1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 STRATO AG 4 * written by Arne Jansen <sensille@gmx.net> 5 */ 6 7 #include <linux/slab.h> 8 #include "messages.h" 9 #include "ulist.h" 10 11 /* 12 * ulist is a generic data structure to hold a collection of unique u64 13 * values. The only operations it supports is adding to the list and 14 * enumerating it. 15 * It is possible to store an auxiliary value along with the key. 16 * 17 * A sample usage for ulists is the enumeration of directed graphs without 18 * visiting a node twice. The pseudo-code could look like this: 19 * 20 * ulist = ulist_alloc(); 21 * ulist_add(ulist, root); 22 * ULIST_ITER_INIT(&uiter); 23 * 24 * while ((elem = ulist_next(ulist, &uiter)) { 25 * for (all child nodes n in elem) 26 * ulist_add(ulist, n); 27 * do something useful with the node; 28 * } 29 * ulist_free(ulist); 30 * 31 * This assumes the graph nodes are addressable by u64. This stems from the 32 * usage for tree enumeration in btrfs, where the logical addresses are 33 * 64 bit. 34 * 35 * It is also useful for tree enumeration which could be done elegantly 36 * recursively, but is not possible due to kernel stack limitations. The 37 * loop would be similar to the above. 38 */ 39 40 /* 41 * Freshly initialize a ulist. 42 * 43 * @ulist: the ulist to initialize 44 * 45 * Note: don't use this function to init an already used ulist, use 46 * ulist_reinit instead. 47 */ 48 void ulist_init(struct ulist *ulist) 49 { 50 INIT_LIST_HEAD(&ulist->nodes); 51 ulist->root = RB_ROOT; 52 ulist->nnodes = 0; 53 ulist->prealloc = NULL; 54 } 55 56 /* 57 * Free up additionally allocated memory for the ulist. 58 * 59 * @ulist: the ulist from which to free the additional memory 60 * 61 * This is useful in cases where the base 'struct ulist' has been statically 62 * allocated. 63 */ 64 void ulist_release(struct ulist *ulist) 65 { 66 struct ulist_node *node; 67 struct ulist_node *next; 68 69 list_for_each_entry_safe(node, next, &ulist->nodes, list) { 70 kfree(node); 71 } 72 kfree(ulist->prealloc); 73 ulist->prealloc = NULL; 74 ulist->root = RB_ROOT; 75 INIT_LIST_HEAD(&ulist->nodes); 76 } 77 78 /* 79 * Prepare a ulist for reuse. 80 * 81 * @ulist: ulist to be reused 82 * 83 * Free up all additional memory allocated for the list elements and reinit 84 * the ulist. 85 */ 86 void ulist_reinit(struct ulist *ulist) 87 { 88 ulist_release(ulist); 89 ulist_init(ulist); 90 } 91 92 /* 93 * Dynamically allocate a ulist. 94 * 95 * @gfp_mask: allocation flags to for base allocation 96 * 97 * The allocated ulist will be returned in an initialized state. 98 */ 99 struct ulist *ulist_alloc(gfp_t gfp_mask) 100 { 101 struct ulist *ulist = kmalloc(sizeof(*ulist), gfp_mask); 102 103 if (!ulist) 104 return NULL; 105 106 ulist_init(ulist); 107 108 return ulist; 109 } 110 111 void ulist_prealloc(struct ulist *ulist, gfp_t gfp_mask) 112 { 113 if (!ulist->prealloc) 114 ulist->prealloc = kzalloc(sizeof(*ulist->prealloc), gfp_mask); 115 } 116 117 /* 118 * Free dynamically allocated ulist. 119 * 120 * @ulist: ulist to free 121 * 122 * It is not necessary to call ulist_release before. 123 */ 124 void ulist_free(struct ulist *ulist) 125 { 126 if (!ulist) 127 return; 128 ulist_release(ulist); 129 kfree(ulist); 130 } 131 132 static int ulist_node_val_key_cmp(const void *key, const struct rb_node *node) 133 { 134 const u64 *val = key; 135 const struct ulist_node *unode = rb_entry(node, struct ulist_node, rb_node); 136 137 if (unode->val < *val) 138 return 1; 139 else if (unode->val > *val) 140 return -1; 141 142 return 0; 143 } 144 145 static struct ulist_node *ulist_rbtree_search(struct ulist *ulist, u64 val) 146 { 147 struct rb_node *node; 148 149 node = rb_find(&val, &ulist->root, ulist_node_val_key_cmp); 150 return rb_entry_safe(node, struct ulist_node, rb_node); 151 } 152 153 static void ulist_rbtree_erase(struct ulist *ulist, struct ulist_node *node) 154 { 155 rb_erase(&node->rb_node, &ulist->root); 156 list_del(&node->list); 157 kfree(node); 158 BUG_ON(ulist->nnodes == 0); 159 ulist->nnodes--; 160 } 161 162 static int ulist_node_val_cmp(struct rb_node *new, const struct rb_node *existing) 163 { 164 const struct ulist_node *unode = rb_entry(new, struct ulist_node, rb_node); 165 166 return ulist_node_val_key_cmp(&unode->val, existing); 167 } 168 169 static int ulist_rbtree_insert(struct ulist *ulist, struct ulist_node *ins) 170 { 171 struct rb_node *node; 172 173 node = rb_find_add(&ins->rb_node, &ulist->root, ulist_node_val_cmp); 174 if (node) 175 return -EEXIST; 176 return 0; 177 } 178 179 /* 180 * Add an element to the ulist. 