xref: /linux/fs/btrfs/tree-mod-log.c (revision 218bb7ec17f1f66a63cb7421fb8a1d48032988e8)
1  // SPDX-License-Identifier: GPL-2.0
2  
3  #include "messages.h"
4  #include "tree-mod-log.h"
5  #include "disk-io.h"
6  #include "fs.h"
7  #include "accessors.h"
8  #include "tree-checker.h"
9  
10  struct tree_mod_root {
11  	u64 logical;
12  	u8 level;
13  };
14  
15  struct tree_mod_elem {
16  	struct rb_node node;
17  	u64 logical;
18  	u64 seq;
19  	enum btrfs_mod_log_op op;
20  
21  	/*
22  	 * This is used for BTRFS_MOD_LOG_KEY_* and BTRFS_MOD_LOG_MOVE_KEYS
23  	 * operations.
24  	 */
25  	int slot;
26  
27  	/* This is used for BTRFS_MOD_LOG_KEY* and BTRFS_MOD_LOG_ROOT_REPLACE. */
28  	u64 generation;
29  
30  	/* Those are used for op == BTRFS_MOD_LOG_KEY_{REPLACE,REMOVE}. */
31  	struct btrfs_disk_key key;
32  	u64 blockptr;
33  
34  	/* This is used for op == BTRFS_MOD_LOG_MOVE_KEYS. */
35  	struct {
36  		int dst_slot;
37  		int nr_items;
38  	} move;
39  
40  	/* This is used for op == BTRFS_MOD_LOG_ROOT_REPLACE. */
41  	struct tree_mod_root old_root;
42  };
43  
44  /*
45   * Pull a new tree mod seq number for our operation.
46   */
47  static u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
48  {
49  	return atomic64_inc_return(&fs_info->tree_mod_seq);
50  }
51  
52  /*
53   * This adds a new blocker to the tree mod log's blocker list if the @elem
54   * passed does not already have a sequence number set. So when a caller expects
55   * to record tree modifications, it should ensure to set elem->seq to zero
56   * before calling btrfs_get_tree_mod_seq.
57   * Returns a fresh, unused tree log modification sequence number, even if no new
58   * blocker was added.
59   */
60  u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
61  			   struct btrfs_seq_list *elem)
62  {
63  	write_lock(&fs_info->tree_mod_log_lock);
64  	if (!elem->seq) {
65  		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
66  		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
67  		set_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags);
68  	}
69  	write_unlock(&fs_info->tree_mod_log_lock);
70  
71  	return elem->seq;
72  }
73  
74  void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
75  			    struct btrfs_seq_list *elem)
76  {
77  	struct rb_root *tm_root;
78  	struct rb_node *node;
79  	struct rb_node *next;
80  	struct tree_mod_elem *tm;
81  	u64 min_seq = BTRFS_SEQ_LAST;
82  	u64 seq_putting = elem->seq;
83  
84  	if (!seq_putting)
85  		return;
86  
87  	write_lock(&fs_info->tree_mod_log_lock);
88  	list_del(&elem->list);
89  	elem->seq = 0;
90  
91  	if (list_empty(&fs_info->tree_mod_seq_list)) {
92  		clear_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags);
93  	} else {
94  		struct btrfs_seq_list *first;
95  
96  		first = list_first_entry(&fs_info->tree_mod_seq_list,
97  					 struct btrfs_seq_list, list);
98  		if (seq_putting > first->seq) {
99  			/*
100  			 * Blocker with lower sequence number exists, we cannot
101  			 * remove anything from the log.
102  			 */
103  			write_unlock(&fs_info->tree_mod_log_lock);
104  			return;
105  		}
106  		min_seq = first->seq;
107  	}
108  
109  	/*
110  	 * Anything that's lower than the lowest existing (read: blocked)
111  	 * sequence number can be removed from the tree.
112  	 */
113  	tm_root = &fs_info->tree_mod_log;
114  	for (node = rb_first(tm_root); node; node = next) {
115  		next = rb_next(node);
116  		tm = rb_entry(node, struct tree_mod_elem, node);
117  		if (tm->seq >= min_seq)
118  			continue;
119  		rb_erase(node, tm_root);
120  		kfree(tm);
121  	}
122  	write_unlock(&fs_info->tree_mod_log_lock);
123  }
124  
125  /*
126   * Key order of the log:
127   *       node/leaf start address -> sequence
128   *
129   * The 'start address' is the logical address of the *new* root node for root
130   * replace operations, or the logical address of the affected block for all
131   * other operations.
