1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/blkdev.h> 9 #include <linux/list_sort.h> 10 #include <linux/iversion.h> 11 #include "misc.h" 12 #include "ctree.h" 13 #include "tree-log.h" 14 #include "disk-io.h" 15 #include "locking.h" 16 #include "print-tree.h" 17 #include "backref.h" 18 #include "compression.h" 19 #include "qgroup.h" 20 #include "block-group.h" 21 #include "space-info.h" 22 #include "zoned.h" 23 #include "inode-item.h" 24 #include "fs.h" 25 #include "accessors.h" 26 #include "extent-tree.h" 27 #include "root-tree.h" 28 #include "dir-item.h" 29 #include "file-item.h" 30 #include "file.h" 31 #include "orphan.h" 32 #include "tree-checker.h" 33 34 #define MAX_CONFLICT_INODES 10 35 36 /* magic values for the inode_only field in btrfs_log_inode: 37 * 38 * LOG_INODE_ALL means to log everything 39 * LOG_INODE_EXISTS means to log just enough to recreate the inode 40 * during log replay 41 */ 42 enum { 43 LOG_INODE_ALL, 44 LOG_INODE_EXISTS, 45 }; 46 47 /* 48 * directory trouble cases 49 * 50 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync 51 * log, we must force a full commit before doing an fsync of the directory 52 * where the unlink was done. 53 * ---> record transid of last unlink/rename per directory 54 * 55 * mkdir foo/some_dir 56 * normal commit 57 * rename foo/some_dir foo2/some_dir 58 * mkdir foo/some_dir 59 * fsync foo/some_dir/some_file 60 * 61 * The fsync above will unlink the original some_dir without recording 62 * it in its new location (foo2). After a crash, some_dir will be gone 63 * unless the fsync of some_file forces a full commit 64 * 65 * 2) we must log any new names for any file or dir that is in the fsync 66 * log. ---> check inode while renaming/linking. 67 * 68 * 2a) we must log any new names for any file or dir during rename 69 * when the directory they are being removed from was logged. 70 * ---> check inode and old parent dir during rename 71 * 72 * 2a is actually the more important variant. With the extra logging 73 * a crash might unlink the old name without recreating the new one 74 * 75 * 3) after a crash, we must go through any directories with a link count 76 * of zero and redo the rm -rf 77 * 78 * mkdir f1/foo 79 * normal commit 80 * rm -rf f1/foo 81 * fsync(f1) 82 * 83 * The directory f1 was fully removed from the FS, but fsync was never 84 * called on f1, only its parent dir. After a crash the rm -rf must 85 * be replayed. This must be able to recurse down the entire 86 * directory tree. The inode link count fixup code takes care of the 87 * ugly details. 88 */ 89 90 /* 91 * stages for the tree walking. The first 92 * stage (0) is to only pin down the blocks we find 93 * the second stage (1) is to make sure that all the inodes 94 * we find in the log are created in the subvolume. 95 * 96 * The last stage is to deal with directories and links and extents 97 * and all the other fun semantics 98 */ 99 enum { 100 LOG_WALK_PIN_ONLY, 101 LOG_WALK_REPLAY_INODES, 102 LOG_WALK_REPLAY_DIR_INDEX, 103 LOG_WALK_REPLAY_ALL, 104 }; 105 106 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 107 struct btrfs_inode *inode, 108 int inode_only, 109 struct btrfs_log_ctx *ctx); 110 static int link_to_fixup_dir(struct btrfs_trans_handle *trans, 111 struct btrfs_root *root, 112 struct btrfs_path *path, u64 objectid); 113 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 114 struct btrfs_root *root, 115 struct btrfs_root *log, 116 struct btrfs_path *path, 117 u64 dirid, int del_all); 118 static void wait_log_commit(struct btrfs_root *root, int transid); 119 120 /* 121 * tree logging is a special write ahead log used to make sure that 122 * fsyncs and O_SYNCs can happen without doing full tree commits. 123 * 124 * Full tree commits are expensive because they require commonly 125 * modified blocks to be recowed, creating many dirty pages in the 126 * extent tree an 4x-6x higher write load than ext3. 127 * 128 * Instead of doing a tree commit on every fsync, we use the 129 * key ranges and transaction ids to find items for a given file or directory 130 * that have changed in this transaction. Those items are copied into 131 * a special tree (one per subvolume root), that tree is written to disk 132 * and then the fsync is considered complete. 133 * 134 * After a crash, items are copied out of the log-tree back into the 135 * subvolume tree. Any file data extents found are recorded in the extent 136 * allocation tree, and the log-tree freed. 137 * 138 * The log tree is read three times, once to pin down all the extents it is 139 * using in ram and once, once to create all the inodes logged in the tree 140 * and once to do all the other items. 141 */ 142 143 /* 144 * start a sub transaction and setup the log tree 145 * this increments the log tree writer count to make the people 146 * syncing the tree wait for us to finish 147 */ 148 static int start_log_trans(struct btrfs_trans_handle *trans, 149 struct btrfs_root *root, 150 struct btrfs_log_ctx *ctx) 151 { 152 struct btrfs_fs_info *fs_info = root->fs_info; 153 struct btrfs_root *tree_root = fs_info->tree_root; 154 const bool zoned = btrfs_is_zoned(fs_info); 155 int ret = 0; 156 bool created = false; 157 158 /* 159 * First check if the log root tree was already created. If not, create 160 * it before locking the root's log_mutex, just to keep lockdep happy. 161 */ 162 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) { 163 mutex_lock(&tree_root->log_mutex); 164 if (!fs_info->log_root_tree) { 165 ret = btrfs_init_log_root_tree(trans, fs_info); 166 if (!ret) { 167 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state); 168 created = true; 169 } 170 } 171 mutex_unlock(&tree_root->log_mutex); 172 if (ret) 173 return ret; 174 } 175 176 mutex_lock(&root->log_mutex); 177 178 again: 179 if (root->log_root) { 180 int index = (root->log_transid + 1) % 2; 181 182 if (btrfs_need_log_full_commit(trans)) { 183 ret = BTRFS_LOG_FORCE_COMMIT; 184 goto out; 185 } 186 187 if (zoned && atomic_read(&root->log_commit[index])) { 188 wait_log_commit(root, root->log_transid - 1); 189 goto again; 190 } 191 192 if (!root->log_start_pid) { 193 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 194 root->log_start_pid = current->pid; 195 } else if (root->log_start_pid != current->pid) { 196 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 197 } 198 } else { 199 /* 200 * This means fs_info->log_root_tree was already created 201 * for some other FS trees. Do the full commit not to mix 202 * nodes from multiple log transactions to do sequential 203 * writing. 204 */ 205 if (zoned && !created) { 206 ret = BTRFS_LOG_FORCE_COMMIT; 207 goto out; 208 } 209 210 ret = btrfs_add_log_tree(trans, root); 211 if (ret) 212 goto out; 213 214 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 215 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state); 216 root->log_start_pid = current->pid; 217 } 218 219 atomic_inc(&root->log_writers); 220 if (!ctx->logging_new_name) { 221 int index = root->log_transid % 2; 222 list_add_tail(&ctx->list, &root->log_ctxs[index]); 223 ctx->log_transid = root->log_transid; 224 } 225 226 out: 227 mutex_unlock(&root->log_mutex); 228 return ret; 229 } 230 231 /* 232 * returns 0 if there was a log transaction running and we were able 233 * to join, or returns -ENOENT if there were not transactions 234 * in progress 235 */ 236 static int join_running_log_trans(struct btrfs_root *root) 237 { 238 const bool zoned = btrfs_is_zoned(root->fs_info); 239 int ret = -ENOENT; 240 241 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state)) 242 return ret; 243 244 mutex_lock(&root->log_mutex); 245 again: 246 if (root->log_root) { 247 int index = (root->log_transid + 1) % 2; 248 249 ret = 0; 250 if (zoned && atomic_read(&root->log_commit[index])) { 251 wait_log_commit(root, root->log_transid - 1); 252 goto again; 253 } 254 atomic_inc(&root->log_writers); 255 } 256 mutex_unlock(&root->log_mutex); 257 return ret; 258 } 259 260 /* 261 * This either makes the current running log transaction wait 262 * until you call btrfs_end_log_trans() or it makes any future 263 * log transactions wait until you call btrfs_end_log_trans() 264 */ 265 void btrfs_pin_log_trans(struct btrfs_root *root) 266 { 267 atomic_inc(&root->log_writers); 268 } 269 270 /* 271 * indicate we're done making changes to the log tree 272 * and wake up anyone waiting to do a sync 273 */ 274 void btrfs_end_log_trans(struct btrfs_root *root) 275 { 276 if (atomic_dec_and_test(&root->log_writers)) { 277 /* atomic_dec_and_test implies a barrier */ 278 cond_wake_up_nomb(&root->log_writer_wait); 279 } 280 } 281 282 /* 283 * the walk control struct is used to pass state down the chain when 284 * processing the log tree. The stage field tells us which part 285 * of the log tree processing we are currently doing. The others 286 * are state fields used for that specific part 287 */ 288 struct walk_control { 289 /* should we free the extent on disk when done? This is used 290 * at transaction commit time while freeing a log tree 291 */ 292 int free; 293 294 /* pin only walk, we record which extents on disk belong to the 295 * log trees 296 */ 297 int pin; 298 299 /* what stage of the replay code we're currently in */ 300 int stage; 301 302 /* 303 * Ignore any items from the inode currently being processed. Needs 304 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in 305 * the LOG_WALK_REPLAY_INODES stage. 306 */ 307 bool ignore_cur_inode; 308 309 /* the root we are currently replaying */ 310 struct btrfs_root *replay_dest; 311 312 /* the trans handle for the current replay */ 313 struct btrfs_trans_handle *trans; 314 315 /* the function that gets used to process blocks we find in the 316 * tree. Note the extent_buffer might not be up to date when it is 317 * passed in, and it must be checked or read if you need the data 318 * inside it 319 */ 320 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb, 321 struct walk_control *wc, u64 gen, int level); 322 }; 323 324 /* 325 * process_func used to pin down extents, write them or wait on them 326 */ 327 static int process_one_buffer(struct btrfs_root *log, 328 struct extent_buffer *eb, 329 struct walk_control *wc, u64 gen, int level) 330 { 331 struct btrfs_fs_info *fs_info = log->fs_info; 332 int ret = 0; 333 334 /* 335 * If this fs is mixed then we need to be able to process the leaves to 336 * pin down any logged extents, so we have to read the block. 337 */ 338 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 339 struct btrfs_tree_parent_check check = { 340 .level = level, 341 .transid = gen 342 }; 343 344 ret = btrfs_read_extent_buffer(eb, &check); 345 if (ret) 346 return ret; 347 } 348 349 if (wc->pin) { 350 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb); 351 if (ret) 352 return ret; 353 354 if (btrfs_buffer_uptodate(eb, gen, 0) && 355 btrfs_header_level(eb) == 0) 356 ret = btrfs_exclude_logged_extents(eb); 357 } 358 return ret; 359 } 360 361 /* 362 * Item overwrite used by replay and tree logging. eb, slot and key all refer 363 * to the src data we are copying out. 364 * 365 * root is the tree we are copying into, and path is a scratch 366 * path for use in this function (it should be released on entry and 367 * will be released on exit). 368 * 369 * If the key is already in the destination tree the existing item is 370 * overwritten. If the existing item isn't big enough, it is extended. 371 * If it is too large, it is truncated. 372 * 373 * If the key isn't in the destination yet, a new item is inserted. 374 */ 375 static int overwrite_item(struct btrfs_trans_handle *trans, 376 struct btrfs_root *root, 377 struct btrfs_path *path, 378 struct extent_buffer *eb, int slot, 379 struct btrfs_key *key) 380 { 381 int ret; 382 u32 item_size; 383 u64 saved_i_size = 0; 384 int save_old_i_size = 0; 385 unsigned long src_ptr; 386 unsigned long dst_ptr; 387 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY; 388 389 /* 390 * This is only used during log replay, so the root is always from a 391 * fs/subvolume tree. In case we ever need to support a log root, then 392 * we'll have to clone the leaf in the path, release the path and use 393 * the leaf before writing into the log tree. See the comments at 394 * copy_items() for more details. 395 */ 396 ASSERT(root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID); 397 398 item_size = btrfs_item_size(eb, slot); 399 src_ptr = btrfs_item_ptr_offset(eb, slot); 400 401 /* Look for the key in the destination tree. */ 402 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 403 if (ret < 0) 404 return ret; 405 406 if (ret == 0) { 407 char *src_copy; 408 char *dst_copy; 409 u32 dst_size = btrfs_item_size(path->nodes[0], 410 path->slots[0]); 411 if (dst_size != item_size) 412 goto insert; 413 414 if (item_size == 0) { 415 btrfs_release_path(path); 416 return 0; 417 } 418 dst_copy = kmalloc(item_size, GFP_NOFS); 419 src_copy = kmalloc(item_size, GFP_NOFS); 420 if (!dst_copy || !src_copy) { 421 btrfs_release_path(path); 422 kfree(dst_copy); 423 kfree(src_copy); 424 return -ENOMEM; 425 } 426 427 read_extent_buffer(eb, src_copy, src_ptr, item_size); 428 429 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 430 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr, 431 item_size); 432 ret = memcmp(dst_copy, src_copy, item_size); 433 434 kfree(dst_copy); 435 kfree(src_copy); 436 /* 437 * they have the same contents, just return, this saves 438 * us from cowing blocks in the destination tree and doing 439 * extra writes that may not have been done by a previous 440 * sync 441 */ 442 if (ret == 0) { 443 btrfs_release_path(path); 444 return 0; 445 } 446 447 /* 448 * We need to load the old nbytes into the inode so when we 449 * replay the extents we've logged we get the right nbytes. 450 */ 451 if (inode_item) { 452 struct btrfs_inode_item *item; 453 u64 nbytes; 454 u32 mode; 455 456 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 457 struct btrfs_inode_item); 458 nbytes = btrfs_inode_nbytes(path->nodes[0], item); 459 item = btrfs_item_ptr(eb, slot, 460 struct btrfs_inode_item); 461 btrfs_set_inode_nbytes(eb, item, nbytes); 462 463 /* 464 * If this is a directory we need to reset the i_size to 465 * 0 so that we can set it up properly when replaying 466 * the rest of the items in this log. 467 */ 468 mode = btrfs_inode_mode(eb, item); 469 if (S_ISDIR(mode)) 470 btrfs_set_inode_size(eb, item, 0); 471 } 472 } else if (inode_item) { 473 struct btrfs_inode_item *item; 474 u32 mode; 475 476 /* 477 * New inode, set nbytes to 0 so that the nbytes comes out 478 * properly when we replay the extents. 479 */ 480 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item); 481 btrfs_set_inode_nbytes(eb, item, 0); 482 483 /* 484 * If this is a directory we need to reset the i_size to 0 so 485 * that we can set it up properly when replaying the rest of 486 * the items in this log. 487 */ 488 mode = btrfs_inode_mode(eb, item); 489 if (S_ISDIR(mode)) 490 btrfs_set_inode_size(eb, item, 0); 491 } 492 insert: 493 btrfs_release_path(path); 494 /* try to insert the key into the destination tree */ 495 path->skip_release_on_error = 1; 496 ret = btrfs_insert_empty_item(trans, root, path, 497 key, item_size); 498 path->skip_release_on_error = 0; 499 500 /* make sure any existing item is the correct size */ 501 if (ret == -EEXIST || ret == -EOVERFLOW) { 502 u32 found_size; 503 found_size = btrfs_item_size(path->nodes[0], 504 path->slots[0]); 505 if (found_size > item_size) 506 btrfs_truncate_item(trans, path, item_size, 1); 507 else if (found_size < item_size) 508 btrfs_extend_item(trans, path, item_size - found_size); 509 } else if (ret) { 510 return ret; 511 } 512 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], 513 path->slots[0]); 514 515 /* don't overwrite an existing inode if the generation number 516 * was logged as zero. This is done when the tree logging code 517 * is just logging an inode to make sure it exists after recovery. 518 * 519 * Also, don't overwrite i_size on directories during replay. 520 * log replay inserts and removes directory items based on the 521 * state of the tree found in the subvolume, and i_size is modified 522 * as it goes 523 */ 524 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) { 525 struct btrfs_inode_item *src_item; 526 struct btrfs_inode_item *dst_item; 527 528 src_item = (struct btrfs_inode_item *)src_ptr; 529 dst_item = (struct btrfs_inode_item *)dst_ptr; 530 531 if (btrfs_inode_generation(eb, src_item) == 0) { 532 struct extent_buffer *dst_eb = path->nodes[0]; 533 const u64 ino_size = btrfs_inode_size(eb, src_item); 534 535 /* 536 * For regular files an ino_size == 0 is used only when 537 * logging that an inode exists, as part of a directory 538 * fsync, and the inode wasn't fsynced before. In this 539 * case don't set the size of the inode in the fs/subvol 540 * tree, otherwise we would be throwing valid data away. 541 */ 542 if (S_ISREG(btrfs_inode_mode(eb, src_item)) && 543 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) && 544 ino_size != 0) 545 btrfs_set_inode_size(dst_eb, dst_item, ino_size); 546 goto no_copy; 547 } 548 549 if (S_ISDIR(btrfs_inode_mode(eb, src_item)) && 550 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) { 551 save_old_i_size = 1; 552 saved_i_size = btrfs_inode_size(path->nodes[0], 553 dst_item); 554 } 555 } 556 557 copy_extent_buffer(path->nodes[0], eb, dst_ptr, 558 src_ptr, item_size); 559 560 if (save_old_i_size) { 561 struct btrfs_inode_item *dst_item; 562 dst_item = (struct btrfs_inode_item *)dst_ptr; 563 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size); 564 } 565 566 /* make sure the generation is filled in */ 567 if (key->type == BTRFS_INODE_ITEM_KEY) { 568 struct btrfs_inode_item *dst_item; 569 dst_item = (struct btrfs_inode_item *)dst_ptr; 570 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) { 571 btrfs_set_inode_generation(path->nodes[0], dst_item, 572 trans->transid); 573 } 574 } 575 no_copy: 576 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 577 btrfs_release_path(path); 578 return 0; 579 } 580 581 static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len, 582 struct fscrypt_str *name) 583 { 584 char *buf; 585 586 buf = kmalloc(len, GFP_NOFS); 587 if (!buf) 588 return -ENOMEM; 589 590 read_extent_buffer(eb, buf, (unsigned long)start, len); 591 name->name = buf; 592 name->len = len; 593 return 0; 594 } 595 596 /* 597 * simple helper to read an inode off the disk from a given root 598 * This can only be called for subvolume roots and not for the log 599 */ 600 static noinline struct inode *read_one_inode(struct btrfs_root *root, 601 u64 objectid) 602 { 603 struct inode *inode; 604 605 inode = btrfs_iget(root->fs_info->sb, objectid, root); 606 if (IS_ERR(inode)) 607 inode = NULL; 608 return inode; 609 } 610 611 /* replays a single extent in 'eb' at 'slot' with 'key' into the 612 * subvolume 'root'. path is released on entry and should be released 613 * on exit. 614 * 615 * extents in the log tree have not been allocated out of the extent 616 * tree yet. So, this completes the allocation, taking a reference 617 * as required if the extent already exists or creating a new extent 618 * if it isn't in the extent allocation tree yet. 619 * 620 * The extent is inserted into the file, dropping any existing extents 621 * from the file that overlap the new one. 622 */ 623 static noinline int replay_one_extent(struct btrfs_trans_handle *trans, 624 struct btrfs_root *root, 625 struct btrfs_path *path, 626 struct extent_buffer *eb, int slot, 627 struct btrfs_key *key) 628 { 629 struct btrfs_drop_extents_args drop_args = { 0 }; 630 struct btrfs_fs_info *fs_info = root->fs_info; 631 int found_type; 632 u64 extent_end; 633 u64 start = key->offset; 634 u64 nbytes = 0; 635 struct btrfs_file_extent_item *item; 636 struct inode *inode = NULL; 637 unsigned long size; 638 int ret = 0; 639 640 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 641 found_type = btrfs_file_extent_type(eb, item); 642 643 if (found_type == BTRFS_FILE_EXTENT_REG || 644 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 645 nbytes = btrfs_file_extent_num_bytes(eb, item); 646 extent_end = start + nbytes; 647 648 /* 649 * We don't add to the inodes nbytes if we are prealloc or a 650 * hole. 651 */ 652 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 653 nbytes = 0; 654 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 655 size = btrfs_file_extent_ram_bytes(eb, item); 656 nbytes = btrfs_file_extent_ram_bytes(eb, item); 657 extent_end = ALIGN(start + size, 658 fs_info->sectorsize); 659 } else { 660 ret = 0; 661 goto out; 662 } 663 664 inode = read_one_inode(root, key->objectid); 665 if (!inode) { 666 ret = -EIO; 667 goto out; 668 } 669 670 /* 671 * first check to see if we already have this extent in the 672 * file. This must be done before the btrfs_drop_extents run 673 * so we don't try to drop this extent. 674 */ 675 ret = btrfs_lookup_file_extent(trans, root, path, 676 btrfs_ino(BTRFS_I(inode)), start, 0); 677 678 if (ret == 0 && 679 (found_type == BTRFS_FILE_EXTENT_REG || 680 found_type == BTRFS_FILE_EXTENT_PREALLOC)) { 681 struct btrfs_file_extent_item cmp1; 682 struct btrfs_file_extent_item cmp2; 683 struct btrfs_file_extent_item *existing; 684 struct extent_buffer *leaf; 685 686 leaf = path->nodes[0]; 687 existing = btrfs_item_ptr(leaf, path->slots[0], 688 struct btrfs_file_extent_item); 689 690 read_extent_buffer(eb, &cmp1, (unsigned long)item, 691 sizeof(cmp1)); 692 read_extent_buffer(leaf, &cmp2, (unsigned long)existing, 693 sizeof(cmp2)); 694 695 /* 696 * we already have a pointer to this exact extent, 697 * we don't have to do anything 698 */ 699 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) { 700 btrfs_release_path(path); 701 goto out; 702 } 703 } 704 btrfs_release_path(path); 705 706 /* drop any overlapping extents */ 707 drop_args.start = start; 708 drop_args.end = extent_end; 709 drop_args.drop_cache = true; 710 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args); 711 if (ret) 712 goto out; 713 714 if (found_type == BTRFS_FILE_EXTENT_REG || 715 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 716 u64 offset; 717 unsigned long dest_offset; 718 struct btrfs_key ins; 719 720 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 && 721 btrfs_fs_incompat(fs_info, NO_HOLES)) 722 goto update_inode; 723 724 ret = btrfs_insert_empty_item(trans, root, path, key, 725 sizeof(*item)); 726 if (ret) 727 goto out; 728 dest_offset = btrfs_item_ptr_offset(path->nodes[0], 729 path->slots[0]); 730 copy_extent_buffer(path->nodes[0], eb, dest_offset, 731 (unsigned long)item, sizeof(*item)); 732 733 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item); 734 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item); 735 ins.type = BTRFS_EXTENT_ITEM_KEY; 736 offset = key->offset - btrfs_file_extent_offset(eb, item); 737 738 /* 739 * Manually record dirty extent, as here we did a shallow 740 * file extent item copy and skip normal backref update, 741 * but modifying extent tree all by ourselves. 742 * So need to manually record dirty extent for qgroup, 743 * as the owner of the file extent changed from log tree 744 * (doesn't affect qgroup) to fs/file tree(affects qgroup) 745 */ 746 ret = btrfs_qgroup_trace_extent(trans, 747 btrfs_file_extent_disk_bytenr(eb, item), 748 btrfs_file_extent_disk_num_bytes(eb, item)); 749 if (ret < 0) 750 goto out; 751 752 if (ins.objectid > 0) { 753 struct btrfs_ref ref = { 0 }; 754 u64 csum_start; 755 u64 csum_end; 756 LIST_HEAD(ordered_sums); 757 758 /* 759 * is this extent already allocated in the extent 760 * allocation tree? If so, just add a reference 761 */ 762 ret = btrfs_lookup_data_extent(fs_info, ins.objectid, 763 ins.offset); 764 if (ret < 0) { 765 goto out; 766 } else if (ret == 0) { 767 btrfs_init_generic_ref(&ref, 768 BTRFS_ADD_DELAYED_REF, 769 ins.objectid, ins.offset, 0, 770 root->root_key.objectid); 771 btrfs_init_data_ref(&ref, 772 root->root_key.objectid, 773 key->objectid, offset, 0, false); 774 ret = btrfs_inc_extent_ref(trans, &ref); 775 if (ret) 776 goto out; 777 } else { 778 /* 779 * insert the extent pointer in the extent 780 * allocation tree 781 */ 782 ret = btrfs_alloc_logged_file_extent(trans, 783 root->root_key.objectid, 784 key->objectid, offset, &ins); 785 if (ret) 786 goto out; 787 } 788 btrfs_release_path(path); 789 790 if (btrfs_file_extent_compression(eb, item)) { 791 csum_start = ins.objectid; 792 csum_end = csum_start + ins.offset; 793 } else { 794 csum_start = ins.objectid + 795 btrfs_file_extent_offset(eb, item); 796 csum_end = csum_start + 797 btrfs_file_extent_num_bytes(eb, item); 798 } 799 800 ret = btrfs_lookup_csums_list(root->log_root, 801 csum_start, csum_end - 1, 802 &ordered_sums, 0, false); 803 if (ret) 804 goto out; 805 /* 806 * Now delete all existing cums in the csum root that 807 * cover our range. We do this because we can have an 808 * extent that is completely referenced by one file 809 * extent item and partially referenced by another 810 * file extent item (like after using the clone or 811 * extent_same ioctls). In this case if we end up doing 812 * the replay of the one that partially references the 813 * extent first, and we do not do the csum deletion 814 * below, we can get 2 csum items in the csum tree that 815 * overlap each other. For example, imagine our log has 816 * the two following file extent items: 817 * 818 * key (257 EXTENT_DATA 409600) 819 * extent data disk byte 12845056 nr 102400 820 * extent data offset 20480 nr 20480 ram 102400 821 * 822 * key (257 EXTENT_DATA 819200) 823 * extent data disk byte 12845056 nr 102400 824 * extent data offset 0 nr 102400 ram 102400 825 * 826 * Where the second one fully references the 100K extent 827 * that starts at disk byte 12845056, and the log tree 828 * has a single csum item that covers the entire range 829 * of the extent: 830 * 831 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 832 * 833 * After the first file extent item is replayed, the 834 * csum tree gets the following csum item: 835 * 836 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 837 * 838 * Which covers the 20K sub-range starting at offset 20K 839 * of our extent. Now when we replay the second file 840 * extent item, if we do not delete existing csum items 841 * that cover any of its blocks, we end up getting two 842 * csum items in our csum tree that overlap each other: 843 * 844 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100 845 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20 846 * 847 * Which is a problem, because after this anyone trying 848 * to lookup up for the checksum of any block of our 849 * extent starting at an offset of 40K or higher, will 850 * end up looking at the second csum item only, which 851 * does not contain the checksum for any block starting 852 * at offset 40K or higher of our extent. 853 */ 854 while (!list_empty(&ordered_sums)) { 855 struct btrfs_ordered_sum *sums; 856 struct btrfs_root *csum_root; 857 858 sums = list_entry(ordered_sums.next, 859 struct btrfs_ordered_sum, 860 list); 861 csum_root = btrfs_csum_root(fs_info, 862 sums->logical); 863 if (!ret) 864 ret = btrfs_del_csums(trans, csum_root, 865 sums->logical, 866 sums->len); 867 if (!ret) 868 ret = btrfs_csum_file_blocks(trans, 869 csum_root, 870 sums); 871 list_del(&sums->list); 872 kfree(sums); 873 } 874 if (ret) 875 goto out; 876 } else { 877 btrfs_release_path(path); 878 } 879 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 880 /* inline extents are easy, we just overwrite them */ 881 ret = overwrite_item(trans, root, path, eb, slot, key); 882 if (ret) 883 goto out; 884 } 885 886 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, 887 extent_end - start); 888 if (ret) 889 goto out; 890 891 update_inode: 892 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found); 893 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 894 out: 895 iput(inode); 896 return ret; 897 } 898 899 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans, 900 struct btrfs_inode *dir, 901 struct btrfs_inode *inode, 902 const struct fscrypt_str *name) 903 { 904 int ret; 905 906 ret = btrfs_unlink_inode(trans, dir, inode, name); 907 if (ret) 908 return ret; 909 /* 910 * Whenever we need to check if a name exists or not, we check the 911 * fs/subvolume tree. So after an unlink we must run delayed items, so 912 * that future checks for a name during log replay see that the name 913 * does not exists anymore. 914 */ 915 return btrfs_run_delayed_items(trans); 916 } 917 918 /* 919 * when cleaning up conflicts between the directory names in the 920 * subvolume, directory names in the log and directory names in the 921 * inode back references, we may have to unlink inodes from directories. 