181 * 182 * @ulist: ulist to add the element to 183 * @val: value to add to ulist 184 * @aux: auxiliary value to store along with val 185 * @gfp_mask: flags to use for allocation 186 * 187 * Note: locking must be provided by the caller. In case of rwlocks write 188 * locking is needed 189 * 190 * Add an element to a ulist. The @val will only be added if it doesn't 191 * already exist. If it is added, the auxiliary value @aux is stored along with 192 * it. In case @val already exists in the ulist, @aux is ignored, even if 193 * it differs from the already stored value. 194 * 195 * ulist_add returns 0 if @val already exists in ulist and 1 if @val has been 196 * inserted. 197 * In case of allocation failure -ENOMEM is returned and the ulist stays 198 * unaltered. 199 */ 200 int ulist_add(struct ulist *ulist, u64 val, u64 aux, gfp_t gfp_mask) 201 { 202 return ulist_add_merge(ulist, val, aux, NULL, gfp_mask); 203 } 204 205 int ulist_add_merge(struct ulist *ulist, u64 val, u64 aux, 206 u64 *old_aux, gfp_t gfp_mask) 207 { 208 int ret; 209 struct ulist_node *node; 210 211 node = ulist_rbtree_search(ulist, val); 212 if (node) { 213 if (old_aux) 214 *old_aux = node->aux; 215 return 0; 216 } 217 218 if (ulist->prealloc) { 219 node = ulist->prealloc; 220 ulist->prealloc = NULL; 221 } else { 222 node = kmalloc(sizeof(*node), gfp_mask); 223 if (!node) 224 return -ENOMEM; 225 } 226 227 node->val = val; 228 node->aux = aux; 229 230 ret = ulist_rbtree_insert(ulist, node); 231 ASSERT(!ret); 232 list_add_tail(&node->list, &ulist->nodes); 233 ulist->nnodes++; 234 235 return 1; 236 } 237 238 /* 239 * Delete one node from ulist. 240 * 241 * @ulist: ulist to remove node from 242 * @val: value to delete 243 * @aux: aux to delete 244 * 245 * The deletion will only be done when *BOTH* val and aux matches. 246 * Return 0 for successful delete. 247 * Return > 0 for not found. 248 */ 249 int ulist_del(struct ulist *ulist, u64 val, u64 aux) 250 { 251 struct ulist_node *node; 252 253 node = ulist_rbtree_search(ulist, val); 254 /* Not found */ 255 if (!node) 256 return 1; 257 258 if (node->aux != aux) 259 return 1; 260 261 /* Found and delete */ 262 ulist_rbtree_erase(ulist, node); 263 return 0; 264 } 265 266 /* 267 * Iterate ulist. 268 * 269 * @ulist: ulist to iterate 270 * @uiter: iterator variable, initialized with ULIST_ITER_INIT(&iterator) 271 * 272 * Note: locking must be provided by the caller. In case of rwlocks only read 273 * locking is needed 274 * 275 * This function is used to iterate an ulist. 276 * It returns the next element from the ulist or %NULL when the 277 * end is reached. No guarantee is made with respect to the order in which 278 * the elements are returned. They might neither be returned in order of 279 * addition nor in ascending order. 280 * It is allowed to call ulist_add during an enumeration. Newly added items 281 * are guaranteed to show up in the running enumeration. 282 */ 283 struct ulist_node *ulist_next(const struct ulist *ulist, struct ulist_iterator *uiter) 284 { 285 struct ulist_node *node; 286 287 if (list_empty(&ulist->nodes)) 288 return NULL; 289 if (uiter->cur_list && uiter->cur_list->next == &ulist->nodes) 290 return NULL; 291 if (uiter->cur_list) { 292 uiter->cur_list = uiter->cur_list->next; 293 } else { 294 uiter->cur_list = ulist->nodes.next; 295 } 296 node = list_entry(uiter->cur_list, struct ulist_node, list); 297 return node; 298 } 299