xref: /linux/fs/btrfs/tree-log.c (revision edc7616c307ad315159a8aa050142237f524e079)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "locking.h"
24 #include "print-tree.h"
25 #include "compat.h"
26 #include "tree-log.h"
27 
28 /* magic values for the inode_only field in btrfs_log_inode:
29  *
30  * LOG_INODE_ALL means to log everything
31  * LOG_INODE_EXISTS means to log just enough to recreate the inode
32  * during log replay
33  */
34 #define LOG_INODE_ALL 0
35 #define LOG_INODE_EXISTS 1
36 
37 /*
38  * directory trouble cases
39  *
40  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41  * log, we must force a full commit before doing an fsync of the directory
42  * where the unlink was done.
43  * ---> record transid of last unlink/rename per directory
44  *
45  * mkdir foo/some_dir
46  * normal commit
47  * rename foo/some_dir foo2/some_dir
48  * mkdir foo/some_dir
49  * fsync foo/some_dir/some_file
50  *
51  * The fsync above will unlink the original some_dir without recording
52  * it in its new location (foo2).  After a crash, some_dir will be gone
53  * unless the fsync of some_file forces a full commit
54  *
55  * 2) we must log any new names for any file or dir that is in the fsync
56  * log. ---> check inode while renaming/linking.
57  *
58  * 2a) we must log any new names for any file or dir during rename
59  * when the directory they are being removed from was logged.
60  * ---> check inode and old parent dir during rename
61  *
62  *  2a is actually the more important variant.  With the extra logging
63  *  a crash might unlink the old name without recreating the new one
64  *
65  * 3) after a crash, we must go through any directories with a link count
66  * of zero and redo the rm -rf
67  *
68  * mkdir f1/foo
69  * normal commit
70  * rm -rf f1/foo
71  * fsync(f1)
72  *
73  * The directory f1 was fully removed from the FS, but fsync was never
74  * called on f1, only its parent dir.  After a crash the rm -rf must
75  * be replayed.  This must be able to recurse down the entire
76  * directory tree.  The inode link count fixup code takes care of the
77  * ugly details.
78  */
79 
80 /*
81  * stages for the tree walking.  The first
82  * stage (0) is to only pin down the blocks we find
83  * the second stage (1) is to make sure that all the inodes
84  * we find in the log are created in the subvolume.
85  *
86  * The last stage is to deal with directories and links and extents
87  * and all the other fun semantics
88  */
89 #define LOG_WALK_PIN_ONLY 0
90 #define LOG_WALK_REPLAY_INODES 1
91 #define LOG_WALK_REPLAY_ALL 2
92 
93 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
94 			     struct btrfs_root *root, struct inode *inode,
95 			     int inode_only);
96 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
97 			     struct btrfs_root *root,
98 			     struct btrfs_path *path, u64 objectid);
99 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
100 				       struct btrfs_root *root,
101 				       struct btrfs_root *log,
102 				       struct btrfs_path *path,
103 				       u64 dirid, int del_all);
104 
105 /*
106  * tree logging is a special write ahead log used to make sure that
107  * fsyncs and O_SYNCs can happen without doing full tree commits.
108  *
109  * Full tree commits are expensive because they require commonly
110  * modified blocks to be recowed, creating many dirty pages in the
111  * extent tree an 4x-6x higher write load than ext3.
112  *
113  * Instead of doing a tree commit on every fsync, we use the
114  * key ranges and transaction ids to find items for a given file or directory
115  * that have changed in this transaction.  Those items are copied into
116  * a special tree (one per subvolume root), that tree is written to disk
117  * and then the fsync is considered complete.
118  *
119  * After a crash, items are copied out of the log-tree back into the
120  * subvolume tree.  Any file data extents found are recorded in the extent
121  * allocation tree, and the log-tree freed.
122  *
123  * The log tree is read three times, once to pin down all the extents it is
124  * using in ram and once, once to create all the inodes logged in the tree
125  * and once to do all the other items.
126  */
127 
128 /*
129  * start a sub transaction and setup the log tree
130  * this increments the log tree writer count to make the people
131  * syncing the tree wait for us to finish
132  */
133 static int start_log_trans(struct btrfs_trans_handle *trans,
134 			   struct btrfs_root *root)
135 {
136 	int ret;
137 
138 	mutex_lock(&root->log_mutex);
139 	if (root->log_root) {
140 		if (!root->log_start_pid) {
141 			root->log_start_pid = current->pid;
142 			root->log_multiple_pids = false;
143 		} else if (root->log_start_pid != current->pid) {
144 			root->log_multiple_pids = true;
145 		}
146 
147 		root->log_batch++;
148 		atomic_inc(&root->log_writers);
149 		mutex_unlock(&root->log_mutex);
150 		return 0;
151 	}
152 	root->log_multiple_pids = false;
153 	root->log_start_pid = current->pid;
154 	mutex_lock(&root->fs_info->tree_log_mutex);
155 	if (!root->fs_info->log_root_tree) {
156 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
157 		BUG_ON(ret);
158 	}
159 	if (!root->log_root) {
160 		ret = btrfs_add_log_tree(trans, root);
161 		BUG_ON(ret);
162 	}
163 	mutex_unlock(&root->fs_info->tree_log_mutex);
164 	root->log_batch++;
165 	atomic_inc(&root->log_writers);
166 	mutex_unlock(&root->log_mutex);
167 	return 0;
168 }
169 
170 /*
171  * returns 0 if there was a log transaction running and we were able
172  * to join, or returns -ENOENT if there were not transactions
173  * in progress
174  */
175 static int join_running_log_trans(struct btrfs_root *root)
176 {
177 	int ret = -ENOENT;
178 
179 	smp_mb();
180 	if (!root->log_root)
181 		return -ENOENT;
182 
183 	mutex_lock(&root->log_mutex);
184 	if (root->log_root) {
185 		ret = 0;
186 		atomic_inc(&root->log_writers);
187 	}
188 	mutex_unlock(&root->log_mutex);
189 	return ret;
190 }
191 
192 /*
193  * This either makes the current running log transaction wait
194  * until you call btrfs_end_log_trans() or it makes any future
195  * log transactions wait until you call btrfs_end_log_trans()
196  */
197 int btrfs_pin_log_trans(struct btrfs_root *root)
198 {
199 	int ret = -ENOENT;
200 
201 	mutex_lock(&root->log_mutex);
202 	atomic_inc(&root->log_writers);
203 	mutex_unlock(&root->log_mutex);
204 	return ret;
205 }
206 
207 /*
208  * indicate we're done making changes to the log tree
209  * and wake up anyone waiting to do a sync
210  */
211 int btrfs_end_log_trans(struct btrfs_root *root)
212 {
213 	if (atomic_dec_and_test(&root->log_writers)) {
214 		smp_mb();
215 		if (waitqueue_active(&root->log_writer_wait))
216 			wake_up(&root->log_writer_wait);
217 	}
218 	return 0;
219 }
220 
221 
222 /*
223  * the walk control struct is used to pass state down the chain when
224  * processing the log tree.  The stage field tells us which part
225  * of the log tree processing we are currently doing.  The others
226  * are state fields used for that specific part
227  */
228 struct walk_control {
229 	/* should we free the extent on disk when done?  This is used
230 	 * at transaction commit time while freeing a log tree
231 	 */
232 	int free;
233 
234 	/* should we write out the extent buffer?  This is used
235 	 * while flushing the log tree to disk during a sync
236 	 */
237 	int write;
238 
239 	/* should we wait for the extent buffer io to finish?  Also used
240 	 * while flushing the log tree to disk for a sync
241 	 */
242 	int wait;
243 
244 	/* pin only walk, we record which extents on disk belong to the
245 	 * log trees
246 	 */
247 	int pin;
248 
249 	/* what stage of the replay code we're currently in */
250 	int stage;
251 
252 	/* the root we are currently replaying */
253 	struct btrfs_root *replay_dest;
254 
255 	/* the trans handle for the current replay */
256 	struct btrfs_trans_handle *trans;
257 
258 	/* the function that gets used to process blocks we find in the
259 	 * tree.  Note the extent_buffer might not be up to date when it is
260 	 * passed in, and it must be checked or read if you need the data
261 	 * inside it
262 	 */
263 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
264 			    struct walk_control *wc, u64 gen);
265 };
266 
267 /*
268  * process_func used to pin down extents, write them or wait on them
269  */
270 static int process_one_buffer(struct btrfs_root *log,
271 			      struct extent_buffer *eb,
272 			      struct walk_control *wc, u64 gen)
273 {
274 	if (wc->pin)
275 		btrfs_pin_extent(log->fs_info->extent_root,
276 				 eb->start, eb->len, 0);
277 
278 	if (btrfs_buffer_uptodate(eb, gen)) {
279 		if (wc->write)
280 			btrfs_write_tree_block(eb);
281 		if (wc->wait)
282 			btrfs_wait_tree_block_writeback(eb);
283 	}
284 	return 0;
285 }
286 
287 /*
288  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
289  * to the src data we are copying out.
