xref: /linux/fs/btrfs/tree-log.c (revision f49f4ab95c301dbccad0efe85296d908b8ae7ad4)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/list_sort.h>
22 #include "ctree.h"
23 #include "transaction.h"
24 #include "disk-io.h"
25 #include "locking.h"
26 #include "print-tree.h"
27 #include "backref.h"
28 #include "compat.h"
29 #include "tree-log.h"
30 #include "hash.h"
31 
32 /* magic values for the inode_only field in btrfs_log_inode:
33  *
34  * LOG_INODE_ALL means to log everything
35  * LOG_INODE_EXISTS means to log just enough to recreate the inode
36  * during log replay
37  */
38 #define LOG_INODE_ALL 0
39 #define LOG_INODE_EXISTS 1
40 
41 /*
42  * directory trouble cases
43  *
44  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
45  * log, we must force a full commit before doing an fsync of the directory
46  * where the unlink was done.
47  * ---> record transid of last unlink/rename per directory
48  *
49  * mkdir foo/some_dir
50  * normal commit
51  * rename foo/some_dir foo2/some_dir
52  * mkdir foo/some_dir
53  * fsync foo/some_dir/some_file
54  *
55  * The fsync above will unlink the original some_dir without recording
56  * it in its new location (foo2).  After a crash, some_dir will be gone
57  * unless the fsync of some_file forces a full commit
58  *
59  * 2) we must log any new names for any file or dir that is in the fsync
60  * log. ---> check inode while renaming/linking.
61  *
62  * 2a) we must log any new names for any file or dir during rename
63  * when the directory they are being removed from was logged.
64  * ---> check inode and old parent dir during rename
65  *
66  *  2a is actually the more important variant.  With the extra logging
67  *  a crash might unlink the old name without recreating the new one
68  *
69  * 3) after a crash, we must go through any directories with a link count
70  * of zero and redo the rm -rf
71  *
72  * mkdir f1/foo
73  * normal commit
74  * rm -rf f1/foo
75  * fsync(f1)
76  *
77  * The directory f1 was fully removed from the FS, but fsync was never
78  * called on f1, only its parent dir.  After a crash the rm -rf must
79  * be replayed.  This must be able to recurse down the entire
80  * directory tree.  The inode link count fixup code takes care of the
81  * ugly details.
82  */
83 
84 /*
85  * stages for the tree walking.  The first
86  * stage (0) is to only pin down the blocks we find
87  * the second stage (1) is to make sure that all the inodes
88  * we find in the log are created in the subvolume.
89  *
90  * The last stage is to deal with directories and links and extents
91  * and all the other fun semantics
92  */
93 #define LOG_WALK_PIN_ONLY 0
94 #define LOG_WALK_REPLAY_INODES 1
95 #define LOG_WALK_REPLAY_ALL 2
96 
97 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
98 			     struct btrfs_root *root, struct inode *inode,
99 			     int inode_only);
100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 			     struct btrfs_root *root,
102 			     struct btrfs_path *path, u64 objectid);
103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 				       struct btrfs_root *root,
105 				       struct btrfs_root *log,
106 				       struct btrfs_path *path,
107 				       u64 dirid, int del_all);
108 
109 /*
110  * tree logging is a special write ahead log used to make sure that
111  * fsyncs and O_SYNCs can happen without doing full tree commits.
112  *
113  * Full tree commits are expensive because they require commonly
114  * modified blocks to be recowed, creating many dirty pages in the
115  * extent tree an 4x-6x higher write load than ext3.
116  *
117  * Instead of doing a tree commit on every fsync, we use the
118  * key ranges and transaction ids to find items for a given file or directory
119  * that have changed in this transaction.  Those items are copied into
120  * a special tree (one per subvolume root), that tree is written to disk
121  * and then the fsync is considered complete.
122  *
123  * After a crash, items are copied out of the log-tree back into the
124  * subvolume tree.  Any file data extents found are recorded in the extent
125  * allocation tree, and the log-tree freed.
126  *
127  * The log tree is read three times, once to pin down all the extents it is
128  * using in ram and once, once to create all the inodes logged in the tree
129  * and once to do all the other items.
130  */
131 
132 /*
133  * start a sub transaction and setup the log tree
134  * this increments the log tree writer count to make the people
135  * syncing the tree wait for us to finish
136  */
137 static int start_log_trans(struct btrfs_trans_handle *trans,
138 			   struct btrfs_root *root)
139 {
140 	int ret;
141 	int err = 0;
142 
143 	mutex_lock(&root->log_mutex);
144 	if (root->log_root) {
145 		if (!root->log_start_pid) {
146 			root->log_start_pid = current->pid;
147 			root->log_multiple_pids = false;
148 		} else if (root->log_start_pid != current->pid) {
149 			root->log_multiple_pids = true;
150 		}
151 
152 		atomic_inc(&root->log_batch);
153 		atomic_inc(&root->log_writers);
154 		mutex_unlock(&root->log_mutex);
155 		return 0;
156 	}
157 	root->log_multiple_pids = false;
158 	root->log_start_pid = current->pid;
159 	mutex_lock(&root->fs_info->tree_log_mutex);
160 	if (!root->fs_info->log_root_tree) {
161 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
162 		if (ret)
163 			err = ret;
164 	}
165 	if (err == 0 && !root->log_root) {
166 		ret = btrfs_add_log_tree(trans, root);
167 		if (ret)
168 			err = ret;
169 	}
170 	mutex_unlock(&root->fs_info->tree_log_mutex);
171 	atomic_inc(&root->log_batch);
172 	atomic_inc(&root->log_writers);
173 	mutex_unlock(&root->log_mutex);
174 	return err;
175 }
176 
177 /*
178  * returns 0 if there was a log transaction running and we were able
179  * to join, or returns -ENOENT if there were not transactions
180  * in progress
181  */
182 static int join_running_log_trans(struct btrfs_root *root)
183 {
184 	int ret = -ENOENT;
185 
186 	smp_mb();
187 	if (!root->log_root)
188 		return -ENOENT;
189 
190 	mutex_lock(&root->log_mutex);
191 	if (root->log_root) {
192 		ret = 0;
193 		atomic_inc(&root->log_writers);
194 	}
195 	mutex_unlock(&root->log_mutex);
196 	return ret;
197 }
198 
199 /*
200  * This either makes the current running log transaction wait
201  * until you call btrfs_end_log_trans() or it makes any future
202  * log transactions wait until you call btrfs_end_log_trans()
203  */
204 int btrfs_pin_log_trans(struct btrfs_root *root)
205 {
206 	int ret = -ENOENT;
207 
208 	mutex_lock(&root->log_mutex);
209 	atomic_inc(&root->log_writers);
210 	mutex_unlock(&root->log_mutex);
211 	return ret;
212 }
213 
214 /*
215  * indicate we're done making changes to the log tree
216  * and wake up anyone waiting to do a sync
217  */
218 void btrfs_end_log_trans(struct btrfs_root *root)
219 {
220 	if (atomic_dec_and_test(&root->log_writers)) {
221 		smp_mb();
222 		if (waitqueue_active(&root->log_writer_wait))
223 			wake_up(&root->log_writer_wait);
224 	}
225 }
226 
227 
228 /*
229  * the walk control struct is used to pass state down the chain when
230  * processing the log tree.  The stage field tells us which part
231  * of the log tree processing we are currently doing.  The others
232  * are state fields used for that specific part
233  */
234 struct walk_control {
235 	/* should we free the extent on disk when done?  This is used
236 	 * at transaction commit time while freeing a log tree
237 	 */
238 	int free;
239 
240 	/* should we write out the extent buffer?  This is used
241 	 * while flushing the log tree to disk during a sync
242 	 */
243 	int write;
244 
245 	/* should we wait for the extent buffer io to finish?  Also used
246 	 * while flushing the log tree to disk for a sync
247 	 */
248 	int wait;
249 
250 	/* pin only walk, we record which extents on disk belong to the
251 	 * log trees
252 	 */
253 	int pin;
254 
255 	/* what stage of the replay code we're currently in */
256 	int stage;
257 
258 	/* the root we are currently replaying */
259 	struct btrfs_root *replay_dest;
260 
261 	/* the trans handle for the current replay */
262 	struct btrfs_trans_handle *trans;
263 
264 	/* the function that gets used to process blocks we find in the
265 	 * tree.  Note the extent_buffer might not be up to date when it is
266 	 * passed in, and it must be checked or read if you need the data
267 	 * inside it
268 	 */
269 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
270 			    struct walk_control *wc, u64 gen);
271 };
272 
273 /*
274  * process_func used to pin down extents, write them or wait on them
275  */
276 static int process_one_buffer(struct btrfs_root *log,
277 			      struct extent_buffer *eb,
278 			      struct walk_control *wc, u64 gen)
279 {
280 	if (wc->pin)
281 		btrfs_pin_extent_for_log_replay(wc->trans,
282 						log->fs_info->extent_root,
283 						eb->start, eb->len);
284 
285 	if (btrfs_buffer_uptodate(eb, gen, 0)) {
286 		if (wc->write)
287 			btrfs_write_tree_block(eb);
288 		if (wc->wait)
289 			btrfs_wait_tree_block_writeback(eb);
290 	}
291 	return 0;
292 }
293 
294 /*
295  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
296  * to the src data we are copying out.
297  *
298  * root is the tree we are copying into, and path is a scratch
299  * path for use in this function (it should be released on entry and
300  * will be released on exit).
301  *
302  * If the key is already in the destination tree the existing item is
303  * overwritten.  If the existing item isn't big enough, it is extended.
304  * If it is too large, it is truncated.
305  *
306  * If the key isn't in the destination yet, a new item is inserted.
307  */
308 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
309 				   struct btrfs_root *root,
310 				   struct btrfs_path *path,
311 				   struct extent_buffer *eb, int slot,
312 				   struct btrfs_key *key)
313 {
314 	int ret;
315 	u32 item_size;
316 	u64 saved_i_size = 0;
317 	int save_old_i_size = 0;
318 	unsigned long src_ptr;
319 	unsigned long dst_ptr;
320 	int overwrite_root = 0;
321 
322 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
323 		overwrite_root = 1;
324 
325 	item_size = btrfs_item_size_nr(eb, slot);
326 	src_ptr = btrfs_item_ptr_offset(eb, slot);
327 
328 	/* look for the key in the destination tree */
329 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
330 	if (ret == 0) {
331 		char *src_copy;
332 		char *dst_copy;
333 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
334 						  path->slots[0]);
335 		if (dst_size != item_size)
336 			goto insert;
337 
338 		if (item_size == 0) {
339 			btrfs_release_path(path);
340 			return 0;
341 		}
342 		dst_copy = kmalloc(item_size, GFP_NOFS);
343 		src_copy = kmalloc(item_size, GFP_NOFS);
344 		if (!dst_copy || !src_copy) {
345 			btrfs_release_path(path);
346 			kfree(dst_copy);
347 			kfree(src_copy);
348 			return -ENOMEM;
349 		}
350 
351 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
352 
353 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
354 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
355 				   item_size);
356 		ret = memcmp(dst_copy, src_copy, item_size);
357 
358 		kfree(dst_copy);
359 		kfree(src_copy);
360 		/*
361 		 * they have the same contents, just return, this saves
362 		 * us from cowing blocks in the destination tree and doing
363 		 * extra writes that may not have been done by a previous
364 		 * sync
365 		 */
366 		if (ret == 0) {
367 			btrfs_release_path(path);
368 			return 0;
369 		}
370 
371 	}
372 insert:
373 	btrfs_release_path(path);
374 	/* try to insert the key into the destination tree */
375 	ret = btrfs_insert_empty_item(trans, root, path,
376 				      key, item_size);
377 
378 	/* make sure any existing item is the correct size */
379 	if (ret == -EEXIST) {
380 		u32 found_size;
381 		found_size = btrfs_item_size_nr(path->nodes[0],
382 						path->slots[0]);
383 		if (found_size > item_size)
384 			btrfs_truncate_item(trans, root, path, item_size, 1);
385 		else if (found_size < item_size)
386 			btrfs_extend_item(trans, root, path,
387 					  item_size - found_size);
388 	} else if (ret) {
389 		return ret;
390 	}
391 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
392 					path->slots[0]);
393 
394 	/* don't overwrite an existing inode if the generation number
395 	 * was logged as zero.  This is done when the tree logging code
396 	 * is just logging an inode to make sure it exists after recovery.
397 	 *
398 	 * Also, don't overwrite i_size on directories during replay.
399 	 * log replay inserts and removes directory items based on the
400 	 * state of the tree found in the subvolume, and i_size is modified
401 	 * as it goes
402 	 */
403 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
404 		struct btrfs_inode_item *src_item;
405 		struct btrfs_inode_item *dst_item;
406 
407 		src_item = (struct btrfs_inode_item *)src_ptr;
408 		dst_item = (struct btrfs_inode_item *)dst_ptr;
409 
410 		if (btrfs_inode_generation(eb, src_item) == 0)
411 			goto no_copy;
412 
413 		if (overwrite_root &&
414 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
415 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
416 			save_old_i_size = 1;
417 			saved_i_size = btrfs_inode_size(path->nodes[0],
418 							dst_item);
419 		}
420 	}
421 
422 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
423 			   src_ptr, item_size);
424 
425 	if (save_old_i_size) {
426 		struct btrfs_inode_item *dst_item;
427 		dst_item = (struct btrfs_inode_item *)dst_ptr;
428 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
429 	}
430 
431 	/* make sure the generation is filled in */
432 	if (key->type == BTRFS_INODE_ITEM_KEY) {
433 		struct btrfs_inode_item *dst_item;
434 		dst_item = (struct btrfs_inode_item *)dst_ptr;
435 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
436 			btrfs_set_inode_generation(path->nodes[0], dst_item,
437 						   trans->transid);
438 		}
439 	}
440 no_copy:
441 	btrfs_mark_buffer_dirty(path->nodes[0]);
442 	btrfs_release_path(path);
443 	return 0;
444 }
445 
446 /*
447  * simple helper to read an inode off the disk from a given root
448  * This can only be called for subvolume roots and not for the log
449  */
450 static noinline struct inode *read_one_inode(struct btrfs_root *root,
451 					     u64 objectid)
452 {
453 	struct btrfs_key key;
454 	struct inode *inode;
455 
456 	key.objectid = objectid;
457 	key.type = BTRFS_INODE_ITEM_KEY;
458 	key.offset = 0;
459 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
460 	if (IS_ERR(inode)) {
461 		inode = NULL;
462 	} else if (is_bad_inode(inode)) {
463 		iput(inode);
464 		inode = NULL;
465 	}
466 	return inode;
467 }
468 
469 /* replays a single extent in 'eb' at 'slot' with 'key' into the
470  * subvolume 'root'.  path is released on entry and should be released
471  * on exit.
472  *
473  * extents in the log tree have not been allocated out of the extent
474  * tree yet.  So, this completes the allocation, taking a reference
475  * as required if the extent already exists or creating a new extent
476  * if it isn't in the extent allocation tree yet.
477  *
478  * The extent is inserted into the file, dropping any existing extents
479  * from the file that overlap the new one.