132   */
133  static noinline int tree_mod_log_insert(struct btrfs_fs_info *fs_info,
134  					struct tree_mod_elem *tm)
135  {
136  	struct rb_root *tm_root;
137  	struct rb_node **new;
138  	struct rb_node *parent = NULL;
139  	struct tree_mod_elem *cur;
140  
141  	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
142  
143  	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
144  
145  	tm_root = &fs_info->tree_mod_log;
146  	new = &tm_root->rb_node;
147  	while (*new) {
148  		cur = rb_entry(*new, struct tree_mod_elem, node);
149  		parent = *new;
150  		if (cur->logical < tm->logical)
151  			new = &((*new)->rb_left);
152  		else if (cur->logical > tm->logical)
153  			new = &((*new)->rb_right);
154  		else if (cur->seq < tm->seq)
155  			new = &((*new)->rb_left);
156  		else if (cur->seq > tm->seq)
157  			new = &((*new)->rb_right);
158  		else
159  			return -EEXIST;
160  	}
161  
162  	rb_link_node(&tm->node, parent, new);
163  	rb_insert_color(&tm->node, tm_root);
164  	return 0;
165  }
166  
167  /*
168   * Determines if logging can be omitted. Returns true if it can. Otherwise, it
169   * returns false with the tree_mod_log_lock acquired. The caller must hold
170   * this until all tree mod log insertions are recorded in the rb tree and then
171   * write unlock fs_info::tree_mod_log_lock.
172   */
173  static bool tree_mod_dont_log(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
174  {
175  	if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
176  		return true;
177  	if (eb && btrfs_header_level(eb) == 0)
178  		return true;
179  
180  	write_lock(&fs_info->tree_mod_log_lock);
181  	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
182  		write_unlock(&fs_info->tree_mod_log_lock);
183  		return true;
184  	}
185  
186  	return false;
187  }
188  
189  /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
190  static bool tree_mod_need_log(const struct btrfs_fs_info *fs_info,
191  				    struct extent_buffer *eb)
192  {
193  	if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
194  		return false;
195  	if (eb && btrfs_header_level(eb) == 0)
196  		return false;
197  
198  	return true;
199  }
200  
201  static struct tree_mod_elem *alloc_tree_mod_elem(struct extent_buffer *eb,
202  						 int slot,
203  						 enum btrfs_mod_log_op op)
204  {
205  	struct tree_mod_elem *tm;
206  
207  	tm = kzalloc(sizeof(*tm), GFP_NOFS);
208  	if (!tm)
209  		return NULL;
210  
211  	tm->logical = eb->start;
212  	if (op != BTRFS_MOD_LOG_KEY_ADD) {
213  		btrfs_node_key(eb, &tm->key, slot);
214  		tm->blockptr = btrfs_node_blockptr(eb, slot);
215  	}
216  	tm->op = op;
217  	tm->slot = slot;
218  	tm->generation = btrfs_node_ptr_generation(eb, slot);
219  	RB_CLEAR_NODE(&tm->node);
220  
221  	return tm;
222  }
223  
224  int btrfs_tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
225  				  enum btrfs_mod_log_op op)
226  {
227  	struct tree_mod_elem *tm;
228  	int ret = 0;
229  
230  	if (!tree_mod_need_log(eb->fs_info, eb))
231  		return 0;
232  
233  	tm = alloc_tree_mod_elem(eb, slot, op);
234  	if (!tm)
235  		ret = -ENOMEM;
236  
237  	if (tree_mod_dont_log(eb->fs_info, eb)) {
238  		kfree(tm);
239  		/*
240  		 * Don't error if we failed to allocate memory because we don't
241  		 * need to log.
242  		 */
243  		return 0;
244  	} else if (ret != 0) {
245  		/*
246  		 * We previously failed to allocate memory and we need to log,
247  		 * so we have to fail.
248  		 */
249  		goto out_unlock;
250  	}
251  
252  	ret = tree_mod_log_insert(eb->fs_info, tm);
253  out_unlock:
254  	write_unlock(&eb->fs_info->tree_mod_log_lock);
255  	if (ret)
256  		kfree(tm);
257  
258  	return ret;
259  }
260  
261  static struct tree_mod_elem *tree_mod_log_alloc_move(struct extent_buffer *eb,
262  						     int dst_slot, int src_slot,
263  						     int nr_items)
264  {
265  	struct tree_mod_elem *tm;
266  
267  	tm = kzalloc(sizeof(*tm), GFP_NOFS);
268  	if (!tm)
269  		return ERR_PTR(-ENOMEM);
270  
271  	tm->logical = eb->start;
272  	tm->slot = src_slot;
273  	tm->move.dst_slot = dst_slot;
274  	tm->move.nr_items = nr_items;
275  	tm->op = BTRFS_MOD_LOG_MOVE_KEYS;
276  	RB_CLEAR_NODE(&tm->node);
277  
278  	return tm;
279  }
280  
281  int btrfs_tree_mod_log_insert_move(struct extent_buffer *eb,
282  				   int dst_slot, int src_slot,
283  				   int nr_items)
284  {
285  	struct tree_mod_elem *tm = NULL;
286  	struct tree_mod_elem **tm_list = NULL;
287  	int ret = 0;
288  	int i;
289  	bool locked = false;
290  
291  	if (!tree_mod_need_log(eb->fs_info, eb))
292  		return 0;
293  
294  	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
295  	if (!tm_list) {
296  		ret = -ENOMEM;
297  		goto lock;
298  	}
299  
300  	tm = tree_mod_log_alloc_move(eb, dst_slot, src_slot, nr_items);
301  	if (IS_ERR(tm)) {
302  		ret = PTR_ERR(tm);
303  		tm = NULL;
304  		goto lock;
305  	}
306  
307  	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
308  		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
309  				BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING);
310  		if (!tm_list[i]) {
311  			ret = -ENOMEM;
312  			goto lock;
313  		}
314  	}
315  
316  lock:
317  	if (tree_mod_dont_log(eb->fs_info, eb)) {
318  		/*
319  		 * Don't error if we failed to allocate memory because we don't
320  		 * need to log.