290  *
291  * root is the tree we are copying into, and path is a scratch
292  * path for use in this function (it should be released on entry and
293  * will be released on exit).
294  *
295  * If the key is already in the destination tree the existing item is
296  * overwritten.  If the existing item isn't big enough, it is extended.
297  * If it is too large, it is truncated.
298  *
299  * If the key isn't in the destination yet, a new item is inserted.
300  */
301 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
302 				   struct btrfs_root *root,
303 				   struct btrfs_path *path,
304 				   struct extent_buffer *eb, int slot,
305 				   struct btrfs_key *key)
306 {
307 	int ret;
308 	u32 item_size;
309 	u64 saved_i_size = 0;
310 	int save_old_i_size = 0;
311 	unsigned long src_ptr;
312 	unsigned long dst_ptr;
313 	int overwrite_root = 0;
314 
315 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
316 		overwrite_root = 1;
317 
318 	item_size = btrfs_item_size_nr(eb, slot);
319 	src_ptr = btrfs_item_ptr_offset(eb, slot);
320 
321 	/* look for the key in the destination tree */
322 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
323 	if (ret == 0) {
324 		char *src_copy;
325 		char *dst_copy;
326 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
327 						  path->slots[0]);
328 		if (dst_size != item_size)
329 			goto insert;
330 
331 		if (item_size == 0) {
332 			btrfs_release_path(root, path);
333 			return 0;
334 		}
335 		dst_copy = kmalloc(item_size, GFP_NOFS);
336 		src_copy = kmalloc(item_size, GFP_NOFS);
337 
338 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
339 
340 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
341 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
342 				   item_size);
343 		ret = memcmp(dst_copy, src_copy, item_size);
344 
345 		kfree(dst_copy);
346 		kfree(src_copy);
347 		/*
348 		 * they have the same contents, just return, this saves
349 		 * us from cowing blocks in the destination tree and doing
350 		 * extra writes that may not have been done by a previous
351 		 * sync
352 		 */
353 		if (ret == 0) {
354 			btrfs_release_path(root, path);
355 			return 0;
356 		}
357 
358 	}
359 insert:
360 	btrfs_release_path(root, path);
361 	/* try to insert the key into the destination tree */
362 	ret = btrfs_insert_empty_item(trans, root, path,
363 				      key, item_size);
364 
365 	/* make sure any existing item is the correct size */
366 	if (ret == -EEXIST) {
367 		u32 found_size;
368 		found_size = btrfs_item_size_nr(path->nodes[0],
369 						path->slots[0]);
370 		if (found_size > item_size) {
371 			btrfs_truncate_item(trans, root, path, item_size, 1);
372 		} else if (found_size < item_size) {
373 			ret = btrfs_extend_item(trans, root, path,
374 						item_size - found_size);
375 			BUG_ON(ret);
376 		}
377 	} else if (ret) {
378 		BUG();
379 	}
380 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
381 					path->slots[0]);
382 
383 	/* don't overwrite an existing inode if the generation number
384 	 * was logged as zero.  This is done when the tree logging code
385 	 * is just logging an inode to make sure it exists after recovery.
386 	 *
387 	 * Also, don't overwrite i_size on directories during replay.
388 	 * log replay inserts and removes directory items based on the
389 	 * state of the tree found in the subvolume, and i_size is modified
390 	 * as it goes
391 	 */
392 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
393 		struct btrfs_inode_item *src_item;
394 		struct btrfs_inode_item *dst_item;
395 
396 		src_item = (struct btrfs_inode_item *)src_ptr;
397 		dst_item = (struct btrfs_inode_item *)dst_ptr;
398 
399 		if (btrfs_inode_generation(eb, src_item) == 0)
400 			goto no_copy;
401 
402 		if (overwrite_root &&
403 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
404 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
405 			save_old_i_size = 1;
406 			saved_i_size = btrfs_inode_size(path->nodes[0],
407 							dst_item);
408 		}
409 	}
410 
411 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
412 			   src_ptr, item_size);
413 
414 	if (save_old_i_size) {
415 		struct btrfs_inode_item *dst_item;
416 		dst_item = (struct btrfs_inode_item *)dst_ptr;
417 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
418 	}
419 
420 	/* make sure the generation is filled in */
421 	if (key->type == BTRFS_INODE_ITEM_KEY) {
422 		struct btrfs_inode_item *dst_item;
423 		dst_item = (struct btrfs_inode_item *)dst_ptr;
424 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
425 			btrfs_set_inode_generation(path->nodes[0], dst_item,
426 						   trans->transid);
427 		}
428 	}
429 no_copy:
430 	btrfs_mark_buffer_dirty(path->nodes[0]);
431 	btrfs_release_path(root, path);
432 	return 0;
433 }
434 
435 /*
436  * simple helper to read an inode off the disk from a given root
437  * This can only be called for subvolume roots and not for the log
438  */
439 static noinline struct inode *read_one_inode(struct btrfs_root *root,
440 					     u64 objectid)
441 {
442 	struct btrfs_key key;
443 	struct inode *inode;
444 
445 	key.objectid = objectid;
446 	key.type = BTRFS_INODE_ITEM_KEY;
447 	key.offset = 0;
448 	inode = btrfs_iget(root->fs_info->sb, &key, root);
449 	if (IS_ERR(inode)) {
450 		inode = NULL;
451 	} else if (is_bad_inode(inode)) {
452 		iput(inode);
453 		inode = NULL;
454 	}
455 	return inode;
456 }
457 
458 /* replays a single extent in 'eb' at 'slot' with 'key' into the
459  * subvolume 'root'.  path is released on entry and should be released
460  * on exit.
461  *
462  * extents in the log tree have not been allocated out of the extent
463  * tree yet.  So, this completes the allocation, taking a reference
464  * as required if the extent already exists or creating a new extent
465  * if it isn't in the extent allocation tree yet.
466  *
467  * The extent is inserted into the file, dropping any existing extents
468  * from the file that overlap the new one.
469  */
470 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
471 				      struct btrfs_root *root,
472 				      struct btrfs_path *path,
473 				      struct extent_buffer *eb, int slot,
474 				      struct btrfs_key *key)
475 {
476 	int found_type;
477 	u64 mask = root->sectorsize - 1;
478 	u64 extent_end;
479 	u64 alloc_hint;
480 	u64 start = key->offset;
481 	u64 saved_nbytes;
482 	struct btrfs_file_extent_item *item;
483 	struct inode *inode = NULL;
484 	unsigned long size;
485 	int ret = 0;
486 
487 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
488 	found_type = btrfs_file_extent_type(eb, item);
489 
490 	if (found_type == BTRFS_FILE_EXTENT_REG ||
491 	    found_type == BTRFS_FILE_EXTENT_PREALLOC)
492 		extent_end = start + btrfs_file_extent_num_bytes(eb, item);
493 	else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
494 		size = btrfs_file_extent_inline_len(eb, item);
495 		extent_end = (start + size + mask) & ~mask;
496 	} else {
497 		ret = 0;
498 		goto out;
499 	}
500 
501 	inode = read_one_inode(root, key->objectid);
502 	if (!inode) {
503 		ret = -EIO;
504 		goto out;
505 	}
506 
507 	/*
508 	 * first check to see if we already have this extent in the
509 	 * file.  This must be done before the btrfs_drop_extents run
510 	 * so we don't try to drop this extent.
