xref: /linux/fs/btrfs/tree-log.c (revision f2835adf8afb2cea248dd10d6eb0444c34b3b51b)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (C) 2008 Oracle.  All rights reserved.
4   */
5  
6  #include <linux/sched.h>
7  #include <linux/slab.h>
8  #include <linux/blkdev.h>
9  #include <linux/list_sort.h>
10  #include <linux/iversion.h>
11  #include "misc.h"
12  #include "ctree.h"
13  #include "tree-log.h"
14  #include "disk-io.h"
15  #include "locking.h"
16  #include "print-tree.h"
17  #include "backref.h"
18  #include "compression.h"
19  #include "qgroup.h"
20  #include "inode-map.h"
21  
22  /* magic values for the inode_only field in btrfs_log_inode:
23   *
24   * LOG_INODE_ALL means to log everything
25   * LOG_INODE_EXISTS means to log just enough to recreate the inode
26   * during log replay
27   */
28  enum {
29  	LOG_INODE_ALL,
30  	LOG_INODE_EXISTS,
31  	LOG_OTHER_INODE,
32  	LOG_OTHER_INODE_ALL,
33  };
34  
35  /*
36   * directory trouble cases
37   *
38   * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
39   * log, we must force a full commit before doing an fsync of the directory
40   * where the unlink was done.
41   * ---> record transid of last unlink/rename per directory
42   *
43   * mkdir foo/some_dir
44   * normal commit
45   * rename foo/some_dir foo2/some_dir
46   * mkdir foo/some_dir
47   * fsync foo/some_dir/some_file
48   *
49   * The fsync above will unlink the original some_dir without recording
50   * it in its new location (foo2).  After a crash, some_dir will be gone
51   * unless the fsync of some_file forces a full commit
52   *
53   * 2) we must log any new names for any file or dir that is in the fsync
54   * log. ---> check inode while renaming/linking.
55   *
56   * 2a) we must log any new names for any file or dir during rename
57   * when the directory they are being removed from was logged.
58   * ---> check inode and old parent dir during rename
59   *
60   *  2a is actually the more important variant.  With the extra logging
61   *  a crash might unlink the old name without recreating the new one
62   *
63   * 3) after a crash, we must go through any directories with a link count
64   * of zero and redo the rm -rf
65   *
66   * mkdir f1/foo
67   * normal commit
68   * rm -rf f1/foo
69   * fsync(f1)
70   *
71   * The directory f1 was fully removed from the FS, but fsync was never
72   * called on f1, only its parent dir.  After a crash the rm -rf must
73   * be replayed.  This must be able to recurse down the entire
74   * directory tree.  The inode link count fixup code takes care of the
75   * ugly details.
76   */
77  
78  /*
79   * stages for the tree walking.  The first
80   * stage (0) is to only pin down the blocks we find
81   * the second stage (1) is to make sure that all the inodes
82   * we find in the log are created in the subvolume.
83   *
84   * The last stage is to deal with directories and links and extents
85   * and all the other fun semantics
86   */
87  enum {
88  	LOG_WALK_PIN_ONLY,
89  	LOG_WALK_REPLAY_INODES,
90  	LOG_WALK_REPLAY_DIR_INDEX,
91  	LOG_WALK_REPLAY_ALL,
92  };
93  
94  static int btrfs_log_inode(struct btrfs_trans_handle *trans,
95  			   struct btrfs_root *root, struct btrfs_inode *inode,
96  			   int inode_only,
97  			   const loff_t start,
98  			   const loff_t end,
99  			   struct btrfs_log_ctx *ctx);
100  static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101  			     struct btrfs_root *root,
102  			     struct btrfs_path *path, u64 objectid);
103  static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104  				       struct btrfs_root *root,
105  				       struct btrfs_root *log,
106  				       struct btrfs_path *path,
107  				       u64 dirid, int del_all);
108  
109  /*
110   * tree logging is a special write ahead log used to make sure that
111   * fsyncs and O_SYNCs can happen without doing full tree commits.
112   *
113   * Full tree commits are expensive because they require commonly
114   * modified blocks to be recowed, creating many dirty pages in the
115   * extent tree an 4x-6x higher write load than ext3.
116   *
117   * Instead of doing a tree commit on every fsync, we use the
118   * key ranges and transaction ids to find items for a given file or directory
119   * that have changed in this transaction.  Those items are copied into
120   * a special tree (one per subvolume root), that tree is written to disk
121   * and then the fsync is considered complete.
122   *
123   * After a crash, items are copied out of the log-tree back into the
124   * subvolume tree.  Any file data extents found are recorded in the extent
125   * allocation tree, and the log-tree freed.
126   *
127   * The log tree is read three times, once to pin down all the extents it is
128   * using in ram and once, once to create all the inodes logged in the tree
129   * and once to do all the other items.
130   */
131  
132  /*
133   * start a sub transaction and setup the log tree
134   * this increments the log tree writer count to make the people
135   * syncing the tree wait for us to finish
136   */
137  static int start_log_trans(struct btrfs_trans_handle *trans,
138  			   struct btrfs_root *root,
139  			   struct btrfs_log_ctx *ctx)
140  {
141  	struct btrfs_fs_info *fs_info = root->fs_info;
142  	int ret = 0;
143  
144  	mutex_lock(&root->log_mutex);
145  
146  	if (root->log_root) {
147  		if (btrfs_need_log_full_commit(trans)) {
148  			ret = -EAGAIN;
149  			goto out;
150  		}
151  
152  		if (!root->log_start_pid) {
153  			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
154  			root->log_start_pid = current->pid;
155  		} else if (root->log_start_pid != current->pid) {
156  			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
157  		}
158  	} else {
159  		mutex_lock(&fs_info->tree_log_mutex);
160  		if (!fs_info->log_root_tree)
161  			ret = btrfs_init_log_root_tree(trans, fs_info);
162  		mutex_unlock(&fs_info->tree_log_mutex);
163  		if (ret)
164  			goto out;
165  
166  		ret = btrfs_add_log_tree(trans, root);
167  		if (ret)
168  			goto out;
169  
170  		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
171  		root->log_start_pid = current->pid;
172  	}
173  
174  	atomic_inc(&root->log_batch);
175  	atomic_inc(&root->log_writers);
176  	if (ctx) {
177  		int index = root->log_transid % 2;
178  		list_add_tail(&ctx->list, &root->log_ctxs[index]);
179  		ctx->log_transid = root->log_transid;
180  	}
181  
182  out:
183  	mutex_unlock(&root->log_mutex);
184  	return ret;
185  }
186  
187  /*
188   * returns 0 if there was a log transaction running and we were able
189   * to join, or returns -ENOENT if there were not transactions
190   * in progress
191   */
192  static int join_running_log_trans(struct btrfs_root *root)
193  {
194  	int ret = -ENOENT;
195  
196  	mutex_lock(&root->log_mutex);
197  	if (root->log_root) {
198  		ret = 0;
199  		atomic_inc(&root->log_writers);
200  	}
201  	mutex_unlock(&root->log_mutex);
202  	return ret;
203  }
204  
205  /*
206   * This either makes the current running log transaction wait
207   * until you call btrfs_end_log_trans() or it makes any future
208   * log transactions wait until you call btrfs_end_log_trans()
209   */
210  void btrfs_pin_log_trans(struct btrfs_root *root)
211  {
212  	mutex_lock(&root->log_mutex);
213  	atomic_inc(&root->log_writers);
214  	mutex_unlock(&root->log_mutex);
215  }
216  
217  /*
218   * indicate we're done making changes to the log tree
219   * and wake up anyone waiting to do a sync
220   */
221  void btrfs_end_log_trans(struct btrfs_root *root)
222  {
223  	if (atomic_dec_and_test(&root->log_writers)) {
224  		/* atomic_dec_and_test implies a barrier */
225  		cond_wake_up_nomb(&root->log_writer_wait);
226  	}
227  }
228  
229  static int btrfs_write_tree_block(struct extent_buffer *buf)
230  {
231  	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
232  					buf->start + buf->len - 1);
233  }
234  
235  static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
236  {
237  	filemap_fdatawait_range(buf->pages[0]->mapping,
238  			        buf->start, buf->start + buf->len - 1);
239  }
240  
241  /*
242   * the walk control struct is used to pass state down the chain when
243   * processing the log tree.  The stage field tells us which part
244   * of the log tree processing we are currently doing.  The others
245   * are state fields used for that specific part
246   */
247  struct walk_control {
248  	/* should we free the extent on disk when done?  This is used
249  	 * at transaction commit time while freeing a log tree
250  	 */
251  	int free;
252  
253  	/* should we write out the extent buffer?  This is used
254  	 * while flushing the log tree to disk during a sync
255  	 */
256  	int write;
257  
258  	/* should we wait for the extent buffer io to finish?  Also used
259  	 * while flushing the log tree to disk for a sync
260  	 */
261  	int wait;
262  
263  	/* pin only walk, we record which extents on disk belong to the
264  	 * log trees
265  	 */
266  	int pin;
267  
268  	/* what stage of the replay code we're currently in */
269  	int stage;
270  
271  	/*
272  	 * Ignore any items from the inode currently being processed. Needs
273  	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
274  	 * the LOG_WALK_REPLAY_INODES stage.
275  	 */
276  	bool ignore_cur_inode;
277  
278  	/* the root we are currently replaying */
279  	struct btrfs_root *replay_dest;
280  
281  	/* the trans handle for the current replay */
282  	struct btrfs_trans_handle *trans;
283  
284  	/* the function that gets used to process blocks we find in the
285  	 * tree.  Note the extent_buffer might not be up to date when it is
286  	 * passed in, and it must be checked or read if you need the data
287  	 * inside it
288  	 */
289  	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
290  			    struct walk_control *wc, u64 gen, int level);
291  };
292  
293  /*
294   * process_func used to pin down extents, write them or wait on them
295   */
296  static int process_one_buffer(struct btrfs_root *log,
297  			      struct extent_buffer *eb,
298  			      struct walk_control *wc, u64 gen, int level)
299  {
300  	struct btrfs_fs_info *fs_info = log->fs_info;
301  	int ret = 0;
302  
303  	/*
304  	 * If this fs is mixed then we need to be able to process the leaves to
305  	 * pin down any logged extents, so we have to read the block.
306  	 */
307  	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
308  		ret = btrfs_read_buffer(eb, gen, level, NULL);
309  		if (ret)
310  			return ret;
311  	}
312  
313  	if (wc->pin)
314  		ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
315  						      eb->len);
316  
317  	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
318  		if (wc->pin && btrfs_header_level(eb) == 0)
319  			ret = btrfs_exclude_logged_extents(eb);
320  		if (wc->write)
321  			btrfs_write_tree_block(eb);
322  		if (wc->wait)
323  			btrfs_wait_tree_block_writeback(eb);
324  	}
325  	return ret;
326  }
327  
328  /*
329   * Item overwrite used by replay and tree logging.  eb, slot and key all refer
330   * to the src data we are copying out.
331   *
332   * root is the tree we are copying into, and path is a scratch
333   * path for use in this function (it should be released on entry and
334   * will be released on exit).
335   *
336   * If the key is already in the destination tree the existing item is
337   * overwritten.  If the existing item isn't big enough, it is extended.
338   * If it is too large, it is truncated.
339   *
340   * If the key isn't in the destination yet, a new item is inserted.
341   */
342  static noinline int overwrite_item(struct btrfs_trans_handle *trans,
343  				   struct btrfs_root *root,
344  				   struct btrfs_path *path,
345  				   struct extent_buffer *eb, int slot,
346  				   struct btrfs_key *key)
347  {
348  	int ret;
349  	u32 item_size;
350  	u64 saved_i_size = 0;
351  	int save_old_i_size = 0;
352  	unsigned long src_ptr;
353  	unsigned long dst_ptr;
354  	int overwrite_root = 0;
355  	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
356  
357  	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
358  		overwrite_root = 1;
359  
360  	item_size = btrfs_item_size_nr(eb, slot);
361  	src_ptr = btrfs_item_ptr_offset(eb, slot);
362  
363  	/* look for the key in the destination tree */
364  	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
365  	if (ret < 0)
366  		return ret;
367  
368  	if (ret == 0) {
369  		char *src_copy;
370  		char *dst_copy;
371  		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
372  						  path->slots[0]);
373  		if (dst_size != item_size)
374  			goto insert;
375  
376  		if (item_size == 0) {
377  			btrfs_release_path(path);
378  			return 0;
379  		}
380  		dst_copy = kmalloc(item_size, GFP_NOFS);
381  		src_copy = kmalloc(item_size, GFP_NOFS);
382  		if (!dst_copy || !src_copy) {
383  			btrfs_release_path(path);
384  			kfree(dst_copy);
385  			kfree(src_copy);
386  			return -ENOMEM;
387  		}
388  
389  		read_extent_buffer(eb, src_copy, src_ptr, item_size);
390  
391  		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
392  		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
393  				   item_size);
394  		ret = memcmp(dst_copy, src_copy, item_size);
395  
396  		kfree(dst_copy);
397  		kfree(src_copy);
398  		/*
399  		 * they have the same contents, just return, this saves
400  		 * us from cowing blocks in the destination tree and doing
401  		 * extra writes that may not have been done by a previous
402  		 * sync
403  		 */
404  		if (ret == 0) {
405  			btrfs_release_path(path);
406  			return 0;
407  		}
408  
409  		/*
410  		 * We need to load the old nbytes into the inode so when we
411  		 * replay the extents we've logged we get the right nbytes.
412  		 */
413  		if (inode_item) {
414  			struct btrfs_inode_item *item;
415  			u64 nbytes;
416  			u32 mode;
417  
418  			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
419  					      struct btrfs_inode_item);
420  			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
421  			item = btrfs_item_ptr(eb, slot,
422  					      struct btrfs_inode_item);
423  			btrfs_set_inode_nbytes(eb, item, nbytes);
424  
425  			/*
426  			 * If this is a directory we need to reset the i_size to
427  			 * 0 so that we can set it up properly when replaying
428  			 * the rest of the items in this log.
429  			 */
430  			mode = btrfs_inode_mode(eb, item);
431  			if (S_ISDIR(mode))
432  				btrfs_set_inode_size(eb, item, 0);
433  		}
434  	} else if (inode_item) {
435  		struct btrfs_inode_item *item;
436  		u32 mode;
437  
438  		/*
439  		 * New inode, set nbytes to 0 so that the nbytes comes out
440  		 * properly when we replay the extents.
441  		 */
442  		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
443  		btrfs_set_inode_nbytes(eb, item, 0);
444  
445  		/*
446  		 * If this is a directory we need to reset the i_size to 0 so
447  		 * that we can set it up properly when replaying the rest of
448  		 * the items in this log.
449  		 */
450  		mode = btrfs_inode_mode(eb, item);
451  		if (S_ISDIR(mode))
452  			btrfs_set_inode_size(eb, item, 0);
453  	}
454  insert:
455  	btrfs_release_path(path);
456  	/* try to insert the key into the destination tree */
457  	path->skip_release_on_error = 1;
458  	ret = btrfs_insert_empty_item(trans, root, path,
459  				      key, item_size);
460  	path->skip_release_on_error = 0;
461  
462  	/* make sure any existing item is the correct size */
463  	if (ret == -EEXIST || ret == -EOVERFLOW) {
464  		u32 found_size;
465  		found_size = btrfs_item_size_nr(path->nodes[0],
466  						path->slots[0]);
467  		if (found_size > item_size)
468  			btrfs_truncate_item(path, item_size, 1);
469  		else if (found_size < item_size)
470  			btrfs_extend_item(path, item_size - found_size);
471  	} else if (ret) {
472  		return ret;
473  	}
474  	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
475  					path->slots[0]);
476  
477  	/* don't overwrite an existing inode if the generation number
478  	 * was logged as zero.  This is done when the tree logging code
479  	 * is just logging an inode to make sure it exists after recovery.
480  	 *
481  	 * Also, don't overwrite i_size on directories during replay.
482  	 * log replay inserts and removes directory items based on the
483  	 * state of the tree found in the subvolume, and i_size is modified
484  	 * as it goes
485  	 */
486  	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
487  		struct btrfs_inode_item *src_item;
488  		struct btrfs_inode_item *dst_item;
489  
490  		src_item = (struct btrfs_inode_item *)src_ptr;
491  		dst_item = (struct btrfs_inode_item *)dst_ptr;
492  
493  		if (btrfs_inode_generation(eb, src_item) == 0) {
494  			struct extent_buffer *dst_eb = path->nodes[0];
495  			const u64 ino_size = btrfs_inode_size(eb, src_item);
496  
497  			/*
498  			 * For regular files an ino_size == 0 is used only when
499  			 * logging that an inode exists, as part of a directory
500  			 * fsync, and the inode wasn't fsynced before. In this
501  			 * case don't set the size of the inode in the fs/subvol
502  			 * tree, otherwise we would be throwing valid data away.
503  			 */
504  			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
505  			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
506  			    ino_size != 0) {
507  				struct btrfs_map_token token;
508  
509  				btrfs_init_map_token(&token, dst_eb);
510  				btrfs_set_token_inode_size(dst_eb, dst_item,
511  							   ino_size, &token);
512  			}
513  			goto no_copy;
514  		}
515  
516  		if (overwrite_root &&
517  		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
518  		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
519  			save_old_i_size = 1;
520  			saved_i_size = btrfs_inode_size(path->nodes[0],
521  							dst_item);
522  		}
523  	}
524  
525  	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
526  			   src_ptr, item_size);
527  
528  	if (save_old_i_size) {
529  		struct btrfs_inode_item *dst_item;
530  		dst_item = (struct btrfs_inode_item *)dst_ptr;
531  		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
532  	}
533  
534  	/* make sure the generation is filled in */
535  	if (key->type == BTRFS_INODE_ITEM_KEY) {
536  		struct btrfs_inode_item *dst_item;
537  		dst_item = (struct btrfs_inode_item *)dst_ptr;
538  		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
539  			btrfs_set_inode_generation(path->nodes[0], dst_item,
540  						   trans->transid);
541  		}
542  	}
543  no_copy:
544  	btrfs_mark_buffer_dirty(path->nodes[0]);
545  	btrfs_release_path(path);
546  	return 0;
547  }
548  
549  /*
550   * simple helper to read an inode off the disk from a given root
551   * This can only be called for subvolume roots and not for the log
552   */
553  static noinline struct inode *read_one_inode(struct btrfs_root *root,
554  					     u64 objectid)
555  {
556  	struct btrfs_key key;
557  	struct inode *inode;
558  
559  	key.objectid = objectid;
560  	key.type = BTRFS_INODE_ITEM_KEY;
561  	key.offset = 0;
562  	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
563  	if (IS_ERR(inode))
564  		inode = NULL;
565  	return inode;
566  }
567  
568  /* replays a single extent in 'eb' at 'slot' with 'key' into the
569   * subvolume 'root'.  path is released on entry and should be released
570   * on exit.
571   *
572   * extents in the log tree have not been allocated out of the extent
573   * tree yet.  So, this completes the allocation, taking a reference
574   * as required if the extent already exists or creating a new extent
575   * if it isn't in the extent allocation tree yet.
576   *
577   * The extent is inserted into the file, dropping any existing extents
578   * from the file that overlap the new one.
579   */
580  static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
581  				      struct btrfs_root *root,
582  				      struct btrfs_path *path,
583  				      struct extent_buffer *eb, int slot,
584  				      struct btrfs_key *key)
585  {
586  	struct btrfs_fs_info *fs_info = root->fs_info;
587  	int found_type;
588  	u64 extent_end;
589  	u64 start = key->offset;
590  	u64 nbytes = 0;
591  	struct btrfs_file_extent_item *item;
592  	struct inode *inode = NULL;
593  	unsigned long size;
594  	int ret = 0;
595  
596  	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
597  	found_type = btrfs_file_extent_type(eb, item);
598  
599  	if (found_type == BTRFS_FILE_EXTENT_REG ||
600  	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
601  		nbytes = btrfs_file_extent_num_bytes(eb, item);
602  		extent_end = start + nbytes;
603  
604  		/*
605  		 * We don't add to the inodes nbytes if we are prealloc or a
606  		 * hole.
607  		 */
608  		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
609  			nbytes = 0;
610  	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
611  		size = btrfs_file_extent_ram_bytes(eb, item);
612  		nbytes = btrfs_file_extent_ram_bytes(eb, item);
613  		extent_end = ALIGN(start + size,
614  				   fs_info->sectorsize);
615  	} else {
616  		ret = 0;
617  		goto out;
618  	}
619  
620  	inode = read_one_inode(root, key->objectid);
621  	if (!inode) {
622  		ret = -EIO;
623  		goto out;
624  	}
625  
626  	/*
627  	 * first check to see if we already have this extent in the
628  	 * file.  This must be done before the btrfs_drop_extents run
629  	 * so we don't try to drop this extent.
630  	 */
631  	ret = btrfs_lookup_file_extent(trans, root, path,
632  			btrfs_ino(BTRFS_I(inode)), start, 0);
633  
634  	if (ret == 0 &&
635  	    (found_type == BTRFS_FILE_EXTENT_REG ||
636  	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
637  		struct btrfs_file_extent_item cmp1;
638  		struct btrfs_file_extent_item cmp2;
639  		struct btrfs_file_extent_item *existing;
640  		struct extent_buffer *leaf;
641  
642  		leaf = path->nodes[0];
643  		existing = btrfs_item_ptr(leaf, path->slots[0],
644  					  struct btrfs_file_extent_item);
645  
646  		read_extent_buffer(eb, &cmp1, (unsigned long)item,
647  				   sizeof(cmp1));
648  		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
649  				   sizeof(cmp2));
650  
651  		/*
652  		 * we already have a pointer to this exact extent,
653  		 * we don't have to do anything
654  		 */
655  		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
656  			btrfs_release_path(path);
657  			goto out;
658  		}
659  	}
660  	btrfs_release_path(path);
661  
662  	/* drop any overlapping extents */
663  	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
664  	if (ret)
665  		goto out;
666  
667  	if (found_type == BTRFS_FILE_EXTENT_REG ||
668  	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
669  		u64 offset;
670  		unsigned long dest_offset;
671  		struct btrfs_key ins;
672  
673  		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
674  		    btrfs_fs_incompat(fs_info, NO_HOLES))
675  			goto update_inode;
676  
677  		ret = btrfs_insert_empty_item(trans, root, path, key,
678  					      sizeof(*item));
679  		if (ret)
680  			goto out;
681  		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
682  						    path->slots[0]);
683  		copy_extent_buffer(path->nodes[0], eb, dest_offset,
684  				(unsigned long)item,  sizeof(*item));
685  
686  		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
687  		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
688  		ins.type = BTRFS_EXTENT_ITEM_KEY;
689  		offset = key->offset - btrfs_file_extent_offset(eb, item);
690  
691  		/*
692  		 * Manually record dirty extent, as here we did a shallow
693  		 * file extent item copy and skip normal backref update,
694  		 * but modifying extent tree all by ourselves.
695  		 * So need to manually record dirty extent for qgroup,
696  		 * as the owner of the file extent changed from log tree
697  		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
698  		 */
699  		ret = btrfs_qgroup_trace_extent(trans,
700  				btrfs_file_extent_disk_bytenr(eb, item),
701  				btrfs_file_extent_disk_num_bytes(eb, item),
702  				GFP_NOFS);
703  		if (ret < 0)
704  			goto out;
705  
706  		if (ins.objectid > 0) {
707  			struct btrfs_ref ref = { 0 };
708  			u64 csum_start;
709  			u64 csum_end;
710  			LIST_HEAD(ordered_sums);
711  
712  			/*
713  			 * is this extent already allocated in the extent
714  			 * allocation tree?  If so, just add a reference
715  			 */
716  			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
717  						ins.offset);
718  			if (ret == 0) {
719  				btrfs_init_generic_ref(&ref,
720  						BTRFS_ADD_DELAYED_REF,
721  						ins.objectid, ins.offset, 0);
722  				btrfs_init_data_ref(&ref,
723  						root->root_key.objectid,
724  						key->objectid, offset);
725  				ret = btrfs_inc_extent_ref(trans, &ref);
726  				if (ret)
727  					goto out;
728  			} else {
729  				/*
730  				 * insert the extent pointer in the extent
731  				 * allocation tree
732  				 */
733  				ret = btrfs_alloc_logged_file_extent(trans,
734  						root->root_key.objectid,
735  						key->objectid, offset, &ins);
736  				if (ret)
737  					goto out;
738  			}
739  			btrfs_release_path(path);
740  
741  			if (btrfs_file_extent_compression(eb, item)) {
742  				csum_start = ins.objectid;
743  				csum_end = csum_start + ins.offset;
744  			} else {
745  				csum_start = ins.objectid +
746  					btrfs_file_extent_offset(eb, item);
747  				csum_end = csum_start +
748  					btrfs_file_extent_num_bytes(eb, item);
749  			}
750  
751  			ret = btrfs_lookup_csums_range(root->log_root,
752  						csum_start, csum_end - 1,
753  						&ordered_sums, 0);
754  			if (ret)
755  				goto out;
756  			/*
757  			 * Now delete all existing cums in the csum root that
758  			 * cover our range. We do this because we can have an
759  			 * extent that is completely referenced by one file
760  			 * extent item and partially referenced by another
761  			 * file extent item (like after using the clone or
762  			 * extent_same ioctls). In this case if we end up doing
763  			 * the replay of the one that partially references the
764  			 * extent first, and we do not do the csum deletion
765  			 * below, we can get 2 csum items in the csum tree that
766  			 * overlap each other. For example, imagine our log has
767  			 * the two following file extent items:
768  			 *
769  			 * key (257 EXTENT_DATA 409600)
770  			 *     extent data disk byte 12845056 nr 102400
771  			 *     extent data offset 20480 nr 20480 ram 102400
772  			 *
773  			 * key (257 EXTENT_DATA 819200)
774  			 *     extent data disk byte 12845056 nr 102400
775  			 *     extent data offset 0 nr 102400 ram 102400
776  			 *
777  			 * Where the second one fully references the 100K extent
778  			 * that starts at disk byte 12845056, and the log tree
779  			 * has a single csum item that covers the entire range
780  			 * of the extent:
781  			 *
782  			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
783  			 *
784  			 * After the first file extent item is replayed, the
785  			 * csum tree gets the following csum item:
786  			 *
787  			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
788  			 *
789  			 * Which covers the 20K sub-range starting at offset 20K
790  			 * of our extent. Now when we replay the second file
791  			 * extent item, if we do not delete existing csum items
792  			 * that cover any of its blocks, we end up getting two
793  			 * csum items in our csum tree that overlap each other:
794  			 *
795  			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
796  			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
797  			 *
798  			 * Which is a problem, because after this anyone trying
799  			 * to lookup up for the checksum of any block of our
800  			 * extent starting at an offset of 40K or higher, will
801  			 * end up looking at the second csum item only, which
802  			 * does not contain the checksum for any block starting
803  			 * at offset 40K or higher of our extent.