922 * 923 * This is a helper function to do the unlink of a specific directory 924 * item 925 */ 926 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans, 927 struct btrfs_path *path, 928 struct btrfs_inode *dir, 929 struct btrfs_dir_item *di) 930 { 931 struct btrfs_root *root = dir->root; 932 struct inode *inode; 933 struct fscrypt_str name; 934 struct extent_buffer *leaf; 935 struct btrfs_key location; 936 int ret; 937 938 leaf = path->nodes[0]; 939 940 btrfs_dir_item_key_to_cpu(leaf, di, &location); 941 ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name); 942 if (ret) 943 return -ENOMEM; 944 945 btrfs_release_path(path); 946 947 inode = read_one_inode(root, location.objectid); 948 if (!inode) { 949 ret = -EIO; 950 goto out; 951 } 952 953 ret = link_to_fixup_dir(trans, root, path, location.objectid); 954 if (ret) 955 goto out; 956 957 ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name); 958 out: 959 kfree(name.name); 960 iput(inode); 961 return ret; 962 } 963 964 /* 965 * See if a given name and sequence number found in an inode back reference are 966 * already in a directory and correctly point to this inode. 967 * 968 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it 969 * exists. 970 */ 971 static noinline int inode_in_dir(struct btrfs_root *root, 972 struct btrfs_path *path, 973 u64 dirid, u64 objectid, u64 index, 974 struct fscrypt_str *name) 975 { 976 struct btrfs_dir_item *di; 977 struct btrfs_key location; 978 int ret = 0; 979 980 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid, 981 index, name, 0); 982 if (IS_ERR(di)) { 983 ret = PTR_ERR(di); 984 goto out; 985 } else if (di) { 986 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 987 if (location.objectid != objectid) 988 goto out; 989 } else { 990 goto out; 991 } 992 993 btrfs_release_path(path); 994 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0); 995 if (IS_ERR(di)) { 996 ret = PTR_ERR(di); 997 goto out; 998 } else if (di) { 999 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1000 if (location.objectid == objectid) 1001 ret = 1; 1002 } 1003 out: 1004 btrfs_release_path(path); 1005 return ret; 1006 } 1007 1008 /* 1009 * helper function to check a log tree for a named back reference in 1010 * an inode. This is used to decide if a back reference that is 1011 * found in the subvolume conflicts with what we find in the log. 1012 * 1013 * inode backreferences may have multiple refs in a single item, 1014 * during replay we process one reference at a time, and we don't 1015 * want to delete valid links to a file from the subvolume if that 1016 * link is also in the log. 1017 */ 1018 static noinline int backref_in_log(struct btrfs_root *log, 1019 struct btrfs_key *key, 1020 u64 ref_objectid, 1021 const struct fscrypt_str *name) 1022 { 1023 struct btrfs_path *path; 1024 int ret; 1025 1026 path = btrfs_alloc_path(); 1027 if (!path) 1028 return -ENOMEM; 1029 1030 ret = btrfs_search_slot(NULL, log, key, path, 0, 0); 1031 if (ret < 0) { 1032 goto out; 1033 } else if (ret == 1) { 1034 ret = 0; 1035 goto out; 1036 } 1037 1038 if (key->type == BTRFS_INODE_EXTREF_KEY) 1039 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0], 1040 path->slots[0], 1041 ref_objectid, name); 1042 else 1043 ret = !!btrfs_find_name_in_backref(path->nodes[0], 1044 path->slots[0], name); 1045 out: 1046 btrfs_free_path(path); 1047 return ret; 1048 } 1049 1050 static inline int __add_inode_ref(struct btrfs_trans_handle *trans, 1051 struct btrfs_root *root, 1052 struct btrfs_path *path, 1053 struct btrfs_root *log_root, 1054 struct btrfs_inode *dir, 1055 struct btrfs_inode *inode, 1056 u64 inode_objectid, u64 parent_objectid, 1057 u64 ref_index, struct fscrypt_str *name) 1058 { 1059 int ret; 1060 struct extent_buffer *leaf; 1061 struct btrfs_dir_item *di; 1062 struct btrfs_key search_key; 1063 struct btrfs_inode_extref *extref; 1064 1065 again: 1066 /* Search old style refs */ 1067 search_key.objectid = inode_objectid; 1068 search_key.type = BTRFS_INODE_REF_KEY; 1069 search_key.offset = parent_objectid; 1070 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 1071 if (ret == 0) { 1072 struct btrfs_inode_ref *victim_ref; 1073 unsigned long ptr; 1074 unsigned long ptr_end; 1075 1076 leaf = path->nodes[0]; 1077 1078 /* are we trying to overwrite a back ref for the root directory 1079 * if so, just jump out, we're done 1080 */ 1081 if (search_key.objectid == search_key.offset) 1082 return 1; 1083 1084 /* check all the names in this back reference to see 1085 * if they are in the log. if so, we allow them to stay 1086 * otherwise they must be unlinked as a conflict 1087 */ 1088 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1089 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]); 1090 while (ptr < ptr_end) { 1091 struct fscrypt_str victim_name; 1092 1093 victim_ref = (struct btrfs_inode_ref *)ptr; 1094 ret = read_alloc_one_name(leaf, (victim_ref + 1), 1095 btrfs_inode_ref_name_len(leaf, victim_ref), 1096 &victim_name); 1097 if (ret) 1098 return ret; 1099 1100 ret = backref_in_log(log_root, &search_key, 1101 parent_objectid, &victim_name); 1102 if (ret < 0) { 1103 kfree(victim_name.name); 1104 return ret; 1105 } else if (!ret) { 1106 inc_nlink(&inode->vfs_inode); 1107 btrfs_release_path(path); 1108 1109 ret = unlink_inode_for_log_replay(trans, dir, inode, 1110 &victim_name); 1111 kfree(victim_name.name); 1112 if (ret) 1113 return ret; 1114 goto again; 1115 } 1116 kfree(victim_name.name); 1117 1118 ptr = (unsigned long)(victim_ref + 1) + victim_name.len; 1119 } 1120 } 1121 btrfs_release_path(path); 1122 1123 /* Same search but for extended refs */ 1124 extref = btrfs_lookup_inode_extref(NULL, root, path, name, 1125 inode_objectid, parent_objectid, 0, 1126 0); 1127 if (IS_ERR(extref)) { 1128 return PTR_ERR(extref); 1129 } else if (extref) { 1130 u32 item_size; 1131 u32 cur_offset = 0; 1132 unsigned long base; 1133 struct inode *victim_parent; 1134 1135 leaf = path->nodes[0]; 1136 1137 item_size = btrfs_item_size(leaf, path->slots[0]); 1138 base = btrfs_item_ptr_offset(leaf, path->slots[0]); 1139 1140 while (cur_offset < item_size) { 1141 struct fscrypt_str victim_name; 1142 1143 extref = (struct btrfs_inode_extref *)(base + cur_offset); 1144 1145 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid) 1146 goto next; 1147 1148 ret = read_alloc_one_name(leaf, &extref->name, 1149 btrfs_inode_extref_name_len(leaf, extref), 1150 &victim_name); 1151 if (ret) 1152 return ret; 1153 1154 search_key.objectid = inode_objectid; 1155 search_key.type = BTRFS_INODE_EXTREF_KEY; 1156 search_key.offset = btrfs_extref_hash(parent_objectid, 1157 victim_name.name, 1158 victim_name.len); 1159 ret = backref_in_log(log_root, &search_key, 1160 parent_objectid, &victim_name); 1161 if (ret < 0) { 1162 kfree(victim_name.name); 1163 return ret; 1164 } else if (!ret) { 1165 ret = -ENOENT; 1166 victim_parent = read_one_inode(root, 1167 parent_objectid); 1168 if (victim_parent) { 1169 inc_nlink(&inode->vfs_inode); 1170 btrfs_release_path(path); 1171 1172 ret = unlink_inode_for_log_replay(trans, 1173 BTRFS_I(victim_parent), 1174 inode, &victim_name); 1175 } 1176 iput(victim_parent); 1177 kfree(victim_name.name); 1178 if (ret) 1179 return ret; 1180 goto again; 1181 } 1182 kfree(victim_name.name); 1183 next: 1184 cur_offset += victim_name.len + sizeof(*extref); 1185 } 1186 } 1187 btrfs_release_path(path); 1188 1189 /* look for a conflicting sequence number */ 1190 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir), 1191 ref_index, name, 0); 1192 if (IS_ERR(di)) { 1193 return PTR_ERR(di); 1194 } else if (di) { 1195 ret = drop_one_dir_item(trans, path, dir, di); 1196 if (ret) 1197 return ret; 1198 } 1199 btrfs_release_path(path); 1200 1201 /* look for a conflicting name */ 1202 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0); 1203 if (IS_ERR(di)) { 1204 return PTR_ERR(di); 1205 } else if (di) { 1206 ret = drop_one_dir_item(trans, path, dir, di); 1207 if (ret) 1208 return ret; 1209 } 1210 btrfs_release_path(path); 1211 1212 return 0; 1213 } 1214 1215 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1216 struct fscrypt_str *name, u64 *index, 1217 u64 *parent_objectid) 1218 { 1219 struct btrfs_inode_extref *extref; 1220 int ret; 1221 1222 extref = (struct btrfs_inode_extref *)ref_ptr; 1223 1224 ret = read_alloc_one_name(eb, &extref->name, 1225 btrfs_inode_extref_name_len(eb, extref), name); 1226 if (ret) 1227 return ret; 1228 1229 if (index) 1230 *index = btrfs_inode_extref_index(eb, extref); 1231 if (parent_objectid) 1232 *parent_objectid = btrfs_inode_extref_parent(eb, extref); 1233 1234 return 0; 1235 } 1236 1237 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr, 1238 struct fscrypt_str *name, u64 *index) 1239 { 1240 struct btrfs_inode_ref *ref; 1241 int ret; 1242 1243 ref = (struct btrfs_inode_ref *)ref_ptr; 1244 1245 ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref), 1246 name); 1247 if (ret) 1248 return ret; 1249 1250 if (index) 1251 *index = btrfs_inode_ref_index(eb, ref); 1252 1253 return 0; 1254 } 1255 1256 /* 1257 * Take an inode reference item from the log tree and iterate all names from the 1258 * inode reference item in the subvolume tree with the same key (if it exists). 1259 * For any name that is not in the inode reference item from the log tree, do a 1260 * proper unlink of that name (that is, remove its entry from the inode 1261 * reference item and both dir index keys). 1262 */ 1263 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans, 1264 struct btrfs_root *root, 1265 struct btrfs_path *path, 1266 struct btrfs_inode *inode, 1267 struct extent_buffer *log_eb, 1268 int log_slot, 1269 struct btrfs_key *key) 1270 { 1271 int ret; 1272 unsigned long ref_ptr; 1273 unsigned long ref_end; 1274 struct extent_buffer *eb; 1275 1276 again: 1277 btrfs_release_path(path); 1278 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 1279 if (ret > 0) { 1280 ret = 0; 1281 goto out; 1282 } 1283 if (ret < 0) 1284 goto out; 1285 1286 eb = path->nodes[0]; 1287 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 1288 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]); 1289 while (ref_ptr < ref_end) { 1290 struct fscrypt_str name; 1291 u64 parent_id; 1292 1293 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1294 ret = extref_get_fields(eb, ref_ptr, &name, 1295 NULL, &parent_id); 1296 } else { 1297 parent_id = key->offset; 1298 ret = ref_get_fields(eb, ref_ptr, &name, NULL); 1299 } 1300 if (ret) 1301 goto out; 1302 1303 if (key->type == BTRFS_INODE_EXTREF_KEY) 1304 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot, 1305 parent_id, &name); 1306 else 1307 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name); 1308 1309 if (!ret) { 1310 struct inode *dir; 1311 1312 btrfs_release_path(path); 1313 dir = read_one_inode(root, parent_id); 1314 if (!dir) { 1315 ret = -ENOENT; 1316 kfree(name.name); 1317 goto out; 1318 } 1319 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), 1320 inode, &name); 1321 kfree(name.name); 1322 iput(dir); 1323 if (ret) 1324 goto out; 1325 goto again; 1326 } 1327 1328 kfree(name.name); 1329 ref_ptr += name.len; 1330 if (key->type == BTRFS_INODE_EXTREF_KEY) 1331 ref_ptr += sizeof(struct btrfs_inode_extref); 1332 else 1333 ref_ptr += sizeof(struct btrfs_inode_ref); 1334 } 1335 ret = 0; 1336 out: 1337 btrfs_release_path(path); 1338 return ret; 1339 } 1340 1341 /* 1342 * replay one inode back reference item found in the log tree. 1343 * eb, slot and key refer to the buffer and key found in the log tree. 1344 * root is the destination we are replaying into, and path is for temp 1345 * use by this function. (it should be released on return). 1346 */ 1347 static noinline int add_inode_ref(struct btrfs_trans_handle *trans, 1348 struct btrfs_root *root, 1349 struct btrfs_root *log, 1350 struct btrfs_path *path, 1351 struct extent_buffer *eb, int slot, 1352 struct btrfs_key *key) 1353 { 1354 struct inode *dir = NULL; 1355 struct inode *inode = NULL; 1356 unsigned long ref_ptr; 1357 unsigned long ref_end; 1358 struct fscrypt_str name; 1359 int ret; 1360 int log_ref_ver = 0; 1361 u64 parent_objectid; 1362 u64 inode_objectid; 1363 u64 ref_index = 0; 1364 int ref_struct_size; 1365 1366 ref_ptr = btrfs_item_ptr_offset(eb, slot); 1367 ref_end = ref_ptr + btrfs_item_size(eb, slot); 1368 1369 if (key->type == BTRFS_INODE_EXTREF_KEY) { 1370 struct btrfs_inode_extref *r; 1371 1372 ref_struct_size = sizeof(struct btrfs_inode_extref); 1373 log_ref_ver = 1; 1374 r = (struct btrfs_inode_extref *)ref_ptr; 1375 parent_objectid = btrfs_inode_extref_parent(eb, r); 1376 } else { 1377 ref_struct_size = sizeof(struct btrfs_inode_ref); 1378 parent_objectid = key->offset; 1379 } 1380 inode_objectid = key->objectid; 1381 1382 /* 1383 * it is possible that we didn't log all the parent directories 1384 * for a given inode. If we don't find the dir, just don't 1385 * copy the back ref in. The link count fixup code will take 1386 * care of the rest 1387 */ 1388 dir = read_one_inode(root, parent_objectid); 1389 if (!dir) { 1390 ret = -ENOENT; 1391 goto out; 1392 } 1393 1394 inode = read_one_inode(root, inode_objectid); 1395 if (!inode) { 1396 ret = -EIO; 1397 goto out; 1398 } 1399 1400 while (ref_ptr < ref_end) { 1401 if (log_ref_ver) { 1402 ret = extref_get_fields(eb, ref_ptr, &name, 1403 &ref_index, &parent_objectid); 1404 /* 1405 * parent object can change from one array 1406 * item to another. 1407 */ 1408 if (!dir) 1409 dir = read_one_inode(root, parent_objectid); 1410 if (!dir) { 1411 ret = -ENOENT; 1412 goto out; 1413 } 1414 } else { 1415 ret = ref_get_fields(eb, ref_ptr, &name, &ref_index); 1416 } 1417 if (ret) 1418 goto out; 1419 1420 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)), 1421 btrfs_ino(BTRFS_I(inode)), ref_index, &name); 1422 if (ret < 0) { 1423 goto out; 1424 } else if (ret == 0) { 1425 /* 1426 * look for a conflicting back reference in the 1427 * metadata. if we find one we have to unlink that name 1428 * of the file before we add our new link. Later on, we 1429 * overwrite any existing back reference, and we don't 1430 * want to create dangling pointers in the directory. 1431 */ 1432 ret = __add_inode_ref(trans, root, path, log, 1433 BTRFS_I(dir), BTRFS_I(inode), 1434 inode_objectid, parent_objectid, 1435 ref_index, &name); 1436 if (ret) { 1437 if (ret == 1) 1438 ret = 0; 1439 goto out; 1440 } 1441 1442 /* insert our name */ 1443 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 1444 &name, 0, ref_index); 1445 if (ret) 1446 goto out; 1447 1448 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 1449 if (ret) 1450 goto out; 1451 } 1452 /* Else, ret == 1, we already have a perfect match, we're done. */ 1453 1454 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len; 1455 kfree(name.name); 1456 name.name = NULL; 1457 if (log_ref_ver) { 1458 iput(dir); 1459 dir = NULL; 1460 } 1461 } 1462 1463 /* 1464 * Before we overwrite the inode reference item in the subvolume tree 1465 * with the item from the log tree, we must unlink all names from the 1466 * parent directory that are in the subvolume's tree inode reference 1467 * item, otherwise we end up with an inconsistent subvolume tree where 1468 * dir index entries exist for a name but there is no inode reference 1469 * item with the same name. 1470 */ 1471 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot, 1472 key); 1473 if (ret) 1474 goto out; 1475 1476 /* finally write the back reference in the inode */ 1477 ret = overwrite_item(trans, root, path, eb, slot, key); 1478 out: 1479 btrfs_release_path(path); 1480 kfree(name.name); 1481 iput(dir); 1482 iput(inode); 1483 return ret; 1484 } 1485 1486 static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path) 1487 { 1488 int ret = 0; 1489 int name_len; 1490 unsigned int nlink = 0; 1491 u32 item_size; 1492 u32 cur_offset = 0; 1493 u64 inode_objectid = btrfs_ino(inode); 1494 u64 offset = 0; 1495 unsigned long ptr; 1496 struct btrfs_inode_extref *extref; 1497 struct extent_buffer *leaf; 1498 1499 while (1) { 1500 ret = btrfs_find_one_extref(inode->root, inode_objectid, offset, 1501 path, &extref, &offset); 1502 if (ret) 1503 break; 1504 1505 leaf = path->nodes[0]; 1506 item_size = btrfs_item_size(leaf, path->slots[0]); 1507 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1508 cur_offset = 0; 1509 1510 while (cur_offset < item_size) { 1511 extref = (struct btrfs_inode_extref *) (ptr + cur_offset); 1512 name_len = btrfs_inode_extref_name_len(leaf, extref); 1513 1514 nlink++; 1515 1516 cur_offset += name_len + sizeof(*extref); 1517 } 1518 1519 offset++; 1520 btrfs_release_path(path); 1521 } 1522 btrfs_release_path(path); 1523 1524 if (ret < 0 && ret != -ENOENT) 1525 return ret; 1526 return nlink; 1527 } 1528 1529 static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path) 1530 { 1531 int ret; 1532 struct btrfs_key key; 1533 unsigned int nlink = 0; 1534 unsigned long ptr; 1535 unsigned long ptr_end; 1536 int name_len; 1537 u64 ino = btrfs_ino(inode); 1538 1539 key.objectid = ino; 1540 key.type = BTRFS_INODE_REF_KEY; 1541 key.offset = (u64)-1; 1542 1543 while (1) { 1544 ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0); 1545 if (ret < 0) 1546 break; 1547 if (ret > 0) { 1548 if (path->slots[0] == 0) 1549 break; 1550 path->slots[0]--; 1551 } 1552 process_slot: 1553 btrfs_item_key_to_cpu(path->nodes[0], &key, 1554 path->slots[0]); 1555 if (key.objectid != ino || 1556 key.type != BTRFS_INODE_REF_KEY) 1557 break; 1558 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]); 1559 ptr_end = ptr + btrfs_item_size(path->nodes[0], 1560 path->slots[0]); 1561 while (ptr < ptr_end) { 1562 struct btrfs_inode_ref *ref; 1563 1564 ref = (struct btrfs_inode_ref *)ptr; 1565 name_len = btrfs_inode_ref_name_len(path->nodes[0], 1566 ref); 1567 ptr = (unsigned long)(ref + 1) + name_len; 1568 nlink++; 1569 } 1570 1571 if (key.offset == 0) 1572 break; 1573 if (path->slots[0] > 0) { 1574 path->slots[0]--; 1575 goto process_slot; 1576 } 1577 key.offset--; 1578 btrfs_release_path(path); 1579 } 1580 btrfs_release_path(path); 1581 1582 return nlink; 1583 } 1584 1585 /* 1586 * There are a few corners where the link count of the file can't 1587 * be properly maintained during replay. So, instead of adding 1588 * lots of complexity to the log code, we just scan the backrefs 1589 * for any file that has been through replay. 1590 * 1591 * The scan will update the link count on the inode to reflect the 1592 * number of back refs found. If it goes down to zero, the iput 1593 * will free the inode. 1594 */ 1595 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans, 1596 struct inode *inode) 1597 { 1598 struct btrfs_root *root = BTRFS_I(inode)->root; 1599 struct btrfs_path *path; 1600 int ret; 1601 u64 nlink = 0; 1602 u64 ino = btrfs_ino(BTRFS_I(inode)); 1603 1604 path = btrfs_alloc_path(); 1605 if (!path) 1606 return -ENOMEM; 1607 1608 ret = count_inode_refs(BTRFS_I(inode), path); 1609 if (ret < 0) 1610 goto out; 1611 1612 nlink = ret; 1613 1614 ret = count_inode_extrefs(BTRFS_I(inode), path); 1615 if (ret < 0) 1616 goto out; 1617 1618 nlink += ret; 1619 1620 ret = 0; 1621 1622 if (nlink != inode->i_nlink) { 1623 set_nlink(inode, nlink); 1624 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 1625 if (ret) 1626 goto out; 1627 } 1628 BTRFS_I(inode)->index_cnt = (u64)-1; 1629 1630 if (inode->i_nlink == 0) { 1631 if (S_ISDIR(inode->i_mode)) { 1632 ret = replay_dir_deletes(trans, root, NULL, path, 1633 ino, 1); 1634 if (ret) 1635 goto out; 1636 } 1637 ret = btrfs_insert_orphan_item(trans, root, ino); 1638 if (ret == -EEXIST) 1639 ret = 0; 1640 } 1641 1642 out: 1643 btrfs_free_path(path); 1644 return ret; 1645 } 1646 1647 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans, 1648 struct btrfs_root *root, 1649 struct btrfs_path *path) 1650 { 1651 int ret; 1652 struct btrfs_key key; 1653 struct inode *inode; 1654 1655 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1656 key.type = BTRFS_ORPHAN_ITEM_KEY; 1657 key.offset = (u64)-1; 1658 while (1) { 1659 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1660 if (ret < 0) 1661 break; 1662 1663 if (ret == 1) { 1664 ret = 0; 1665 if (path->slots[0] == 0) 1666 break; 1667 path->slots[0]--; 1668 } 1669 1670 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1671 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID || 1672 key.type != BTRFS_ORPHAN_ITEM_KEY) 1673 break; 1674 1675 ret = btrfs_del_item(trans, root, path); 1676 if (ret) 1677 break; 1678 1679 btrfs_release_path(path); 1680 inode = read_one_inode(root, key.offset); 1681 if (!inode) { 1682 ret = -EIO; 1683 break; 1684 } 1685 1686 ret = fixup_inode_link_count(trans, inode); 1687 iput(inode); 1688 if (ret) 1689 break; 1690 1691 /* 1692 * fixup on a directory may create new entries, 1693 * make sure we always look for the highset possible 1694 * offset 1695 */ 1696 key.offset = (u64)-1; 1697 } 1698 btrfs_release_path(path); 1699 return ret; 1700 } 1701 1702 1703 /* 1704 * record a given inode in the fixup dir so we can check its link 1705 * count when replay is done. The link count is incremented here 1706 * so the inode won't go away until we check it 1707 */ 1708 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans, 1709 struct btrfs_root *root, 1710 struct btrfs_path *path, 1711 u64 objectid) 1712 { 1713 struct btrfs_key key; 1714 int ret = 0; 1715 struct inode *inode; 1716 1717 inode = read_one_inode(root, objectid); 1718 if (!inode) 1719 return -EIO; 1720 1721 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID; 1722 key.type = BTRFS_ORPHAN_ITEM_KEY; 1723 key.offset = objectid; 1724 1725 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1726 1727 btrfs_release_path(path); 1728 if (ret == 0) { 1729 if (!inode->i_nlink) 1730 set_nlink(inode, 1); 1731 else 1732 inc_nlink(inode); 1733 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 1734 } else if (ret == -EEXIST) { 1735 ret = 0; 1736 } 1737 iput(inode); 1738 1739 return ret; 1740 } 1741 1742 /* 1743 * when replaying the log for a directory, we only insert names 1744 * for inodes that actually exist. This means an fsync on a directory 1745 * does not implicitly fsync all the new files in it 1746 */ 1747 static noinline int insert_one_name(struct btrfs_trans_handle *trans, 1748 struct btrfs_root *root, 1749 u64 dirid, u64 index, 1750 const struct fscrypt_str *name, 1751 struct btrfs_key *location) 1752 { 1753 struct inode *inode; 1754 struct inode *dir; 1755 int ret; 1756 1757 inode = read_one_inode(root, location->objectid); 1758 if (!inode) 1759 return -ENOENT; 1760 1761 dir = read_one_inode(root, dirid); 1762 if (!dir) { 1763 iput(inode); 1764 return -EIO; 1765 } 1766 1767 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 1768 1, index); 1769 1770 /* FIXME, put inode into FIXUP list */ 1771 1772 iput(inode); 1773 iput(dir); 1774 return ret; 1775 } 1776 1777 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans, 1778 struct btrfs_inode *dir, 1779 struct btrfs_path *path, 1780 struct btrfs_dir_item *dst_di, 1781 const struct btrfs_key *log_key, 1782 u8 log_flags, 1783 bool exists) 1784 { 1785 struct btrfs_key found_key; 1786 1787 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key); 1788 /* The existing dentry points to the same inode, don't delete it. */ 1789 if (found_key.objectid == log_key->objectid && 1790 found_key.type == log_key->type && 1791 found_key.offset == log_key->offset && 1792 btrfs_dir_flags(path->nodes[0], dst_di) == log_flags) 1793 return 1; 1794 1795 /* 1796 * Don't drop the conflicting directory entry if the inode for the new 1797 * entry doesn't exist. 1798 */ 1799 if (!exists) 1800 return 0; 1801 1802 return drop_one_dir_item(trans, path, dir, dst_di); 1803 } 1804 1805 /* 1806 * take a single entry in a log directory item and replay it into 1807 * the subvolume. 1808 * 1809 * if a conflicting item exists in the subdirectory already, 1810 * the inode it points to is unlinked and put into the link count 1811 * fix up tree. 1812 * 1813 * If a name from the log points to a file or directory that does 1814 * not exist in the FS, it is skipped. fsyncs on directories 1815 * do not force down inodes inside that directory, just changes to the 1816 * names or unlinks in a directory. 1817 * 1818 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a 1819 * non-existing inode) and 1 if the name was replayed. 1820 */ 1821 static noinline int replay_one_name(struct btrfs_trans_handle *trans, 1822 struct btrfs_root *root, 1823 struct btrfs_path *path, 1824 struct extent_buffer *eb, 1825 struct btrfs_dir_item *di, 1826 struct btrfs_key *key) 1827 { 1828 struct fscrypt_str name; 1829 struct btrfs_dir_item *dir_dst_di; 1830 struct btrfs_dir_item *index_dst_di; 1831 bool dir_dst_matches = false; 1832 bool index_dst_matches = false; 1833 struct btrfs_key log_key; 1834 struct btrfs_key search_key; 1835 struct inode *dir; 1836 u8 log_flags; 1837 bool exists; 1838 int ret; 1839 bool update_size = true; 1840 bool name_added = false; 1841 1842 dir = read_one_inode(root, key->objectid); 1843 if (!dir) 1844 return -EIO; 1845 1846 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name); 1847 if (ret) 1848 goto out; 1849 1850 log_flags = btrfs_dir_flags(eb, di); 1851 btrfs_dir_item_key_to_cpu(eb, di, &log_key); 1852 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0); 1853 btrfs_release_path(path); 1854 if (ret < 0) 1855 goto out; 1856 exists = (ret == 0); 1857 ret = 0; 1858 1859 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid, 1860 &name, 1); 1861 if (IS_ERR(dir_dst_di)) { 1862 ret = PTR_ERR(dir_dst_di); 1863 goto out; 1864 } else if (dir_dst_di) { 1865 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path, 1866 dir_dst_di, &log_key, 1867 log_flags, exists); 1868 if (ret < 0) 1869 goto out; 1870 dir_dst_matches = (ret == 1); 1871 } 1872 1873 btrfs_release_path(path); 1874 1875 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path, 1876 key->objectid, key->offset, 1877 &name, 1); 1878 if (IS_ERR(index_dst_di)) { 1879 ret = PTR_ERR(index_dst_di); 1880 goto out; 1881 } else if (index_dst_di) { 1882 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path, 1883 index_dst_di, &log_key, 1884 log_flags, exists); 1885 if (ret < 0) 1886 goto out; 1887 index_dst_matches = (ret == 1); 1888 } 1889 1890 btrfs_release_path(path); 1891 1892 if (dir_dst_matches && index_dst_matches) { 1893 ret = 0; 1894 update_size = false; 1895 goto out; 1896 } 1897 1898 /* 1899 * Check if the inode reference exists in the log for the given name, 1900 * inode and parent inode 1901 */ 1902 search_key.objectid = log_key.objectid; 1903 search_key.type = BTRFS_INODE_REF_KEY; 1904 search_key.offset = key->objectid; 1905 ret = backref_in_log(root->log_root, &search_key, 0, &name); 1906 if (ret < 0) { 1907 goto out; 1908 } else if (ret) { 1909 /* The dentry will be added later. */ 1910 ret = 0; 1911 update_size = false; 1912 goto out; 1913 } 1914 1915 search_key.objectid = log_key.objectid; 1916 search_key.type = BTRFS_INODE_EXTREF_KEY; 1917 search_key.offset = key->objectid; 1918 ret = backref_in_log(root->log_root, &search_key, key->objectid, &name); 1919 if (ret < 0) { 1920 goto out; 1921 } else if (ret) { 1922 /* The dentry will be added later. */ 1923 ret = 0; 1924 update_size = false; 1925 goto out; 1926 } 1927 btrfs_release_path(path); 1928 ret = insert_one_name(trans, root, key->objectid, key->offset, 1929 &name, &log_key); 1930 if (ret && ret != -ENOENT && ret != -EEXIST) 1931 goto out; 1932 if (!ret) 1933 name_added = true; 1934 update_size = false; 1935 ret = 0; 1936 1937 out: 1938 if (!ret && update_size) { 1939 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2); 1940 ret = btrfs_update_inode(trans, BTRFS_I(dir)); 1941 } 1942 kfree(name.name); 1943 iput(dir); 1944 if (!ret && name_added) 1945 ret = 1; 1946 return ret; 1947 } 1948 1949 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */ 1950 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans, 1951 struct btrfs_root *root, 1952 struct btrfs_path *path, 1953 struct extent_buffer *eb, int slot, 1954 struct btrfs_key *key) 1955 { 1956 int ret; 1957 struct btrfs_dir_item *di; 1958 1959 /* We only log dir index keys, which only contain a single dir item. */ 1960 ASSERT(key->type == BTRFS_DIR_INDEX_KEY); 1961 1962 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 1963 ret = replay_one_name(trans, root, path, eb, di, key); 1964 if (ret < 0) 1965 return ret; 1966 1967 /* 1968 * If this entry refers to a non-directory (directories can not have a 1969 * link count > 1) and it was added in the transaction that was not 1970 * committed, make sure we fixup the link count of the inode the entry 1971 * points to. Otherwise something like the following would result in a 1972 * directory pointing to an inode with a wrong link that does not account 1973 * for this dir entry: 1974 * 1975 * mkdir testdir 1976 * touch testdir/foo 1977 * touch testdir/bar 1978 * sync 1979 * 1980 * ln testdir/bar testdir/bar_link 1981 * ln testdir/foo testdir/foo_link 1982 * xfs_io -c "fsync" testdir/bar 1983 * 1984 * <power failure> 1985 * 1986 * mount fs, log replay happens 1987 * 1988 * File foo would remain with a link count of 1 when it has two entries 1989 * pointing to it in the directory testdir. This would make it impossible 1990 * to ever delete the parent directory has it would result in stale 1991 * dentries that can never be deleted. 