321  		 */
322  		ret = 0;
323  		goto free_tms;
324  	}
325  	locked = true;
326  
327  	/*
328  	 * We previously failed to allocate memory and we need to log, so we
329  	 * have to fail.
330  	 */
331  	if (ret != 0)
332  		goto free_tms;
333  
334  	/*
335  	 * When we override something during the move, we log these removals.
336  	 * This can only happen when we move towards the beginning of the
337  	 * buffer, i.e. dst_slot < src_slot.
338  	 */
339  	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
340  		ret = tree_mod_log_insert(eb->fs_info, tm_list[i]);
341  		if (ret)
342  			goto free_tms;
343  	}
344  
345  	ret = tree_mod_log_insert(eb->fs_info, tm);
346  	if (ret)
347  		goto free_tms;
348  	write_unlock(&eb->fs_info->tree_mod_log_lock);
349  	kfree(tm_list);
350  
351  	return 0;
352  
353  free_tms:
354  	if (tm_list) {
355  		for (i = 0; i < nr_items; i++) {
356  			if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
357  				rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
358  			kfree(tm_list[i]);
359  		}
360  	}
361  	if (locked)
362  		write_unlock(&eb->fs_info->tree_mod_log_lock);
363  	kfree(tm_list);
364  	kfree(tm);
365  
366  	return ret;
367  }
368  
369  static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
370  				struct tree_mod_elem **tm_list,
371  				int nritems)
372  {
373  	int i, j;
374  	int ret;
375  
376  	for (i = nritems - 1; i >= 0; i--) {
377  		ret = tree_mod_log_insert(fs_info, tm_list[i]);
378  		if (ret) {
379  			for (j = nritems - 1; j > i; j--)
380  				rb_erase(&tm_list[j]->node,
381  					 &fs_info->tree_mod_log);
382  			return ret;
383  		}
384  	}
385  
386  	return 0;
387  }
388  
389  int btrfs_tree_mod_log_insert_root(struct extent_buffer *old_root,
390  				   struct extent_buffer *new_root,
391  				   bool log_removal)
392  {
393  	struct btrfs_fs_info *fs_info = old_root->fs_info;
394  	struct tree_mod_elem *tm = NULL;
395  	struct tree_mod_elem **tm_list = NULL;
396  	int nritems = 0;
397  	int ret = 0;
398  	int i;
399  
400  	if (!tree_mod_need_log(fs_info, NULL))
401  		return 0;
402  
403  	if (log_removal && btrfs_header_level(old_root) > 0) {
404  		nritems = btrfs_header_nritems(old_root);
405  		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
406  				  GFP_NOFS);
407  		if (!tm_list) {
408  			ret = -ENOMEM;
409  			goto lock;
410  		}
411  		for (i = 0; i < nritems; i++) {
412  			tm_list[i] = alloc_tree_mod_elem(old_root, i,
413  			    BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING);
414  			if (!tm_list[i]) {
415  				ret = -ENOMEM;
416  				goto lock;
417  			}
418  		}
419  	}
420  
421  	tm = kzalloc(sizeof(*tm), GFP_NOFS);
422  	if (!tm) {
423  		ret = -ENOMEM;
424  		goto lock;
425  	}
426  
427  	tm->logical = new_root->start;
428  	tm->old_root.logical = old_root->start;
429  	tm->old_root.level = btrfs_header_level(old_root);
430  	tm->generation = btrfs_header_generation(old_root);
431  	tm->op = BTRFS_MOD_LOG_ROOT_REPLACE;
432  
433  lock:
434  	if (tree_mod_dont_log(fs_info, NULL)) {
435  		/*
436  		 * Don't error if we failed to allocate memory because we don't
437  		 * need to log.
438  		 */
439  		ret = 0;
440  		goto free_tms;
441  	} else if (ret != 0) {
442  		/*
443  		 * We previously failed to allocate memory and we need to log,
444  		 * so we have to fail.