480  */
481 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
482 				      struct btrfs_root *root,
483 				      struct btrfs_path *path,
484 				      struct extent_buffer *eb, int slot,
485 				      struct btrfs_key *key)
486 {
487 	int found_type;
488 	u64 mask = root->sectorsize - 1;
489 	u64 extent_end;
490 	u64 start = key->offset;
491 	u64 saved_nbytes;
492 	struct btrfs_file_extent_item *item;
493 	struct inode *inode = NULL;
494 	unsigned long size;
495 	int ret = 0;
496 
497 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
498 	found_type = btrfs_file_extent_type(eb, item);
499 
500 	if (found_type == BTRFS_FILE_EXTENT_REG ||
501 	    found_type == BTRFS_FILE_EXTENT_PREALLOC)
502 		extent_end = start + btrfs_file_extent_num_bytes(eb, item);
503 	else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
504 		size = btrfs_file_extent_inline_len(eb, item);
505 		extent_end = (start + size + mask) & ~mask;
506 	} else {
507 		ret = 0;
508 		goto out;
509 	}
510 
511 	inode = read_one_inode(root, key->objectid);
512 	if (!inode) {
513 		ret = -EIO;
514 		goto out;
515 	}
516 
517 	/*
518 	 * first check to see if we already have this extent in the
519 	 * file.  This must be done before the btrfs_drop_extents run
520 	 * so we don't try to drop this extent.
521 	 */
522 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
523 				       start, 0);
524 
525 	if (ret == 0 &&
526 	    (found_type == BTRFS_FILE_EXTENT_REG ||
527 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
528 		struct btrfs_file_extent_item cmp1;
529 		struct btrfs_file_extent_item cmp2;
530 		struct btrfs_file_extent_item *existing;
531 		struct extent_buffer *leaf;
532 
533 		leaf = path->nodes[0];
534 		existing = btrfs_item_ptr(leaf, path->slots[0],
535 					  struct btrfs_file_extent_item);
536 
537 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
538 				   sizeof(cmp1));
539 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
540 				   sizeof(cmp2));
541 
542 		/*
543 		 * we already have a pointer to this exact extent,
544 		 * we don't have to do anything
545 		 */
546 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
547 			btrfs_release_path(path);
548 			goto out;
549 		}
550 	}
551 	btrfs_release_path(path);
552 
553 	saved_nbytes = inode_get_bytes(inode);
554 	/* drop any overlapping extents */
555 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
556 	BUG_ON(ret);
557 
558 	if (found_type == BTRFS_FILE_EXTENT_REG ||
559 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
560 		u64 offset;
561 		unsigned long dest_offset;
562 		struct btrfs_key ins;
563 
564 		ret = btrfs_insert_empty_item(trans, root, path, key,
565 					      sizeof(*item));
566 		BUG_ON(ret);
567 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
568 						    path->slots[0]);
569 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
570 				(unsigned long)item,  sizeof(*item));
571 
572 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
573 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
574 		ins.type = BTRFS_EXTENT_ITEM_KEY;
575 		offset = key->offset - btrfs_file_extent_offset(eb, item);
576 
577 		if (ins.objectid > 0) {
578 			u64 csum_start;
579 			u64 csum_end;
580 			LIST_HEAD(ordered_sums);
581 			/*
582 			 * is this extent already allocated in the extent
583 			 * allocation tree?  If so, just add a reference
584 			 */
585 			ret = btrfs_lookup_extent(root, ins.objectid,
586 						ins.offset);
587 			if (ret == 0) {
588 				ret = btrfs_inc_extent_ref(trans, root,
589 						ins.objectid, ins.offset,
590 						0, root->root_key.objectid,
591 						key->objectid, offset, 0);
592 				BUG_ON(ret);
593 			} else {
594 				/*
595 				 * insert the extent pointer in the extent
596 				 * allocation tree
597 				 */
598 				ret = btrfs_alloc_logged_file_extent(trans,
599 						root, root->root_key.objectid,
600 						key->objectid, offset, &ins);
601 				BUG_ON(ret);
602 			}
603 			btrfs_release_path(path);
604 
605 			if (btrfs_file_extent_compression(eb, item)) {
606 				csum_start = ins.objectid;
607 				csum_end = csum_start + ins.offset;
608 			} else {
609 				csum_start = ins.objectid +
610 					btrfs_file_extent_offset(eb, item);
611 				csum_end = csum_start +
612 					btrfs_file_extent_num_bytes(eb, item);
613 			}
614 
615 			ret = btrfs_lookup_csums_range(root->log_root,
616 						csum_start, csum_end - 1,
617 						&ordered_sums, 0);
618 			BUG_ON(ret);
619 			while (!list_empty(&ordered_sums)) {
620 				struct btrfs_ordered_sum *sums;
621 				sums = list_entry(ordered_sums.next,
622 						struct btrfs_ordered_sum,
623 						list);
624 				ret = btrfs_csum_file_blocks(trans,
625 						root->fs_info->csum_root,
626 						sums);
627 				BUG_ON(ret);
628 				list_del(&sums->list);
629 				kfree(sums);
630 			}
631 		} else {
632 			btrfs_release_path(path);
633 		}
634 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
635 		/* inline extents are easy, we just overwrite them */
636 		ret = overwrite_item(trans, root, path, eb, slot, key);
637 		BUG_ON(ret);
638 	}
639 
640 	inode_set_bytes(inode, saved_nbytes);
641 	ret = btrfs_update_inode(trans, root, inode);
642 out:
643 	if (inode)
644 		iput(inode);
645 	return ret;
646 }
647 
648 /*
649  * when cleaning up conflicts between the directory names in the
650  * subvolume, directory names in the log and directory names in the
651  * inode back references, we may have to unlink inodes from directories.
652  *
653  * This is a helper function to do the unlink of a specific directory
654  * item
655  */
656 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
657 				      struct btrfs_root *root,
658 				      struct btrfs_path *path,
659 				      struct inode *dir,
660 				      struct btrfs_dir_item *di)
661 {
662 	struct inode *inode;
663 	char *name;
664 	int name_len;
665 	struct extent_buffer *leaf;
666 	struct btrfs_key location;
667 	int ret;
668 
669 	leaf = path->nodes[0];
670 
671 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
672 	name_len = btrfs_dir_name_len(leaf, di);
673 	name = kmalloc(name_len, GFP_NOFS);
674 	if (!name)
675 		return -ENOMEM;
676 
677 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
678 	btrfs_release_path(path);
679 
680 	inode = read_one_inode(root, location.objectid);
681 	if (!inode) {
682 		kfree(name);
683 		return -EIO;
684 	}
685 
686 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
687 	BUG_ON(ret);
688 
689 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
690 	BUG_ON(ret);
691 	kfree(name);
692 
693 	iput(inode);
694 
695 	btrfs_run_delayed_items(trans, root);
696 	return ret;
697 }
698 
699 /*
700  * helper function to see if a given name and sequence number found
701  * in an inode back reference are already in a directory and correctly
702  * point to this inode
703  */
704 static noinline int inode_in_dir(struct btrfs_root *root,
705 				 struct btrfs_path *path,
706 				 u64 dirid, u64 objectid, u64 index,
707 				 const char *name, int name_len)
708 {
709 	struct btrfs_dir_item *di;
710 	struct btrfs_key location;
711 	int match = 0;
712 
713 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
714 					 index, name, name_len, 0);
715 	if (di && !IS_ERR(di)) {
716 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
717 		if (location.objectid != objectid)
718 			goto out;
719 	} else
720 		goto out;
721 	btrfs_release_path(path);
722 
723 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
724 	if (di && !IS_ERR(di)) {
725 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
726 		if (location.objectid != objectid)
727 			goto out;
728 	} else
729 		goto out;
730 	match = 1;
731 out:
732 	btrfs_release_path(path);
733 	return match;
734 }
735 
736 /*
737  * helper function to check a log tree for a named back reference in
738  * an inode.  This is used to decide if a back reference that is
739  * found in the subvolume conflicts with what we find in the log.
740  *
741  * inode backreferences may have multiple refs in a single item,
742  * during replay we process one reference at a time, and we don't
743  * want to delete valid links to a file from the subvolume if that
744  * link is also in the log.
745  */
746 static noinline int backref_in_log(struct btrfs_root *log,
747 				   struct btrfs_key *key,
748 				   u64 ref_objectid,
749 				   char *name, int namelen)
750 {
751 	struct btrfs_path *path;
752 	struct btrfs_inode_ref *ref;
753 	unsigned long ptr;
754 	unsigned long ptr_end;
755 	unsigned long name_ptr;
756 	int found_name_len;
757 	int item_size;
758 	int ret;
759 	int match = 0;
760 
761 	path = btrfs_alloc_path();
762 	if (!path)
763 		return -ENOMEM;
764 
765 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
766 	if (ret != 0)
767 		goto out;
768 
769 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
770 
771 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
772 		if (btrfs_find_name_in_ext_backref(path, ref_objectid,
773 						   name, namelen, NULL))
774 			match = 1;
775 
776 		goto out;
777 	}
778 
779 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
780 	ptr_end = ptr + item_size;
781 	while (ptr < ptr_end) {
782 		ref = (struct btrfs_inode_ref *)ptr;
783 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
784 		if (found_name_len == namelen) {
785 			name_ptr = (unsigned long)(ref + 1);
786 			ret = memcmp_extent_buffer(path->nodes[0], name,
787 						   name_ptr, namelen);
788 			if (ret == 0) {
789 				match = 1;
790 				goto out;
791 			}
792 		}
793 		ptr = (unsigned long)(ref + 1) + found_name_len;
794 	}
795 out:
796 	btrfs_free_path(path);
797 	return match;
798 }
799 
800 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
801 				  struct btrfs_root *root,
802 				  struct btrfs_path *path,
803 				  struct btrfs_root *log_root,
804 				  struct inode *dir, struct inode *inode,
805 				  struct extent_buffer *eb,
806 				  u64 inode_objectid, u64 parent_objectid,
807 				  u64 ref_index, char *name, int namelen,
808 				  int *search_done)
809 {
810 	int ret;
811 	char *victim_name;
812 	int victim_name_len;
813 	struct extent_buffer *leaf;
814 	struct btrfs_dir_item *di;
815 	struct btrfs_key search_key;
816 	struct btrfs_inode_extref *extref;
817 
818 again:
819 	/* Search old style refs */
820 	search_key.objectid = inode_objectid;
821 	search_key.type = BTRFS_INODE_REF_KEY;
822 	search_key.offset = parent_objectid;
823 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
824 	if (ret == 0) {
825 		struct btrfs_inode_ref *victim_ref;
826 		unsigned long ptr;
827 		unsigned long ptr_end;
828 
829 		leaf = path->nodes[0];
830 
831 		/* are we trying to overwrite a back ref for the root directory
832 		 * if so, just jump out, we're done
833 		 */
834 		if (search_key.objectid == search_key.offset)
835 			return 1;
836 
837 		/* check all the names in this back reference to see
838 		 * if they are in the log.  if so, we allow them to stay
839 		 * otherwise they must be unlinked as a conflict
840 		 */
841 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
842 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
843 		while (ptr < ptr_end) {
844 			victim_ref = (struct btrfs_inode_ref *)ptr;
845 			victim_name_len = btrfs_inode_ref_name_len(leaf,
846 								   victim_ref);
847 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
848 			BUG_ON(!victim_name);
849 
850 			read_extent_buffer(leaf, victim_name,
851 					   (unsigned long)(victim_ref + 1),
852 					   victim_name_len);
853 
854 			if (!backref_in_log(log_root, &search_key,
855 					    parent_objectid,
856 					    victim_name,
857 					    victim_name_len)) {
858 				btrfs_inc_nlink(inode);
859 				btrfs_release_path(path);
860 
861 				ret = btrfs_unlink_inode(trans, root, dir,
862 							 inode, victim_name,
863 							 victim_name_len);
864 				BUG_ON(ret);
865 				btrfs_run_delayed_items(trans, root);
866 				kfree(victim_name);
867 				*search_done = 1;
868 				goto again;
869 			}
870 			kfree(victim_name);
871 
872 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
873 		}
874 		BUG_ON(ret);
875 
876 		/*
877 		 * NOTE: we have searched root tree and checked the
878 		 * coresponding ref, it does not need to check again.
879 		 */
880 		*search_done = 1;
881 	}
882 	btrfs_release_path(path);
883 
884 	/* Same search but for extended refs */
885 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
886 					   inode_objectid, parent_objectid, 0,
887 					   0);
888 	if (!IS_ERR_OR_NULL(extref)) {
889 		u32 item_size;
890 		u32 cur_offset = 0;
891 		unsigned long base;
892 		struct inode *victim_parent;
893 
894 		leaf = path->nodes[0];
895 
896 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
897 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
898 
899 		while (cur_offset < item_size) {
900 			extref = (struct btrfs_inode_extref *)base + cur_offset;
901 
902 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
903 
904 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
905 				goto next;
906 
907 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
908 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
909 					   victim_name_len);
910 
911 			search_key.objectid = inode_objectid;
912 			search_key.type = BTRFS_INODE_EXTREF_KEY;
913 			search_key.offset = btrfs_extref_hash(parent_objectid,
914 							      victim_name,
915 							      victim_name_len);
916 			ret = 0;
917 			if (!backref_in_log(log_root, &search_key,
918 					    parent_objectid, victim_name,
919 					    victim_name_len)) {
920 				ret = -ENOENT;
921 				victim_parent = read_one_inode(root,
922 							       parent_objectid);
923 				if (victim_parent) {
924 					btrfs_inc_nlink(inode);
925 					btrfs_release_path(path);
926 
927 					ret = btrfs_unlink_inode(trans, root,
928 								 victim_parent,
929 								 inode,
930 								 victim_name,
931 								 victim_name_len);
932 					btrfs_run_delayed_items(trans, root);
933 				}
934 				BUG_ON(ret);
935 				iput(victim_parent);
936 				kfree(victim_name);
937 				*search_done = 1;
938 				goto again;
939 			}
940 			kfree(victim_name);
941 			BUG_ON(ret);
942 next:
943 			cur_offset += victim_name_len + sizeof(*extref);
944 		}
945 		*search_done = 1;
946 	}
947 	btrfs_release_path(path);
948 
949 	/* look for a conflicting sequence number */
950 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
951 					 ref_index, name, namelen, 0);
952 	if (di && !IS_ERR(di)) {
953 		ret = drop_one_dir_item(trans, root, path, dir, di);
954 		BUG_ON(ret);
955 	}
956 	btrfs_release_path(path);
957 
958 	/* look for a conflicing name */
959 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
960 				   name, namelen, 0);
961 	if (di && !IS_ERR(di)) {
962 		ret = drop_one_dir_item(trans, root, path, dir, di);
963 		BUG_ON(ret);
964 	}
965 	btrfs_release_path(path);
966 
967 	return 0;
968 }
969 
970 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
971 			     u32 *namelen, char **name, u64 *index,
972 			     u64 *parent_objectid)
973 {
974 	struct btrfs_inode_extref *extref;
975 
976 	extref = (struct btrfs_inode_extref *)ref_ptr;
977 
978 	*namelen = btrfs_inode_extref_name_len(eb, extref);
979 	*name = kmalloc(*namelen, GFP_NOFS);
980 	if (*name == NULL)
981 		return -ENOMEM;
982 
983 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
984 			   *namelen);
985 
986 	*index = btrfs_inode_extref_index(eb, extref);
987 	if (parent_objectid)
988 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
989 
990 	return 0;
991 }
992 
993 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
994 			  u32 *namelen, char **name, u64 *index)
995 {
996 	struct btrfs_inode_ref *ref;
997 
998 	ref = (struct btrfs_inode_ref *)ref_ptr;
999 
1000 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1001 	*name = kmalloc(*namelen, GFP_NOFS);
1002 	if (*name == NULL)
1003 		return -ENOMEM;
1004 
1005 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1006 
1007 	*index = btrfs_inode_ref_index(eb, ref);
1008 
1009 	return 0;
1010 }
1011 
1012 /*
1013  * replay one inode back reference item found in the log tree.
1014  * eb, slot and key refer to the buffer and key found in the log tree.
1015  * root is the destination we are replaying into, and path is for temp
1016  * use by this function.  (it should be released on return).
