xref: /linux/fs/btrfs/ulist.c (revision 20dfee95936413708701eb151f419597fdd9d948)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO AG
4  * written by Arne Jansen <sensille@gmx.net>
5  */
6 
7 #include <linux/slab.h>
8 #include "messages.h"
9 #include "ulist.h"
10 
11 /*
12  * ulist is a generic data structure to hold a collection of unique u64
13  * values. The only operations it supports is adding to the list and
14  * enumerating it.
15  * It is possible to store an auxiliary value along with the key.
16  *
17  * A sample usage for ulists is the enumeration of directed graphs without
18  * visiting a node twice. The pseudo-code could look like this:
19  *
20  * ulist = ulist_alloc();
21  * ulist_add(ulist, root);
22  * ULIST_ITER_INIT(&uiter);
23  *
24  * while ((elem = ulist_next(ulist, &uiter)) {
25  * 	for (all child nodes n in elem)
26  *		ulist_add(ulist, n);
27  *	do something useful with the node;
28  * }
29  * ulist_free(ulist);
30  *
31  * This assumes the graph nodes are addressable by u64. This stems from the
32  * usage for tree enumeration in btrfs, where the logical addresses are
33  * 64 bit.
34  *
35  * It is also useful for tree enumeration which could be done elegantly
36  * recursively, but is not possible due to kernel stack limitations. The
37  * loop would be similar to the above.
38  */
39 
40 /*
41  * Freshly initialize a ulist.
42  *
43  * @ulist:	the ulist to initialize
44  *
45  * Note: don't use this function to init an already used ulist, use
46  * ulist_reinit instead.
47  */
48 void ulist_init(struct ulist *ulist)
49 {
50 	INIT_LIST_HEAD(&ulist->nodes);
51 	ulist->root = RB_ROOT;
52 	ulist->nnodes = 0;
53 }
54 
55 /*
56  * Free up additionally allocated memory for the ulist.
57  *
58  * @ulist:	the ulist from which to free the additional memory
59  *
60  * This is useful in cases where the base 'struct ulist' has been statically
61  * allocated.
62  */
63 void ulist_release(struct ulist *ulist)
64 {
65 	struct ulist_node *node;
66 	struct ulist_node *next;
67 
68 	list_for_each_entry_safe(node, next, &ulist->nodes, list) {
69 		kfree(node);
70 	}
71 	ulist->root = RB_ROOT;
72 	INIT_LIST_HEAD(&ulist->nodes);
73 }
74 
75 /*
76  * Prepare a ulist for reuse.
77  *
78  * @ulist:	ulist to be reused
79  *
80  * Free up all additional memory allocated for the list elements and reinit
81  * the ulist.
82  */
83 void ulist_reinit(struct ulist *ulist)
84 {
85 	ulist_release(ulist);
86 	ulist_init(ulist);
87 }
88 
89 /*
90  * Dynamically allocate a ulist.
91  *
92  * @gfp_mask:	allocation flags to for base allocation
93  *
94  * The allocated ulist will be returned in an initialized state.
95  */
96 struct ulist *ulist_alloc(gfp_t gfp_mask)
97 {
98 	struct ulist *ulist = kmalloc(sizeof(*ulist), gfp_mask);
99 
100 	if (!ulist)
101 		return NULL;
102 
103 	ulist_init(ulist);
104 
105 	return ulist;
106 }
107 
108 /*
109  * Free dynamically allocated ulist.
110  *
111  * @ulist:	ulist to free
112  *
113  * It is not necessary to call ulist_release before.
114  */
115 void ulist_free(struct ulist *ulist)
116 {
117 	if (!ulist)
118 		return;
119 	ulist_release(ulist);
120 	kfree(ulist);
121 }
122 
123 static struct ulist_node *ulist_rbtree_search(struct ulist *ulist, u64 val)
124 {
125 	struct rb_node *n = ulist->root.rb_node;
126 	struct ulist_node *u = NULL;
127 
128 	while (n) {
129 		u = rb_entry(n, struct ulist_node, rb_node);
130 		if (u->val < val)
131 			n = n->rb_right;
132 		else if (u->val > val)
133 			n = n->rb_left;
134 		else
135 			return u;
136 	}
137 	return NULL;
138 }
139 
140 static void ulist_rbtree_erase(struct ulist *ulist, struct ulist_node *node)
141 {
142 	rb_erase(&node->rb_node, &ulist->root);
143 	list_del(&node->list);
144 	kfree(node);
145 	BUG_ON(ulist->nnodes == 0);
146 	ulist->nnodes--;
147 }
148 
149 static int ulist_rbtree_insert(struct ulist *ulist, struct ulist_node *ins)
150 {
151 	struct rb_node **p = &ulist->root.rb_node;
152 	struct rb_node *parent = NULL;
153 	struct ulist_node *cur = NULL;
154 
155 	while (*p) {
156 		parent = *p;
157 		cur = rb_entry(parent, struct ulist_node, rb_node);
158 
159 		if (cur->val < ins->val)
160 			p = &(*p)->rb_right;
161 		else if (cur->val > ins->val)
162 			p = &(*p)->rb_left;
163 		else
164 			return -EEXIST;
165 	}
166 	rb_link_node(&ins->rb_node, parent, p);
167 	rb_insert_color(&ins->rb_node, &ulist->root);
168 	return 0;
169 }
170 
171 /*
172  * Add an element to the ulist.