445  		 */
446  		goto out_unlock;
447  	}
448  
449  	if (tm_list)
450  		ret = tree_mod_log_free_eb(fs_info, tm_list, nritems);
451  	if (!ret)
452  		ret = tree_mod_log_insert(fs_info, tm);
453  
454  out_unlock:
455  	write_unlock(&fs_info->tree_mod_log_lock);
456  	if (ret)
457  		goto free_tms;
458  	kfree(tm_list);
459  
460  	return ret;
461  
462  free_tms:
463  	if (tm_list) {
464  		for (i = 0; i < nritems; i++)
465  			kfree(tm_list[i]);
466  		kfree(tm_list);
467  	}
468  	kfree(tm);
469  
470  	return ret;
471  }
472  
473  static struct tree_mod_elem *__tree_mod_log_search(struct btrfs_fs_info *fs_info,
474  						   u64 start, u64 min_seq,
475  						   bool smallest)
476  {
477  	struct rb_root *tm_root;
478  	struct rb_node *node;
479  	struct tree_mod_elem *cur = NULL;
480  	struct tree_mod_elem *found = NULL;
481  
482  	read_lock(&fs_info->tree_mod_log_lock);
483  	tm_root = &fs_info->tree_mod_log;
484  	node = tm_root->rb_node;
485  	while (node) {
486  		cur = rb_entry(node, struct tree_mod_elem, node);
487  		if (cur->logical < start) {
488  			node = node->rb_left;
489  		} else if (cur->logical > start) {
490  			node = node->rb_right;
491  		} else if (cur->seq < min_seq) {
492  			node = node->rb_left;
493  		} else if (!smallest) {
494  			/* We want the node with the highest seq */
495  			if (found)
496  				BUG_ON(found->seq > cur->seq);
497  			found = cur;
498  			node = node->rb_left;
499  		} else if (cur->seq > min_seq) {
500  			/* We want the node with the smallest seq */
501  			if (found)
502  				BUG_ON(found->seq < cur->seq);
503  			found = cur;
504  			node = node->rb_right;
505  		} else {
506  			found = cur;
507  			break;
508  		}
509  	}
510  	read_unlock(&fs_info->tree_mod_log_lock);
511  
512  	return found;
513  }
514  
515  /*
516   * This returns the element from the log with the smallest time sequence
517   * value that's in the log (the oldest log item). Any element with a time
518   * sequence lower than min_seq will be ignored.
519   */
520  static struct tree_mod_elem *tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info,
521  							u64 start, u64 min_seq)
522  {
523  	return __tree_mod_log_search(fs_info, start, min_seq, true);
524  }
525  
526  /*
527   * This returns the element from the log with the largest time sequence
528   * value that's in the log (the most recent log item). Any element with
529   * a time sequence lower than min_seq will be ignored.
530   */
531  static struct tree_mod_elem *tree_mod_log_search(struct btrfs_fs_info *fs_info,
532  						 u64 start, u64 min_seq)
533  {
534  	return __tree_mod_log_search(fs_info, start, min_seq, false);
535  }
536  
537  int btrfs_tree_mod_log_eb_copy(struct extent_buffer *dst,
538  			       struct extent_buffer *src,
539  			       unsigned long dst_offset,
540  			       unsigned long src_offset,
541  			       int nr_items)
542  {
543  	struct btrfs_fs_info *fs_info = dst->fs_info;
544  	int ret = 0;
545  	struct tree_mod_elem **tm_list = NULL;
546  	struct tree_mod_elem **tm_list_add = NULL;
547  	struct tree_mod_elem **tm_list_rem = NULL;
548  	int i;
549  	bool locked = false;
550  	struct tree_mod_elem *dst_move_tm = NULL;
551  	struct tree_mod_elem *src_move_tm = NULL;
552  	u32 dst_move_nr_items = btrfs_header_nritems(dst) - dst_offset;
553  	u32 src_move_nr_items = btrfs_header_nritems(src) - (src_offset + nr_items);
554  
555  	if (!tree_mod_need_log(fs_info, NULL))
556  		return 0;
557  
558  	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
559  		return 0;
560  
561  	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
562  			  GFP_NOFS);
563  	if (!tm_list) {
564  		ret = -ENOMEM;
565  		goto lock;
566  	}
567  
568  	if (dst_move_nr_items) {
569  		dst_move_tm = tree_mod_log_alloc_move(dst, dst_offset + nr_items,
570  						      dst_offset, dst_move_nr_items);
571  		if (IS_ERR(dst_move_tm)) {
572  			ret = PTR_ERR(dst_move_tm);
573  			dst_move_tm = NULL;
574  			goto lock;
575  		}
576  	}
577  	if (src_move_nr_items) {
578  		src_move_tm = tree_mod_log_alloc_move(src, src_offset,
579  						      src_offset + nr_items,
580  						      src_move_nr_items);
581  		if (IS_ERR(src_move_tm)) {
582  			ret = PTR_ERR(src_move_tm);
583  			src_move_tm = NULL;
584  			goto lock;
585  		}
586  	}
587  
588  	tm_list_add = tm_list;
589  	tm_list_rem = tm_list + nr_items;
590  	for (i = 0; i < nr_items; i++) {
591  		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
592  						     BTRFS_MOD_LOG_KEY_REMOVE);
593  		if (!tm_list_rem[i]) {
594  			ret = -ENOMEM;
595  			goto lock;
596  		}
597  
598  		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
599  						     BTRFS_MOD_LOG_KEY_ADD);
600  		if (!tm_list_add[i]) {
601  			ret = -ENOMEM;
602  			goto lock;
603  		}
604  	}
605  
606  lock:
607  	if (tree_mod_dont_log(fs_info, NULL)) {
608  		/*
609  		 * Don't error if we failed to allocate memory because we don't
610  		 * need to log.