1017  */
1018 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1019 				  struct btrfs_root *root,
1020 				  struct btrfs_root *log,
1021 				  struct btrfs_path *path,
1022 				  struct extent_buffer *eb, int slot,
1023 				  struct btrfs_key *key)
1024 {
1025 	struct inode *dir;
1026 	struct inode *inode;
1027 	unsigned long ref_ptr;
1028 	unsigned long ref_end;
1029 	char *name;
1030 	int namelen;
1031 	int ret;
1032 	int search_done = 0;
1033 	int log_ref_ver = 0;
1034 	u64 parent_objectid;
1035 	u64 inode_objectid;
1036 	u64 ref_index = 0;
1037 	int ref_struct_size;
1038 
1039 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1040 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1041 
1042 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1043 		struct btrfs_inode_extref *r;
1044 
1045 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1046 		log_ref_ver = 1;
1047 		r = (struct btrfs_inode_extref *)ref_ptr;
1048 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1049 	} else {
1050 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1051 		parent_objectid = key->offset;
1052 	}
1053 	inode_objectid = key->objectid;
1054 
1055 	/*
1056 	 * it is possible that we didn't log all the parent directories
1057 	 * for a given inode.  If we don't find the dir, just don't
1058 	 * copy the back ref in.  The link count fixup code will take
1059 	 * care of the rest
1060 	 */
1061 	dir = read_one_inode(root, parent_objectid);
1062 	if (!dir)
1063 		return -ENOENT;
1064 
1065 	inode = read_one_inode(root, inode_objectid);
1066 	if (!inode) {
1067 		iput(dir);
1068 		return -EIO;
1069 	}
1070 
1071 	while (ref_ptr < ref_end) {
1072 		if (log_ref_ver) {
1073 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1074 						&ref_index, &parent_objectid);
1075 			/*
1076 			 * parent object can change from one array
1077 			 * item to another.
1078 			 */
1079 			if (!dir)
1080 				dir = read_one_inode(root, parent_objectid);
1081 			if (!dir)
1082 				return -ENOENT;
1083 		} else {
1084 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1085 					     &ref_index);
1086 		}
1087 		if (ret)
1088 			return ret;
1089 
1090 		/* if we already have a perfect match, we're done */
1091 		if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1092 				  ref_index, name, namelen)) {
1093 			/*
1094 			 * look for a conflicting back reference in the
1095 			 * metadata. if we find one we have to unlink that name
1096 			 * of the file before we add our new link.  Later on, we
1097 			 * overwrite any existing back reference, and we don't
1098 			 * want to create dangling pointers in the directory.
1099 			 */
1100 
1101 			if (!search_done) {
1102 				ret = __add_inode_ref(trans, root, path, log,
1103 						      dir, inode, eb,
1104 						      inode_objectid,
1105 						      parent_objectid,
1106 						      ref_index, name, namelen,
1107 						      &search_done);
1108 				if (ret == 1)
1109 					goto out;
1110 				BUG_ON(ret);
1111 			}
1112 
1113 			/* insert our name */
1114 			ret = btrfs_add_link(trans, dir, inode, name, namelen,
1115 					     0, ref_index);
1116 			BUG_ON(ret);
1117 
1118 			btrfs_update_inode(trans, root, inode);
1119 		}
1120 
1121 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1122 		kfree(name);
1123 		if (log_ref_ver) {
1124 			iput(dir);
1125 			dir = NULL;
1126 		}
1127 	}
1128 
1129 	/* finally write the back reference in the inode */
1130 	ret = overwrite_item(trans, root, path, eb, slot, key);
1131 	BUG_ON(ret);
1132 
1133 out:
1134 	btrfs_release_path(path);
1135 	iput(dir);
1136 	iput(inode);
1137 	return 0;
1138 }
1139 
1140 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1141 			      struct btrfs_root *root, u64 offset)
1142 {
1143 	int ret;
1144 	ret = btrfs_find_orphan_item(root, offset);
1145 	if (ret > 0)
1146 		ret = btrfs_insert_orphan_item(trans, root, offset);
1147 	return ret;
1148 }
1149 
1150 static int count_inode_extrefs(struct btrfs_root *root,
1151 			       struct inode *inode, struct btrfs_path *path)
1152 {
1153 	int ret = 0;
1154 	int name_len;
1155 	unsigned int nlink = 0;
1156 	u32 item_size;
1157 	u32 cur_offset = 0;
1158 	u64 inode_objectid = btrfs_ino(inode);
1159 	u64 offset = 0;
1160 	unsigned long ptr;
1161 	struct btrfs_inode_extref *extref;
1162 	struct extent_buffer *leaf;
1163 
1164 	while (1) {
1165 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1166 					    &extref, &offset);
1167 		if (ret)
1168 			break;
1169 
1170 		leaf = path->nodes[0];
1171 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1172 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1173 
1174 		while (cur_offset < item_size) {
1175 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1176 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1177 
1178 			nlink++;
1179 
1180 			cur_offset += name_len + sizeof(*extref);
1181 		}
1182 
1183 		offset++;
1184 		btrfs_release_path(path);
1185 	}
1186 	btrfs_release_path(path);
1187 
1188 	if (ret < 0)
1189 		return ret;
1190 	return nlink;
1191 }
1192 
1193 static int count_inode_refs(struct btrfs_root *root,
1194 			       struct inode *inode, struct btrfs_path *path)
1195 {
1196 	int ret;
1197 	struct btrfs_key key;
1198 	unsigned int nlink = 0;
1199 	unsigned long ptr;
1200 	unsigned long ptr_end;
1201 	int name_len;
1202 	u64 ino = btrfs_ino(inode);
1203 
1204 	key.objectid = ino;
1205 	key.type = BTRFS_INODE_REF_KEY;
1206 	key.offset = (u64)-1;
1207 
1208 	while (1) {
1209 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1210 		if (ret < 0)
1211 			break;
1212 		if (ret > 0) {
1213 			if (path->slots[0] == 0)
1214 				break;
1215 			path->slots[0]--;
1216 		}
1217 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1218 				      path->slots[0]);
1219 		if (key.objectid != ino ||
1220 		    key.type != BTRFS_INODE_REF_KEY)
1221 			break;
1222 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1223 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1224 						   path->slots[0]);
1225 		while (ptr < ptr_end) {
1226 			struct btrfs_inode_ref *ref;
1227 
1228 			ref = (struct btrfs_inode_ref *)ptr;
1229 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1230 							    ref);
1231 			ptr = (unsigned long)(ref + 1) + name_len;
1232 			nlink++;
1233 		}
1234 
1235 		if (key.offset == 0)
1236 			break;
1237 		key.offset--;
1238 		btrfs_release_path(path);
1239 	}
1240 	btrfs_release_path(path);
1241 
1242 	return nlink;
1243 }
1244 
1245 /*
1246  * There are a few corners where the link count of the file can't
1247  * be properly maintained during replay.  So, instead of adding
1248  * lots of complexity to the log code, we just scan the backrefs
1249  * for any file that has been through replay.
1250  *
1251  * The scan will update the link count on the inode to reflect the
1252  * number of back refs found.  If it goes down to zero, the iput
1253  * will free the inode.
1254  */
1255 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1256 					   struct btrfs_root *root,
1257 					   struct inode *inode)
1258 {
1259 	struct btrfs_path *path;
1260 	int ret;
1261 	u64 nlink = 0;
1262 	u64 ino = btrfs_ino(inode);
1263 
1264 	path = btrfs_alloc_path();
1265 	if (!path)
1266 		return -ENOMEM;
1267 
1268 	ret = count_inode_refs(root, inode, path);
1269 	if (ret < 0)
1270 		goto out;
1271 
1272 	nlink = ret;
1273 
1274 	ret = count_inode_extrefs(root, inode, path);
1275 	if (ret == -ENOENT)
1276 		ret = 0;
1277 
1278 	if (ret < 0)
1279 		goto out;
1280 
1281 	nlink += ret;
1282 
1283 	ret = 0;
1284 
1285 	if (nlink != inode->i_nlink) {
1286 		set_nlink(inode, nlink);
1287 		btrfs_update_inode(trans, root, inode);
1288 	}
1289 	BTRFS_I(inode)->index_cnt = (u64)-1;
1290 
1291 	if (inode->i_nlink == 0) {
1292 		if (S_ISDIR(inode->i_mode)) {
1293 			ret = replay_dir_deletes(trans, root, NULL, path,
1294 						 ino, 1);
1295 			BUG_ON(ret);
1296 		}
1297 		ret = insert_orphan_item(trans, root, ino);
1298 		BUG_ON(ret);
1299 	}
1300 
1301 out:
1302 	btrfs_free_path(path);
1303 	return ret;
1304 }
1305 
1306 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1307 					    struct btrfs_root *root,
1308 					    struct btrfs_path *path)
1309 {
1310 	int ret;
1311 	struct btrfs_key key;
1312 	struct inode *inode;
1313 
1314 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1315 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1316 	key.offset = (u64)-1;
1317 	while (1) {
1318 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1319 		if (ret < 0)
1320 			break;
1321 
1322 		if (ret == 1) {
1323 			if (path->slots[0] == 0)
1324 				break;
1325 			path->slots[0]--;
1326 		}
1327 
1328 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1329 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1330 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1331 			break;
1332 
1333 		ret = btrfs_del_item(trans, root, path);
1334 		if (ret)
1335 			goto out;
1336 
1337 		btrfs_release_path(path);
1338 		inode = read_one_inode(root, key.offset);
1339 		if (!inode)
1340 			return -EIO;
1341 
1342 		ret = fixup_inode_link_count(trans, root, inode);
1343 		BUG_ON(ret);
1344 
1345 		iput(inode);
1346 
1347 		/*
1348 		 * fixup on a directory may create new entries,
1349 		 * make sure we always look for the highset possible
1350 		 * offset
1351 		 */
1352 		key.offset = (u64)-1;
1353 	}
1354 	ret = 0;
1355 out:
1356 	btrfs_release_path(path);
1357 	return ret;
1358 }
1359 
1360 
1361 /*
1362  * record a given inode in the fixup dir so we can check its link
1363  * count when replay is done.  The link count is incremented here
1364  * so the inode won't go away until we check it
1365  */
1366 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1367 				      struct btrfs_root *root,
1368 				      struct btrfs_path *path,
1369 				      u64 objectid)
1370 {
1371 	struct btrfs_key key;
1372 	int ret = 0;
1373 	struct inode *inode;
1374 
1375 	inode = read_one_inode(root, objectid);
1376 	if (!inode)
1377 		return -EIO;
1378 
1379 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1380 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1381 	key.offset = objectid;
1382 
1383 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1384 
1385 	btrfs_release_path(path);
1386 	if (ret == 0) {
1387 		btrfs_inc_nlink(inode);
1388 		ret = btrfs_update_inode(trans, root, inode);
1389 	} else if (ret == -EEXIST) {
1390 		ret = 0;
1391 	} else {
1392 		BUG();
1393 	}
1394 	iput(inode);
1395 
1396 	return ret;
1397 }
1398 
1399 /*
1400  * when replaying the log for a directory, we only insert names
1401  * for inodes that actually exist.  This means an fsync on a directory
1402  * does not implicitly fsync all the new files in it
1403  */
1404 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1405 				    struct btrfs_root *root,
1406 				    struct btrfs_path *path,
1407 				    u64 dirid, u64 index,
1408 				    char *name, int name_len, u8 type,
1409 				    struct btrfs_key *location)
1410 {
1411 	struct inode *inode;
1412 	struct inode *dir;
1413 	int ret;
1414 
1415 	inode = read_one_inode(root, location->objectid);
1416 	if (!inode)
1417 		return -ENOENT;
1418 
1419 	dir = read_one_inode(root, dirid);
1420 	if (!dir) {
1421 		iput(inode);
1422 		return -EIO;
1423 	}
1424 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1425 
1426 	/* FIXME, put inode into FIXUP list */
1427 
1428 	iput(inode);
1429 	iput(dir);
1430 	return ret;
1431 }
1432 
1433 /*
1434  * take a single entry in a log directory item and replay it into
1435  * the subvolume.
1436  *
1437  * if a conflicting item exists in the subdirectory already,
1438  * the inode it points to is unlinked and put into the link count
1439  * fix up tree.
1440  *
1441  * If a name from the log points to a file or directory that does
1442  * not exist in the FS, it is skipped.  fsyncs on directories
1443  * do not force down inodes inside that directory, just changes to the
1444  * names or unlinks in a directory.
1445  */
1446 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1447 				    struct btrfs_root *root,
1448 				    struct btrfs_path *path,
1449 				    struct extent_buffer *eb,
1450 				    struct btrfs_dir_item *di,
1451 				    struct btrfs_key *key)
1452 {
1453 	char *name;
1454 	int name_len;
1455 	struct btrfs_dir_item *dst_di;
1456 	struct btrfs_key found_key;
1457 	struct btrfs_key log_key;
1458 	struct inode *dir;
1459 	u8 log_type;
1460 	int exists;
1461 	int ret;
1462 
1463 	dir = read_one_inode(root, key->objectid);
1464 	if (!dir)
1465 		return -EIO;
1466 
1467 	name_len = btrfs_dir_name_len(eb, di);
1468 	name = kmalloc(name_len, GFP_NOFS);
1469 	if (!name)
1470 		return -ENOMEM;
1471 
1472 	log_type = btrfs_dir_type(eb, di);
1473 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1474 		   name_len);
1475 
1476 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1477 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1478 	if (exists == 0)
1479 		exists = 1;
1480 	else
1481 		exists = 0;
1482 	btrfs_release_path(path);
1483 
1484 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1485 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1486 				       name, name_len, 1);
1487 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1488 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1489 						     key->objectid,
1490 						     key->offset, name,
1491 						     name_len, 1);
1492 	} else {
1493 		BUG();
1494 	}
1495 	if (IS_ERR_OR_NULL(dst_di)) {
1496 		/* we need a sequence number to insert, so we only
1497 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1498 		 */
1499 		if (key->type != BTRFS_DIR_INDEX_KEY)
1500 			goto out;
1501 		goto insert;
1502 	}
1503 
1504 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1505 	/* the existing item matches the logged item */
1506 	if (found_key.objectid == log_key.objectid &&
1507 	    found_key.type == log_key.type &&
1508 	    found_key.offset == log_key.offset &&
1509 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1510 		goto out;
1511 	}
1512 
1513 	/*
1514 	 * don't drop the conflicting directory entry if the inode
1515 	 * for the new entry doesn't exist
1516 	 */
1517 	if (!exists)
1518 		goto out;
1519 
1520 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1521 	BUG_ON(ret);
1522 
1523 	if (key->type == BTRFS_DIR_INDEX_KEY)
1524 		goto insert;
1525 out:
1526 	btrfs_release_path(path);
1527 	kfree(name);
1528 	iput(dir);
1529 	return 0;
1530 
1531 insert:
1532 	btrfs_release_path(path);
1533 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1534 			      name, name_len, log_type, &log_key);
1535 
1536 	BUG_ON(ret && ret != -ENOENT);
1537 	goto out;
1538 }
1539 
1540 /*
1541  * find all the names in a directory item and reconcile them into
1542  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1543  * one name in a directory item, but the same code gets used for
1544  * both directory index types
1545  */
1546 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1547 					struct btrfs_root *root,
1548 					struct btrfs_path *path,
1549 					struct extent_buffer *eb, int slot,
1550 					struct btrfs_key *key)
1551 {
1552 	int ret;
1553 	u32 item_size = btrfs_item_size_nr(eb, slot);
1554 	struct btrfs_dir_item *di;
1555 	int name_len;
1556 	unsigned long ptr;
1557 	unsigned long ptr_end;
1558 
1559 	ptr = btrfs_item_ptr_offset(eb, slot);
1560 	ptr_end = ptr + item_size;
1561 	while (ptr < ptr_end) {
1562 		di = (struct btrfs_dir_item *)ptr;
1563 		if (verify_dir_item(root, eb, di))
1564 			return -EIO;
1565 		name_len = btrfs_dir_name_len(eb, di);
1566 		ret = replay_one_name(trans, root, path, eb, di, key);
1567 		BUG_ON(ret);
1568 		ptr = (unsigned long)(di + 1);
1569 		ptr += name_len;
1570 	}
1571 	return 0;
1572 }
1573 
1574 /*
1575  * directory replay has two parts.  There are the standard directory
1576  * items in the log copied from the subvolume, and range items
1577  * created in the log while the subvolume was logged.