511 	 */
512 	ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
513 				       start, 0);
514 
515 	if (ret == 0 &&
516 	    (found_type == BTRFS_FILE_EXTENT_REG ||
517 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
518 		struct btrfs_file_extent_item cmp1;
519 		struct btrfs_file_extent_item cmp2;
520 		struct btrfs_file_extent_item *existing;
521 		struct extent_buffer *leaf;
522 
523 		leaf = path->nodes[0];
524 		existing = btrfs_item_ptr(leaf, path->slots[0],
525 					  struct btrfs_file_extent_item);
526 
527 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
528 				   sizeof(cmp1));
529 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
530 				   sizeof(cmp2));
531 
532 		/*
533 		 * we already have a pointer to this exact extent,
534 		 * we don't have to do anything
535 		 */
536 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
537 			btrfs_release_path(root, path);
538 			goto out;
539 		}
540 	}
541 	btrfs_release_path(root, path);
542 
543 	saved_nbytes = inode_get_bytes(inode);
544 	/* drop any overlapping extents */
545 	ret = btrfs_drop_extents(trans, inode, start, extent_end,
546 				 &alloc_hint, 1);
547 	BUG_ON(ret);
548 
549 	if (found_type == BTRFS_FILE_EXTENT_REG ||
550 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
551 		u64 offset;
552 		unsigned long dest_offset;
553 		struct btrfs_key ins;
554 
555 		ret = btrfs_insert_empty_item(trans, root, path, key,
556 					      sizeof(*item));
557 		BUG_ON(ret);
558 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
559 						    path->slots[0]);
560 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
561 				(unsigned long)item,  sizeof(*item));
562 
563 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
564 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
565 		ins.type = BTRFS_EXTENT_ITEM_KEY;
566 		offset = key->offset - btrfs_file_extent_offset(eb, item);
567 
568 		if (ins.objectid > 0) {
569 			u64 csum_start;
570 			u64 csum_end;
571 			LIST_HEAD(ordered_sums);
572 			/*
573 			 * is this extent already allocated in the extent
574 			 * allocation tree?  If so, just add a reference
575 			 */
576 			ret = btrfs_lookup_extent(root, ins.objectid,
577 						ins.offset);
578 			if (ret == 0) {
579 				ret = btrfs_inc_extent_ref(trans, root,
580 						ins.objectid, ins.offset,
581 						0, root->root_key.objectid,
582 						key->objectid, offset);
583 			} else {
584 				/*
585 				 * insert the extent pointer in the extent
586 				 * allocation tree
587 				 */
588 				ret = btrfs_alloc_logged_file_extent(trans,
589 						root, root->root_key.objectid,
590 						key->objectid, offset, &ins);
591 				BUG_ON(ret);
592 			}
593 			btrfs_release_path(root, path);
594 
595 			if (btrfs_file_extent_compression(eb, item)) {
596 				csum_start = ins.objectid;
597 				csum_end = csum_start + ins.offset;
598 			} else {
599 				csum_start = ins.objectid +
600 					btrfs_file_extent_offset(eb, item);
601 				csum_end = csum_start +
602 					btrfs_file_extent_num_bytes(eb, item);
603 			}
604 
605 			ret = btrfs_lookup_csums_range(root->log_root,
606 						csum_start, csum_end - 1,
607 						&ordered_sums);
608 			BUG_ON(ret);
609 			while (!list_empty(&ordered_sums)) {
610 				struct btrfs_ordered_sum *sums;
611 				sums = list_entry(ordered_sums.next,
612 						struct btrfs_ordered_sum,
613 						list);
614 				ret = btrfs_csum_file_blocks(trans,
615 						root->fs_info->csum_root,
616 						sums);
617 				BUG_ON(ret);
618 				list_del(&sums->list);
619 				kfree(sums);
620 			}
621 		} else {
622 			btrfs_release_path(root, path);
623 		}
624 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
625 		/* inline extents are easy, we just overwrite them */
626 		ret = overwrite_item(trans, root, path, eb, slot, key);
627 		BUG_ON(ret);
628 	}
629 
630 	inode_set_bytes(inode, saved_nbytes);
631 	btrfs_update_inode(trans, root, inode);
632 out:
633 	if (inode)
634 		iput(inode);
635 	return ret;
636 }
637 
638 /*
639  * when cleaning up conflicts between the directory names in the
640  * subvolume, directory names in the log and directory names in the
641  * inode back references, we may have to unlink inodes from directories.
642  *
643  * This is a helper function to do the unlink of a specific directory
644  * item
645  */
646 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
647 				      struct btrfs_root *root,
648 				      struct btrfs_path *path,
649 				      struct inode *dir,
650 				      struct btrfs_dir_item *di)
651 {
652 	struct inode *inode;
653 	char *name;
654 	int name_len;
655 	struct extent_buffer *leaf;
656 	struct btrfs_key location;
657 	int ret;
658 
659 	leaf = path->nodes[0];
660 
661 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
662 	name_len = btrfs_dir_name_len(leaf, di);
663 	name = kmalloc(name_len, GFP_NOFS);
664 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
665 	btrfs_release_path(root, path);
666 
667 	inode = read_one_inode(root, location.objectid);
668 	BUG_ON(!inode);
669 
670 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
671 	BUG_ON(ret);
672 
673 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
674 	BUG_ON(ret);
675 	kfree(name);
676 
677 	iput(inode);
678 	return ret;
679 }
680 
681 /*
682  * helper function to see if a given name and sequence number found
683  * in an inode back reference are already in a directory and correctly
684  * point to this inode
685  */
686 static noinline int inode_in_dir(struct btrfs_root *root,
687 				 struct btrfs_path *path,
688 				 u64 dirid, u64 objectid, u64 index,
689 				 const char *name, int name_len)
690 {
691 	struct btrfs_dir_item *di;
692 	struct btrfs_key location;
693 	int match = 0;
694 
695 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
696 					 index, name, name_len, 0);
697 	if (di && !IS_ERR(di)) {
698 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
699 		if (location.objectid != objectid)
700 			goto out;
701 	} else
702 		goto out;
703 	btrfs_release_path(root, path);
704 
705 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
706 	if (di && !IS_ERR(di)) {
707 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
708 		if (location.objectid != objectid)
709 			goto out;
710 	} else
711 		goto out;
712 	match = 1;
713 out:
714 	btrfs_release_path(root, path);
715 	return match;
716 }
717 
718 /*
719  * helper function to check a log tree for a named back reference in
720  * an inode.  This is used to decide if a back reference that is
721  * found in the subvolume conflicts with what we find in the log.
722  *
723  * inode backreferences may have multiple refs in a single item,
724  * during replay we process one reference at a time, and we don't
725  * want to delete valid links to a file from the subvolume if that
726  * link is also in the log.
727  */
728 static noinline int backref_in_log(struct btrfs_root *log,
729 				   struct btrfs_key *key,
730 				   char *name, int namelen)
731 {
732 	struct btrfs_path *path;
733 	struct btrfs_inode_ref *ref;
734 	unsigned long ptr;
735 	unsigned long ptr_end;
736 	unsigned long name_ptr;
737 	int found_name_len;
738 	int item_size;
739 	int ret;
740 	int match = 0;
741 
742 	path = btrfs_alloc_path();
743 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
744 	if (ret != 0)
745 		goto out;
746 
747 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
748 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
749 	ptr_end = ptr + item_size;
750 	while (ptr < ptr_end) {
751 		ref = (struct btrfs_inode_ref *)ptr;
752 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
753 		if (found_name_len == namelen) {
754 			name_ptr = (unsigned long)(ref + 1);
755 			ret = memcmp_extent_buffer(path->nodes[0], name,
756 						   name_ptr, namelen);
757 			if (ret == 0) {
758 				match = 1;
759 				goto out;
760 			}
761 		}
762 		ptr = (unsigned long)(ref + 1) + found_name_len;
763 	}
764 out:
765 	btrfs_free_path(path);
766 	return match;
767 }
768 
769 
770 /*
771  * replay one inode back reference item found in the log tree.
772  * eb, slot and key refer to the buffer and key found in the log tree.
773  * root is the destination we are replaying into, and path is for temp
774  * use by this function.  (it should be released on return).
775  */
776 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
777 				  struct btrfs_root *root,
778 				  struct btrfs_root *log,
779 				  struct btrfs_path *path,
780 				  struct extent_buffer *eb, int slot,
781 				  struct btrfs_key *key)
782 {
783 	struct inode *dir;
784 	int ret;
785 	struct btrfs_key location;
786 	struct btrfs_inode_ref *ref;
787 	struct btrfs_dir_item *di;
788 	struct inode *inode;
789 	char *name;
790 	int namelen;
791 	unsigned long ref_ptr;
792 	unsigned long ref_end;
793 
794 	location.objectid = key->objectid;
795 	location.type = BTRFS_INODE_ITEM_KEY;
796 	location.offset = 0;
797 
798 	/*
799 	 * it is possible that we didn't log all the parent directories
800 	 * for a given inode.  If we don't find the dir, just don't
801 	 * copy the back ref in.  The link count fixup code will take
802 	 * care of the rest
803 	 */
804 	dir = read_one_inode(root, key->offset);
805 	if (!dir)
806 		return -ENOENT;
807 
808 	inode = read_one_inode(root, key->objectid);
809 	BUG_ON(!inode);
810 
811 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
812 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
813 
814 again:
815 	ref = (struct btrfs_inode_ref *)ref_ptr;
816 
817 	namelen = btrfs_inode_ref_name_len(eb, ref);
818 	name = kmalloc(namelen, GFP_NOFS);
819 	BUG_ON(!name);
820 
821 	read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
822 
823 	/* if we already have a perfect match, we're done */
824 	if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
825 			 btrfs_inode_ref_index(eb, ref),
826 			 name, namelen)) {
827 		goto out;
828 	}
829 
830 	/*
831 	 * look for a conflicting back reference in the metadata.