804  			 */
805  			while (!list_empty(&ordered_sums)) {
806  				struct btrfs_ordered_sum *sums;
807  				sums = list_entry(ordered_sums.next,
808  						struct btrfs_ordered_sum,
809  						list);
810  				if (!ret)
811  					ret = btrfs_del_csums(trans, fs_info,
812  							      sums->bytenr,
813  							      sums->len);
814  				if (!ret)
815  					ret = btrfs_csum_file_blocks(trans,
816  						fs_info->csum_root, sums);
817  				list_del(&sums->list);
818  				kfree(sums);
819  			}
820  			if (ret)
821  				goto out;
822  		} else {
823  			btrfs_release_path(path);
824  		}
825  	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
826  		/* inline extents are easy, we just overwrite them */
827  		ret = overwrite_item(trans, root, path, eb, slot, key);
828  		if (ret)
829  			goto out;
830  	}
831  
832  	inode_add_bytes(inode, nbytes);
833  update_inode:
834  	ret = btrfs_update_inode(trans, root, inode);
835  out:
836  	if (inode)
837  		iput(inode);
838  	return ret;
839  }
840  
841  /*
842   * when cleaning up conflicts between the directory names in the
843   * subvolume, directory names in the log and directory names in the
844   * inode back references, we may have to unlink inodes from directories.
845   *
846   * This is a helper function to do the unlink of a specific directory
847   * item
848   */
849  static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
850  				      struct btrfs_root *root,
851  				      struct btrfs_path *path,
852  				      struct btrfs_inode *dir,
853  				      struct btrfs_dir_item *di)
854  {
855  	struct inode *inode;
856  	char *name;
857  	int name_len;
858  	struct extent_buffer *leaf;
859  	struct btrfs_key location;
860  	int ret;
861  
862  	leaf = path->nodes[0];
863  
864  	btrfs_dir_item_key_to_cpu(leaf, di, &location);
865  	name_len = btrfs_dir_name_len(leaf, di);
866  	name = kmalloc(name_len, GFP_NOFS);
867  	if (!name)
868  		return -ENOMEM;
869  
870  	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
871  	btrfs_release_path(path);
872  
873  	inode = read_one_inode(root, location.objectid);
874  	if (!inode) {
875  		ret = -EIO;
876  		goto out;
877  	}
878  
879  	ret = link_to_fixup_dir(trans, root, path, location.objectid);
880  	if (ret)
881  		goto out;
882  
883  	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
884  			name_len);
885  	if (ret)
886  		goto out;
887  	else
888  		ret = btrfs_run_delayed_items(trans);
889  out:
890  	kfree(name);
891  	iput(inode);
892  	return ret;
893  }
894  
895  /*
896   * helper function to see if a given name and sequence number found
897   * in an inode back reference are already in a directory and correctly
898   * point to this inode
899   */
900  static noinline int inode_in_dir(struct btrfs_root *root,
901  				 struct btrfs_path *path,
902  				 u64 dirid, u64 objectid, u64 index,
903  				 const char *name, int name_len)
904  {
905  	struct btrfs_dir_item *di;
906  	struct btrfs_key location;
907  	int match = 0;
908  
909  	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
910  					 index, name, name_len, 0);
911  	if (di && !IS_ERR(di)) {
912  		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
913  		if (location.objectid != objectid)
914  			goto out;
915  	} else
916  		goto out;
917  	btrfs_release_path(path);
918  
919  	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
920  	if (di && !IS_ERR(di)) {
921  		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
922  		if (location.objectid != objectid)
923  			goto out;
924  	} else
925  		goto out;
926  	match = 1;
927  out:
928  	btrfs_release_path(path);
929  	return match;
930  }
931  
932  /*
933   * helper function to check a log tree for a named back reference in
934   * an inode.  This is used to decide if a back reference that is
935   * found in the subvolume conflicts with what we find in the log.
936   *
937   * inode backreferences may have multiple refs in a single item,
938   * during replay we process one reference at a time, and we don't
939   * want to delete valid links to a file from the subvolume if that
940   * link is also in the log.
941   */
942  static noinline int backref_in_log(struct btrfs_root *log,
943  				   struct btrfs_key *key,
944  				   u64 ref_objectid,
945  				   const char *name, int namelen)
946  {
947  	struct btrfs_path *path;
948  	struct btrfs_inode_ref *ref;
949  	unsigned long ptr;
950  	unsigned long ptr_end;
951  	unsigned long name_ptr;
952  	int found_name_len;
953  	int item_size;
954  	int ret;
955  	int match = 0;
956  
957  	path = btrfs_alloc_path();
958  	if (!path)
959  		return -ENOMEM;
960  
961  	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
962  	if (ret != 0)
963  		goto out;
964  
965  	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
966  
967  	if (key->type == BTRFS_INODE_EXTREF_KEY) {
968  		if (btrfs_find_name_in_ext_backref(path->nodes[0],
969  						   path->slots[0],
970  						   ref_objectid,
971  						   name, namelen))
972  			match = 1;
973  
974  		goto out;
975  	}
976  
977  	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
978  	ptr_end = ptr + item_size;
979  	while (ptr < ptr_end) {
980  		ref = (struct btrfs_inode_ref *)ptr;
981  		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
982  		if (found_name_len == namelen) {
983  			name_ptr = (unsigned long)(ref + 1);
984  			ret = memcmp_extent_buffer(path->nodes[0], name,
985  						   name_ptr, namelen);
986  			if (ret == 0) {
987  				match = 1;
988  				goto out;
989  			}
990  		}
991  		ptr = (unsigned long)(ref + 1) + found_name_len;
992  	}
993  out:
994  	btrfs_free_path(path);
995  	return match;
996  }
997  
998  static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
999  				  struct btrfs_root *root,
1000  				  struct btrfs_path *path,
1001  				  struct btrfs_root *log_root,
1002  				  struct btrfs_inode *dir,
1003  				  struct btrfs_inode *inode,
1004  				  u64 inode_objectid, u64 parent_objectid,
1005  				  u64 ref_index, char *name, int namelen,
1006  				  int *search_done)
1007  {
1008  	int ret;
1009  	char *victim_name;
1010  	int victim_name_len;
1011  	struct extent_buffer *leaf;
1012  	struct btrfs_dir_item *di;
1013  	struct btrfs_key search_key;
1014  	struct btrfs_inode_extref *extref;
1015  
1016  again:
1017  	/* Search old style refs */
1018  	search_key.objectid = inode_objectid;
1019  	search_key.type = BTRFS_INODE_REF_KEY;
1020  	search_key.offset = parent_objectid;
1021  	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1022  	if (ret == 0) {
1023  		struct btrfs_inode_ref *victim_ref;
1024  		unsigned long ptr;
1025  		unsigned long ptr_end;
1026  
1027  		leaf = path->nodes[0];
1028  
1029  		/* are we trying to overwrite a back ref for the root directory
1030  		 * if so, just jump out, we're done
1031  		 */
1032  		if (search_key.objectid == search_key.offset)
1033  			return 1;
1034  
1035  		/* check all the names in this back reference to see
1036  		 * if they are in the log.  if so, we allow them to stay
1037  		 * otherwise they must be unlinked as a conflict
1038  		 */
1039  		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1040  		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1041  		while (ptr < ptr_end) {
1042  			victim_ref = (struct btrfs_inode_ref *)ptr;
1043  			victim_name_len = btrfs_inode_ref_name_len(leaf,
1044  								   victim_ref);
1045  			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1046  			if (!victim_name)
1047  				return -ENOMEM;
1048  
1049  			read_extent_buffer(leaf, victim_name,
1050  					   (unsigned long)(victim_ref + 1),
1051  					   victim_name_len);
1052  
1053  			if (!backref_in_log(log_root, &search_key,
1054  					    parent_objectid,
1055  					    victim_name,
1056  					    victim_name_len)) {
1057  				inc_nlink(&inode->vfs_inode);
1058  				btrfs_release_path(path);
1059  
1060  				ret = btrfs_unlink_inode(trans, root, dir, inode,
1061  						victim_name, victim_name_len);
1062  				kfree(victim_name);
1063  				if (ret)
1064  					return ret;
1065  				ret = btrfs_run_delayed_items(trans);
1066  				if (ret)
1067  					return ret;
1068  				*search_done = 1;
1069  				goto again;
1070  			}
1071  			kfree(victim_name);
1072  
1073  			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1074  		}
1075  
1076  		/*
1077  		 * NOTE: we have searched root tree and checked the
1078  		 * corresponding ref, it does not need to check again.
1079  		 */
1080  		*search_done = 1;
1081  	}
1082  	btrfs_release_path(path);
1083  
1084  	/* Same search but for extended refs */
1085  	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1086  					   inode_objectid, parent_objectid, 0,
1087  					   0);
1088  	if (!IS_ERR_OR_NULL(extref)) {
1089  		u32 item_size;
1090  		u32 cur_offset = 0;
1091  		unsigned long base;
1092  		struct inode *victim_parent;
1093  
1094  		leaf = path->nodes[0];
1095  
1096  		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1097  		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1098  
1099  		while (cur_offset < item_size) {
1100  			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1101  
1102  			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1103  
1104  			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1105  				goto next;
1106  
1107  			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1108  			if (!victim_name)
1109  				return -ENOMEM;
1110  			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1111  					   victim_name_len);
1112  
1113  			search_key.objectid = inode_objectid;
1114  			search_key.type = BTRFS_INODE_EXTREF_KEY;
1115  			search_key.offset = btrfs_extref_hash(parent_objectid,
1116  							      victim_name,
1117  							      victim_name_len);
1118  			ret = 0;
1119  			if (!backref_in_log(log_root, &search_key,
1120  					    parent_objectid, victim_name,
1121  					    victim_name_len)) {
1122  				ret = -ENOENT;
1123  				victim_parent = read_one_inode(root,
1124  						parent_objectid);
1125  				if (victim_parent) {
1126  					inc_nlink(&inode->vfs_inode);
1127  					btrfs_release_path(path);
1128  
1129  					ret = btrfs_unlink_inode(trans, root,
1130  							BTRFS_I(victim_parent),
1131  							inode,
1132  							victim_name,
1133  							victim_name_len);
1134  					if (!ret)
1135  						ret = btrfs_run_delayed_items(
1136  								  trans);
1137  				}
1138  				iput(victim_parent);
1139  				kfree(victim_name);
1140  				if (ret)
1141  					return ret;
1142  				*search_done = 1;
1143  				goto again;
1144  			}
1145  			kfree(victim_name);
1146  next:
1147  			cur_offset += victim_name_len + sizeof(*extref);
1148  		}
1149  		*search_done = 1;
1150  	}
1151  	btrfs_release_path(path);
1152  
1153  	/* look for a conflicting sequence number */
1154  	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1155  					 ref_index, name, namelen, 0);
1156  	if (di && !IS_ERR(di)) {
1157  		ret = drop_one_dir_item(trans, root, path, dir, di);
1158  		if (ret)
1159  			return ret;
1160  	}
1161  	btrfs_release_path(path);
1162  
1163  	/* look for a conflicting name */
1164  	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1165  				   name, namelen, 0);
1166  	if (di && !IS_ERR(di)) {
1167  		ret = drop_one_dir_item(trans, root, path, dir, di);
1168  		if (ret)
1169  			return ret;
1170  	}
1171  	btrfs_release_path(path);
1172  
1173  	return 0;
1174  }
1175  
1176  static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1177  			     u32 *namelen, char **name, u64 *index,
1178  			     u64 *parent_objectid)
1179  {
1180  	struct btrfs_inode_extref *extref;
1181  
1182  	extref = (struct btrfs_inode_extref *)ref_ptr;
1183  
1184  	*namelen = btrfs_inode_extref_name_len(eb, extref);
1185  	*name = kmalloc(*namelen, GFP_NOFS);
1186  	if (*name == NULL)
1187  		return -ENOMEM;
1188  
1189  	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1190  			   *namelen);
1191  
1192  	if (index)
1193  		*index = btrfs_inode_extref_index(eb, extref);
1194  	if (parent_objectid)
1195  		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1196  
1197  	return 0;
1198  }
1199  
1200  static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1201  			  u32 *namelen, char **name, u64 *index)
1202  {
1203  	struct btrfs_inode_ref *ref;
1204  
1205  	ref = (struct btrfs_inode_ref *)ref_ptr;
1206  
1207  	*namelen = btrfs_inode_ref_name_len(eb, ref);
1208  	*name = kmalloc(*namelen, GFP_NOFS);
1209  	if (*name == NULL)
1210  		return -ENOMEM;
1211  
1212  	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1213  
1214  	if (index)
1215  		*index = btrfs_inode_ref_index(eb, ref);
1216  
1217  	return 0;
1218  }
1219  
1220  /*
1221   * Take an inode reference item from the log tree and iterate all names from the
1222   * inode reference item in the subvolume tree with the same key (if it exists).
1223   * For any name that is not in the inode reference item from the log tree, do a
1224   * proper unlink of that name (that is, remove its entry from the inode
1225   * reference item and both dir index keys).
1226   */
1227  static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1228  				 struct btrfs_root *root,
1229  				 struct btrfs_path *path,
1230  				 struct btrfs_inode *inode,
1231  				 struct extent_buffer *log_eb,
1232  				 int log_slot,
1233  				 struct btrfs_key *key)
1234  {
1235  	int ret;
1236  	unsigned long ref_ptr;
1237  	unsigned long ref_end;
1238  	struct extent_buffer *eb;
1239  
1240  again:
1241  	btrfs_release_path(path);
1242  	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1243  	if (ret > 0) {
1244  		ret = 0;
1245  		goto out;
1246  	}
1247  	if (ret < 0)
1248  		goto out;
1249  
1250  	eb = path->nodes[0];
1251  	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1252  	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1253  	while (ref_ptr < ref_end) {
1254  		char *name = NULL;
1255  		int namelen;
1256  		u64 parent_id;
1257  
1258  		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1259  			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1260  						NULL, &parent_id);
1261  		} else {
1262  			parent_id = key->offset;
1263  			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1264  					     NULL);
1265  		}
1266  		if (ret)
1267  			goto out;
1268  
1269  		if (key->type == BTRFS_INODE_EXTREF_KEY)
1270  			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1271  							       parent_id, name,
1272  							       namelen);
1273  		else
1274  			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1275  							   name, namelen);
1276  
1277  		if (!ret) {
1278  			struct inode *dir;
1279  
1280  			btrfs_release_path(path);
1281  			dir = read_one_inode(root, parent_id);
1282  			if (!dir) {
1283  				ret = -ENOENT;
1284  				kfree(name);
1285  				goto out;
1286  			}
1287  			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1288  						 inode, name, namelen);
1289  			kfree(name);
1290  			iput(dir);
1291  			if (ret)
1292  				goto out;
1293  			goto again;
1294  		}
1295  
1296  		kfree(name);
1297  		ref_ptr += namelen;
1298  		if (key->type == BTRFS_INODE_EXTREF_KEY)
1299  			ref_ptr += sizeof(struct btrfs_inode_extref);
1300  		else
1301  			ref_ptr += sizeof(struct btrfs_inode_ref);
1302  	}
1303  	ret = 0;
1304   out:
1305  	btrfs_release_path(path);
1306  	return ret;
1307  }
1308  
1309  static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1310  				  const u8 ref_type, const char *name,
1311  				  const int namelen)
1312  {
1313  	struct btrfs_key key;
1314  	struct btrfs_path *path;
1315  	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1316  	int ret;
1317  
1318  	path = btrfs_alloc_path();
1319  	if (!path)
1320  		return -ENOMEM;
1321  
1322  	key.objectid = btrfs_ino(BTRFS_I(inode));
1323  	key.type = ref_type;
1324  	if (key.type == BTRFS_INODE_REF_KEY)
1325  		key.offset = parent_id;
1326  	else
1327  		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1328  
1329  	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1330  	if (ret < 0)
1331  		goto out;
1332  	if (ret > 0) {
1333  		ret = 0;
1334  		goto out;
1335  	}
1336  	if (key.type == BTRFS_INODE_EXTREF_KEY)
1337  		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1338  				path->slots[0], parent_id, name, namelen);
1339  	else
1340  		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1341  						   name, namelen);
1342  
1343  out:
1344  	btrfs_free_path(path);
1345  	return ret;
1346  }
1347  
1348  static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1349  		    struct inode *dir, struct inode *inode, const char *name,
1350  		    int namelen, u64 ref_index)
1351  {
1352  	struct btrfs_dir_item *dir_item;
1353  	struct btrfs_key key;
1354  	struct btrfs_path *path;
1355  	struct inode *other_inode = NULL;
1356  	int ret;
1357  
1358  	path = btrfs_alloc_path();
1359  	if (!path)
1360  		return -ENOMEM;
1361  
1362  	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1363  					 btrfs_ino(BTRFS_I(dir)),
1364  					 name, namelen, 0);
1365  	if (!dir_item) {
1366  		btrfs_release_path(path);
1367  		goto add_link;
1368  	} else if (IS_ERR(dir_item)) {
1369  		ret = PTR_ERR(dir_item);
1370  		goto out;
1371  	}
1372  
1373  	/*
1374  	 * Our inode's dentry collides with the dentry of another inode which is
1375  	 * in the log but not yet processed since it has a higher inode number.
1376  	 * So delete that other dentry.
1377  	 */
1378  	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1379  	btrfs_release_path(path);
1380  	other_inode = read_one_inode(root, key.objectid);
1381  	if (!other_inode) {
1382  		ret = -ENOENT;
1383  		goto out;
1384  	}
1385  	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1386  				 name, namelen);
1387  	if (ret)
1388  		goto out;
1389  	/*
1390  	 * If we dropped the link count to 0, bump it so that later the iput()
1391  	 * on the inode will not free it. We will fixup the link count later.
1392  	 */
1393  	if (other_inode->i_nlink == 0)
1394  		inc_nlink(other_inode);
1395  
1396  	ret = btrfs_run_delayed_items(trans);
1397  	if (ret)
1398  		goto out;
1399  add_link:
1400  	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1401  			     name, namelen, 0, ref_index);
1402  out:
1403  	iput(other_inode);
1404  	btrfs_free_path(path);
1405  
1406  	return ret;
1407  }
1408  
1409  /*
1410   * replay one inode back reference item found in the log tree.
1411   * eb, slot and key refer to the buffer and key found in the log tree.
1412   * root is the destination we are replaying into, and path is for temp
1413   * use by this function.  (it should be released on return).
1414   */
1415  static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1416  				  struct btrfs_root *root,
1417  				  struct btrfs_root *log,
1418  				  struct btrfs_path *path,
1419  				  struct extent_buffer *eb, int slot,
1420  				  struct btrfs_key *key)
1421  {
1422  	struct inode *dir = NULL;
1423  	struct inode *inode = NULL;
1424  	unsigned long ref_ptr;
1425  	unsigned long ref_end;
1426  	char *name = NULL;
1427  	int namelen;
1428  	int ret;
1429  	int search_done = 0;
1430  	int log_ref_ver = 0;
1431  	u64 parent_objectid;
1432  	u64 inode_objectid;
1433  	u64 ref_index = 0;
1434  	int ref_struct_size;
1435  
1436  	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1437  	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1438  
1439  	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1440  		struct btrfs_inode_extref *r;
1441  
1442  		ref_struct_size = sizeof(struct btrfs_inode_extref);
1443  		log_ref_ver = 1;
1444  		r = (struct btrfs_inode_extref *)ref_ptr;
1445  		parent_objectid = btrfs_inode_extref_parent(eb, r);
1446  	} else {
1447  		ref_struct_size = sizeof(struct btrfs_inode_ref);
1448  		parent_objectid = key->offset;
1449  	}
1450  	inode_objectid = key->objectid;
1451  
1452  	/*
1453  	 * it is possible that we didn't log all the parent directories
1454  	 * for a given inode.  If we don't find the dir, just don't
1455  	 * copy the back ref in.  The link count fixup code will take
1456  	 * care of the rest
1457  	 */
1458  	dir = read_one_inode(root, parent_objectid);
1459  	if (!dir) {
1460  		ret = -ENOENT;
1461  		goto out;
1462  	}
1463  
1464  	inode = read_one_inode(root, inode_objectid);
1465  	if (!inode) {
1466  		ret = -EIO;
1467  		goto out;
1468  	}
1469  
1470  	while (ref_ptr < ref_end) {
1471  		if (log_ref_ver) {
1472  			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1473  						&ref_index, &parent_objectid);
1474  			/*
1475  			 * parent object can change from one array
1476  			 * item to another.
1477  			 */
1478  			if (!dir)
1479  				dir = read_one_inode(root, parent_objectid);
1480  			if (!dir) {
1481  				ret = -ENOENT;
1482  				goto out;
1483  			}
1484  		} else {
1485  			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1486  					     &ref_index);
1487  		}
1488  		if (ret)
1489  			goto out;
1490  
1491  		/* if we already have a perfect match, we're done */
1492  		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1493  					btrfs_ino(BTRFS_I(inode)), ref_index,
1494  					name, namelen)) {
1495  			/*
1496  			 * look for a conflicting back reference in the
1497  			 * metadata. if we find one we have to unlink that name
1498  			 * of the file before we add our new link.  Later on, we
1499  			 * overwrite any existing back reference, and we don't
1500  			 * want to create dangling pointers in the directory.
1501  			 */
1502  
1503  			if (!search_done) {
1504  				ret = __add_inode_ref(trans, root, path, log,
1505  						      BTRFS_I(dir),
1506  						      BTRFS_I(inode),
1507  						      inode_objectid,
1508  						      parent_objectid,
1509  						      ref_index, name, namelen,
1510  						      &search_done);
1511  				if (ret) {
1512  					if (ret == 1)
1513  						ret = 0;
1514  					goto out;
1515  				}
1516  			}
1517  
1518  			/*
1519  			 * If a reference item already exists for this inode
1520  			 * with the same parent and name, but different index,
1521  			 * drop it and the corresponding directory index entries
1522  			 * from the parent before adding the new reference item
1523  			 * and dir index entries, otherwise we would fail with
1524  			 * -EEXIST returned from btrfs_add_link() below.
1525  			 */
1526  			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1527  						     name, namelen);
1528  			if (ret > 0) {
1529  				ret = btrfs_unlink_inode(trans, root,
1530  							 BTRFS_I(dir),
1531  							 BTRFS_I(inode),
1532  							 name, namelen);
1533  				/*
1534  				 * If we dropped the link count to 0, bump it so
1535  				 * that later the iput() on the inode will not
1536  				 * free it. We will fixup the link count later.
1537  				 */
1538  				if (!ret && inode->i_nlink == 0)
1539  					inc_nlink(inode);
1540  			}
1541  			if (ret < 0)
1542  				goto out;
1543  
1544  			/* insert our name */
1545  			ret = add_link(trans, root, dir, inode, name, namelen,
1546  				       ref_index);
1547  			if (ret)
1548  				goto out;
1549  
1550  			btrfs_update_inode(trans, root, inode);
1551  		}
1552  
1553  		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1554  		kfree(name);
1555  		name = NULL;
1556  		if (log_ref_ver) {
1557  			iput(dir);
1558  			dir = NULL;
1559  		}
1560  	}
1561  
1562  	/*
1563  	 * Before we overwrite the inode reference item in the subvolume tree
1564  	 * with the item from the log tree, we must unlink all names from the
1565  	 * parent directory that are in the subvolume's tree inode reference
1566  	 * item, otherwise we end up with an inconsistent subvolume tree where
1567  	 * dir index entries exist for a name but there is no inode reference
1568  	 * item with the same name.
1569  	 */
1570  	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1571  				    key);
1572  	if (ret)
1573  		goto out;
1574  
1575  	/* finally write the back reference in the inode */
1576  	ret = overwrite_item(trans, root, path, eb, slot, key);
1577  out:
1578  	btrfs_release_path(path);
1579  	kfree(name);
1580  	iput(dir);
1581  	iput(inode);
1582  	return ret;
1583  }
1584  
1585  static int insert_orphan_item(struct btrfs_trans_handle *trans,
1586  			      struct btrfs_root *root, u64 ino)
1587  {
1588  	int ret;
1589  
1590  	ret = btrfs_insert_orphan_item(trans, root, ino);
1591  	if (ret == -EEXIST)
1592  		ret = 0;
1593  
1594  	return ret;
1595  }
1596  
1597  static int count_inode_extrefs(struct btrfs_root *root,
1598  		struct btrfs_inode *inode, struct btrfs_path *path)
1599  {
1600  	int ret = 0;
1601  	int name_len;
1602  	unsigned int nlink = 0;
1603  	u32 item_size;
1604  	u32 cur_offset = 0;
1605  	u64 inode_objectid = btrfs_ino(inode);
1606  	u64 offset = 0;
1607  	unsigned long ptr;
1608  	struct btrfs_inode_extref *extref;
1609  	struct extent_buffer *leaf;
1610  
1611  	while (1) {
1612  		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1613  					    &extref, &offset);
1614  		if (ret)
1615  			break;
1616  
1617  		leaf = path->nodes[0];
1618  		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1619  		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1620  		cur_offset = 0;
1621  
1622  		while (cur_offset < item_size) {
1623  			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1624  			name_len = btrfs_inode_extref_name_len(leaf, extref);
1625  
1626  			nlink++;
1627  
1628  			cur_offset += name_len + sizeof(*extref);
1629  		}
1630  
1631  		offset++;
1632  		btrfs_release_path(path);
1633  	}
1634  	btrfs_release_path(path);
1635  
1636  	if (ret < 0 && ret != -ENOENT)
1637  		return ret;
1638  	return nlink;
1639  }
1640  
1641  static int count_inode_refs(struct btrfs_root *root,
1642  			struct btrfs_inode *inode, struct btrfs_path *path)
1643  {
1644  	int ret;
1645  	struct btrfs_key key;
1646  	unsigned int nlink = 0;
1647  	unsigned long ptr;
1648  	unsigned long ptr_end;
1649  	int name_len;
1650  	u64 ino = btrfs_ino(inode);
1651  
1652  	key.objectid = ino;
1653  	key.type = BTRFS_INODE_REF_KEY;
1654  	key.offset = (u64)-1;
1655  
1656  	while (1) {
1657  		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1658  		if (ret < 0)
1659  			break;
1660  		if (ret > 0) {
1661  			if (path->slots[0] == 0)
1662  				break;
1663  			path->slots[0]--;
1664  		}
1665  process_slot:
1666  		btrfs_item_key_to_cpu(path->nodes[0], &key,
1667  				      path->slots[0]);
1668  		if (key.objectid != ino ||
1669  		    key.type != BTRFS_INODE_REF_KEY)
1670  			break;
1671  		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1672  		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1673  						   path->slots[0]);
1674  		while (ptr < ptr_end) {
1675  			struct btrfs_inode_ref *ref;
1676  
1677  			ref = (struct btrfs_inode_ref *)ptr;
1678  			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1679  							    ref);
1680  			ptr = (unsigned long)(ref + 1) + name_len;
1681  			nlink++;
1682  		}
1683  
1684  		if (key.offset == 0)
1685  			break;
1686  		if (path->slots[0] > 0) {
1687  			path->slots[0]--;
1688  			goto process_slot;
1689  		}
1690  		key.offset--;
1691  		btrfs_release_path(path);
1692  	}
1693  	btrfs_release_path(path);
1694  
1695  	return nlink;
1696  }
1697  
1698  /*
1699   * There are a few corners where the link count of the file can't
1700   * be properly maintained during replay.  So, instead of adding
1701   * lots of complexity to the log code, we just scan the backrefs
1702   * for any file that has been through replay.