1578  *
1579  * The range items tell us which parts of the key space the log
1580  * is authoritative for.  During replay, if a key in the subvolume
1581  * directory is in a logged range item, but not actually in the log
1582  * that means it was deleted from the directory before the fsync
1583  * and should be removed.
1584  */
1585 static noinline int find_dir_range(struct btrfs_root *root,
1586 				   struct btrfs_path *path,
1587 				   u64 dirid, int key_type,
1588 				   u64 *start_ret, u64 *end_ret)
1589 {
1590 	struct btrfs_key key;
1591 	u64 found_end;
1592 	struct btrfs_dir_log_item *item;
1593 	int ret;
1594 	int nritems;
1595 
1596 	if (*start_ret == (u64)-1)
1597 		return 1;
1598 
1599 	key.objectid = dirid;
1600 	key.type = key_type;
1601 	key.offset = *start_ret;
1602 
1603 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1604 	if (ret < 0)
1605 		goto out;
1606 	if (ret > 0) {
1607 		if (path->slots[0] == 0)
1608 			goto out;
1609 		path->slots[0]--;
1610 	}
1611 	if (ret != 0)
1612 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1613 
1614 	if (key.type != key_type || key.objectid != dirid) {
1615 		ret = 1;
1616 		goto next;
1617 	}
1618 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1619 			      struct btrfs_dir_log_item);
1620 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1621 
1622 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1623 		ret = 0;
1624 		*start_ret = key.offset;
1625 		*end_ret = found_end;
1626 		goto out;
1627 	}
1628 	ret = 1;
1629 next:
1630 	/* check the next slot in the tree to see if it is a valid item */
1631 	nritems = btrfs_header_nritems(path->nodes[0]);
1632 	if (path->slots[0] >= nritems) {
1633 		ret = btrfs_next_leaf(root, path);
1634 		if (ret)
1635 			goto out;
1636 	} else {
1637 		path->slots[0]++;
1638 	}
1639 
1640 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1641 
1642 	if (key.type != key_type || key.objectid != dirid) {
1643 		ret = 1;
1644 		goto out;
1645 	}
1646 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1647 			      struct btrfs_dir_log_item);
1648 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1649 	*start_ret = key.offset;
1650 	*end_ret = found_end;
1651 	ret = 0;
1652 out:
1653 	btrfs_release_path(path);
1654 	return ret;
1655 }
1656 
1657 /*
1658  * this looks for a given directory item in the log.  If the directory
1659  * item is not in the log, the item is removed and the inode it points
1660  * to is unlinked
1661  */
1662 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1663 				      struct btrfs_root *root,
1664 				      struct btrfs_root *log,
1665 				      struct btrfs_path *path,
1666 				      struct btrfs_path *log_path,
1667 				      struct inode *dir,
1668 				      struct btrfs_key *dir_key)
1669 {
1670 	int ret;
1671 	struct extent_buffer *eb;
1672 	int slot;
1673 	u32 item_size;
1674 	struct btrfs_dir_item *di;
1675 	struct btrfs_dir_item *log_di;
1676 	int name_len;
1677 	unsigned long ptr;
1678 	unsigned long ptr_end;
1679 	char *name;
1680 	struct inode *inode;
1681 	struct btrfs_key location;
1682 
1683 again:
1684 	eb = path->nodes[0];
1685 	slot = path->slots[0];
1686 	item_size = btrfs_item_size_nr(eb, slot);
1687 	ptr = btrfs_item_ptr_offset(eb, slot);
1688 	ptr_end = ptr + item_size;
1689 	while (ptr < ptr_end) {
1690 		di = (struct btrfs_dir_item *)ptr;
1691 		if (verify_dir_item(root, eb, di)) {
1692 			ret = -EIO;
1693 			goto out;
1694 		}
1695 
1696 		name_len = btrfs_dir_name_len(eb, di);
1697 		name = kmalloc(name_len, GFP_NOFS);
1698 		if (!name) {
1699 			ret = -ENOMEM;
1700 			goto out;
1701 		}
1702 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1703 				  name_len);
1704 		log_di = NULL;
1705 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1706 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1707 						       dir_key->objectid,
1708 						       name, name_len, 0);
1709 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1710 			log_di = btrfs_lookup_dir_index_item(trans, log,
1711 						     log_path,
1712 						     dir_key->objectid,
1713 						     dir_key->offset,
1714 						     name, name_len, 0);
1715 		}
1716 		if (IS_ERR_OR_NULL(log_di)) {
1717 			btrfs_dir_item_key_to_cpu(eb, di, &location);
1718 			btrfs_release_path(path);
1719 			btrfs_release_path(log_path);
1720 			inode = read_one_inode(root, location.objectid);
1721 			if (!inode) {
1722 				kfree(name);
1723 				return -EIO;
1724 			}
1725 
1726 			ret = link_to_fixup_dir(trans, root,
1727 						path, location.objectid);
1728 			BUG_ON(ret);
1729 			btrfs_inc_nlink(inode);
1730 			ret = btrfs_unlink_inode(trans, root, dir, inode,
1731 						 name, name_len);
1732 			BUG_ON(ret);
1733 
1734 			btrfs_run_delayed_items(trans, root);
1735 
1736 			kfree(name);
1737 			iput(inode);
1738 
1739 			/* there might still be more names under this key
1740 			 * check and repeat if required
1741 			 */
1742 			ret = btrfs_search_slot(NULL, root, dir_key, path,
1743 						0, 0);
1744 			if (ret == 0)
1745 				goto again;
1746 			ret = 0;
1747 			goto out;
1748 		}
1749 		btrfs_release_path(log_path);
1750 		kfree(name);
1751 
1752 		ptr = (unsigned long)(di + 1);
1753 		ptr += name_len;
1754 	}
1755 	ret = 0;
1756 out:
1757 	btrfs_release_path(path);
1758 	btrfs_release_path(log_path);
1759 	return ret;
1760 }
1761 
1762 /*
1763  * deletion replay happens before we copy any new directory items
1764  * out of the log or out of backreferences from inodes.  It
1765  * scans the log to find ranges of keys that log is authoritative for,
1766  * and then scans the directory to find items in those ranges that are
1767  * not present in the log.
1768  *
1769  * Anything we don't find in the log is unlinked and removed from the
1770  * directory.
1771  */
1772 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1773 				       struct btrfs_root *root,
1774 				       struct btrfs_root *log,
1775 				       struct btrfs_path *path,
1776 				       u64 dirid, int del_all)
1777 {
1778 	u64 range_start;
1779 	u64 range_end;
1780 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1781 	int ret = 0;
1782 	struct btrfs_key dir_key;
1783 	struct btrfs_key found_key;
1784 	struct btrfs_path *log_path;
1785 	struct inode *dir;
1786 
1787 	dir_key.objectid = dirid;
1788 	dir_key.type = BTRFS_DIR_ITEM_KEY;
1789 	log_path = btrfs_alloc_path();
1790 	if (!log_path)
1791 		return -ENOMEM;
1792 
1793 	dir = read_one_inode(root, dirid);
1794 	/* it isn't an error if the inode isn't there, that can happen
1795 	 * because we replay the deletes before we copy in the inode item
1796 	 * from the log
1797 	 */
1798 	if (!dir) {
1799 		btrfs_free_path(log_path);
1800 		return 0;
1801 	}
1802 again:
1803 	range_start = 0;
1804 	range_end = 0;
1805 	while (1) {
1806 		if (del_all)
1807 			range_end = (u64)-1;
1808 		else {
1809 			ret = find_dir_range(log, path, dirid, key_type,
1810 					     &range_start, &range_end);
1811 			if (ret != 0)
1812 				break;
1813 		}
1814 
1815 		dir_key.offset = range_start;
1816 		while (1) {
1817 			int nritems;
1818 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1819 						0, 0);
1820 			if (ret < 0)
1821 				goto out;
1822 
1823 			nritems = btrfs_header_nritems(path->nodes[0]);
1824 			if (path->slots[0] >= nritems) {
1825 				ret = btrfs_next_leaf(root, path);
1826 				if (ret)
1827 					break;
1828 			}
1829 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1830 					      path->slots[0]);
1831 			if (found_key.objectid != dirid ||
1832 			    found_key.type != dir_key.type)
1833 				goto next_type;
1834 
1835 			if (found_key.offset > range_end)
1836 				break;
1837 
1838 			ret = check_item_in_log(trans, root, log, path,
1839 						log_path, dir,
1840 						&found_key);
1841 			BUG_ON(ret);
1842 			if (found_key.offset == (u64)-1)
1843 				break;
1844 			dir_key.offset = found_key.offset + 1;
1845 		}
1846 		btrfs_release_path(path);
1847 		if (range_end == (u64)-1)
1848 			break;
1849 		range_start = range_end + 1;
1850 	}
1851 
1852 next_type:
1853 	ret = 0;
1854 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1855 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
1856 		dir_key.type = BTRFS_DIR_INDEX_KEY;
1857 		btrfs_release_path(path);
1858 		goto again;
1859 	}
1860 out:
1861 	btrfs_release_path(path);
1862 	btrfs_free_path(log_path);
1863 	iput(dir);
1864 	return ret;
1865 }
1866 
1867 /*
1868  * the process_func used to replay items from the log tree.  This
1869  * gets called in two different stages.  The first stage just looks
1870  * for inodes and makes sure they are all copied into the subvolume.
1871  *
1872  * The second stage copies all the other item types from the log into
1873  * the subvolume.  The two stage approach is slower, but gets rid of
1874  * lots of complexity around inodes referencing other inodes that exist
1875  * only in the log (references come from either directory items or inode
1876  * back refs).
1877  */
1878 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1879 			     struct walk_control *wc, u64 gen)
1880 {
1881 	int nritems;
1882 	struct btrfs_path *path;
1883 	struct btrfs_root *root = wc->replay_dest;
1884 	struct btrfs_key key;
1885 	int level;
1886 	int i;
1887 	int ret;
1888 
1889 	ret = btrfs_read_buffer(eb, gen);
1890 	if (ret)
1891 		return ret;
1892 
1893 	level = btrfs_header_level(eb);
1894 
1895 	if (level != 0)
1896 		return 0;
1897 
1898 	path = btrfs_alloc_path();
1899 	if (!path)
1900 		return -ENOMEM;
1901 
1902 	nritems = btrfs_header_nritems(eb);
1903 	for (i = 0; i < nritems; i++) {
1904 		btrfs_item_key_to_cpu(eb, &key, i);
1905 
1906 		/* inode keys are done during the first stage */
1907 		if (key.type == BTRFS_INODE_ITEM_KEY &&
1908 		    wc->stage == LOG_WALK_REPLAY_INODES) {
1909 			struct btrfs_inode_item *inode_item;
1910 			u32 mode;
1911 
1912 			inode_item = btrfs_item_ptr(eb, i,
1913 					    struct btrfs_inode_item);
1914 			mode = btrfs_inode_mode(eb, inode_item);
1915 			if (S_ISDIR(mode)) {
1916 				ret = replay_dir_deletes(wc->trans,
1917 					 root, log, path, key.objectid, 0);
1918 				BUG_ON(ret);
1919 			}
1920 			ret = overwrite_item(wc->trans, root, path,
1921 					     eb, i, &key);
1922 			BUG_ON(ret);
1923 
1924 			/* for regular files, make sure corresponding
1925 			 * orhpan item exist. extents past the new EOF
1926 			 * will be truncated later by orphan cleanup.
1927 			 */
1928 			if (S_ISREG(mode)) {
1929 				ret = insert_orphan_item(wc->trans, root,
1930 							 key.objectid);
1931 				BUG_ON(ret);
1932 			}
1933 
1934 			ret = link_to_fixup_dir(wc->trans, root,
1935 						path, key.objectid);
1936 			BUG_ON(ret);
1937 		}
1938 		if (wc->stage < LOG_WALK_REPLAY_ALL)
1939 			continue;
1940 
1941 		/* these keys are simply copied */
1942 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
1943 			ret = overwrite_item(wc->trans, root, path,
1944 					     eb, i, &key);
1945 			BUG_ON(ret);
1946 		} else if (key.type == BTRFS_INODE_REF_KEY) {
1947 			ret = add_inode_ref(wc->trans, root, log, path,
1948 					    eb, i, &key);
1949 			BUG_ON(ret && ret != -ENOENT);
1950 		} else if (key.type == BTRFS_INODE_EXTREF_KEY) {
1951 			ret = add_inode_ref(wc->trans, root, log, path,
1952 					    eb, i, &key);
1953 			BUG_ON(ret && ret != -ENOENT);
1954 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1955 			ret = replay_one_extent(wc->trans, root, path,
1956 						eb, i, &key);
1957 			BUG_ON(ret);
1958 		} else if (key.type == BTRFS_DIR_ITEM_KEY ||
1959 			   key.type == BTRFS_DIR_INDEX_KEY) {
1960 			ret = replay_one_dir_item(wc->trans, root, path,
1961 						  eb, i, &key);
1962 			BUG_ON(ret);
1963 		}
1964 	}
1965 	btrfs_free_path(path);
1966 	return 0;
1967 }
1968 
1969 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1970 				   struct btrfs_root *root,
1971 				   struct btrfs_path *path, int *level,
1972 				   struct walk_control *wc)
1973 {
1974 	u64 root_owner;
1975 	u64 bytenr;
1976 	u64 ptr_gen;
1977 	struct extent_buffer *next;
1978 	struct extent_buffer *cur;
1979 	struct extent_buffer *parent;
1980 	u32 blocksize;
1981 	int ret = 0;
1982 
1983 	WARN_ON(*level < 0);
1984 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1985 
1986 	while (*level > 0) {
1987 		WARN_ON(*level < 0);
1988 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
1989 		cur = path->nodes[*level];
1990 
1991 		if (btrfs_header_level(cur) != *level)
1992 			WARN_ON(1);
1993 
1994 		if (path->slots[*level] >=
1995 		    btrfs_header_nritems(cur))
1996 			break;
1997 
1998 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1999 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2000 		blocksize = btrfs_level_size(root, *level - 1);
2001 
2002 		parent = path->nodes[*level];
2003 		root_owner = btrfs_header_owner(parent);
2004 
2005 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2006 		if (!next)
2007 			return -ENOMEM;
2008 
2009 		if (*level == 1) {
2010 			ret = wc->process_func(root, next, wc, ptr_gen);
2011 			if (ret)
2012 				return ret;
2013 
2014 			path->slots[*level]++;
2015 			if (wc->free) {
2016 				ret = btrfs_read_buffer(next, ptr_gen);
2017 				if (ret) {
2018 					free_extent_buffer(next);
2019 					return ret;
2020 				}
2021 
2022 				btrfs_tree_lock(next);
2023 				btrfs_set_lock_blocking(next);
2024 				clean_tree_block(trans, root, next);
2025 				btrfs_wait_tree_block_writeback(next);
2026 				btrfs_tree_unlock(next);
2027 
2028 				WARN_ON(root_owner !=
2029 					BTRFS_TREE_LOG_OBJECTID);
2030 				ret = btrfs_free_and_pin_reserved_extent(root,
2031 							 bytenr, blocksize);
2032 				BUG_ON(ret); /* -ENOMEM or logic errors */
2033 			}
2034 			free_extent_buffer(next);
2035 			continue;
2036 		}
2037 		ret = btrfs_read_buffer(next, ptr_gen);
2038 		if (ret) {
2039 			free_extent_buffer(next);
2040 			return ret;
2041 		}
2042 
2043 		WARN_ON(*level <= 0);
2044 		if (path->nodes[*level-1])
2045 			free_extent_buffer(path->nodes[*level-1]);
2046 		path->nodes[*level-1] = next;
2047 		*level = btrfs_header_level(next);
2048 		path->slots[*level] = 0;
2049 		cond_resched();
2050 	}
2051 	WARN_ON(*level < 0);
2052 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2053 
2054 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2055 
2056 	cond_resched();
2057 	return 0;
2058 }
2059 
2060 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2061 				 struct btrfs_root *root,
2062 				 struct btrfs_path *path, int *level,
2063 				 struct walk_control *wc)
2064 {
2065 	u64 root_owner;
2066 	int i;
2067 	int slot;
2068 	int ret;
2069 
2070 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2071 		slot = path->slots[i];
2072 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2073 			path->slots[i]++;
2074 			*level = i;
2075 			WARN_ON(*level == 0);
2076 			return 0;
2077 		} else {
2078 			struct extent_buffer *parent;
2079 			if (path->nodes[*level] == root->node)
2080 				parent = path->nodes[*level];
2081 			else
2082 				parent = path->nodes[*level + 1];
2083 
2084 			root_owner = btrfs_header_owner(parent);
2085 			ret = wc->process_func(root, path->nodes[*level], wc,
2086 				 btrfs_header_generation(path->nodes[*level]));
2087 			if (ret)
2088 				return ret;
2089 
2090 			if (wc->free) {
2091 				struct extent_buffer *next;
2092 
2093 				next = path->nodes[*level];
2094 
2095 				btrfs_tree_lock(next);
2096 				btrfs_set_lock_blocking(next);
2097 				clean_tree_block(trans, root, next);
2098 				btrfs_wait_tree_block_writeback(next);
2099 				btrfs_tree_unlock(next);
2100 
2101 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2102 				ret = btrfs_free_and_pin_reserved_extent(root,
2103 						path->nodes[*level]->start,
2104 						path->nodes[*level]->len);
2105 				BUG_ON(ret);
2106 			}
2107 			free_extent_buffer(path->nodes[*level]);
2108 			path->nodes[*level] = NULL;
2109 			*level = i + 1;
2110 		}
2111 	}
2112 	return 1;
2113 }
2114 
2115 /*
2116  * drop the reference count on the tree rooted at 'snap'.  This traverses
2117  * the tree freeing any blocks that have a ref count of zero after being
2118  * decremented.