1992 */ 1993 if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) { 1994 struct btrfs_path *fixup_path; 1995 struct btrfs_key di_key; 1996 1997 fixup_path = btrfs_alloc_path(); 1998 if (!fixup_path) 1999 return -ENOMEM; 2000 2001 btrfs_dir_item_key_to_cpu(eb, di, &di_key); 2002 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid); 2003 btrfs_free_path(fixup_path); 2004 } 2005 2006 return ret; 2007 } 2008 2009 /* 2010 * directory replay has two parts. There are the standard directory 2011 * items in the log copied from the subvolume, and range items 2012 * created in the log while the subvolume was logged. 2013 * 2014 * The range items tell us which parts of the key space the log 2015 * is authoritative for. During replay, if a key in the subvolume 2016 * directory is in a logged range item, but not actually in the log 2017 * that means it was deleted from the directory before the fsync 2018 * and should be removed. 2019 */ 2020 static noinline int find_dir_range(struct btrfs_root *root, 2021 struct btrfs_path *path, 2022 u64 dirid, 2023 u64 *start_ret, u64 *end_ret) 2024 { 2025 struct btrfs_key key; 2026 u64 found_end; 2027 struct btrfs_dir_log_item *item; 2028 int ret; 2029 int nritems; 2030 2031 if (*start_ret == (u64)-1) 2032 return 1; 2033 2034 key.objectid = dirid; 2035 key.type = BTRFS_DIR_LOG_INDEX_KEY; 2036 key.offset = *start_ret; 2037 2038 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2039 if (ret < 0) 2040 goto out; 2041 if (ret > 0) { 2042 if (path->slots[0] == 0) 2043 goto out; 2044 path->slots[0]--; 2045 } 2046 if (ret != 0) 2047 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2048 2049 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) { 2050 ret = 1; 2051 goto next; 2052 } 2053 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2054 struct btrfs_dir_log_item); 2055 found_end = btrfs_dir_log_end(path->nodes[0], item); 2056 2057 if (*start_ret >= key.offset && *start_ret <= found_end) { 2058 ret = 0; 2059 *start_ret = key.offset; 2060 *end_ret = found_end; 2061 goto out; 2062 } 2063 ret = 1; 2064 next: 2065 /* check the next slot in the tree to see if it is a valid item */ 2066 nritems = btrfs_header_nritems(path->nodes[0]); 2067 path->slots[0]++; 2068 if (path->slots[0] >= nritems) { 2069 ret = btrfs_next_leaf(root, path); 2070 if (ret) 2071 goto out; 2072 } 2073 2074 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2075 2076 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) { 2077 ret = 1; 2078 goto out; 2079 } 2080 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2081 struct btrfs_dir_log_item); 2082 found_end = btrfs_dir_log_end(path->nodes[0], item); 2083 *start_ret = key.offset; 2084 *end_ret = found_end; 2085 ret = 0; 2086 out: 2087 btrfs_release_path(path); 2088 return ret; 2089 } 2090 2091 /* 2092 * this looks for a given directory item in the log. If the directory 2093 * item is not in the log, the item is removed and the inode it points 2094 * to is unlinked 2095 */ 2096 static noinline int check_item_in_log(struct btrfs_trans_handle *trans, 2097 struct btrfs_root *log, 2098 struct btrfs_path *path, 2099 struct btrfs_path *log_path, 2100 struct inode *dir, 2101 struct btrfs_key *dir_key) 2102 { 2103 struct btrfs_root *root = BTRFS_I(dir)->root; 2104 int ret; 2105 struct extent_buffer *eb; 2106 int slot; 2107 struct btrfs_dir_item *di; 2108 struct fscrypt_str name; 2109 struct inode *inode = NULL; 2110 struct btrfs_key location; 2111 2112 /* 2113 * Currently we only log dir index keys. Even if we replay a log created 2114 * by an older kernel that logged both dir index and dir item keys, all 2115 * we need to do is process the dir index keys, we (and our caller) can 2116 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY). 2117 */ 2118 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY); 2119 2120 eb = path->nodes[0]; 2121 slot = path->slots[0]; 2122 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item); 2123 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name); 2124 if (ret) 2125 goto out; 2126 2127 if (log) { 2128 struct btrfs_dir_item *log_di; 2129 2130 log_di = btrfs_lookup_dir_index_item(trans, log, log_path, 2131 dir_key->objectid, 2132 dir_key->offset, &name, 0); 2133 if (IS_ERR(log_di)) { 2134 ret = PTR_ERR(log_di); 2135 goto out; 2136 } else if (log_di) { 2137 /* The dentry exists in the log, we have nothing to do. */ 2138 ret = 0; 2139 goto out; 2140 } 2141 } 2142 2143 btrfs_dir_item_key_to_cpu(eb, di, &location); 2144 btrfs_release_path(path); 2145 btrfs_release_path(log_path); 2146 inode = read_one_inode(root, location.objectid); 2147 if (!inode) { 2148 ret = -EIO; 2149 goto out; 2150 } 2151 2152 ret = link_to_fixup_dir(trans, root, path, location.objectid); 2153 if (ret) 2154 goto out; 2155 2156 inc_nlink(inode); 2157 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode), 2158 &name); 2159 /* 2160 * Unlike dir item keys, dir index keys can only have one name (entry) in 2161 * them, as there are no key collisions since each key has a unique offset 2162 * (an index number), so we're done. 2163 */ 2164 out: 2165 btrfs_release_path(path); 2166 btrfs_release_path(log_path); 2167 kfree(name.name); 2168 iput(inode); 2169 return ret; 2170 } 2171 2172 static int replay_xattr_deletes(struct btrfs_trans_handle *trans, 2173 struct btrfs_root *root, 2174 struct btrfs_root *log, 2175 struct btrfs_path *path, 2176 const u64 ino) 2177 { 2178 struct btrfs_key search_key; 2179 struct btrfs_path *log_path; 2180 int i; 2181 int nritems; 2182 int ret; 2183 2184 log_path = btrfs_alloc_path(); 2185 if (!log_path) 2186 return -ENOMEM; 2187 2188 search_key.objectid = ino; 2189 search_key.type = BTRFS_XATTR_ITEM_KEY; 2190 search_key.offset = 0; 2191 again: 2192 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 2193 if (ret < 0) 2194 goto out; 2195 process_leaf: 2196 nritems = btrfs_header_nritems(path->nodes[0]); 2197 for (i = path->slots[0]; i < nritems; i++) { 2198 struct btrfs_key key; 2199 struct btrfs_dir_item *di; 2200 struct btrfs_dir_item *log_di; 2201 u32 total_size; 2202 u32 cur; 2203 2204 btrfs_item_key_to_cpu(path->nodes[0], &key, i); 2205 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) { 2206 ret = 0; 2207 goto out; 2208 } 2209 2210 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item); 2211 total_size = btrfs_item_size(path->nodes[0], i); 2212 cur = 0; 2213 while (cur < total_size) { 2214 u16 name_len = btrfs_dir_name_len(path->nodes[0], di); 2215 u16 data_len = btrfs_dir_data_len(path->nodes[0], di); 2216 u32 this_len = sizeof(*di) + name_len + data_len; 2217 char *name; 2218 2219 name = kmalloc(name_len, GFP_NOFS); 2220 if (!name) { 2221 ret = -ENOMEM; 2222 goto out; 2223 } 2224 read_extent_buffer(path->nodes[0], name, 2225 (unsigned long)(di + 1), name_len); 2226 2227 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino, 2228 name, name_len, 0); 2229 btrfs_release_path(log_path); 2230 if (!log_di) { 2231 /* Doesn't exist in log tree, so delete it. */ 2232 btrfs_release_path(path); 2233 di = btrfs_lookup_xattr(trans, root, path, ino, 2234 name, name_len, -1); 2235 kfree(name); 2236 if (IS_ERR(di)) { 2237 ret = PTR_ERR(di); 2238 goto out; 2239 } 2240 ASSERT(di); 2241 ret = btrfs_delete_one_dir_name(trans, root, 2242 path, di); 2243 if (ret) 2244 goto out; 2245 btrfs_release_path(path); 2246 search_key = key; 2247 goto again; 2248 } 2249 kfree(name); 2250 if (IS_ERR(log_di)) { 2251 ret = PTR_ERR(log_di); 2252 goto out; 2253 } 2254 cur += this_len; 2255 di = (struct btrfs_dir_item *)((char *)di + this_len); 2256 } 2257 } 2258 ret = btrfs_next_leaf(root, path); 2259 if (ret > 0) 2260 ret = 0; 2261 else if (ret == 0) 2262 goto process_leaf; 2263 out: 2264 btrfs_free_path(log_path); 2265 btrfs_release_path(path); 2266 return ret; 2267 } 2268 2269 2270 /* 2271 * deletion replay happens before we copy any new directory items 2272 * out of the log or out of backreferences from inodes. It 2273 * scans the log to find ranges of keys that log is authoritative for, 2274 * and then scans the directory to find items in those ranges that are 2275 * not present in the log. 2276 * 2277 * Anything we don't find in the log is unlinked and removed from the 2278 * directory. 2279 */ 2280 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans, 2281 struct btrfs_root *root, 2282 struct btrfs_root *log, 2283 struct btrfs_path *path, 2284 u64 dirid, int del_all) 2285 { 2286 u64 range_start; 2287 u64 range_end; 2288 int ret = 0; 2289 struct btrfs_key dir_key; 2290 struct btrfs_key found_key; 2291 struct btrfs_path *log_path; 2292 struct inode *dir; 2293 2294 dir_key.objectid = dirid; 2295 dir_key.type = BTRFS_DIR_INDEX_KEY; 2296 log_path = btrfs_alloc_path(); 2297 if (!log_path) 2298 return -ENOMEM; 2299 2300 dir = read_one_inode(root, dirid); 2301 /* it isn't an error if the inode isn't there, that can happen 2302 * because we replay the deletes before we copy in the inode item 2303 * from the log 2304 */ 2305 if (!dir) { 2306 btrfs_free_path(log_path); 2307 return 0; 2308 } 2309 2310 range_start = 0; 2311 range_end = 0; 2312 while (1) { 2313 if (del_all) 2314 range_end = (u64)-1; 2315 else { 2316 ret = find_dir_range(log, path, dirid, 2317 &range_start, &range_end); 2318 if (ret < 0) 2319 goto out; 2320 else if (ret > 0) 2321 break; 2322 } 2323 2324 dir_key.offset = range_start; 2325 while (1) { 2326 int nritems; 2327 ret = btrfs_search_slot(NULL, root, &dir_key, path, 2328 0, 0); 2329 if (ret < 0) 2330 goto out; 2331 2332 nritems = btrfs_header_nritems(path->nodes[0]); 2333 if (path->slots[0] >= nritems) { 2334 ret = btrfs_next_leaf(root, path); 2335 if (ret == 1) 2336 break; 2337 else if (ret < 0) 2338 goto out; 2339 } 2340 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 2341 path->slots[0]); 2342 if (found_key.objectid != dirid || 2343 found_key.type != dir_key.type) { 2344 ret = 0; 2345 goto out; 2346 } 2347 2348 if (found_key.offset > range_end) 2349 break; 2350 2351 ret = check_item_in_log(trans, log, path, 2352 log_path, dir, 2353 &found_key); 2354 if (ret) 2355 goto out; 2356 if (found_key.offset == (u64)-1) 2357 break; 2358 dir_key.offset = found_key.offset + 1; 2359 } 2360 btrfs_release_path(path); 2361 if (range_end == (u64)-1) 2362 break; 2363 range_start = range_end + 1; 2364 } 2365 ret = 0; 2366 out: 2367 btrfs_release_path(path); 2368 btrfs_free_path(log_path); 2369 iput(dir); 2370 return ret; 2371 } 2372 2373 /* 2374 * the process_func used to replay items from the log tree. This 2375 * gets called in two different stages. The first stage just looks 2376 * for inodes and makes sure they are all copied into the subvolume. 2377 * 2378 * The second stage copies all the other item types from the log into 2379 * the subvolume. The two stage approach is slower, but gets rid of 2380 * lots of complexity around inodes referencing other inodes that exist 2381 * only in the log (references come from either directory items or inode 2382 * back refs). 2383 */ 2384 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb, 2385 struct walk_control *wc, u64 gen, int level) 2386 { 2387 int nritems; 2388 struct btrfs_tree_parent_check check = { 2389 .transid = gen, 2390 .level = level 2391 }; 2392 struct btrfs_path *path; 2393 struct btrfs_root *root = wc->replay_dest; 2394 struct btrfs_key key; 2395 int i; 2396 int ret; 2397 2398 ret = btrfs_read_extent_buffer(eb, &check); 2399 if (ret) 2400 return ret; 2401 2402 level = btrfs_header_level(eb); 2403 2404 if (level != 0) 2405 return 0; 2406 2407 path = btrfs_alloc_path(); 2408 if (!path) 2409 return -ENOMEM; 2410 2411 nritems = btrfs_header_nritems(eb); 2412 for (i = 0; i < nritems; i++) { 2413 btrfs_item_key_to_cpu(eb, &key, i); 2414 2415 /* inode keys are done during the first stage */ 2416 if (key.type == BTRFS_INODE_ITEM_KEY && 2417 wc->stage == LOG_WALK_REPLAY_INODES) { 2418 struct btrfs_inode_item *inode_item; 2419 u32 mode; 2420 2421 inode_item = btrfs_item_ptr(eb, i, 2422 struct btrfs_inode_item); 2423 /* 2424 * If we have a tmpfile (O_TMPFILE) that got fsync'ed 2425 * and never got linked before the fsync, skip it, as 2426 * replaying it is pointless since it would be deleted 2427 * later. We skip logging tmpfiles, but it's always 2428 * possible we are replaying a log created with a kernel 2429 * that used to log tmpfiles. 2430 */ 2431 if (btrfs_inode_nlink(eb, inode_item) == 0) { 2432 wc->ignore_cur_inode = true; 2433 continue; 2434 } else { 2435 wc->ignore_cur_inode = false; 2436 } 2437 ret = replay_xattr_deletes(wc->trans, root, log, 2438 path, key.objectid); 2439 if (ret) 2440 break; 2441 mode = btrfs_inode_mode(eb, inode_item); 2442 if (S_ISDIR(mode)) { 2443 ret = replay_dir_deletes(wc->trans, 2444 root, log, path, key.objectid, 0); 2445 if (ret) 2446 break; 2447 } 2448 ret = overwrite_item(wc->trans, root, path, 2449 eb, i, &key); 2450 if (ret) 2451 break; 2452 2453 /* 2454 * Before replaying extents, truncate the inode to its 2455 * size. We need to do it now and not after log replay 2456 * because before an fsync we can have prealloc extents 2457 * added beyond the inode's i_size. If we did it after, 2458 * through orphan cleanup for example, we would drop 2459 * those prealloc extents just after replaying them. 2460 */ 2461 if (S_ISREG(mode)) { 2462 struct btrfs_drop_extents_args drop_args = { 0 }; 2463 struct inode *inode; 2464 u64 from; 2465 2466 inode = read_one_inode(root, key.objectid); 2467 if (!inode) { 2468 ret = -EIO; 2469 break; 2470 } 2471 from = ALIGN(i_size_read(inode), 2472 root->fs_info->sectorsize); 2473 drop_args.start = from; 2474 drop_args.end = (u64)-1; 2475 drop_args.drop_cache = true; 2476 ret = btrfs_drop_extents(wc->trans, root, 2477 BTRFS_I(inode), 2478 &drop_args); 2479 if (!ret) { 2480 inode_sub_bytes(inode, 2481 drop_args.bytes_found); 2482 /* Update the inode's nbytes. */ 2483 ret = btrfs_update_inode(wc->trans, 2484 BTRFS_I(inode)); 2485 } 2486 iput(inode); 2487 if (ret) 2488 break; 2489 } 2490 2491 ret = link_to_fixup_dir(wc->trans, root, 2492 path, key.objectid); 2493 if (ret) 2494 break; 2495 } 2496 2497 if (wc->ignore_cur_inode) 2498 continue; 2499 2500 if (key.type == BTRFS_DIR_INDEX_KEY && 2501 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) { 2502 ret = replay_one_dir_item(wc->trans, root, path, 2503 eb, i, &key); 2504 if (ret) 2505 break; 2506 } 2507 2508 if (wc->stage < LOG_WALK_REPLAY_ALL) 2509 continue; 2510 2511 /* these keys are simply copied */ 2512 if (key.type == BTRFS_XATTR_ITEM_KEY) { 2513 ret = overwrite_item(wc->trans, root, path, 2514 eb, i, &key); 2515 if (ret) 2516 break; 2517 } else if (key.type == BTRFS_INODE_REF_KEY || 2518 key.type == BTRFS_INODE_EXTREF_KEY) { 2519 ret = add_inode_ref(wc->trans, root, log, path, 2520 eb, i, &key); 2521 if (ret && ret != -ENOENT) 2522 break; 2523 ret = 0; 2524 } else if (key.type == BTRFS_EXTENT_DATA_KEY) { 2525 ret = replay_one_extent(wc->trans, root, path, 2526 eb, i, &key); 2527 if (ret) 2528 break; 2529 } 2530 /* 2531 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the 2532 * BTRFS_DIR_INDEX_KEY items which we use to derive the 2533 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an 2534 * older kernel with such keys, ignore them. 2535 */ 2536 } 2537 btrfs_free_path(path); 2538 return ret; 2539 } 2540 2541 /* 2542 * Correctly adjust the reserved bytes occupied by a log tree extent buffer 2543 */ 2544 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start) 2545 { 2546 struct btrfs_block_group *cache; 2547 2548 cache = btrfs_lookup_block_group(fs_info, start); 2549 if (!cache) { 2550 btrfs_err(fs_info, "unable to find block group for %llu", start); 2551 return; 2552 } 2553 2554 spin_lock(&cache->space_info->lock); 2555 spin_lock(&cache->lock); 2556 cache->reserved -= fs_info->nodesize; 2557 cache->space_info->bytes_reserved -= fs_info->nodesize; 2558 spin_unlock(&cache->lock); 2559 spin_unlock(&cache->space_info->lock); 2560 2561 btrfs_put_block_group(cache); 2562 } 2563 2564 static int clean_log_buffer(struct btrfs_trans_handle *trans, 2565 struct extent_buffer *eb) 2566 { 2567 int ret; 2568 2569 btrfs_tree_lock(eb); 2570 btrfs_clear_buffer_dirty(trans, eb); 2571 wait_on_extent_buffer_writeback(eb); 2572 btrfs_tree_unlock(eb); 2573 2574 if (trans) { 2575 ret = btrfs_pin_reserved_extent(trans, eb); 2576 if (ret) 2577 return ret; 2578 btrfs_redirty_list_add(trans->transaction, eb); 2579 } else { 2580 unaccount_log_buffer(eb->fs_info, eb->start); 2581 } 2582 2583 return 0; 2584 } 2585 2586 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans, 2587 struct btrfs_root *root, 2588 struct btrfs_path *path, int *level, 2589 struct walk_control *wc) 2590 { 2591 struct btrfs_fs_info *fs_info = root->fs_info; 2592 u64 bytenr; 2593 u64 ptr_gen; 2594 struct extent_buffer *next; 2595 struct extent_buffer *cur; 2596 int ret = 0; 2597 2598 while (*level > 0) { 2599 struct btrfs_tree_parent_check check = { 0 }; 2600 2601 cur = path->nodes[*level]; 2602 2603 WARN_ON(btrfs_header_level(cur) != *level); 2604 2605 if (path->slots[*level] >= 2606 btrfs_header_nritems(cur)) 2607 break; 2608 2609 bytenr = btrfs_node_blockptr(cur, path->slots[*level]); 2610 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]); 2611 check.transid = ptr_gen; 2612 check.level = *level - 1; 2613 check.has_first_key = true; 2614 btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]); 2615 2616 next = btrfs_find_create_tree_block(fs_info, bytenr, 2617 btrfs_header_owner(cur), 2618 *level - 1); 2619 if (IS_ERR(next)) 2620 return PTR_ERR(next); 2621 2622 if (*level == 1) { 2623 ret = wc->process_func(root, next, wc, ptr_gen, 2624 *level - 1); 2625 if (ret) { 2626 free_extent_buffer(next); 2627 return ret; 2628 } 2629 2630 path->slots[*level]++; 2631 if (wc->free) { 2632 ret = btrfs_read_extent_buffer(next, &check); 2633 if (ret) { 2634 free_extent_buffer(next); 2635 return ret; 2636 } 2637 2638 ret = clean_log_buffer(trans, next); 2639 if (ret) { 2640 free_extent_buffer(next); 2641 return ret; 2642 } 2643 } 2644 free_extent_buffer(next); 2645 continue; 2646 } 2647 ret = btrfs_read_extent_buffer(next, &check); 2648 if (ret) { 2649 free_extent_buffer(next); 2650 return ret; 2651 } 2652 2653 if (path->nodes[*level-1]) 2654 free_extent_buffer(path->nodes[*level-1]); 2655 path->nodes[*level-1] = next; 2656 *level = btrfs_header_level(next); 2657 path->slots[*level] = 0; 2658 cond_resched(); 2659 } 2660 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]); 2661 2662 cond_resched(); 2663 return 0; 2664 } 2665 2666 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans, 2667 struct btrfs_root *root, 2668 struct btrfs_path *path, int *level, 2669 struct walk_control *wc) 2670 { 2671 int i; 2672 int slot; 2673 int ret; 2674 2675 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) { 2676 slot = path->slots[i]; 2677 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) { 2678 path->slots[i]++; 2679 *level = i; 2680 WARN_ON(*level == 0); 2681 return 0; 2682 } else { 2683 ret = wc->process_func(root, path->nodes[*level], wc, 2684 btrfs_header_generation(path->nodes[*level]), 2685 *level); 2686 if (ret) 2687 return ret; 2688 2689 if (wc->free) { 2690 ret = clean_log_buffer(trans, path->nodes[*level]); 2691 if (ret) 2692 return ret; 2693 } 2694 free_extent_buffer(path->nodes[*level]); 2695 path->nodes[*level] = NULL; 2696 *level = i + 1; 2697 } 2698 } 2699 return 1; 2700 } 2701 2702 /* 2703 * drop the reference count on the tree rooted at 'snap'. This traverses 2704 * the tree freeing any blocks that have a ref count of zero after being 2705 * decremented. 2706 */ 2707 static int walk_log_tree(struct btrfs_trans_handle *trans, 2708 struct btrfs_root *log, struct walk_control *wc) 2709 { 2710 int ret = 0; 2711 int wret; 2712 int level; 2713 struct btrfs_path *path; 2714 int orig_level; 2715 2716 path = btrfs_alloc_path(); 2717 if (!path) 2718 return -ENOMEM; 2719 2720 level = btrfs_header_level(log->node); 2721 orig_level = level; 2722 path->nodes[level] = log->node; 2723 atomic_inc(&log->node->refs); 2724 path->slots[level] = 0; 2725 2726 while (1) { 2727 wret = walk_down_log_tree(trans, log, path, &level, wc); 2728 if (wret > 0) 2729 break; 2730 if (wret < 0) { 2731 ret = wret; 2732 goto out; 2733 } 2734 2735 wret = walk_up_log_tree(trans, log, path, &level, wc); 2736 if (wret > 0) 2737 break; 2738 if (wret < 0) { 2739 ret = wret; 2740 goto out; 2741 } 2742 } 2743 2744 /* was the root node processed? if not, catch it here */ 2745 if (path->nodes[orig_level]) { 2746 ret = wc->process_func(log, path->nodes[orig_level], wc, 2747 btrfs_header_generation(path->nodes[orig_level]), 2748 orig_level); 2749 if (ret) 2750 goto out; 2751 if (wc->free) 2752 ret = clean_log_buffer(trans, path->nodes[orig_level]); 2753 } 2754 2755 out: 2756 btrfs_free_path(path); 2757 return ret; 2758 } 2759 2760 /* 2761 * helper function to update the item for a given subvolumes log root 2762 * in the tree of log roots 2763 */ 2764 static int update_log_root(struct btrfs_trans_handle *trans, 2765 struct btrfs_root *log, 2766 struct btrfs_root_item *root_item) 2767 { 2768 struct btrfs_fs_info *fs_info = log->fs_info; 2769 int ret; 2770 2771 if (log->log_transid == 1) { 2772 /* insert root item on the first sync */ 2773 ret = btrfs_insert_root(trans, fs_info->log_root_tree, 2774 &log->root_key, root_item); 2775 } else { 2776 ret = btrfs_update_root(trans, fs_info->log_root_tree, 2777 &log->root_key, root_item); 2778 } 2779 return ret; 2780 } 2781 2782 static void wait_log_commit(struct btrfs_root *root, int transid) 2783 { 2784 DEFINE_WAIT(wait); 2785 int index = transid % 2; 2786 2787 /* 2788 * we only allow two pending log transactions at a time, 2789 * so we know that if ours is more than 2 older than the 2790 * current transaction, we're done 2791 */ 2792 for (;;) { 2793 prepare_to_wait(&root->log_commit_wait[index], 2794 &wait, TASK_UNINTERRUPTIBLE); 2795 2796 if (!(root->log_transid_committed < transid && 2797 atomic_read(&root->log_commit[index]))) 2798 break; 2799 2800 mutex_unlock(&root->log_mutex); 2801 schedule(); 2802 mutex_lock(&root->log_mutex); 2803 } 2804 finish_wait(&root->log_commit_wait[index], &wait); 2805 } 2806 2807 static void wait_for_writer(struct btrfs_root *root) 2808 { 2809 DEFINE_WAIT(wait); 2810 2811 for (;;) { 2812 prepare_to_wait(&root->log_writer_wait, &wait, 2813 TASK_UNINTERRUPTIBLE); 2814 if (!atomic_read(&root->log_writers)) 2815 break; 2816 2817 mutex_unlock(&root->log_mutex); 2818 schedule(); 2819 mutex_lock(&root->log_mutex); 2820 } 2821 finish_wait(&root->log_writer_wait, &wait); 2822 } 2823 2824 static inline void btrfs_remove_log_ctx(struct btrfs_root *root, 2825 struct btrfs_log_ctx *ctx) 2826 { 2827 mutex_lock(&root->log_mutex); 2828 list_del_init(&ctx->list); 2829 mutex_unlock(&root->log_mutex); 2830 } 2831 2832 /* 2833 * Invoked in log mutex context, or be sure there is no other task which 2834 * can access the list. 2835 */ 2836 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root, 2837 int index, int error) 2838 { 2839 struct btrfs_log_ctx *ctx; 2840 struct btrfs_log_ctx *safe; 2841 2842 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) { 2843 list_del_init(&ctx->list); 2844 ctx->log_ret = error; 2845 } 2846 } 2847 2848 /* 2849 * Sends a given tree log down to the disk and updates the super blocks to 2850 * record it. When this call is done, you know that any inodes previously 2851 * logged are safely on disk only if it returns 0. 2852 * 2853 * Any other return value means you need to call btrfs_commit_transaction. 2854 * Some of the edge cases for fsyncing directories that have had unlinks 2855 * or renames done in the past mean that sometimes the only safe 2856 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN, 2857 * that has happened. 2858 */ 2859 int btrfs_sync_log(struct btrfs_trans_handle *trans, 2860 struct btrfs_root *root, struct btrfs_log_ctx *ctx) 2861 { 2862 int index1; 2863 int index2; 2864 int mark; 2865 int ret; 2866 struct btrfs_fs_info *fs_info = root->fs_info; 2867 struct btrfs_root *log = root->log_root; 2868 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 2869 struct btrfs_root_item new_root_item; 2870 int log_transid = 0; 2871 struct btrfs_log_ctx root_log_ctx; 2872 struct blk_plug plug; 2873 u64 log_root_start; 2874 u64 log_root_level; 2875 2876 mutex_lock(&root->log_mutex); 2877 log_transid = ctx->log_transid; 2878 if (root->log_transid_committed >= log_transid) { 2879 mutex_unlock(&root->log_mutex); 2880 return ctx->log_ret; 2881 } 2882 2883 index1 = log_transid % 2; 2884 if (atomic_read(&root->log_commit[index1])) { 2885 wait_log_commit(root, log_transid); 2886 mutex_unlock(&root->log_mutex); 2887 return ctx->log_ret; 2888 } 2889 ASSERT(log_transid == root->log_transid); 2890 atomic_set(&root->log_commit[index1], 1); 2891 2892 /* wait for previous tree log sync to complete */ 2893 if (atomic_read(&root->log_commit[(index1 + 1) % 2])) 2894 wait_log_commit(root, log_transid - 1); 2895 2896 while (1) { 2897 int batch = atomic_read(&root->log_batch); 2898 /* when we're on an ssd, just kick the log commit out */ 2899 if (!btrfs_test_opt(fs_info, SSD) && 2900 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) { 2901 mutex_unlock(&root->log_mutex); 2902 schedule_timeout_uninterruptible(1); 2903 mutex_lock(&root->log_mutex); 2904 } 2905 wait_for_writer(root); 2906 if (batch == atomic_read(&root->log_batch)) 2907 break; 2908 } 2909 2910 /* bail out if we need to do a full commit */ 2911 if (btrfs_need_log_full_commit(trans)) { 2912 ret = BTRFS_LOG_FORCE_COMMIT; 2913 mutex_unlock(&root->log_mutex); 2914 goto out; 2915 } 2916 2917 if (log_transid % 2 == 0) 2918 mark = EXTENT_DIRTY; 2919 else 2920 mark = EXTENT_NEW; 2921 2922 /* we start IO on all the marked extents here, but we don't actually 2923 * wait for them until later. 2924 */ 2925 blk_start_plug(&plug); 2926 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark); 2927 /* 2928 * -EAGAIN happens when someone, e.g., a concurrent transaction 2929 * commit, writes a dirty extent in this tree-log commit. This 2930 * concurrent write will create a hole writing out the extents, 2931 * and we cannot proceed on a zoned filesystem, requiring 2932 * sequential writing. While we can bail out to a full commit 2933 * here, but we can continue hoping the concurrent writing fills 2934 * the hole. 2935 */ 2936 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) 2937 ret = 0; 2938 if (ret) { 2939 blk_finish_plug(&plug); 2940 btrfs_set_log_full_commit(trans); 2941 mutex_unlock(&root->log_mutex); 2942 goto out; 2943 } 2944 2945 /* 2946 * We _must_ update under the root->log_mutex in order to make sure we 2947 * have a consistent view of the log root we are trying to commit at 2948 * this moment. 2949 * 2950 * We _must_ copy this into a local copy, because we are not holding the 2951 * log_root_tree->log_mutex yet. This is important because when we 2952 * commit the log_root_tree we must have a consistent view of the 2953 * log_root_tree when we update the super block to point at the 2954 * log_root_tree bytenr. If we update the log_root_tree here we'll race 2955 * with the commit and possibly point at the new block which we may not 2956 * have written out. 2957 */ 2958 btrfs_set_root_node(&log->root_item, log->node); 2959 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item)); 2960 2961 btrfs_set_root_log_transid(root, root->log_transid + 1); 2962 log->log_transid = root->log_transid; 2963 root->log_start_pid = 0; 2964 /* 2965 * IO has been started, blocks of the log tree have WRITTEN flag set 2966 * in their headers. new modifications of the log will be written to 2967 * new positions. so it's safe to allow log writers to go in. 2968 */ 2969 mutex_unlock(&root->log_mutex); 2970 2971 if (btrfs_is_zoned(fs_info)) { 2972 mutex_lock(&fs_info->tree_root->log_mutex); 2973 if (!log_root_tree->node) { 2974 ret = btrfs_alloc_log_tree_node(trans, log_root_tree); 2975 if (ret) { 2976 mutex_unlock(&fs_info->tree_root->log_mutex); 2977 blk_finish_plug(&plug); 2978 goto out; 2979 } 2980 } 2981 mutex_unlock(&fs_info->tree_root->log_mutex); 2982 } 2983 2984 btrfs_init_log_ctx(&root_log_ctx, NULL); 2985 2986 mutex_lock(&log_root_tree->log_mutex); 2987 2988 index2 = log_root_tree->log_transid % 2; 2989 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]); 2990 root_log_ctx.log_transid = log_root_tree->log_transid; 2991 2992 /* 2993 * Now we are safe to update the log_root_tree because we're under the 2994 * log_mutex, and we're a current writer so we're holding the commit 2995 * open until we drop the log_mutex. 