611  		 */
612  		ret = 0;
613  		goto free_tms;
614  	}
615  	locked = true;
616  
617  	/*
618  	 * We previously failed to allocate memory and we need to log, so we
619  	 * have to fail.
620  	 */
621  	if (ret != 0)
622  		goto free_tms;
623  
624  	if (dst_move_tm) {
625  		ret = tree_mod_log_insert(fs_info, dst_move_tm);
626  		if (ret)
627  			goto free_tms;
628  	}
629  	for (i = 0; i < nr_items; i++) {
630  		ret = tree_mod_log_insert(fs_info, tm_list_rem[i]);
631  		if (ret)
632  			goto free_tms;
633  		ret = tree_mod_log_insert(fs_info, tm_list_add[i]);
634  		if (ret)
635  			goto free_tms;
636  	}
637  	if (src_move_tm) {
638  		ret = tree_mod_log_insert(fs_info, src_move_tm);
639  		if (ret)
640  			goto free_tms;
641  	}
642  
643  	write_unlock(&fs_info->tree_mod_log_lock);
644  	kfree(tm_list);
645  
646  	return 0;
647  
648  free_tms:
649  	if (dst_move_tm && !RB_EMPTY_NODE(&dst_move_tm->node))
650  		rb_erase(&dst_move_tm->node, &fs_info->tree_mod_log);
651  	kfree(dst_move_tm);
652  	if (src_move_tm && !RB_EMPTY_NODE(&src_move_tm->node))
653  		rb_erase(&src_move_tm->node, &fs_info->tree_mod_log);
654  	kfree(src_move_tm);
655  	if (tm_list) {
656  		for (i = 0; i < nr_items * 2; i++) {
657  			if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
658  				rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
659  			kfree(tm_list[i]);
660  		}
661  	}
662  	if (locked)
663  		write_unlock(&fs_info->tree_mod_log_lock);
664  	kfree(tm_list);
665  
666  	return ret;
667  }
668  
669  int btrfs_tree_mod_log_free_eb(struct extent_buffer *eb)
670  {
671  	struct tree_mod_elem **tm_list = NULL;
672  	int nritems = 0;
673  	int i;
674  	int ret = 0;
675  
676  	if (!tree_mod_need_log(eb->fs_info, eb))
677  		return 0;
678  
679  	nritems = btrfs_header_nritems(eb);
680  	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
681  	if (!tm_list) {
682  		ret = -ENOMEM;
683  		goto lock;
684  	}
685  
686  	for (i = 0; i < nritems; i++) {
687  		tm_list[i] = alloc_tree_mod_elem(eb, i,
688  				    BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING);
689  		if (!tm_list[i]) {
690  			ret = -ENOMEM;
691  			goto lock;
692  		}
693  	}
694  
695  lock:
696  	if (tree_mod_dont_log(eb->fs_info, eb)) {
697  		/*
698  		 * Don't error if we failed to allocate memory because we don't
699  		 * need to log.
700  		 */
701  		ret = 0;
702  		goto free_tms;
703  	} else if (ret != 0) {
704  		/*
705  		 * We previously failed to allocate memory and we need to log,
706  		 * so we have to fail.
707  		 */
708  		goto out_unlock;
709  	}
710  
711  	ret = tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
712  out_unlock:
713  	write_unlock(&eb->fs_info->tree_mod_log_lock);
714  	if (ret)
715  		goto free_tms;
716  	kfree(tm_list);
717  
718  	return 0;
719  
720  free_tms:
721  	if (tm_list) {
722  		for (i = 0; i < nritems; i++)
723  			kfree(tm_list[i]);
724  		kfree(tm_list);
725  	}
726  
727  	return ret;
728  }
729  
730  /*
731   * Returns the logical address of the oldest predecessor of the given root.
732   * Entries older than time_seq are ignored.