2119  */
2120 static int walk_log_tree(struct btrfs_trans_handle *trans,
2121 			 struct btrfs_root *log, struct walk_control *wc)
2122 {
2123 	int ret = 0;
2124 	int wret;
2125 	int level;
2126 	struct btrfs_path *path;
2127 	int i;
2128 	int orig_level;
2129 
2130 	path = btrfs_alloc_path();
2131 	if (!path)
2132 		return -ENOMEM;
2133 
2134 	level = btrfs_header_level(log->node);
2135 	orig_level = level;
2136 	path->nodes[level] = log->node;
2137 	extent_buffer_get(log->node);
2138 	path->slots[level] = 0;
2139 
2140 	while (1) {
2141 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2142 		if (wret > 0)
2143 			break;
2144 		if (wret < 0) {
2145 			ret = wret;
2146 			goto out;
2147 		}
2148 
2149 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2150 		if (wret > 0)
2151 			break;
2152 		if (wret < 0) {
2153 			ret = wret;
2154 			goto out;
2155 		}
2156 	}
2157 
2158 	/* was the root node processed? if not, catch it here */
2159 	if (path->nodes[orig_level]) {
2160 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2161 			 btrfs_header_generation(path->nodes[orig_level]));
2162 		if (ret)
2163 			goto out;
2164 		if (wc->free) {
2165 			struct extent_buffer *next;
2166 
2167 			next = path->nodes[orig_level];
2168 
2169 			btrfs_tree_lock(next);
2170 			btrfs_set_lock_blocking(next);
2171 			clean_tree_block(trans, log, next);
2172 			btrfs_wait_tree_block_writeback(next);
2173 			btrfs_tree_unlock(next);
2174 
2175 			WARN_ON(log->root_key.objectid !=
2176 				BTRFS_TREE_LOG_OBJECTID);
2177 			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2178 							 next->len);
2179 			BUG_ON(ret); /* -ENOMEM or logic errors */
2180 		}
2181 	}
2182 
2183 out:
2184 	for (i = 0; i <= orig_level; i++) {
2185 		if (path->nodes[i]) {
2186 			free_extent_buffer(path->nodes[i]);
2187 			path->nodes[i] = NULL;
2188 		}
2189 	}
2190 	btrfs_free_path(path);
2191 	return ret;
2192 }
2193 
2194 /*
2195  * helper function to update the item for a given subvolumes log root
2196  * in the tree of log roots
2197  */
2198 static int update_log_root(struct btrfs_trans_handle *trans,
2199 			   struct btrfs_root *log)
2200 {
2201 	int ret;
2202 
2203 	if (log->log_transid == 1) {
2204 		/* insert root item on the first sync */
2205 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2206 				&log->root_key, &log->root_item);
2207 	} else {
2208 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2209 				&log->root_key, &log->root_item);
2210 	}
2211 	return ret;
2212 }
2213 
2214 static int wait_log_commit(struct btrfs_trans_handle *trans,
2215 			   struct btrfs_root *root, unsigned long transid)
2216 {
2217 	DEFINE_WAIT(wait);
2218 	int index = transid % 2;
2219 
2220 	/*
2221 	 * we only allow two pending log transactions at a time,
2222 	 * so we know that if ours is more than 2 older than the
2223 	 * current transaction, we're done
2224 	 */
2225 	do {
2226 		prepare_to_wait(&root->log_commit_wait[index],
2227 				&wait, TASK_UNINTERRUPTIBLE);
2228 		mutex_unlock(&root->log_mutex);
2229 
2230 		if (root->fs_info->last_trans_log_full_commit !=
2231 		    trans->transid && root->log_transid < transid + 2 &&
2232 		    atomic_read(&root->log_commit[index]))
2233 			schedule();
2234 
2235 		finish_wait(&root->log_commit_wait[index], &wait);
2236 		mutex_lock(&root->log_mutex);
2237 	} while (root->fs_info->last_trans_log_full_commit !=
2238 		 trans->transid && root->log_transid < transid + 2 &&
2239 		 atomic_read(&root->log_commit[index]));
2240 	return 0;
2241 }
2242 
2243 static void wait_for_writer(struct btrfs_trans_handle *trans,
2244 			    struct btrfs_root *root)
2245 {
2246 	DEFINE_WAIT(wait);
2247 	while (root->fs_info->last_trans_log_full_commit !=
2248 	       trans->transid && atomic_read(&root->log_writers)) {
2249 		prepare_to_wait(&root->log_writer_wait,
2250 				&wait, TASK_UNINTERRUPTIBLE);
2251 		mutex_unlock(&root->log_mutex);
2252 		if (root->fs_info->last_trans_log_full_commit !=
2253 		    trans->transid && atomic_read(&root->log_writers))
2254 			schedule();
2255 		mutex_lock(&root->log_mutex);
2256 		finish_wait(&root->log_writer_wait, &wait);
2257 	}
2258 }
2259 
2260 /*
2261  * btrfs_sync_log does sends a given tree log down to the disk and
2262  * updates the super blocks to record it.  When this call is done,
2263  * you know that any inodes previously logged are safely on disk only
2264  * if it returns 0.
2265  *
2266  * Any other return value means you need to call btrfs_commit_transaction.
2267  * Some of the edge cases for fsyncing directories that have had unlinks
2268  * or renames done in the past mean that sometimes the only safe
2269  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2270  * that has happened.
2271  */
2272 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2273 		   struct btrfs_root *root)
2274 {
2275 	int index1;
2276 	int index2;
2277 	int mark;
2278 	int ret;
2279 	struct btrfs_root *log = root->log_root;
2280 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2281 	unsigned long log_transid = 0;
2282 
2283 	mutex_lock(&root->log_mutex);
2284 	index1 = root->log_transid % 2;
2285 	if (atomic_read(&root->log_commit[index1])) {
2286 		wait_log_commit(trans, root, root->log_transid);
2287 		mutex_unlock(&root->log_mutex);
2288 		return 0;
2289 	}
2290 	atomic_set(&root->log_commit[index1], 1);
2291 
2292 	/* wait for previous tree log sync to complete */
2293 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2294 		wait_log_commit(trans, root, root->log_transid - 1);
2295 	while (1) {
2296 		int batch = atomic_read(&root->log_batch);
2297 		/* when we're on an ssd, just kick the log commit out */
2298 		if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2299 			mutex_unlock(&root->log_mutex);
2300 			schedule_timeout_uninterruptible(1);
2301 			mutex_lock(&root->log_mutex);
2302 		}
2303 		wait_for_writer(trans, root);
2304 		if (batch == atomic_read(&root->log_batch))
2305 			break;
2306 	}
2307 
2308 	/* bail out if we need to do a full commit */
2309 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2310 		ret = -EAGAIN;
2311 		mutex_unlock(&root->log_mutex);
2312 		goto out;
2313 	}
2314 
2315 	log_transid = root->log_transid;
2316 	if (log_transid % 2 == 0)
2317 		mark = EXTENT_DIRTY;
2318 	else
2319 		mark = EXTENT_NEW;
2320 
2321 	/* we start IO on  all the marked extents here, but we don't actually
2322 	 * wait for them until later.
2323 	 */
2324 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2325 	if (ret) {
2326 		btrfs_abort_transaction(trans, root, ret);
2327 		mutex_unlock(&root->log_mutex);
2328 		goto out;
2329 	}
2330 
2331 	btrfs_set_root_node(&log->root_item, log->node);
2332 
2333 	root->log_transid++;
2334 	log->log_transid = root->log_transid;
2335 	root->log_start_pid = 0;
2336 	smp_mb();
2337 	/*
2338 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2339 	 * in their headers. new modifications of the log will be written to
2340 	 * new positions. so it's safe to allow log writers to go in.
2341 	 */
2342 	mutex_unlock(&root->log_mutex);
2343 
2344 	mutex_lock(&log_root_tree->log_mutex);
2345 	atomic_inc(&log_root_tree->log_batch);
2346 	atomic_inc(&log_root_tree->log_writers);
2347 	mutex_unlock(&log_root_tree->log_mutex);
2348 
2349 	ret = update_log_root(trans, log);
2350 
2351 	mutex_lock(&log_root_tree->log_mutex);
2352 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2353 		smp_mb();
2354 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2355 			wake_up(&log_root_tree->log_writer_wait);
2356 	}
2357 
2358 	if (ret) {
2359 		if (ret != -ENOSPC) {
2360 			btrfs_abort_transaction(trans, root, ret);
2361 			mutex_unlock(&log_root_tree->log_mutex);
2362 			goto out;
2363 		}
2364 		root->fs_info->last_trans_log_full_commit = trans->transid;
2365 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2366 		mutex_unlock(&log_root_tree->log_mutex);
2367 		ret = -EAGAIN;
2368 		goto out;
2369 	}
2370 
2371 	index2 = log_root_tree->log_transid % 2;
2372 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2373 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2374 		wait_log_commit(trans, log_root_tree,
2375 				log_root_tree->log_transid);
2376 		mutex_unlock(&log_root_tree->log_mutex);
2377 		ret = 0;
2378 		goto out;
2379 	}
2380 	atomic_set(&log_root_tree->log_commit[index2], 1);
2381 
2382 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2383 		wait_log_commit(trans, log_root_tree,
2384 				log_root_tree->log_transid - 1);
2385 	}
2386 
2387 	wait_for_writer(trans, log_root_tree);
2388 
2389 	/*
2390 	 * now that we've moved on to the tree of log tree roots,
2391 	 * check the full commit flag again
2392 	 */
2393 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2394 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2395 		mutex_unlock(&log_root_tree->log_mutex);
2396 		ret = -EAGAIN;
2397 		goto out_wake_log_root;
2398 	}
2399 
2400 	ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2401 				&log_root_tree->dirty_log_pages,
2402 				EXTENT_DIRTY | EXTENT_NEW);
2403 	if (ret) {
2404 		btrfs_abort_transaction(trans, root, ret);
2405 		mutex_unlock(&log_root_tree->log_mutex);
2406 		goto out_wake_log_root;
2407 	}
2408 	btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2409 
2410 	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2411 				log_root_tree->node->start);
2412 	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2413 				btrfs_header_level(log_root_tree->node));
2414 
2415 	log_root_tree->log_transid++;
2416 	smp_mb();
2417 
2418 	mutex_unlock(&log_root_tree->log_mutex);
2419 
2420 	/*
2421 	 * nobody else is going to jump in and write the the ctree
2422 	 * super here because the log_commit atomic below is protecting
2423 	 * us.  We must be called with a transaction handle pinning
2424 	 * the running transaction open, so a full commit can't hop
2425 	 * in and cause problems either.
2426 	 */
2427 	btrfs_scrub_pause_super(root);
2428 	ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2429 	btrfs_scrub_continue_super(root);
2430 	if (ret) {
2431 		btrfs_abort_transaction(trans, root, ret);
2432 		goto out_wake_log_root;
2433 	}
2434 
2435 	mutex_lock(&root->log_mutex);
2436 	if (root->last_log_commit < log_transid)
2437 		root->last_log_commit = log_transid;
2438 	mutex_unlock(&root->log_mutex);
2439 
2440 out_wake_log_root:
2441 	atomic_set(&log_root_tree->log_commit[index2], 0);
2442 	smp_mb();
2443 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2444 		wake_up(&log_root_tree->log_commit_wait[index2]);
2445 out:
2446 	atomic_set(&root->log_commit[index1], 0);
2447 	smp_mb();
2448 	if (waitqueue_active(&root->log_commit_wait[index1]))
2449 		wake_up(&root->log_commit_wait[index1]);
2450 	return ret;
2451 }
2452 
2453 static void free_log_tree(struct btrfs_trans_handle *trans,
2454 			  struct btrfs_root *log)
2455 {
2456 	int ret;
2457 	u64 start;
2458 	u64 end;
2459 	struct walk_control wc = {
2460 		.free = 1,
2461 		.process_func = process_one_buffer
2462 	};
2463 
2464 	ret = walk_log_tree(trans, log, &wc);
2465 	BUG_ON(ret);
2466 
2467 	while (1) {
2468 		ret = find_first_extent_bit(&log->dirty_log_pages,
2469 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2470 				NULL);
2471 		if (ret)
2472 			break;
2473 
2474 		clear_extent_bits(&log->dirty_log_pages, start, end,
2475 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2476 	}
2477 
2478 	free_extent_buffer(log->node);
2479 	kfree(log);
2480 }
2481 
2482 /*
2483  * free all the extents used by the tree log.  This should be called
2484  * at commit time of the full transaction
2485  */
2486 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2487 {
2488 	if (root->log_root) {
2489 		free_log_tree(trans, root->log_root);
2490 		root->log_root = NULL;
2491 	}
2492 	return 0;
2493 }
2494 
2495 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2496 			     struct btrfs_fs_info *fs_info)
2497 {
2498 	if (fs_info->log_root_tree) {
2499 		free_log_tree(trans, fs_info->log_root_tree);
2500 		fs_info->log_root_tree = NULL;
2501 	}
2502 	return 0;
2503 }
2504 
2505 /*
2506  * If both a file and directory are logged, and unlinks or renames are
2507  * mixed in, we have a few interesting corners:
2508  *
2509  * create file X in dir Y
2510  * link file X to X.link in dir Y
2511  * fsync file X
2512  * unlink file X but leave X.link
2513  * fsync dir Y
2514  *
2515  * After a crash we would expect only X.link to exist.  But file X
2516  * didn't get fsync'd again so the log has back refs for X and X.link.