2996 */ 2997 ret = update_log_root(trans, log, &new_root_item); 2998 if (ret) { 2999 list_del_init(&root_log_ctx.list); 3000 blk_finish_plug(&plug); 3001 btrfs_set_log_full_commit(trans); 3002 if (ret != -ENOSPC) 3003 btrfs_err(fs_info, 3004 "failed to update log for root %llu ret %d", 3005 root->root_key.objectid, ret); 3006 btrfs_wait_tree_log_extents(log, mark); 3007 mutex_unlock(&log_root_tree->log_mutex); 3008 goto out; 3009 } 3010 3011 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) { 3012 blk_finish_plug(&plug); 3013 list_del_init(&root_log_ctx.list); 3014 mutex_unlock(&log_root_tree->log_mutex); 3015 ret = root_log_ctx.log_ret; 3016 goto out; 3017 } 3018 3019 if (atomic_read(&log_root_tree->log_commit[index2])) { 3020 blk_finish_plug(&plug); 3021 ret = btrfs_wait_tree_log_extents(log, mark); 3022 wait_log_commit(log_root_tree, 3023 root_log_ctx.log_transid); 3024 mutex_unlock(&log_root_tree->log_mutex); 3025 if (!ret) 3026 ret = root_log_ctx.log_ret; 3027 goto out; 3028 } 3029 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid); 3030 atomic_set(&log_root_tree->log_commit[index2], 1); 3031 3032 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) { 3033 wait_log_commit(log_root_tree, 3034 root_log_ctx.log_transid - 1); 3035 } 3036 3037 /* 3038 * now that we've moved on to the tree of log tree roots, 3039 * check the full commit flag again 3040 */ 3041 if (btrfs_need_log_full_commit(trans)) { 3042 blk_finish_plug(&plug); 3043 btrfs_wait_tree_log_extents(log, mark); 3044 mutex_unlock(&log_root_tree->log_mutex); 3045 ret = BTRFS_LOG_FORCE_COMMIT; 3046 goto out_wake_log_root; 3047 } 3048 3049 ret = btrfs_write_marked_extents(fs_info, 3050 &log_root_tree->dirty_log_pages, 3051 EXTENT_DIRTY | EXTENT_NEW); 3052 blk_finish_plug(&plug); 3053 /* 3054 * As described above, -EAGAIN indicates a hole in the extents. We 3055 * cannot wait for these write outs since the waiting cause a 3056 * deadlock. Bail out to the full commit instead. 3057 */ 3058 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) { 3059 btrfs_set_log_full_commit(trans); 3060 btrfs_wait_tree_log_extents(log, mark); 3061 mutex_unlock(&log_root_tree->log_mutex); 3062 goto out_wake_log_root; 3063 } else if (ret) { 3064 btrfs_set_log_full_commit(trans); 3065 mutex_unlock(&log_root_tree->log_mutex); 3066 goto out_wake_log_root; 3067 } 3068 ret = btrfs_wait_tree_log_extents(log, mark); 3069 if (!ret) 3070 ret = btrfs_wait_tree_log_extents(log_root_tree, 3071 EXTENT_NEW | EXTENT_DIRTY); 3072 if (ret) { 3073 btrfs_set_log_full_commit(trans); 3074 mutex_unlock(&log_root_tree->log_mutex); 3075 goto out_wake_log_root; 3076 } 3077 3078 log_root_start = log_root_tree->node->start; 3079 log_root_level = btrfs_header_level(log_root_tree->node); 3080 log_root_tree->log_transid++; 3081 mutex_unlock(&log_root_tree->log_mutex); 3082 3083 /* 3084 * Here we are guaranteed that nobody is going to write the superblock 3085 * for the current transaction before us and that neither we do write 3086 * our superblock before the previous transaction finishes its commit 3087 * and writes its superblock, because: 3088 * 3089 * 1) We are holding a handle on the current transaction, so no body 3090 * can commit it until we release the handle; 3091 * 3092 * 2) Before writing our superblock we acquire the tree_log_mutex, so 3093 * if the previous transaction is still committing, and hasn't yet 3094 * written its superblock, we wait for it to do it, because a 3095 * transaction commit acquires the tree_log_mutex when the commit 3096 * begins and releases it only after writing its superblock. 3097 */ 3098 mutex_lock(&fs_info->tree_log_mutex); 3099 3100 /* 3101 * The previous transaction writeout phase could have failed, and thus 3102 * marked the fs in an error state. We must not commit here, as we 3103 * could have updated our generation in the super_for_commit and 3104 * writing the super here would result in transid mismatches. If there 3105 * is an error here just bail. 3106 */ 3107 if (BTRFS_FS_ERROR(fs_info)) { 3108 ret = -EIO; 3109 btrfs_set_log_full_commit(trans); 3110 btrfs_abort_transaction(trans, ret); 3111 mutex_unlock(&fs_info->tree_log_mutex); 3112 goto out_wake_log_root; 3113 } 3114 3115 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start); 3116 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level); 3117 ret = write_all_supers(fs_info, 1); 3118 mutex_unlock(&fs_info->tree_log_mutex); 3119 if (ret) { 3120 btrfs_set_log_full_commit(trans); 3121 btrfs_abort_transaction(trans, ret); 3122 goto out_wake_log_root; 3123 } 3124 3125 /* 3126 * We know there can only be one task here, since we have not yet set 3127 * root->log_commit[index1] to 0 and any task attempting to sync the 3128 * log must wait for the previous log transaction to commit if it's 3129 * still in progress or wait for the current log transaction commit if 3130 * someone else already started it. We use <= and not < because the 3131 * first log transaction has an ID of 0. 3132 */ 3133 ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid); 3134 btrfs_set_root_last_log_commit(root, log_transid); 3135 3136 out_wake_log_root: 3137 mutex_lock(&log_root_tree->log_mutex); 3138 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret); 3139 3140 log_root_tree->log_transid_committed++; 3141 atomic_set(&log_root_tree->log_commit[index2], 0); 3142 mutex_unlock(&log_root_tree->log_mutex); 3143 3144 /* 3145 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3146 * all the updates above are seen by the woken threads. It might not be 3147 * necessary, but proving that seems to be hard. 3148 */ 3149 cond_wake_up(&log_root_tree->log_commit_wait[index2]); 3150 out: 3151 mutex_lock(&root->log_mutex); 3152 btrfs_remove_all_log_ctxs(root, index1, ret); 3153 root->log_transid_committed++; 3154 atomic_set(&root->log_commit[index1], 0); 3155 mutex_unlock(&root->log_mutex); 3156 3157 /* 3158 * The barrier before waitqueue_active (in cond_wake_up) is needed so 3159 * all the updates above are seen by the woken threads. It might not be 3160 * necessary, but proving that seems to be hard. 3161 */ 3162 cond_wake_up(&root->log_commit_wait[index1]); 3163 return ret; 3164 } 3165 3166 static void free_log_tree(struct btrfs_trans_handle *trans, 3167 struct btrfs_root *log) 3168 { 3169 int ret; 3170 struct walk_control wc = { 3171 .free = 1, 3172 .process_func = process_one_buffer 3173 }; 3174 3175 if (log->node) { 3176 ret = walk_log_tree(trans, log, &wc); 3177 if (ret) { 3178 /* 3179 * We weren't able to traverse the entire log tree, the 3180 * typical scenario is getting an -EIO when reading an 3181 * extent buffer of the tree, due to a previous writeback 3182 * failure of it. 3183 */ 3184 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, 3185 &log->fs_info->fs_state); 3186 3187 /* 3188 * Some extent buffers of the log tree may still be dirty 3189 * and not yet written back to storage, because we may 3190 * have updates to a log tree without syncing a log tree, 3191 * such as during rename and link operations. So flush 3192 * them out and wait for their writeback to complete, so 3193 * that we properly cleanup their state and pages. 3194 */ 3195 btrfs_write_marked_extents(log->fs_info, 3196 &log->dirty_log_pages, 3197 EXTENT_DIRTY | EXTENT_NEW); 3198 btrfs_wait_tree_log_extents(log, 3199 EXTENT_DIRTY | EXTENT_NEW); 3200 3201 if (trans) 3202 btrfs_abort_transaction(trans, ret); 3203 else 3204 btrfs_handle_fs_error(log->fs_info, ret, NULL); 3205 } 3206 } 3207 3208 extent_io_tree_release(&log->dirty_log_pages); 3209 extent_io_tree_release(&log->log_csum_range); 3210 3211 btrfs_put_root(log); 3212 } 3213 3214 /* 3215 * free all the extents used by the tree log. This should be called 3216 * at commit time of the full transaction 3217 */ 3218 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root) 3219 { 3220 if (root->log_root) { 3221 free_log_tree(trans, root->log_root); 3222 root->log_root = NULL; 3223 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state); 3224 } 3225 return 0; 3226 } 3227 3228 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 3229 struct btrfs_fs_info *fs_info) 3230 { 3231 if (fs_info->log_root_tree) { 3232 free_log_tree(trans, fs_info->log_root_tree); 3233 fs_info->log_root_tree = NULL; 3234 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state); 3235 } 3236 return 0; 3237 } 3238 3239 /* 3240 * Check if an inode was logged in the current transaction. This correctly deals 3241 * with the case where the inode was logged but has a logged_trans of 0, which 3242 * happens if the inode is evicted and loaded again, as logged_trans is an in 3243 * memory only field (not persisted). 3244 * 3245 * Returns 1 if the inode was logged before in the transaction, 0 if it was not, 3246 * and < 0 on error. 3247 */ 3248 static int inode_logged(const struct btrfs_trans_handle *trans, 3249 struct btrfs_inode *inode, 3250 struct btrfs_path *path_in) 3251 { 3252 struct btrfs_path *path = path_in; 3253 struct btrfs_key key; 3254 int ret; 3255 3256 if (inode->logged_trans == trans->transid) 3257 return 1; 3258 3259 /* 3260 * If logged_trans is not 0, then we know the inode logged was not logged 3261 * in this transaction, so we can return false right away. 3262 */ 3263 if (inode->logged_trans > 0) 3264 return 0; 3265 3266 /* 3267 * If no log tree was created for this root in this transaction, then 3268 * the inode can not have been logged in this transaction. In that case 3269 * set logged_trans to anything greater than 0 and less than the current 3270 * transaction's ID, to avoid the search below in a future call in case 3271 * a log tree gets created after this. 3272 */ 3273 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) { 3274 inode->logged_trans = trans->transid - 1; 3275 return 0; 3276 } 3277 3278 /* 3279 * We have a log tree and the inode's logged_trans is 0. We can't tell 3280 * for sure if the inode was logged before in this transaction by looking 3281 * only at logged_trans. We could be pessimistic and assume it was, but 3282 * that can lead to unnecessarily logging an inode during rename and link 3283 * operations, and then further updating the log in followup rename and 3284 * link operations, specially if it's a directory, which adds latency 3285 * visible to applications doing a series of rename or link operations. 3286 * 3287 * A logged_trans of 0 here can mean several things: 3288 * 3289 * 1) The inode was never logged since the filesystem was mounted, and may 3290 * or may have not been evicted and loaded again; 3291 * 3292 * 2) The inode was logged in a previous transaction, then evicted and 3293 * then loaded again; 3294 * 3295 * 3) The inode was logged in the current transaction, then evicted and 3296 * then loaded again. 3297 * 3298 * For cases 1) and 2) we don't want to return true, but we need to detect 3299 * case 3) and return true. So we do a search in the log root for the inode 3300 * item. 3301 */ 3302 key.objectid = btrfs_ino(inode); 3303 key.type = BTRFS_INODE_ITEM_KEY; 3304 key.offset = 0; 3305 3306 if (!path) { 3307 path = btrfs_alloc_path(); 3308 if (!path) 3309 return -ENOMEM; 3310 } 3311 3312 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0); 3313 3314 if (path_in) 3315 btrfs_release_path(path); 3316 else 3317 btrfs_free_path(path); 3318 3319 /* 3320 * Logging an inode always results in logging its inode item. So if we 3321 * did not find the item we know the inode was not logged for sure. 3322 */ 3323 if (ret < 0) { 3324 return ret; 3325 } else if (ret > 0) { 3326 /* 3327 * Set logged_trans to a value greater than 0 and less then the 3328 * current transaction to avoid doing the search in future calls. 3329 */ 3330 inode->logged_trans = trans->transid - 1; 3331 return 0; 3332 } 3333 3334 /* 3335 * The inode was previously logged and then evicted, set logged_trans to 3336 * the current transacion's ID, to avoid future tree searches as long as 3337 * the inode is not evicted again. 3338 */ 3339 inode->logged_trans = trans->transid; 3340 3341 /* 3342 * If it's a directory, then we must set last_dir_index_offset to the 3343 * maximum possible value, so that the next attempt to log the inode does 3344 * not skip checking if dir index keys found in modified subvolume tree 3345 * leaves have been logged before, otherwise it would result in attempts 3346 * to insert duplicate dir index keys in the log tree. This must be done 3347 * because last_dir_index_offset is an in-memory only field, not persisted 3348 * in the inode item or any other on-disk structure, so its value is lost 3349 * once the inode is evicted. 3350 */ 3351 if (S_ISDIR(inode->vfs_inode.i_mode)) 3352 inode->last_dir_index_offset = (u64)-1; 3353 3354 return 1; 3355 } 3356 3357 /* 3358 * Delete a directory entry from the log if it exists. 3359 * 3360 * Returns < 0 on error 3361 * 1 if the entry does not exists 3362 * 0 if the entry existed and was successfully deleted 3363 */ 3364 static int del_logged_dentry(struct btrfs_trans_handle *trans, 3365 struct btrfs_root *log, 3366 struct btrfs_path *path, 3367 u64 dir_ino, 3368 const struct fscrypt_str *name, 3369 u64 index) 3370 { 3371 struct btrfs_dir_item *di; 3372 3373 /* 3374 * We only log dir index items of a directory, so we don't need to look 3375 * for dir item keys. 3376 */ 3377 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino, 3378 index, name, -1); 3379 if (IS_ERR(di)) 3380 return PTR_ERR(di); 3381 else if (!di) 3382 return 1; 3383 3384 /* 3385 * We do not need to update the size field of the directory's 3386 * inode item because on log replay we update the field to reflect 3387 * all existing entries in the directory (see overwrite_item()). 3388 */ 3389 return btrfs_delete_one_dir_name(trans, log, path, di); 3390 } 3391 3392 /* 3393 * If both a file and directory are logged, and unlinks or renames are 3394 * mixed in, we have a few interesting corners: 3395 * 3396 * create file X in dir Y 3397 * link file X to X.link in dir Y 3398 * fsync file X 3399 * unlink file X but leave X.link 3400 * fsync dir Y 3401 * 3402 * After a crash we would expect only X.link to exist. But file X 3403 * didn't get fsync'd again so the log has back refs for X and X.link. 3404 * 3405 * We solve this by removing directory entries and inode backrefs from the 3406 * log when a file that was logged in the current transaction is 3407 * unlinked. Any later fsync will include the updated log entries, and 3408 * we'll be able to reconstruct the proper directory items from backrefs. 3409 * 3410 * This optimizations allows us to avoid relogging the entire inode 3411 * or the entire directory. 3412 */ 3413 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans, 3414 struct btrfs_root *root, 3415 const struct fscrypt_str *name, 3416 struct btrfs_inode *dir, u64 index) 3417 { 3418 struct btrfs_path *path; 3419 int ret; 3420 3421 ret = inode_logged(trans, dir, NULL); 3422 if (ret == 0) 3423 return; 3424 else if (ret < 0) { 3425 btrfs_set_log_full_commit(trans); 3426 return; 3427 } 3428 3429 ret = join_running_log_trans(root); 3430 if (ret) 3431 return; 3432 3433 mutex_lock(&dir->log_mutex); 3434 3435 path = btrfs_alloc_path(); 3436 if (!path) { 3437 ret = -ENOMEM; 3438 goto out_unlock; 3439 } 3440 3441 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir), 3442 name, index); 3443 btrfs_free_path(path); 3444 out_unlock: 3445 mutex_unlock(&dir->log_mutex); 3446 if (ret < 0) 3447 btrfs_set_log_full_commit(trans); 3448 btrfs_end_log_trans(root); 3449 } 3450 3451 /* see comments for btrfs_del_dir_entries_in_log */ 3452 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans, 3453 struct btrfs_root *root, 3454 const struct fscrypt_str *name, 3455 struct btrfs_inode *inode, u64 dirid) 3456 { 3457 struct btrfs_root *log; 3458 u64 index; 3459 int ret; 3460 3461 ret = inode_logged(trans, inode, NULL); 3462 if (ret == 0) 3463 return; 3464 else if (ret < 0) { 3465 btrfs_set_log_full_commit(trans); 3466 return; 3467 } 3468 3469 ret = join_running_log_trans(root); 3470 if (ret) 3471 return; 3472 log = root->log_root; 3473 mutex_lock(&inode->log_mutex); 3474 3475 ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode), 3476 dirid, &index); 3477 mutex_unlock(&inode->log_mutex); 3478 if (ret < 0 && ret != -ENOENT) 3479 btrfs_set_log_full_commit(trans); 3480 btrfs_end_log_trans(root); 3481 } 3482 3483 /* 3484 * creates a range item in the log for 'dirid'. first_offset and 3485 * last_offset tell us which parts of the key space the log should 3486 * be considered authoritative for. 3487 */ 3488 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans, 3489 struct btrfs_root *log, 3490 struct btrfs_path *path, 3491 u64 dirid, 3492 u64 first_offset, u64 last_offset) 3493 { 3494 int ret; 3495 struct btrfs_key key; 3496 struct btrfs_dir_log_item *item; 3497 3498 key.objectid = dirid; 3499 key.offset = first_offset; 3500 key.type = BTRFS_DIR_LOG_INDEX_KEY; 3501 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item)); 3502 /* 3503 * -EEXIST is fine and can happen sporadically when we are logging a 3504 * directory and have concurrent insertions in the subvolume's tree for 3505 * items from other inodes and that result in pushing off some dir items 3506 * from one leaf to another in order to accommodate for the new items. 3507 * This results in logging the same dir index range key. 3508 */ 3509 if (ret && ret != -EEXIST) 3510 return ret; 3511 3512 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3513 struct btrfs_dir_log_item); 3514 if (ret == -EEXIST) { 3515 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item); 3516 3517 /* 3518 * btrfs_del_dir_entries_in_log() might have been called during 3519 * an unlink between the initial insertion of this key and the 3520 * current update, or we might be logging a single entry deletion 3521 * during a rename, so set the new last_offset to the max value. 3522 */ 3523 last_offset = max(last_offset, curr_end); 3524 } 3525 btrfs_set_dir_log_end(path->nodes[0], item, last_offset); 3526 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 3527 btrfs_release_path(path); 3528 return 0; 3529 } 3530 3531 static int flush_dir_items_batch(struct btrfs_trans_handle *trans, 3532 struct btrfs_inode *inode, 3533 struct extent_buffer *src, 3534 struct btrfs_path *dst_path, 3535 int start_slot, 3536 int count) 3537 { 3538 struct btrfs_root *log = inode->root->log_root; 3539 char *ins_data = NULL; 3540 struct btrfs_item_batch batch; 3541 struct extent_buffer *dst; 3542 unsigned long src_offset; 3543 unsigned long dst_offset; 3544 u64 last_index; 3545 struct btrfs_key key; 3546 u32 item_size; 3547 int ret; 3548 int i; 3549 3550 ASSERT(count > 0); 3551 batch.nr = count; 3552 3553 if (count == 1) { 3554 btrfs_item_key_to_cpu(src, &key, start_slot); 3555 item_size = btrfs_item_size(src, start_slot); 3556 batch.keys = &key; 3557 batch.data_sizes = &item_size; 3558 batch.total_data_size = item_size; 3559 } else { 3560 struct btrfs_key *ins_keys; 3561 u32 *ins_sizes; 3562 3563 ins_data = kmalloc(count * sizeof(u32) + 3564 count * sizeof(struct btrfs_key), GFP_NOFS); 3565 if (!ins_data) 3566 return -ENOMEM; 3567 3568 ins_sizes = (u32 *)ins_data; 3569 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32)); 3570 batch.keys = ins_keys; 3571 batch.data_sizes = ins_sizes; 3572 batch.total_data_size = 0; 3573 3574 for (i = 0; i < count; i++) { 3575 const int slot = start_slot + i; 3576 3577 btrfs_item_key_to_cpu(src, &ins_keys[i], slot); 3578 ins_sizes[i] = btrfs_item_size(src, slot); 3579 batch.total_data_size += ins_sizes[i]; 3580 } 3581 } 3582 3583 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch); 3584 if (ret) 3585 goto out; 3586 3587 dst = dst_path->nodes[0]; 3588 /* 3589 * Copy all the items in bulk, in a single copy operation. Item data is 3590 * organized such that it's placed at the end of a leaf and from right 3591 * to left. For example, the data for the second item ends at an offset 3592 * that matches the offset where the data for the first item starts, the 3593 * data for the third item ends at an offset that matches the offset 3594 * where the data of the second items starts, and so on. 3595 * Therefore our source and destination start offsets for copy match the 3596 * offsets of the last items (highest slots). 3597 */ 3598 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1); 3599 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1); 3600 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size); 3601 btrfs_release_path(dst_path); 3602 3603 last_index = batch.keys[count - 1].offset; 3604 ASSERT(last_index > inode->last_dir_index_offset); 3605 3606 /* 3607 * If for some unexpected reason the last item's index is not greater 3608 * than the last index we logged, warn and force a transaction commit. 3609 */ 3610 if (WARN_ON(last_index <= inode->last_dir_index_offset)) 3611 ret = BTRFS_LOG_FORCE_COMMIT; 3612 else 3613 inode->last_dir_index_offset = last_index; 3614 3615 if (btrfs_get_first_dir_index_to_log(inode) == 0) 3616 btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset); 3617 out: 3618 kfree(ins_data); 3619 3620 return ret; 3621 } 3622 3623 static int process_dir_items_leaf(struct btrfs_trans_handle *trans, 3624 struct btrfs_inode *inode, 3625 struct btrfs_path *path, 3626 struct btrfs_path *dst_path, 3627 struct btrfs_log_ctx *ctx, 3628 u64 *last_old_dentry_offset) 3629 { 3630 struct btrfs_root *log = inode->root->log_root; 3631 struct extent_buffer *src; 3632 const int nritems = btrfs_header_nritems(path->nodes[0]); 3633 const u64 ino = btrfs_ino(inode); 3634 bool last_found = false; 3635 int batch_start = 0; 3636 int batch_size = 0; 3637 int i; 3638 3639 /* 3640 * We need to clone the leaf, release the read lock on it, and use the 3641 * clone before modifying the log tree. See the comment at copy_items() 3642 * about why we need to do this. 3643 */ 3644 src = btrfs_clone_extent_buffer(path->nodes[0]); 3645 if (!src) 3646 return -ENOMEM; 3647 3648 i = path->slots[0]; 3649 btrfs_release_path(path); 3650 path->nodes[0] = src; 3651 path->slots[0] = i; 3652 3653 for (; i < nritems; i++) { 3654 struct btrfs_dir_item *di; 3655 struct btrfs_key key; 3656 int ret; 3657 3658 btrfs_item_key_to_cpu(src, &key, i); 3659 3660 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) { 3661 last_found = true; 3662 break; 3663 } 3664 3665 di = btrfs_item_ptr(src, i, struct btrfs_dir_item); 3666 3667 /* 3668 * Skip ranges of items that consist only of dir item keys created 3669 * in past transactions. However if we find a gap, we must log a 3670 * dir index range item for that gap, so that index keys in that 3671 * gap are deleted during log replay. 3672 */ 3673 if (btrfs_dir_transid(src, di) < trans->transid) { 3674 if (key.offset > *last_old_dentry_offset + 1) { 3675 ret = insert_dir_log_key(trans, log, dst_path, 3676 ino, *last_old_dentry_offset + 1, 3677 key.offset - 1); 3678 if (ret < 0) 3679 return ret; 3680 } 3681 3682 *last_old_dentry_offset = key.offset; 3683 continue; 3684 } 3685 3686 /* If we logged this dir index item before, we can skip it. */ 3687 if (key.offset <= inode->last_dir_index_offset) 3688 continue; 3689 3690 /* 3691 * We must make sure that when we log a directory entry, the 3692 * corresponding inode, after log replay, has a matching link 3693 * count. For example: 3694 * 3695 * touch foo 3696 * mkdir mydir 3697 * sync 3698 * ln foo mydir/bar 3699 * xfs_io -c "fsync" mydir 3700 * <crash> 3701 * <mount fs and log replay> 3702 * 3703 * Would result in a fsync log that when replayed, our file inode 3704 * would have a link count of 1, but we get two directory entries 3705 * pointing to the same inode. After removing one of the names, 3706 * it would not be possible to remove the other name, which 3707 * resulted always in stale file handle errors, and would not be 3708 * possible to rmdir the parent directory, since its i_size could 3709 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE, 3710 * resulting in -ENOTEMPTY errors. 3711 */ 3712 if (!ctx->log_new_dentries) { 3713 struct btrfs_key di_key; 3714 3715 btrfs_dir_item_key_to_cpu(src, di, &di_key); 3716 if (di_key.type != BTRFS_ROOT_ITEM_KEY) 3717 ctx->log_new_dentries = true; 3718 } 3719 3720 if (batch_size == 0) 3721 batch_start = i; 3722 batch_size++; 3723 } 3724 3725 if (batch_size > 0) { 3726 int ret; 3727 3728 ret = flush_dir_items_batch(trans, inode, src, dst_path, 3729 batch_start, batch_size); 3730 if (ret < 0) 3731 return ret; 3732 } 3733 3734 return last_found ? 1 : 0; 3735 } 3736 3737 /* 3738 * log all the items included in the current transaction for a given 3739 * directory. This also creates the range items in the log tree required 3740 * to replay anything deleted before the fsync 3741 */ 3742 static noinline int log_dir_items(struct btrfs_trans_handle *trans, 3743 struct btrfs_inode *inode, 3744 struct btrfs_path *path, 3745 struct btrfs_path *dst_path, 3746 struct btrfs_log_ctx *ctx, 3747 u64 min_offset, u64 *last_offset_ret) 3748 { 3749 struct btrfs_key min_key; 3750 struct btrfs_root *root = inode->root; 3751 struct btrfs_root *log = root->log_root; 3752 int ret; 3753 u64 last_old_dentry_offset = min_offset - 1; 3754 u64 last_offset = (u64)-1; 3755 u64 ino = btrfs_ino(inode); 3756 3757 min_key.objectid = ino; 3758 min_key.type = BTRFS_DIR_INDEX_KEY; 3759 min_key.offset = min_offset; 3760 3761 ret = btrfs_search_forward(root, &min_key, path, trans->transid); 3762 3763 /* 3764 * we didn't find anything from this transaction, see if there 3765 * is anything at all 3766 */ 3767 if (ret != 0 || min_key.objectid != ino || 3768 min_key.type != BTRFS_DIR_INDEX_KEY) { 3769 min_key.objectid = ino; 3770 min_key.type = BTRFS_DIR_INDEX_KEY; 3771 min_key.offset = (u64)-1; 3772 btrfs_release_path(path); 3773 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3774 if (ret < 0) { 3775 btrfs_release_path(path); 3776 return ret; 3777 } 3778 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY); 3779 3780 /* if ret == 0 there are items for this type, 3781 * create a range to tell us the last key of this type. 3782 * otherwise, there are no items in this directory after 3783 * *min_offset, and we create a range to indicate that. 3784 */ 3785 if (ret == 0) { 3786 struct btrfs_key tmp; 3787 3788 btrfs_item_key_to_cpu(path->nodes[0], &tmp, 3789 path->slots[0]); 3790 if (tmp.type == BTRFS_DIR_INDEX_KEY) 3791 last_old_dentry_offset = tmp.offset; 3792 } else if (ret > 0) { 3793 ret = 0; 3794 } 3795 3796 goto done; 3797 } 3798 3799 /* go backward to find any previous key */ 3800 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY); 3801 if (ret == 0) { 3802 struct btrfs_key tmp; 3803 3804 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]); 3805 /* 3806 * The dir index key before the first one we found that needs to 3807 * be logged might be in a previous leaf, and there might be a 3808 * gap between these keys, meaning that we had deletions that 3809 * happened. So the key range item we log (key type 3810 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the 3811 * previous key's offset plus 1, so that those deletes are replayed. 3812 */ 3813 if (tmp.type == BTRFS_DIR_INDEX_KEY) 3814 last_old_dentry_offset = tmp.offset; 3815 } else if (ret < 0) { 3816 goto done; 3817 } 3818 3819 btrfs_release_path(path); 3820 3821 /* 3822 * Find the first key from this transaction again or the one we were at 3823 * in the loop below in case we had to reschedule. We may be logging the 3824 * directory without holding its VFS lock, which happen when logging new 3825 * dentries (through log_new_dir_dentries()) or in some cases when we 3826 * need to log the parent directory of an inode. This means a dir index 3827 * key might be deleted from the inode's root, and therefore we may not 3828 * find it anymore. If we can't find it, just move to the next key. We 3829 * can not bail out and ignore, because if we do that we will simply 3830 * not log dir index keys that come after the one that was just deleted 3831 * and we can end up logging a dir index range that ends at (u64)-1 3832 * (@last_offset is initialized to that), resulting in removing dir 3833 * entries we should not remove at log replay time. 3834 */ 3835 search: 3836 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0); 3837 if (ret > 0) { 3838 ret = btrfs_next_item(root, path); 3839 if (ret > 0) { 3840 /* There are no more keys in the inode's root. */ 3841 ret = 0; 3842 goto done; 3843 } 3844 } 3845 if (ret < 0) 3846 goto done; 3847 3848 /* 3849 * we have a block from this transaction, log every item in it 3850 * from our directory 3851 */ 3852 while (1) { 3853 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx, 3854 &last_old_dentry_offset); 3855 if (ret != 0) { 3856 if (ret > 0) 3857 ret = 0; 3858 goto done; 3859 } 3860 path->slots[0] = btrfs_header_nritems(path->nodes[0]); 3861 3862 /* 3863 * look ahead to the next item and see if it is also 3864 * from this directory and from this transaction 3865 */ 3866 ret = btrfs_next_leaf(root, path); 3867 if (ret) { 3868 if (ret == 1) { 3869 last_offset = (u64)-1; 3870 ret = 0; 3871 } 3872 goto done; 3873 } 3874 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]); 3875 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) { 3876 last_offset = (u64)-1; 3877 goto done; 3878 } 3879 if (btrfs_header_generation(path->nodes[0]) != trans->transid) { 3880 /* 3881 * The next leaf was not changed in the current transaction 3882 * and has at least one dir index key. 3883 * We check for the next key because there might have been 3884 * one or more deletions between the last key we logged and 3885 * that next key. So the key range item we log (key type 3886 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's 3887 * offset minus 1, so that those deletes are replayed. 