1703   *
1704   * The scan will update the link count on the inode to reflect the
1705   * number of back refs found.  If it goes down to zero, the iput
1706   * will free the inode.
1707   */
1708  static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1709  					   struct btrfs_root *root,
1710  					   struct inode *inode)
1711  {
1712  	struct btrfs_path *path;
1713  	int ret;
1714  	u64 nlink = 0;
1715  	u64 ino = btrfs_ino(BTRFS_I(inode));
1716  
1717  	path = btrfs_alloc_path();
1718  	if (!path)
1719  		return -ENOMEM;
1720  
1721  	ret = count_inode_refs(root, BTRFS_I(inode), path);
1722  	if (ret < 0)
1723  		goto out;
1724  
1725  	nlink = ret;
1726  
1727  	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1728  	if (ret < 0)
1729  		goto out;
1730  
1731  	nlink += ret;
1732  
1733  	ret = 0;
1734  
1735  	if (nlink != inode->i_nlink) {
1736  		set_nlink(inode, nlink);
1737  		btrfs_update_inode(trans, root, inode);
1738  	}
1739  	BTRFS_I(inode)->index_cnt = (u64)-1;
1740  
1741  	if (inode->i_nlink == 0) {
1742  		if (S_ISDIR(inode->i_mode)) {
1743  			ret = replay_dir_deletes(trans, root, NULL, path,
1744  						 ino, 1);
1745  			if (ret)
1746  				goto out;
1747  		}
1748  		ret = insert_orphan_item(trans, root, ino);
1749  	}
1750  
1751  out:
1752  	btrfs_free_path(path);
1753  	return ret;
1754  }
1755  
1756  static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1757  					    struct btrfs_root *root,
1758  					    struct btrfs_path *path)
1759  {
1760  	int ret;
1761  	struct btrfs_key key;
1762  	struct inode *inode;
1763  
1764  	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1765  	key.type = BTRFS_ORPHAN_ITEM_KEY;
1766  	key.offset = (u64)-1;
1767  	while (1) {
1768  		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1769  		if (ret < 0)
1770  			break;
1771  
1772  		if (ret == 1) {
1773  			if (path->slots[0] == 0)
1774  				break;
1775  			path->slots[0]--;
1776  		}
1777  
1778  		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1779  		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1780  		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1781  			break;
1782  
1783  		ret = btrfs_del_item(trans, root, path);
1784  		if (ret)
1785  			goto out;
1786  
1787  		btrfs_release_path(path);
1788  		inode = read_one_inode(root, key.offset);
1789  		if (!inode)
1790  			return -EIO;
1791  
1792  		ret = fixup_inode_link_count(trans, root, inode);
1793  		iput(inode);
1794  		if (ret)
1795  			goto out;
1796  
1797  		/*
1798  		 * fixup on a directory may create new entries,
1799  		 * make sure we always look for the highset possible
1800  		 * offset
1801  		 */
1802  		key.offset = (u64)-1;
1803  	}
1804  	ret = 0;
1805  out:
1806  	btrfs_release_path(path);
1807  	return ret;
1808  }
1809  
1810  
1811  /*
1812   * record a given inode in the fixup dir so we can check its link
1813   * count when replay is done.  The link count is incremented here
1814   * so the inode won't go away until we check it
1815   */
1816  static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1817  				      struct btrfs_root *root,
1818  				      struct btrfs_path *path,
1819  				      u64 objectid)
1820  {
1821  	struct btrfs_key key;
1822  	int ret = 0;
1823  	struct inode *inode;
1824  
1825  	inode = read_one_inode(root, objectid);
1826  	if (!inode)
1827  		return -EIO;
1828  
1829  	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1830  	key.type = BTRFS_ORPHAN_ITEM_KEY;
1831  	key.offset = objectid;
1832  
1833  	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1834  
1835  	btrfs_release_path(path);
1836  	if (ret == 0) {
1837  		if (!inode->i_nlink)
1838  			set_nlink(inode, 1);
1839  		else
1840  			inc_nlink(inode);
1841  		ret = btrfs_update_inode(trans, root, inode);
1842  	} else if (ret == -EEXIST) {
1843  		ret = 0;
1844  	} else {
1845  		BUG(); /* Logic Error */
1846  	}
1847  	iput(inode);
1848  
1849  	return ret;
1850  }
1851  
1852  /*
1853   * when replaying the log for a directory, we only insert names
1854   * for inodes that actually exist.  This means an fsync on a directory
1855   * does not implicitly fsync all the new files in it
1856   */
1857  static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1858  				    struct btrfs_root *root,
1859  				    u64 dirid, u64 index,
1860  				    char *name, int name_len,
1861  				    struct btrfs_key *location)
1862  {
1863  	struct inode *inode;
1864  	struct inode *dir;
1865  	int ret;
1866  
1867  	inode = read_one_inode(root, location->objectid);
1868  	if (!inode)
1869  		return -ENOENT;
1870  
1871  	dir = read_one_inode(root, dirid);
1872  	if (!dir) {
1873  		iput(inode);
1874  		return -EIO;
1875  	}
1876  
1877  	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1878  			name_len, 1, index);
1879  
1880  	/* FIXME, put inode into FIXUP list */
1881  
1882  	iput(inode);
1883  	iput(dir);
1884  	return ret;
1885  }
1886  
1887  /*
1888   * Return true if an inode reference exists in the log for the given name,
1889   * inode and parent inode.
1890   */
1891  static bool name_in_log_ref(struct btrfs_root *log_root,
1892  			    const char *name, const int name_len,
1893  			    const u64 dirid, const u64 ino)
1894  {
1895  	struct btrfs_key search_key;
1896  
1897  	search_key.objectid = ino;
1898  	search_key.type = BTRFS_INODE_REF_KEY;
1899  	search_key.offset = dirid;
1900  	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1901  		return true;
1902  
1903  	search_key.type = BTRFS_INODE_EXTREF_KEY;
1904  	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1905  	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1906  		return true;
1907  
1908  	return false;
1909  }
1910  
1911  /*
1912   * take a single entry in a log directory item and replay it into
1913   * the subvolume.
1914   *
1915   * if a conflicting item exists in the subdirectory already,
1916   * the inode it points to is unlinked and put into the link count
1917   * fix up tree.
1918   *
1919   * If a name from the log points to a file or directory that does
1920   * not exist in the FS, it is skipped.  fsyncs on directories
1921   * do not force down inodes inside that directory, just changes to the
1922   * names or unlinks in a directory.
1923   *
1924   * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1925   * non-existing inode) and 1 if the name was replayed.
1926   */
1927  static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1928  				    struct btrfs_root *root,
1929  				    struct btrfs_path *path,
1930  				    struct extent_buffer *eb,
1931  				    struct btrfs_dir_item *di,
1932  				    struct btrfs_key *key)
1933  {
1934  	char *name;
1935  	int name_len;
1936  	struct btrfs_dir_item *dst_di;
1937  	struct btrfs_key found_key;
1938  	struct btrfs_key log_key;
1939  	struct inode *dir;
1940  	u8 log_type;
1941  	int exists;
1942  	int ret = 0;
1943  	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1944  	bool name_added = false;
1945  
1946  	dir = read_one_inode(root, key->objectid);
1947  	if (!dir)
1948  		return -EIO;
1949  
1950  	name_len = btrfs_dir_name_len(eb, di);
1951  	name = kmalloc(name_len, GFP_NOFS);
1952  	if (!name) {
1953  		ret = -ENOMEM;
1954  		goto out;
1955  	}
1956  
1957  	log_type = btrfs_dir_type(eb, di);
1958  	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1959  		   name_len);
1960  
1961  	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1962  	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1963  	if (exists == 0)
1964  		exists = 1;
1965  	else
1966  		exists = 0;
1967  	btrfs_release_path(path);
1968  
1969  	if (key->type == BTRFS_DIR_ITEM_KEY) {
1970  		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1971  				       name, name_len, 1);
1972  	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1973  		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1974  						     key->objectid,
1975  						     key->offset, name,
1976  						     name_len, 1);
1977  	} else {
1978  		/* Corruption */
1979  		ret = -EINVAL;
1980  		goto out;
1981  	}
1982  	if (IS_ERR_OR_NULL(dst_di)) {
1983  		/* we need a sequence number to insert, so we only
1984  		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1985  		 */
1986  		if (key->type != BTRFS_DIR_INDEX_KEY)
1987  			goto out;
1988  		goto insert;
1989  	}
1990  
1991  	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1992  	/* the existing item matches the logged item */
1993  	if (found_key.objectid == log_key.objectid &&
1994  	    found_key.type == log_key.type &&
1995  	    found_key.offset == log_key.offset &&
1996  	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1997  		update_size = false;
1998  		goto out;
1999  	}
2000  
2001  	/*
2002  	 * don't drop the conflicting directory entry if the inode
2003  	 * for the new entry doesn't exist
2004  	 */
2005  	if (!exists)
2006  		goto out;
2007  
2008  	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
2009  	if (ret)
2010  		goto out;
2011  
2012  	if (key->type == BTRFS_DIR_INDEX_KEY)
2013  		goto insert;
2014  out:
2015  	btrfs_release_path(path);
2016  	if (!ret && update_size) {
2017  		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2018  		ret = btrfs_update_inode(trans, root, dir);
2019  	}
2020  	kfree(name);
2021  	iput(dir);
2022  	if (!ret && name_added)
2023  		ret = 1;
2024  	return ret;
2025  
2026  insert:
2027  	if (name_in_log_ref(root->log_root, name, name_len,
2028  			    key->objectid, log_key.objectid)) {
2029  		/* The dentry will be added later. */
2030  		ret = 0;
2031  		update_size = false;
2032  		goto out;
2033  	}
2034  	btrfs_release_path(path);
2035  	ret = insert_one_name(trans, root, key->objectid, key->offset,
2036  			      name, name_len, &log_key);
2037  	if (ret && ret != -ENOENT && ret != -EEXIST)
2038  		goto out;
2039  	if (!ret)
2040  		name_added = true;
2041  	update_size = false;
2042  	ret = 0;
2043  	goto out;
2044  }
2045  
2046  /*
2047   * find all the names in a directory item and reconcile them into
2048   * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2049   * one name in a directory item, but the same code gets used for
2050   * both directory index types
2051   */
2052  static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2053  					struct btrfs_root *root,
2054  					struct btrfs_path *path,
2055  					struct extent_buffer *eb, int slot,
2056  					struct btrfs_key *key)
2057  {
2058  	int ret = 0;
2059  	u32 item_size = btrfs_item_size_nr(eb, slot);
2060  	struct btrfs_dir_item *di;
2061  	int name_len;
2062  	unsigned long ptr;
2063  	unsigned long ptr_end;
2064  	struct btrfs_path *fixup_path = NULL;
2065  
2066  	ptr = btrfs_item_ptr_offset(eb, slot);
2067  	ptr_end = ptr + item_size;
2068  	while (ptr < ptr_end) {
2069  		di = (struct btrfs_dir_item *)ptr;
2070  		name_len = btrfs_dir_name_len(eb, di);
2071  		ret = replay_one_name(trans, root, path, eb, di, key);
2072  		if (ret < 0)
2073  			break;
2074  		ptr = (unsigned long)(di + 1);
2075  		ptr += name_len;
2076  
2077  		/*
2078  		 * If this entry refers to a non-directory (directories can not
2079  		 * have a link count > 1) and it was added in the transaction
2080  		 * that was not committed, make sure we fixup the link count of
2081  		 * the inode it the entry points to. Otherwise something like
2082  		 * the following would result in a directory pointing to an
2083  		 * inode with a wrong link that does not account for this dir
2084  		 * entry:
2085  		 *
2086  		 * mkdir testdir
2087  		 * touch testdir/foo
2088  		 * touch testdir/bar
2089  		 * sync
2090  		 *
2091  		 * ln testdir/bar testdir/bar_link
2092  		 * ln testdir/foo testdir/foo_link
2093  		 * xfs_io -c "fsync" testdir/bar
2094  		 *
2095  		 * <power failure>
2096  		 *
2097  		 * mount fs, log replay happens
2098  		 *
2099  		 * File foo would remain with a link count of 1 when it has two
2100  		 * entries pointing to it in the directory testdir. This would
2101  		 * make it impossible to ever delete the parent directory has
2102  		 * it would result in stale dentries that can never be deleted.
2103  		 */
2104  		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2105  			struct btrfs_key di_key;
2106  
2107  			if (!fixup_path) {
2108  				fixup_path = btrfs_alloc_path();
2109  				if (!fixup_path) {
2110  					ret = -ENOMEM;
2111  					break;
2112  				}
2113  			}
2114  
2115  			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2116  			ret = link_to_fixup_dir(trans, root, fixup_path,
2117  						di_key.objectid);
2118  			if (ret)
2119  				break;
2120  		}
2121  		ret = 0;
2122  	}
2123  	btrfs_free_path(fixup_path);
2124  	return ret;
2125  }
2126  
2127  /*
2128   * directory replay has two parts.  There are the standard directory
2129   * items in the log copied from the subvolume, and range items
2130   * created in the log while the subvolume was logged.
2131   *
2132   * The range items tell us which parts of the key space the log
2133   * is authoritative for.  During replay, if a key in the subvolume
2134   * directory is in a logged range item, but not actually in the log
2135   * that means it was deleted from the directory before the fsync
2136   * and should be removed.
2137   */
2138  static noinline int find_dir_range(struct btrfs_root *root,
2139  				   struct btrfs_path *path,
2140  				   u64 dirid, int key_type,
2141  				   u64 *start_ret, u64 *end_ret)
2142  {
2143  	struct btrfs_key key;
2144  	u64 found_end;
2145  	struct btrfs_dir_log_item *item;
2146  	int ret;
2147  	int nritems;
2148  
2149  	if (*start_ret == (u64)-1)
2150  		return 1;
2151  
2152  	key.objectid = dirid;
2153  	key.type = key_type;
2154  	key.offset = *start_ret;
2155  
2156  	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2157  	if (ret < 0)
2158  		goto out;
2159  	if (ret > 0) {
2160  		if (path->slots[0] == 0)
2161  			goto out;
2162  		path->slots[0]--;
2163  	}
2164  	if (ret != 0)
2165  		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2166  
2167  	if (key.type != key_type || key.objectid != dirid) {
2168  		ret = 1;
2169  		goto next;
2170  	}
2171  	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2172  			      struct btrfs_dir_log_item);
2173  	found_end = btrfs_dir_log_end(path->nodes[0], item);
2174  
2175  	if (*start_ret >= key.offset && *start_ret <= found_end) {
2176  		ret = 0;
2177  		*start_ret = key.offset;
2178  		*end_ret = found_end;
2179  		goto out;
2180  	}
2181  	ret = 1;
2182  next:
2183  	/* check the next slot in the tree to see if it is a valid item */
2184  	nritems = btrfs_header_nritems(path->nodes[0]);
2185  	path->slots[0]++;
2186  	if (path->slots[0] >= nritems) {
2187  		ret = btrfs_next_leaf(root, path);
2188  		if (ret)
2189  			goto out;
2190  	}
2191  
2192  	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2193  
2194  	if (key.type != key_type || key.objectid != dirid) {
2195  		ret = 1;
2196  		goto out;
2197  	}
2198  	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2199  			      struct btrfs_dir_log_item);
2200  	found_end = btrfs_dir_log_end(path->nodes[0], item);
2201  	*start_ret = key.offset;
2202  	*end_ret = found_end;
2203  	ret = 0;
2204  out:
2205  	btrfs_release_path(path);
2206  	return ret;
2207  }
2208  
2209  /*
2210   * this looks for a given directory item in the log.  If the directory
2211   * item is not in the log, the item is removed and the inode it points
2212   * to is unlinked
2213   */
2214  static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2215  				      struct btrfs_root *root,
2216  				      struct btrfs_root *log,
2217  				      struct btrfs_path *path,
2218  				      struct btrfs_path *log_path,
2219  				      struct inode *dir,
2220  				      struct btrfs_key *dir_key)
2221  {
2222  	int ret;
2223  	struct extent_buffer *eb;
2224  	int slot;
2225  	u32 item_size;
2226  	struct btrfs_dir_item *di;
2227  	struct btrfs_dir_item *log_di;
2228  	int name_len;
2229  	unsigned long ptr;
2230  	unsigned long ptr_end;
2231  	char *name;
2232  	struct inode *inode;
2233  	struct btrfs_key location;
2234  
2235  again:
2236  	eb = path->nodes[0];
2237  	slot = path->slots[0];
2238  	item_size = btrfs_item_size_nr(eb, slot);
2239  	ptr = btrfs_item_ptr_offset(eb, slot);
2240  	ptr_end = ptr + item_size;
2241  	while (ptr < ptr_end) {
2242  		di = (struct btrfs_dir_item *)ptr;
2243  		name_len = btrfs_dir_name_len(eb, di);
2244  		name = kmalloc(name_len, GFP_NOFS);
2245  		if (!name) {
2246  			ret = -ENOMEM;
2247  			goto out;
2248  		}
2249  		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2250  				  name_len);
2251  		log_di = NULL;
2252  		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2253  			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2254  						       dir_key->objectid,
2255  						       name, name_len, 0);
2256  		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2257  			log_di = btrfs_lookup_dir_index_item(trans, log,
2258  						     log_path,
2259  						     dir_key->objectid,
2260  						     dir_key->offset,
2261  						     name, name_len, 0);
2262  		}
2263  		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2264  			btrfs_dir_item_key_to_cpu(eb, di, &location);
2265  			btrfs_release_path(path);
2266  			btrfs_release_path(log_path);
2267  			inode = read_one_inode(root, location.objectid);
2268  			if (!inode) {
2269  				kfree(name);
2270  				return -EIO;
2271  			}
2272  
2273  			ret = link_to_fixup_dir(trans, root,
2274  						path, location.objectid);
2275  			if (ret) {
2276  				kfree(name);
2277  				iput(inode);
2278  				goto out;
2279  			}
2280  
2281  			inc_nlink(inode);
2282  			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2283  					BTRFS_I(inode), name, name_len);
2284  			if (!ret)
2285  				ret = btrfs_run_delayed_items(trans);
2286  			kfree(name);
2287  			iput(inode);
2288  			if (ret)
2289  				goto out;
2290  
2291  			/* there might still be more names under this key
2292  			 * check and repeat if required
2293  			 */
2294  			ret = btrfs_search_slot(NULL, root, dir_key, path,
2295  						0, 0);
2296  			if (ret == 0)
2297  				goto again;
2298  			ret = 0;
2299  			goto out;
2300  		} else if (IS_ERR(log_di)) {
2301  			kfree(name);
2302  			return PTR_ERR(log_di);
2303  		}
2304  		btrfs_release_path(log_path);
2305  		kfree(name);
2306  
2307  		ptr = (unsigned long)(di + 1);
2308  		ptr += name_len;
2309  	}
2310  	ret = 0;
2311  out:
2312  	btrfs_release_path(path);
2313  	btrfs_release_path(log_path);
2314  	return ret;
2315  }
2316  
2317  static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2318  			      struct btrfs_root *root,
2319  			      struct btrfs_root *log,
2320  			      struct btrfs_path *path,
2321  			      const u64 ino)
2322  {
2323  	struct btrfs_key search_key;
2324  	struct btrfs_path *log_path;
2325  	int i;
2326  	int nritems;
2327  	int ret;
2328  
2329  	log_path = btrfs_alloc_path();
2330  	if (!log_path)
2331  		return -ENOMEM;
2332  
2333  	search_key.objectid = ino;
2334  	search_key.type = BTRFS_XATTR_ITEM_KEY;
2335  	search_key.offset = 0;
2336  again:
2337  	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2338  	if (ret < 0)
2339  		goto out;
2340  process_leaf:
2341  	nritems = btrfs_header_nritems(path->nodes[0]);
2342  	for (i = path->slots[0]; i < nritems; i++) {
2343  		struct btrfs_key key;
2344  		struct btrfs_dir_item *di;
2345  		struct btrfs_dir_item *log_di;
2346  		u32 total_size;
2347  		u32 cur;
2348  
2349  		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2350  		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2351  			ret = 0;
2352  			goto out;
2353  		}
2354  
2355  		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2356  		total_size = btrfs_item_size_nr(path->nodes[0], i);
2357  		cur = 0;
2358  		while (cur < total_size) {
2359  			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2360  			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2361  			u32 this_len = sizeof(*di) + name_len + data_len;
2362  			char *name;
2363  
2364  			name = kmalloc(name_len, GFP_NOFS);
2365  			if (!name) {
2366  				ret = -ENOMEM;
2367  				goto out;
2368  			}
2369  			read_extent_buffer(path->nodes[0], name,
2370  					   (unsigned long)(di + 1), name_len);
2371  
2372  			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2373  						    name, name_len, 0);
2374  			btrfs_release_path(log_path);
2375  			if (!log_di) {
2376  				/* Doesn't exist in log tree, so delete it. */
2377  				btrfs_release_path(path);
2378  				di = btrfs_lookup_xattr(trans, root, path, ino,
2379  							name, name_len, -1);
2380  				kfree(name);
2381  				if (IS_ERR(di)) {
2382  					ret = PTR_ERR(di);
2383  					goto out;
2384  				}
2385  				ASSERT(di);
2386  				ret = btrfs_delete_one_dir_name(trans, root,
2387  								path, di);
2388  				if (ret)
2389  					goto out;
2390  				btrfs_release_path(path);
2391  				search_key = key;
2392  				goto again;
2393  			}
2394  			kfree(name);
2395  			if (IS_ERR(log_di)) {
2396  				ret = PTR_ERR(log_di);
2397  				goto out;
2398  			}
2399  			cur += this_len;
2400  			di = (struct btrfs_dir_item *)((char *)di + this_len);
2401  		}
2402  	}
2403  	ret = btrfs_next_leaf(root, path);
2404  	if (ret > 0)
2405  		ret = 0;
2406  	else if (ret == 0)
2407  		goto process_leaf;
2408  out:
2409  	btrfs_free_path(log_path);
2410  	btrfs_release_path(path);
2411  	return ret;
2412  }
2413  
2414  
2415  /*
2416   * deletion replay happens before we copy any new directory items
2417   * out of the log or out of backreferences from inodes.  It
2418   * scans the log to find ranges of keys that log is authoritative for,
2419   * and then scans the directory to find items in those ranges that are
2420   * not present in the log.
2421   *
2422   * Anything we don't find in the log is unlinked and removed from the
2423   * directory.
2424   */
2425  static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2426  				       struct btrfs_root *root,
2427  				       struct btrfs_root *log,
2428  				       struct btrfs_path *path,
2429  				       u64 dirid, int del_all)
2430  {
2431  	u64 range_start;
2432  	u64 range_end;
2433  	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2434  	int ret = 0;
2435  	struct btrfs_key dir_key;
2436  	struct btrfs_key found_key;
2437  	struct btrfs_path *log_path;
2438  	struct inode *dir;
2439  
2440  	dir_key.objectid = dirid;
2441  	dir_key.type = BTRFS_DIR_ITEM_KEY;
2442  	log_path = btrfs_alloc_path();
2443  	if (!log_path)
2444  		return -ENOMEM;
2445  
2446  	dir = read_one_inode(root, dirid);
2447  	/* it isn't an error if the inode isn't there, that can happen
2448  	 * because we replay the deletes before we copy in the inode item
2449  	 * from the log
2450  	 */
2451  	if (!dir) {
2452  		btrfs_free_path(log_path);
2453  		return 0;
2454  	}
2455  again:
2456  	range_start = 0;
2457  	range_end = 0;
2458  	while (1) {
2459  		if (del_all)
2460  			range_end = (u64)-1;
2461  		else {
2462  			ret = find_dir_range(log, path, dirid, key_type,
2463  					     &range_start, &range_end);
2464  			if (ret != 0)
2465  				break;
2466  		}
2467  
2468  		dir_key.offset = range_start;
2469  		while (1) {
2470  			int nritems;
2471  			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2472  						0, 0);
2473  			if (ret < 0)
2474  				goto out;
2475  
2476  			nritems = btrfs_header_nritems(path->nodes[0]);
2477  			if (path->slots[0] >= nritems) {
2478  				ret = btrfs_next_leaf(root, path);
2479  				if (ret == 1)
2480  					break;
2481  				else if (ret < 0)
2482  					goto out;
2483  			}
2484  			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2485  					      path->slots[0]);
2486  			if (found_key.objectid != dirid ||
2487  			    found_key.type != dir_key.type)
2488  				goto next_type;
2489  
2490  			if (found_key.offset > range_end)
2491  				break;
2492  
2493  			ret = check_item_in_log(trans, root, log, path,
2494  						log_path, dir,
2495  						&found_key);
2496  			if (ret)
2497  				goto out;
2498  			if (found_key.offset == (u64)-1)
2499  				break;
2500  			dir_key.offset = found_key.offset + 1;
2501  		}
2502  		btrfs_release_path(path);
2503  		if (range_end == (u64)-1)
2504  			break;
2505  		range_start = range_end + 1;
2506  	}
2507  
2508  next_type:
2509  	ret = 0;
2510  	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2511  		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2512  		dir_key.type = BTRFS_DIR_INDEX_KEY;
2513  		btrfs_release_path(path);
2514  		goto again;
2515  	}
2516  out:
2517  	btrfs_release_path(path);
2518  	btrfs_free_path(log_path);
2519  	iput(dir);
2520  	return ret;
2521  }
2522  
2523  /*
2524   * the process_func used to replay items from the log tree.  This
2525   * gets called in two different stages.  The first stage just looks
2526   * for inodes and makes sure they are all copied into the subvolume.
2527   *
2528   * The second stage copies all the other item types from the log into
2529   * the subvolume.  The two stage approach is slower, but gets rid of
2530   * lots of complexity around inodes referencing other inodes that exist
2531   * only in the log (references come from either directory items or inode
2532   * back refs).