2517  *
2518  * We solve this by removing directory entries and inode backrefs from the
2519  * log when a file that was logged in the current transaction is
2520  * unlinked.  Any later fsync will include the updated log entries, and
2521  * we'll be able to reconstruct the proper directory items from backrefs.
2522  *
2523  * This optimizations allows us to avoid relogging the entire inode
2524  * or the entire directory.
2525  */
2526 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2527 				 struct btrfs_root *root,
2528 				 const char *name, int name_len,
2529 				 struct inode *dir, u64 index)
2530 {
2531 	struct btrfs_root *log;
2532 	struct btrfs_dir_item *di;
2533 	struct btrfs_path *path;
2534 	int ret;
2535 	int err = 0;
2536 	int bytes_del = 0;
2537 	u64 dir_ino = btrfs_ino(dir);
2538 
2539 	if (BTRFS_I(dir)->logged_trans < trans->transid)
2540 		return 0;
2541 
2542 	ret = join_running_log_trans(root);
2543 	if (ret)
2544 		return 0;
2545 
2546 	mutex_lock(&BTRFS_I(dir)->log_mutex);
2547 
2548 	log = root->log_root;
2549 	path = btrfs_alloc_path();
2550 	if (!path) {
2551 		err = -ENOMEM;
2552 		goto out_unlock;
2553 	}
2554 
2555 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2556 				   name, name_len, -1);
2557 	if (IS_ERR(di)) {
2558 		err = PTR_ERR(di);
2559 		goto fail;
2560 	}
2561 	if (di) {
2562 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2563 		bytes_del += name_len;
2564 		BUG_ON(ret);
2565 	}
2566 	btrfs_release_path(path);
2567 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2568 					 index, name, name_len, -1);
2569 	if (IS_ERR(di)) {
2570 		err = PTR_ERR(di);
2571 		goto fail;
2572 	}
2573 	if (di) {
2574 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2575 		bytes_del += name_len;
2576 		BUG_ON(ret);
2577 	}
2578 
2579 	/* update the directory size in the log to reflect the names
2580 	 * we have removed
2581 	 */
2582 	if (bytes_del) {
2583 		struct btrfs_key key;
2584 
2585 		key.objectid = dir_ino;
2586 		key.offset = 0;
2587 		key.type = BTRFS_INODE_ITEM_KEY;
2588 		btrfs_release_path(path);
2589 
2590 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2591 		if (ret < 0) {
2592 			err = ret;
2593 			goto fail;
2594 		}
2595 		if (ret == 0) {
2596 			struct btrfs_inode_item *item;
2597 			u64 i_size;
2598 
2599 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2600 					      struct btrfs_inode_item);
2601 			i_size = btrfs_inode_size(path->nodes[0], item);
2602 			if (i_size > bytes_del)
2603 				i_size -= bytes_del;
2604 			else
2605 				i_size = 0;
2606 			btrfs_set_inode_size(path->nodes[0], item, i_size);
2607 			btrfs_mark_buffer_dirty(path->nodes[0]);
2608 		} else
2609 			ret = 0;
2610 		btrfs_release_path(path);
2611 	}
2612 fail:
2613 	btrfs_free_path(path);
2614 out_unlock:
2615 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2616 	if (ret == -ENOSPC) {
2617 		root->fs_info->last_trans_log_full_commit = trans->transid;
2618 		ret = 0;
2619 	} else if (ret < 0)
2620 		btrfs_abort_transaction(trans, root, ret);
2621 
2622 	btrfs_end_log_trans(root);
2623 
2624 	return err;
2625 }
2626 
2627 /* see comments for btrfs_del_dir_entries_in_log */
2628 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2629 			       struct btrfs_root *root,
2630 			       const char *name, int name_len,
2631 			       struct inode *inode, u64 dirid)
2632 {
2633 	struct btrfs_root *log;
2634 	u64 index;
2635 	int ret;
2636 
2637 	if (BTRFS_I(inode)->logged_trans < trans->transid)
2638 		return 0;
2639 
2640 	ret = join_running_log_trans(root);
2641 	if (ret)
2642 		return 0;
2643 	log = root->log_root;
2644 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2645 
2646 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2647 				  dirid, &index);
2648 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2649 	if (ret == -ENOSPC) {
2650 		root->fs_info->last_trans_log_full_commit = trans->transid;
2651 		ret = 0;
2652 	} else if (ret < 0 && ret != -ENOENT)
2653 		btrfs_abort_transaction(trans, root, ret);
2654 	btrfs_end_log_trans(root);
2655 
2656 	return ret;
2657 }
2658 
2659 /*
2660  * creates a range item in the log for 'dirid'.  first_offset and
2661  * last_offset tell us which parts of the key space the log should
2662  * be considered authoritative for.
2663  */
2664 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2665 				       struct btrfs_root *log,
2666 				       struct btrfs_path *path,
2667 				       int key_type, u64 dirid,
2668 				       u64 first_offset, u64 last_offset)
2669 {
2670 	int ret;
2671 	struct btrfs_key key;
2672 	struct btrfs_dir_log_item *item;
2673 
2674 	key.objectid = dirid;
2675 	key.offset = first_offset;
2676 	if (key_type == BTRFS_DIR_ITEM_KEY)
2677 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2678 	else
2679 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2680 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2681 	if (ret)
2682 		return ret;
2683 
2684 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2685 			      struct btrfs_dir_log_item);
2686 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2687 	btrfs_mark_buffer_dirty(path->nodes[0]);
2688 	btrfs_release_path(path);
2689 	return 0;
2690 }
2691 
2692 /*
2693  * log all the items included in the current transaction for a given
2694  * directory.  This also creates the range items in the log tree required
2695  * to replay anything deleted before the fsync
2696  */
2697 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2698 			  struct btrfs_root *root, struct inode *inode,
2699 			  struct btrfs_path *path,
2700 			  struct btrfs_path *dst_path, int key_type,
2701 			  u64 min_offset, u64 *last_offset_ret)
2702 {
2703 	struct btrfs_key min_key;
2704 	struct btrfs_key max_key;
2705 	struct btrfs_root *log = root->log_root;
2706 	struct extent_buffer *src;
2707 	int err = 0;
2708 	int ret;
2709 	int i;
2710 	int nritems;
2711 	u64 first_offset = min_offset;
2712 	u64 last_offset = (u64)-1;
2713 	u64 ino = btrfs_ino(inode);
2714 
2715 	log = root->log_root;
2716 	max_key.objectid = ino;
2717 	max_key.offset = (u64)-1;
2718 	max_key.type = key_type;
2719 
2720 	min_key.objectid = ino;
2721 	min_key.type = key_type;
2722 	min_key.offset = min_offset;
2723 
2724 	path->keep_locks = 1;
2725 
2726 	ret = btrfs_search_forward(root, &min_key, &max_key,
2727 				   path, 0, trans->transid);
2728 
2729 	/*
2730 	 * we didn't find anything from this transaction, see if there
2731 	 * is anything at all
2732 	 */
2733 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2734 		min_key.objectid = ino;
2735 		min_key.type = key_type;
2736 		min_key.offset = (u64)-1;
2737 		btrfs_release_path(path);
2738 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2739 		if (ret < 0) {
2740 			btrfs_release_path(path);
2741 			return ret;
2742 		}
2743 		ret = btrfs_previous_item(root, path, ino, key_type);
2744 
2745 		/* if ret == 0 there are items for this type,
2746 		 * create a range to tell us the last key of this type.
2747 		 * otherwise, there are no items in this directory after
2748 		 * *min_offset, and we create a range to indicate that.
2749 		 */
2750 		if (ret == 0) {
2751 			struct btrfs_key tmp;
2752 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2753 					      path->slots[0]);
2754 			if (key_type == tmp.type)
2755 				first_offset = max(min_offset, tmp.offset) + 1;
2756 		}
2757 		goto done;
2758 	}
2759 
2760 	/* go backward to find any previous key */
2761 	ret = btrfs_previous_item(root, path, ino, key_type);
2762 	if (ret == 0) {
2763 		struct btrfs_key tmp;
2764 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2765 		if (key_type == tmp.type) {
2766 			first_offset = tmp.offset;
2767 			ret = overwrite_item(trans, log, dst_path,
2768 					     path->nodes[0], path->slots[0],
2769 					     &tmp);
2770 			if (ret) {
2771 				err = ret;
2772 				goto done;
2773 			}
2774 		}
2775 	}
2776 	btrfs_release_path(path);
2777 
2778 	/* find the first key from this transaction again */
2779 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2780 	if (ret != 0) {
2781 		WARN_ON(1);
2782 		goto done;
2783 	}
2784 
2785 	/*
2786 	 * we have a block from this transaction, log every item in it
2787 	 * from our directory
2788 	 */
2789 	while (1) {
2790 		struct btrfs_key tmp;
2791 		src = path->nodes[0];
2792 		nritems = btrfs_header_nritems(src);
2793 		for (i = path->slots[0]; i < nritems; i++) {
2794 			btrfs_item_key_to_cpu(src, &min_key, i);
2795 
2796 			if (min_key.objectid != ino || min_key.type != key_type)
2797 				goto done;
2798 			ret = overwrite_item(trans, log, dst_path, src, i,
2799 					     &min_key);
2800 			if (ret) {
2801 				err = ret;
2802 				goto done;
2803 			}
2804 		}
2805 		path->slots[0] = nritems;
2806 
2807 		/*
2808 		 * look ahead to the next item and see if it is also
2809 		 * from this directory and from this transaction
2810 		 */
2811 		ret = btrfs_next_leaf(root, path);
2812 		if (ret == 1) {
2813 			last_offset = (u64)-1;
2814 			goto done;
2815 		}
2816 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2817 		if (tmp.objectid != ino || tmp.type != key_type) {
2818 			last_offset = (u64)-1;
2819 			goto done;
2820 		}
2821 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2822 			ret = overwrite_item(trans, log, dst_path,
2823 					     path->nodes[0], path->slots[0],
2824 					     &tmp);
2825 			if (ret)
2826 				err = ret;
2827 			else
2828 				last_offset = tmp.offset;
2829 			goto done;
2830 		}
2831 	}
2832 done:
2833 	btrfs_release_path(path);
2834 	btrfs_release_path(dst_path);
2835 
2836 	if (err == 0) {
2837 		*last_offset_ret = last_offset;
2838 		/*
2839 		 * insert the log range keys to indicate where the log
2840 		 * is valid
2841 		 */
2842 		ret = insert_dir_log_key(trans, log, path, key_type,
2843 					 ino, first_offset, last_offset);
2844 		if (ret)
2845 			err = ret;
2846 	}
2847 	return err;
2848 }
2849 
2850 /*
2851  * logging directories is very similar to logging inodes, We find all the items
2852  * from the current transaction and write them to the log.
2853  *
2854  * The recovery code scans the directory in the subvolume, and if it finds a
2855  * key in the range logged that is not present in the log tree, then it means
2856  * that dir entry was unlinked during the transaction.
2857  *
2858  * In order for that scan to work, we must include one key smaller than
2859  * the smallest logged by this transaction and one key larger than the largest
2860  * key logged by this transaction.
2861  */
2862 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2863 			  struct btrfs_root *root, struct inode *inode,
2864 			  struct btrfs_path *path,
2865 			  struct btrfs_path *dst_path)
2866 {
2867 	u64 min_key;
2868 	u64 max_key;
2869 	int ret;
2870 	int key_type = BTRFS_DIR_ITEM_KEY;
2871 
2872 again:
2873 	min_key = 0;
2874 	max_key = 0;
2875 	while (1) {
2876 		ret = log_dir_items(trans, root, inode, path,
2877 				    dst_path, key_type, min_key,
2878 				    &max_key);
2879 		if (ret)
2880 			return ret;
2881 		if (max_key == (u64)-1)
2882 			break;
2883 		min_key = max_key + 1;
2884 	}
2885 
2886 	if (key_type == BTRFS_DIR_ITEM_KEY) {
2887 		key_type = BTRFS_DIR_INDEX_KEY;
2888 		goto again;
2889 	}
2890 	return 0;
2891 }
2892 
2893 /*
2894  * a helper function to drop items from the log before we relog an
2895  * inode.  max_key_type indicates the highest item type to remove.
2896  * This cannot be run for file data extents because it does not
2897  * free the extents they point to.
2898  */
2899 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2900 				  struct btrfs_root *log,
2901 				  struct btrfs_path *path,
2902 				  u64 objectid, int max_key_type)
2903 {
2904 	int ret;
2905 	struct btrfs_key key;
2906 	struct btrfs_key found_key;
2907 	int start_slot;
2908 
2909 	key.objectid = objectid;
2910 	key.type = max_key_type;
2911 	key.offset = (u64)-1;
2912 
2913 	while (1) {
2914 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2915 		BUG_ON(ret == 0);
2916 		if (ret < 0)
2917 			break;
2918 
2919 		if (path->slots[0] == 0)
2920 			break;
2921 
2922 		path->slots[0]--;
2923 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2924 				      path->slots[0]);
2925 
2926 		if (found_key.objectid != objectid)
2927 			break;
2928 
2929 		found_key.offset = 0;
2930 		found_key.type = 0;
2931 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
2932 				       &start_slot);
2933 
2934 		ret = btrfs_del_items(trans, log, path, start_slot,
2935 				      path->slots[0] - start_slot + 1);
2936 		/*
2937 		 * If start slot isn't 0 then we don't need to re-search, we've
2938 		 * found the last guy with the objectid in this tree.