3888 */ 3889 last_offset = min_key.offset - 1; 3890 goto done; 3891 } 3892 if (need_resched()) { 3893 btrfs_release_path(path); 3894 cond_resched(); 3895 goto search; 3896 } 3897 } 3898 done: 3899 btrfs_release_path(path); 3900 btrfs_release_path(dst_path); 3901 3902 if (ret == 0) { 3903 *last_offset_ret = last_offset; 3904 /* 3905 * In case the leaf was changed in the current transaction but 3906 * all its dir items are from a past transaction, the last item 3907 * in the leaf is a dir item and there's no gap between that last 3908 * dir item and the first one on the next leaf (which did not 3909 * change in the current transaction), then we don't need to log 3910 * a range, last_old_dentry_offset is == to last_offset. 3911 */ 3912 ASSERT(last_old_dentry_offset <= last_offset); 3913 if (last_old_dentry_offset < last_offset) 3914 ret = insert_dir_log_key(trans, log, path, ino, 3915 last_old_dentry_offset + 1, 3916 last_offset); 3917 } 3918 3919 return ret; 3920 } 3921 3922 /* 3923 * If the inode was logged before and it was evicted, then its 3924 * last_dir_index_offset is (u64)-1, so we don't the value of the last index 3925 * key offset. If that's the case, search for it and update the inode. This 3926 * is to avoid lookups in the log tree every time we try to insert a dir index 3927 * key from a leaf changed in the current transaction, and to allow us to always 3928 * do batch insertions of dir index keys. 3929 */ 3930 static int update_last_dir_index_offset(struct btrfs_inode *inode, 3931 struct btrfs_path *path, 3932 const struct btrfs_log_ctx *ctx) 3933 { 3934 const u64 ino = btrfs_ino(inode); 3935 struct btrfs_key key; 3936 int ret; 3937 3938 lockdep_assert_held(&inode->log_mutex); 3939 3940 if (inode->last_dir_index_offset != (u64)-1) 3941 return 0; 3942 3943 if (!ctx->logged_before) { 3944 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1; 3945 return 0; 3946 } 3947 3948 key.objectid = ino; 3949 key.type = BTRFS_DIR_INDEX_KEY; 3950 key.offset = (u64)-1; 3951 3952 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0); 3953 /* 3954 * An error happened or we actually have an index key with an offset 3955 * value of (u64)-1. Bail out, we're done. 3956 */ 3957 if (ret <= 0) 3958 goto out; 3959 3960 ret = 0; 3961 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1; 3962 3963 /* 3964 * No dir index items, bail out and leave last_dir_index_offset with 3965 * the value right before the first valid index value. 3966 */ 3967 if (path->slots[0] == 0) 3968 goto out; 3969 3970 /* 3971 * btrfs_search_slot() left us at one slot beyond the slot with the last 3972 * index key, or beyond the last key of the directory that is not an 3973 * index key. If we have an index key before, set last_dir_index_offset 3974 * to its offset value, otherwise leave it with a value right before the 3975 * first valid index value, as it means we have an empty directory. 3976 */ 3977 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1); 3978 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY) 3979 inode->last_dir_index_offset = key.offset; 3980 3981 out: 3982 btrfs_release_path(path); 3983 3984 return ret; 3985 } 3986 3987 /* 3988 * logging directories is very similar to logging inodes, We find all the items 3989 * from the current transaction and write them to the log. 3990 * 3991 * The recovery code scans the directory in the subvolume, and if it finds a 3992 * key in the range logged that is not present in the log tree, then it means 3993 * that dir entry was unlinked during the transaction. 3994 * 3995 * In order for that scan to work, we must include one key smaller than 3996 * the smallest logged by this transaction and one key larger than the largest 3997 * key logged by this transaction. 3998 */ 3999 static noinline int log_directory_changes(struct btrfs_trans_handle *trans, 4000 struct btrfs_inode *inode, 4001 struct btrfs_path *path, 4002 struct btrfs_path *dst_path, 4003 struct btrfs_log_ctx *ctx) 4004 { 4005 u64 min_key; 4006 u64 max_key; 4007 int ret; 4008 4009 ret = update_last_dir_index_offset(inode, path, ctx); 4010 if (ret) 4011 return ret; 4012 4013 min_key = BTRFS_DIR_START_INDEX; 4014 max_key = 0; 4015 4016 while (1) { 4017 ret = log_dir_items(trans, inode, path, dst_path, 4018 ctx, min_key, &max_key); 4019 if (ret) 4020 return ret; 4021 if (max_key == (u64)-1) 4022 break; 4023 min_key = max_key + 1; 4024 } 4025 4026 return 0; 4027 } 4028 4029 /* 4030 * a helper function to drop items from the log before we relog an 4031 * inode. max_key_type indicates the highest item type to remove. 4032 * This cannot be run for file data extents because it does not 4033 * free the extents they point to. 4034 */ 4035 static int drop_inode_items(struct btrfs_trans_handle *trans, 4036 struct btrfs_root *log, 4037 struct btrfs_path *path, 4038 struct btrfs_inode *inode, 4039 int max_key_type) 4040 { 4041 int ret; 4042 struct btrfs_key key; 4043 struct btrfs_key found_key; 4044 int start_slot; 4045 4046 key.objectid = btrfs_ino(inode); 4047 key.type = max_key_type; 4048 key.offset = (u64)-1; 4049 4050 while (1) { 4051 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 4052 if (ret < 0) { 4053 break; 4054 } else if (ret > 0) { 4055 if (path->slots[0] == 0) 4056 break; 4057 path->slots[0]--; 4058 } 4059 4060 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 4061 path->slots[0]); 4062 4063 if (found_key.objectid != key.objectid) 4064 break; 4065 4066 found_key.offset = 0; 4067 found_key.type = 0; 4068 ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot); 4069 if (ret < 0) 4070 break; 4071 4072 ret = btrfs_del_items(trans, log, path, start_slot, 4073 path->slots[0] - start_slot + 1); 4074 /* 4075 * If start slot isn't 0 then we don't need to re-search, we've 4076 * found the last guy with the objectid in this tree. 4077 */ 4078 if (ret || start_slot != 0) 4079 break; 4080 btrfs_release_path(path); 4081 } 4082 btrfs_release_path(path); 4083 if (ret > 0) 4084 ret = 0; 4085 return ret; 4086 } 4087 4088 static int truncate_inode_items(struct btrfs_trans_handle *trans, 4089 struct btrfs_root *log_root, 4090 struct btrfs_inode *inode, 4091 u64 new_size, u32 min_type) 4092 { 4093 struct btrfs_truncate_control control = { 4094 .new_size = new_size, 4095 .ino = btrfs_ino(inode), 4096 .min_type = min_type, 4097 .skip_ref_updates = true, 4098 }; 4099 4100 return btrfs_truncate_inode_items(trans, log_root, &control); 4101 } 4102 4103 static void fill_inode_item(struct btrfs_trans_handle *trans, 4104 struct extent_buffer *leaf, 4105 struct btrfs_inode_item *item, 4106 struct inode *inode, int log_inode_only, 4107 u64 logged_isize) 4108 { 4109 struct btrfs_map_token token; 4110 u64 flags; 4111 4112 btrfs_init_map_token(&token, leaf); 4113 4114 if (log_inode_only) { 4115 /* set the generation to zero so the recover code 4116 * can tell the difference between an logging 4117 * just to say 'this inode exists' and a logging 4118 * to say 'update this inode with these values' 4119 */ 4120 btrfs_set_token_inode_generation(&token, item, 0); 4121 btrfs_set_token_inode_size(&token, item, logged_isize); 4122 } else { 4123 btrfs_set_token_inode_generation(&token, item, 4124 BTRFS_I(inode)->generation); 4125 btrfs_set_token_inode_size(&token, item, inode->i_size); 4126 } 4127 4128 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 4129 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 4130 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 4131 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 4132 4133 btrfs_set_token_timespec_sec(&token, &item->atime, 4134 inode_get_atime_sec(inode)); 4135 btrfs_set_token_timespec_nsec(&token, &item->atime, 4136 inode_get_atime_nsec(inode)); 4137 4138 btrfs_set_token_timespec_sec(&token, &item->mtime, 4139 inode_get_mtime_sec(inode)); 4140 btrfs_set_token_timespec_nsec(&token, &item->mtime, 4141 inode_get_mtime_nsec(inode)); 4142 4143 btrfs_set_token_timespec_sec(&token, &item->ctime, 4144 inode_get_ctime_sec(inode)); 4145 btrfs_set_token_timespec_nsec(&token, &item->ctime, 4146 inode_get_ctime_nsec(inode)); 4147 4148 /* 4149 * We do not need to set the nbytes field, in fact during a fast fsync 4150 * its value may not even be correct, since a fast fsync does not wait 4151 * for ordered extent completion, which is where we update nbytes, it 4152 * only waits for writeback to complete. During log replay as we find 4153 * file extent items and replay them, we adjust the nbytes field of the 4154 * inode item in subvolume tree as needed (see overwrite_item()). 4155 */ 4156 4157 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 4158 btrfs_set_token_inode_transid(&token, item, trans->transid); 4159 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 4160 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4161 BTRFS_I(inode)->ro_flags); 4162 btrfs_set_token_inode_flags(&token, item, flags); 4163 btrfs_set_token_inode_block_group(&token, item, 0); 4164 } 4165 4166 static int log_inode_item(struct btrfs_trans_handle *trans, 4167 struct btrfs_root *log, struct btrfs_path *path, 4168 struct btrfs_inode *inode, bool inode_item_dropped) 4169 { 4170 struct btrfs_inode_item *inode_item; 4171 int ret; 4172 4173 /* 4174 * If we are doing a fast fsync and the inode was logged before in the 4175 * current transaction, then we know the inode was previously logged and 4176 * it exists in the log tree. For performance reasons, in this case use 4177 * btrfs_search_slot() directly with ins_len set to 0 so that we never 4178 * attempt a write lock on the leaf's parent, which adds unnecessary lock 4179 * contention in case there are concurrent fsyncs for other inodes of the 4180 * same subvolume. Using btrfs_insert_empty_item() when the inode item 4181 * already exists can also result in unnecessarily splitting a leaf. 4182 */ 4183 if (!inode_item_dropped && inode->logged_trans == trans->transid) { 4184 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1); 4185 ASSERT(ret <= 0); 4186 if (ret > 0) 4187 ret = -ENOENT; 4188 } else { 4189 /* 4190 * This means it is the first fsync in the current transaction, 4191 * so the inode item is not in the log and we need to insert it. 4192 * We can never get -EEXIST because we are only called for a fast 4193 * fsync and in case an inode eviction happens after the inode was 4194 * logged before in the current transaction, when we load again 4195 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime 4196 * flags and set ->logged_trans to 0. 4197 */ 4198 ret = btrfs_insert_empty_item(trans, log, path, &inode->location, 4199 sizeof(*inode_item)); 4200 ASSERT(ret != -EEXIST); 4201 } 4202 if (ret) 4203 return ret; 4204 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4205 struct btrfs_inode_item); 4206 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode, 4207 0, 0); 4208 btrfs_release_path(path); 4209 return 0; 4210 } 4211 4212 static int log_csums(struct btrfs_trans_handle *trans, 4213 struct btrfs_inode *inode, 4214 struct btrfs_root *log_root, 4215 struct btrfs_ordered_sum *sums) 4216 { 4217 const u64 lock_end = sums->logical + sums->len - 1; 4218 struct extent_state *cached_state = NULL; 4219 int ret; 4220 4221 /* 4222 * If this inode was not used for reflink operations in the current 4223 * transaction with new extents, then do the fast path, no need to 4224 * worry about logging checksum items with overlapping ranges. 4225 */ 4226 if (inode->last_reflink_trans < trans->transid) 4227 return btrfs_csum_file_blocks(trans, log_root, sums); 4228 4229 /* 4230 * Serialize logging for checksums. This is to avoid racing with the 4231 * same checksum being logged by another task that is logging another 4232 * file which happens to refer to the same extent as well. Such races 4233 * can leave checksum items in the log with overlapping ranges. 4234 */ 4235 ret = lock_extent(&log_root->log_csum_range, sums->logical, lock_end, 4236 &cached_state); 4237 if (ret) 4238 return ret; 4239 /* 4240 * Due to extent cloning, we might have logged a csum item that covers a 4241 * subrange of a cloned extent, and later we can end up logging a csum 4242 * item for a larger subrange of the same extent or the entire range. 4243 * This would leave csum items in the log tree that cover the same range 4244 * and break the searches for checksums in the log tree, resulting in 4245 * some checksums missing in the fs/subvolume tree. So just delete (or 4246 * trim and adjust) any existing csum items in the log for this range. 4247 */ 4248 ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len); 4249 if (!ret) 4250 ret = btrfs_csum_file_blocks(trans, log_root, sums); 4251 4252 unlock_extent(&log_root->log_csum_range, sums->logical, lock_end, 4253 &cached_state); 4254 4255 return ret; 4256 } 4257 4258 static noinline int copy_items(struct btrfs_trans_handle *trans, 4259 struct btrfs_inode *inode, 4260 struct btrfs_path *dst_path, 4261 struct btrfs_path *src_path, 4262 int start_slot, int nr, int inode_only, 4263 u64 logged_isize) 4264 { 4265 struct btrfs_root *log = inode->root->log_root; 4266 struct btrfs_file_extent_item *extent; 4267 struct extent_buffer *src; 4268 int ret = 0; 4269 struct btrfs_key *ins_keys; 4270 u32 *ins_sizes; 4271 struct btrfs_item_batch batch; 4272 char *ins_data; 4273 int i; 4274 int dst_index; 4275 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM); 4276 const u64 i_size = i_size_read(&inode->vfs_inode); 4277 4278 /* 4279 * To keep lockdep happy and avoid deadlocks, clone the source leaf and 4280 * use the clone. This is because otherwise we would be changing the log 4281 * tree, to insert items from the subvolume tree or insert csum items, 4282 * while holding a read lock on a leaf from the subvolume tree, which 4283 * creates a nasty lock dependency when COWing log tree nodes/leaves: 4284 * 4285 * 1) Modifying the log tree triggers an extent buffer allocation while 4286 * holding a write lock on a parent extent buffer from the log tree. 4287 * Allocating the pages for an extent buffer, or the extent buffer 4288 * struct, can trigger inode eviction and finally the inode eviction 4289 * will trigger a release/remove of a delayed node, which requires 4290 * taking the delayed node's mutex; 4291 * 4292 * 2) Allocating a metadata extent for a log tree can trigger the async 4293 * reclaim thread and make us wait for it to release enough space and 4294 * unblock our reservation ticket. The reclaim thread can start 4295 * flushing delayed items, and that in turn results in the need to 4296 * lock delayed node mutexes and in the need to write lock extent 4297 * buffers of a subvolume tree - all this while holding a write lock 4298 * on the parent extent buffer in the log tree. 4299 * 4300 * So one task in scenario 1) running in parallel with another task in 4301 * scenario 2) could lead to a deadlock, one wanting to lock a delayed 4302 * node mutex while having a read lock on a leaf from the subvolume, 4303 * while the other is holding the delayed node's mutex and wants to 4304 * write lock the same subvolume leaf for flushing delayed items. 4305 */ 4306 src = btrfs_clone_extent_buffer(src_path->nodes[0]); 4307 if (!src) 4308 return -ENOMEM; 4309 4310 i = src_path->slots[0]; 4311 btrfs_release_path(src_path); 4312 src_path->nodes[0] = src; 4313 src_path->slots[0] = i; 4314 4315 ins_data = kmalloc(nr * sizeof(struct btrfs_key) + 4316 nr * sizeof(u32), GFP_NOFS); 4317 if (!ins_data) 4318 return -ENOMEM; 4319 4320 ins_sizes = (u32 *)ins_data; 4321 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32)); 4322 batch.keys = ins_keys; 4323 batch.data_sizes = ins_sizes; 4324 batch.total_data_size = 0; 4325 batch.nr = 0; 4326 4327 dst_index = 0; 4328 for (i = 0; i < nr; i++) { 4329 const int src_slot = start_slot + i; 4330 struct btrfs_root *csum_root; 4331 struct btrfs_ordered_sum *sums; 4332 struct btrfs_ordered_sum *sums_next; 4333 LIST_HEAD(ordered_sums); 4334 u64 disk_bytenr; 4335 u64 disk_num_bytes; 4336 u64 extent_offset; 4337 u64 extent_num_bytes; 4338 bool is_old_extent; 4339 4340 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot); 4341 4342 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY) 4343 goto add_to_batch; 4344 4345 extent = btrfs_item_ptr(src, src_slot, 4346 struct btrfs_file_extent_item); 4347 4348 is_old_extent = (btrfs_file_extent_generation(src, extent) < 4349 trans->transid); 4350 4351 /* 4352 * Don't copy extents from past generations. That would make us 4353 * log a lot more metadata for common cases like doing only a 4354 * few random writes into a file and then fsync it for the first 4355 * time or after the full sync flag is set on the inode. We can 4356 * get leaves full of extent items, most of which are from past 4357 * generations, so we can skip them - as long as the inode has 4358 * not been the target of a reflink operation in this transaction, 4359 * as in that case it might have had file extent items with old 4360 * generations copied into it. We also must always log prealloc 4361 * extents that start at or beyond eof, otherwise we would lose 4362 * them on log replay. 4363 */ 4364 if (is_old_extent && 4365 ins_keys[dst_index].offset < i_size && 4366 inode->last_reflink_trans < trans->transid) 4367 continue; 4368 4369 if (skip_csum) 4370 goto add_to_batch; 4371 4372 /* Only regular extents have checksums. */ 4373 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG) 4374 goto add_to_batch; 4375 4376 /* 4377 * If it's an extent created in a past transaction, then its 4378 * checksums are already accessible from the committed csum tree, 4379 * no need to log them. 4380 */ 4381 if (is_old_extent) 4382 goto add_to_batch; 4383 4384 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent); 4385 /* If it's an explicit hole, there are no checksums. */ 4386 if (disk_bytenr == 0) 4387 goto add_to_batch; 4388 4389 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent); 4390 4391 if (btrfs_file_extent_compression(src, extent)) { 4392 extent_offset = 0; 4393 extent_num_bytes = disk_num_bytes; 4394 } else { 4395 extent_offset = btrfs_file_extent_offset(src, extent); 4396 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent); 4397 } 4398 4399 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr); 4400 disk_bytenr += extent_offset; 4401 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr, 4402 disk_bytenr + extent_num_bytes - 1, 4403 &ordered_sums, 0, false); 4404 if (ret) 4405 goto out; 4406 4407 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) { 4408 if (!ret) 4409 ret = log_csums(trans, inode, log, sums); 4410 list_del(&sums->list); 4411 kfree(sums); 4412 } 4413 if (ret) 4414 goto out; 4415 4416 add_to_batch: 4417 ins_sizes[dst_index] = btrfs_item_size(src, src_slot); 4418 batch.total_data_size += ins_sizes[dst_index]; 4419 batch.nr++; 4420 dst_index++; 4421 } 4422 4423 /* 4424 * We have a leaf full of old extent items that don't need to be logged, 4425 * so we don't need to do anything. 4426 */ 4427 if (batch.nr == 0) 4428 goto out; 4429 4430 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch); 4431 if (ret) 4432 goto out; 4433 4434 dst_index = 0; 4435 for (i = 0; i < nr; i++) { 4436 const int src_slot = start_slot + i; 4437 const int dst_slot = dst_path->slots[0] + dst_index; 4438 struct btrfs_key key; 4439 unsigned long src_offset; 4440 unsigned long dst_offset; 4441 4442 /* 4443 * We're done, all the remaining items in the source leaf 4444 * correspond to old file extent items. 4445 */ 4446 if (dst_index >= batch.nr) 4447 break; 4448 4449 btrfs_item_key_to_cpu(src, &key, src_slot); 4450 4451 if (key.type != BTRFS_EXTENT_DATA_KEY) 4452 goto copy_item; 4453 4454 extent = btrfs_item_ptr(src, src_slot, 4455 struct btrfs_file_extent_item); 4456 4457 /* See the comment in the previous loop, same logic. */ 4458 if (btrfs_file_extent_generation(src, extent) < trans->transid && 4459 key.offset < i_size && 4460 inode->last_reflink_trans < trans->transid) 4461 continue; 4462 4463 copy_item: 4464 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot); 4465 src_offset = btrfs_item_ptr_offset(src, src_slot); 4466 4467 if (key.type == BTRFS_INODE_ITEM_KEY) { 4468 struct btrfs_inode_item *inode_item; 4469 4470 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot, 4471 struct btrfs_inode_item); 4472 fill_inode_item(trans, dst_path->nodes[0], inode_item, 4473 &inode->vfs_inode, 4474 inode_only == LOG_INODE_EXISTS, 4475 logged_isize); 4476 } else { 4477 copy_extent_buffer(dst_path->nodes[0], src, dst_offset, 4478 src_offset, ins_sizes[dst_index]); 4479 } 4480 4481 dst_index++; 4482 } 4483 4484 btrfs_mark_buffer_dirty(trans, dst_path->nodes[0]); 4485 btrfs_release_path(dst_path); 4486 out: 4487 kfree(ins_data); 4488 4489 return ret; 4490 } 4491 4492 static int extent_cmp(void *priv, const struct list_head *a, 4493 const struct list_head *b) 4494 { 4495 const struct extent_map *em1, *em2; 4496 4497 em1 = list_entry(a, struct extent_map, list); 4498 em2 = list_entry(b, struct extent_map, list); 4499 4500 if (em1->start < em2->start) 4501 return -1; 4502 else if (em1->start > em2->start) 4503 return 1; 4504 return 0; 4505 } 4506 4507 static int log_extent_csums(struct btrfs_trans_handle *trans, 4508 struct btrfs_inode *inode, 4509 struct btrfs_root *log_root, 4510 const struct extent_map *em, 4511 struct btrfs_log_ctx *ctx) 4512 { 4513 struct btrfs_ordered_extent *ordered; 4514 struct btrfs_root *csum_root; 4515 u64 csum_offset; 4516 u64 csum_len; 4517 u64 mod_start = em->mod_start; 4518 u64 mod_len = em->mod_len; 4519 LIST_HEAD(ordered_sums); 4520 int ret = 0; 4521 4522 if (inode->flags & BTRFS_INODE_NODATASUM || 4523 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 4524 em->block_start == EXTENT_MAP_HOLE) 4525 return 0; 4526 4527 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) { 4528 const u64 ordered_end = ordered->file_offset + ordered->num_bytes; 4529 const u64 mod_end = mod_start + mod_len; 4530 struct btrfs_ordered_sum *sums; 4531 4532 if (mod_len == 0) 4533 break; 4534 4535 if (ordered_end <= mod_start) 4536 continue; 4537 if (mod_end <= ordered->file_offset) 4538 break; 4539 4540 /* 4541 * We are going to copy all the csums on this ordered extent, so 4542 * go ahead and adjust mod_start and mod_len in case this ordered 4543 * extent has already been logged. 4544 */ 4545 if (ordered->file_offset > mod_start) { 4546 if (ordered_end >= mod_end) 4547 mod_len = ordered->file_offset - mod_start; 4548 /* 4549 * If we have this case 4550 * 4551 * |--------- logged extent ---------| 4552 * |----- ordered extent ----| 4553 * 4554 * Just don't mess with mod_start and mod_len, we'll 4555 * just end up logging more csums than we need and it 4556 * will be ok. 4557 */ 4558 } else { 4559 if (ordered_end < mod_end) { 4560 mod_len = mod_end - ordered_end; 4561 mod_start = ordered_end; 4562 } else { 4563 mod_len = 0; 4564 } 4565 } 4566 4567 /* 4568 * To keep us from looping for the above case of an ordered 4569 * extent that falls inside of the logged extent. 4570 */ 4571 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags)) 4572 continue; 4573 4574 list_for_each_entry(sums, &ordered->list, list) { 4575 ret = log_csums(trans, inode, log_root, sums); 4576 if (ret) 4577 return ret; 4578 } 4579 } 4580 4581 /* We're done, found all csums in the ordered extents. */ 4582 if (mod_len == 0) 4583 return 0; 4584 4585 /* If we're compressed we have to save the entire range of csums. */ 4586 if (em->compress_type) { 4587 csum_offset = 0; 4588 csum_len = max(em->block_len, em->orig_block_len); 4589 } else { 4590 csum_offset = mod_start - em->start; 4591 csum_len = mod_len; 4592 } 4593 4594 /* block start is already adjusted for the file extent offset. */ 4595 csum_root = btrfs_csum_root(trans->fs_info, em->block_start); 4596 ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset, 4597 em->block_start + csum_offset + 4598 csum_len - 1, &ordered_sums, 0, false); 4599 if (ret) 4600 return ret; 4601 4602 while (!list_empty(&ordered_sums)) { 4603 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next, 4604 struct btrfs_ordered_sum, 4605 list); 4606 if (!ret) 4607 ret = log_csums(trans, inode, log_root, sums); 4608 list_del(&sums->list); 4609 kfree(sums); 4610 } 4611 4612 return ret; 4613 } 4614 4615 static int log_one_extent(struct btrfs_trans_handle *trans, 4616 struct btrfs_inode *inode, 4617 const struct extent_map *em, 4618 struct btrfs_path *path, 4619 struct btrfs_log_ctx *ctx) 4620 { 4621 struct btrfs_drop_extents_args drop_args = { 0 }; 4622 struct btrfs_root *log = inode->root->log_root; 4623 struct btrfs_file_extent_item fi = { 0 }; 4624 struct extent_buffer *leaf; 4625 struct btrfs_key key; 4626 u64 extent_offset = em->start - em->orig_start; 4627 u64 block_len; 4628 int ret; 4629 4630 btrfs_set_stack_file_extent_generation(&fi, trans->transid); 4631 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 4632 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC); 4633 else 4634 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG); 4635 4636 block_len = max(em->block_len, em->orig_block_len); 4637 if (em->compress_type != BTRFS_COMPRESS_NONE) { 4638 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start); 4639 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len); 4640 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) { 4641 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start - 4642 extent_offset); 4643 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len); 4644 } 4645 4646 btrfs_set_stack_file_extent_offset(&fi, extent_offset); 4647 btrfs_set_stack_file_extent_num_bytes(&fi, em->len); 4648 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes); 4649 btrfs_set_stack_file_extent_compression(&fi, em->compress_type); 4650 4651 ret = log_extent_csums(trans, inode, log, em, ctx); 4652 if (ret) 4653 return ret; 4654 4655 /* 4656 * If this is the first time we are logging the inode in the current 4657 * transaction, we can avoid btrfs_drop_extents(), which is expensive 4658 * because it does a deletion search, which always acquires write locks 4659 * for extent buffers at levels 2, 1 and 0. This not only wastes time 4660 * but also adds significant contention in a log tree, since log trees 4661 * are small, with a root at level 2 or 3 at most, due to their short 4662 * life span. 4663 */ 4664 if (ctx->logged_before) { 4665 drop_args.path = path; 4666 drop_args.start = em->start; 4667 drop_args.end = em->start + em->len; 4668 drop_args.replace_extent = true; 4669 drop_args.extent_item_size = sizeof(fi); 4670 ret = btrfs_drop_extents(trans, log, inode, &drop_args); 4671 if (ret) 4672 return ret; 4673 } 4674 4675 if (!drop_args.extent_inserted) { 4676 key.objectid = btrfs_ino(inode); 4677 key.type = BTRFS_EXTENT_DATA_KEY; 4678 key.offset = em->start; 4679 4680 ret = btrfs_insert_empty_item(trans, log, path, &key, 4681 sizeof(fi)); 4682 if (ret) 4683 return ret; 4684 } 4685 leaf = path->nodes[0]; 4686 write_extent_buffer(leaf, &fi, 4687 btrfs_item_ptr_offset(leaf, path->slots[0]), 4688 sizeof(fi)); 4689 btrfs_mark_buffer_dirty(trans, leaf); 4690 4691 btrfs_release_path(path); 4692 4693 return ret; 4694 } 4695 4696 /* 4697 * Log all prealloc extents beyond the inode's i_size to make sure we do not 4698 * lose them after doing a full/fast fsync and replaying the log. We scan the 4699 * subvolume's root instead of iterating the inode's extent map tree because 4700 * otherwise we can log incorrect extent items based on extent map conversion. 4701 * That can happen due to the fact that extent maps are merged when they 4702 * are not in the extent map tree's list of modified extents. 4703 */ 4704 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans, 4705 struct btrfs_inode *inode, 4706 struct btrfs_path *path) 4707 { 4708 struct btrfs_root *root = inode->root; 4709 struct btrfs_key key; 4710 const u64 i_size = i_size_read(&inode->vfs_inode); 4711 const u64 ino = btrfs_ino(inode); 4712 struct btrfs_path *dst_path = NULL; 4713 bool dropped_extents = false; 4714 u64 truncate_offset = i_size; 4715 struct extent_buffer *leaf; 4716 int slot; 4717 int ins_nr = 0; 4718 int start_slot = 0; 4719 int ret; 4720 4721 if (!