832 	 * if we find one we have to unlink that name of the file
833 	 * before we add our new link.  Later on, we overwrite any
834 	 * existing back reference, and we don't want to create
835 	 * dangling pointers in the directory.
836 	 */
837 conflict_again:
838 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
839 	if (ret == 0) {
840 		char *victim_name;
841 		int victim_name_len;
842 		struct btrfs_inode_ref *victim_ref;
843 		unsigned long ptr;
844 		unsigned long ptr_end;
845 		struct extent_buffer *leaf = path->nodes[0];
846 
847 		/* are we trying to overwrite a back ref for the root directory
848 		 * if so, just jump out, we're done
849 		 */
850 		if (key->objectid == key->offset)
851 			goto out_nowrite;
852 
853 		/* check all the names in this back reference to see
854 		 * if they are in the log.  if so, we allow them to stay
855 		 * otherwise they must be unlinked as a conflict
856 		 */
857 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
858 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
859 		while (ptr < ptr_end) {
860 			victim_ref = (struct btrfs_inode_ref *)ptr;
861 			victim_name_len = btrfs_inode_ref_name_len(leaf,
862 								   victim_ref);
863 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
864 			BUG_ON(!victim_name);
865 
866 			read_extent_buffer(leaf, victim_name,
867 					   (unsigned long)(victim_ref + 1),
868 					   victim_name_len);
869 
870 			if (!backref_in_log(log, key, victim_name,
871 					    victim_name_len)) {
872 				btrfs_inc_nlink(inode);
873 				btrfs_release_path(root, path);
874 
875 				ret = btrfs_unlink_inode(trans, root, dir,
876 							 inode, victim_name,
877 							 victim_name_len);
878 				kfree(victim_name);
879 				btrfs_release_path(root, path);
880 				goto conflict_again;
881 			}
882 			kfree(victim_name);
883 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
884 		}
885 		BUG_ON(ret);
886 	}
887 	btrfs_release_path(root, path);
888 
889 	/* look for a conflicting sequence number */
890 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
891 					 btrfs_inode_ref_index(eb, ref),
892 					 name, namelen, 0);
893 	if (di && !IS_ERR(di)) {
894 		ret = drop_one_dir_item(trans, root, path, dir, di);
895 		BUG_ON(ret);
896 	}
897 	btrfs_release_path(root, path);
898 
899 
900 	/* look for a conflicting name */
901 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
902 				   name, namelen, 0);
903 	if (di && !IS_ERR(di)) {
904 		ret = drop_one_dir_item(trans, root, path, dir, di);
905 		BUG_ON(ret);
906 	}
907 	btrfs_release_path(root, path);
908 
909 	/* insert our name */
910 	ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
911 			     btrfs_inode_ref_index(eb, ref));
912 	BUG_ON(ret);
913 
914 	btrfs_update_inode(trans, root, inode);
915 
916 out:
917 	ref_ptr = (unsigned long)(ref + 1) + namelen;
918 	kfree(name);
919 	if (ref_ptr < ref_end)
920 		goto again;
921 
922 	/* finally write the back reference in the inode */
923 	ret = overwrite_item(trans, root, path, eb, slot, key);
924 	BUG_ON(ret);
925 
926 out_nowrite:
927 	btrfs_release_path(root, path);
928 	iput(dir);
929 	iput(inode);
930 	return 0;
931 }
932 
933 static int insert_orphan_item(struct btrfs_trans_handle *trans,
934 			      struct btrfs_root *root, u64 offset)
935 {
936 	int ret;
937 	ret = btrfs_find_orphan_item(root, offset);
938 	if (ret > 0)
939 		ret = btrfs_insert_orphan_item(trans, root, offset);
940 	return ret;
941 }
942 
943 
944 /*
945  * There are a few corners where the link count of the file can't
946  * be properly maintained during replay.  So, instead of adding
947  * lots of complexity to the log code, we just scan the backrefs
948  * for any file that has been through replay.
949  *
950  * The scan will update the link count on the inode to reflect the
951  * number of back refs found.  If it goes down to zero, the iput
952  * will free the inode.
953  */
954 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
955 					   struct btrfs_root *root,
956 					   struct inode *inode)
957 {
958 	struct btrfs_path *path;
959 	int ret;
960 	struct btrfs_key key;
961 	u64 nlink = 0;
962 	unsigned long ptr;
963 	unsigned long ptr_end;
964 	int name_len;
965 
966 	key.objectid = inode->i_ino;
967 	key.type = BTRFS_INODE_REF_KEY;
968 	key.offset = (u64)-1;
969 
970 	path = btrfs_alloc_path();
971 
972 	while (1) {
973 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
974 		if (ret < 0)
975 			break;
976 		if (ret > 0) {
977 			if (path->slots[0] == 0)
978 				break;
979 			path->slots[0]--;
980 		}
981 		btrfs_item_key_to_cpu(path->nodes[0], &key,
982 				      path->slots[0]);
983 		if (key.objectid != inode->i_ino ||
984 		    key.type != BTRFS_INODE_REF_KEY)
985 			break;
986 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
987 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
988 						   path->slots[0]);
989 		while (ptr < ptr_end) {
990 			struct btrfs_inode_ref *ref;
991 
992 			ref = (struct btrfs_inode_ref *)ptr;
993 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
994 							    ref);
995 			ptr = (unsigned long)(ref + 1) + name_len;
996 			nlink++;
997 		}
998 
999 		if (key.offset == 0)
1000 			break;
1001 		key.offset--;
1002 		btrfs_release_path(root, path);
1003 	}
1004 	btrfs_release_path(root, path);
1005 	if (nlink != inode->i_nlink) {
1006 		inode->i_nlink = nlink;
1007 		btrfs_update_inode(trans, root, inode);
1008 	}
1009 	BTRFS_I(inode)->index_cnt = (u64)-1;
1010 
1011 	if (inode->i_nlink == 0) {
1012 		if (S_ISDIR(inode->i_mode)) {
1013 			ret = replay_dir_deletes(trans, root, NULL, path,
1014 						 inode->i_ino, 1);
1015 			BUG_ON(ret);
1016 		}
1017 		ret = insert_orphan_item(trans, root, inode->i_ino);
1018 		BUG_ON(ret);
1019 	}
1020 	btrfs_free_path(path);
1021 
1022 	return 0;
1023 }
1024 
1025 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1026 					    struct btrfs_root *root,
1027 					    struct btrfs_path *path)
1028 {
1029 	int ret;
1030 	struct btrfs_key key;
1031 	struct inode *inode;
1032 
1033 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1034 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1035 	key.offset = (u64)-1;
1036 	while (1) {
1037 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1038 		if (ret < 0)
1039 			break;
1040 
1041 		if (ret == 1) {
1042 			if (path->slots[0] == 0)
1043 				break;
1044 			path->slots[0]--;
1045 		}
1046 
1047 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1048 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1049 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1050 			break;
1051 
1052 		ret = btrfs_del_item(trans, root, path);
1053 		BUG_ON(ret);
1054 
1055 		btrfs_release_path(root, path);
1056 		inode = read_one_inode(root, key.offset);
1057 		BUG_ON(!inode);
1058 
1059 		ret = fixup_inode_link_count(trans, root, inode);
1060 		BUG_ON(ret);
1061 
1062 		iput(inode);
1063 
1064 		/*
1065 		 * fixup on a directory may create new entries,
1066 		 * make sure we always look for the highset possible
1067 		 * offset
1068 		 */
1069 		key.offset = (u64)-1;
1070 	}
1071 	btrfs_release_path(root, path);
1072 	return 0;
1073 }
1074 
1075 
1076 /*
1077  * record a given inode in the fixup dir so we can check its link
1078  * count when replay is done.  The link count is incremented here
1079  * so the inode won't go away until we check it
1080  */
1081 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1082 				      struct btrfs_root *root,
1083 				      struct btrfs_path *path,
1084 				      u64 objectid)
1085 {
1086 	struct btrfs_key key;
1087 	int ret = 0;
1088 	struct inode *inode;
1089 
1090 	inode = read_one_inode(root, objectid);
1091 	BUG_ON(!inode);
1092 
1093 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1094 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1095 	key.offset = objectid;
1096 
1097 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1098 
1099 	btrfs_release_path(root, path);
1100 	if (ret == 0) {
1101 		btrfs_inc_nlink(inode);
1102 		btrfs_update_inode(trans, root, inode);
1103 	} else if (ret == -EEXIST) {
1104 		ret = 0;
1105 	} else {
1106 		BUG();
1107 	}
1108 	iput(inode);
1109 
1110 	return ret;
1111 }
1112 
1113 /*
1114  * when replaying the log for a directory, we only insert names
1115  * for inodes that actually exist.  This means an fsync on a directory
1116  * does not implicitly fsync all the new files in it
1117  */
1118 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1119 				    struct btrfs_root *root,
1120 				    struct btrfs_path *path,
1121 				    u64 dirid, u64 index,
1122 				    char *name, int name_len, u8 type,
1123 				    struct btrfs_key *location)
1124 {
1125 	struct inode *inode;
1126 	struct inode *dir;
1127 	int ret;
1128 
1129 	inode = read_one_inode(root, location->objectid);
1130 	if (!inode)
1131 		return -ENOENT;
1132 
1133 	dir = read_one_inode(root, dirid);
1134 	if (!dir) {
1135 		iput(inode);
1136 		return -EIO;
1137 	}
1138 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1139 
1140 	/* FIXME, put inode into FIXUP list */
1141 
1142 	iput(inode);
1143 	iput(dir);
1144 	return ret;
1145 }
1146 
1147 /*
1148  * take a single entry in a log directory item and replay it into
1149  * the subvolume.