2939 		 */
2940 		if (ret || start_slot != 0)
2941 			break;
2942 		btrfs_release_path(path);
2943 	}
2944 	btrfs_release_path(path);
2945 	if (ret > 0)
2946 		ret = 0;
2947 	return ret;
2948 }
2949 
2950 static void fill_inode_item(struct btrfs_trans_handle *trans,
2951 			    struct extent_buffer *leaf,
2952 			    struct btrfs_inode_item *item,
2953 			    struct inode *inode, int log_inode_only)
2954 {
2955 	btrfs_set_inode_uid(leaf, item, i_uid_read(inode));
2956 	btrfs_set_inode_gid(leaf, item, i_gid_read(inode));
2957 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2958 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2959 
2960 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2961 			       inode->i_atime.tv_sec);
2962 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2963 				inode->i_atime.tv_nsec);
2964 
2965 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2966 			       inode->i_mtime.tv_sec);
2967 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2968 				inode->i_mtime.tv_nsec);
2969 
2970 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2971 			       inode->i_ctime.tv_sec);
2972 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2973 				inode->i_ctime.tv_nsec);
2974 
2975 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2976 
2977 	btrfs_set_inode_sequence(leaf, item, inode->i_version);
2978 	btrfs_set_inode_transid(leaf, item, trans->transid);
2979 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2980 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2981 	btrfs_set_inode_block_group(leaf, item, 0);
2982 
2983 	if (log_inode_only) {
2984 		/* set the generation to zero so the recover code
2985 		 * can tell the difference between an logging
2986 		 * just to say 'this inode exists' and a logging
2987 		 * to say 'update this inode with these values'
2988 		 */
2989 		btrfs_set_inode_generation(leaf, item, 0);
2990 		btrfs_set_inode_size(leaf, item, 0);
2991 	} else {
2992 		btrfs_set_inode_generation(leaf, item,
2993 					   BTRFS_I(inode)->generation);
2994 		btrfs_set_inode_size(leaf, item, inode->i_size);
2995 	}
2996 
2997 }
2998 
2999 static noinline int copy_items(struct btrfs_trans_handle *trans,
3000 			       struct inode *inode,
3001 			       struct btrfs_path *dst_path,
3002 			       struct extent_buffer *src,
3003 			       int start_slot, int nr, int inode_only)
3004 {
3005 	unsigned long src_offset;
3006 	unsigned long dst_offset;
3007 	struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3008 	struct btrfs_file_extent_item *extent;
3009 	struct btrfs_inode_item *inode_item;
3010 	int ret;
3011 	struct btrfs_key *ins_keys;
3012 	u32 *ins_sizes;
3013 	char *ins_data;
3014 	int i;
3015 	struct list_head ordered_sums;
3016 	int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3017 
3018 	INIT_LIST_HEAD(&ordered_sums);
3019 
3020 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3021 			   nr * sizeof(u32), GFP_NOFS);
3022 	if (!ins_data)
3023 		return -ENOMEM;
3024 
3025 	ins_sizes = (u32 *)ins_data;
3026 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3027 
3028 	for (i = 0; i < nr; i++) {
3029 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3030 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3031 	}
3032 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3033 				       ins_keys, ins_sizes, nr);
3034 	if (ret) {
3035 		kfree(ins_data);
3036 		return ret;
3037 	}
3038 
3039 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3040 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3041 						   dst_path->slots[0]);
3042 
3043 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3044 
3045 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3046 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3047 						    dst_path->slots[0],
3048 						    struct btrfs_inode_item);
3049 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3050 					inode, inode_only == LOG_INODE_EXISTS);
3051 		} else {
3052 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3053 					   src_offset, ins_sizes[i]);
3054 		}
3055 
3056 		/* take a reference on file data extents so that truncates
3057 		 * or deletes of this inode don't have to relog the inode
3058 		 * again
3059 		 */
3060 		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3061 		    !skip_csum) {
3062 			int found_type;
3063 			extent = btrfs_item_ptr(src, start_slot + i,
3064 						struct btrfs_file_extent_item);
3065 
3066 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3067 				continue;
3068 
3069 			found_type = btrfs_file_extent_type(src, extent);
3070 			if (found_type == BTRFS_FILE_EXTENT_REG) {
3071 				u64 ds, dl, cs, cl;
3072 				ds = btrfs_file_extent_disk_bytenr(src,
3073 								extent);
3074 				/* ds == 0 is a hole */
3075 				if (ds == 0)
3076 					continue;
3077 
3078 				dl = btrfs_file_extent_disk_num_bytes(src,
3079 								extent);
3080 				cs = btrfs_file_extent_offset(src, extent);
3081 				cl = btrfs_file_extent_num_bytes(src,
3082 								extent);
3083 				if (btrfs_file_extent_compression(src,
3084 								  extent)) {
3085 					cs = 0;
3086 					cl = dl;
3087 				}
3088 
3089 				ret = btrfs_lookup_csums_range(
3090 						log->fs_info->csum_root,
3091 						ds + cs, ds + cs + cl - 1,
3092 						&ordered_sums, 0);
3093 				BUG_ON(ret);
3094 			}
3095 		}
3096 	}
3097 
3098 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3099 	btrfs_release_path(dst_path);
3100 	kfree(ins_data);
3101 
3102 	/*
3103 	 * we have to do this after the loop above to avoid changing the
3104 	 * log tree while trying to change the log tree.
3105 	 */
3106 	ret = 0;
3107 	while (!list_empty(&ordered_sums)) {
3108 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3109 						   struct btrfs_ordered_sum,
3110 						   list);
3111 		if (!ret)
3112 			ret = btrfs_csum_file_blocks(trans, log, sums);
3113 		list_del(&sums->list);
3114 		kfree(sums);
3115 	}
3116 	return ret;
3117 }
3118 
3119 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3120 {
3121 	struct extent_map *em1, *em2;
3122 
3123 	em1 = list_entry(a, struct extent_map, list);
3124 	em2 = list_entry(b, struct extent_map, list);
3125 
3126 	if (em1->start < em2->start)
3127 		return -1;
3128 	else if (em1->start > em2->start)
3129 		return 1;
3130 	return 0;
3131 }
3132 
3133 struct log_args {
3134 	struct extent_buffer *src;
3135 	u64 next_offset;
3136 	int start_slot;
3137 	int nr;
3138 };
3139 
3140 static int log_one_extent(struct btrfs_trans_handle *trans,
3141 			  struct inode *inode, struct btrfs_root *root,
3142 			  struct extent_map *em, struct btrfs_path *path,
3143 			  struct btrfs_path *dst_path, struct log_args *args)
3144 {
3145 	struct btrfs_root *log = root->log_root;
3146 	struct btrfs_file_extent_item *fi;
3147 	struct btrfs_key key;
3148 	u64 start = em->mod_start;
3149 	u64 search_start = start;
3150 	u64 len = em->mod_len;
3151 	u64 num_bytes;
3152 	int nritems;
3153 	int ret;
3154 
3155 	if (BTRFS_I(inode)->logged_trans == trans->transid) {
3156 		ret = __btrfs_drop_extents(trans, log, inode, dst_path, start,
3157 					   start + len, NULL, 0);
3158 		if (ret)
3159 			return ret;
3160 	}
3161 
3162 	while (len) {
3163 		if (args->nr)
3164 			goto next_slot;
3165 again:
3166 		key.objectid = btrfs_ino(inode);
3167 		key.type = BTRFS_EXTENT_DATA_KEY;
3168 		key.offset = search_start;
3169 
3170 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3171 		if (ret < 0)
3172 			return ret;
3173 
3174 		if (ret) {
3175 			/*
3176 			 * A rare case were we can have an em for a section of a
3177 			 * larger extent so we need to make sure that this em
3178 			 * falls within the extent we've found.  If not we just
3179 			 * bail and go back to ye-olde way of doing things but
3180 			 * it happens often enough in testing that we need to do
3181 			 * this dance to make sure.
3182 			 */
3183 			do {
3184 				if (path->slots[0] == 0) {
3185 					btrfs_release_path(path);
3186 					if (search_start == 0)
3187 						return -ENOENT;
3188 					search_start--;
3189 					goto again;
3190 				}
3191 
3192 				path->slots[0]--;
3193 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3194 						      path->slots[0]);
3195 				if (key.objectid != btrfs_ino(inode) ||
3196 				    key.type != BTRFS_EXTENT_DATA_KEY) {
3197 					btrfs_release_path(path);
3198 					return -ENOENT;
3199 				}
3200 			} while (key.offset > start);
3201 
3202 			fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3203 					    struct btrfs_file_extent_item);
3204 			num_bytes = btrfs_file_extent_num_bytes(path->nodes[0],
3205 								fi);
3206 			if (key.offset + num_bytes <= start) {
3207 				btrfs_release_path(path);
3208 				return -ENOENT;
3209 			}
3210 		}
3211 		args->src = path->nodes[0];
3212 next_slot:
3213 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3214 		fi = btrfs_item_ptr(args->src, path->slots[0],
3215 				    struct btrfs_file_extent_item);
3216 		if (args->nr &&
3217 		    args->start_slot + args->nr == path->slots[0]) {
3218 			args->nr++;
3219 		} else if (args->nr) {
3220 			ret = copy_items(trans, inode, dst_path, args->src,
3221 					 args->start_slot, args->nr,
3222 					 LOG_INODE_ALL);
3223 			if (ret)
3224 				return ret;
3225 			args->nr = 1;
3226 			args->start_slot = path->slots[0];
3227 		} else if (!args->nr) {
3228 			args->nr = 1;
3229 			args->start_slot = path->slots[0];
3230 		}
3231 		nritems = btrfs_header_nritems(path->nodes[0]);
3232 		path->slots[0]++;
3233 		num_bytes = btrfs_file_extent_num_bytes(args->src, fi);
3234 		if (len < num_bytes) {
3235 			/* I _think_ this is ok, envision we write to a
3236 			 * preallocated space that is adjacent to a previously
3237 			 * written preallocated space that gets merged when we
3238 			 * mark this preallocated space written.  If we do not
3239 			 * have the adjacent extent in cache then when we copy
3240 			 * this extent it could end up being larger than our EM
3241 			 * thinks it is, which is a-ok, so just set len to 0.
3242 			 */
3243 			len = 0;
3244 		} else {
3245 			len -= num_bytes;
3246 		}
3247 		start = key.offset + num_bytes;
3248 		args->next_offset = start;
3249 		search_start = start;
3250 
3251 		if (path->slots[0] < nritems) {
3252 			if (len)
3253 				goto next_slot;
3254 			break;
3255 		}
3256 
3257 		if (args->nr) {
3258 			ret = copy_items(trans, inode, dst_path, args->src,
3259 					 args->start_slot, args->nr,
3260 					 LOG_INODE_ALL);
3261 			if (ret)
3262 				return ret;
3263 			args->nr = 0;
3264 			btrfs_release_path(path);
3265 		}
3266 	}
3267 
3268 	return 0;
3269 }
3270 
3271 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3272 				     struct btrfs_root *root,
3273 				     struct inode *inode,
3274 				     struct btrfs_path *path,
3275 				     struct btrfs_path *dst_path)
3276 {
3277 	struct log_args args;
3278 	struct extent_map *em, *n;
3279 	struct list_head extents;
3280 	struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3281 	u64 test_gen;
3282 	int ret = 0;
3283 
3284 	INIT_LIST_HEAD(&extents);
3285 
3286 	memset(&args, 0, sizeof(args));
3287 
3288 	write_lock(&tree->lock);
3289 	test_gen = root->fs_info->last_trans_committed;
3290 
3291 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3292 		list_del_init(&em->list);
3293 		if (em->generation <= test_gen)
3294 			continue;
3295 		/* Need a ref to keep it from getting evicted from cache */
3296 		atomic_inc(&em->refs);
3297 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3298 		list_add_tail(&em->list, &extents);
3299 	}
3300 
3301 	list_sort(NULL, &extents, extent_cmp);
3302 
3303 	while (!list_empty(&extents)) {
3304 		em = list_entry(extents.next, struct extent_map, list);
3305 
3306 		list_del_init(&em->list);
3307 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
3308 
3309 		/*
3310 		 * If we had an error we just need to delete everybody from our
3311 		 * private list.
3312 		 */
3313 		if (ret) {
3314 			free_extent_map(em);
3315 			continue;
3316 		}
3317 
3318 		write_unlock(&tree->lock);
3319 
3320 		/*
3321 		 * If the previous EM and the last extent we left off on aren't
3322 		 * sequential then we need to copy the items we have and redo
3323 		 * our search
3324 		 */
3325 		if (args.nr && em->mod_start != args.next_offset) {
3326 			ret = copy_items(trans, inode, dst_path, args.src,
3327 					 args.start_slot, args.nr,
3328 					 LOG_INODE_ALL);
3329 			if (ret) {
3330 				free_extent_map(em);
3331 				write_lock(&tree->lock);
3332 				continue;
3333 			}
3334 			btrfs_release_path(path);
3335 			args.nr = 0;
3336 		}
3337 
3338 		ret = log_one_extent(trans, inode, root, em, path, dst_path, &args);
3339 		free_extent_map(em);
3340 		write_lock(&tree->lock);
3341 	}
3342 	WARN_ON(!list_empty(&extents));
3343 	write_unlock(&tree->lock);
3344 
3345 	if (!ret && args.nr)
3346 		ret = copy_items(trans, inode, dst_path, args.src,
3347 				 args.start_slot, args.nr, LOG_INODE_ALL);
3348 	btrfs_release_path(path);
3349 	return ret;
3350 }
3351 
3352 /* log a single inode in the tree log.
3353  * At least one parent directory for this inode must exist in the tree
3354  * or be logged already.
3355  *
3356  * Any items from this inode changed by the current transaction are copied
3357  * to the log tree.  An extra reference is taken on any extents in this
3358  * file, allowing us to avoid a whole pile of corner cases around logging
3359  * blocks that have been removed from the tree.
3360  *
3361  * See LOG_INODE_ALL and related defines for a description of what inode_only
3362  * does.
3363  *
3364  * This handles both files and directories.
3365  */
3366 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3367 			     struct btrfs_root *root, struct inode *inode,
3368 			     int inode_only)
3369 {
3370 	struct btrfs_path *path;
3371 	struct btrfs_path *dst_path;
3372 	struct btrfs_key min_key;
3373 	struct btrfs_key max_key;
3374 	struct btrfs_root *log = root->log_root;
3375 	struct extent_buffer *src = NULL;
3376 	int err = 0;
3377 	int ret;
3378 	int nritems;
3379 	int ins_start_slot = 0;
3380 	int ins_nr;
3381 	bool fast_search = false;
3382 	u64 ino = btrfs_ino(inode);
3383 
3384 	log = root->log_root;
3385 
3386 	path = btrfs_alloc_path();
3387 	if (!path)
3388 		return -ENOMEM;
3389 	dst_path = btrfs_alloc_path();
3390 	if (!dst_path) {
3391 		btrfs_free_path(path);
3392 		return -ENOMEM;
3393 	}
3394 
3395 	min_key.objectid = ino;
3396 	min_key.type = BTRFS_INODE_ITEM_KEY;
3397 	min_key.offset = 0;
3398 
3399 	max_key.objectid = ino;
3400 
3401 
3402 	/* today the code can only do partial logging of directories */
3403 	if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
3404 		max_key.type = BTRFS_XATTR_ITEM_KEY;
3405 	else
3406 		max_key.type = (u8)-1;
3407 	max_key.offset = (u64)-1;
3408 
3409 	/* Only run delayed items if we are a dir or a new file */
3410 	if (S_ISDIR(inode->i_mode) ||
3411 	    BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3412 		ret = btrfs_commit_inode_delayed_items(trans, inode);
3413 		if (ret) {
3414 			btrfs_free_path(path);
3415 			btrfs_free_path(dst_path);
3416 			return ret;
3417 		}
3418 	}
3419 
3420 	mutex_lock(&BTRFS_I(inode)->log_mutex);
3421 
3422 	/*
3423 	 * a brute force approach to making sure we get the most uptodate
3424 	 * copies of everything.