(inode->flags & BTRFS_INODE_PREALLOC)) 4722 return 0; 4723 4724 key.objectid = ino; 4725 key.type = BTRFS_EXTENT_DATA_KEY; 4726 key.offset = i_size; 4727 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4728 if (ret < 0) 4729 goto out; 4730 4731 /* 4732 * We must check if there is a prealloc extent that starts before the 4733 * i_size and crosses the i_size boundary. This is to ensure later we 4734 * truncate down to the end of that extent and not to the i_size, as 4735 * otherwise we end up losing part of the prealloc extent after a log 4736 * replay and with an implicit hole if there is another prealloc extent 4737 * that starts at an offset beyond i_size. 4738 */ 4739 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY); 4740 if (ret < 0) 4741 goto out; 4742 4743 if (ret == 0) { 4744 struct btrfs_file_extent_item *ei; 4745 4746 leaf = path->nodes[0]; 4747 slot = path->slots[0]; 4748 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4749 4750 if (btrfs_file_extent_type(leaf, ei) == 4751 BTRFS_FILE_EXTENT_PREALLOC) { 4752 u64 extent_end; 4753 4754 btrfs_item_key_to_cpu(leaf, &key, slot); 4755 extent_end = key.offset + 4756 btrfs_file_extent_num_bytes(leaf, ei); 4757 4758 if (extent_end > i_size) 4759 truncate_offset = extent_end; 4760 } 4761 } else { 4762 ret = 0; 4763 } 4764 4765 while (true) { 4766 leaf = path->nodes[0]; 4767 slot = path->slots[0]; 4768 4769 if (slot >= btrfs_header_nritems(leaf)) { 4770 if (ins_nr > 0) { 4771 ret = copy_items(trans, inode, dst_path, path, 4772 start_slot, ins_nr, 1, 0); 4773 if (ret < 0) 4774 goto out; 4775 ins_nr = 0; 4776 } 4777 ret = btrfs_next_leaf(root, path); 4778 if (ret < 0) 4779 goto out; 4780 if (ret > 0) { 4781 ret = 0; 4782 break; 4783 } 4784 continue; 4785 } 4786 4787 btrfs_item_key_to_cpu(leaf, &key, slot); 4788 if (key.objectid > ino) 4789 break; 4790 if (WARN_ON_ONCE(key.objectid < ino) || 4791 key.type < BTRFS_EXTENT_DATA_KEY || 4792 key.offset < i_size) { 4793 path->slots[0]++; 4794 continue; 4795 } 4796 if (!dropped_extents) { 4797 /* 4798 * Avoid logging extent items logged in past fsync calls 4799 * and leading to duplicate keys in the log tree. 4800 */ 4801 ret = truncate_inode_items(trans, root->log_root, inode, 4802 truncate_offset, 4803 BTRFS_EXTENT_DATA_KEY); 4804 if (ret) 4805 goto out; 4806 dropped_extents = true; 4807 } 4808 if (ins_nr == 0) 4809 start_slot = slot; 4810 ins_nr++; 4811 path->slots[0]++; 4812 if (!dst_path) { 4813 dst_path = btrfs_alloc_path(); 4814 if (!dst_path) { 4815 ret = -ENOMEM; 4816 goto out; 4817 } 4818 } 4819 } 4820 if (ins_nr > 0) 4821 ret = copy_items(trans, inode, dst_path, path, 4822 start_slot, ins_nr, 1, 0); 4823 out: 4824 btrfs_release_path(path); 4825 btrfs_free_path(dst_path); 4826 return ret; 4827 } 4828 4829 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans, 4830 struct btrfs_inode *inode, 4831 struct btrfs_path *path, 4832 struct btrfs_log_ctx *ctx) 4833 { 4834 struct btrfs_ordered_extent *ordered; 4835 struct btrfs_ordered_extent *tmp; 4836 struct extent_map *em, *n; 4837 LIST_HEAD(extents); 4838 struct extent_map_tree *tree = &inode->extent_tree; 4839 int ret = 0; 4840 int num = 0; 4841 4842 write_lock(&tree->lock); 4843 4844 list_for_each_entry_safe(em, n, &tree->modified_extents, list) { 4845 list_del_init(&em->list); 4846 /* 4847 * Just an arbitrary number, this can be really CPU intensive 4848 * once we start getting a lot of extents, and really once we 4849 * have a bunch of extents we just want to commit since it will 4850 * be faster. 4851 */ 4852 if (++num > 32768) { 4853 list_del_init(&tree->modified_extents); 4854 ret = -EFBIG; 4855 goto process; 4856 } 4857 4858 if (em->generation < trans->transid) 4859 continue; 4860 4861 /* We log prealloc extents beyond eof later. */ 4862 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && 4863 em->start >= i_size_read(&inode->vfs_inode)) 4864 continue; 4865 4866 /* Need a ref to keep it from getting evicted from cache */ 4867 refcount_inc(&em->refs); 4868 set_bit(EXTENT_FLAG_LOGGING, &em->flags); 4869 list_add_tail(&em->list, &extents); 4870 num++; 4871 } 4872 4873 list_sort(NULL, &extents, extent_cmp); 4874 process: 4875 while (!list_empty(&extents)) { 4876 em = list_entry(extents.next, struct extent_map, list); 4877 4878 list_del_init(&em->list); 4879 4880 /* 4881 * If we had an error we just need to delete everybody from our 4882 * private list. 4883 */ 4884 if (ret) { 4885 clear_em_logging(tree, em); 4886 free_extent_map(em); 4887 continue; 4888 } 4889 4890 write_unlock(&tree->lock); 4891 4892 ret = log_one_extent(trans, inode, em, path, ctx); 4893 write_lock(&tree->lock); 4894 clear_em_logging(tree, em); 4895 free_extent_map(em); 4896 } 4897 WARN_ON(!list_empty(&extents)); 4898 write_unlock(&tree->lock); 4899 4900 if (!ret) 4901 ret = btrfs_log_prealloc_extents(trans, inode, path); 4902 if (ret) 4903 return ret; 4904 4905 /* 4906 * We have logged all extents successfully, now make sure the commit of 4907 * the current transaction waits for the ordered extents to complete 4908 * before it commits and wipes out the log trees, otherwise we would 4909 * lose data if an ordered extents completes after the transaction 4910 * commits and a power failure happens after the transaction commit. 4911 */ 4912 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) { 4913 list_del_init(&ordered->log_list); 4914 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags); 4915 4916 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 4917 spin_lock_irq(&inode->ordered_tree_lock); 4918 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { 4919 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags); 4920 atomic_inc(&trans->transaction->pending_ordered); 4921 } 4922 spin_unlock_irq(&inode->ordered_tree_lock); 4923 } 4924 btrfs_put_ordered_extent(ordered); 4925 } 4926 4927 return 0; 4928 } 4929 4930 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode, 4931 struct btrfs_path *path, u64 *size_ret) 4932 { 4933 struct btrfs_key key; 4934 int ret; 4935 4936 key.objectid = btrfs_ino(inode); 4937 key.type = BTRFS_INODE_ITEM_KEY; 4938 key.offset = 0; 4939 4940 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0); 4941 if (ret < 0) { 4942 return ret; 4943 } else if (ret > 0) { 4944 *size_ret = 0; 4945 } else { 4946 struct btrfs_inode_item *item; 4947 4948 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4949 struct btrfs_inode_item); 4950 *size_ret = btrfs_inode_size(path->nodes[0], item); 4951 /* 4952 * If the in-memory inode's i_size is smaller then the inode 4953 * size stored in the btree, return the inode's i_size, so 4954 * that we get a correct inode size after replaying the log 4955 * when before a power failure we had a shrinking truncate 4956 * followed by addition of a new name (rename / new hard link). 4957 * Otherwise return the inode size from the btree, to avoid 4958 * data loss when replaying a log due to previously doing a 4959 * write that expands the inode's size and logging a new name 4960 * immediately after. 4961 */ 4962 if (*size_ret > inode->vfs_inode.i_size) 4963 *size_ret = inode->vfs_inode.i_size; 4964 } 4965 4966 btrfs_release_path(path); 4967 return 0; 4968 } 4969 4970 /* 4971 * At the moment we always log all xattrs. This is to figure out at log replay 4972 * time which xattrs must have their deletion replayed. If a xattr is missing 4973 * in the log tree and exists in the fs/subvol tree, we delete it. This is 4974 * because if a xattr is deleted, the inode is fsynced and a power failure 4975 * happens, causing the log to be replayed the next time the fs is mounted, 4976 * we want the xattr to not exist anymore (same behaviour as other filesystems 4977 * with a journal, ext3/4, xfs, f2fs, etc). 4978 */ 4979 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans, 4980 struct btrfs_inode *inode, 4981 struct btrfs_path *path, 4982 struct btrfs_path *dst_path) 4983 { 4984 struct btrfs_root *root = inode->root; 4985 int ret; 4986 struct btrfs_key key; 4987 const u64 ino = btrfs_ino(inode); 4988 int ins_nr = 0; 4989 int start_slot = 0; 4990 bool found_xattrs = false; 4991 4992 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags)) 4993 return 0; 4994 4995 key.objectid = ino; 4996 key.type = BTRFS_XATTR_ITEM_KEY; 4997 key.offset = 0; 4998 4999 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5000 if (ret < 0) 5001 return ret; 5002 5003 while (true) { 5004 int slot = path->slots[0]; 5005 struct extent_buffer *leaf = path->nodes[0]; 5006 int nritems = btrfs_header_nritems(leaf); 5007 5008 if (slot >= nritems) { 5009 if (ins_nr > 0) { 5010 ret = copy_items(trans, inode, dst_path, path, 5011 start_slot, ins_nr, 1, 0); 5012 if (ret < 0) 5013 return ret; 5014 ins_nr = 0; 5015 } 5016 ret = btrfs_next_leaf(root, path); 5017 if (ret < 0) 5018 return ret; 5019 else if (ret > 0) 5020 break; 5021 continue; 5022 } 5023 5024 btrfs_item_key_to_cpu(leaf, &key, slot); 5025 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) 5026 break; 5027 5028 if (ins_nr == 0) 5029 start_slot = slot; 5030 ins_nr++; 5031 path->slots[0]++; 5032 found_xattrs = true; 5033 cond_resched(); 5034 } 5035 if (ins_nr > 0) { 5036 ret = copy_items(trans, inode, dst_path, path, 5037 start_slot, ins_nr, 1, 0); 5038 if (ret < 0) 5039 return ret; 5040 } 5041 5042 if (!found_xattrs) 5043 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags); 5044 5045 return 0; 5046 } 5047 5048 /* 5049 * When using the NO_HOLES feature if we punched a hole that causes the 5050 * deletion of entire leafs or all the extent items of the first leaf (the one 5051 * that contains the inode item and references) we may end up not processing 5052 * any extents, because there are no leafs with a generation matching the 5053 * current transaction that have extent items for our inode. So we need to find 5054 * if any holes exist and then log them. We also need to log holes after any 5055 * truncate operation that changes the inode's size. 5056 */ 5057 static int btrfs_log_holes(struct btrfs_trans_handle *trans, 5058 struct btrfs_inode *inode, 5059 struct btrfs_path *path) 5060 { 5061 struct btrfs_root *root = inode->root; 5062 struct btrfs_fs_info *fs_info = root->fs_info; 5063 struct btrfs_key key; 5064 const u64 ino = btrfs_ino(inode); 5065 const u64 i_size = i_size_read(&inode->vfs_inode); 5066 u64 prev_extent_end = 0; 5067 int ret; 5068 5069 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0) 5070 return 0; 5071 5072 key.objectid = ino; 5073 key.type = BTRFS_EXTENT_DATA_KEY; 5074 key.offset = 0; 5075 5076 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5077 if (ret < 0) 5078 return ret; 5079 5080 while (true) { 5081 struct extent_buffer *leaf = path->nodes[0]; 5082 5083 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 5084 ret = btrfs_next_leaf(root, path); 5085 if (ret < 0) 5086 return ret; 5087 if (ret > 0) { 5088 ret = 0; 5089 break; 5090 } 5091 leaf = path->nodes[0]; 5092 } 5093 5094 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 5095 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) 5096 break; 5097 5098 /* We have a hole, log it. */ 5099 if (prev_extent_end < key.offset) { 5100 const u64 hole_len = key.offset - prev_extent_end; 5101 5102 /* 5103 * Release the path to avoid deadlocks with other code 5104 * paths that search the root while holding locks on 5105 * leafs from the log root. 5106 */ 5107 btrfs_release_path(path); 5108 ret = btrfs_insert_hole_extent(trans, root->log_root, 5109 ino, prev_extent_end, 5110 hole_len); 5111 if (ret < 0) 5112 return ret; 5113 5114 /* 5115 * Search for the same key again in the root. Since it's 5116 * an extent item and we are holding the inode lock, the 5117 * key must still exist. If it doesn't just emit warning 5118 * and return an error to fall back to a transaction 5119 * commit. 5120 */ 5121 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5122 if (ret < 0) 5123 return ret; 5124 if (WARN_ON(ret > 0)) 5125 return -ENOENT; 5126 leaf = path->nodes[0]; 5127 } 5128 5129 prev_extent_end = btrfs_file_extent_end(path); 5130 path->slots[0]++; 5131 cond_resched(); 5132 } 5133 5134 if (prev_extent_end < i_size) { 5135 u64 hole_len; 5136 5137 btrfs_release_path(path); 5138 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize); 5139 ret = btrfs_insert_hole_extent(trans, root->log_root, ino, 5140 prev_extent_end, hole_len); 5141 if (ret < 0) 5142 return ret; 5143 } 5144 5145 return 0; 5146 } 5147 5148 /* 5149 * When we are logging a new inode X, check if it doesn't have a reference that 5150 * matches the reference from some other inode Y created in a past transaction 5151 * and that was renamed in the current transaction. If we don't do this, then at 5152 * log replay time we can lose inode Y (and all its files if it's a directory): 5153 * 5154 * mkdir /mnt/x 5155 * echo "hello world" > /mnt/x/foobar 5156 * sync 5157 * mv /mnt/x /mnt/y 5158 * mkdir /mnt/x # or touch /mnt/x 5159 * xfs_io -c fsync /mnt/x 5160 * <power fail> 5161 * mount fs, trigger log replay 5162 * 5163 * After the log replay procedure, we would lose the first directory and all its 5164 * files (file foobar). 5165 * For the case where inode Y is not a directory we simply end up losing it: 5166 * 5167 * echo "123" > /mnt/foo 5168 * sync 5169 * mv /mnt/foo /mnt/bar 5170 * echo "abc" > /mnt/foo 5171 * xfs_io -c fsync /mnt/foo 5172 * <power fail> 5173 * 5174 * We also need this for cases where a snapshot entry is replaced by some other 5175 * entry (file or directory) otherwise we end up with an unreplayable log due to 5176 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as 5177 * if it were a regular entry: 5178 * 5179 * mkdir /mnt/x 5180 * btrfs subvolume snapshot /mnt /mnt/x/snap 5181 * btrfs subvolume delete /mnt/x/snap 5182 * rmdir /mnt/x 5183 * mkdir /mnt/x 5184 * fsync /mnt/x or fsync some new file inside it 5185 * <power fail> 5186 * 5187 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in 5188 * the same transaction. 5189 */ 5190 static int btrfs_check_ref_name_override(struct extent_buffer *eb, 5191 const int slot, 5192 const struct btrfs_key *key, 5193 struct btrfs_inode *inode, 5194 u64 *other_ino, u64 *other_parent) 5195 { 5196 int ret; 5197 struct btrfs_path *search_path; 5198 char *name = NULL; 5199 u32 name_len = 0; 5200 u32 item_size = btrfs_item_size(eb, slot); 5201 u32 cur_offset = 0; 5202 unsigned long ptr = btrfs_item_ptr_offset(eb, slot); 5203 5204 search_path = btrfs_alloc_path(); 5205 if (!search_path) 5206 return -ENOMEM; 5207 search_path->search_commit_root = 1; 5208 search_path->skip_locking = 1; 5209 5210 while (cur_offset < item_size) { 5211 u64 parent; 5212 u32 this_name_len; 5213 u32 this_len; 5214 unsigned long name_ptr; 5215 struct btrfs_dir_item *di; 5216 struct fscrypt_str name_str; 5217 5218 if (key->type == BTRFS_INODE_REF_KEY) { 5219 struct btrfs_inode_ref *iref; 5220 5221 iref = (struct btrfs_inode_ref *)(ptr + cur_offset); 5222 parent = key->offset; 5223 this_name_len = btrfs_inode_ref_name_len(eb, iref); 5224 name_ptr = (unsigned long)(iref + 1); 5225 this_len = sizeof(*iref) + this_name_len; 5226 } else { 5227 struct btrfs_inode_extref *extref; 5228 5229 extref = (struct btrfs_inode_extref *)(ptr + 5230 cur_offset); 5231 parent = btrfs_inode_extref_parent(eb, extref); 5232 this_name_len = btrfs_inode_extref_name_len(eb, extref); 5233 name_ptr = (unsigned long)&extref->name; 5234 this_len = sizeof(*extref) + this_name_len; 5235 } 5236 5237 if (this_name_len > name_len) { 5238 char *new_name; 5239 5240 new_name = krealloc(name, this_name_len, GFP_NOFS); 5241 if (!new_name) { 5242 ret = -ENOMEM; 5243 goto out; 5244 } 5245 name_len = this_name_len; 5246 name = new_name; 5247 } 5248 5249 read_extent_buffer(eb, name, name_ptr, this_name_len); 5250 5251 name_str.name = name; 5252 name_str.len = this_name_len; 5253 di = btrfs_lookup_dir_item(NULL, inode->root, search_path, 5254 parent, &name_str, 0); 5255 if (di && !IS_ERR(di)) { 5256 struct btrfs_key di_key; 5257 5258 btrfs_dir_item_key_to_cpu(search_path->nodes[0], 5259 di, &di_key); 5260 if (di_key.type == BTRFS_INODE_ITEM_KEY) { 5261 if (di_key.objectid != key->objectid) { 5262 ret = 1; 5263 *other_ino = di_key.objectid; 5264 *other_parent = parent; 5265 } else { 5266 ret = 0; 5267 } 5268 } else { 5269 ret = -EAGAIN; 5270 } 5271 goto out; 5272 } else if (IS_ERR(di)) { 5273 ret = PTR_ERR(di); 5274 goto out; 5275 } 5276 btrfs_release_path(search_path); 5277 5278 cur_offset += this_len; 5279 } 5280 ret = 0; 5281 out: 5282 btrfs_free_path(search_path); 5283 kfree(name); 5284 return ret; 5285 } 5286 5287 /* 5288 * Check if we need to log an inode. This is used in contexts where while 5289 * logging an inode we need to log another inode (either that it exists or in 5290 * full mode). This is used instead of btrfs_inode_in_log() because the later 5291 * requires the inode to be in the log and have the log transaction committed, 5292 * while here we do not care if the log transaction was already committed - our 5293 * caller will commit the log later - and we want to avoid logging an inode 5294 * multiple times when multiple tasks have joined the same log transaction. 5295 */ 5296 static bool need_log_inode(const struct btrfs_trans_handle *trans, 5297 struct btrfs_inode *inode) 5298 { 5299 /* 5300 * If a directory was not modified, no dentries added or removed, we can 5301 * and should avoid logging it. 5302 */ 5303 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid) 5304 return false; 5305 5306 /* 5307 * If this inode does not have new/updated/deleted xattrs since the last 5308 * time it was logged and is flagged as logged in the current transaction, 5309 * we can skip logging it. As for new/deleted names, those are updated in 5310 * the log by link/unlink/rename operations. 5311 * In case the inode was logged and then evicted and reloaded, its 5312 * logged_trans will be 0, in which case we have to fully log it since 5313 * logged_trans is a transient field, not persisted. 5314 */ 5315 if (inode_logged(trans, inode, NULL) == 1 && 5316 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags)) 5317 return false; 5318 5319 return true; 5320 } 5321 5322 struct btrfs_dir_list { 5323 u64 ino; 5324 struct list_head list; 5325 }; 5326 5327 /* 5328 * Log the inodes of the new dentries of a directory. 5329 * See process_dir_items_leaf() for details about why it is needed. 5330 * This is a recursive operation - if an existing dentry corresponds to a 5331 * directory, that directory's new entries are logged too (same behaviour as 5332 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes 5333 * the dentries point to we do not acquire their VFS lock, otherwise lockdep 5334 * complains about the following circular lock dependency / possible deadlock: 5335 * 5336 * CPU0 CPU1 5337 * ---- ---- 5338 * lock(&type->i_mutex_dir_key#3/2); 5339 * lock(sb_internal#2); 5340 * lock(&type->i_mutex_dir_key#3/2); 5341 * lock(&sb->s_type->i_mutex_key#14); 5342 * 5343 * Where sb_internal is the lock (a counter that works as a lock) acquired by 5344 * sb_start_intwrite() in btrfs_start_transaction(). 5345 * Not acquiring the VFS lock of the inodes is still safe because: 5346 * 5347 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible 5348 * that while logging the inode new references (names) are added or removed 5349 * from the inode, leaving the logged inode item with a link count that does 5350 * not match the number of logged inode reference items. This is fine because 5351 * at log replay time we compute the real number of links and correct the 5352 * link count in the inode item (see replay_one_buffer() and 5353 * link_to_fixup_dir()); 5354 * 5355 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that 5356 * while logging the inode's items new index items (key type 5357 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item 5358 * has a size that doesn't match the sum of the lengths of all the logged 5359 * names - this is ok, not a problem, because at log replay time we set the 5360 * directory's i_size to the correct value (see replay_one_name() and 5361 * overwrite_item()). 5362 */ 5363 static int log_new_dir_dentries(struct btrfs_trans_handle *trans, 5364 struct btrfs_inode *start_inode, 5365 struct btrfs_log_ctx *ctx) 5366 { 5367 struct btrfs_root *root = start_inode->root; 5368 struct btrfs_fs_info *fs_info = root->fs_info; 5369 struct btrfs_path *path; 5370 LIST_HEAD(dir_list); 5371 struct btrfs_dir_list *dir_elem; 5372 u64 ino = btrfs_ino(start_inode); 5373 struct btrfs_inode *curr_inode = start_inode; 5374 int ret = 0; 5375 5376 /* 5377 * If we are logging a new name, as part of a link or rename operation, 5378 * don't bother logging new dentries, as we just want to log the names 5379 * of an inode and that any new parents exist. 5380 */ 5381 if (ctx->logging_new_name) 5382 return 0; 5383 5384 path = btrfs_alloc_path(); 5385 if (!path) 5386 return -ENOMEM; 5387 5388 /* Pairs with btrfs_add_delayed_iput below. */ 5389 ihold(&curr_inode->vfs_inode); 5390 5391 while (true) { 5392 struct inode *vfs_inode; 5393 struct btrfs_key key; 5394 struct btrfs_key found_key; 5395 u64 next_index; 5396 bool continue_curr_inode = true; 5397 int iter_ret; 5398 5399 key.objectid = ino; 5400 key.type = BTRFS_DIR_INDEX_KEY; 5401 key.offset = btrfs_get_first_dir_index_to_log(curr_inode); 5402 next_index = key.offset; 5403 again: 5404 btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) { 5405 struct extent_buffer *leaf = path->nodes[0]; 5406 struct btrfs_dir_item *di; 5407 struct btrfs_key di_key; 5408 struct inode *di_inode; 5409 int log_mode = LOG_INODE_EXISTS; 5410 int type; 5411 5412 if (found_key.objectid != ino || 5413 found_key.type != BTRFS_DIR_INDEX_KEY) { 5414 continue_curr_inode = false; 5415 break; 5416 } 5417 5418 next_index = found_key.offset + 1; 5419 5420 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 5421 type = btrfs_dir_ftype(leaf, di); 5422 if (btrfs_dir_transid(leaf, di) < trans->transid) 5423 continue; 5424 btrfs_dir_item_key_to_cpu(leaf, di, &di_key); 5425 if (di_key.type == BTRFS_ROOT_ITEM_KEY) 5426 continue; 5427 5428 btrfs_release_path(path); 5429 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root); 5430 if (IS_ERR(di_inode)) { 5431 ret = PTR_ERR(di_inode); 5432 goto out; 5433 } 5434 5435 if (!need_log_inode(trans, BTRFS_I(di_inode))) { 5436 btrfs_add_delayed_iput(BTRFS_I(di_inode)); 5437 break; 5438 } 5439 5440 ctx->log_new_dentries = false; 5441 if (type == BTRFS_FT_DIR) 5442 log_mode = LOG_INODE_ALL; 5443 ret = btrfs_log_inode(trans, BTRFS_I(di_inode), 5444 log_mode, ctx); 5445 btrfs_add_delayed_iput(BTRFS_I(di_inode)); 5446 if (ret) 5447 goto out; 5448 if (ctx->log_new_dentries) { 5449 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS); 5450 if (!dir_elem) { 5451 ret = -ENOMEM; 5452 goto out; 5453 } 5454 dir_elem->ino = di_key.objectid; 5455 list_add_tail(&dir_elem->list, &dir_list); 5456 } 5457 break; 5458 } 5459 5460 btrfs_release_path(path); 5461 5462 if (iter_ret < 0) { 5463 ret = iter_ret; 5464 goto out; 5465 } else if (iter_ret > 0) { 5466 continue_curr_inode = false; 5467 } else { 5468 key = found_key; 5469 } 5470 5471 if (continue_curr_inode && key.offset < (u64)-1) { 5472 key.offset++; 5473 goto again; 5474 } 5475 5476 btrfs_set_first_dir_index_to_log(curr_inode, next_index); 5477 5478 if (list_empty(&dir_list)) 5479 break; 5480 5481 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list); 5482 ino = dir_elem->ino; 5483 list_del(&dir_elem->list); 5484 kfree(dir_elem); 5485 5486 btrfs_add_delayed_iput(curr_inode); 5487 curr_inode = NULL; 5488 5489 vfs_inode = btrfs_iget(fs_info->sb, ino, root); 5490 if (IS_ERR(vfs_inode)) { 5491 ret = PTR_ERR(vfs_inode); 5492 break; 5493 } 5494 curr_inode = BTRFS_I(vfs_inode); 5495 } 5496 out: 5497 btrfs_free_path(path); 5498 if (curr_inode) 5499 btrfs_add_delayed_iput(curr_inode); 5500 5501 if (ret) { 5502 struct btrfs_dir_list *next; 5503 5504 list_for_each_entry_safe(dir_elem, next, &dir_list, list) 5505 kfree(dir_elem); 5506 } 5507 5508 return ret; 5509 } 5510 5511 struct btrfs_ino_list { 5512 u64 ino; 5513 u64 parent; 5514 struct list_head list; 5515 }; 5516 5517 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx) 5518 { 5519 struct btrfs_ino_list *curr; 5520 struct btrfs_ino_list *next; 5521 5522 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) { 5523 list_del(&curr->list); 5524 kfree(curr); 5525 } 5526 } 5527 5528 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino, 5529 struct btrfs_path *path) 5530 { 5531 struct btrfs_key key; 5532 int ret; 5533 5534 key.objectid = ino; 5535 key.type = BTRFS_INODE_ITEM_KEY; 5536 key.offset = 0; 5537 5538 path->search_commit_root = 1; 5539 path->skip_locking = 1; 5540 5541 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5542 if (WARN_ON_ONCE(ret > 0)) { 5543 /* 5544 * We have previously found the inode through the commit root 5545 * so this should not happen. If it does, just error out and 5546 * fallback to a transaction commit. 5547 */ 5548 ret = -ENOENT; 5549 } else if (ret == 0) { 5550 struct btrfs_inode_item *item; 5551 5552 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5553 struct btrfs_inode_item); 5554 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item))) 5555 ret = 1; 5556 } 5557 5558 btrfs_release_path(path); 5559 path->search_commit_root = 0; 5560 path->skip_locking = 0; 5561 5562 return ret; 5563 } 5564 5565 static int add_conflicting_inode(struct btrfs_trans_handle *trans, 5566 struct btrfs_root *root, 5567 struct btrfs_path *path, 5568 u64 ino, u64 parent, 5569 struct btrfs_log_ctx *ctx) 5570 { 5571 struct btrfs_ino_list *ino_elem; 5572 struct inode *inode; 5573 5574 /* 5575 * It's rare to have a lot of conflicting inodes, in practice it is not 5576 * common to have more than 1 or 2. We don't want to collect too many, 5577 * as we could end up logging too many inodes (even if only in 5578 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction 5579 * commits. 5580 */ 5581 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES) 5582 return BTRFS_LOG_FORCE_COMMIT; 5583 5584 inode = btrfs_iget(root->fs_info->sb, ino, root); 5585 /* 5586 * If the other inode that had a conflicting dir entry was deleted in 5587 * the current transaction then we either: 5588 * 5589 * 1) Log the parent directory (later after adding it to the list) if 5590 * the inode is a directory. This is because it may be a deleted 5591 * subvolume/snapshot or it may be a regular directory that had 5592 * deleted subvolumes/snapshots (or subdirectories that had them), 5593 * and at the moment we can't deal with dropping subvolumes/snapshots 5594 * during log replay. So we just log the parent, which will result in 5595 * a fallback to a transaction commit if we are dealing with those 5596 * cases (last_unlink_trans will match the current transaction); 5597 * 5598 * 2) Do nothing if it's not a directory. During log replay we simply 5599 * unlink the conflicting dentry from the parent directory and then 5600 * add the dentry for our inode. Like this we can avoid logging the 5601 * parent directory (and maybe fallback to a transaction commit in 5602 * case it has a last_unlink_trans == trans->transid, due to moving 5603 * some inode from it to some other directory). 5604 */ 5605 if (IS_ERR(inode)) { 5606 int ret = PTR_ERR(inode); 5607 5608 if (ret != -ENOENT) 5609 return ret; 5610 5611 ret = conflicting_inode_is_dir(root, ino, path); 5612 /* Not a directory or we got an error. */ 5613 if (ret <= 0) 5614 return ret; 5615 5616 /* Conflicting inode is a directory, so we'll log its parent. */ 5617 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 5618 if (!ino_elem) 5619 return -ENOMEM; 5620 ino_elem->ino = ino; 5621 ino_elem->parent = parent; 5622 list_add_tail(&ino_elem->list, &ctx->conflict_inodes); 5623 ctx->num_conflict_inodes++; 5624 5625 return 0; 5626 } 5627 5628 /* 5629 * If the inode was already logged skip it - otherwise we can hit an 5630 * infinite loop. Example: 5631 * 5632 * From the commit root (previous transaction) we have the following 5633 * inodes: 5634 * 5635 * inode 257 a directory 5636 * inode 258 with references "zz" and "zz_link" on inode 257 5637 * inode 259 with reference "a" on inode 257 5638 * 5639 * And in the current (uncommitted) transaction we have: 5640 * 5641 * inode 257 a directory, unchanged 5642 * inode 258 with references "a" and "a2" on inode 257 5643 * inode 259 with reference "zz_link" on inode 257 5644 * inode 261 with reference "zz" on inode 257 5645 * 5646 * When logging inode 261 the following infinite loop could 5647 * happen if we don't skip already logged inodes: 5648 * 5649 * - we detect inode 258 as a conflicting inode, with inode 261 5650 * on reference "zz", and log it; 5651 * 5652 * - we detect inode 259 as a conflicting inode, with inode 258 5653 * on reference "a", and log it; 5654 * 5655 * - we detect inode 258 as a conflicting inode, with inode 259 5656 * on reference "zz_link", and log it - again! After this we 5657 * repeat the above steps forever. 