1150  *
1151  * if a conflicting item exists in the subdirectory already,
1152  * the inode it points to is unlinked and put into the link count
1153  * fix up tree.
1154  *
1155  * If a name from the log points to a file or directory that does
1156  * not exist in the FS, it is skipped.  fsyncs on directories
1157  * do not force down inodes inside that directory, just changes to the
1158  * names or unlinks in a directory.
1159  */
1160 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1161 				    struct btrfs_root *root,
1162 				    struct btrfs_path *path,
1163 				    struct extent_buffer *eb,
1164 				    struct btrfs_dir_item *di,
1165 				    struct btrfs_key *key)
1166 {
1167 	char *name;
1168 	int name_len;
1169 	struct btrfs_dir_item *dst_di;
1170 	struct btrfs_key found_key;
1171 	struct btrfs_key log_key;
1172 	struct inode *dir;
1173 	u8 log_type;
1174 	int exists;
1175 	int ret;
1176 
1177 	dir = read_one_inode(root, key->objectid);
1178 	BUG_ON(!dir);
1179 
1180 	name_len = btrfs_dir_name_len(eb, di);
1181 	name = kmalloc(name_len, GFP_NOFS);
1182 	log_type = btrfs_dir_type(eb, di);
1183 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1184 		   name_len);
1185 
1186 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1187 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1188 	if (exists == 0)
1189 		exists = 1;
1190 	else
1191 		exists = 0;
1192 	btrfs_release_path(root, path);
1193 
1194 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1195 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1196 				       name, name_len, 1);
1197 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1198 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1199 						     key->objectid,
1200 						     key->offset, name,
1201 						     name_len, 1);
1202 	} else {
1203 		BUG();
1204 	}
1205 	if (!dst_di || IS_ERR(dst_di)) {
1206 		/* we need a sequence number to insert, so we only
1207 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1208 		 */
1209 		if (key->type != BTRFS_DIR_INDEX_KEY)
1210 			goto out;
1211 		goto insert;
1212 	}
1213 
1214 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1215 	/* the existing item matches the logged item */
1216 	if (found_key.objectid == log_key.objectid &&
1217 	    found_key.type == log_key.type &&
1218 	    found_key.offset == log_key.offset &&
1219 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1220 		goto out;
1221 	}
1222 
1223 	/*
1224 	 * don't drop the conflicting directory entry if the inode
1225 	 * for the new entry doesn't exist
1226 	 */
1227 	if (!exists)
1228 		goto out;
1229 
1230 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1231 	BUG_ON(ret);
1232 
1233 	if (key->type == BTRFS_DIR_INDEX_KEY)
1234 		goto insert;
1235 out:
1236 	btrfs_release_path(root, path);
1237 	kfree(name);
1238 	iput(dir);
1239 	return 0;
1240 
1241 insert:
1242 	btrfs_release_path(root, path);
1243 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1244 			      name, name_len, log_type, &log_key);
1245 
1246 	BUG_ON(ret && ret != -ENOENT);
1247 	goto out;
1248 }
1249 
1250 /*
1251  * find all the names in a directory item and reconcile them into
1252  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1253  * one name in a directory item, but the same code gets used for
1254  * both directory index types
1255  */
1256 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1257 					struct btrfs_root *root,
1258 					struct btrfs_path *path,
1259 					struct extent_buffer *eb, int slot,
1260 					struct btrfs_key *key)
1261 {
1262 	int ret;
1263 	u32 item_size = btrfs_item_size_nr(eb, slot);
1264 	struct btrfs_dir_item *di;
1265 	int name_len;
1266 	unsigned long ptr;
1267 	unsigned long ptr_end;
1268 
1269 	ptr = btrfs_item_ptr_offset(eb, slot);
1270 	ptr_end = ptr + item_size;
1271 	while (ptr < ptr_end) {
1272 		di = (struct btrfs_dir_item *)ptr;
1273 		name_len = btrfs_dir_name_len(eb, di);
1274 		ret = replay_one_name(trans, root, path, eb, di, key);
1275 		BUG_ON(ret);
1276 		ptr = (unsigned long)(di + 1);
1277 		ptr += name_len;
1278 	}
1279 	return 0;
1280 }
1281 
1282 /*
1283  * directory replay has two parts.  There are the standard directory
1284  * items in the log copied from the subvolume, and range items
1285  * created in the log while the subvolume was logged.
1286  *
1287  * The range items tell us which parts of the key space the log
1288  * is authoritative for.  During replay, if a key in the subvolume
1289  * directory is in a logged range item, but not actually in the log
1290  * that means it was deleted from the directory before the fsync
1291  * and should be removed.
1292  */
1293 static noinline int find_dir_range(struct btrfs_root *root,
1294 				   struct btrfs_path *path,
1295 				   u64 dirid, int key_type,
1296 				   u64 *start_ret, u64 *end_ret)
1297 {
1298 	struct btrfs_key key;
1299 	u64 found_end;
1300 	struct btrfs_dir_log_item *item;
1301 	int ret;
1302 	int nritems;
1303 
1304 	if (*start_ret == (u64)-1)
1305 		return 1;
1306 
1307 	key.objectid = dirid;
1308 	key.type = key_type;
1309 	key.offset = *start_ret;
1310 
1311 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1312 	if (ret < 0)
1313 		goto out;
1314 	if (ret > 0) {
1315 		if (path->slots[0] == 0)
1316 			goto out;
1317 		path->slots[0]--;
1318 	}
1319 	if (ret != 0)
1320 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1321 
1322 	if (key.type != key_type || key.objectid != dirid) {
1323 		ret = 1;
1324 		goto next;
1325 	}
1326 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1327 			      struct btrfs_dir_log_item);
1328 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1329 
1330 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1331 		ret = 0;
1332 		*start_ret = key.offset;
1333 		*end_ret = found_end;
1334 		goto out;
1335 	}
1336 	ret = 1;
1337 next:
1338 	/* check the next slot in the tree to see if it is a valid item */
1339 	nritems = btrfs_header_nritems(path->nodes[0]);
1340 	if (path->slots[0] >= nritems) {
1341 		ret = btrfs_next_leaf(root, path);
1342 		if (ret)
1343 			goto out;
1344 	} else {
1345 		path->slots[0]++;
1346 	}
1347 
1348 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1349 
1350 	if (key.type != key_type || key.objectid != dirid) {
1351 		ret = 1;
1352 		goto out;
1353 	}
1354 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1355 			      struct btrfs_dir_log_item);
1356 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1357 	*start_ret = key.offset;
1358 	*end_ret = found_end;
1359 	ret = 0;
1360 out:
1361 	btrfs_release_path(root, path);
1362 	return ret;
1363 }
1364 
1365 /*
1366  * this looks for a given directory item in the log.  If the directory
1367  * item is not in the log, the item is removed and the inode it points
1368  * to is unlinked
1369  */
1370 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1371 				      struct btrfs_root *root,
1372 				      struct btrfs_root *log,
1373 				      struct btrfs_path *path,
1374 				      struct btrfs_path *log_path,
1375 				      struct inode *dir,
1376 				      struct btrfs_key *dir_key)
1377 {
1378 	int ret;
1379 	struct extent_buffer *eb;
1380 	int slot;
1381 	u32 item_size;
1382 	struct btrfs_dir_item *di;
1383 	struct btrfs_dir_item *log_di;
1384 	int name_len;
1385 	unsigned long ptr;
1386 	unsigned long ptr_end;
1387 	char *name;
1388 	struct inode *inode;
1389 	struct btrfs_key location;
1390 
1391 again:
1392 	eb = path->nodes[0];
1393 	slot = path->slots[0];
1394 	item_size = btrfs_item_size_nr(eb, slot);
1395 	ptr = btrfs_item_ptr_offset(eb, slot);
1396 	ptr_end = ptr + item_size;
1397 	while (ptr < ptr_end) {
1398 		di = (struct btrfs_dir_item *)ptr;
1399 		name_len = btrfs_dir_name_len(eb, di);
1400 		name = kmalloc(name_len, GFP_NOFS);
1401 		if (!name) {
1402 			ret = -ENOMEM;
1403 			goto out;
1404 		}
1405 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1406 				  name_len);
1407 		log_di = NULL;
1408 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1409 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1410 						       dir_key->objectid,
1411 						       name, name_len, 0);
1412 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1413 			log_di = btrfs_lookup_dir_index_item(trans, log,
1414 						     log_path,
1415 						     dir_key->objectid,
1416 						     dir_key->offset,
1417 						     name, name_len, 0);
1418 		}
1419 		if (!log_di || IS_ERR(log_di)) {
1420 			btrfs_dir_item_key_to_cpu(eb, di, &location);
1421 			btrfs_release_path(root, path);
1422 			btrfs_release_path(log, log_path);
1423 			inode = read_one_inode(root, location.objectid);
1424 			BUG_ON(!inode);
1425 
1426 			ret = link_to_fixup_dir(trans, root,
1427 						path, location.objectid);
1428 			BUG_ON(ret);
1429 			btrfs_inc_nlink(inode);
1430 			ret = btrfs_unlink_inode(trans, root, dir, inode,
1431 						 name, name_len);
1432 			BUG_ON(ret);
1433 			kfree(name);
1434 			iput(inode);
1435 
1436 			/* there might still be more names under this key
1437 			 * check and repeat if required
1438 			 */
1439 			ret = btrfs_search_slot(NULL, root, dir_key, path,
1440 						0, 0);
1441 			if (ret == 0)
1442 				goto again;
1443 			ret = 0;
1444 			goto out;
1445 		}
1446 		btrfs_release_path(log, log_path);
1447 		kfree(name);
1448 
1449 		ptr = (unsigned long)(di + 1);
1450 		ptr += name_len;
1451 	}
1452 	ret = 0;
1453 out:
1454 	btrfs_release_path(root, path);
1455 	btrfs_release_path(log, log_path);
1456 	return ret;
1457 }
1458 
1459 /*
1460  * deletion replay happens before we copy any new directory items
1461  * out of the log or out of backreferences from inodes.  It
1462  * scans the log to find ranges of keys that log is authoritative for,
1463  * and then scans the directory to find items in those ranges that are
1464  * not present in the log.