173  *
174  * @ulist:	ulist to add the element to
175  * @val:	value to add to ulist
176  * @aux:	auxiliary value to store along with val
177  * @gfp_mask:	flags to use for allocation
178  *
179  * Note: locking must be provided by the caller. In case of rwlocks write
180  *       locking is needed
181  *
182  * Add an element to a ulist. The @val will only be added if it doesn't
183  * already exist. If it is added, the auxiliary value @aux is stored along with
184  * it. In case @val already exists in the ulist, @aux is ignored, even if
185  * it differs from the already stored value.
186  *
187  * ulist_add returns 0 if @val already exists in ulist and 1 if @val has been
188  * inserted.
189  * In case of allocation failure -ENOMEM is returned and the ulist stays
190  * unaltered.
191  */
192 int ulist_add(struct ulist *ulist, u64 val, u64 aux, gfp_t gfp_mask)
193 {
194 	return ulist_add_merge(ulist, val, aux, NULL, gfp_mask);
195 }
196 
197 int ulist_add_merge(struct ulist *ulist, u64 val, u64 aux,
198 		    u64 *old_aux, gfp_t gfp_mask)
199 {
200 	int ret;
201 	struct ulist_node *node;
202 
203 	node = ulist_rbtree_search(ulist, val);
204 	if (node) {
205 		if (old_aux)
206 			*old_aux = node->aux;
207 		return 0;
208 	}
209 	node = kmalloc(sizeof(*node), gfp_mask);
210 	if (!node)
211 		return -ENOMEM;
212 
213 	node->val = val;
214 	node->aux = aux;
215 
216 	ret = ulist_rbtree_insert(ulist, node);
217 	ASSERT(!ret);
218 	list_add_tail(&node->list, &ulist->nodes);
219 	ulist->nnodes++;
220 
221 	return 1;
222 }
223 
224 /*
225  * Delete one node from ulist.
226  *
227  * @ulist:	ulist to remove node from
228  * @val:	value to delete
229  * @aux:	aux to delete
230  *
231  * The deletion will only be done when *BOTH* val and aux matches.
232  * Return 0 for successful delete.
233  * Return > 0 for not found.
234  */
235 int ulist_del(struct ulist *ulist, u64 val, u64 aux)
236 {
237 	struct ulist_node *node;
238 
239 	node = ulist_rbtree_search(ulist, val);
240 	/* Not found */
241 	if (!node)
242 		return 1;
243 
244 	if (node->aux != aux)
245 		return 1;
246 
247 	/* Found and delete */
248 	ulist_rbtree_erase(ulist, node);
249 	return 0;
250 }
251 
252 /*
253  * Iterate ulist.
254  *
255  * @ulist:	ulist to iterate
256  * @uiter:	iterator variable, initialized with ULIST_ITER_INIT(&iterator)
257  *
258  * Note: locking must be provided by the caller. In case of rwlocks only read
259  *       locking is needed
260  *
261  * This function is used to iterate an ulist.
262  * It returns the next element from the ulist or %NULL when the
263  * end is reached. No guarantee is made with respect to the order in which
264  * the elements are returned. They might neither be returned in order of
265  * addition nor in ascending order.
266  * It is allowed to call ulist_add during an enumeration. Newly added items
267  * are guaranteed to show up in the running enumeration.
268  */
269 struct ulist_node *ulist_next(const struct ulist *ulist, struct ulist_iterator *uiter)
270 {
271 	struct ulist_node *node;
272 
273 	if (list_empty(&ulist->nodes))
274 		return NULL;
275 	if (uiter->cur_list && uiter->cur_list->next == &ulist->nodes)
276 		return NULL;
277 	if (uiter->cur_list) {
278 		uiter->cur_list = uiter->cur_list->next;
279 	} else {
280 		uiter->cur_list = ulist->nodes.next;
281 	}
282 	node = list_entry(uiter->cur_list, struct ulist_node, list);
283 	return node;
284 }
285