2533   */
2534  static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2535  			     struct walk_control *wc, u64 gen, int level)
2536  {
2537  	int nritems;
2538  	struct btrfs_path *path;
2539  	struct btrfs_root *root = wc->replay_dest;
2540  	struct btrfs_key key;
2541  	int i;
2542  	int ret;
2543  
2544  	ret = btrfs_read_buffer(eb, gen, level, NULL);
2545  	if (ret)
2546  		return ret;
2547  
2548  	level = btrfs_header_level(eb);
2549  
2550  	if (level != 0)
2551  		return 0;
2552  
2553  	path = btrfs_alloc_path();
2554  	if (!path)
2555  		return -ENOMEM;
2556  
2557  	nritems = btrfs_header_nritems(eb);
2558  	for (i = 0; i < nritems; i++) {
2559  		btrfs_item_key_to_cpu(eb, &key, i);
2560  
2561  		/* inode keys are done during the first stage */
2562  		if (key.type == BTRFS_INODE_ITEM_KEY &&
2563  		    wc->stage == LOG_WALK_REPLAY_INODES) {
2564  			struct btrfs_inode_item *inode_item;
2565  			u32 mode;
2566  
2567  			inode_item = btrfs_item_ptr(eb, i,
2568  					    struct btrfs_inode_item);
2569  			/*
2570  			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2571  			 * and never got linked before the fsync, skip it, as
2572  			 * replaying it is pointless since it would be deleted
2573  			 * later. We skip logging tmpfiles, but it's always
2574  			 * possible we are replaying a log created with a kernel
2575  			 * that used to log tmpfiles.
2576  			 */
2577  			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2578  				wc->ignore_cur_inode = true;
2579  				continue;
2580  			} else {
2581  				wc->ignore_cur_inode = false;
2582  			}
2583  			ret = replay_xattr_deletes(wc->trans, root, log,
2584  						   path, key.objectid);
2585  			if (ret)
2586  				break;
2587  			mode = btrfs_inode_mode(eb, inode_item);
2588  			if (S_ISDIR(mode)) {
2589  				ret = replay_dir_deletes(wc->trans,
2590  					 root, log, path, key.objectid, 0);
2591  				if (ret)
2592  					break;
2593  			}
2594  			ret = overwrite_item(wc->trans, root, path,
2595  					     eb, i, &key);
2596  			if (ret)
2597  				break;
2598  
2599  			/*
2600  			 * Before replaying extents, truncate the inode to its
2601  			 * size. We need to do it now and not after log replay
2602  			 * because before an fsync we can have prealloc extents
2603  			 * added beyond the inode's i_size. If we did it after,
2604  			 * through orphan cleanup for example, we would drop
2605  			 * those prealloc extents just after replaying them.
2606  			 */
2607  			if (S_ISREG(mode)) {
2608  				struct inode *inode;
2609  				u64 from;
2610  
2611  				inode = read_one_inode(root, key.objectid);
2612  				if (!inode) {
2613  					ret = -EIO;
2614  					break;
2615  				}
2616  				from = ALIGN(i_size_read(inode),
2617  					     root->fs_info->sectorsize);
2618  				ret = btrfs_drop_extents(wc->trans, root, inode,
2619  							 from, (u64)-1, 1);
2620  				if (!ret) {
2621  					/* Update the inode's nbytes. */
2622  					ret = btrfs_update_inode(wc->trans,
2623  								 root, inode);
2624  				}
2625  				iput(inode);
2626  				if (ret)
2627  					break;
2628  			}
2629  
2630  			ret = link_to_fixup_dir(wc->trans, root,
2631  						path, key.objectid);
2632  			if (ret)
2633  				break;
2634  		}
2635  
2636  		if (wc->ignore_cur_inode)
2637  			continue;
2638  
2639  		if (key.type == BTRFS_DIR_INDEX_KEY &&
2640  		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2641  			ret = replay_one_dir_item(wc->trans, root, path,
2642  						  eb, i, &key);
2643  			if (ret)
2644  				break;
2645  		}
2646  
2647  		if (wc->stage < LOG_WALK_REPLAY_ALL)
2648  			continue;
2649  
2650  		/* these keys are simply copied */
2651  		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2652  			ret = overwrite_item(wc->trans, root, path,
2653  					     eb, i, &key);
2654  			if (ret)
2655  				break;
2656  		} else if (key.type == BTRFS_INODE_REF_KEY ||
2657  			   key.type == BTRFS_INODE_EXTREF_KEY) {
2658  			ret = add_inode_ref(wc->trans, root, log, path,
2659  					    eb, i, &key);
2660  			if (ret && ret != -ENOENT)
2661  				break;
2662  			ret = 0;
2663  		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2664  			ret = replay_one_extent(wc->trans, root, path,
2665  						eb, i, &key);
2666  			if (ret)
2667  				break;
2668  		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2669  			ret = replay_one_dir_item(wc->trans, root, path,
2670  						  eb, i, &key);
2671  			if (ret)
2672  				break;
2673  		}
2674  	}
2675  	btrfs_free_path(path);
2676  	return ret;
2677  }
2678  
2679  static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2680  				   struct btrfs_root *root,
2681  				   struct btrfs_path *path, int *level,
2682  				   struct walk_control *wc)
2683  {
2684  	struct btrfs_fs_info *fs_info = root->fs_info;
2685  	u64 root_owner;
2686  	u64 bytenr;
2687  	u64 ptr_gen;
2688  	struct extent_buffer *next;
2689  	struct extent_buffer *cur;
2690  	struct extent_buffer *parent;
2691  	u32 blocksize;
2692  	int ret = 0;
2693  
2694  	WARN_ON(*level < 0);
2695  	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2696  
2697  	while (*level > 0) {
2698  		struct btrfs_key first_key;
2699  
2700  		WARN_ON(*level < 0);
2701  		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2702  		cur = path->nodes[*level];
2703  
2704  		WARN_ON(btrfs_header_level(cur) != *level);
2705  
2706  		if (path->slots[*level] >=
2707  		    btrfs_header_nritems(cur))
2708  			break;
2709  
2710  		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2711  		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2712  		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2713  		blocksize = fs_info->nodesize;
2714  
2715  		parent = path->nodes[*level];
2716  		root_owner = btrfs_header_owner(parent);
2717  
2718  		next = btrfs_find_create_tree_block(fs_info, bytenr);
2719  		if (IS_ERR(next))
2720  			return PTR_ERR(next);
2721  
2722  		if (*level == 1) {
2723  			ret = wc->process_func(root, next, wc, ptr_gen,
2724  					       *level - 1);
2725  			if (ret) {
2726  				free_extent_buffer(next);
2727  				return ret;
2728  			}
2729  
2730  			path->slots[*level]++;
2731  			if (wc->free) {
2732  				ret = btrfs_read_buffer(next, ptr_gen,
2733  							*level - 1, &first_key);
2734  				if (ret) {
2735  					free_extent_buffer(next);
2736  					return ret;
2737  				}
2738  
2739  				if (trans) {
2740  					btrfs_tree_lock(next);
2741  					btrfs_set_lock_blocking_write(next);
2742  					btrfs_clean_tree_block(next);
2743  					btrfs_wait_tree_block_writeback(next);
2744  					btrfs_tree_unlock(next);
2745  				} else {
2746  					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2747  						clear_extent_buffer_dirty(next);
2748  				}
2749  
2750  				WARN_ON(root_owner !=
2751  					BTRFS_TREE_LOG_OBJECTID);
2752  				ret = btrfs_free_and_pin_reserved_extent(
2753  							fs_info, bytenr,
2754  							blocksize);
2755  				if (ret) {
2756  					free_extent_buffer(next);
2757  					return ret;
2758  				}
2759  			}
2760  			free_extent_buffer(next);
2761  			continue;
2762  		}
2763  		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2764  		if (ret) {
2765  			free_extent_buffer(next);
2766  			return ret;
2767  		}
2768  
2769  		WARN_ON(*level <= 0);
2770  		if (path->nodes[*level-1])
2771  			free_extent_buffer(path->nodes[*level-1]);
2772  		path->nodes[*level-1] = next;
2773  		*level = btrfs_header_level(next);
2774  		path->slots[*level] = 0;
2775  		cond_resched();
2776  	}
2777  	WARN_ON(*level < 0);
2778  	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2779  
2780  	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2781  
2782  	cond_resched();
2783  	return 0;
2784  }
2785  
2786  static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2787  				 struct btrfs_root *root,
2788  				 struct btrfs_path *path, int *level,
2789  				 struct walk_control *wc)
2790  {
2791  	struct btrfs_fs_info *fs_info = root->fs_info;
2792  	u64 root_owner;
2793  	int i;
2794  	int slot;
2795  	int ret;
2796  
2797  	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2798  		slot = path->slots[i];
2799  		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2800  			path->slots[i]++;
2801  			*level = i;
2802  			WARN_ON(*level == 0);
2803  			return 0;
2804  		} else {
2805  			struct extent_buffer *parent;
2806  			if (path->nodes[*level] == root->node)
2807  				parent = path->nodes[*level];
2808  			else
2809  				parent = path->nodes[*level + 1];
2810  
2811  			root_owner = btrfs_header_owner(parent);
2812  			ret = wc->process_func(root, path->nodes[*level], wc,
2813  				 btrfs_header_generation(path->nodes[*level]),
2814  				 *level);
2815  			if (ret)
2816  				return ret;
2817  
2818  			if (wc->free) {
2819  				struct extent_buffer *next;
2820  
2821  				next = path->nodes[*level];
2822  
2823  				if (trans) {
2824  					btrfs_tree_lock(next);
2825  					btrfs_set_lock_blocking_write(next);
2826  					btrfs_clean_tree_block(next);
2827  					btrfs_wait_tree_block_writeback(next);
2828  					btrfs_tree_unlock(next);
2829  				} else {
2830  					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2831  						clear_extent_buffer_dirty(next);
2832  				}
2833  
2834  				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2835  				ret = btrfs_free_and_pin_reserved_extent(
2836  						fs_info,
2837  						path->nodes[*level]->start,
2838  						path->nodes[*level]->len);
2839  				if (ret)
2840  					return ret;
2841  			}
2842  			free_extent_buffer(path->nodes[*level]);
2843  			path->nodes[*level] = NULL;
2844  			*level = i + 1;
2845  		}
2846  	}
2847  	return 1;
2848  }
2849  
2850  /*
2851   * drop the reference count on the tree rooted at 'snap'.  This traverses
2852   * the tree freeing any blocks that have a ref count of zero after being
2853   * decremented.
2854   */
2855  static int walk_log_tree(struct btrfs_trans_handle *trans,
2856  			 struct btrfs_root *log, struct walk_control *wc)
2857  {
2858  	struct btrfs_fs_info *fs_info = log->fs_info;
2859  	int ret = 0;
2860  	int wret;
2861  	int level;
2862  	struct btrfs_path *path;
2863  	int orig_level;
2864  
2865  	path = btrfs_alloc_path();
2866  	if (!path)
2867  		return -ENOMEM;
2868  
2869  	level = btrfs_header_level(log->node);
2870  	orig_level = level;
2871  	path->nodes[level] = log->node;
2872  	extent_buffer_get(log->node);
2873  	path->slots[level] = 0;
2874  
2875  	while (1) {
2876  		wret = walk_down_log_tree(trans, log, path, &level, wc);
2877  		if (wret > 0)
2878  			break;
2879  		if (wret < 0) {
2880  			ret = wret;
2881  			goto out;
2882  		}
2883  
2884  		wret = walk_up_log_tree(trans, log, path, &level, wc);
2885  		if (wret > 0)
2886  			break;
2887  		if (wret < 0) {
2888  			ret = wret;
2889  			goto out;
2890  		}
2891  	}
2892  
2893  	/* was the root node processed? if not, catch it here */
2894  	if (path->nodes[orig_level]) {
2895  		ret = wc->process_func(log, path->nodes[orig_level], wc,
2896  			 btrfs_header_generation(path->nodes[orig_level]),
2897  			 orig_level);
2898  		if (ret)
2899  			goto out;
2900  		if (wc->free) {
2901  			struct extent_buffer *next;
2902  
2903  			next = path->nodes[orig_level];
2904  
2905  			if (trans) {
2906  				btrfs_tree_lock(next);
2907  				btrfs_set_lock_blocking_write(next);
2908  				btrfs_clean_tree_block(next);
2909  				btrfs_wait_tree_block_writeback(next);
2910  				btrfs_tree_unlock(next);
2911  			} else {
2912  				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2913  					clear_extent_buffer_dirty(next);
2914  			}
2915  
2916  			WARN_ON(log->root_key.objectid !=
2917  				BTRFS_TREE_LOG_OBJECTID);
2918  			ret = btrfs_free_and_pin_reserved_extent(fs_info,
2919  							next->start, next->len);
2920  			if (ret)
2921  				goto out;
2922  		}
2923  	}
2924  
2925  out:
2926  	btrfs_free_path(path);
2927  	return ret;
2928  }
2929  
2930  /*
2931   * helper function to update the item for a given subvolumes log root
2932   * in the tree of log roots
2933   */
2934  static int update_log_root(struct btrfs_trans_handle *trans,
2935  			   struct btrfs_root *log)
2936  {
2937  	struct btrfs_fs_info *fs_info = log->fs_info;
2938  	int ret;
2939  
2940  	if (log->log_transid == 1) {
2941  		/* insert root item on the first sync */
2942  		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2943  				&log->root_key, &log->root_item);
2944  	} else {
2945  		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2946  				&log->root_key, &log->root_item);
2947  	}
2948  	return ret;
2949  }
2950  
2951  static void wait_log_commit(struct btrfs_root *root, int transid)
2952  {
2953  	DEFINE_WAIT(wait);
2954  	int index = transid % 2;
2955  
2956  	/*
2957  	 * we only allow two pending log transactions at a time,
2958  	 * so we know that if ours is more than 2 older than the
2959  	 * current transaction, we're done
2960  	 */
2961  	for (;;) {
2962  		prepare_to_wait(&root->log_commit_wait[index],
2963  				&wait, TASK_UNINTERRUPTIBLE);
2964  
2965  		if (!(root->log_transid_committed < transid &&
2966  		      atomic_read(&root->log_commit[index])))
2967  			break;
2968  
2969  		mutex_unlock(&root->log_mutex);
2970  		schedule();
2971  		mutex_lock(&root->log_mutex);
2972  	}
2973  	finish_wait(&root->log_commit_wait[index], &wait);
2974  }
2975  
2976  static void wait_for_writer(struct btrfs_root *root)
2977  {
2978  	DEFINE_WAIT(wait);
2979  
2980  	for (;;) {
2981  		prepare_to_wait(&root->log_writer_wait, &wait,
2982  				TASK_UNINTERRUPTIBLE);
2983  		if (!atomic_read(&root->log_writers))
2984  			break;
2985  
2986  		mutex_unlock(&root->log_mutex);
2987  		schedule();
2988  		mutex_lock(&root->log_mutex);
2989  	}
2990  	finish_wait(&root->log_writer_wait, &wait);
2991  }
2992  
2993  static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2994  					struct btrfs_log_ctx *ctx)
2995  {
2996  	if (!ctx)
2997  		return;
2998  
2999  	mutex_lock(&root->log_mutex);
3000  	list_del_init(&ctx->list);
3001  	mutex_unlock(&root->log_mutex);
3002  }
3003  
3004  /*
3005   * Invoked in log mutex context, or be sure there is no other task which
3006   * can access the list.
3007   */
3008  static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3009  					     int index, int error)
3010  {
3011  	struct btrfs_log_ctx *ctx;
3012  	struct btrfs_log_ctx *safe;
3013  
3014  	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3015  		list_del_init(&ctx->list);
3016  		ctx->log_ret = error;
3017  	}
3018  
3019  	INIT_LIST_HEAD(&root->log_ctxs[index]);
3020  }
3021  
3022  /*
3023   * btrfs_sync_log does sends a given tree log down to the disk and
3024   * updates the super blocks to record it.  When this call is done,
3025   * you know that any inodes previously logged are safely on disk only
3026   * if it returns 0.
3027   *
3028   * Any other return value means you need to call btrfs_commit_transaction.
3029   * Some of the edge cases for fsyncing directories that have had unlinks
3030   * or renames done in the past mean that sometimes the only safe
3031   * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3032   * that has happened.
3033   */
3034  int btrfs_sync_log(struct btrfs_trans_handle *trans,
3035  		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3036  {
3037  	int index1;
3038  	int index2;
3039  	int mark;
3040  	int ret;
3041  	struct btrfs_fs_info *fs_info = root->fs_info;
3042  	struct btrfs_root *log = root->log_root;
3043  	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3044  	int log_transid = 0;
3045  	struct btrfs_log_ctx root_log_ctx;
3046  	struct blk_plug plug;
3047  
3048  	mutex_lock(&root->log_mutex);
3049  	log_transid = ctx->log_transid;
3050  	if (root->log_transid_committed >= log_transid) {
3051  		mutex_unlock(&root->log_mutex);
3052  		return ctx->log_ret;
3053  	}
3054  
3055  	index1 = log_transid % 2;
3056  	if (atomic_read(&root->log_commit[index1])) {
3057  		wait_log_commit(root, log_transid);
3058  		mutex_unlock(&root->log_mutex);
3059  		return ctx->log_ret;
3060  	}
3061  	ASSERT(log_transid == root->log_transid);
3062  	atomic_set(&root->log_commit[index1], 1);
3063  
3064  	/* wait for previous tree log sync to complete */
3065  	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3066  		wait_log_commit(root, log_transid - 1);
3067  
3068  	while (1) {
3069  		int batch = atomic_read(&root->log_batch);
3070  		/* when we're on an ssd, just kick the log commit out */
3071  		if (!btrfs_test_opt(fs_info, SSD) &&
3072  		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3073  			mutex_unlock(&root->log_mutex);
3074  			schedule_timeout_uninterruptible(1);
3075  			mutex_lock(&root->log_mutex);
3076  		}
3077  		wait_for_writer(root);
3078  		if (batch == atomic_read(&root->log_batch))
3079  			break;
3080  	}
3081  
3082  	/* bail out if we need to do a full commit */
3083  	if (btrfs_need_log_full_commit(trans)) {
3084  		ret = -EAGAIN;
3085  		mutex_unlock(&root->log_mutex);
3086  		goto out;
3087  	}
3088  
3089  	if (log_transid % 2 == 0)
3090  		mark = EXTENT_DIRTY;
3091  	else
3092  		mark = EXTENT_NEW;
3093  
3094  	/* we start IO on  all the marked extents here, but we don't actually
3095  	 * wait for them until later.
3096  	 */
3097  	blk_start_plug(&plug);
3098  	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3099  	if (ret) {
3100  		blk_finish_plug(&plug);
3101  		btrfs_abort_transaction(trans, ret);
3102  		btrfs_set_log_full_commit(trans);
3103  		mutex_unlock(&root->log_mutex);
3104  		goto out;
3105  	}
3106  
3107  	btrfs_set_root_node(&log->root_item, log->node);
3108  
3109  	root->log_transid++;
3110  	log->log_transid = root->log_transid;
3111  	root->log_start_pid = 0;
3112  	/*
3113  	 * Update or create log root item under the root's log_mutex to prevent
3114  	 * races with concurrent log syncs that can lead to failure to update
3115  	 * log root item because it was not created yet.
3116  	 */
3117  	ret = update_log_root(trans, log);
3118  	/*
3119  	 * IO has been started, blocks of the log tree have WRITTEN flag set
3120  	 * in their headers. new modifications of the log will be written to
3121  	 * new positions. so it's safe to allow log writers to go in.
3122  	 */
3123  	mutex_unlock(&root->log_mutex);
3124  
3125  	btrfs_init_log_ctx(&root_log_ctx, NULL);
3126  
3127  	mutex_lock(&log_root_tree->log_mutex);
3128  	atomic_inc(&log_root_tree->log_batch);
3129  	atomic_inc(&log_root_tree->log_writers);
3130  
3131  	index2 = log_root_tree->log_transid % 2;
3132  	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3133  	root_log_ctx.log_transid = log_root_tree->log_transid;
3134  
3135  	mutex_unlock(&log_root_tree->log_mutex);
3136  
3137  	mutex_lock(&log_root_tree->log_mutex);
3138  	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
3139  		/* atomic_dec_and_test implies a barrier */
3140  		cond_wake_up_nomb(&log_root_tree->log_writer_wait);
3141  	}
3142  
3143  	if (ret) {
3144  		if (!list_empty(&root_log_ctx.list))
3145  			list_del_init(&root_log_ctx.list);
3146  
3147  		blk_finish_plug(&plug);
3148  		btrfs_set_log_full_commit(trans);
3149  
3150  		if (ret != -ENOSPC) {
3151  			btrfs_abort_transaction(trans, ret);
3152  			mutex_unlock(&log_root_tree->log_mutex);
3153  			goto out;
3154  		}
3155  		btrfs_wait_tree_log_extents(log, mark);
3156  		mutex_unlock(&log_root_tree->log_mutex);
3157  		ret = -EAGAIN;
3158  		goto out;
3159  	}
3160  
3161  	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3162  		blk_finish_plug(&plug);
3163  		list_del_init(&root_log_ctx.list);
3164  		mutex_unlock(&log_root_tree->log_mutex);
3165  		ret = root_log_ctx.log_ret;
3166  		goto out;
3167  	}
3168  
3169  	index2 = root_log_ctx.log_transid % 2;
3170  	if (atomic_read(&log_root_tree->log_commit[index2])) {
3171  		blk_finish_plug(&plug);
3172  		ret = btrfs_wait_tree_log_extents(log, mark);
3173  		wait_log_commit(log_root_tree,
3174  				root_log_ctx.log_transid);
3175  		mutex_unlock(&log_root_tree->log_mutex);
3176  		if (!ret)
3177  			ret = root_log_ctx.log_ret;
3178  		goto out;
3179  	}
3180  	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3181  	atomic_set(&log_root_tree->log_commit[index2], 1);
3182  
3183  	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3184  		wait_log_commit(log_root_tree,
3185  				root_log_ctx.log_transid - 1);
3186  	}
3187  
3188  	wait_for_writer(log_root_tree);
3189  
3190  	/*
3191  	 * now that we've moved on to the tree of log tree roots,
3192  	 * check the full commit flag again
3193  	 */
3194  	if (btrfs_need_log_full_commit(trans)) {
3195  		blk_finish_plug(&plug);
3196  		btrfs_wait_tree_log_extents(log, mark);
3197  		mutex_unlock(&log_root_tree->log_mutex);
3198  		ret = -EAGAIN;
3199  		goto out_wake_log_root;
3200  	}
3201  
3202  	ret = btrfs_write_marked_extents(fs_info,
3203  					 &log_root_tree->dirty_log_pages,
3204  					 EXTENT_DIRTY | EXTENT_NEW);
3205  	blk_finish_plug(&plug);
3206  	if (ret) {
3207  		btrfs_set_log_full_commit(trans);
3208  		btrfs_abort_transaction(trans, ret);
3209  		mutex_unlock(&log_root_tree->log_mutex);
3210  		goto out_wake_log_root;
3211  	}
3212  	ret = btrfs_wait_tree_log_extents(log, mark);
3213  	if (!ret)
3214  		ret = btrfs_wait_tree_log_extents(log_root_tree,
3215  						  EXTENT_NEW | EXTENT_DIRTY);
3216  	if (ret) {
3217  		btrfs_set_log_full_commit(trans);
3218  		mutex_unlock(&log_root_tree->log_mutex);
3219  		goto out_wake_log_root;
3220  	}
3221  
3222  	btrfs_set_super_log_root(fs_info->super_for_commit,
3223  				 log_root_tree->node->start);
3224  	btrfs_set_super_log_root_level(fs_info->super_for_commit,
3225  				       btrfs_header_level(log_root_tree->node));
3226  
3227  	log_root_tree->log_transid++;
3228  	mutex_unlock(&log_root_tree->log_mutex);
3229  
3230  	/*
3231  	 * Nobody else is going to jump in and write the ctree
3232  	 * super here because the log_commit atomic below is protecting
3233  	 * us.  We must be called with a transaction handle pinning
3234  	 * the running transaction open, so a full commit can't hop
3235  	 * in and cause problems either.
3236  	 */
3237  	ret = write_all_supers(fs_info, 1);
3238  	if (ret) {
3239  		btrfs_set_log_full_commit(trans);
3240  		btrfs_abort_transaction(trans, ret);
3241  		goto out_wake_log_root;
3242  	}
3243  
3244  	mutex_lock(&root->log_mutex);
3245  	if (root->last_log_commit < log_transid)
3246  		root->last_log_commit = log_transid;
3247  	mutex_unlock(&root->log_mutex);
3248  
3249  out_wake_log_root:
3250  	mutex_lock(&log_root_tree->log_mutex);
3251  	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3252  
3253  	log_root_tree->log_transid_committed++;
3254  	atomic_set(&log_root_tree->log_commit[index2], 0);
3255  	mutex_unlock(&log_root_tree->log_mutex);
3256  
3257  	/*
3258  	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3259  	 * all the updates above are seen by the woken threads. It might not be
3260  	 * necessary, but proving that seems to be hard.
3261  	 */
3262  	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3263  out:
3264  	mutex_lock(&root->log_mutex);
3265  	btrfs_remove_all_log_ctxs(root, index1, ret);
3266  	root->log_transid_committed++;
3267  	atomic_set(&root->log_commit[index1], 0);
3268  	mutex_unlock(&root->log_mutex);
3269  
3270  	/*
3271  	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3272  	 * all the updates above are seen by the woken threads. It might not be
3273  	 * necessary, but proving that seems to be hard.
3274  	 */
3275  	cond_wake_up(&root->log_commit_wait[index1]);
3276  	return ret;
3277  }
3278  
3279  static void free_log_tree(struct btrfs_trans_handle *trans,
3280  			  struct btrfs_root *log)
3281  {
3282  	int ret;
3283  	struct walk_control wc = {
3284  		.free = 1,
3285  		.process_func = process_one_buffer
3286  	};
3287  
3288  	ret = walk_log_tree(trans, log, &wc);
3289  	if (ret) {
3290  		if (trans)
3291  			btrfs_abort_transaction(trans, ret);
3292  		else
3293  			btrfs_handle_fs_error(log->fs_info, ret, NULL);
3294  	}
3295  
3296  	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3297  			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3298  	free_extent_buffer(log->node);
3299  	kfree(log);
3300  }
3301  
3302  /*
3303   * free all the extents used by the tree log.  This should be called
3304   * at commit time of the full transaction
3305   */
3306  int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3307  {
3308  	if (root->log_root) {
3309  		free_log_tree(trans, root->log_root);
3310  		root->log_root = NULL;
3311  	}
3312  	return 0;
3313  }
3314  
3315  int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3316  			     struct btrfs_fs_info *fs_info)
3317  {
3318  	if (fs_info->log_root_tree) {
3319  		free_log_tree(trans, fs_info->log_root_tree);
3320  		fs_info->log_root_tree = NULL;
3321  	}
3322  	return 0;
3323  }
3324  
3325  /*
3326   * Check if an inode was logged in the current transaction. We can't always rely
3327   * on an inode's logged_trans value, because it's an in-memory only field and
3328   * therefore not persisted. This means that its value is lost if the inode gets
3329   * evicted and loaded again from disk (in which case it has a value of 0, and
3330   * certainly it is smaller then any possible transaction ID), when that happens
3331   * the full_sync flag is set in the inode's runtime flags, so on that case we
3332   * assume eviction happened and ignore the logged_trans value, assuming the
3333   * worst case, that the inode was logged before in the current transaction.