1465  *
1466  * Anything we don't find in the log is unlinked and removed from the
1467  * directory.
1468  */
1469 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1470 				       struct btrfs_root *root,
1471 				       struct btrfs_root *log,
1472 				       struct btrfs_path *path,
1473 				       u64 dirid, int del_all)
1474 {
1475 	u64 range_start;
1476 	u64 range_end;
1477 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1478 	int ret = 0;
1479 	struct btrfs_key dir_key;
1480 	struct btrfs_key found_key;
1481 	struct btrfs_path *log_path;
1482 	struct inode *dir;
1483 
1484 	dir_key.objectid = dirid;
1485 	dir_key.type = BTRFS_DIR_ITEM_KEY;
1486 	log_path = btrfs_alloc_path();
1487 	if (!log_path)
1488 		return -ENOMEM;
1489 
1490 	dir = read_one_inode(root, dirid);
1491 	/* it isn't an error if the inode isn't there, that can happen
1492 	 * because we replay the deletes before we copy in the inode item
1493 	 * from the log
1494 	 */
1495 	if (!dir) {
1496 		btrfs_free_path(log_path);
1497 		return 0;
1498 	}
1499 again:
1500 	range_start = 0;
1501 	range_end = 0;
1502 	while (1) {
1503 		if (del_all)
1504 			range_end = (u64)-1;
1505 		else {
1506 			ret = find_dir_range(log, path, dirid, key_type,
1507 					     &range_start, &range_end);
1508 			if (ret != 0)
1509 				break;
1510 		}
1511 
1512 		dir_key.offset = range_start;
1513 		while (1) {
1514 			int nritems;
1515 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1516 						0, 0);
1517 			if (ret < 0)
1518 				goto out;
1519 
1520 			nritems = btrfs_header_nritems(path->nodes[0]);
1521 			if (path->slots[0] >= nritems) {
1522 				ret = btrfs_next_leaf(root, path);
1523 				if (ret)
1524 					break;
1525 			}
1526 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1527 					      path->slots[0]);
1528 			if (found_key.objectid != dirid ||
1529 			    found_key.type != dir_key.type)
1530 				goto next_type;
1531 
1532 			if (found_key.offset > range_end)
1533 				break;
1534 
1535 			ret = check_item_in_log(trans, root, log, path,
1536 						log_path, dir,
1537 						&found_key);
1538 			BUG_ON(ret);
1539 			if (found_key.offset == (u64)-1)
1540 				break;
1541 			dir_key.offset = found_key.offset + 1;
1542 		}
1543 		btrfs_release_path(root, path);
1544 		if (range_end == (u64)-1)
1545 			break;
1546 		range_start = range_end + 1;
1547 	}
1548 
1549 next_type:
1550 	ret = 0;
1551 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1552 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
1553 		dir_key.type = BTRFS_DIR_INDEX_KEY;
1554 		btrfs_release_path(root, path);
1555 		goto again;
1556 	}
1557 out:
1558 	btrfs_release_path(root, path);
1559 	btrfs_free_path(log_path);
1560 	iput(dir);
1561 	return ret;
1562 }
1563 
1564 /*
1565  * the process_func used to replay items from the log tree.  This
1566  * gets called in two different stages.  The first stage just looks
1567  * for inodes and makes sure they are all copied into the subvolume.
1568  *
1569  * The second stage copies all the other item types from the log into
1570  * the subvolume.  The two stage approach is slower, but gets rid of
1571  * lots of complexity around inodes referencing other inodes that exist
1572  * only in the log (references come from either directory items or inode
1573  * back refs).
1574  */
1575 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1576 			     struct walk_control *wc, u64 gen)
1577 {
1578 	int nritems;
1579 	struct btrfs_path *path;
1580 	struct btrfs_root *root = wc->replay_dest;
1581 	struct btrfs_key key;
1582 	u32 item_size;
1583 	int level;
1584 	int i;
1585 	int ret;
1586 
1587 	btrfs_read_buffer(eb, gen);
1588 
1589 	level = btrfs_header_level(eb);
1590 
1591 	if (level != 0)
1592 		return 0;
1593 
1594 	path = btrfs_alloc_path();
1595 	BUG_ON(!path);
1596 
1597 	nritems = btrfs_header_nritems(eb);
1598 	for (i = 0; i < nritems; i++) {
1599 		btrfs_item_key_to_cpu(eb, &key, i);
1600 		item_size = btrfs_item_size_nr(eb, i);
1601 
1602 		/* inode keys are done during the first stage */
1603 		if (key.type == BTRFS_INODE_ITEM_KEY &&
1604 		    wc->stage == LOG_WALK_REPLAY_INODES) {
1605 			struct btrfs_inode_item *inode_item;
1606 			u32 mode;
1607 
1608 			inode_item = btrfs_item_ptr(eb, i,
1609 					    struct btrfs_inode_item);
1610 			mode = btrfs_inode_mode(eb, inode_item);
1611 			if (S_ISDIR(mode)) {
1612 				ret = replay_dir_deletes(wc->trans,
1613 					 root, log, path, key.objectid, 0);
1614 				BUG_ON(ret);
1615 			}
1616 			ret = overwrite_item(wc->trans, root, path,
1617 					     eb, i, &key);
1618 			BUG_ON(ret);
1619 
1620 			/* for regular files, make sure corresponding
1621 			 * orhpan item exist. extents past the new EOF
1622 			 * will be truncated later by orphan cleanup.