3425 	 */
3426 	if (S_ISDIR(inode->i_mode)) {
3427 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3428 
3429 		if (inode_only == LOG_INODE_EXISTS)
3430 			max_key_type = BTRFS_XATTR_ITEM_KEY;
3431 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3432 	} else {
3433 		if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3434 				       &BTRFS_I(inode)->runtime_flags)) {
3435 			ret = btrfs_truncate_inode_items(trans, log,
3436 							 inode, 0, 0);
3437 		} else {
3438 			fast_search = true;
3439 			max_key.type = BTRFS_XATTR_ITEM_KEY;
3440 			ret = drop_objectid_items(trans, log, path, ino,
3441 						  BTRFS_XATTR_ITEM_KEY);
3442 		}
3443 	}
3444 	if (ret) {
3445 		err = ret;
3446 		goto out_unlock;
3447 	}
3448 	path->keep_locks = 1;
3449 
3450 	while (1) {
3451 		ins_nr = 0;
3452 		ret = btrfs_search_forward(root, &min_key, &max_key,
3453 					   path, 0, trans->transid);
3454 		if (ret != 0)
3455 			break;
3456 again:
3457 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
3458 		if (min_key.objectid != ino)
3459 			break;
3460 		if (min_key.type > max_key.type)
3461 			break;
3462 
3463 		src = path->nodes[0];
3464 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3465 			ins_nr++;
3466 			goto next_slot;
3467 		} else if (!ins_nr) {
3468 			ins_start_slot = path->slots[0];
3469 			ins_nr = 1;
3470 			goto next_slot;
3471 		}
3472 
3473 		ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3474 				 ins_nr, inode_only);
3475 		if (ret) {
3476 			err = ret;
3477 			goto out_unlock;
3478 		}
3479 		ins_nr = 1;
3480 		ins_start_slot = path->slots[0];
3481 next_slot:
3482 
3483 		nritems = btrfs_header_nritems(path->nodes[0]);
3484 		path->slots[0]++;
3485 		if (path->slots[0] < nritems) {
3486 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
3487 					      path->slots[0]);
3488 			goto again;
3489 		}
3490 		if (ins_nr) {
3491 			ret = copy_items(trans, inode, dst_path, src,
3492 					 ins_start_slot,
3493 					 ins_nr, inode_only);
3494 			if (ret) {
3495 				err = ret;
3496 				goto out_unlock;
3497 			}
3498 			ins_nr = 0;
3499 		}
3500 		btrfs_release_path(path);
3501 
3502 		if (min_key.offset < (u64)-1)
3503 			min_key.offset++;
3504 		else if (min_key.type < (u8)-1)
3505 			min_key.type++;
3506 		else if (min_key.objectid < (u64)-1)
3507 			min_key.objectid++;
3508 		else
3509 			break;
3510 	}
3511 	if (ins_nr) {
3512 		ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3513 				 ins_nr, inode_only);
3514 		if (ret) {
3515 			err = ret;
3516 			goto out_unlock;
3517 		}
3518 		ins_nr = 0;
3519 	}
3520 
3521 	if (fast_search) {
3522 		btrfs_release_path(path);
3523 		btrfs_release_path(dst_path);
3524 		ret = btrfs_log_changed_extents(trans, root, inode, path,
3525 						dst_path);
3526 		if (ret) {
3527 			err = ret;
3528 			goto out_unlock;
3529 		}
3530 	} else {
3531 		struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3532 		struct extent_map *em, *n;
3533 
3534 		list_for_each_entry_safe(em, n, &tree->modified_extents, list)
3535 			list_del_init(&em->list);
3536 	}
3537 
3538 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
3539 		btrfs_release_path(path);
3540 		btrfs_release_path(dst_path);
3541 		ret = log_directory_changes(trans, root, inode, path, dst_path);
3542 		if (ret) {
3543 			err = ret;
3544 			goto out_unlock;
3545 		}
3546 	}
3547 	BTRFS_I(inode)->logged_trans = trans->transid;
3548 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
3549 out_unlock:
3550 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
3551 
3552 	btrfs_free_path(path);
3553 	btrfs_free_path(dst_path);
3554 	return err;
3555 }
3556 
3557 /*
3558  * follow the dentry parent pointers up the chain and see if any
3559  * of the directories in it require a full commit before they can
3560  * be logged.  Returns zero if nothing special needs to be done or 1 if
3561  * a full commit is required.
3562  */
3563 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
3564 					       struct inode *inode,
3565 					       struct dentry *parent,
3566 					       struct super_block *sb,
3567 					       u64 last_committed)
3568 {
3569 	int ret = 0;
3570 	struct btrfs_root *root;
3571 	struct dentry *old_parent = NULL;
3572 
3573 	/*
3574 	 * for regular files, if its inode is already on disk, we don't
3575 	 * have to worry about the parents at all.  This is because
3576 	 * we can use the last_unlink_trans field to record renames
3577 	 * and other fun in this file.
3578 	 */
3579 	if (S_ISREG(inode->i_mode) &&
3580 	    BTRFS_I(inode)->generation <= last_committed &&
3581 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
3582 			goto out;
3583 
3584 	if (!S_ISDIR(inode->i_mode)) {
3585 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3586 			goto out;
3587 		inode = parent->d_inode;
3588 	}
3589 
3590 	while (1) {
3591 		BTRFS_I(inode)->logged_trans = trans->transid;
3592 		smp_mb();
3593 
3594 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
3595 			root = BTRFS_I(inode)->root;
3596 
3597 			/*
3598 			 * make sure any commits to the log are forced
3599 			 * to be full commits
3600 			 */
3601 			root->fs_info->last_trans_log_full_commit =
3602 				trans->transid;
3603 			ret = 1;
3604 			break;
3605 		}
3606 
3607 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3608 			break;
3609 
3610 		if (IS_ROOT(parent))
3611 			break;
3612 
3613 		parent = dget_parent(parent);
3614 		dput(old_parent);
3615 		old_parent = parent;
3616 		inode = parent->d_inode;
3617 
3618 	}
3619 	dput(old_parent);
3620 out:
3621 	return ret;
3622 }
3623 
3624 /*
3625  * helper function around btrfs_log_inode to make sure newly created
3626  * parent directories also end up in the log.  A minimal inode and backref
3627  * only logging is done of any parent directories that are older than
3628  * the last committed transaction
3629  */
3630 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3631 		    struct btrfs_root *root, struct inode *inode,
3632 		    struct dentry *parent, int exists_only)
3633 {
3634 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3635 	struct super_block *sb;
3636 	struct dentry *old_parent = NULL;
3637 	int ret = 0;
3638 	u64 last_committed = root->fs_info->last_trans_committed;
3639 
3640 	sb = inode->i_sb;
3641 
3642 	if (btrfs_test_opt(root, NOTREELOG)) {
3643 		ret = 1;
3644 		goto end_no_trans;
3645 	}
3646 
3647 	if (root->fs_info->last_trans_log_full_commit >
3648 	    root->fs_info->last_trans_committed) {
3649 		ret = 1;
3650 		goto end_no_trans;
3651 	}
3652 
3653 	if (root != BTRFS_I(inode)->root ||
3654 	    btrfs_root_refs(&root->root_item) == 0) {
3655 		ret = 1;
3656 		goto end_no_trans;
3657 	}
3658 
3659 	ret = check_parent_dirs_for_sync(trans, inode, parent,
3660 					 sb, last_committed);
3661 	if (ret)
3662 		goto end_no_trans;
3663 
3664 	if (btrfs_inode_in_log(inode, trans->transid)) {
3665 		ret = BTRFS_NO_LOG_SYNC;
3666 		goto end_no_trans;
3667 	}
3668 
3669 	ret = start_log_trans(trans, root);
3670 	if (ret)
3671 		goto end_trans;
3672 
3673 	ret = btrfs_log_inode(trans, root, inode, inode_only);
3674 	if (ret)
3675 		goto end_trans;
3676 
3677 	/*
3678 	 * for regular files, if its inode is already on disk, we don't
3679 	 * have to worry about the parents at all.  This is because
3680 	 * we can use the last_unlink_trans field to record renames
3681 	 * and other fun in this file.
3682 	 */
3683 	if (S_ISREG(inode->i_mode) &&
3684 	    BTRFS_I(inode)->generation <= last_committed &&
3685 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3686 		ret = 0;
3687 		goto end_trans;
3688 	}
3689 
3690 	inode_only = LOG_INODE_EXISTS;
3691 	while (1) {
3692 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3693 			break;
3694 
3695 		inode = parent->d_inode;
3696 		if (root != BTRFS_I(inode)->root)
3697 			break;
3698 
3699 		if (BTRFS_I(inode)->generation >
3700 		    root->fs_info->last_trans_committed) {
3701 			ret = btrfs_log_inode(trans, root, inode, inode_only);
3702 			if (ret)
3703 				goto end_trans;
3704 		}
3705 		if (IS_ROOT(parent))
3706 			break;
3707 
3708 		parent = dget_parent(parent);
3709 		dput(old_parent);
3710 		old_parent = parent;
3711 	}
3712 	ret = 0;
3713 end_trans:
3714 	dput(old_parent);
3715 	if (ret < 0) {
3716 		WARN_ON(ret != -ENOSPC);
3717 		root->fs_info->last_trans_log_full_commit = trans->transid;
3718 		ret = 1;
3719 	}
3720 	btrfs_end_log_trans(root);
3721 end_no_trans:
3722 	return ret;
3723 }
3724 
3725 /*
3726  * it is not safe to log dentry if the chunk root has added new
3727  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
3728  * If this returns 1, you must commit the transaction to safely get your
3729  * data on disk.
3730  */
3731 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3732 			  struct btrfs_root *root, struct dentry *dentry)
3733 {
3734 	struct dentry *parent = dget_parent(dentry);
3735 	int ret;
3736 
3737 	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3738 	dput(parent);
3739 
3740 	return ret;
3741 }
3742 
3743 /*
3744  * should be called during mount to recover any replay any log trees
3745  * from the FS
3746  */
3747 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3748 {
3749 	int ret;
3750 	struct btrfs_path *path;
3751 	struct btrfs_trans_handle *trans;
3752 	struct btrfs_key key;
3753 	struct btrfs_key found_key;
3754 	struct btrfs_key tmp_key;
3755 	struct btrfs_root *log;
3756 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3757 	struct walk_control wc = {
3758 		.process_func = process_one_buffer,
3759 		.stage = 0,
3760 	};
3761 
3762 	path = btrfs_alloc_path();
3763 	if (!path)
3764 		return -ENOMEM;
3765 
3766 	fs_info->log_root_recovering = 1;
3767 
3768 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3769 	if (IS_ERR(trans)) {
3770 		ret = PTR_ERR(trans);
3771 		goto error;
3772 	}
3773 
3774 	wc.trans = trans;
3775 	wc.pin = 1;
3776 
3777 	ret = walk_log_tree(trans, log_root_tree, &wc);
3778 	if (ret) {
3779 		btrfs_error(fs_info, ret, "Failed to pin buffers while "
3780 			    "recovering log root tree.");
3781 		goto error;
3782 	}
3783 
3784 again:
3785 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
3786 	key.offset = (u64)-1;
3787 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3788 
3789 	while (1) {
3790 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3791 
3792 		if (ret < 0) {
3793 			btrfs_error(fs_info, ret,
3794 				    "Couldn't find tree log root.");
3795 			goto error;
3796 		}
3797 		if (ret > 0) {
3798 			if (path->slots[0] == 0)
3799 				break;
3800 			path->slots[0]--;
3801 		}
3802 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3803 				      path->slots[0]);
3804 		btrfs_release_path(path);
3805 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3806 			break;
3807 
3808 		log = btrfs_read_fs_root_no_radix(log_root_tree,
3809 						  &found_key);
3810 		if (IS_ERR(log)) {
3811 			ret = PTR_ERR(log);
3812 			btrfs_error(fs_info, ret,
3813 				    "Couldn't read tree log root.");
3814 			goto error;
3815 		}
3816 
3817 		tmp_key.objectid = found_key.offset;
3818 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3819 		tmp_key.offset = (u64)-1;
3820 
3821 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3822 		if (IS_ERR(wc.replay_dest)) {
3823 			ret = PTR_ERR(wc.replay_dest);
3824 			btrfs_error(fs_info, ret, "Couldn't read target root "
3825 				    "for tree log recovery.");
3826 			goto error;
3827 		}
3828 
3829 		wc.replay_dest->log_root = log;
3830 		btrfs_record_root_in_trans(trans, wc.replay_dest);
3831 		ret = walk_log_tree(trans, log, &wc);
3832 		BUG_ON(ret);
3833 
3834 		if (wc.stage == LOG_WALK_REPLAY_ALL) {
3835 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
3836 						      path);
3837 			BUG_ON(ret);
3838 		}
3839 
3840 		key.offset = found_key.offset - 1;
3841 		wc.replay_dest->log_root = NULL;
3842 		free_extent_buffer(log->node);
3843 		free_extent_buffer(log->commit_root);
3844 		kfree(log);
3845 
3846 		if (found_key.offset == 0)
3847 			break;
3848 	}
3849 	btrfs_release_path(path);
3850 
3851 	/* step one is to pin it all, step two is to replay just inodes */
3852 	if (wc.pin) {
3853 		wc.pin = 0;
3854 		wc.process_func = replay_one_buffer;
3855 		wc.stage = LOG_WALK_REPLAY_INODES;
3856 		goto again;
3857 	}
3858 	/* step three is to replay everything */
3859 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
3860 		wc.stage++;
3861 		goto again;
3862 	}
3863 
3864 	btrfs_free_path(path);
3865 
3866 	free_extent_buffer(log_root_tree->node);
3867 	log_root_tree->log_root = NULL;
3868 	fs_info->log_root_recovering = 0;
3869 
3870 	/* step 4: commit the transaction, which also unpins the blocks */
3871 	btrfs_commit_transaction(trans, fs_info->tree_root);
3872 
3873 	kfree(log_root_tree);
3874 	return 0;
3875 
3876 error:
3877 	btrfs_free_path(path);
3878 	return ret;
3879 }
3880 
3881 /*
3882  * there are some corner cases where we want to force a full
3883  * commit instead of allowing a directory to be logged.
3884  *
3885  * They revolve around files there were unlinked from the directory, and
3886  * this function updates the parent directory so that a full commit is
3887  * properly done if it is fsync'd later after the unlinks are done.
3888  */
3889 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3890 			     struct inode *dir, struct inode *inode,
3891 			     int for_rename)
3892 {
3893 	/*
3894 	 * when we're logging a file, if it hasn't been renamed
3895 	 * or unlinked, and its inode is fully committed on disk,
3896 	 * we don't have to worry about walking up the directory chain
3897 	 * to log its parents.
3898 	 *
3899 	 * So, we use the last_unlink_trans field to put this transid
3900 	 * into the file.  When the file is logged we check it and
3901 	 * don't log the parents if the file is fully on disk.
3902 	 */
3903 	if (S_ISREG(inode->i_mode))
3904 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3905 
3906 	/*
3907 	 * if this directory was already logged any new
3908 	 * names for this file/dir will get recorded
3909 	 */
3910 	smp_mb();
3911 	if (BTRFS_I(dir)->logged_trans == trans->transid)
3912 		return;
3913 
3914 	/*
3915 	 * if the inode we're about to unlink was logged,
3916 	 * the log will be properly updated for any new names
3917 	 */
3918 	if (BTRFS_I(inode)->logged_trans == trans->transid)
3919 		return;
3920 
3921 	/*
3922 	 * when renaming files across directories, if the directory
3923 	 * there we're unlinking from gets fsync'd later on, there's
3924 	 * no way to find the destination directory later and fsync it
3925 	 * properly.  So, we have to be conservative and force commits
3926 	 * so the new name gets discovered.
3927 	 */
3928 	if (for_rename)
3929 		goto record;
3930 
3931 	/* we can safely do the unlink without any special recording */
3932 	return;
3933 
3934 record:
3935 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
3936 }
3937 
3938 /*
3939  * Call this after adding a new name for a file and it will properly
3940  * update the log to reflect the new name.
3941  *
3942  * It will return zero if all goes well, and it will return 1 if a
3943  * full transaction commit is required.
3944  */
3945 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3946 			struct inode *inode, struct inode *old_dir,
3947 			struct dentry *parent)
3948 {
3949 	struct btrfs_root * root = BTRFS_I(inode)->root;
3950 
3951 	/*
3952 	 * this will force the logging code to walk the dentry chain
3953 	 * up for the file
3954 	 */
3955 	if (S_ISREG(inode->i_mode))
3956 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3957 
3958 	/*
3959 	 * if this inode hasn't been logged and directory we're renaming it
3960 	 * from hasn't been logged, we don't need to log it
3961 	 */
3962 	if (BTRFS_I(inode)->logged_trans <=
3963 	    root->fs_info->last_trans_committed &&
3964 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3965 		    root->fs_info->last_trans_committed))
3966 		return 0;
3967 
3968 	return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3969 }
3970 
3971