3334   */
3335  static bool inode_logged(struct btrfs_trans_handle *trans,
3336  			 struct btrfs_inode *inode)
3337  {
3338  	if (inode->logged_trans == trans->transid)
3339  		return true;
3340  
3341  	if (inode->last_trans == trans->transid &&
3342  	    test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3343  	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3344  		return true;
3345  
3346  	return false;
3347  }
3348  
3349  /*
3350   * If both a file and directory are logged, and unlinks or renames are
3351   * mixed in, we have a few interesting corners:
3352   *
3353   * create file X in dir Y
3354   * link file X to X.link in dir Y
3355   * fsync file X
3356   * unlink file X but leave X.link
3357   * fsync dir Y
3358   *
3359   * After a crash we would expect only X.link to exist.  But file X
3360   * didn't get fsync'd again so the log has back refs for X and X.link.
3361   *
3362   * We solve this by removing directory entries and inode backrefs from the
3363   * log when a file that was logged in the current transaction is
3364   * unlinked.  Any later fsync will include the updated log entries, and
3365   * we'll be able to reconstruct the proper directory items from backrefs.
3366   *
3367   * This optimizations allows us to avoid relogging the entire inode
3368   * or the entire directory.
3369   */
3370  int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3371  				 struct btrfs_root *root,
3372  				 const char *name, int name_len,
3373  				 struct btrfs_inode *dir, u64 index)
3374  {
3375  	struct btrfs_root *log;
3376  	struct btrfs_dir_item *di;
3377  	struct btrfs_path *path;
3378  	int ret;
3379  	int err = 0;
3380  	int bytes_del = 0;
3381  	u64 dir_ino = btrfs_ino(dir);
3382  
3383  	if (!inode_logged(trans, dir))
3384  		return 0;
3385  
3386  	ret = join_running_log_trans(root);
3387  	if (ret)
3388  		return 0;
3389  
3390  	mutex_lock(&dir->log_mutex);
3391  
3392  	log = root->log_root;
3393  	path = btrfs_alloc_path();
3394  	if (!path) {
3395  		err = -ENOMEM;
3396  		goto out_unlock;
3397  	}
3398  
3399  	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3400  				   name, name_len, -1);
3401  	if (IS_ERR(di)) {
3402  		err = PTR_ERR(di);
3403  		goto fail;
3404  	}
3405  	if (di) {
3406  		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3407  		bytes_del += name_len;
3408  		if (ret) {
3409  			err = ret;
3410  			goto fail;
3411  		}
3412  	}
3413  	btrfs_release_path(path);
3414  	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3415  					 index, name, name_len, -1);
3416  	if (IS_ERR(di)) {
3417  		err = PTR_ERR(di);
3418  		goto fail;
3419  	}
3420  	if (di) {
3421  		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3422  		bytes_del += name_len;
3423  		if (ret) {
3424  			err = ret;
3425  			goto fail;
3426  		}
3427  	}
3428  
3429  	/* update the directory size in the log to reflect the names
3430  	 * we have removed
3431  	 */
3432  	if (bytes_del) {
3433  		struct btrfs_key key;
3434  
3435  		key.objectid = dir_ino;
3436  		key.offset = 0;
3437  		key.type = BTRFS_INODE_ITEM_KEY;
3438  		btrfs_release_path(path);
3439  
3440  		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3441  		if (ret < 0) {
3442  			err = ret;
3443  			goto fail;
3444  		}
3445  		if (ret == 0) {
3446  			struct btrfs_inode_item *item;
3447  			u64 i_size;
3448  
3449  			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3450  					      struct btrfs_inode_item);
3451  			i_size = btrfs_inode_size(path->nodes[0], item);
3452  			if (i_size > bytes_del)
3453  				i_size -= bytes_del;
3454  			else
3455  				i_size = 0;
3456  			btrfs_set_inode_size(path->nodes[0], item, i_size);
3457  			btrfs_mark_buffer_dirty(path->nodes[0]);
3458  		} else
3459  			ret = 0;
3460  		btrfs_release_path(path);
3461  	}
3462  fail:
3463  	btrfs_free_path(path);
3464  out_unlock:
3465  	mutex_unlock(&dir->log_mutex);
3466  	if (ret == -ENOSPC) {
3467  		btrfs_set_log_full_commit(trans);
3468  		ret = 0;
3469  	} else if (ret < 0)
3470  		btrfs_abort_transaction(trans, ret);
3471  
3472  	btrfs_end_log_trans(root);
3473  
3474  	return err;
3475  }
3476  
3477  /* see comments for btrfs_del_dir_entries_in_log */
3478  int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3479  			       struct btrfs_root *root,
3480  			       const char *name, int name_len,
3481  			       struct btrfs_inode *inode, u64 dirid)
3482  {
3483  	struct btrfs_root *log;
3484  	u64 index;
3485  	int ret;
3486  
3487  	if (!inode_logged(trans, inode))
3488  		return 0;
3489  
3490  	ret = join_running_log_trans(root);
3491  	if (ret)
3492  		return 0;
3493  	log = root->log_root;
3494  	mutex_lock(&inode->log_mutex);
3495  
3496  	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3497  				  dirid, &index);
3498  	mutex_unlock(&inode->log_mutex);
3499  	if (ret == -ENOSPC) {
3500  		btrfs_set_log_full_commit(trans);
3501  		ret = 0;
3502  	} else if (ret < 0 && ret != -ENOENT)
3503  		btrfs_abort_transaction(trans, ret);
3504  	btrfs_end_log_trans(root);
3505  
3506  	return ret;
3507  }
3508  
3509  /*
3510   * creates a range item in the log for 'dirid'.  first_offset and
3511   * last_offset tell us which parts of the key space the log should
3512   * be considered authoritative for.
3513   */
3514  static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3515  				       struct btrfs_root *log,
3516  				       struct btrfs_path *path,
3517  				       int key_type, u64 dirid,
3518  				       u64 first_offset, u64 last_offset)
3519  {
3520  	int ret;
3521  	struct btrfs_key key;
3522  	struct btrfs_dir_log_item *item;
3523  
3524  	key.objectid = dirid;
3525  	key.offset = first_offset;
3526  	if (key_type == BTRFS_DIR_ITEM_KEY)
3527  		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3528  	else
3529  		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3530  	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3531  	if (ret)
3532  		return ret;
3533  
3534  	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3535  			      struct btrfs_dir_log_item);
3536  	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3537  	btrfs_mark_buffer_dirty(path->nodes[0]);
3538  	btrfs_release_path(path);
3539  	return 0;
3540  }
3541  
3542  /*
3543   * log all the items included in the current transaction for a given
3544   * directory.  This also creates the range items in the log tree required
3545   * to replay anything deleted before the fsync
3546   */
3547  static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3548  			  struct btrfs_root *root, struct btrfs_inode *inode,
3549  			  struct btrfs_path *path,
3550  			  struct btrfs_path *dst_path, int key_type,
3551  			  struct btrfs_log_ctx *ctx,
3552  			  u64 min_offset, u64 *last_offset_ret)
3553  {
3554  	struct btrfs_key min_key;
3555  	struct btrfs_root *log = root->log_root;
3556  	struct extent_buffer *src;
3557  	int err = 0;
3558  	int ret;
3559  	int i;
3560  	int nritems;
3561  	u64 first_offset = min_offset;
3562  	u64 last_offset = (u64)-1;
3563  	u64 ino = btrfs_ino(inode);
3564  
3565  	log = root->log_root;
3566  
3567  	min_key.objectid = ino;
3568  	min_key.type = key_type;
3569  	min_key.offset = min_offset;
3570  
3571  	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3572  
3573  	/*
3574  	 * we didn't find anything from this transaction, see if there
3575  	 * is anything at all
3576  	 */
3577  	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3578  		min_key.objectid = ino;
3579  		min_key.type = key_type;
3580  		min_key.offset = (u64)-1;
3581  		btrfs_release_path(path);
3582  		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3583  		if (ret < 0) {
3584  			btrfs_release_path(path);
3585  			return ret;
3586  		}
3587  		ret = btrfs_previous_item(root, path, ino, key_type);
3588  
3589  		/* if ret == 0 there are items for this type,
3590  		 * create a range to tell us the last key of this type.
3591  		 * otherwise, there are no items in this directory after
3592  		 * *min_offset, and we create a range to indicate that.
3593  		 */
3594  		if (ret == 0) {
3595  			struct btrfs_key tmp;
3596  			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3597  					      path->slots[0]);
3598  			if (key_type == tmp.type)
3599  				first_offset = max(min_offset, tmp.offset) + 1;
3600  		}
3601  		goto done;
3602  	}
3603  
3604  	/* go backward to find any previous key */
3605  	ret = btrfs_previous_item(root, path, ino, key_type);
3606  	if (ret == 0) {
3607  		struct btrfs_key tmp;
3608  		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3609  		if (key_type == tmp.type) {
3610  			first_offset = tmp.offset;
3611  			ret = overwrite_item(trans, log, dst_path,
3612  					     path->nodes[0], path->slots[0],
3613  					     &tmp);
3614  			if (ret) {
3615  				err = ret;
3616  				goto done;
3617  			}
3618  		}
3619  	}
3620  	btrfs_release_path(path);
3621  
3622  	/*
3623  	 * Find the first key from this transaction again.  See the note for
3624  	 * log_new_dir_dentries, if we're logging a directory recursively we
3625  	 * won't be holding its i_mutex, which means we can modify the directory
3626  	 * while we're logging it.  If we remove an entry between our first
3627  	 * search and this search we'll not find the key again and can just
3628  	 * bail.
3629  	 */
3630  	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3631  	if (ret != 0)
3632  		goto done;
3633  
3634  	/*
3635  	 * we have a block from this transaction, log every item in it
3636  	 * from our directory
3637  	 */
3638  	while (1) {
3639  		struct btrfs_key tmp;
3640  		src = path->nodes[0];
3641  		nritems = btrfs_header_nritems(src);
3642  		for (i = path->slots[0]; i < nritems; i++) {
3643  			struct btrfs_dir_item *di;
3644  
3645  			btrfs_item_key_to_cpu(src, &min_key, i);
3646  
3647  			if (min_key.objectid != ino || min_key.type != key_type)
3648  				goto done;
3649  			ret = overwrite_item(trans, log, dst_path, src, i,
3650  					     &min_key);
3651  			if (ret) {
3652  				err = ret;
3653  				goto done;
3654  			}
3655  
3656  			/*
3657  			 * We must make sure that when we log a directory entry,
3658  			 * the corresponding inode, after log replay, has a
3659  			 * matching link count. For example:
3660  			 *
3661  			 * touch foo
3662  			 * mkdir mydir
3663  			 * sync
3664  			 * ln foo mydir/bar
3665  			 * xfs_io -c "fsync" mydir
3666  			 * <crash>
3667  			 * <mount fs and log replay>
3668  			 *
3669  			 * Would result in a fsync log that when replayed, our
3670  			 * file inode would have a link count of 1, but we get
3671  			 * two directory entries pointing to the same inode.
3672  			 * After removing one of the names, it would not be
3673  			 * possible to remove the other name, which resulted
3674  			 * always in stale file handle errors, and would not
3675  			 * be possible to rmdir the parent directory, since
3676  			 * its i_size could never decrement to the value
3677  			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3678  			 */
3679  			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3680  			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3681  			if (ctx &&
3682  			    (btrfs_dir_transid(src, di) == trans->transid ||
3683  			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3684  			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3685  				ctx->log_new_dentries = true;
3686  		}
3687  		path->slots[0] = nritems;
3688  
3689  		/*
3690  		 * look ahead to the next item and see if it is also
3691  		 * from this directory and from this transaction
3692  		 */
3693  		ret = btrfs_next_leaf(root, path);
3694  		if (ret) {
3695  			if (ret == 1)
3696  				last_offset = (u64)-1;
3697  			else
3698  				err = ret;
3699  			goto done;
3700  		}
3701  		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3702  		if (tmp.objectid != ino || tmp.type != key_type) {
3703  			last_offset = (u64)-1;
3704  			goto done;
3705  		}
3706  		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3707  			ret = overwrite_item(trans, log, dst_path,
3708  					     path->nodes[0], path->slots[0],
3709  					     &tmp);
3710  			if (ret)
3711  				err = ret;
3712  			else
3713  				last_offset = tmp.offset;
3714  			goto done;
3715  		}
3716  	}
3717  done:
3718  	btrfs_release_path(path);
3719  	btrfs_release_path(dst_path);
3720  
3721  	if (err == 0) {
3722  		*last_offset_ret = last_offset;
3723  		/*
3724  		 * insert the log range keys to indicate where the log
3725  		 * is valid
3726  		 */
3727  		ret = insert_dir_log_key(trans, log, path, key_type,
3728  					 ino, first_offset, last_offset);
3729  		if (ret)
3730  			err = ret;
3731  	}
3732  	return err;
3733  }
3734  
3735  /*
3736   * logging directories is very similar to logging inodes, We find all the items
3737   * from the current transaction and write them to the log.
3738   *
3739   * The recovery code scans the directory in the subvolume, and if it finds a
3740   * key in the range logged that is not present in the log tree, then it means
3741   * that dir entry was unlinked during the transaction.
3742   *
3743   * In order for that scan to work, we must include one key smaller than
3744   * the smallest logged by this transaction and one key larger than the largest
3745   * key logged by this transaction.
3746   */
3747  static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3748  			  struct btrfs_root *root, struct btrfs_inode *inode,
3749  			  struct btrfs_path *path,
3750  			  struct btrfs_path *dst_path,
3751  			  struct btrfs_log_ctx *ctx)
3752  {
3753  	u64 min_key;
3754  	u64 max_key;
3755  	int ret;
3756  	int key_type = BTRFS_DIR_ITEM_KEY;
3757  
3758  again:
3759  	min_key = 0;
3760  	max_key = 0;
3761  	while (1) {
3762  		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3763  				ctx, min_key, &max_key);
3764  		if (ret)
3765  			return ret;
3766  		if (max_key == (u64)-1)
3767  			break;
3768  		min_key = max_key + 1;
3769  	}
3770  
3771  	if (key_type == BTRFS_DIR_ITEM_KEY) {
3772  		key_type = BTRFS_DIR_INDEX_KEY;
3773  		goto again;
3774  	}
3775  	return 0;
3776  }
3777  
3778  /*
3779   * a helper function to drop items from the log before we relog an
3780   * inode.  max_key_type indicates the highest item type to remove.
3781   * This cannot be run for file data extents because it does not
3782   * free the extents they point to.
3783   */
3784  static int drop_objectid_items(struct btrfs_trans_handle *trans,
3785  				  struct btrfs_root *log,
3786  				  struct btrfs_path *path,
3787  				  u64 objectid, int max_key_type)
3788  {
3789  	int ret;
3790  	struct btrfs_key key;
3791  	struct btrfs_key found_key;
3792  	int start_slot;
3793  
3794  	key.objectid = objectid;
3795  	key.type = max_key_type;
3796  	key.offset = (u64)-1;
3797  
3798  	while (1) {
3799  		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3800  		BUG_ON(ret == 0); /* Logic error */
3801  		if (ret < 0)
3802  			break;
3803  
3804  		if (path->slots[0] == 0)
3805  			break;
3806  
3807  		path->slots[0]--;
3808  		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3809  				      path->slots[0]);
3810  
3811  		if (found_key.objectid != objectid)
3812  			break;
3813  
3814  		found_key.offset = 0;
3815  		found_key.type = 0;
3816  		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3817  				       &start_slot);
3818  		if (ret < 0)
3819  			break;
3820  
3821  		ret = btrfs_del_items(trans, log, path, start_slot,
3822  				      path->slots[0] - start_slot + 1);
3823  		/*
3824  		 * If start slot isn't 0 then we don't need to re-search, we've
3825  		 * found the last guy with the objectid in this tree.
3826  		 */
3827  		if (ret || start_slot != 0)
3828  			break;
3829  		btrfs_release_path(path);
3830  	}
3831  	btrfs_release_path(path);
3832  	if (ret > 0)
3833  		ret = 0;
3834  	return ret;
3835  }
3836  
3837  static void fill_inode_item(struct btrfs_trans_handle *trans,
3838  			    struct extent_buffer *leaf,
3839  			    struct btrfs_inode_item *item,
3840  			    struct inode *inode, int log_inode_only,
3841  			    u64 logged_isize)
3842  {
3843  	struct btrfs_map_token token;
3844  
3845  	btrfs_init_map_token(&token, leaf);
3846  
3847  	if (log_inode_only) {
3848  		/* set the generation to zero so the recover code
3849  		 * can tell the difference between an logging
3850  		 * just to say 'this inode exists' and a logging
3851  		 * to say 'update this inode with these values'
3852  		 */
3853  		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3854  		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3855  	} else {
3856  		btrfs_set_token_inode_generation(leaf, item,
3857  						 BTRFS_I(inode)->generation,
3858  						 &token);
3859  		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3860  	}
3861  
3862  	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3863  	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3864  	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3865  	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3866  
3867  	btrfs_set_token_timespec_sec(leaf, &item->atime,
3868  				     inode->i_atime.tv_sec, &token);
3869  	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3870  				      inode->i_atime.tv_nsec, &token);
3871  
3872  	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3873  				     inode->i_mtime.tv_sec, &token);
3874  	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3875  				      inode->i_mtime.tv_nsec, &token);
3876  
3877  	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3878  				     inode->i_ctime.tv_sec, &token);
3879  	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3880  				      inode->i_ctime.tv_nsec, &token);
3881  
3882  	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3883  				     &token);
3884  
3885  	btrfs_set_token_inode_sequence(leaf, item,
3886  				       inode_peek_iversion(inode), &token);
3887  	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3888  	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3889  	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3890  	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3891  }
3892  
3893  static int log_inode_item(struct btrfs_trans_handle *trans,
3894  			  struct btrfs_root *log, struct btrfs_path *path,
3895  			  struct btrfs_inode *inode)
3896  {
3897  	struct btrfs_inode_item *inode_item;
3898  	int ret;
3899  
3900  	ret = btrfs_insert_empty_item(trans, log, path,
3901  				      &inode->location, sizeof(*inode_item));
3902  	if (ret && ret != -EEXIST)
3903  		return ret;
3904  	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3905  				    struct btrfs_inode_item);
3906  	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3907  			0, 0);
3908  	btrfs_release_path(path);
3909  	return 0;
3910  }
3911  
3912  static noinline int copy_items(struct btrfs_trans_handle *trans,
3913  			       struct btrfs_inode *inode,
3914  			       struct btrfs_path *dst_path,
3915  			       struct btrfs_path *src_path, u64 *last_extent,
3916  			       int start_slot, int nr, int inode_only,
3917  			       u64 logged_isize)
3918  {
3919  	struct btrfs_fs_info *fs_info = trans->fs_info;
3920  	unsigned long src_offset;
3921  	unsigned long dst_offset;
3922  	struct btrfs_root *log = inode->root->log_root;
3923  	struct btrfs_file_extent_item *extent;
3924  	struct btrfs_inode_item *inode_item;
3925  	struct extent_buffer *src = src_path->nodes[0];
3926  	struct btrfs_key first_key, last_key, key;
3927  	int ret;
3928  	struct btrfs_key *ins_keys;
3929  	u32 *ins_sizes;
3930  	char *ins_data;
3931  	int i;
3932  	struct list_head ordered_sums;
3933  	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3934  	bool has_extents = false;
3935  	bool need_find_last_extent = true;
3936  	bool done = false;
3937  
3938  	INIT_LIST_HEAD(&ordered_sums);
3939  
3940  	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3941  			   nr * sizeof(u32), GFP_NOFS);
3942  	if (!ins_data)
3943  		return -ENOMEM;
3944  
3945  	first_key.objectid = (u64)-1;
3946  
3947  	ins_sizes = (u32 *)ins_data;
3948  	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3949  
3950  	for (i = 0; i < nr; i++) {
3951  		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3952  		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3953  	}
3954  	ret = btrfs_insert_empty_items(trans, log, dst_path,
3955  				       ins_keys, ins_sizes, nr);
3956  	if (ret) {
3957  		kfree(ins_data);
3958  		return ret;
3959  	}
3960  
3961  	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3962  		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3963  						   dst_path->slots[0]);
3964  
3965  		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3966  
3967  		if (i == nr - 1)
3968  			last_key = ins_keys[i];
3969  
3970  		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3971  			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3972  						    dst_path->slots[0],
3973  						    struct btrfs_inode_item);
3974  			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3975  					&inode->vfs_inode,
3976  					inode_only == LOG_INODE_EXISTS,
3977  					logged_isize);
3978  		} else {
3979  			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3980  					   src_offset, ins_sizes[i]);
3981  		}
3982  
3983  		/*
3984  		 * We set need_find_last_extent here in case we know we were
3985  		 * processing other items and then walk into the first extent in
3986  		 * the inode.  If we don't hit an extent then nothing changes,
3987  		 * we'll do the last search the next time around.
3988  		 */
3989  		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3990  			has_extents = true;
3991  			if (first_key.objectid == (u64)-1)
3992  				first_key = ins_keys[i];
3993  		} else {
3994  			need_find_last_extent = false;
3995  		}
3996  
3997  		/* take a reference on file data extents so that truncates
3998  		 * or deletes of this inode don't have to relog the inode
3999  		 * again
4000  		 */
4001  		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4002  		    !skip_csum) {
4003  			int found_type;
4004  			extent = btrfs_item_ptr(src, start_slot + i,
4005  						struct btrfs_file_extent_item);
4006  
4007  			if (btrfs_file_extent_generation(src, extent) < trans->transid)
4008  				continue;
4009  
4010  			found_type = btrfs_file_extent_type(src, extent);
4011  			if (found_type == BTRFS_FILE_EXTENT_REG) {
4012  				u64 ds, dl, cs, cl;
4013  				ds = btrfs_file_extent_disk_bytenr(src,
4014  								extent);
4015  				/* ds == 0 is a hole */
4016  				if (ds == 0)
4017  					continue;
4018  
4019  				dl = btrfs_file_extent_disk_num_bytes(src,
4020  								extent);
4021  				cs = btrfs_file_extent_offset(src, extent);
4022  				cl = btrfs_file_extent_num_bytes(src,
4023  								extent);
4024  				if (btrfs_file_extent_compression(src,
4025  								  extent)) {
4026  					cs = 0;
4027  					cl = dl;
4028  				}
4029  
4030  				ret = btrfs_lookup_csums_range(
4031  						fs_info->csum_root,
4032  						ds + cs, ds + cs + cl - 1,
4033  						&ordered_sums, 0);
4034  				if (ret) {
4035  					btrfs_release_path(dst_path);
4036  					kfree(ins_data);
4037  					return ret;
4038  				}
4039  			}
4040  		}
4041  	}
4042  
4043  	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4044  	btrfs_release_path(dst_path);
4045  	kfree(ins_data);
4046  
4047  	/*
4048  	 * we have to do this after the loop above to avoid changing the
4049  	 * log tree while trying to change the log tree.
4050  	 */
4051  	ret = 0;
4052  	while (!list_empty(&ordered_sums)) {
4053  		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4054  						   struct btrfs_ordered_sum,
4055  						   list);
4056  		if (!ret)
4057  			ret = btrfs_csum_file_blocks(trans, log, sums);
4058  		list_del(&sums->list);
4059  		kfree(sums);
4060  	}
4061  
4062  	if (!has_extents)
4063  		return ret;
4064  
4065  	if (need_find_last_extent && *last_extent == first_key.offset) {
4066  		/*
4067  		 * We don't have any leafs between our current one and the one
4068  		 * we processed before that can have file extent items for our
4069  		 * inode (and have a generation number smaller than our current
4070  		 * transaction id).
4071  		 */
4072  		need_find_last_extent = false;
4073  	}
4074  
4075  	/*
4076  	 * Because we use btrfs_search_forward we could skip leaves that were
4077  	 * not modified and then assume *last_extent is valid when it really
4078  	 * isn't.  So back up to the previous leaf and read the end of the last
4079  	 * extent before we go and fill in holes.
4080  	 */
4081  	if (need_find_last_extent) {
4082  		u64 len;
4083  
4084  		ret = btrfs_prev_leaf(inode->root, src_path);
4085  		if (ret < 0)
4086  			return ret;
4087  		if (ret)
4088  			goto fill_holes;
4089  		if (src_path->slots[0])
4090  			src_path->slots[0]--;
4091  		src = src_path->nodes[0];
4092  		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
4093  		if (key.objectid != btrfs_ino(inode) ||
4094  		    key.type != BTRFS_EXTENT_DATA_KEY)
4095  			goto fill_holes;
4096  		extent = btrfs_item_ptr(src, src_path->slots[0],
4097  					struct btrfs_file_extent_item);
4098  		if (btrfs_file_extent_type(src, extent) ==
4099  		    BTRFS_FILE_EXTENT_INLINE) {
4100  			len = btrfs_file_extent_ram_bytes(src, extent);
4101  			*last_extent = ALIGN(key.offset + len,
4102  					     fs_info->sectorsize);
4103  		} else {
4104  			len = btrfs_file_extent_num_bytes(src, extent);
4105  			*last_extent = key.offset + len;
4106  		}
4107  	}
4108  fill_holes:
4109  	/* So we did prev_leaf, now we need to move to the next leaf, but a few
4110  	 * things could have happened
4111  	 *
4112  	 * 1) A merge could have happened, so we could currently be on a leaf
4113  	 * that holds what we were copying in the first place.
4114  	 * 2) A split could have happened, and now not all of the items we want
4115  	 * are on the same leaf.
4116  	 *
4117  	 * So we need to adjust how we search for holes, we need to drop the
4118  	 * path and re-search for the first extent key we found, and then walk
4119  	 * forward until we hit the last one we copied.
4120  	 */
4121  	if (need_find_last_extent) {
4122  		/* btrfs_prev_leaf could return 1 without releasing the path */
4123  		btrfs_release_path(src_path);
4124  		ret = btrfs_search_slot(NULL, inode->root, &first_key,
4125  				src_path, 0, 0);
4126  		if (ret < 0)
4127  			return ret;
4128  		ASSERT(ret == 0);
4129  		src = src_path->nodes[0];
4130  		i = src_path->slots[0];
4131  	} else {
4132  		i = start_slot;
4133  	}
4134  
4135  	/*
4136  	 * Ok so here we need to go through and fill in any holes we may have
4137  	 * to make sure that holes are punched for those areas in case they had
4138  	 * extents previously.