1623 			 */
1624 			if (S_ISREG(mode)) {
1625 				ret = insert_orphan_item(wc->trans, root,
1626 							 key.objectid);
1627 				BUG_ON(ret);
1628 			}
1629 
1630 			ret = link_to_fixup_dir(wc->trans, root,
1631 						path, key.objectid);
1632 			BUG_ON(ret);
1633 		}
1634 		if (wc->stage < LOG_WALK_REPLAY_ALL)
1635 			continue;
1636 
1637 		/* these keys are simply copied */
1638 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
1639 			ret = overwrite_item(wc->trans, root, path,
1640 					     eb, i, &key);
1641 			BUG_ON(ret);
1642 		} else if (key.type == BTRFS_INODE_REF_KEY) {
1643 			ret = add_inode_ref(wc->trans, root, log, path,
1644 					    eb, i, &key);
1645 			BUG_ON(ret && ret != -ENOENT);
1646 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1647 			ret = replay_one_extent(wc->trans, root, path,
1648 						eb, i, &key);
1649 			BUG_ON(ret);
1650 		} else if (key.type == BTRFS_DIR_ITEM_KEY ||
1651 			   key.type == BTRFS_DIR_INDEX_KEY) {
1652 			ret = replay_one_dir_item(wc->trans, root, path,
1653 						  eb, i, &key);
1654 			BUG_ON(ret);
1655 		}
1656 	}
1657 	btrfs_free_path(path);
1658 	return 0;
1659 }
1660 
1661 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1662 				   struct btrfs_root *root,
1663 				   struct btrfs_path *path, int *level,
1664 				   struct walk_control *wc)
1665 {
1666 	u64 root_owner;
1667 	u64 root_gen;
1668 	u64 bytenr;
1669 	u64 ptr_gen;
1670 	struct extent_buffer *next;
1671 	struct extent_buffer *cur;
1672 	struct extent_buffer *parent;
1673 	u32 blocksize;
1674 	int ret = 0;
1675 
1676 	WARN_ON(*level < 0);
1677 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1678 
1679 	while (*level > 0) {
1680 		WARN_ON(*level < 0);
1681 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
1682 		cur = path->nodes[*level];
1683 
1684 		if (btrfs_header_level(cur) != *level)
1685 			WARN_ON(1);
1686 
1687 		if (path->slots[*level] >=
1688 		    btrfs_header_nritems(cur))
1689 			break;
1690 
1691 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1692 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1693 		blocksize = btrfs_level_size(root, *level - 1);
1694 
1695 		parent = path->nodes[*level];
1696 		root_owner = btrfs_header_owner(parent);
1697 		root_gen = btrfs_header_generation(parent);
1698 
1699 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1700 
1701 		wc->process_func(root, next, wc, ptr_gen);
1702 
1703 		if (*level == 1) {
1704 			path->slots[*level]++;
1705 			if (wc->free) {
1706 				btrfs_read_buffer(next, ptr_gen);
1707 
1708 				btrfs_tree_lock(next);
1709 				clean_tree_block(trans, root, next);
1710 				btrfs_set_lock_blocking(next);
1711 				btrfs_wait_tree_block_writeback(next);
1712 				btrfs_tree_unlock(next);
1713 
1714 				WARN_ON(root_owner !=
1715 					BTRFS_TREE_LOG_OBJECTID);
1716 				ret = btrfs_free_reserved_extent(root,
1717 							 bytenr, blocksize);
1718 				BUG_ON(ret);
1719 			}
1720 			free_extent_buffer(next);
1721 			continue;
1722 		}
1723 		btrfs_read_buffer(next, ptr_gen);
1724 
1725 		WARN_ON(*level <= 0);
1726 		if (path->nodes[*level-1])
1727 			free_extent_buffer(path->nodes[*level-1]);
1728 		path->nodes[*level-1] = next;
1729 		*level = btrfs_header_level(next);
1730 		path->slots[*level] = 0;
1731 		cond_resched();
1732 	}
1733 	WARN_ON(*level < 0);
1734 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1735 
1736 	if (path->nodes[*level] == root->node)
1737 		parent = path->nodes[*level];
1738 	else
1739 		parent = path->nodes[*level + 1];
1740 
1741 	bytenr = path->nodes[*level]->start;
1742 
1743 	blocksize = btrfs_level_size(root, *level);
1744 	root_owner = btrfs_header_owner(parent);
1745 	root_gen = btrfs_header_generation(parent);
1746 
1747 	wc->process_func(root, path->nodes[*level], wc,
1748 			 btrfs_header_generation(path->nodes[*level]));
1749 
1750 	if (wc->free) {
1751 		next = path->nodes[*level];
1752 		btrfs_tree_lock(next);
1753 		clean_tree_block(trans, root, next);
1754 		btrfs_set_lock_blocking(next);
1755 		btrfs_wait_tree_block_writeback(next);
1756 		btrfs_tree_unlock(next);
1757 
1758 		WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1759 		ret = btrfs_free_reserved_extent(root, bytenr, blocksize);
1760 		BUG_ON(ret);
1761 	}
1762 	free_extent_buffer(path->nodes[*level]);
1763 	path->nodes[*level] = NULL;
1764 	*level += 1;
1765 
1766 	cond_resched();
1767 	return 0;
1768 }
1769 
1770 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1771 				 struct btrfs_root *root,
1772 				 struct btrfs_path *path, int *level,
1773 				 struct walk_control *wc)
1774 {
1775 	u64 root_owner;
1776 	u64 root_gen;
1777 	int i;
1778 	int slot;
1779 	int ret;
1780 
1781 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1782 		slot = path->slots[i];
1783 		if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
1784 			struct extent_buffer *node;
1785 			node = path->nodes[i];
1786 			path->slots[i]++;
1787 			*level = i;
1788 			WARN_ON(*level == 0);
1789 			return 0;
1790 		} else {
1791 			struct extent_buffer *parent;
1792 			if (path->nodes[*level] == root->node)
1793 				parent = path->nodes[*level];
1794 			else
1795 				parent = path->nodes[*level + 1];
1796 
1797 			root_owner = btrfs_header_owner(parent);
1798 			root_gen = btrfs_header_generation(parent);
1799 			wc->process_func(root, path->nodes[*level], wc,
1800 				 btrfs_header_generation(path->nodes[*level]));
1801 			if (wc->free) {
1802 				struct extent_buffer *next;
1803 
1804 				next = path->nodes[*level];
1805 
1806 				btrfs_tree_lock(next);
1807 				clean_tree_block(trans, root, next);
1808 				btrfs_set_lock_blocking(next);
1809 				btrfs_wait_tree_block_writeback(next);
1810 				btrfs_tree_unlock(next);
1811 
1812 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1813 				ret = btrfs_free_reserved_extent(root,
1814 						path->nodes[*level]->start,
1815 						path->nodes[*level]->len);
1816 				BUG_ON(ret);
1817 			}
1818 			free_extent_buffer(path->nodes[*level]);
1819 			path->nodes[*level] = NULL;
1820 			*level = i + 1;
1821 		}
1822 	}
1823 	return 1;
1824 }
1825 
1826 /*
1827  * drop the reference count on the tree rooted at 'snap'.  This traverses
1828  * the tree freeing any blocks that have a ref count of zero after being
1829  * decremented.