5658 * 5659 * Here we can use need_log_inode() because we only need to log the 5660 * inode in LOG_INODE_EXISTS mode and rename operations update the log, 5661 * so that the log ends up with the new name and without the old name. 5662 */ 5663 if (!need_log_inode(trans, BTRFS_I(inode))) { 5664 btrfs_add_delayed_iput(BTRFS_I(inode)); 5665 return 0; 5666 } 5667 5668 btrfs_add_delayed_iput(BTRFS_I(inode)); 5669 5670 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS); 5671 if (!ino_elem) 5672 return -ENOMEM; 5673 ino_elem->ino = ino; 5674 ino_elem->parent = parent; 5675 list_add_tail(&ino_elem->list, &ctx->conflict_inodes); 5676 ctx->num_conflict_inodes++; 5677 5678 return 0; 5679 } 5680 5681 static int log_conflicting_inodes(struct btrfs_trans_handle *trans, 5682 struct btrfs_root *root, 5683 struct btrfs_log_ctx *ctx) 5684 { 5685 struct btrfs_fs_info *fs_info = root->fs_info; 5686 int ret = 0; 5687 5688 /* 5689 * Conflicting inodes are logged by the first call to btrfs_log_inode(), 5690 * otherwise we could have unbounded recursion of btrfs_log_inode() 5691 * calls. This check guarantees we can have only 1 level of recursion. 5692 */ 5693 if (ctx->logging_conflict_inodes) 5694 return 0; 5695 5696 ctx->logging_conflict_inodes = true; 5697 5698 /* 5699 * New conflicting inodes may be found and added to the list while we 5700 * are logging a conflicting inode, so keep iterating while the list is 5701 * not empty. 5702 */ 5703 while (!list_empty(&ctx->conflict_inodes)) { 5704 struct btrfs_ino_list *curr; 5705 struct inode *inode; 5706 u64 ino; 5707 u64 parent; 5708 5709 curr = list_first_entry(&ctx->conflict_inodes, 5710 struct btrfs_ino_list, list); 5711 ino = curr->ino; 5712 parent = curr->parent; 5713 list_del(&curr->list); 5714 kfree(curr); 5715 5716 inode = btrfs_iget(fs_info->sb, ino, root); 5717 /* 5718 * If the other inode that had a conflicting dir entry was 5719 * deleted in the current transaction, we need to log its parent 5720 * directory. See the comment at add_conflicting_inode(). 5721 */ 5722 if (IS_ERR(inode)) { 5723 ret = PTR_ERR(inode); 5724 if (ret != -ENOENT) 5725 break; 5726 5727 inode = btrfs_iget(fs_info->sb, parent, root); 5728 if (IS_ERR(inode)) { 5729 ret = PTR_ERR(inode); 5730 break; 5731 } 5732 5733 /* 5734 * Always log the directory, we cannot make this 5735 * conditional on need_log_inode() because the directory 5736 * might have been logged in LOG_INODE_EXISTS mode or 5737 * the dir index of the conflicting inode is not in a 5738 * dir index key range logged for the directory. So we 5739 * must make sure the deletion is recorded. 5740 */ 5741 ret = btrfs_log_inode(trans, BTRFS_I(inode), 5742 LOG_INODE_ALL, ctx); 5743 btrfs_add_delayed_iput(BTRFS_I(inode)); 5744 if (ret) 5745 break; 5746 continue; 5747 } 5748 5749 /* 5750 * Here we can use need_log_inode() because we only need to log 5751 * the inode in LOG_INODE_EXISTS mode and rename operations 5752 * update the log, so that the log ends up with the new name and 5753 * without the old name. 5754 * 5755 * We did this check at add_conflicting_inode(), but here we do 5756 * it again because if some other task logged the inode after 5757 * that, we can avoid doing it again. 5758 */ 5759 if (!need_log_inode(trans, BTRFS_I(inode))) { 5760 btrfs_add_delayed_iput(BTRFS_I(inode)); 5761 continue; 5762 } 5763 5764 /* 5765 * We are safe logging the other inode without acquiring its 5766 * lock as long as we log with the LOG_INODE_EXISTS mode. We 5767 * are safe against concurrent renames of the other inode as 5768 * well because during a rename we pin the log and update the 5769 * log with the new name before we unpin it. 5770 */ 5771 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx); 5772 btrfs_add_delayed_iput(BTRFS_I(inode)); 5773 if (ret) 5774 break; 5775 } 5776 5777 ctx->logging_conflict_inodes = false; 5778 if (ret) 5779 free_conflicting_inodes(ctx); 5780 5781 return ret; 5782 } 5783 5784 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans, 5785 struct btrfs_inode *inode, 5786 struct btrfs_key *min_key, 5787 const struct btrfs_key *max_key, 5788 struct btrfs_path *path, 5789 struct btrfs_path *dst_path, 5790 const u64 logged_isize, 5791 const int inode_only, 5792 struct btrfs_log_ctx *ctx, 5793 bool *need_log_inode_item) 5794 { 5795 const u64 i_size = i_size_read(&inode->vfs_inode); 5796 struct btrfs_root *root = inode->root; 5797 int ins_start_slot = 0; 5798 int ins_nr = 0; 5799 int ret; 5800 5801 while (1) { 5802 ret = btrfs_search_forward(root, min_key, path, trans->transid); 5803 if (ret < 0) 5804 return ret; 5805 if (ret > 0) { 5806 ret = 0; 5807 break; 5808 } 5809 again: 5810 /* Note, ins_nr might be > 0 here, cleanup outside the loop */ 5811 if (min_key->objectid != max_key->objectid) 5812 break; 5813 if (min_key->type > max_key->type) 5814 break; 5815 5816 if (min_key->type == BTRFS_INODE_ITEM_KEY) { 5817 *need_log_inode_item = false; 5818 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY && 5819 min_key->offset >= i_size) { 5820 /* 5821 * Extents at and beyond eof are logged with 5822 * btrfs_log_prealloc_extents(). 5823 * Only regular files have BTRFS_EXTENT_DATA_KEY keys, 5824 * and no keys greater than that, so bail out. 5825 */ 5826 break; 5827 } else if ((min_key->type == BTRFS_INODE_REF_KEY || 5828 min_key->type == BTRFS_INODE_EXTREF_KEY) && 5829 (inode->generation == trans->transid || 5830 ctx->logging_conflict_inodes)) { 5831 u64 other_ino = 0; 5832 u64 other_parent = 0; 5833 5834 ret = btrfs_check_ref_name_override(path->nodes[0], 5835 path->slots[0], min_key, inode, 5836 &other_ino, &other_parent); 5837 if (ret < 0) { 5838 return ret; 5839 } else if (ret > 0 && 5840 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) { 5841 if (ins_nr > 0) { 5842 ins_nr++; 5843 } else { 5844 ins_nr = 1; 5845 ins_start_slot = path->slots[0]; 5846 } 5847 ret = copy_items(trans, inode, dst_path, path, 5848 ins_start_slot, ins_nr, 5849 inode_only, logged_isize); 5850 if (ret < 0) 5851 return ret; 5852 ins_nr = 0; 5853 5854 btrfs_release_path(path); 5855 ret = add_conflicting_inode(trans, root, path, 5856 other_ino, 5857 other_parent, ctx); 5858 if (ret) 5859 return ret; 5860 goto next_key; 5861 } 5862 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) { 5863 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */ 5864 if (ins_nr == 0) 5865 goto next_slot; 5866 ret = copy_items(trans, inode, dst_path, path, 5867 ins_start_slot, 5868 ins_nr, inode_only, logged_isize); 5869 if (ret < 0) 5870 return ret; 5871 ins_nr = 0; 5872 goto next_slot; 5873 } 5874 5875 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) { 5876 ins_nr++; 5877 goto next_slot; 5878 } else if (!ins_nr) { 5879 ins_start_slot = path->slots[0]; 5880 ins_nr = 1; 5881 goto next_slot; 5882 } 5883 5884 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 5885 ins_nr, inode_only, logged_isize); 5886 if (ret < 0) 5887 return ret; 5888 ins_nr = 1; 5889 ins_start_slot = path->slots[0]; 5890 next_slot: 5891 path->slots[0]++; 5892 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) { 5893 btrfs_item_key_to_cpu(path->nodes[0], min_key, 5894 path->slots[0]); 5895 goto again; 5896 } 5897 if (ins_nr) { 5898 ret = copy_items(trans, inode, dst_path, path, 5899 ins_start_slot, ins_nr, inode_only, 5900 logged_isize); 5901 if (ret < 0) 5902 return ret; 5903 ins_nr = 0; 5904 } 5905 btrfs_release_path(path); 5906 next_key: 5907 if (min_key->offset < (u64)-1) { 5908 min_key->offset++; 5909 } else if (min_key->type < max_key->type) { 5910 min_key->type++; 5911 min_key->offset = 0; 5912 } else { 5913 break; 5914 } 5915 5916 /* 5917 * We may process many leaves full of items for our inode, so 5918 * avoid monopolizing a cpu for too long by rescheduling while 5919 * not holding locks on any tree. 5920 */ 5921 cond_resched(); 5922 } 5923 if (ins_nr) { 5924 ret = copy_items(trans, inode, dst_path, path, ins_start_slot, 5925 ins_nr, inode_only, logged_isize); 5926 if (ret) 5927 return ret; 5928 } 5929 5930 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) { 5931 /* 5932 * Release the path because otherwise we might attempt to double 5933 * lock the same leaf with btrfs_log_prealloc_extents() below. 5934 */ 5935 btrfs_release_path(path); 5936 ret = btrfs_log_prealloc_extents(trans, inode, dst_path); 5937 } 5938 5939 return ret; 5940 } 5941 5942 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans, 5943 struct btrfs_root *log, 5944 struct btrfs_path *path, 5945 const struct btrfs_item_batch *batch, 5946 const struct btrfs_delayed_item *first_item) 5947 { 5948 const struct btrfs_delayed_item *curr = first_item; 5949 int ret; 5950 5951 ret = btrfs_insert_empty_items(trans, log, path, batch); 5952 if (ret) 5953 return ret; 5954 5955 for (int i = 0; i < batch->nr; i++) { 5956 char *data_ptr; 5957 5958 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); 5959 write_extent_buffer(path->nodes[0], &curr->data, 5960 (unsigned long)data_ptr, curr->data_len); 5961 curr = list_next_entry(curr, log_list); 5962 path->slots[0]++; 5963 } 5964 5965 btrfs_release_path(path); 5966 5967 return 0; 5968 } 5969 5970 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans, 5971 struct btrfs_inode *inode, 5972 struct btrfs_path *path, 5973 const struct list_head *delayed_ins_list, 5974 struct btrfs_log_ctx *ctx) 5975 { 5976 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */ 5977 const int max_batch_size = 195; 5978 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info); 5979 const u64 ino = btrfs_ino(inode); 5980 struct btrfs_root *log = inode->root->log_root; 5981 struct btrfs_item_batch batch = { 5982 .nr = 0, 5983 .total_data_size = 0, 5984 }; 5985 const struct btrfs_delayed_item *first = NULL; 5986 const struct btrfs_delayed_item *curr; 5987 char *ins_data; 5988 struct btrfs_key *ins_keys; 5989 u32 *ins_sizes; 5990 u64 curr_batch_size = 0; 5991 int batch_idx = 0; 5992 int ret; 5993 5994 /* We are adding dir index items to the log tree. */ 5995 lockdep_assert_held(&inode->log_mutex); 5996 5997 /* 5998 * We collect delayed items before copying index keys from the subvolume 5999 * to the log tree. However just after we collected them, they may have 6000 * been flushed (all of them or just some of them), and therefore we 6001 * could have copied them from the subvolume tree to the log tree. 6002 * So find the first delayed item that was not yet logged (they are 6003 * sorted by index number). 6004 */ 6005 list_for_each_entry(curr, delayed_ins_list, log_list) { 6006 if (curr->index > inode->last_dir_index_offset) { 6007 first = curr; 6008 break; 6009 } 6010 } 6011 6012 /* Empty list or all delayed items were already logged. */ 6013 if (!first) 6014 return 0; 6015 6016 ins_data = kmalloc(max_batch_size * sizeof(u32) + 6017 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS); 6018 if (!ins_data) 6019 return -ENOMEM; 6020 ins_sizes = (u32 *)ins_data; 6021 batch.data_sizes = ins_sizes; 6022 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32)); 6023 batch.keys = ins_keys; 6024 6025 curr = first; 6026 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) { 6027 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item); 6028 6029 if (curr_batch_size + curr_size > leaf_data_size || 6030 batch.nr == max_batch_size) { 6031 ret = insert_delayed_items_batch(trans, log, path, 6032 &batch, first); 6033 if (ret) 6034 goto out; 6035 batch_idx = 0; 6036 batch.nr = 0; 6037 batch.total_data_size = 0; 6038 curr_batch_size = 0; 6039 first = curr; 6040 } 6041 6042 ins_sizes[batch_idx] = curr->data_len; 6043 ins_keys[batch_idx].objectid = ino; 6044 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY; 6045 ins_keys[batch_idx].offset = curr->index; 6046 curr_batch_size += curr_size; 6047 batch.total_data_size += curr->data_len; 6048 batch.nr++; 6049 batch_idx++; 6050 curr = list_next_entry(curr, log_list); 6051 } 6052 6053 ASSERT(batch.nr >= 1); 6054 ret = insert_delayed_items_batch(trans, log, path, &batch, first); 6055 6056 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item, 6057 log_list); 6058 inode->last_dir_index_offset = curr->index; 6059 out: 6060 kfree(ins_data); 6061 6062 return ret; 6063 } 6064 6065 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans, 6066 struct btrfs_inode *inode, 6067 struct btrfs_path *path, 6068 const struct list_head *delayed_del_list, 6069 struct btrfs_log_ctx *ctx) 6070 { 6071 const u64 ino = btrfs_ino(inode); 6072 const struct btrfs_delayed_item *curr; 6073 6074 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item, 6075 log_list); 6076 6077 while (!list_entry_is_head(curr, delayed_del_list, log_list)) { 6078 u64 first_dir_index = curr->index; 6079 u64 last_dir_index; 6080 const struct btrfs_delayed_item *next; 6081 int ret; 6082 6083 /* 6084 * Find a range of consecutive dir index items to delete. Like 6085 * this we log a single dir range item spanning several contiguous 6086 * dir items instead of logging one range item per dir index item. 6087 */ 6088 next = list_next_entry(curr, log_list); 6089 while (!list_entry_is_head(next, delayed_del_list, log_list)) { 6090 if (next->index != curr->index + 1) 6091 break; 6092 curr = next; 6093 next = list_next_entry(next, log_list); 6094 } 6095 6096 last_dir_index = curr->index; 6097 ASSERT(last_dir_index >= first_dir_index); 6098 6099 ret = insert_dir_log_key(trans, inode->root->log_root, path, 6100 ino, first_dir_index, last_dir_index); 6101 if (ret) 6102 return ret; 6103 curr = list_next_entry(curr, log_list); 6104 } 6105 6106 return 0; 6107 } 6108 6109 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans, 6110 struct btrfs_inode *inode, 6111 struct btrfs_path *path, 6112 struct btrfs_log_ctx *ctx, 6113 const struct list_head *delayed_del_list, 6114 const struct btrfs_delayed_item *first, 6115 const struct btrfs_delayed_item **last_ret) 6116 { 6117 const struct btrfs_delayed_item *next; 6118 struct extent_buffer *leaf = path->nodes[0]; 6119 const int last_slot = btrfs_header_nritems(leaf) - 1; 6120 int slot = path->slots[0] + 1; 6121 const u64 ino = btrfs_ino(inode); 6122 6123 next = list_next_entry(first, log_list); 6124 6125 while (slot < last_slot && 6126 !list_entry_is_head(next, delayed_del_list, log_list)) { 6127 struct btrfs_key key; 6128 6129 btrfs_item_key_to_cpu(leaf, &key, slot); 6130 if (key.objectid != ino || 6131 key.type != BTRFS_DIR_INDEX_KEY || 6132 key.offset != next->index) 6133 break; 6134 6135 slot++; 6136 *last_ret = next; 6137 next = list_next_entry(next, log_list); 6138 } 6139 6140 return btrfs_del_items(trans, inode->root->log_root, path, 6141 path->slots[0], slot - path->slots[0]); 6142 } 6143 6144 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans, 6145 struct btrfs_inode *inode, 6146 struct btrfs_path *path, 6147 const struct list_head *delayed_del_list, 6148 struct btrfs_log_ctx *ctx) 6149 { 6150 struct btrfs_root *log = inode->root->log_root; 6151 const struct btrfs_delayed_item *curr; 6152 u64 last_range_start = 0; 6153 u64 last_range_end = 0; 6154 struct btrfs_key key; 6155 6156 key.objectid = btrfs_ino(inode); 6157 key.type = BTRFS_DIR_INDEX_KEY; 6158 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item, 6159 log_list); 6160 6161 while (!list_entry_is_head(curr, delayed_del_list, log_list)) { 6162 const struct btrfs_delayed_item *last = curr; 6163 u64 first_dir_index = curr->index; 6164 u64 last_dir_index; 6165 bool deleted_items = false; 6166 int ret; 6167 6168 key.offset = curr->index; 6169 ret = btrfs_search_slot(trans, log, &key, path, -1, 1); 6170 if (ret < 0) { 6171 return ret; 6172 } else if (ret == 0) { 6173 ret = batch_delete_dir_index_items(trans, inode, path, ctx, 6174 delayed_del_list, curr, 6175 &last); 6176 if (ret) 6177 return ret; 6178 deleted_items = true; 6179 } 6180 6181 btrfs_release_path(path); 6182 6183 /* 6184 * If we deleted items from the leaf, it means we have a range 6185 * item logging their range, so no need to add one or update an 6186 * existing one. Otherwise we have to log a dir range item. 6187 */ 6188 if (deleted_items) 6189 goto next_batch; 6190 6191 last_dir_index = last->index; 6192 ASSERT(last_dir_index >= first_dir_index); 6193 /* 6194 * If this range starts right after where the previous one ends, 6195 * then we want to reuse the previous range item and change its 6196 * end offset to the end of this range. This is just to minimize 6197 * leaf space usage, by avoiding adding a new range item. 6198 */ 6199 if (last_range_end != 0 && first_dir_index == last_range_end + 1) 6200 first_dir_index = last_range_start; 6201 6202 ret = insert_dir_log_key(trans, log, path, key.objectid, 6203 first_dir_index, last_dir_index); 6204 if (ret) 6205 return ret; 6206 6207 last_range_start = first_dir_index; 6208 last_range_end = last_dir_index; 6209 next_batch: 6210 curr = list_next_entry(last, log_list); 6211 } 6212 6213 return 0; 6214 } 6215 6216 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans, 6217 struct btrfs_inode *inode, 6218 struct btrfs_path *path, 6219 const struct list_head *delayed_del_list, 6220 struct btrfs_log_ctx *ctx) 6221 { 6222 /* 6223 * We are deleting dir index items from the log tree or adding range 6224 * items to it. 6225 */ 6226 lockdep_assert_held(&inode->log_mutex); 6227 6228 if (list_empty(delayed_del_list)) 6229 return 0; 6230 6231 if (ctx->logged_before) 6232 return log_delayed_deletions_incremental(trans, inode, path, 6233 delayed_del_list, ctx); 6234 6235 return log_delayed_deletions_full(trans, inode, path, delayed_del_list, 6236 ctx); 6237 } 6238 6239 /* 6240 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed 6241 * items instead of the subvolume tree. 6242 */ 6243 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans, 6244 struct btrfs_inode *inode, 6245 const struct list_head *delayed_ins_list, 6246 struct btrfs_log_ctx *ctx) 6247 { 6248 const bool orig_log_new_dentries = ctx->log_new_dentries; 6249 struct btrfs_fs_info *fs_info = trans->fs_info; 6250 struct btrfs_delayed_item *item; 6251 int ret = 0; 6252 6253 /* 6254 * No need for the log mutex, plus to avoid potential deadlocks or 6255 * lockdep annotations due to nesting of delayed inode mutexes and log 6256 * mutexes. 6257 */ 6258 lockdep_assert_not_held(&inode->log_mutex); 6259 6260 ASSERT(!ctx->logging_new_delayed_dentries); 6261 ctx->logging_new_delayed_dentries = true; 6262 6263 list_for_each_entry(item, delayed_ins_list, log_list) { 6264 struct btrfs_dir_item *dir_item; 6265 struct inode *di_inode; 6266 struct btrfs_key key; 6267 int log_mode = LOG_INODE_EXISTS; 6268 6269 dir_item = (struct btrfs_dir_item *)item->data; 6270 btrfs_disk_key_to_cpu(&key, &dir_item->location); 6271 6272 if (key.type == BTRFS_ROOT_ITEM_KEY) 6273 continue; 6274 6275 di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root); 6276 if (IS_ERR(di_inode)) { 6277 ret = PTR_ERR(di_inode); 6278 break; 6279 } 6280 6281 if (!need_log_inode(trans, BTRFS_I(di_inode))) { 6282 btrfs_add_delayed_iput(BTRFS_I(di_inode)); 6283 continue; 6284 } 6285 6286 if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR) 6287 log_mode = LOG_INODE_ALL; 6288 6289 ctx->log_new_dentries = false; 6290 ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx); 6291 6292 if (!ret && ctx->log_new_dentries) 6293 ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx); 6294 6295 btrfs_add_delayed_iput(BTRFS_I(di_inode)); 6296 6297 if (ret) 6298 break; 6299 } 6300 6301 ctx->log_new_dentries = orig_log_new_dentries; 6302 ctx->logging_new_delayed_dentries = false; 6303 6304 return ret; 6305 } 6306 6307 /* log a single inode in the tree log. 6308 * At least one parent directory for this inode must exist in the tree 6309 * or be logged already. 6310 * 6311 * Any items from this inode changed by the current transaction are copied 6312 * to the log tree. An extra reference is taken on any extents in this 6313 * file, allowing us to avoid a whole pile of corner cases around logging 6314 * blocks that have been removed from the tree. 6315 * 6316 * See LOG_INODE_ALL and related defines for a description of what inode_only 6317 * does. 6318 * 6319 * This handles both files and directories. 6320 */ 6321 static int btrfs_log_inode(struct btrfs_trans_handle *trans, 6322 struct btrfs_inode *inode, 6323 int inode_only, 6324 struct btrfs_log_ctx *ctx) 6325 { 6326 struct btrfs_path *path; 6327 struct btrfs_path *dst_path; 6328 struct btrfs_key min_key; 6329 struct btrfs_key max_key; 6330 struct btrfs_root *log = inode->root->log_root; 6331 int ret; 6332 bool fast_search = false; 6333 u64 ino = btrfs_ino(inode); 6334 struct extent_map_tree *em_tree = &inode->extent_tree; 6335 u64 logged_isize = 0; 6336 bool need_log_inode_item = true; 6337 bool xattrs_logged = false; 6338 bool inode_item_dropped = true; 6339 bool full_dir_logging = false; 6340 LIST_HEAD(delayed_ins_list); 6341 LIST_HEAD(delayed_del_list); 6342 6343 path = btrfs_alloc_path(); 6344 if (!path) 6345 return -ENOMEM; 6346 dst_path = btrfs_alloc_path(); 6347 if (!dst_path) { 6348 btrfs_free_path(path); 6349 return -ENOMEM; 6350 } 6351 6352 min_key.objectid = ino; 6353 min_key.type = BTRFS_INODE_ITEM_KEY; 6354 min_key.offset = 0; 6355 6356 max_key.objectid = ino; 6357 6358 6359 /* today the code can only do partial logging of directories */ 6360 if (S_ISDIR(inode->vfs_inode.i_mode) || 6361 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 6362 &inode->runtime_flags) && 6363 inode_only >= LOG_INODE_EXISTS)) 6364 max_key.type = BTRFS_XATTR_ITEM_KEY; 6365 else 6366 max_key.type = (u8)-1; 6367 max_key.offset = (u64)-1; 6368 6369 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL) 6370 full_dir_logging = true; 6371 6372 /* 6373 * If we are logging a directory while we are logging dentries of the 6374 * delayed items of some other inode, then we need to flush the delayed 6375 * items of this directory and not log the delayed items directly. This 6376 * is to prevent more than one level of recursion into btrfs_log_inode() 6377 * by having something like this: 6378 * 6379 * $ mkdir -p a/b/c/d/e/f/g/h/... 6380 * $ xfs_io -c "fsync" a 6381 * 6382 * Where all directories in the path did not exist before and are 6383 * created in the current transaction. 6384 * So in such a case we directly log the delayed items of the main 6385 * directory ("a") without flushing them first, while for each of its 6386 * subdirectories we flush their delayed items before logging them. 6387 * This prevents a potential unbounded recursion like this: 6388 * 6389 * btrfs_log_inode() 6390 * log_new_delayed_dentries() 6391 * btrfs_log_inode() 6392 * log_new_delayed_dentries() 6393 * btrfs_log_inode() 6394 * log_new_delayed_dentries() 6395 * (...) 6396 * 6397 * We have thresholds for the maximum number of delayed items to have in 6398 * memory, and once they are hit, the items are flushed asynchronously. 6399 * However the limit is quite high, so lets prevent deep levels of 6400 * recursion to happen by limiting the maximum depth to be 1. 6401 */ 6402 if (full_dir_logging && ctx->logging_new_delayed_dentries) { 6403 ret = btrfs_commit_inode_delayed_items(trans, inode); 6404 if (ret) 6405 goto out; 6406 } 6407 6408 mutex_lock(&inode->log_mutex); 6409 6410 /* 6411 * For symlinks, we must always log their content, which is stored in an 6412 * inline extent, otherwise we could end up with an empty symlink after 6413 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if 6414 * one attempts to create an empty symlink). 6415 * We don't need to worry about flushing delalloc, because when we create 6416 * the inline extent when the symlink is created (we never have delalloc 6417 * for symlinks). 6418 */ 6419 if (S_ISLNK(inode->vfs_inode.i_mode)) 6420 inode_only = LOG_INODE_ALL; 6421 6422 /* 6423 * Before logging the inode item, cache the value returned by 6424 * inode_logged(), because after that we have the need to figure out if 6425 * the inode was previously logged in this transaction. 6426 */ 6427 ret = inode_logged(trans, inode, path); 6428 if (ret < 0) 6429 goto out_unlock; 6430 ctx->logged_before = (ret == 1); 6431 ret = 0; 6432 6433 /* 6434 * This is for cases where logging a directory could result in losing a 6435 * a file after replaying the log. For example, if we move a file from a 6436 * directory A to a directory B, then fsync directory A, we have no way 6437 * to known the file was moved from A to B, so logging just A would 6438 * result in losing the file after a log replay. 6439 */ 6440 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) { 6441 ret = BTRFS_LOG_FORCE_COMMIT; 6442 goto out_unlock; 6443 } 6444 6445 /* 6446 * a brute force approach to making sure we get the most uptodate 6447 * copies of everything. 6448 */ 6449 if (S_ISDIR(inode->vfs_inode.i_mode)) { 6450 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags); 6451 if (ctx->logged_before) 6452 ret = drop_inode_items(trans, log, path, inode, 6453 BTRFS_XATTR_ITEM_KEY); 6454 } else { 6455 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) { 6456 /* 6457 * Make sure the new inode item we write to the log has 6458 * the same isize as the current one (if it exists). 6459 * This is necessary to prevent data loss after log 6460 * replay, and also to prevent doing a wrong expanding 6461 * truncate - for e.g. create file, write 4K into offset 6462 * 0, fsync, write 4K into offset 4096, add hard link, 6463 * fsync some other file (to sync log), power fail - if 6464 * we use the inode's current i_size, after log replay 6465 * we get a 8Kb file, with the last 4Kb extent as a hole 6466 * (zeroes), as if an expanding truncate happened, 6467 * instead of getting a file of 4Kb only. 6468 */ 6469 ret = logged_inode_size(log, inode, path, &logged_isize); 6470 if (ret) 6471 goto out_unlock; 6472 } 6473 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 6474 &inode->runtime_flags)) { 6475 if (inode_only == LOG_INODE_EXISTS) { 6476 max_key.type = BTRFS_XATTR_ITEM_KEY; 6477 if (ctx->logged_before) 6478 ret = drop_inode_items(trans, log, path, 6479 inode, max_key.type); 6480 } else { 6481 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 6482 &inode->runtime_flags); 6483 clear_bit(BTRFS_INODE_COPY_EVERYTHING, 6484 &inode->runtime_flags); 6485 if (ctx->logged_before) 6486 ret = truncate_inode_items(trans, log, 6487 inode, 0, 0); 6488 } 6489 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING, 6490 &inode->runtime_flags) || 6491 inode_only == LOG_INODE_EXISTS) { 6492 if (inode_only == LOG_INODE_ALL) 6493 fast_search = true; 6494 max_key.type = BTRFS_XATTR_ITEM_KEY; 6495 if (ctx->logged_before) 6496 ret = drop_inode_items(trans, log, path, inode, 6497 max_key.type); 6498 } else { 6499 if (inode_only == LOG_INODE_ALL) 6500 fast_search = true; 6501 inode_item_dropped = false; 6502 goto log_extents; 6503 } 6504 6505 } 6506 if (ret) 6507 goto out_unlock; 6508 6509 /* 6510 * If we are logging a directory in full mode, collect the delayed items 6511 * before iterating the subvolume tree, so that we don't miss any new 6512 * dir index items in case they get flushed while or right after we are 6513 * iterating the subvolume tree. 6514 */ 6515 if (full_dir_logging && !ctx->logging_new_delayed_dentries) 6516 btrfs_log_get_delayed_items(inode, &delayed_ins_list, 6517 &delayed_del_list); 6518 6519 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key, 6520 path, dst_path, logged_isize, 6521 inode_only, ctx, 6522 &need_log_inode_item); 6523 if (ret) 6524 goto out_unlock; 6525 6526 btrfs_release_path(path); 6527 btrfs_release_path(dst_path); 6528 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path); 6529 if (ret) 6530 goto out_unlock; 6531 xattrs_logged = true; 6532 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) { 6533 btrfs_release_path(path); 6534 btrfs_release_path(dst_path); 6535 ret = btrfs_log_holes(trans, inode, path); 6536 if (ret) 6537 goto out_unlock; 6538 } 6539 log_extents: 6540 btrfs_release_path(path); 6541 btrfs_release_path(dst_path); 6542 if (need_log_inode_item) { 6543 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped); 6544 if (ret) 6545 goto out_unlock; 6546 /* 6547 * If we are doing a fast fsync and the inode was logged before 6548 * in this transaction, we don't need to log the xattrs because 6549 * they were logged before. If xattrs were added, changed or 6550 * deleted since the last time we logged the inode, then we have 6551 * already logged them because the inode had the runtime flag 6552 * BTRFS_INODE_COPY_EVERYTHING set. 6553 */ 6554 if (!xattrs_logged && inode->logged_trans < trans->transid) { 6555 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path); 6556 if (ret) 6557 goto out_unlock; 6558 btrfs_release_path(path); 6559 } 6560 } 6561 if (fast_search) { 6562 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx); 6563 if (ret) 6564 goto out_unlock; 6565 } else if (inode_only == LOG_INODE_ALL) { 6566 struct extent_map *em, *n; 6567 6568 write_lock(&em_tree->lock); 6569 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list) 6570 list_del_init(&em->list); 6571 write_unlock(&em_tree->lock); 6572 } 6573 6574 if (full_dir_logging) { 6575 ret = log_directory_changes(trans, inode, path, dst_path, ctx); 6576 if (ret) 6577 goto out_unlock; 6578 ret = log_delayed_insertion_items(trans, inode, path, 6579 &delayed_ins_list, ctx); 6580 if (ret) 6581 goto out_unlock; 6582 ret = log_delayed_deletion_items(trans, inode, path, 6583 &delayed_del_list, ctx); 6584 if (ret) 6585 goto out_unlock; 6586 } 6587 6588 spin_lock(&inode->lock); 6589 inode->logged_trans = trans->transid; 6590 /* 6591 * Don't update last_log_commit if we logged that an inode exists. 