4139  	 */
4140  	while (!done) {
4141  		u64 offset, len;
4142  		u64 extent_end;
4143  
4144  		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
4145  			ret = btrfs_next_leaf(inode->root, src_path);
4146  			if (ret < 0)
4147  				return ret;
4148  			ASSERT(ret == 0);
4149  			src = src_path->nodes[0];
4150  			i = 0;
4151  			need_find_last_extent = true;
4152  		}
4153  
4154  		btrfs_item_key_to_cpu(src, &key, i);
4155  		if (!btrfs_comp_cpu_keys(&key, &last_key))
4156  			done = true;
4157  		if (key.objectid != btrfs_ino(inode) ||
4158  		    key.type != BTRFS_EXTENT_DATA_KEY) {
4159  			i++;
4160  			continue;
4161  		}
4162  		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4163  		if (btrfs_file_extent_type(src, extent) ==
4164  		    BTRFS_FILE_EXTENT_INLINE) {
4165  			len = btrfs_file_extent_ram_bytes(src, extent);
4166  			extent_end = ALIGN(key.offset + len,
4167  					   fs_info->sectorsize);
4168  		} else {
4169  			len = btrfs_file_extent_num_bytes(src, extent);
4170  			extent_end = key.offset + len;
4171  		}
4172  		i++;
4173  
4174  		if (*last_extent == key.offset) {
4175  			*last_extent = extent_end;
4176  			continue;
4177  		}
4178  		offset = *last_extent;
4179  		len = key.offset - *last_extent;
4180  		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
4181  				offset, 0, 0, len, 0, len, 0, 0, 0);
4182  		if (ret)
4183  			break;
4184  		*last_extent = extent_end;
4185  	}
4186  
4187  	/*
4188  	 * Check if there is a hole between the last extent found in our leaf
4189  	 * and the first extent in the next leaf. If there is one, we need to
4190  	 * log an explicit hole so that at replay time we can punch the hole.
4191  	 */
4192  	if (ret == 0 &&
4193  	    key.objectid == btrfs_ino(inode) &&
4194  	    key.type == BTRFS_EXTENT_DATA_KEY &&
4195  	    i == btrfs_header_nritems(src_path->nodes[0])) {
4196  		ret = btrfs_next_leaf(inode->root, src_path);
4197  		need_find_last_extent = true;
4198  		if (ret > 0) {
4199  			ret = 0;
4200  		} else if (ret == 0) {
4201  			btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4202  					      src_path->slots[0]);
4203  			if (key.objectid == btrfs_ino(inode) &&
4204  			    key.type == BTRFS_EXTENT_DATA_KEY &&
4205  			    *last_extent < key.offset) {
4206  				const u64 len = key.offset - *last_extent;
4207  
4208  				ret = btrfs_insert_file_extent(trans, log,
4209  							       btrfs_ino(inode),
4210  							       *last_extent, 0,
4211  							       0, len, 0, len,
4212  							       0, 0, 0);
4213  				*last_extent += len;
4214  			}
4215  		}
4216  	}
4217  	/*
4218  	 * Need to let the callers know we dropped the path so they should
4219  	 * re-search.
4220  	 */
4221  	if (!ret && need_find_last_extent)
4222  		ret = 1;
4223  	return ret;
4224  }
4225  
4226  static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4227  {
4228  	struct extent_map *em1, *em2;
4229  
4230  	em1 = list_entry(a, struct extent_map, list);
4231  	em2 = list_entry(b, struct extent_map, list);
4232  
4233  	if (em1->start < em2->start)
4234  		return -1;
4235  	else if (em1->start > em2->start)
4236  		return 1;
4237  	return 0;
4238  }
4239  
4240  static int log_extent_csums(struct btrfs_trans_handle *trans,
4241  			    struct btrfs_inode *inode,
4242  			    struct btrfs_root *log_root,
4243  			    const struct extent_map *em)
4244  {
4245  	u64 csum_offset;
4246  	u64 csum_len;
4247  	LIST_HEAD(ordered_sums);
4248  	int ret = 0;
4249  
4250  	if (inode->flags & BTRFS_INODE_NODATASUM ||
4251  	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4252  	    em->block_start == EXTENT_MAP_HOLE)
4253  		return 0;
4254  
4255  	/* If we're compressed we have to save the entire range of csums. */
4256  	if (em->compress_type) {
4257  		csum_offset = 0;
4258  		csum_len = max(em->block_len, em->orig_block_len);
4259  	} else {
4260  		csum_offset = em->mod_start - em->start;
4261  		csum_len = em->mod_len;
4262  	}
4263  
4264  	/* block start is already adjusted for the file extent offset. */
4265  	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4266  				       em->block_start + csum_offset,
4267  				       em->block_start + csum_offset +
4268  				       csum_len - 1, &ordered_sums, 0);
4269  	if (ret)
4270  		return ret;
4271  
4272  	while (!list_empty(&ordered_sums)) {
4273  		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4274  						   struct btrfs_ordered_sum,
4275  						   list);
4276  		if (!ret)
4277  			ret = btrfs_csum_file_blocks(trans, log_root, sums);
4278  		list_del(&sums->list);
4279  		kfree(sums);
4280  	}
4281  
4282  	return ret;
4283  }
4284  
4285  static int log_one_extent(struct btrfs_trans_handle *trans,
4286  			  struct btrfs_inode *inode, struct btrfs_root *root,
4287  			  const struct extent_map *em,
4288  			  struct btrfs_path *path,
4289  			  struct btrfs_log_ctx *ctx)
4290  {
4291  	struct btrfs_root *log = root->log_root;
4292  	struct btrfs_file_extent_item *fi;
4293  	struct extent_buffer *leaf;
4294  	struct btrfs_map_token token;
4295  	struct btrfs_key key;
4296  	u64 extent_offset = em->start - em->orig_start;
4297  	u64 block_len;
4298  	int ret;
4299  	int extent_inserted = 0;
4300  
4301  	ret = log_extent_csums(trans, inode, log, em);
4302  	if (ret)
4303  		return ret;
4304  
4305  	ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4306  				   em->start + em->len, NULL, 0, 1,
4307  				   sizeof(*fi), &extent_inserted);
4308  	if (ret)
4309  		return ret;
4310  
4311  	if (!extent_inserted) {
4312  		key.objectid = btrfs_ino(inode);
4313  		key.type = BTRFS_EXTENT_DATA_KEY;
4314  		key.offset = em->start;
4315  
4316  		ret = btrfs_insert_empty_item(trans, log, path, &key,
4317  					      sizeof(*fi));
4318  		if (ret)
4319  			return ret;
4320  	}
4321  	leaf = path->nodes[0];
4322  	btrfs_init_map_token(&token, leaf);
4323  	fi = btrfs_item_ptr(leaf, path->slots[0],
4324  			    struct btrfs_file_extent_item);
4325  
4326  	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4327  					       &token);
4328  	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4329  		btrfs_set_token_file_extent_type(leaf, fi,
4330  						 BTRFS_FILE_EXTENT_PREALLOC,
4331  						 &token);
4332  	else
4333  		btrfs_set_token_file_extent_type(leaf, fi,
4334  						 BTRFS_FILE_EXTENT_REG,
4335  						 &token);
4336  
4337  	block_len = max(em->block_len, em->orig_block_len);
4338  	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4339  		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4340  							em->block_start,
4341  							&token);
4342  		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4343  							   &token);
4344  	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4345  		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4346  							em->block_start -
4347  							extent_offset, &token);
4348  		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4349  							   &token);
4350  	} else {
4351  		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4352  		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4353  							   &token);
4354  	}
4355  
4356  	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4357  	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4358  	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4359  	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4360  						&token);
4361  	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4362  	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4363  	btrfs_mark_buffer_dirty(leaf);
4364  
4365  	btrfs_release_path(path);
4366  
4367  	return ret;
4368  }
4369  
4370  /*
4371   * Log all prealloc extents beyond the inode's i_size to make sure we do not
4372   * lose them after doing a fast fsync and replaying the log. We scan the
4373   * subvolume's root instead of iterating the inode's extent map tree because
4374   * otherwise we can log incorrect extent items based on extent map conversion.
4375   * That can happen due to the fact that extent maps are merged when they
4376   * are not in the extent map tree's list of modified extents.
4377   */
4378  static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4379  				      struct btrfs_inode *inode,
4380  				      struct btrfs_path *path)
4381  {
4382  	struct btrfs_root *root = inode->root;
4383  	struct btrfs_key key;
4384  	const u64 i_size = i_size_read(&inode->vfs_inode);
4385  	const u64 ino = btrfs_ino(inode);
4386  	struct btrfs_path *dst_path = NULL;
4387  	u64 last_extent = (u64)-1;
4388  	int ins_nr = 0;
4389  	int start_slot;
4390  	int ret;
4391  
4392  	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4393  		return 0;
4394  
4395  	key.objectid = ino;
4396  	key.type = BTRFS_EXTENT_DATA_KEY;
4397  	key.offset = i_size;
4398  	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4399  	if (ret < 0)
4400  		goto out;
4401  
4402  	while (true) {
4403  		struct extent_buffer *leaf = path->nodes[0];
4404  		int slot = path->slots[0];
4405  
4406  		if (slot >= btrfs_header_nritems(leaf)) {
4407  			if (ins_nr > 0) {
4408  				ret = copy_items(trans, inode, dst_path, path,
4409  						 &last_extent, start_slot,
4410  						 ins_nr, 1, 0);
4411  				if (ret < 0)
4412  					goto out;
4413  				ins_nr = 0;
4414  			}
4415  			ret = btrfs_next_leaf(root, path);
4416  			if (ret < 0)
4417  				goto out;
4418  			if (ret > 0) {
4419  				ret = 0;
4420  				break;
4421  			}
4422  			continue;
4423  		}
4424  
4425  		btrfs_item_key_to_cpu(leaf, &key, slot);
4426  		if (key.objectid > ino)
4427  			break;
4428  		if (WARN_ON_ONCE(key.objectid < ino) ||
4429  		    key.type < BTRFS_EXTENT_DATA_KEY ||
4430  		    key.offset < i_size) {
4431  			path->slots[0]++;
4432  			continue;
4433  		}
4434  		if (last_extent == (u64)-1) {
4435  			last_extent = key.offset;
4436  			/*
4437  			 * Avoid logging extent items logged in past fsync calls
4438  			 * and leading to duplicate keys in the log tree.
4439  			 */
4440  			do {
4441  				ret = btrfs_truncate_inode_items(trans,
4442  							 root->log_root,
4443  							 &inode->vfs_inode,
4444  							 i_size,
4445  							 BTRFS_EXTENT_DATA_KEY);
4446  			} while (ret == -EAGAIN);
4447  			if (ret)
4448  				goto out;
4449  		}
4450  		if (ins_nr == 0)
4451  			start_slot = slot;
4452  		ins_nr++;
4453  		path->slots[0]++;
4454  		if (!dst_path) {
4455  			dst_path = btrfs_alloc_path();
4456  			if (!dst_path) {
4457  				ret = -ENOMEM;
4458  				goto out;
4459  			}
4460  		}
4461  	}
4462  	if (ins_nr > 0) {
4463  		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4464  				 start_slot, ins_nr, 1, 0);
4465  		if (ret > 0)
4466  			ret = 0;
4467  	}
4468  out:
4469  	btrfs_release_path(path);
4470  	btrfs_free_path(dst_path);
4471  	return ret;
4472  }
4473  
4474  static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4475  				     struct btrfs_root *root,
4476  				     struct btrfs_inode *inode,
4477  				     struct btrfs_path *path,
4478  				     struct btrfs_log_ctx *ctx,
4479  				     const u64 start,
4480  				     const u64 end)
4481  {
4482  	struct extent_map *em, *n;
4483  	struct list_head extents;
4484  	struct extent_map_tree *tree = &inode->extent_tree;
4485  	u64 test_gen;
4486  	int ret = 0;
4487  	int num = 0;
4488  
4489  	INIT_LIST_HEAD(&extents);
4490  
4491  	write_lock(&tree->lock);
4492  	test_gen = root->fs_info->last_trans_committed;
4493  
4494  	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4495  		/*
4496  		 * Skip extents outside our logging range. It's important to do
4497  		 * it for correctness because if we don't ignore them, we may
4498  		 * log them before their ordered extent completes, and therefore
4499  		 * we could log them without logging their respective checksums
4500  		 * (the checksum items are added to the csum tree at the very
4501  		 * end of btrfs_finish_ordered_io()). Also leave such extents
4502  		 * outside of our range in the list, since we may have another
4503  		 * ranged fsync in the near future that needs them. If an extent
4504  		 * outside our range corresponds to a hole, log it to avoid
4505  		 * leaving gaps between extents (fsck will complain when we are
4506  		 * not using the NO_HOLES feature).
4507  		 */
4508  		if ((em->start > end || em->start + em->len <= start) &&
4509  		    em->block_start != EXTENT_MAP_HOLE)
4510  			continue;
4511  
4512  		list_del_init(&em->list);
4513  		/*
4514  		 * Just an arbitrary number, this can be really CPU intensive
4515  		 * once we start getting a lot of extents, and really once we
4516  		 * have a bunch of extents we just want to commit since it will
4517  		 * be faster.
4518  		 */
4519  		if (++num > 32768) {
4520  			list_del_init(&tree->modified_extents);
4521  			ret = -EFBIG;
4522  			goto process;
4523  		}
4524  
4525  		if (em->generation <= test_gen)
4526  			continue;
4527  
4528  		/* We log prealloc extents beyond eof later. */
4529  		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4530  		    em->start >= i_size_read(&inode->vfs_inode))
4531  			continue;
4532  
4533  		/* Need a ref to keep it from getting evicted from cache */
4534  		refcount_inc(&em->refs);
4535  		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4536  		list_add_tail(&em->list, &extents);
4537  		num++;
4538  	}
4539  
4540  	list_sort(NULL, &extents, extent_cmp);
4541  process:
4542  	while (!list_empty(&extents)) {
4543  		em = list_entry(extents.next, struct extent_map, list);
4544  
4545  		list_del_init(&em->list);
4546  
4547  		/*
4548  		 * If we had an error we just need to delete everybody from our
4549  		 * private list.
4550  		 */
4551  		if (ret) {
4552  			clear_em_logging(tree, em);
4553  			free_extent_map(em);
4554  			continue;
4555  		}
4556  
4557  		write_unlock(&tree->lock);
4558  
4559  		ret = log_one_extent(trans, inode, root, em, path, ctx);
4560  		write_lock(&tree->lock);
4561  		clear_em_logging(tree, em);
4562  		free_extent_map(em);
4563  	}
4564  	WARN_ON(!list_empty(&extents));
4565  	write_unlock(&tree->lock);
4566  
4567  	btrfs_release_path(path);
4568  	if (!ret)
4569  		ret = btrfs_log_prealloc_extents(trans, inode, path);
4570  
4571  	return ret;
4572  }
4573  
4574  static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4575  			     struct btrfs_path *path, u64 *size_ret)
4576  {
4577  	struct btrfs_key key;
4578  	int ret;
4579  
4580  	key.objectid = btrfs_ino(inode);
4581  	key.type = BTRFS_INODE_ITEM_KEY;
4582  	key.offset = 0;
4583  
4584  	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4585  	if (ret < 0) {
4586  		return ret;
4587  	} else if (ret > 0) {
4588  		*size_ret = 0;
4589  	} else {
4590  		struct btrfs_inode_item *item;
4591  
4592  		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4593  				      struct btrfs_inode_item);
4594  		*size_ret = btrfs_inode_size(path->nodes[0], item);
4595  		/*
4596  		 * If the in-memory inode's i_size is smaller then the inode
4597  		 * size stored in the btree, return the inode's i_size, so
4598  		 * that we get a correct inode size after replaying the log
4599  		 * when before a power failure we had a shrinking truncate
4600  		 * followed by addition of a new name (rename / new hard link).
4601  		 * Otherwise return the inode size from the btree, to avoid
4602  		 * data loss when replaying a log due to previously doing a
4603  		 * write that expands the inode's size and logging a new name
4604  		 * immediately after.
4605  		 */
4606  		if (*size_ret > inode->vfs_inode.i_size)
4607  			*size_ret = inode->vfs_inode.i_size;
4608  	}
4609  
4610  	btrfs_release_path(path);
4611  	return 0;
4612  }
4613  
4614  /*
4615   * At the moment we always log all xattrs. This is to figure out at log replay
4616   * time which xattrs must have their deletion replayed. If a xattr is missing
4617   * in the log tree and exists in the fs/subvol tree, we delete it. This is
4618   * because if a xattr is deleted, the inode is fsynced and a power failure
4619   * happens, causing the log to be replayed the next time the fs is mounted,
4620   * we want the xattr to not exist anymore (same behaviour as other filesystems
4621   * with a journal, ext3/4, xfs, f2fs, etc).
4622   */
4623  static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4624  				struct btrfs_root *root,
4625  				struct btrfs_inode *inode,
4626  				struct btrfs_path *path,
4627  				struct btrfs_path *dst_path)
4628  {
4629  	int ret;
4630  	struct btrfs_key key;
4631  	const u64 ino = btrfs_ino(inode);
4632  	int ins_nr = 0;
4633  	int start_slot = 0;
4634  
4635  	key.objectid = ino;
4636  	key.type = BTRFS_XATTR_ITEM_KEY;
4637  	key.offset = 0;
4638  
4639  	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4640  	if (ret < 0)
4641  		return ret;
4642  
4643  	while (true) {
4644  		int slot = path->slots[0];
4645  		struct extent_buffer *leaf = path->nodes[0];
4646  		int nritems = btrfs_header_nritems(leaf);
4647  
4648  		if (slot >= nritems) {
4649  			if (ins_nr > 0) {
4650  				u64 last_extent = 0;
4651  
4652  				ret = copy_items(trans, inode, dst_path, path,
4653  						 &last_extent, start_slot,
4654  						 ins_nr, 1, 0);
4655  				/* can't be 1, extent items aren't processed */
4656  				ASSERT(ret <= 0);
4657  				if (ret < 0)
4658  					return ret;
4659  				ins_nr = 0;
4660  			}
4661  			ret = btrfs_next_leaf(root, path);
4662  			if (ret < 0)
4663  				return ret;
4664  			else if (ret > 0)
4665  				break;
4666  			continue;
4667  		}
4668  
4669  		btrfs_item_key_to_cpu(leaf, &key, slot);
4670  		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4671  			break;
4672  
4673  		if (ins_nr == 0)
4674  			start_slot = slot;
4675  		ins_nr++;
4676  		path->slots[0]++;
4677  		cond_resched();
4678  	}
4679  	if (ins_nr > 0) {
4680  		u64 last_extent = 0;
4681  
4682  		ret = copy_items(trans, inode, dst_path, path,
4683  				 &last_extent, start_slot,
4684  				 ins_nr, 1, 0);
4685  		/* can't be 1, extent items aren't processed */
4686  		ASSERT(ret <= 0);
4687  		if (ret < 0)
4688  			return ret;
4689  	}
4690  
4691  	return 0;
4692  }
4693  
4694  /*
4695   * If the no holes feature is enabled we need to make sure any hole between the
4696   * last extent and the i_size of our inode is explicitly marked in the log. This
4697   * is to make sure that doing something like:
4698   *
4699   *      1) create file with 128Kb of data
4700   *      2) truncate file to 64Kb
4701   *      3) truncate file to 256Kb
4702   *      4) fsync file
4703   *      5) <crash/power failure>
4704   *      6) mount fs and trigger log replay
4705   *
4706   * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4707   * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4708   * file correspond to a hole. The presence of explicit holes in a log tree is
4709   * what guarantees that log replay will remove/adjust file extent items in the
4710   * fs/subvol tree.
4711   *
4712   * Here we do not need to care about holes between extents, that is already done
4713   * by copy_items(). We also only need to do this in the full sync path, where we
4714   * lookup for extents from the fs/subvol tree only. In the fast path case, we
4715   * lookup the list of modified extent maps and if any represents a hole, we
4716   * insert a corresponding extent representing a hole in the log tree.
4717   */
4718  static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4719  				   struct btrfs_root *root,
4720  				   struct btrfs_inode *inode,
4721  				   struct btrfs_path *path)
4722  {
4723  	struct btrfs_fs_info *fs_info = root->fs_info;
4724  	int ret;
4725  	struct btrfs_key key;
4726  	u64 hole_start;
4727  	u64 hole_size;
4728  	struct extent_buffer *leaf;
4729  	struct btrfs_root *log = root->log_root;
4730  	const u64 ino = btrfs_ino(inode);
4731  	const u64 i_size = i_size_read(&inode->vfs_inode);
4732  
4733  	if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4734  		return 0;
4735  
4736  	key.objectid = ino;
4737  	key.type = BTRFS_EXTENT_DATA_KEY;
4738  	key.offset = (u64)-1;
4739  
4740  	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4741  	ASSERT(ret != 0);
4742  	if (ret < 0)
4743  		return ret;
4744  
4745  	ASSERT(path->slots[0] > 0);
4746  	path->slots[0]--;
4747  	leaf = path->nodes[0];
4748  	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4749  
4750  	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4751  		/* inode does not have any extents */
4752  		hole_start = 0;
4753  		hole_size = i_size;
4754  	} else {
4755  		struct btrfs_file_extent_item *extent;
4756  		u64 len;
4757  
4758  		/*
4759  		 * If there's an extent beyond i_size, an explicit hole was
4760  		 * already inserted by copy_items().
4761  		 */
4762  		if (key.offset >= i_size)
4763  			return 0;
4764  
4765  		extent = btrfs_item_ptr(leaf, path->slots[0],
4766  					struct btrfs_file_extent_item);
4767  
4768  		if (btrfs_file_extent_type(leaf, extent) ==
4769  		    BTRFS_FILE_EXTENT_INLINE)
4770  			return 0;
4771  
4772  		len = btrfs_file_extent_num_bytes(leaf, extent);
4773  		/* Last extent goes beyond i_size, no need to log a hole. */
4774  		if (key.offset + len > i_size)
4775  			return 0;
4776  		hole_start = key.offset + len;
4777  		hole_size = i_size - hole_start;
4778  	}
4779  	btrfs_release_path(path);
4780  
4781  	/* Last extent ends at i_size. */
4782  	if (hole_size == 0)
4783  		return 0;
4784  
4785  	hole_size = ALIGN(hole_size, fs_info->sectorsize);
4786  	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4787  				       hole_size, 0, hole_size, 0, 0, 0);
4788  	return ret;
4789  }
4790  
4791  /*
4792   * When we are logging a new inode X, check if it doesn't have a reference that
4793   * matches the reference from some other inode Y created in a past transaction
4794   * and that was renamed in the current transaction. If we don't do this, then at
4795   * log replay time we can lose inode Y (and all its files if it's a directory):
4796   *
4797   * mkdir /mnt/x
4798   * echo "hello world" > /mnt/x/foobar
4799   * sync
4800   * mv /mnt/x /mnt/y
4801   * mkdir /mnt/x                 # or touch /mnt/x
4802   * xfs_io -c fsync /mnt/x
4803   * <power fail>
4804   * mount fs, trigger log replay
4805   *
4806   * After the log replay procedure, we would lose the first directory and all its
4807   * files (file foobar).
4808   * For the case where inode Y is not a directory we simply end up losing it:
4809   *
4810   * echo "123" > /mnt/foo
4811   * sync
4812   * mv /mnt/foo /mnt/bar
4813   * echo "abc" > /mnt/foo
4814   * xfs_io -c fsync /mnt/foo
4815   * <power fail>
4816   *
4817   * We also need this for cases where a snapshot entry is replaced by some other
4818   * entry (file or directory) otherwise we end up with an unreplayable log due to
4819   * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4820   * if it were a regular entry:
4821   *
4822   * mkdir /mnt/x
4823   * btrfs subvolume snapshot /mnt /mnt/x/snap
4824   * btrfs subvolume delete /mnt/x/snap
4825   * rmdir /mnt/x
4826   * mkdir /mnt/x
4827   * fsync /mnt/x or fsync some new file inside it
4828   * <power fail>
4829   *
4830   * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4831   * the same transaction.
4832   */
4833  static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4834  					 const int slot,
4835  					 const struct btrfs_key *key,
4836  					 struct btrfs_inode *inode,
4837  					 u64 *other_ino, u64 *other_parent)
4838  {
4839  	int ret;
4840  	struct btrfs_path *search_path;
4841  	char *name = NULL;
4842  	u32 name_len = 0;
4843  	u32 item_size = btrfs_item_size_nr(eb, slot);
4844  	u32 cur_offset = 0;
4845  	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4846  
4847  	search_path = btrfs_alloc_path();
4848  	if (!search_path)
4849  		return -ENOMEM;
4850  	search_path->search_commit_root = 1;
4851  	search_path->skip_locking = 1;
4852  
4853  	while (cur_offset < item_size) {
4854  		u64 parent;
4855  		u32 this_name_len;
4856  		u32 this_len;
4857  		unsigned long name_ptr;
4858  		struct btrfs_dir_item *di;
4859  
4860  		if (key->type == BTRFS_INODE_REF_KEY) {
4861  			struct btrfs_inode_ref *iref;
4862  
4863  			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4864  			parent = key->offset;
4865  			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4866  			name_ptr = (unsigned long)(iref + 1);
4867  			this_len = sizeof(*iref) + this_name_len;
4868  		} else {
4869  			struct btrfs_inode_extref *extref;
4870  
4871  			extref = (struct btrfs_inode_extref *)(ptr +
4872  							       cur_offset);
4873  			parent = btrfs_inode_extref_parent(eb, extref);
4874  			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4875  			name_ptr = (unsigned long)&extref->name;
4876  			this_len = sizeof(*extref) + this_name_len;
4877  		}
4878  
4879  		if (this_name_len > name_len) {
4880  			char *new_name;
4881  
4882  			new_name = krealloc(name, this_name_len, GFP_NOFS);
4883  			if (!new_name) {
4884  				ret = -ENOMEM;
4885  				goto out;
4886  			}
4887  			name_len = this_name_len;
4888  			name = new_name;
4889  		}
4890  
4891  		read_extent_buffer(eb, name, name_ptr, this_name_len);
4892  		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4893  				parent, name, this_name_len, 0);
4894  		if (di && !IS_ERR(di)) {
4895  			struct btrfs_key di_key;
4896  
4897  			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4898  						  di, &di_key);
4899  			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4900  				if (di_key.objectid != key->objectid) {
4901  					ret = 1;
4902  					*other_ino = di_key.objectid;
4903  					*other_parent = parent;
4904  				} else {
4905  					ret = 0;
4906  				}
4907  			} else {
4908  				ret = -EAGAIN;
4909  			}
4910  			goto out;
4911  		} else if (IS_ERR(di)) {
4912  			ret = PTR_ERR(di);
4913  			goto out;
4914  		}
4915  		btrfs_release_path(search_path);
4916  
4917  		cur_offset += this_len;
4918  	}
4919  	ret = 0;
4920  out:
4921  	btrfs_free_path(search_path);
4922  	kfree(name);
4923  	return ret;
4924  }
4925  
4926  struct btrfs_ino_list {
4927  	u64 ino;
4928  	u64 parent;
4929  	struct list_head list;
4930  };
4931  
4932  static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4933  				  struct btrfs_root *root,
4934  				  struct btrfs_path *path,
4935  				  struct btrfs_log_ctx *ctx,
4936  				  u64 ino, u64 parent)
4937  {
4938  	struct btrfs_ino_list *ino_elem;
4939  	LIST_HEAD(inode_list);
4940  	int ret = 0;
4941  
4942  	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4943  	if (!ino_elem)
4944  		return -ENOMEM;
4945  	ino_elem->ino = ino;
4946  	ino_elem->parent = parent;
4947  	list_add_tail(&ino_elem->list, &inode_list);
4948  
4949  	while (!list_empty(&inode_list)) {
4950  		struct btrfs_fs_info *fs_info = root->fs_info;
4951  		struct btrfs_key key;
4952  		struct inode *inode;
4953  
4954  		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4955  					    list);
4956  		ino = ino_elem->ino;
4957  		parent = ino_elem->parent;
4958  		list_del(&ino_elem->list);
4959  		kfree(ino_elem);
4960  		if (ret)
4961  			continue;
4962  
4963  		btrfs_release_path(path);
4964  
4965  		key.objectid = ino;
4966  		key.type = BTRFS_INODE_ITEM_KEY;
4967  		key.offset = 0;
4968  		inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4969  		/*
4970  		 * If the other inode that had a conflicting dir entry was
4971  		 * deleted in the current transaction, we need to log its parent
4972  		 * directory.
