root *root = inode->root; 529 struct btrfs_verity_descriptor_item item; 530 int ret; 531 532 /* Write out the descriptor item */ 533 memset(&item, 0, sizeof(item)); 534 btrfs_set_stack_verity_descriptor_size(&item, desc_size); 535 ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 0, 536 (const char *)&item, sizeof(item)); 537 if (ret) 538 goto out; 539 540 /* Write out the descriptor itself */ 541 ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 1, 542 desc, desc_size); 543 if (ret) 544 goto out; 545 546 /* 547 * 1 for updating the inode flag 548 * 1 for deleting the orphan 549 */ 550 trans = btrfs_start_transaction(root, 2); 551 if (IS_ERR(trans)) { 552 ret = PTR_ERR(trans); 553 goto out; 554 } 555 inode->ro_flags |= BTRFS_INODE_RO_VERITY; 556 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); 557 ret = btrfs_update_inode(trans, inode); 558 if (ret) 559 goto end_trans; 560 ret = del_orphan(trans, inode); 561 if (ret) 562 goto end_trans; 563 clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags); 564 btrfs_set_fs_compat_ro(root->fs_info, VERITY); 565 end_trans: 566 btrfs_end_transaction(trans); 567 out: 568 return ret; 569 570 } 571 572 /* 573 * fsverity op that begins enabling verity. 574 * 575 * @filp: file to enable verity on 576 * 577 * Begin enabling fsverity for the file. We drop any existing verity items, add 578 * an orphan and set the in progress bit. 579 * 580 * Returns 0 on success, negative error code on failure. 581 */ 582 static int btrfs_begin_enable_verity(struct file *filp) 583 { 584 struct btrfs_inode *inode = BTRFS_I(file_inode(filp)); 585 struct btrfs_root *root = inode->root; 586 struct btrfs_trans_handle *trans; 587 int ret; 588 589 ASSERT(inode_is_locked(file_inode(filp))); 590 591 if (test_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags)) 592 return -EBUSY; 593 594 /* 595 * This should almost never do anything, but theoretically, it's 596 * possible that we failed to enable verity on a file, then were 597 * interrupted or failed while rolling back, failed to cleanup the 598 * orphan, and finally attempt to enable verity again. 599 */ 600 ret = btrfs_drop_verity_items(inode); 601 if (ret) 602 return ret; 603 604 /* 1 for the orphan item */ 605 trans = btrfs_start_transaction(root, 1); 606 if (IS_ERR(trans)) 607 return PTR_ERR(trans); 608 609 ret = btrfs_orphan_add(trans, inode); 610 if (!ret) 611 set_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags); 612 btrfs_end_transaction(trans); 613 614 return 0; 615 } 616 617 /* 618 * fsverity op that ends enabling verity. 619 * 620 * @filp: file we are finishing enabling verity on 621 * @desc: verity descriptor to write out (NULL in error conditions) 622 * @desc_size: size of the verity descriptor (variable with signatures) 623 * @merkle_tree_size: size of the merkle tree in bytes 624 * 625 * If desc is null, then VFS is signaling an error occurred during verity 626 * enable, and we should try to rollback. Otherwise, attempt to finish verity. 627 * 628 * Returns 0 on success, negative error code on error. 629 */ 630 static int btrfs_end_enable_verity(struct file *filp, const void *desc, 631 size_t desc_size, u64 merkle_tree_size) 632 { 633 struct btrfs_inode *inode = BTRFS_I(file_inode(filp)); 634 int ret = 0; 635 int rollback_ret; 636 637 ASSERT(inode_is_locked(file_inode(filp))); 638 639 if (desc == NULL) 640 goto rollback; 641 642 ret = finish_verity(inode, desc, desc_size); 643 if (ret) 644 goto rollback; 645 return ret; 646 647 rollback: 648 rollback_ret = rollback_verity(inode); 649 if (rollback_ret) 650 btrfs_err(inode->root->fs_info, 651 "failed to rollback verity items: %d", rollback_ret); 652 return ret; 653 } 654 655 /* 656 * fsverity op that gets the struct fsverity_descriptor. 657 * 658 * @inode: inode to get the descriptor of 659 * @buf: output buffer for the descriptor contents 660 * @buf_size: size of the output buffer. 0 to query the size 661 * 662 * fsverity does a two pass setup for reading the descriptor, in the first pass 663 * it calls with buf_size = 0 to query the size of the descriptor, and then in 664 * the second pass it actually reads the descriptor off disk. 665 * 666 * Returns the size on success or a negative error code on failure. 