733   */
734  static struct tree_mod_elem *tree_mod_log_oldest_root(struct extent_buffer *eb_root,
735  						      u64 time_seq)
736  {
737  	struct tree_mod_elem *tm;
738  	struct tree_mod_elem *found = NULL;
739  	u64 root_logical = eb_root->start;
740  	bool looped = false;
741  
742  	if (!time_seq)
743  		return NULL;
744  
745  	/*
746  	 * The very last operation that's logged for a root is the replacement
747  	 * operation (if it is replaced at all). This has the logical address
748  	 * of the *new* root, making it the very first operation that's logged
749  	 * for this root.
750  	 */
751  	while (1) {
752  		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
753  						time_seq);
754  		if (!looped && !tm)
755  			return NULL;
756  		/*
757  		 * If there are no tree operation for the oldest root, we simply
758  		 * return it. This should only happen if that (old) root is at
759  		 * level 0.
760  		 */
761  		if (!tm)
762  			break;
763  
764  		/*
765  		 * If there's an operation that's not a root replacement, we
766  		 * found the oldest version of our root. Normally, we'll find a
767  		 * BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
768  		 */
769  		if (tm->op != BTRFS_MOD_LOG_ROOT_REPLACE)
770  			break;
771  
772  		found = tm;
773  		root_logical = tm->old_root.logical;
774  		looped = true;
775  	}
776  
777  	/* If there's no old root to return, return what we found instead */
778  	if (!found)
779  		found = tm;
780  
781  	return found;
782  }
783  
784  
785  /*
786   * tm is a pointer to the first operation to rewind within eb. Then, all
787   * previous operations will be rewound (until we reach something older than
788   * time_seq).
789   */
790  static void tree_mod_log_rewind(struct btrfs_fs_info *fs_info,
791  				struct extent_buffer *eb,
792  				u64 time_seq,
793  				struct tree_mod_elem *first_tm)
794  {
795  	u32 n;
796  	struct rb_node *next;
797  	struct tree_mod_elem *tm = first_tm;
798  	unsigned long o_dst;
799  	unsigned long o_src;
800  	unsigned long p_size = sizeof(struct btrfs_key_ptr);
801  	/*
802  	 * max_slot tracks the maximum valid slot of the rewind eb at every
803  	 * step of the rewind. This is in contrast with 'n' which eventually
804  	 * matches the number of items, but can be wrong during moves or if
805  	 * removes overlap on already valid slots (which is probably separately
806  	 * a bug). We do this to validate the offsets of memmoves for rewinding
807  	 * moves and detect invalid memmoves.
808  	 *
809  	 * Since a rewind eb can start empty, max_slot is a signed integer with
810  	 * a special meaning for -1, which is that no slot is valid to move out
811  	 * of. Any other negative value is invalid.
812  	 */
813  	int max_slot;
814  	int move_src_end_slot;
815  	int move_dst_end_slot;
816  
817  	n = btrfs_header_nritems(eb);
818  	max_slot = n - 1;
819  	read_lock(&fs_info->tree_mod_log_lock);
820  	while (tm && tm->seq >= time_seq) {
821  		ASSERT(max_slot >= -1);
822  		/*
823  		 * All the operations are recorded with the operator used for
824  		 * the modification. As we're going backwards, we do the
825  		 * opposite of each operation here.
826  		 */
827  		switch (tm->op) {
828  		case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING:
829  			BUG_ON(tm->slot < n);
830  			fallthrough;
831  		case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING:
832  		case BTRFS_MOD_LOG_KEY_REMOVE:
833  			btrfs_set_node_key(eb, &tm->key, tm->slot);
834  			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
835  			btrfs_set_node_ptr_generation(eb, tm->slot,
836  						      tm->generation);
837  			n++;
838  			if (tm->slot > max_slot)
839  				max_slot = tm->slot;
840  			break;
841  		case BTRFS_MOD_LOG_KEY_REPLACE:
842  			BUG_ON(tm->slot >= n);
843  			btrfs_set_node_key(eb, &tm->key, tm->slot);
844  			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
845  			btrfs_set_node_ptr_generation(eb, tm->slot,
846  						      tm->generation);
847  			break;
848  		case BTRFS_MOD_LOG_KEY_ADD:
849  			/*
850  			 * It is possible we could have already removed keys
851  			 * behind the known max slot, so this will be an
852  			 * overestimate. In practice, the copy operation
853  			 * inserts them in increasing order, and overestimating
854  			 * just means we miss some warnings, so it's OK. It
855  			 * isn't worth carefully tracking the full array of
856  			 * valid slots to check against when moving.