4973  		 */
4974  		if (IS_ERR(inode)) {
4975  			ret = PTR_ERR(inode);
4976  			if (ret == -ENOENT) {
4977  				key.objectid = parent;
4978  				inode = btrfs_iget(fs_info->sb, &key, root,
4979  						   NULL);
4980  				if (IS_ERR(inode)) {
4981  					ret = PTR_ERR(inode);
4982  				} else {
4983  					ret = btrfs_log_inode(trans, root,
4984  						      BTRFS_I(inode),
4985  						      LOG_OTHER_INODE_ALL,
4986  						      0, LLONG_MAX, ctx);
4987  					btrfs_add_delayed_iput(inode);
4988  				}
4989  			}
4990  			continue;
4991  		}
4992  		/*
4993  		 * We are safe logging the other inode without acquiring its
4994  		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4995  		 * are safe against concurrent renames of the other inode as
4996  		 * well because during a rename we pin the log and update the
4997  		 * log with the new name before we unpin it.
4998  		 */
4999  		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5000  				      LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
5001  		if (ret) {
5002  			btrfs_add_delayed_iput(inode);
5003  			continue;
5004  		}
5005  
5006  		key.objectid = ino;
5007  		key.type = BTRFS_INODE_REF_KEY;
5008  		key.offset = 0;
5009  		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5010  		if (ret < 0) {
5011  			btrfs_add_delayed_iput(inode);
5012  			continue;
5013  		}
5014  
5015  		while (true) {
5016  			struct extent_buffer *leaf = path->nodes[0];
5017  			int slot = path->slots[0];
5018  			u64 other_ino = 0;
5019  			u64 other_parent = 0;
5020  
5021  			if (slot >= btrfs_header_nritems(leaf)) {
5022  				ret = btrfs_next_leaf(root, path);
5023  				if (ret < 0) {
5024  					break;
5025  				} else if (ret > 0) {
5026  					ret = 0;
5027  					break;
5028  				}
5029  				continue;
5030  			}
5031  
5032  			btrfs_item_key_to_cpu(leaf, &key, slot);
5033  			if (key.objectid != ino ||
5034  			    (key.type != BTRFS_INODE_REF_KEY &&
5035  			     key.type != BTRFS_INODE_EXTREF_KEY)) {
5036  				ret = 0;
5037  				break;
5038  			}
5039  
5040  			ret = btrfs_check_ref_name_override(leaf, slot, &key,
5041  					BTRFS_I(inode), &other_ino,
5042  					&other_parent);
5043  			if (ret < 0)
5044  				break;
5045  			if (ret > 0) {
5046  				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5047  				if (!ino_elem) {
5048  					ret = -ENOMEM;
5049  					break;
5050  				}
5051  				ino_elem->ino = other_ino;
5052  				ino_elem->parent = other_parent;
5053  				list_add_tail(&ino_elem->list, &inode_list);
5054  				ret = 0;
5055  			}
5056  			path->slots[0]++;
5057  		}
5058  		btrfs_add_delayed_iput(inode);
5059  	}
5060  
5061  	return ret;
5062  }
5063  
5064  /* log a single inode in the tree log.
5065   * At least one parent directory for this inode must exist in the tree
5066   * or be logged already.
5067   *
5068   * Any items from this inode changed by the current transaction are copied
5069   * to the log tree.  An extra reference is taken on any extents in this
5070   * file, allowing us to avoid a whole pile of corner cases around logging
5071   * blocks that have been removed from the tree.
5072   *
5073   * See LOG_INODE_ALL and related defines for a description of what inode_only
5074   * does.
5075   *
5076   * This handles both files and directories.
5077   */
5078  static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5079  			   struct btrfs_root *root, struct btrfs_inode *inode,
5080  			   int inode_only,
5081  			   const loff_t start,
5082  			   const loff_t end,
5083  			   struct btrfs_log_ctx *ctx)
5084  {
5085  	struct btrfs_fs_info *fs_info = root->fs_info;
5086  	struct btrfs_path *path;
5087  	struct btrfs_path *dst_path;
5088  	struct btrfs_key min_key;
5089  	struct btrfs_key max_key;
5090  	struct btrfs_root *log = root->log_root;
5091  	u64 last_extent = 0;
5092  	int err = 0;
5093  	int ret;
5094  	int nritems;
5095  	int ins_start_slot = 0;
5096  	int ins_nr;
5097  	bool fast_search = false;
5098  	u64 ino = btrfs_ino(inode);
5099  	struct extent_map_tree *em_tree = &inode->extent_tree;
5100  	u64 logged_isize = 0;
5101  	bool need_log_inode_item = true;
5102  	bool xattrs_logged = false;
5103  	bool recursive_logging = false;
5104  
5105  	path = btrfs_alloc_path();
5106  	if (!path)
5107  		return -ENOMEM;
5108  	dst_path = btrfs_alloc_path();
5109  	if (!dst_path) {
5110  		btrfs_free_path(path);
5111  		return -ENOMEM;
5112  	}
5113  
5114  	min_key.objectid = ino;
5115  	min_key.type = BTRFS_INODE_ITEM_KEY;
5116  	min_key.offset = 0;
5117  
5118  	max_key.objectid = ino;
5119  
5120  
5121  	/* today the code can only do partial logging of directories */
5122  	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5123  	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5124  		       &inode->runtime_flags) &&
5125  	     inode_only >= LOG_INODE_EXISTS))
5126  		max_key.type = BTRFS_XATTR_ITEM_KEY;
5127  	else
5128  		max_key.type = (u8)-1;
5129  	max_key.offset = (u64)-1;
5130  
5131  	/*
5132  	 * Only run delayed items if we are a dir or a new file.
5133  	 * Otherwise commit the delayed inode only, which is needed in
5134  	 * order for the log replay code to mark inodes for link count
5135  	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
5136  	 */
5137  	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5138  	    inode->generation > fs_info->last_trans_committed)
5139  		ret = btrfs_commit_inode_delayed_items(trans, inode);
5140  	else
5141  		ret = btrfs_commit_inode_delayed_inode(inode);
5142  
5143  	if (ret) {
5144  		btrfs_free_path(path);
5145  		btrfs_free_path(dst_path);
5146  		return ret;
5147  	}
5148  
5149  	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5150  		recursive_logging = true;
5151  		if (inode_only == LOG_OTHER_INODE)
5152  			inode_only = LOG_INODE_EXISTS;
5153  		else
5154  			inode_only = LOG_INODE_ALL;
5155  		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5156  	} else {
5157  		mutex_lock(&inode->log_mutex);
5158  	}
5159  
5160  	/*
5161  	 * a brute force approach to making sure we get the most uptodate
5162  	 * copies of everything.
5163  	 */
5164  	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5165  		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5166  
5167  		if (inode_only == LOG_INODE_EXISTS)
5168  			max_key_type = BTRFS_XATTR_ITEM_KEY;
5169  		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5170  	} else {
5171  		if (inode_only == LOG_INODE_EXISTS) {
5172  			/*
5173  			 * Make sure the new inode item we write to the log has
5174  			 * the same isize as the current one (if it exists).
5175  			 * This is necessary to prevent data loss after log
5176  			 * replay, and also to prevent doing a wrong expanding
5177  			 * truncate - for e.g. create file, write 4K into offset
5178  			 * 0, fsync, write 4K into offset 4096, add hard link,
5179  			 * fsync some other file (to sync log), power fail - if
5180  			 * we use the inode's current i_size, after log replay
5181  			 * we get a 8Kb file, with the last 4Kb extent as a hole
5182  			 * (zeroes), as if an expanding truncate happened,
5183  			 * instead of getting a file of 4Kb only.
5184  			 */
5185  			err = logged_inode_size(log, inode, path, &logged_isize);
5186  			if (err)
5187  				goto out_unlock;
5188  		}
5189  		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5190  			     &inode->runtime_flags)) {
5191  			if (inode_only == LOG_INODE_EXISTS) {
5192  				max_key.type = BTRFS_XATTR_ITEM_KEY;
5193  				ret = drop_objectid_items(trans, log, path, ino,
5194  							  max_key.type);
5195  			} else {
5196  				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5197  					  &inode->runtime_flags);
5198  				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5199  					  &inode->runtime_flags);
5200  				while(1) {
5201  					ret = btrfs_truncate_inode_items(trans,
5202  						log, &inode->vfs_inode, 0, 0);
5203  					if (ret != -EAGAIN)
5204  						break;
5205  				}
5206  			}
5207  		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5208  					      &inode->runtime_flags) ||
5209  			   inode_only == LOG_INODE_EXISTS) {
5210  			if (inode_only == LOG_INODE_ALL)
5211  				fast_search = true;
5212  			max_key.type = BTRFS_XATTR_ITEM_KEY;
5213  			ret = drop_objectid_items(trans, log, path, ino,
5214  						  max_key.type);
5215  		} else {
5216  			if (inode_only == LOG_INODE_ALL)
5217  				fast_search = true;
5218  			goto log_extents;
5219  		}
5220  
5221  	}
5222  	if (ret) {
5223  		err = ret;
5224  		goto out_unlock;
5225  	}
5226  
5227  	while (1) {
5228  		ins_nr = 0;
5229  		ret = btrfs_search_forward(root, &min_key,
5230  					   path, trans->transid);
5231  		if (ret < 0) {
5232  			err = ret;
5233  			goto out_unlock;
5234  		}
5235  		if (ret != 0)
5236  			break;
5237  again:
5238  		/* note, ins_nr might be > 0 here, cleanup outside the loop */
5239  		if (min_key.objectid != ino)
5240  			break;
5241  		if (min_key.type > max_key.type)
5242  			break;
5243  
5244  		if (min_key.type == BTRFS_INODE_ITEM_KEY)
5245  			need_log_inode_item = false;
5246  
5247  		if ((min_key.type == BTRFS_INODE_REF_KEY ||
5248  		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
5249  		    inode->generation == trans->transid &&
5250  		    !recursive_logging) {
5251  			u64 other_ino = 0;
5252  			u64 other_parent = 0;
5253  
5254  			ret = btrfs_check_ref_name_override(path->nodes[0],
5255  					path->slots[0], &min_key, inode,
5256  					&other_ino, &other_parent);
5257  			if (ret < 0) {
5258  				err = ret;
5259  				goto out_unlock;
5260  			} else if (ret > 0 && ctx &&
5261  				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5262  				if (ins_nr > 0) {
5263  					ins_nr++;
5264  				} else {
5265  					ins_nr = 1;
5266  					ins_start_slot = path->slots[0];
5267  				}
5268  				ret = copy_items(trans, inode, dst_path, path,
5269  						 &last_extent, ins_start_slot,
5270  						 ins_nr, inode_only,
5271  						 logged_isize);
5272  				if (ret < 0) {
5273  					err = ret;
5274  					goto out_unlock;
5275  				}
5276  				ins_nr = 0;
5277  
5278  				err = log_conflicting_inodes(trans, root, path,
5279  						ctx, other_ino, other_parent);
5280  				if (err)
5281  					goto out_unlock;
5282  				btrfs_release_path(path);
5283  				goto next_key;
5284  			}
5285  		}
5286  
5287  		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5288  		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5289  			if (ins_nr == 0)
5290  				goto next_slot;
5291  			ret = copy_items(trans, inode, dst_path, path,
5292  					 &last_extent, ins_start_slot,
5293  					 ins_nr, inode_only, logged_isize);
5294  			if (ret < 0) {
5295  				err = ret;
5296  				goto out_unlock;
5297  			}
5298  			ins_nr = 0;
5299  			if (ret) {
5300  				btrfs_release_path(path);
5301  				continue;
5302  			}
5303  			goto next_slot;
5304  		}
5305  
5306  		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5307  			ins_nr++;
5308  			goto next_slot;
5309  		} else if (!ins_nr) {
5310  			ins_start_slot = path->slots[0];
5311  			ins_nr = 1;
5312  			goto next_slot;
5313  		}
5314  
5315  		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5316  				 ins_start_slot, ins_nr, inode_only,
5317  				 logged_isize);
5318  		if (ret < 0) {
5319  			err = ret;
5320  			goto out_unlock;
5321  		}
5322  		if (ret) {
5323  			ins_nr = 0;
5324  			btrfs_release_path(path);
5325  			continue;
5326  		}
5327  		ins_nr = 1;
5328  		ins_start_slot = path->slots[0];
5329  next_slot:
5330  
5331  		nritems = btrfs_header_nritems(path->nodes[0]);
5332  		path->slots[0]++;
5333  		if (path->slots[0] < nritems) {
5334  			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5335  					      path->slots[0]);
5336  			goto again;
5337  		}
5338  		if (ins_nr) {
5339  			ret = copy_items(trans, inode, dst_path, path,
5340  					 &last_extent, ins_start_slot,
5341  					 ins_nr, inode_only, logged_isize);
5342  			if (ret < 0) {
5343  				err = ret;
5344  				goto out_unlock;
5345  			}
5346  			ret = 0;
5347  			ins_nr = 0;
5348  		}
5349  		btrfs_release_path(path);
5350  next_key:
5351  		if (min_key.offset < (u64)-1) {
5352  			min_key.offset++;
5353  		} else if (min_key.type < max_key.type) {
5354  			min_key.type++;
5355  			min_key.offset = 0;
5356  		} else {
5357  			break;
5358  		}
5359  	}
5360  	if (ins_nr) {
5361  		ret = copy_items(trans, inode, dst_path, path, &last_extent,
5362  				 ins_start_slot, ins_nr, inode_only,
5363  				 logged_isize);
5364  		if (ret < 0) {
5365  			err = ret;
5366  			goto out_unlock;
5367  		}
5368  		ret = 0;
5369  		ins_nr = 0;
5370  	}
5371  
5372  	btrfs_release_path(path);
5373  	btrfs_release_path(dst_path);
5374  	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5375  	if (err)
5376  		goto out_unlock;
5377  	xattrs_logged = true;
5378  	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5379  		btrfs_release_path(path);
5380  		btrfs_release_path(dst_path);
5381  		err = btrfs_log_trailing_hole(trans, root, inode, path);
5382  		if (err)
5383  			goto out_unlock;
5384  	}
5385  log_extents:
5386  	btrfs_release_path(path);
5387  	btrfs_release_path(dst_path);
5388  	if (need_log_inode_item) {
5389  		err = log_inode_item(trans, log, dst_path, inode);
5390  		if (!err && !xattrs_logged) {
5391  			err = btrfs_log_all_xattrs(trans, root, inode, path,
5392  						   dst_path);
5393  			btrfs_release_path(path);
5394  		}
5395  		if (err)
5396  			goto out_unlock;
5397  	}
5398  	if (fast_search) {
5399  		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5400  						ctx, start, end);
5401  		if (ret) {
5402  			err = ret;
5403  			goto out_unlock;
5404  		}
5405  	} else if (inode_only == LOG_INODE_ALL) {
5406  		struct extent_map *em, *n;
5407  
5408  		write_lock(&em_tree->lock);
5409  		/*
5410  		 * We can't just remove every em if we're called for a ranged
5411  		 * fsync - that is, one that doesn't cover the whole possible
5412  		 * file range (0 to LLONG_MAX). This is because we can have
5413  		 * em's that fall outside the range we're logging and therefore
5414  		 * their ordered operations haven't completed yet
5415  		 * (btrfs_finish_ordered_io() not invoked yet). This means we
5416  		 * didn't get their respective file extent item in the fs/subvol
5417  		 * tree yet, and need to let the next fast fsync (one which
5418  		 * consults the list of modified extent maps) find the em so
5419  		 * that it logs a matching file extent item and waits for the
5420  		 * respective ordered operation to complete (if it's still
5421  		 * running).
5422  		 *
5423  		 * Removing every em outside the range we're logging would make
5424  		 * the next fast fsync not log their matching file extent items,
5425  		 * therefore making us lose data after a log replay.
5426  		 */
5427  		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5428  					 list) {
5429  			const u64 mod_end = em->mod_start + em->mod_len - 1;
5430  
5431  			if (em->mod_start >= start && mod_end <= end)
5432  				list_del_init(&em->list);
5433  		}
5434  		write_unlock(&em_tree->lock);
5435  	}
5436  
5437  	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5438  		ret = log_directory_changes(trans, root, inode, path, dst_path,
5439  					ctx);
5440  		if (ret) {
5441  			err = ret;
5442  			goto out_unlock;
5443  		}
5444  	}
5445  
5446  	/*
5447  	 * Don't update last_log_commit if we logged that an inode exists after
5448  	 * it was loaded to memory (full_sync bit set).
5449  	 * This is to prevent data loss when we do a write to the inode, then
5450  	 * the inode gets evicted after all delalloc was flushed, then we log
5451  	 * it exists (due to a rename for example) and then fsync it. This last
5452  	 * fsync would do nothing (not logging the extents previously written).
5453  	 */
5454  	spin_lock(&inode->lock);
5455  	inode->logged_trans = trans->transid;
5456  	if (inode_only != LOG_INODE_EXISTS ||
5457  	    !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5458  		inode->last_log_commit = inode->last_sub_trans;
5459  	spin_unlock(&inode->lock);
5460  out_unlock:
5461  	mutex_unlock(&inode->log_mutex);
5462  
5463  	btrfs_free_path(path);
5464  	btrfs_free_path(dst_path);
5465  	return err;
5466  }
5467  
5468  /*
5469   * Check if we must fallback to a transaction commit when logging an inode.
5470   * This must be called after logging the inode and is used only in the context
5471   * when fsyncing an inode requires the need to log some other inode - in which
5472   * case we can't lock the i_mutex of each other inode we need to log as that
5473   * can lead to deadlocks with concurrent fsync against other inodes (as we can
5474   * log inodes up or down in the hierarchy) or rename operations for example. So
5475   * we take the log_mutex of the inode after we have logged it and then check for
5476   * its last_unlink_trans value - this is safe because any task setting
5477   * last_unlink_trans must take the log_mutex and it must do this before it does
5478   * the actual unlink operation, so if we do this check before a concurrent task
5479   * sets last_unlink_trans it means we've logged a consistent version/state of
5480   * all the inode items, otherwise we are not sure and must do a transaction
5481   * commit (the concurrent task might have only updated last_unlink_trans before
5482   * we logged the inode or it might have also done the unlink).
5483   */
5484  static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5485  					  struct btrfs_inode *inode)
5486  {
5487  	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5488  	bool ret = false;
5489  
5490  	mutex_lock(&inode->log_mutex);
5491  	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5492  		/*
5493  		 * Make sure any commits to the log are forced to be full
5494  		 * commits.
5495  		 */
5496  		btrfs_set_log_full_commit(trans);
5497  		ret = true;
5498  	}
5499  	mutex_unlock(&inode->log_mutex);
5500  
5501  	return ret;
5502  }
5503  
5504  /*
5505   * follow the dentry parent pointers up the chain and see if any
5506   * of the directories in it require a full commit before they can
5507   * be logged.  Returns zero if nothing special needs to be done or 1 if
5508   * a full commit is required.
5509   */
5510  static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5511  					       struct btrfs_inode *inode,
5512  					       struct dentry *parent,
5513  					       struct super_block *sb,
5514  					       u64 last_committed)
5515  {
5516  	int ret = 0;
5517  	struct dentry *old_parent = NULL;
5518  
5519  	/*
5520  	 * for regular files, if its inode is already on disk, we don't
5521  	 * have to worry about the parents at all.  This is because
5522  	 * we can use the last_unlink_trans field to record renames
5523  	 * and other fun in this file.
5524  	 */
5525  	if (S_ISREG(inode->vfs_inode.i_mode) &&
5526  	    inode->generation <= last_committed &&
5527  	    inode->last_unlink_trans <= last_committed)
5528  		goto out;
5529  
5530  	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5531  		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5532  			goto out;
5533  		inode = BTRFS_I(d_inode(parent));
5534  	}
5535  
5536  	while (1) {
5537  		if (btrfs_must_commit_transaction(trans, inode)) {
5538  			ret = 1;
5539  			break;
5540  		}
5541  
5542  		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5543  			break;
5544  
5545  		if (IS_ROOT(parent)) {
5546  			inode = BTRFS_I(d_inode(parent));
5547  			if (btrfs_must_commit_transaction(trans, inode))
5548  				ret = 1;
5549  			break;
5550  		}
5551  
5552  		parent = dget_parent(parent);
5553  		dput(old_parent);
5554  		old_parent = parent;
5555  		inode = BTRFS_I(d_inode(parent));
5556  
5557  	}
5558  	dput(old_parent);
5559  out:
5560  	return ret;
5561  }
5562  
5563  struct btrfs_dir_list {
5564  	u64 ino;
5565  	struct list_head list;
5566  };
5567  
5568  /*
5569   * Log the inodes of the new dentries of a directory. See log_dir_items() for
5570   * details about the why it is needed.
5571   * This is a recursive operation - if an existing dentry corresponds to a
5572   * directory, that directory's new entries are logged too (same behaviour as
5573   * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5574   * the dentries point to we do not lock their i_mutex, otherwise lockdep
5575   * complains about the following circular lock dependency / possible deadlock:
5576   *
5577   *        CPU0                                        CPU1
5578   *        ----                                        ----
5579   * lock(&type->i_mutex_dir_key#3/2);
5580   *                                            lock(sb_internal#2);
5581   *                                            lock(&type->i_mutex_dir_key#3/2);
5582   * lock(&sb->s_type->i_mutex_key#14);
5583   *
5584   * Where sb_internal is the lock (a counter that works as a lock) acquired by
5585   * sb_start_intwrite() in btrfs_start_transaction().
5586   * Not locking i_mutex of the inodes is still safe because:
5587   *
5588   * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5589   *    that while logging the inode new references (names) are added or removed
5590   *    from the inode, leaving the logged inode item with a link count that does
5591   *    not match the number of logged inode reference items. This is fine because
5592   *    at log replay time we compute the real number of links and correct the
5593   *    link count in the inode item (see replay_one_buffer() and
5594   *    link_to_fixup_dir());
5595   *
5596   * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5597   *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5598   *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5599   *    has a size that doesn't match the sum of the lengths of all the logged
5600   *    names. This does not result in a problem because if a dir_item key is
5601   *    logged but its matching dir_index key is not logged, at log replay time we
5602   *    don't use it to replay the respective name (see replay_one_name()). On the
5603   *    other hand if only the dir_index key ends up being logged, the respective
5604   *    name is added to the fs/subvol tree with both the dir_item and dir_index
5605   *    keys created (see replay_one_name()).
5606   *    The directory's inode item with a wrong i_size is not a problem as well,
5607   *    since we don't use it at log replay time to set the i_size in the inode
5608   *    item of the fs/subvol tree (see overwrite_item()).
5609   */
5610  static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5611  				struct btrfs_root *root,
5612  				struct btrfs_inode *start_inode,
5613  				struct btrfs_log_ctx *ctx)
5614  {
5615  	struct btrfs_fs_info *fs_info = root->fs_info;
5616  	struct btrfs_root *log = root->log_root;
5617  	struct btrfs_path *path;
5618  	LIST_HEAD(dir_list);
5619  	struct btrfs_dir_list *dir_elem;
5620  	int ret = 0;
5621  
5622  	path = btrfs_alloc_path();
5623  	if (!path)
5624  		return -ENOMEM;
5625  
5626  	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5627  	if (!dir_elem) {
5628  		btrfs_free_path(path);
5629  		return -ENOMEM;
5630  	}
5631  	dir_elem->ino = btrfs_ino(start_inode);
5632  	list_add_tail(&dir_elem->list, &dir_list);
5633  
5634  	while (!list_empty(&dir_list)) {
5635  		struct extent_buffer *leaf;
5636  		struct btrfs_key min_key;
5637  		int nritems;
5638  		int i;
5639  
5640  		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5641  					    list);
5642  		if (ret)
5643  			goto next_dir_inode;
5644  
5645  		min_key.objectid = dir_elem->ino;
5646  		min_key.type = BTRFS_DIR_ITEM_KEY;
5647  		min_key.offset = 0;
5648  again:
5649  		btrfs_release_path(path);
5650  		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5651  		if (ret < 0) {
5652  			goto next_dir_inode;
5653  		} else if (ret > 0) {
5654  			ret = 0;
5655  			goto next_dir_inode;
5656  		}
5657  
5658  process_leaf:
5659  		leaf = path->nodes[0];
5660  		nritems = btrfs_header_nritems(leaf);
5661  		for (i = path->slots[0]; i < nritems; i++) {
5662  			struct btrfs_dir_item *di;
5663  			struct btrfs_key di_key;
5664  			struct inode *di_inode;
5665  			struct btrfs_dir_list *new_dir_elem;
5666  			int log_mode = LOG_INODE_EXISTS;
5667  			int type;
5668  
5669  			btrfs_item_key_to_cpu(leaf, &min_key, i);
5670  			if (min_key.objectid != dir_elem->ino ||
5671  			    min_key.type != BTRFS_DIR_ITEM_KEY)
5672  				goto next_dir_inode;
5673  
5674  			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5675  			type = btrfs_dir_type(leaf, di);
5676  			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5677  			    type != BTRFS_FT_DIR)
5678  				continue;
5679  			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5680  			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5681  				continue;
5682  
5683  			btrfs_release_path(path);
5684  			di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5685  			if (IS_ERR(di_inode)) {
5686  				ret = PTR_ERR(di_inode);
5687  				goto next_dir_inode;
5688  			}
5689  
5690  			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5691  				btrfs_add_delayed_iput(di_inode);
5692  				break;
5693  			}
5694  
5695  			ctx->log_new_dentries = false;
5696  			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5697  				log_mode = LOG_INODE_ALL;
5698  			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5699  					      log_mode, 0, LLONG_MAX, ctx);
5700  			if (!ret &&
5701  			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5702  				ret = 1;
5703  			btrfs_add_delayed_iput(di_inode);
5704  			if (ret)
5705  				goto next_dir_inode;
5706  			if (ctx->log_new_dentries) {
5707  				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5708  						       GFP_NOFS);
5709  				if (!new_dir_elem) {
5710  					ret = -ENOMEM;
5711  					goto next_dir_inode;
5712  				}
5713  				new_dir_elem->ino = di_key.objectid;
5714  				list_add_tail(&new_dir_elem->list, &dir_list);
5715  			}
5716  			break;
5717  		}
5718  		if (i == nritems) {
5719  			ret = btrfs_next_leaf(log, path);
5720  			if (ret < 0) {
5721  				goto next_dir_inode;
5722  			} else if (ret > 0) {
5723  				ret = 0;
5724  				goto next_dir_inode;
5725  			}
5726  			goto process_leaf;
5727  		}
5728  		if (min_key.offset < (u64)-1) {
5729  			min_key.offset++;
5730  			goto again;
5731  		}
5732  next_dir_inode:
5733  		list_del(&dir_elem->list);
5734  		kfree(dir_elem);
5735  	}
5736  
5737  	btrfs_free_path(path);
5738  	return ret;
5739  }
5740  
5741  static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5742  				 struct btrfs_inode *inode,
5743  				 struct btrfs_log_ctx *ctx)
5744  {
5745  	struct btrfs_fs_info *fs_info = trans->fs_info;
5746  	int ret;
5747  	struct btrfs_path *path;
5748  	struct btrfs_key key;
5749  	struct btrfs_root *root = inode->root;
5750  	const u64 ino = btrfs_ino(inode);
5751  
5752  	path = btrfs_alloc_path();
5753  	if (!path)
5754  		return -ENOMEM;
5755  	path->skip_locking = 1;
5756  	path->search_commit_root = 1;
5757  
5758  	key.objectid = ino;
5759  	key.type = BTRFS_INODE_REF_KEY;
5760  	key.offset = 0;
5761  	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5762  	if (ret < 0)
5763  		goto out;
5764  
5765  	while (true) {
5766  		struct extent_buffer *leaf = path->nodes[0];
5767  		int slot = path->slots[0];
5768  		u32 cur_offset = 0;
5769  		u32 item_size;
5770  		unsigned long ptr;
5771  
5772  		if (slot >= btrfs_header_nritems(leaf)) {
5773  			ret = btrfs_next_leaf(root, path);
5774  			if (ret < 0)
5775  				goto out;
5776  			else if (ret > 0)
5777  				break;
5778  			continue;
5779  		}
5780  
5781  		btrfs_item_key_to_cpu(leaf, &key, slot);
5782  		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5783  		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5784  			break;
5785  
5786  		item_size = btrfs_item_size_nr(leaf, slot);
5787  		ptr = btrfs_item_ptr_offset(leaf, slot);
5788  		while (cur_offset < item_size) {
5789  			struct btrfs_key inode_key;
5790  			struct inode *dir_inode;
5791  
5792  			inode_key.type = BTRFS_INODE_ITEM_KEY;
5793  			inode_key.offset = 0;
5794  
5795  			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5796  				struct btrfs_inode_extref *extref;
5797  
5798  				extref = (struct btrfs_inode_extref *)
5799  					(ptr + cur_offset);
5800  				inode_key.objectid = btrfs_inode_extref_parent(
5801  					leaf, extref);
5802  				cur_offset += sizeof(*extref);
5803  				cur_offset += btrfs_inode_extref_name_len(leaf,
5804  					extref);
5805  			} else {
5806  				inode_key.objectid = key.offset;
5807  				cur_offset = item_size;
5808  			}
5809  
5810  			dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5811  					       root, NULL);
5812  			/*
5813  			 * If the parent inode was deleted, return an error to
5814  			 * fallback to a transaction commit. This is to prevent
5815  			 * getting an inode that was moved from one parent A to
5816  			 * a parent B, got its former parent A deleted and then
5817  			 * it got fsync'ed, from existing at both parents after
5818  			 * a log replay (and the old parent still existing).