667 */ 668 int btrfs_get_verity_descriptor(struct inode *inode, void *buf, size_t buf_size) 669 { 670 u64 true_size; 671 int ret = 0; 672 struct btrfs_verity_descriptor_item item; 673 674 memset(&item, 0, sizeof(item)); 675 ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 0, 676 (char *)&item, sizeof(item), NULL); 677 if (ret < 0) 678 return ret; 679 680 if (item.reserved[0] != 0 || item.reserved[1] != 0) 681 return -EUCLEAN; 682 683 true_size = btrfs_stack_verity_descriptor_size(&item); 684 if (true_size > INT_MAX) 685 return -EUCLEAN; 686 687 if (buf_size == 0) 688 return true_size; 689 if (buf_size < true_size) 690 return -ERANGE; 691 692 ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 1, 693 buf, buf_size, NULL); 694 if (ret < 0) 695 return ret; 696 if (ret != true_size) 697 return -EIO; 698 699 return true_size; 700 } 701 702 /* 703 * fsverity op that reads and caches a merkle tree page. 704 * 705 * @inode: inode to read a merkle tree page for 706 * @index: page index relative to the start of the merkle tree 707 * @num_ra_pages: number of pages to readahead. Optional, we ignore it 708 * 709 * The Merkle tree is stored in the filesystem btree, but its pages are cached 710 * with a logical position past EOF in the inode's mapping. 711 * 712 * Returns the page we read, or an ERR_PTR on error. 713 */ 714 static struct page *btrfs_read_merkle_tree_page(struct inode *inode, 715 pgoff_t index, 716 unsigned long num_ra_pages) 717 { 718 struct folio *folio; 719 u64 off = (u64)index << PAGE_SHIFT; 720 loff_t merkle_pos = merkle_file_pos(inode); 721 int ret; 722 723 if (merkle_pos < 0) 724 return ERR_PTR(merkle_pos); 725 if (merkle_pos > inode->i_sb->s_maxbytes - off - PAGE_SIZE) 726 return ERR_PTR(-EFBIG); 727 index += merkle_pos >> PAGE_SHIFT; 728 again: 729 folio = __filemap_get_folio(inode->i_mapping, index, FGP_ACCESSED, 0); 730 if (!IS_ERR(folio)) { 731 if (folio_test_uptodate(folio)) 732 goto out; 733 734 folio_lock(folio); 735 /* If it's not uptodate after we have the lock, we got a read error. */ 736 if (!folio_test_uptodate(folio)) { 737 folio_unlock(folio); 738 folio_put(folio); 739 return ERR_PTR(-EIO); 740 } 741 folio_unlock(folio); 742 goto out; 743 } 744 745 folio = filemap_alloc_folio(mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS), 746 0); 747 if (!folio) 748 return ERR_PTR(-ENOMEM); 749 750 ret = filemap_add_folio(inode->i_mapping, folio, index, GFP_NOFS); 751 if (ret) { 752 folio_put(folio); 753 /* Did someone else insert a folio here? */ 754 if (ret == -EEXIST) 755 goto again; 756 return ERR_PTR(ret); 757 } 758 759 /* 760 * Merkle item keys are indexed from byte 0 in the merkle tree. 761 * They have the form: 762 * 763 * [ inode objectid, BTRFS_MERKLE_ITEM_KEY, offset in bytes ] 764 */ 765 ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY, off, 766 folio_address(folio), PAGE_SIZE, &folio->page); 767 if (ret < 0) { 768 folio_put(folio); 769 return ERR_PTR(ret); 770 } 771 if (ret < PAGE_SIZE) 772 folio_zero_segment(folio, ret, PAGE_SIZE); 773 774 folio_mark_uptodate(folio); 775 folio_unlock(folio); 776 777 out: 778 return folio_file_page(folio, index); 779 } 780 781 /* 782 * fsverity op that writes a Merkle tree block into the btree. 783 * 784 * @inode: inode to write a Merkle tree block for 785 * @buf: Merkle tree block to write 786 * @pos: the position of the block in the Merkle tree (in bytes) 787 * @size: the Merkle tree block size (in bytes) 788 * 789 * Returns 0 on success or negative error code on failure 790 */ 791 static int btrfs_write_merkle_tree_block(struct inode *inode, const void *buf, 792 u64 pos, unsigned int size) 793 { 794 loff_t merkle_pos = merkle_file_pos(inode); 795 796 if (merkle_pos < 0) 797 return merkle_pos; 798 if (merkle_pos > inode->i_sb->s_maxbytes - pos - size) 799 return -EFBIG; 800 801 return write_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY, 802 pos, buf, size); 803 } 804 805 const struct fsverity_operations btrfs_verityops = { 806 .begin_enable_verity = btrfs_begin_enable_verity, 807 .end_enable_verity = btrfs_end_enable_verity, 808 .get_verity_descriptor = btrfs_get_verity_descriptor, 809 .read_merkle_tree_page = btrfs_read_merkle_tree_page, 810 .write_merkle_tree_block = btrfs_write_merkle_tree_block, 811 }; 812