857  			 */
858  			if (tm->slot == max_slot)
859  				max_slot--;
860  			/* if a move operation is needed it's in the log */
861  			n--;
862  			break;
863  		case BTRFS_MOD_LOG_MOVE_KEYS:
864  			ASSERT(tm->move.nr_items > 0);
865  			move_src_end_slot = tm->move.dst_slot + tm->move.nr_items - 1;
866  			move_dst_end_slot = tm->slot + tm->move.nr_items - 1;
867  			o_dst = btrfs_node_key_ptr_offset(eb, tm->slot);
868  			o_src = btrfs_node_key_ptr_offset(eb, tm->move.dst_slot);
869  			if (WARN_ON(move_src_end_slot > max_slot ||
870  				    tm->move.nr_items <= 0)) {
871  				btrfs_warn(fs_info,
872  "move from invalid tree mod log slot eb %llu slot %d dst_slot %d nr_items %d seq %llu n %u max_slot %d",
873  					   eb->start, tm->slot,
874  					   tm->move.dst_slot, tm->move.nr_items,
875  					   tm->seq, n, max_slot);
876  			}
877  			memmove_extent_buffer(eb, o_dst, o_src,
878  					      tm->move.nr_items * p_size);
879  			max_slot = move_dst_end_slot;
880  			break;
881  		case BTRFS_MOD_LOG_ROOT_REPLACE:
882  			/*
883  			 * This operation is special. For roots, this must be
884  			 * handled explicitly before rewinding.
885  			 * For non-roots, this operation may exist if the node
886  			 * was a root: root A -> child B; then A gets empty and
887  			 * B is promoted to the new root. In the mod log, we'll
888  			 * have a root-replace operation for B, a tree block
889  			 * that is no root. We simply ignore that operation.
890  			 */
891  			break;
892  		}
893  		next = rb_next(&tm->node);
894  		if (!next)
895  			break;
896  		tm = rb_entry(next, struct tree_mod_elem, node);
897  		if (tm->logical != first_tm->logical)
898  			break;
899  	}
900  	read_unlock(&fs_info->tree_mod_log_lock);
901  	btrfs_set_header_nritems(eb, n);
902  }
903  
904  /*
905   * Called with eb read locked. If the buffer cannot be rewound, the same buffer
906   * is returned. If rewind operations happen, a fresh buffer is returned. The
907   * returned buffer is always read-locked. If the returned buffer is not the
908   * input buffer, the lock on the input buffer is released and the input buffer
909   * is freed (its refcount is decremented).
910   */
911  struct extent_buffer *btrfs_tree_mod_log_rewind(struct btrfs_fs_info *fs_info,
912  						struct btrfs_path *path,
913  						struct extent_buffer *eb,
914  						u64 time_seq)
915  {
916  	struct extent_buffer *eb_rewin;
917  	struct tree_mod_elem *tm;
918  
919  	if (!time_seq)
920  		return eb;
921  
922  	if (btrfs_header_level(eb) == 0)
923  		return eb;
924  
925  	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
926  	if (!tm)
927  		return eb;
928  
929  	if (tm->op == BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
930  		BUG_ON(tm->slot != 0);
931  		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
932  		if (!eb_rewin) {
933  			btrfs_tree_read_unlock(eb);
934  			free_extent_buffer(eb);
935  			return NULL;
936  		}
937  		btrfs_set_header_bytenr(eb_rewin, eb->start);
938  		btrfs_set_header_backref_rev(eb_rewin,
939  					     btrfs_header_backref_rev(eb));
940  		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
941  		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
942  	} else {
943  		eb_rewin = btrfs_clone_extent_buffer(eb);
944  		if (!eb_rewin) {
945  			btrfs_tree_read_unlock(eb);
946  			free_extent_buffer(eb);
947  			return NULL;
948  		}
949  	}
950  
951  	btrfs_tree_read_unlock(eb);
952  	free_extent_buffer(eb);
953  
954  	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
955  				       eb_rewin, btrfs_header_level(eb_rewin));
956  	btrfs_tree_read_lock(eb_rewin);
957  	tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
958  	WARN_ON(btrfs_header_nritems(eb_rewin) >
959  		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
960  
961  	return eb_rewin;
962  }
963  
964  /*
965   * Rewind the state of @root's root node to the given @time_seq value.
966   * If there are no changes, the current root->root_node is returned. If anything
967   * changed in between, there's a fresh buffer allocated on which the rewind
968   * operations are done. In any case, the returned buffer is read locked.
969   * Returns NULL on error (with no locks held).