5819  			 * Example:
5820  			 *
5821  			 * mkdir /mnt/A
5822  			 * mkdir /mnt/B
5823  			 * touch /mnt/B/bar
5824  			 * sync
5825  			 * mv /mnt/B/bar /mnt/A/bar
5826  			 * mv -T /mnt/A /mnt/B
5827  			 * fsync /mnt/B/bar
5828  			 * <power fail>
5829  			 *
5830  			 * If we ignore the old parent B which got deleted,
5831  			 * after a log replay we would have file bar linked
5832  			 * at both parents and the old parent B would still
5833  			 * exist.
5834  			 */
5835  			if (IS_ERR(dir_inode)) {
5836  				ret = PTR_ERR(dir_inode);
5837  				goto out;
5838  			}
5839  
5840  			if (ctx)
5841  				ctx->log_new_dentries = false;
5842  			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5843  					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5844  			if (!ret &&
5845  			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5846  				ret = 1;
5847  			if (!ret && ctx && ctx->log_new_dentries)
5848  				ret = log_new_dir_dentries(trans, root,
5849  						   BTRFS_I(dir_inode), ctx);
5850  			btrfs_add_delayed_iput(dir_inode);
5851  			if (ret)
5852  				goto out;
5853  		}
5854  		path->slots[0]++;
5855  	}
5856  	ret = 0;
5857  out:
5858  	btrfs_free_path(path);
5859  	return ret;
5860  }
5861  
5862  static int log_new_ancestors(struct btrfs_trans_handle *trans,
5863  			     struct btrfs_root *root,
5864  			     struct btrfs_path *path,
5865  			     struct btrfs_log_ctx *ctx)
5866  {
5867  	struct btrfs_key found_key;
5868  
5869  	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5870  
5871  	while (true) {
5872  		struct btrfs_fs_info *fs_info = root->fs_info;
5873  		const u64 last_committed = fs_info->last_trans_committed;
5874  		struct extent_buffer *leaf = path->nodes[0];
5875  		int slot = path->slots[0];
5876  		struct btrfs_key search_key;
5877  		struct inode *inode;
5878  		int ret = 0;
5879  
5880  		btrfs_release_path(path);
5881  
5882  		search_key.objectid = found_key.offset;
5883  		search_key.type = BTRFS_INODE_ITEM_KEY;
5884  		search_key.offset = 0;
5885  		inode = btrfs_iget(fs_info->sb, &search_key, root, NULL);
5886  		if (IS_ERR(inode))
5887  			return PTR_ERR(inode);
5888  
5889  		if (BTRFS_I(inode)->generation > last_committed)
5890  			ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5891  					      LOG_INODE_EXISTS,
5892  					      0, LLONG_MAX, ctx);
5893  		btrfs_add_delayed_iput(inode);
5894  		if (ret)
5895  			return ret;
5896  
5897  		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5898  			break;
5899  
5900  		search_key.type = BTRFS_INODE_REF_KEY;
5901  		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5902  		if (ret < 0)
5903  			return ret;
5904  
5905  		leaf = path->nodes[0];
5906  		slot = path->slots[0];
5907  		if (slot >= btrfs_header_nritems(leaf)) {
5908  			ret = btrfs_next_leaf(root, path);
5909  			if (ret < 0)
5910  				return ret;
5911  			else if (ret > 0)
5912  				return -ENOENT;
5913  			leaf = path->nodes[0];
5914  			slot = path->slots[0];
5915  		}
5916  
5917  		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5918  		if (found_key.objectid != search_key.objectid ||
5919  		    found_key.type != BTRFS_INODE_REF_KEY)
5920  			return -ENOENT;
5921  	}
5922  	return 0;
5923  }
5924  
5925  static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5926  				  struct btrfs_inode *inode,
5927  				  struct dentry *parent,
5928  				  struct btrfs_log_ctx *ctx)
5929  {
5930  	struct btrfs_root *root = inode->root;
5931  	struct btrfs_fs_info *fs_info = root->fs_info;
5932  	struct dentry *old_parent = NULL;
5933  	struct super_block *sb = inode->vfs_inode.i_sb;
5934  	int ret = 0;
5935  
5936  	while (true) {
5937  		if (!parent || d_really_is_negative(parent) ||
5938  		    sb != parent->d_sb)
5939  			break;
5940  
5941  		inode = BTRFS_I(d_inode(parent));
5942  		if (root != inode->root)
5943  			break;
5944  
5945  		if (inode->generation > fs_info->last_trans_committed) {
5946  			ret = btrfs_log_inode(trans, root, inode,
5947  					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5948  			if (ret)
5949  				break;
5950  		}
5951  		if (IS_ROOT(parent))
5952  			break;
5953  
5954  		parent = dget_parent(parent);
5955  		dput(old_parent);
5956  		old_parent = parent;
5957  	}
5958  	dput(old_parent);
5959  
5960  	return ret;
5961  }
5962  
5963  static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5964  				 struct btrfs_inode *inode,
5965  				 struct dentry *parent,
5966  				 struct btrfs_log_ctx *ctx)
5967  {
5968  	struct btrfs_root *root = inode->root;
5969  	const u64 ino = btrfs_ino(inode);
5970  	struct btrfs_path *path;
5971  	struct btrfs_key search_key;
5972  	int ret;
5973  
5974  	/*
5975  	 * For a single hard link case, go through a fast path that does not
5976  	 * need to iterate the fs/subvolume tree.
5977  	 */
5978  	if (inode->vfs_inode.i_nlink < 2)
5979  		return log_new_ancestors_fast(trans, inode, parent, ctx);
5980  
5981  	path = btrfs_alloc_path();
5982  	if (!path)
5983  		return -ENOMEM;
5984  
5985  	search_key.objectid = ino;
5986  	search_key.type = BTRFS_INODE_REF_KEY;
5987  	search_key.offset = 0;
5988  again:
5989  	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5990  	if (ret < 0)
5991  		goto out;
5992  	if (ret == 0)
5993  		path->slots[0]++;
5994  
5995  	while (true) {
5996  		struct extent_buffer *leaf = path->nodes[0];
5997  		int slot = path->slots[0];
5998  		struct btrfs_key found_key;
5999  
6000  		if (slot >= btrfs_header_nritems(leaf)) {
6001  			ret = btrfs_next_leaf(root, path);
6002  			if (ret < 0)
6003  				goto out;
6004  			else if (ret > 0)
6005  				break;
6006  			continue;
6007  		}
6008  
6009  		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6010  		if (found_key.objectid != ino ||
6011  		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6012  			break;
6013  
6014  		/*
6015  		 * Don't deal with extended references because they are rare
6016  		 * cases and too complex to deal with (we would need to keep
6017  		 * track of which subitem we are processing for each item in
6018  		 * this loop, etc). So just return some error to fallback to
6019  		 * a transaction commit.
6020  		 */
6021  		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6022  			ret = -EMLINK;
6023  			goto out;
6024  		}
6025  
6026  		/*
6027  		 * Logging ancestors needs to do more searches on the fs/subvol
6028  		 * tree, so it releases the path as needed to avoid deadlocks.
6029  		 * Keep track of the last inode ref key and resume from that key
6030  		 * after logging all new ancestors for the current hard link.
6031  		 */
6032  		memcpy(&search_key, &found_key, sizeof(search_key));
6033  
6034  		ret = log_new_ancestors(trans, root, path, ctx);
6035  		if (ret)
6036  			goto out;
6037  		btrfs_release_path(path);
6038  		goto again;
6039  	}
6040  	ret = 0;
6041  out:
6042  	btrfs_free_path(path);
6043  	return ret;
6044  }
6045  
6046  /*
6047   * helper function around btrfs_log_inode to make sure newly created
6048   * parent directories also end up in the log.  A minimal inode and backref
6049   * only logging is done of any parent directories that are older than
6050   * the last committed transaction
6051   */
6052  static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6053  				  struct btrfs_inode *inode,
6054  				  struct dentry *parent,
6055  				  const loff_t start,
6056  				  const loff_t end,
6057  				  int inode_only,
6058  				  struct btrfs_log_ctx *ctx)
6059  {
6060  	struct btrfs_root *root = inode->root;
6061  	struct btrfs_fs_info *fs_info = root->fs_info;
6062  	struct super_block *sb;
6063  	int ret = 0;
6064  	u64 last_committed = fs_info->last_trans_committed;
6065  	bool log_dentries = false;
6066  
6067  	sb = inode->vfs_inode.i_sb;
6068  
6069  	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6070  		ret = 1;
6071  		goto end_no_trans;
6072  	}
6073  
6074  	/*
6075  	 * The prev transaction commit doesn't complete, we need do
6076  	 * full commit by ourselves.
6077  	 */
6078  	if (fs_info->last_trans_log_full_commit >
6079  	    fs_info->last_trans_committed) {
6080  		ret = 1;
6081  		goto end_no_trans;
6082  	}
6083  
6084  	if (btrfs_root_refs(&root->root_item) == 0) {
6085  		ret = 1;
6086  		goto end_no_trans;
6087  	}
6088  
6089  	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
6090  			last_committed);
6091  	if (ret)
6092  		goto end_no_trans;
6093  
6094  	/*
6095  	 * Skip already logged inodes or inodes corresponding to tmpfiles
6096  	 * (since logging them is pointless, a link count of 0 means they
6097  	 * will never be accessible).
6098  	 */
6099  	if (btrfs_inode_in_log(inode, trans->transid) ||
6100  	    inode->vfs_inode.i_nlink == 0) {
6101  		ret = BTRFS_NO_LOG_SYNC;
6102  		goto end_no_trans;
6103  	}
6104  
6105  	ret = start_log_trans(trans, root, ctx);
6106  	if (ret)
6107  		goto end_no_trans;
6108  
6109  	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
6110  	if (ret)
6111  		goto end_trans;
6112  
6113  	/*
6114  	 * for regular files, if its inode is already on disk, we don't
6115  	 * have to worry about the parents at all.  This is because
6116  	 * we can use the last_unlink_trans field to record renames
6117  	 * and other fun in this file.
6118  	 */
6119  	if (S_ISREG(inode->vfs_inode.i_mode) &&
6120  	    inode->generation <= last_committed &&
6121  	    inode->last_unlink_trans <= last_committed) {
6122  		ret = 0;
6123  		goto end_trans;
6124  	}
6125  
6126  	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6127  		log_dentries = true;
6128  
6129  	/*
6130  	 * On unlink we must make sure all our current and old parent directory
6131  	 * inodes are fully logged. This is to prevent leaving dangling
6132  	 * directory index entries in directories that were our parents but are
6133  	 * not anymore. Not doing this results in old parent directory being
6134  	 * impossible to delete after log replay (rmdir will always fail with
6135  	 * error -ENOTEMPTY).
6136  	 *
6137  	 * Example 1:
6138  	 *
6139  	 * mkdir testdir
6140  	 * touch testdir/foo
6141  	 * ln testdir/foo testdir/bar
6142  	 * sync
6143  	 * unlink testdir/bar
6144  	 * xfs_io -c fsync testdir/foo
6145  	 * <power failure>
6146  	 * mount fs, triggers log replay
6147  	 *
6148  	 * If we don't log the parent directory (testdir), after log replay the
6149  	 * directory still has an entry pointing to the file inode using the bar
6150  	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6151  	 * the file inode has a link count of 1.
6152  	 *
6153  	 * Example 2:
6154  	 *
6155  	 * mkdir testdir
6156  	 * touch foo
6157  	 * ln foo testdir/foo2
6158  	 * ln foo testdir/foo3
6159  	 * sync
6160  	 * unlink testdir/foo3
6161  	 * xfs_io -c fsync foo
6162  	 * <power failure>
6163  	 * mount fs, triggers log replay
6164  	 *
6165  	 * Similar as the first example, after log replay the parent directory
6166  	 * testdir still has an entry pointing to the inode file with name foo3
6167  	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6168  	 * and has a link count of 2.
6169  	 */
6170  	if (inode->last_unlink_trans > last_committed) {
6171  		ret = btrfs_log_all_parents(trans, inode, ctx);
6172  		if (ret)
6173  			goto end_trans;
6174  	}
6175  
6176  	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6177  	if (ret)
6178  		goto end_trans;
6179  
6180  	if (log_dentries)
6181  		ret = log_new_dir_dentries(trans, root, inode, ctx);
6182  	else
6183  		ret = 0;
6184  end_trans:
6185  	if (ret < 0) {
6186  		btrfs_set_log_full_commit(trans);
6187  		ret = 1;
6188  	}
6189  
6190  	if (ret)
6191  		btrfs_remove_log_ctx(root, ctx);
6192  	btrfs_end_log_trans(root);
6193  end_no_trans:
6194  	return ret;
6195  }
6196  
6197  /*
6198   * it is not safe to log dentry if the chunk root has added new
6199   * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6200   * If this returns 1, you must commit the transaction to safely get your
6201   * data on disk.
6202   */
6203  int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6204  			  struct dentry *dentry,
6205  			  const loff_t start,
6206  			  const loff_t end,
6207  			  struct btrfs_log_ctx *ctx)
6208  {
6209  	struct dentry *parent = dget_parent(dentry);
6210  	int ret;
6211  
6212  	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6213  				     start, end, LOG_INODE_ALL, ctx);
6214  	dput(parent);
6215  
6216  	return ret;
6217  }
6218  
6219  /*
6220   * should be called during mount to recover any replay any log trees
6221   * from the FS
6222   */
6223  int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6224  {
6225  	int ret;
6226  	struct btrfs_path *path;
6227  	struct btrfs_trans_handle *trans;
6228  	struct btrfs_key key;
6229  	struct btrfs_key found_key;
6230  	struct btrfs_key tmp_key;
6231  	struct btrfs_root *log;
6232  	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6233  	struct walk_control wc = {
6234  		.process_func = process_one_buffer,
6235  		.stage = LOG_WALK_PIN_ONLY,
6236  	};
6237  
6238  	path = btrfs_alloc_path();
6239  	if (!path)
6240  		return -ENOMEM;
6241  
6242  	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6243  
6244  	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6245  	if (IS_ERR(trans)) {
6246  		ret = PTR_ERR(trans);
6247  		goto error;
6248  	}
6249  
6250  	wc.trans = trans;
6251  	wc.pin = 1;
6252  
6253  	ret = walk_log_tree(trans, log_root_tree, &wc);
6254  	if (ret) {
6255  		btrfs_handle_fs_error(fs_info, ret,
6256  			"Failed to pin buffers while recovering log root tree.");
6257  		goto error;
6258  	}
6259  
6260  again:
6261  	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6262  	key.offset = (u64)-1;
6263  	key.type = BTRFS_ROOT_ITEM_KEY;
6264  
6265  	while (1) {
6266  		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6267  
6268  		if (ret < 0) {
6269  			btrfs_handle_fs_error(fs_info, ret,
6270  				    "Couldn't find tree log root.");
6271  			goto error;
6272  		}
6273  		if (ret > 0) {
6274  			if (path->slots[0] == 0)
6275  				break;
6276  			path->slots[0]--;
6277  		}
6278  		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6279  				      path->slots[0]);
6280  		btrfs_release_path(path);
6281  		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6282  			break;
6283  
6284  		log = btrfs_read_fs_root(log_root_tree, &found_key);
6285  		if (IS_ERR(log)) {
6286  			ret = PTR_ERR(log);
6287  			btrfs_handle_fs_error(fs_info, ret,
6288  				    "Couldn't read tree log root.");
6289  			goto error;
6290  		}
6291  
6292  		tmp_key.objectid = found_key.offset;
6293  		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
6294  		tmp_key.offset = (u64)-1;
6295  
6296  		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
6297  		if (IS_ERR(wc.replay_dest)) {
6298  			ret = PTR_ERR(wc.replay_dest);
6299  			free_extent_buffer(log->node);
6300  			free_extent_buffer(log->commit_root);
6301  			kfree(log);
6302  			btrfs_handle_fs_error(fs_info, ret,
6303  				"Couldn't read target root for tree log recovery.");
6304  			goto error;
6305  		}
6306  
6307  		wc.replay_dest->log_root = log;
6308  		btrfs_record_root_in_trans(trans, wc.replay_dest);
6309  		ret = walk_log_tree(trans, log, &wc);
6310  
6311  		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6312  			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6313  						      path);
6314  		}
6315  
6316  		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6317  			struct btrfs_root *root = wc.replay_dest;
6318  
6319  			btrfs_release_path(path);
6320  
6321  			/*
6322  			 * We have just replayed everything, and the highest
6323  			 * objectid of fs roots probably has changed in case
6324  			 * some inode_item's got replayed.
6325  			 *
6326  			 * root->objectid_mutex is not acquired as log replay
6327  			 * could only happen during mount.
6328  			 */
6329  			ret = btrfs_find_highest_objectid(root,
6330  						  &root->highest_objectid);
6331  		}
6332  
6333  		key.offset = found_key.offset - 1;
6334  		wc.replay_dest->log_root = NULL;
6335  		free_extent_buffer(log->node);
6336  		free_extent_buffer(log->commit_root);
6337  		kfree(log);
6338  
6339  		if (ret)
6340  			goto error;
6341  
6342  		if (found_key.offset == 0)
6343  			break;
6344  	}
6345  	btrfs_release_path(path);
6346  
6347  	/* step one is to pin it all, step two is to replay just inodes */
6348  	if (wc.pin) {
6349  		wc.pin = 0;
6350  		wc.process_func = replay_one_buffer;
6351  		wc.stage = LOG_WALK_REPLAY_INODES;
6352  		goto again;
6353  	}
6354  	/* step three is to replay everything */
6355  	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6356  		wc.stage++;
6357  		goto again;
6358  	}
6359  
6360  	btrfs_free_path(path);
6361  
6362  	/* step 4: commit the transaction, which also unpins the blocks */
6363  	ret = btrfs_commit_transaction(trans);
6364  	if (ret)
6365  		return ret;
6366  
6367  	free_extent_buffer(log_root_tree->node);
6368  	log_root_tree->log_root = NULL;
6369  	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6370  	kfree(log_root_tree);
6371  
6372  	return 0;
6373  error:
6374  	if (wc.trans)
6375  		btrfs_end_transaction(wc.trans);
6376  	btrfs_free_path(path);
6377  	return ret;
6378  }
6379  
6380  /*
6381   * there are some corner cases where we want to force a full
6382   * commit instead of allowing a directory to be logged.
6383   *
6384   * They revolve around files there were unlinked from the directory, and
6385   * this function updates the parent directory so that a full commit is
6386   * properly done if it is fsync'd later after the unlinks are done.
6387   *
6388   * Must be called before the unlink operations (updates to the subvolume tree,
6389   * inodes, etc) are done.
6390   */
6391  void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6392  			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6393  			     int for_rename)
6394  {
6395  	/*
6396  	 * when we're logging a file, if it hasn't been renamed
6397  	 * or unlinked, and its inode is fully committed on disk,
6398  	 * we don't have to worry about walking up the directory chain
6399  	 * to log its parents.
6400  	 *
6401  	 * So, we use the last_unlink_trans field to put this transid
6402  	 * into the file.  When the file is logged we check it and
6403  	 * don't log the parents if the file is fully on disk.
6404  	 */
6405  	mutex_lock(&inode->log_mutex);
6406  	inode->last_unlink_trans = trans->transid;
6407  	mutex_unlock(&inode->log_mutex);
6408  
6409  	/*
6410  	 * if this directory was already logged any new
6411  	 * names for this file/dir will get recorded
6412  	 */
6413  	if (dir->logged_trans == trans->transid)
6414  		return;
6415  
6416  	/*
6417  	 * if the inode we're about to unlink was logged,
6418  	 * the log will be properly updated for any new names
6419  	 */
6420  	if (inode->logged_trans == trans->transid)
6421  		return;
6422  
6423  	/*
6424  	 * when renaming files across directories, if the directory
6425  	 * there we're unlinking from gets fsync'd later on, there's
6426  	 * no way to find the destination directory later and fsync it
6427  	 * properly.  So, we have to be conservative and force commits
6428  	 * so the new name gets discovered.
6429  	 */
6430  	if (for_rename)
6431  		goto record;
6432  
6433  	/* we can safely do the unlink without any special recording */
6434  	return;
6435  
6436  record:
6437  	mutex_lock(&dir->log_mutex);
6438  	dir->last_unlink_trans = trans->transid;
6439  	mutex_unlock(&dir->log_mutex);
6440  }
6441  
6442  /*
6443   * Make sure that if someone attempts to fsync the parent directory of a deleted
6444   * snapshot, it ends up triggering a transaction commit. This is to guarantee
6445   * that after replaying the log tree of the parent directory's root we will not
6446   * see the snapshot anymore and at log replay time we will not see any log tree
6447   * corresponding to the deleted snapshot's root, which could lead to replaying
6448   * it after replaying the log tree of the parent directory (which would replay
6449   * the snapshot delete operation).
6450   *
6451   * Must be called before the actual snapshot destroy operation (updates to the
6452   * parent root and tree of tree roots trees, etc) are done.
6453   */
6454  void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6455  				   struct btrfs_inode *dir)
6456  {
6457  	mutex_lock(&dir->log_mutex);
6458  	dir->last_unlink_trans = trans->transid;
6459  	mutex_unlock(&dir->log_mutex);
6460  }
6461  
6462  /*
6463   * Call this after adding a new name for a file and it will properly
6464   * update the log to reflect the new name.
6465   *
6466   * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6467   * true (because it's not used).
6468   *
6469   * Return value depends on whether @sync_log is true or false.
6470   * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6471   *            committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6472   *            otherwise.
6473   * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6474   *             to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6475   *             or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6476   *             committed (without attempting to sync the log).
6477   */
6478  int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6479  			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6480  			struct dentry *parent,
6481  			bool sync_log, struct btrfs_log_ctx *ctx)
6482  {
6483  	struct btrfs_fs_info *fs_info = trans->fs_info;
6484  	int ret;
6485  
6486  	/*
6487  	 * this will force the logging code to walk the dentry chain
6488  	 * up for the file
6489  	 */
6490  	if (!S_ISDIR(inode->vfs_inode.i_mode))
6491  		inode->last_unlink_trans = trans->transid;
6492  
6493  	/*
6494  	 * if this inode hasn't been logged and directory we're renaming it
6495  	 * from hasn't been logged, we don't need to log it
6496  	 */
6497  	if (inode->logged_trans <= fs_info->last_trans_committed &&
6498  	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6499  		return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6500  			BTRFS_DONT_NEED_LOG_SYNC;
6501  
6502  	if (sync_log) {
6503  		struct btrfs_log_ctx ctx2;
6504  
6505  		btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6506  		ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6507  					     LOG_INODE_EXISTS, &ctx2);
6508  		if (ret == BTRFS_NO_LOG_SYNC)
6509  			return BTRFS_DONT_NEED_TRANS_COMMIT;
6510  		else if (ret)
6511  			return BTRFS_NEED_TRANS_COMMIT;
6512  
6513  		ret = btrfs_sync_log(trans, inode->root, &ctx2);
6514  		if (ret)
6515  			return BTRFS_NEED_TRANS_COMMIT;
6516  		return BTRFS_DONT_NEED_TRANS_COMMIT;
6517  	}
6518  
6519  	ASSERT(ctx);
6520  	ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6521  				     LOG_INODE_EXISTS, ctx);
6522  	if (ret == BTRFS_NO_LOG_SYNC)
6523  		return BTRFS_DONT_NEED_LOG_SYNC;
6524  	else if (ret)
6525  		return BTRFS_NEED_TRANS_COMMIT;
6526  
6527  	return BTRFS_NEED_LOG_SYNC;
6528  }
6529  
6530