6592 * We do this for three reasons: 6593 * 6594 * 1) We might have had buffered writes to this inode that were 6595 * flushed and had their ordered extents completed in this 6596 * transaction, but we did not previously log the inode with 6597 * LOG_INODE_ALL. Later the inode was evicted and after that 6598 * it was loaded again and this LOG_INODE_EXISTS log operation 6599 * happened. We must make sure that if an explicit fsync against 6600 * the inode is performed later, it logs the new extents, an 6601 * updated inode item, etc, and syncs the log. The same logic 6602 * applies to direct IO writes instead of buffered writes. 6603 * 6604 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item 6605 * is logged with an i_size of 0 or whatever value was logged 6606 * before. If later the i_size of the inode is increased by a 6607 * truncate operation, the log is synced through an fsync of 6608 * some other inode and then finally an explicit fsync against 6609 * this inode is made, we must make sure this fsync logs the 6610 * inode with the new i_size, the hole between old i_size and 6611 * the new i_size, and syncs the log. 6612 * 6613 * 3) If we are logging that an ancestor inode exists as part of 6614 * logging a new name from a link or rename operation, don't update 6615 * its last_log_commit - otherwise if an explicit fsync is made 6616 * against an ancestor, the fsync considers the inode in the log 6617 * and doesn't sync the log, resulting in the ancestor missing after 6618 * a power failure unless the log was synced as part of an fsync 6619 * against any other unrelated inode. 6620 */ 6621 if (inode_only != LOG_INODE_EXISTS) 6622 inode->last_log_commit = inode->last_sub_trans; 6623 spin_unlock(&inode->lock); 6624 6625 /* 6626 * Reset the last_reflink_trans so that the next fsync does not need to 6627 * go through the slower path when logging extents and their checksums. 6628 */ 6629 if (inode_only == LOG_INODE_ALL) 6630 inode->last_reflink_trans = 0; 6631 6632 out_unlock: 6633 mutex_unlock(&inode->log_mutex); 6634 out: 6635 btrfs_free_path(path); 6636 btrfs_free_path(dst_path); 6637 6638 if (ret) 6639 free_conflicting_inodes(ctx); 6640 else 6641 ret = log_conflicting_inodes(trans, inode->root, ctx); 6642 6643 if (full_dir_logging && !ctx->logging_new_delayed_dentries) { 6644 if (!ret) 6645 ret = log_new_delayed_dentries(trans, inode, 6646 &delayed_ins_list, ctx); 6647 6648 btrfs_log_put_delayed_items(inode, &delayed_ins_list, 6649 &delayed_del_list); 6650 } 6651 6652 return ret; 6653 } 6654 6655 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans, 6656 struct btrfs_inode *inode, 6657 struct btrfs_log_ctx *ctx) 6658 { 6659 struct btrfs_fs_info *fs_info = trans->fs_info; 6660 int ret; 6661 struct btrfs_path *path; 6662 struct btrfs_key key; 6663 struct btrfs_root *root = inode->root; 6664 const u64 ino = btrfs_ino(inode); 6665 6666 path = btrfs_alloc_path(); 6667 if (!path) 6668 return -ENOMEM; 6669 path->skip_locking = 1; 6670 path->search_commit_root = 1; 6671 6672 key.objectid = ino; 6673 key.type = BTRFS_INODE_REF_KEY; 6674 key.offset = 0; 6675 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6676 if (ret < 0) 6677 goto out; 6678 6679 while (true) { 6680 struct extent_buffer *leaf = path->nodes[0]; 6681 int slot = path->slots[0]; 6682 u32 cur_offset = 0; 6683 u32 item_size; 6684 unsigned long ptr; 6685 6686 if (slot >= btrfs_header_nritems(leaf)) { 6687 ret = btrfs_next_leaf(root, path); 6688 if (ret < 0) 6689 goto out; 6690 else if (ret > 0) 6691 break; 6692 continue; 6693 } 6694 6695 btrfs_item_key_to_cpu(leaf, &key, slot); 6696 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */ 6697 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY) 6698 break; 6699 6700 item_size = btrfs_item_size(leaf, slot); 6701 ptr = btrfs_item_ptr_offset(leaf, slot); 6702 while (cur_offset < item_size) { 6703 struct btrfs_key inode_key; 6704 struct inode *dir_inode; 6705 6706 inode_key.type = BTRFS_INODE_ITEM_KEY; 6707 inode_key.offset = 0; 6708 6709 if (key.type == BTRFS_INODE_EXTREF_KEY) { 6710 struct btrfs_inode_extref *extref; 6711 6712 extref = (struct btrfs_inode_extref *) 6713 (ptr + cur_offset); 6714 inode_key.objectid = btrfs_inode_extref_parent( 6715 leaf, extref); 6716 cur_offset += sizeof(*extref); 6717 cur_offset += btrfs_inode_extref_name_len(leaf, 6718 extref); 6719 } else { 6720 inode_key.objectid = key.offset; 6721 cur_offset = item_size; 6722 } 6723 6724 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid, 6725 root); 6726 /* 6727 * If the parent inode was deleted, return an error to 6728 * fallback to a transaction commit. This is to prevent 6729 * getting an inode that was moved from one parent A to 6730 * a parent B, got its former parent A deleted and then 6731 * it got fsync'ed, from existing at both parents after 6732 * a log replay (and the old parent still existing). 6733 * Example: 6734 * 6735 * mkdir /mnt/A 6736 * mkdir /mnt/B 6737 * touch /mnt/B/bar 6738 * sync 6739 * mv /mnt/B/bar /mnt/A/bar 6740 * mv -T /mnt/A /mnt/B 6741 * fsync /mnt/B/bar 6742 * <power fail> 6743 * 6744 * If we ignore the old parent B which got deleted, 6745 * after a log replay we would have file bar linked 6746 * at both parents and the old parent B would still 6747 * exist. 6748 */ 6749 if (IS_ERR(dir_inode)) { 6750 ret = PTR_ERR(dir_inode); 6751 goto out; 6752 } 6753 6754 if (!need_log_inode(trans, BTRFS_I(dir_inode))) { 6755 btrfs_add_delayed_iput(BTRFS_I(dir_inode)); 6756 continue; 6757 } 6758 6759 ctx->log_new_dentries = false; 6760 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode), 6761 LOG_INODE_ALL, ctx); 6762 if (!ret && ctx->log_new_dentries) 6763 ret = log_new_dir_dentries(trans, 6764 BTRFS_I(dir_inode), ctx); 6765 btrfs_add_delayed_iput(BTRFS_I(dir_inode)); 6766 if (ret) 6767 goto out; 6768 } 6769 path->slots[0]++; 6770 } 6771 ret = 0; 6772 out: 6773 btrfs_free_path(path); 6774 return ret; 6775 } 6776 6777 static int log_new_ancestors(struct btrfs_trans_handle *trans, 6778 struct btrfs_root *root, 6779 struct btrfs_path *path, 6780 struct btrfs_log_ctx *ctx) 6781 { 6782 struct btrfs_key found_key; 6783 6784 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 6785 6786 while (true) { 6787 struct btrfs_fs_info *fs_info = root->fs_info; 6788 struct extent_buffer *leaf; 6789 int slot; 6790 struct btrfs_key search_key; 6791 struct inode *inode; 6792 u64 ino; 6793 int ret = 0; 6794 6795 btrfs_release_path(path); 6796 6797 ino = found_key.offset; 6798 6799 search_key.objectid = found_key.offset; 6800 search_key.type = BTRFS_INODE_ITEM_KEY; 6801 search_key.offset = 0; 6802 inode = btrfs_iget(fs_info->sb, ino, root); 6803 if (IS_ERR(inode)) 6804 return PTR_ERR(inode); 6805 6806 if (BTRFS_I(inode)->generation >= trans->transid && 6807 need_log_inode(trans, BTRFS_I(inode))) 6808 ret = btrfs_log_inode(trans, BTRFS_I(inode), 6809 LOG_INODE_EXISTS, ctx); 6810 btrfs_add_delayed_iput(BTRFS_I(inode)); 6811 if (ret) 6812 return ret; 6813 6814 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID) 6815 break; 6816 6817 search_key.type = BTRFS_INODE_REF_KEY; 6818 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 6819 if (ret < 0) 6820 return ret; 6821 6822 leaf = path->nodes[0]; 6823 slot = path->slots[0]; 6824 if (slot >= btrfs_header_nritems(leaf)) { 6825 ret = btrfs_next_leaf(root, path); 6826 if (ret < 0) 6827 return ret; 6828 else if (ret > 0) 6829 return -ENOENT; 6830 leaf = path->nodes[0]; 6831 slot = path->slots[0]; 6832 } 6833 6834 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6835 if (found_key.objectid != search_key.objectid || 6836 found_key.type != BTRFS_INODE_REF_KEY) 6837 return -ENOENT; 6838 } 6839 return 0; 6840 } 6841 6842 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans, 6843 struct btrfs_inode *inode, 6844 struct dentry *parent, 6845 struct btrfs_log_ctx *ctx) 6846 { 6847 struct btrfs_root *root = inode->root; 6848 struct dentry *old_parent = NULL; 6849 struct super_block *sb = inode->vfs_inode.i_sb; 6850 int ret = 0; 6851 6852 while (true) { 6853 if (!parent || d_really_is_negative(parent) || 6854 sb != parent->d_sb) 6855 break; 6856 6857 inode = BTRFS_I(d_inode(parent)); 6858 if (root != inode->root) 6859 break; 6860 6861 if (inode->generation >= trans->transid && 6862 need_log_inode(trans, inode)) { 6863 ret = btrfs_log_inode(trans, inode, 6864 LOG_INODE_EXISTS, ctx); 6865 if (ret) 6866 break; 6867 } 6868 if (IS_ROOT(parent)) 6869 break; 6870 6871 parent = dget_parent(parent); 6872 dput(old_parent); 6873 old_parent = parent; 6874 } 6875 dput(old_parent); 6876 6877 return ret; 6878 } 6879 6880 static int log_all_new_ancestors(struct btrfs_trans_handle *trans, 6881 struct btrfs_inode *inode, 6882 struct dentry *parent, 6883 struct btrfs_log_ctx *ctx) 6884 { 6885 struct btrfs_root *root = inode->root; 6886 const u64 ino = btrfs_ino(inode); 6887 struct btrfs_path *path; 6888 struct btrfs_key search_key; 6889 int ret; 6890 6891 /* 6892 * For a single hard link case, go through a fast path that does not 6893 * need to iterate the fs/subvolume tree. 6894 */ 6895 if (inode->vfs_inode.i_nlink < 2) 6896 return log_new_ancestors_fast(trans, inode, parent, ctx); 6897 6898 path = btrfs_alloc_path(); 6899 if (!path) 6900 return -ENOMEM; 6901 6902 search_key.objectid = ino; 6903 search_key.type = BTRFS_INODE_REF_KEY; 6904 search_key.offset = 0; 6905 again: 6906 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 6907 if (ret < 0) 6908 goto out; 6909 if (ret == 0) 6910 path->slots[0]++; 6911 6912 while (true) { 6913 struct extent_buffer *leaf = path->nodes[0]; 6914 int slot = path->slots[0]; 6915 struct btrfs_key found_key; 6916 6917 if (slot >= btrfs_header_nritems(leaf)) { 6918 ret = btrfs_next_leaf(root, path); 6919 if (ret < 0) 6920 goto out; 6921 else if (ret > 0) 6922 break; 6923 continue; 6924 } 6925 6926 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6927 if (found_key.objectid != ino || 6928 found_key.type > BTRFS_INODE_EXTREF_KEY) 6929 break; 6930 6931 /* 6932 * Don't deal with extended references because they are rare 6933 * cases and too complex to deal with (we would need to keep 6934 * track of which subitem we are processing for each item in 6935 * this loop, etc). So just return some error to fallback to 6936 * a transaction commit. 6937 */ 6938 if (found_key.type == BTRFS_INODE_EXTREF_KEY) { 6939 ret = -EMLINK; 6940 goto out; 6941 } 6942 6943 /* 6944 * Logging ancestors needs to do more searches on the fs/subvol 6945 * tree, so it releases the path as needed to avoid deadlocks. 6946 * Keep track of the last inode ref key and resume from that key 6947 * after logging all new ancestors for the current hard link. 6948 */ 6949 memcpy(&search_key, &found_key, sizeof(search_key)); 6950 6951 ret = log_new_ancestors(trans, root, path, ctx); 6952 if (ret) 6953 goto out; 6954 btrfs_release_path(path); 6955 goto again; 6956 } 6957 ret = 0; 6958 out: 6959 btrfs_free_path(path); 6960 return ret; 6961 } 6962 6963 /* 6964 * helper function around btrfs_log_inode to make sure newly created 6965 * parent directories also end up in the log. A minimal inode and backref 6966 * only logging is done of any parent directories that are older than 6967 * the last committed transaction 6968 */ 6969 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans, 6970 struct btrfs_inode *inode, 6971 struct dentry *parent, 6972 int inode_only, 6973 struct btrfs_log_ctx *ctx) 6974 { 6975 struct btrfs_root *root = inode->root; 6976 struct btrfs_fs_info *fs_info = root->fs_info; 6977 int ret = 0; 6978 bool log_dentries = false; 6979 6980 if (btrfs_test_opt(fs_info, NOTREELOG)) { 6981 ret = BTRFS_LOG_FORCE_COMMIT; 6982 goto end_no_trans; 6983 } 6984 6985 if (btrfs_root_refs(&root->root_item) == 0) { 6986 ret = BTRFS_LOG_FORCE_COMMIT; 6987 goto end_no_trans; 6988 } 6989 6990 /* 6991 * Skip already logged inodes or inodes corresponding to tmpfiles 6992 * (since logging them is pointless, a link count of 0 means they 6993 * will never be accessible). 6994 */ 6995 if ((btrfs_inode_in_log(inode, trans->transid) && 6996 list_empty(&ctx->ordered_extents)) || 6997 inode->vfs_inode.i_nlink == 0) { 6998 ret = BTRFS_NO_LOG_SYNC; 6999 goto end_no_trans; 7000 } 7001 7002 ret = start_log_trans(trans, root, ctx); 7003 if (ret) 7004 goto end_no_trans; 7005 7006 ret = btrfs_log_inode(trans, inode, inode_only, ctx); 7007 if (ret) 7008 goto end_trans; 7009 7010 /* 7011 * for regular files, if its inode is already on disk, we don't 7012 * have to worry about the parents at all. This is because 7013 * we can use the last_unlink_trans field to record renames 7014 * and other fun in this file. 7015 */ 7016 if (S_ISREG(inode->vfs_inode.i_mode) && 7017 inode->generation < trans->transid && 7018 inode->last_unlink_trans < trans->transid) { 7019 ret = 0; 7020 goto end_trans; 7021 } 7022 7023 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries) 7024 log_dentries = true; 7025 7026 /* 7027 * On unlink we must make sure all our current and old parent directory 7028 * inodes are fully logged. This is to prevent leaving dangling 7029 * directory index entries in directories that were our parents but are 7030 * not anymore. Not doing this results in old parent directory being 7031 * impossible to delete after log replay (rmdir will always fail with 7032 * error -ENOTEMPTY). 7033 * 7034 * Example 1: 7035 * 7036 * mkdir testdir 7037 * touch testdir/foo 7038 * ln testdir/foo testdir/bar 7039 * sync 7040 * unlink testdir/bar 7041 * xfs_io -c fsync testdir/foo 7042 * <power failure> 7043 * mount fs, triggers log replay 7044 * 7045 * If we don't log the parent directory (testdir), after log replay the 7046 * directory still has an entry pointing to the file inode using the bar 7047 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and 7048 * the file inode has a link count of 1. 7049 * 7050 * Example 2: 7051 * 7052 * mkdir testdir 7053 * touch foo 7054 * ln foo testdir/foo2 7055 * ln foo testdir/foo3 7056 * sync 7057 * unlink testdir/foo3 7058 * xfs_io -c fsync foo 7059 * <power failure> 7060 * mount fs, triggers log replay 7061 * 7062 * Similar as the first example, after log replay the parent directory 7063 * testdir still has an entry pointing to the inode file with name foo3 7064 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item 7065 * and has a link count of 2. 7066 */ 7067 if (inode->last_unlink_trans >= trans->transid) { 7068 ret = btrfs_log_all_parents(trans, inode, ctx); 7069 if (ret) 7070 goto end_trans; 7071 } 7072 7073 ret = log_all_new_ancestors(trans, inode, parent, ctx); 7074 if (ret) 7075 goto end_trans; 7076 7077 if (log_dentries) 7078 ret = log_new_dir_dentries(trans, inode, ctx); 7079 else 7080 ret = 0; 7081 end_trans: 7082 if (ret < 0) { 7083 btrfs_set_log_full_commit(trans); 7084 ret = BTRFS_LOG_FORCE_COMMIT; 7085 } 7086 7087 if (ret) 7088 btrfs_remove_log_ctx(root, ctx); 7089 btrfs_end_log_trans(root); 7090 end_no_trans: 7091 return ret; 7092 } 7093 7094 /* 7095 * it is not safe to log dentry if the chunk root has added new 7096 * chunks. This returns 0 if the dentry was logged, and 1 otherwise. 7097 * If this returns 1, you must commit the transaction to safely get your 7098 * data on disk. 7099 */ 7100 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans, 7101 struct dentry *dentry, 7102 struct btrfs_log_ctx *ctx) 7103 { 7104 struct dentry *parent = dget_parent(dentry); 7105 int ret; 7106 7107 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent, 7108 LOG_INODE_ALL, ctx); 7109 dput(parent); 7110 7111 return ret; 7112 } 7113 7114 /* 7115 * should be called during mount to recover any replay any log trees 7116 * from the FS 7117 */ 7118 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree) 7119 { 7120 int ret; 7121 struct btrfs_path *path; 7122 struct btrfs_trans_handle *trans; 7123 struct btrfs_key key; 7124 struct btrfs_key found_key; 7125 struct btrfs_root *log; 7126 struct btrfs_fs_info *fs_info = log_root_tree->fs_info; 7127 struct walk_control wc = { 7128 .process_func = process_one_buffer, 7129 .stage = LOG_WALK_PIN_ONLY, 7130 }; 7131 7132 path = btrfs_alloc_path(); 7133 if (!path) 7134 return -ENOMEM; 7135 7136 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 7137 7138 trans = btrfs_start_transaction(fs_info->tree_root, 0); 7139 if (IS_ERR(trans)) { 7140 ret = PTR_ERR(trans); 7141 goto error; 7142 } 7143 7144 wc.trans = trans; 7145 wc.pin = 1; 7146 7147 ret = walk_log_tree(trans, log_root_tree, &wc); 7148 if (ret) { 7149 btrfs_abort_transaction(trans, ret); 7150 goto error; 7151 } 7152 7153 again: 7154 key.objectid = BTRFS_TREE_LOG_OBJECTID; 7155 key.offset = (u64)-1; 7156 key.type = BTRFS_ROOT_ITEM_KEY; 7157 7158 while (1) { 7159 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0); 7160 7161 if (ret < 0) { 7162 btrfs_abort_transaction(trans, ret); 7163 goto error; 7164 } 7165 if (ret > 0) { 7166 if (path->slots[0] == 0) 7167 break; 7168 path->slots[0]--; 7169 } 7170 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 7171 path->slots[0]); 7172 btrfs_release_path(path); 7173 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID) 7174 break; 7175 7176 log = btrfs_read_tree_root(log_root_tree, &found_key); 7177 if (IS_ERR(log)) { 7178 ret = PTR_ERR(log); 7179 btrfs_abort_transaction(trans, ret); 7180 goto error; 7181 } 7182 7183 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset, 7184 true); 7185 if (IS_ERR(wc.replay_dest)) { 7186 ret = PTR_ERR(wc.replay_dest); 7187 7188 /* 7189 * We didn't find the subvol, likely because it was 7190 * deleted. This is ok, simply skip this log and go to 7191 * the next one. 7192 * 7193 * We need to exclude the root because we can't have 7194 * other log replays overwriting this log as we'll read 7195 * it back in a few more times. This will keep our 7196 * block from being modified, and we'll just bail for 7197 * each subsequent pass. 7198 */ 7199 if (ret == -ENOENT) 7200 ret = btrfs_pin_extent_for_log_replay(trans, log->node); 7201 btrfs_put_root(log); 7202 7203 if (!ret) 7204 goto next; 7205 btrfs_abort_transaction(trans, ret); 7206 goto error; 7207 } 7208 7209 wc.replay_dest->log_root = log; 7210 ret = btrfs_record_root_in_trans(trans, wc.replay_dest); 7211 if (ret) 7212 /* The loop needs to continue due to the root refs */ 7213 btrfs_abort_transaction(trans, ret); 7214 else 7215 ret = walk_log_tree(trans, log, &wc); 7216 7217 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 7218 ret = fixup_inode_link_counts(trans, wc.replay_dest, 7219 path); 7220 if (ret) 7221 btrfs_abort_transaction(trans, ret); 7222 } 7223 7224 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) { 7225 struct btrfs_root *root = wc.replay_dest; 7226 7227 btrfs_release_path(path); 7228 7229 /* 7230 * We have just replayed everything, and the highest 7231 * objectid of fs roots probably has changed in case 7232 * some inode_item's got replayed. 7233 * 7234 * root->objectid_mutex is not acquired as log replay 7235 * could only happen during mount. 7236 */ 7237 ret = btrfs_init_root_free_objectid(root); 7238 if (ret) 7239 btrfs_abort_transaction(trans, ret); 7240 } 7241 7242 wc.replay_dest->log_root = NULL; 7243 btrfs_put_root(wc.replay_dest); 7244 btrfs_put_root(log); 7245 7246 if (ret) 7247 goto error; 7248 next: 7249 if (found_key.offset == 0) 7250 break; 7251 key.offset = found_key.offset - 1; 7252 } 7253 btrfs_release_path(path); 7254 7255 /* step one is to pin it all, step two is to replay just inodes */ 7256 if (wc.pin) { 7257 wc.pin = 0; 7258 wc.process_func = replay_one_buffer; 7259 wc.stage = LOG_WALK_REPLAY_INODES; 7260 goto again; 7261 } 7262 /* step three is to replay everything */ 7263 if (wc.stage < LOG_WALK_REPLAY_ALL) { 7264 wc.stage++; 7265 goto again; 7266 } 7267 7268 btrfs_free_path(path); 7269 7270 /* step 4: commit the transaction, which also unpins the blocks */ 7271 ret = btrfs_commit_transaction(trans); 7272 if (ret) 7273 return ret; 7274 7275 log_root_tree->log_root = NULL; 7276 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 7277 btrfs_put_root(log_root_tree); 7278 7279 return 0; 7280 error: 7281 if (wc.trans) 7282 btrfs_end_transaction(wc.trans); 7283 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags); 7284 btrfs_free_path(path); 7285 return ret; 7286 } 7287 7288 /* 7289 * there are some corner cases where we want to force a full 7290 * commit instead of allowing a directory to be logged. 7291 * 7292 * They revolve around files there were unlinked from the directory, and 7293 * this function updates the parent directory so that a full commit is 7294 * properly done if it is fsync'd later after the unlinks are done. 7295 * 7296 * Must be called before the unlink operations (updates to the subvolume tree, 7297 * inodes, etc) are done. 7298 */ 7299 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans, 7300 struct btrfs_inode *dir, struct btrfs_inode *inode, 7301 bool for_rename) 7302 { 7303 /* 7304 * when we're logging a file, if it hasn't been renamed 7305 * or unlinked, and its inode is fully committed on disk, 7306 * we don't have to worry about walking up the directory chain 7307 * to log its parents. 7308 * 7309 * So, we use the last_unlink_trans field to put this transid 7310 * into the file. When the file is logged we check it and 7311 * don't log the parents if the file is fully on disk. 7312 */ 7313 mutex_lock(&inode->log_mutex); 7314 inode->last_unlink_trans = trans->transid; 7315 mutex_unlock(&inode->log_mutex); 7316 7317 if (!for_rename) 7318 return; 7319 7320 /* 7321 * If this directory was already logged, any new names will be logged 7322 * with btrfs_log_new_name() and old names will be deleted from the log 7323 * tree with btrfs_del_dir_entries_in_log() or with 7324 * btrfs_del_inode_ref_in_log(). 7325 */ 7326 if (inode_logged(trans, dir, NULL) == 1) 7327 return; 7328 7329 /* 7330 * If the inode we're about to unlink was logged before, the log will be 7331 * properly updated with the new name with btrfs_log_new_name() and the 7332 * old name removed with btrfs_del_dir_entries_in_log() or with 7333 * btrfs_del_inode_ref_in_log(). 7334 */ 7335 if (inode_logged(trans, inode, NULL) == 1) 7336 return; 7337 7338 /* 7339 * when renaming files across directories, if the directory 7340 * there we're unlinking from gets fsync'd later on, there's 7341 * no way to find the destination directory later and fsync it 7342 * properly. So, we have to be conservative and force commits 7343 * so the new name gets discovered. 7344 */ 7345 mutex_lock(&dir->log_mutex); 7346 dir->last_unlink_trans = trans->transid; 7347 mutex_unlock(&dir->log_mutex); 7348 } 7349 7350 /* 7351 * Make sure that if someone attempts to fsync the parent directory of a deleted 7352 * snapshot, it ends up triggering a transaction commit. This is to guarantee 7353 * that after replaying the log tree of the parent directory's root we will not 7354 * see the snapshot anymore and at log replay time we will not see any log tree 7355 * corresponding to the deleted snapshot's root, which could lead to replaying 7356 * it after replaying the log tree of the parent directory (which would replay 7357 * the snapshot delete operation). 7358 * 7359 * Must be called before the actual snapshot destroy operation (updates to the 7360 * parent root and tree of tree roots trees, etc) are done. 7361 */ 7362 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans, 7363 struct btrfs_inode *dir) 7364 { 7365 mutex_lock(&dir->log_mutex); 7366 dir->last_unlink_trans = trans->transid; 7367 mutex_unlock(&dir->log_mutex); 7368 } 7369 7370 /* 7371 * Update the log after adding a new name for an inode. 7372 * 7373 * @trans: Transaction handle. 7374 * @old_dentry: The dentry associated with the old name and the old 7375 * parent directory. 7376 * @old_dir: The inode of the previous parent directory for the case 7377 * of a rename. For a link operation, it must be NULL. 7378 * @old_dir_index: The index number associated with the old name, meaningful 7379 * only for rename operations (when @old_dir is not NULL). 7380 * Ignored for link operations. 7381 * @parent: The dentry associated with the directory under which the 7382 * new name is located. 7383 * 7384 * Call this after adding a new name for an inode, as a result of a link or 7385 * rename operation, and it will properly update the log to reflect the new name. 7386 */ 7387 void btrfs_log_new_name(struct btrfs_trans_handle *trans, 7388 struct dentry *old_dentry, struct btrfs_inode *old_dir, 7389 u64 old_dir_index, struct dentry *parent) 7390 { 7391 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry)); 7392 struct btrfs_root *root = inode->root; 7393 struct btrfs_log_ctx ctx; 7394 bool log_pinned = false; 7395 int ret; 7396 7397 /* 7398 * this will force the logging code to walk the dentry chain 7399 * up for the file 7400 */ 7401 if (!S_ISDIR(inode->vfs_inode.i_mode)) 7402 inode->last_unlink_trans = trans->transid; 7403 7404 /* 7405 * if this inode hasn't been logged and directory we're renaming it 7406 * from hasn't been logged, we don't need to log it 7407 */ 7408 ret = inode_logged(trans, inode, NULL); 7409 if (ret < 0) { 7410 goto out; 7411 } else if (ret == 0) { 7412 if (!old_dir) 7413 return; 7414 /* 7415 * If the inode was not logged and we are doing a rename (old_dir is not 7416 * NULL), check if old_dir was logged - if it was not we can return and 7417 * do nothing. 7418 */ 7419 ret = inode_logged(trans, old_dir, NULL); 7420 if (ret < 0) 7421 goto out; 7422 else if (ret == 0) 7423 return; 7424 } 7425 ret = 0; 7426 7427 /* 7428 * If we are doing a rename (old_dir is not NULL) from a directory that 7429 * was previously logged, make sure that on log replay we get the old 7430 * dir entry deleted. This is needed because we will also log the new 7431 * name of the renamed inode, so we need to make sure that after log 7432 * replay we don't end up with both the new and old dir entries existing. 7433 */ 7434 if (old_dir && old_dir->logged_trans == trans->transid) { 7435 struct btrfs_root *log = old_dir->root->log_root; 7436 struct btrfs_path *path; 7437 struct fscrypt_name fname; 7438 7439 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX); 7440 7441 ret = fscrypt_setup_filename(&old_dir->vfs_inode, 7442 &old_dentry->d_name, 0, &fname); 7443 if (ret) 7444 goto out; 7445 /* 7446 * We have two inodes to update in the log, the old directory and 7447 * the inode that got renamed, so we must pin the log to prevent 7448 * anyone from syncing the log until we have updated both inodes 7449 * in the log. 7450 */ 7451 ret = join_running_log_trans(root); 7452 /* 7453 * At least one of the inodes was logged before, so this should 7454 * not fail, but if it does, it's not serious, just bail out and 7455 * mark the log for a full commit. 7456 */ 7457 if (WARN_ON_ONCE(ret < 0)) { 7458 fscrypt_free_filename(&fname); 7459 goto out; 7460 } 7461 7462 log_pinned = true; 7463 7464 path = btrfs_alloc_path(); 7465 if (!path) { 7466 ret = -ENOMEM; 7467 fscrypt_free_filename(&fname); 7468 goto out; 7469 } 7470 7471 /* 7472 * Other concurrent task might be logging the old directory, 7473 * as it can be triggered when logging other inode that had or 7474 * still has a dentry in the old directory. We lock the old 7475 * directory's log_mutex to ensure the deletion of the old 7476 * name is persisted, because during directory logging we 7477 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of 7478 * the old name's dir index item is in the delayed items, so 7479 * it could be missed by an in progress directory logging. 7480 */ 7481 mutex_lock(&old_dir->log_mutex); 7482 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir), 7483 &fname.disk_name, old_dir_index); 7484 if (ret > 0) { 7485 /* 7486 * The dentry does not exist in the log, so record its 7487 * deletion. 7488 */ 7489 btrfs_release_path(path); 7490 ret = insert_dir_log_key(trans, log, path, 7491 btrfs_ino(old_dir), 7492 old_dir_index, old_dir_index); 7493 } 7494 mutex_unlock(&old_dir->log_mutex); 7495 7496 btrfs_free_path(path); 7497 fscrypt_free_filename(&fname); 7498 if (ret < 0) 7499 goto out; 7500 } 7501 7502 btrfs_init_log_ctx(&ctx, &inode->vfs_inode); 7503 ctx.logging_new_name = true; 7504 /* 7505 * We don't care about the return value. If we fail to log the new name 7506 * then we know the next attempt to sync the log will fallback to a full 7507 * transaction commit (due to a call to btrfs_set_log_full_commit()), so 7508 * we don't need to worry about getting a log committed that has an 7509 * inconsistent state after a rename operation. 7510 */ 7511 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx); 7512 ASSERT(list_empty(&ctx.conflict_inodes)); 7513 out: 7514 /* 7515 * If an error happened mark the log for a full commit because it's not 7516 * consistent and up to date or we couldn't find out if one of the 7517 * inodes was logged before in this transaction. Do it before unpinning 7518 * the log, to avoid any races with someone else trying to commit it. 7519 */ 7520 if (ret < 0) 7521 btrfs_set_log_full_commit(trans); 7522 if (log_pinned) 7523 btrfs_end_log_trans(root); 7524 } 7525 7526