970   */
971  struct extent_buffer *btrfs_get_old_root(struct btrfs_root *root, u64 time_seq)
972  {
973  	struct btrfs_fs_info *fs_info = root->fs_info;
974  	struct tree_mod_elem *tm;
975  	struct extent_buffer *eb = NULL;
976  	struct extent_buffer *eb_root;
977  	u64 eb_root_owner = 0;
978  	struct extent_buffer *old;
979  	struct tree_mod_root *old_root = NULL;
980  	u64 old_generation = 0;
981  	u64 logical;
982  	int level;
983  
984  	eb_root = btrfs_read_lock_root_node(root);
985  	tm = tree_mod_log_oldest_root(eb_root, time_seq);
986  	if (!tm)
987  		return eb_root;
988  
989  	if (tm->op == BTRFS_MOD_LOG_ROOT_REPLACE) {
990  		old_root = &tm->old_root;
991  		old_generation = tm->generation;
992  		logical = old_root->logical;
993  		level = old_root->level;
994  	} else {
995  		logical = eb_root->start;
996  		level = btrfs_header_level(eb_root);
997  	}
998  
999  	tm = tree_mod_log_search(fs_info, logical, time_seq);
1000  	if (old_root && tm && tm->op != BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1001  		struct btrfs_tree_parent_check check = { 0 };
1002  
1003  		btrfs_tree_read_unlock(eb_root);
1004  		free_extent_buffer(eb_root);
1005  
1006  		check.level = level;
1007  		check.owner_root = btrfs_root_id(root);
1008  
1009  		old = read_tree_block(fs_info, logical, &check);
1010  		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1011  			if (!IS_ERR(old))
1012  				free_extent_buffer(old);
1013  			btrfs_warn(fs_info,
1014  				   "failed to read tree block %llu from get_old_root",
1015  				   logical);
1016  		} else {
1017  			struct tree_mod_elem *tm2;
1018  
1019  			btrfs_tree_read_lock(old);
1020  			eb = btrfs_clone_extent_buffer(old);
1021  			/*
1022  			 * After the lookup for the most recent tree mod operation
1023  			 * above and before we locked and cloned the extent buffer
1024  			 * 'old', a new tree mod log operation may have been added.
1025  			 * So lookup for a more recent one to make sure the number
1026  			 * of mod log operations we replay is consistent with the
1027  			 * number of items we have in the cloned extent buffer,
1028  			 * otherwise we can hit a BUG_ON when rewinding the extent
1029  			 * buffer.
1030  			 */
1031  			tm2 = tree_mod_log_search(fs_info, logical, time_seq);
1032  			btrfs_tree_read_unlock(old);
1033  			free_extent_buffer(old);
1034  			ASSERT(tm2);
1035  			ASSERT(tm2 == tm || tm2->seq > tm->seq);
1036  			if (!tm2 || tm2->seq < tm->seq) {
1037  				free_extent_buffer(eb);
1038  				return NULL;
1039  			}
1040  			tm = tm2;
1041  		}
1042  	} else if (old_root) {
1043  		eb_root_owner = btrfs_header_owner(eb_root);
1044  		btrfs_tree_read_unlock(eb_root);
1045  		free_extent_buffer(eb_root);
1046  		eb = alloc_dummy_extent_buffer(fs_info, logical);
1047  	} else {
1048  		eb = btrfs_clone_extent_buffer(eb_root);
1049  		btrfs_tree_read_unlock(eb_root);
1050  		free_extent_buffer(eb_root);
1051  	}
1052  
1053  	if (!eb)
1054  		return NULL;
1055  	if (old_root) {
1056  		btrfs_set_header_bytenr(eb, eb->start);
1057  		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1058  		btrfs_set_header_owner(eb, eb_root_owner);
1059  		btrfs_set_header_level(eb, old_root->level);
1060  		btrfs_set_header_generation(eb, old_generation);
1061  	}
1062  	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
1063  				       btrfs_header_level(eb));
1064  	btrfs_tree_read_lock(eb);
1065  	if (tm)
1066  		tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1067  	else
1068  		WARN_ON(btrfs_header_level(eb) != 0);
1069  	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1070  
1071  	return eb;
1072  }
1073  
1074  int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1075  {
1076  	struct tree_mod_elem *tm;
1077  	int level;
1078  	struct extent_buffer *eb_root = btrfs_root_node(root);
1079  
1080  	tm = tree_mod_log_oldest_root(eb_root, time_seq);
1081  	if (tm && tm->op == BTRFS_MOD_LOG_ROOT_REPLACE)
1082  		level = tm->old_root.level;
1083  	else
1084  		level = btrfs_header_level(eb_root);
1085  
1086  	free_extent_buffer(eb_root);
1087  
1088  	return level;
1089  }
1090  
1091  /*
1092   * Return the lowest sequence number in the tree modification log.
1093   *
1094   * Return the sequence number of the oldest tree modification log user, which
1095   * corresponds to the lowest sequence number of all existing users. If there are
1096   * no users it returns 0.
1097   */
1098  u64 btrfs_tree_mod_log_lowest_seq(struct btrfs_fs_info *fs_info)
1099  {
1100  	u64 ret = 0;
1101  
1102  	read_lock(&fs_info->tree_mod_log_lock);
1103  	if (!list_empty(&fs_info->tree_mod_seq_list)) {
1104  		struct btrfs_seq_list *elem;
1105  
1106  		elem = list_first_entry(&fs_info->tree_mod_seq_list,
1107  					struct btrfs_seq_list, list);
1108  		ret = elem->seq;
1109  	}
1110  	read_unlock(&fs_info->tree_mod_log_lock);
1111  
1112  	return ret;
1113  }
1114