1830  */
1831 static int walk_log_tree(struct btrfs_trans_handle *trans,
1832 			 struct btrfs_root *log, struct walk_control *wc)
1833 {
1834 	int ret = 0;
1835 	int wret;
1836 	int level;
1837 	struct btrfs_path *path;
1838 	int i;
1839 	int orig_level;
1840 
1841 	path = btrfs_alloc_path();
1842 	BUG_ON(!path);
1843 
1844 	level = btrfs_header_level(log->node);
1845 	orig_level = level;
1846 	path->nodes[level] = log->node;
1847 	extent_buffer_get(log->node);
1848 	path->slots[level] = 0;
1849 
1850 	while (1) {
1851 		wret = walk_down_log_tree(trans, log, path, &level, wc);
1852 		if (wret > 0)
1853 			break;
1854 		if (wret < 0)
1855 			ret = wret;
1856 
1857 		wret = walk_up_log_tree(trans, log, path, &level, wc);
1858 		if (wret > 0)
1859 			break;
1860 		if (wret < 0)
1861 			ret = wret;
1862 	}
1863 
1864 	/* was the root node processed? if not, catch it here */
1865 	if (path->nodes[orig_level]) {
1866 		wc->process_func(log, path->nodes[orig_level], wc,
1867 			 btrfs_header_generation(path->nodes[orig_level]));
1868 		if (wc->free) {
1869 			struct extent_buffer *next;
1870 
1871 			next = path->nodes[orig_level];
1872 
1873 			btrfs_tree_lock(next);
1874 			clean_tree_block(trans, log, next);
1875 			btrfs_set_lock_blocking(next);
1876 			btrfs_wait_tree_block_writeback(next);
1877 			btrfs_tree_unlock(next);
1878 
1879 			WARN_ON(log->root_key.objectid !=
1880 				BTRFS_TREE_LOG_OBJECTID);
1881 			ret = btrfs_free_reserved_extent(log, next->start,
1882 							 next->len);
1883 			BUG_ON(ret);
1884 		}
1885 	}
1886 
1887 	for (i = 0; i <= orig_level; i++) {
1888 		if (path->nodes[i]) {
1889 			free_extent_buffer(path->nodes[i]);
1890 			path->nodes[i] = NULL;
1891 		}
1892 	}
1893 	btrfs_free_path(path);
1894 	return ret;
1895 }
1896 
1897 /*
1898  * helper function to update the item for a given subvolumes log root
1899  * in the tree of log roots
1900  */
1901 static int update_log_root(struct btrfs_trans_handle *trans,
1902 			   struct btrfs_root *log)
1903 {
1904 	int ret;
1905 
1906 	if (log->log_transid == 1) {
1907 		/* insert root item on the first sync */
1908 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1909 				&log->root_key, &log->root_item);
1910 	} else {
1911 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1912 				&log->root_key, &log->root_item);
1913 	}
1914 	return ret;
1915 }
1916 
1917 static int wait_log_commit(struct btrfs_trans_handle *trans,
1918 			   struct btrfs_root *root, unsigned long transid)
1919 {
1920 	DEFINE_WAIT(wait);
1921 	int index = transid % 2;
1922 
1923 	/*
1924 	 * we only allow two pending log transactions at a time,
1925 	 * so we know that if ours is more than 2 older than the
1926 	 * current transaction, we're done
1927 	 */
1928 	do {
1929 		prepare_to_wait(&root->log_commit_wait[index],
1930 				&wait, TASK_UNINTERRUPTIBLE);
1931 		mutex_unlock(&root->log_mutex);
1932 
1933 		if (root->fs_info->last_trans_log_full_commit !=
1934 		    trans->transid && root->log_transid < transid + 2 &&
1935 		    atomic_read(&root->log_commit[index]))
1936 			schedule();
1937 
1938 		finish_wait(&root->log_commit_wait[index], &wait);
1939 		mutex_lock(&root->log_mutex);
1940 	} while (root->log_transid < transid + 2 &&
1941 		 atomic_read(&root->log_commit[index]));
1942 	return 0;
1943 }
1944 
1945 static int wait_for_writer(struct btrfs_trans_handle *trans,
1946 			   struct btrfs_root *root)
1947 {
1948 	DEFINE_WAIT(wait);
1949 	while (atomic_read(&root->log_writers)) {
1950 		prepare_to_wait(&root->log_writer_wait,
1951 				&wait, TASK_UNINTERRUPTIBLE);
1952 		mutex_unlock(&root->log_mutex);
1953 		if (root->fs_info->last_trans_log_full_commit !=
1954 		    trans->transid && atomic_read(&root->log_writers))
1955 			schedule();
1956 		mutex_lock(&root->log_mutex);
1957 		finish_wait(&root->log_writer_wait, &wait);
1958 	}
1959 	return 0;
1960 }
1961 
1962 /*
1963  * btrfs_sync_log does sends a given tree log down to the disk and
1964  * updates the super blocks to record it.  When this call is done,
1965  * you know that any inodes previously logged are safely on disk only
1966  * if it returns 0.
1967  *
1968  * Any other return value means you need to call btrfs_commit_transaction.
1969  * Some of the edge cases for fsyncing directories that have had unlinks
1970  * or renames done in the past mean that sometimes the only safe
1971  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
1972  * that has happened.
1973  */
1974 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1975 		   struct btrfs_root *root)
1976 {
1977 	int index1;
1978 	int index2;
1979 	int mark;
1980 	int ret;
1981 	struct btrfs_root *log = root->log_root;
1982 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
1983 	unsigned long log_transid = 0;
1984 
1985 	mutex_lock(&root->log_mutex);
1986 	index1 = root->log_transid % 2;
1987 	if (atomic_read(&root->log_commit[index1])) {
1988 		wait_log_commit(trans, root, root->log_transid);
1989 		mutex_unlock(&root->log_mutex);
1990 		return 0;
1991 	}
1992 	atomic_set(&root->log_commit[index1], 1);
1993 
1994 	/* wait for previous tree log sync to complete */
1995 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
1996 		wait_log_commit(trans, root, root->log_transid - 1);
1997 
1998 	while (1) {
1999 		unsigned long batch = root->log_batch;
2000 		if (root->log_multiple_pids) {
2001 			mutex_unlock(&root->log_mutex);
2002 			schedule_timeout_uninterruptible(1);
2003 			mutex_lock(&root->log_mutex);
2004 		}
2005 		wait_for_writer(trans, root);
2006 		if (batch == root->log_batch)
2007 			break;
2008 	}
2009 
2010 	/* bail out if we need to do a full commit */
2011 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2012 		ret = -EAGAIN;
2013 		mutex_unlock(&root->log_mutex);
2014 		goto out;
2015 	}
2016 
2017 	log_transid = root->log_transid;
2018 	if (log_transid % 2 == 0)
2019 		mark = EXTENT_DIRTY;
2020 	else
2021 		mark = EXTENT_NEW;
2022 
2023 	/* we start IO on  all the marked extents here, but we don't actually
2024 	 * wait for them until later.
2025 	 */
2026 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2027 	BUG_ON(ret);
2028 
2029 	btrfs_set_root_node(&log->root_item, log->node);
2030 
2031 	root->log_batch = 0;
2032 	root->log_transid++;
2033 	log->log_transid = root->log_transid;
2034 	root->log_start_pid = 0;
2035 	smp_mb();
2036 	/*
2037 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2038 	 * in their headers. new modifications of the log will be written to
2039 	 * new positions. so it's safe to allow log writers to go in.
2040 	 */
2041 	mutex_unlock(&root->log_mutex);
2042 
2043 	mutex_lock(&log_root_tree->log_mutex);
2044 	log_root_tree->log_batch++;
2045 	atomic_inc(&log_root_tree->log_writers);
2046 	mutex_unlock(&log_root_tree->log_mutex);
2047 
2048 	ret = update_log_root(trans, log);
2049 	BUG_ON(ret);
2050 
2051 	mutex_lock(&log_root_tree->log_mutex);
2052 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2053 		smp_mb();
2054 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2055 			wake_up(&log_root_tree->log_writer_wait);
2056 	}
2057 
2058 	index2 = log_root_tree->log_transid % 2;
2059 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2060 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2061 		wait_log_commit(trans, log_root_tree,
2062 				log_root_tree->log_transid);
2063 		mutex_unlock(&log_root_tree->log_mutex);
2064 		goto out;
2065 	}
2066 	atomic_set(&log_root_tree->log_commit[index2], 1);
2067 
2068 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2069 		wait_log_commit(trans, log_root_tree,
2070 				log_root_tree->log_transid - 1);
2071 	}
2072 
2073 	wait_for_writer(trans, log_root_tree);
2074 
2075 	/*
2076 	 * now that we've moved on to the tree of log tree roots,
2077 	 * check the full commit flag again
2078 	 */
2079 	if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2080 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2081 		mutex_unlock(&log_root_tree->log_mutex);
2082 		ret = -EAGAIN;
2083 		goto out_wake_log_root;
2084 	}
2085 
2086 	ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2087 				&log_root_tree->dirty_log_pages,
2088 				EXTENT_DIRTY | EXTENT_NEW);
2089 	BUG_ON(ret);
2090 	btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2091 
2092 	btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2093 				log_root_tree->node->start);
2094 	btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2095 				btrfs_header_level(log_root_tree->node));
2096 
2097 	log_root_tree->log_batch = 0;
2098 	log_root_tree->log_transid++;
2099 	smp_mb();
2100 
2101 	mutex_unlock(&log_root_tree->log_mutex);
2102 
2103 	/*
2104 	 * nobody else is going to jump in and write the the ctree
2105 	 * super here because the log_commit atomic below is protecting
2106 	 * us.  We must be called with a transaction handle pinning
2107 	 * the running transaction open, so a full commit can't hop
2108 	 * in and cause problems either.
2109 	 */
2110 	write_ctree_super(trans, root->fs_info->tree_root, 1);
2111 	ret = 0;
2112 
2113 	mutex_lock(&root->log_mutex);
2114 	if (root->last_log_commit < log_transid)
2115 		root->last_log_commit = log_transid;
2116 	mutex_unlock(&root->log_mutex);
2117 
2118 out_wake_log_root:
2119 	atomic_set(&log_root_tree->log_commit[index2], 0);
2120 	smp_mb();
2121 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2122 		wake_up(&log_root_tree->log_commit_wait[index2]);
2123 out:
2124 	atomic_set(&root->log_commit[index1], 0);
2125 	smp_mb();
2126 	if (waitqueue_active(&root->log_commit_wait[index1]))
2127 		wake_up(&root->log_commit_wait[index1]);
2128 	return 0;
2129 }
2130 
2131 /*
2132  * free all the extents used by the tree log.  This should be called
2133  * at commit time of the full transaction
2134  */
2135 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2136 {
2137 	int ret;
2138 	struct btrfs_root *log;
2139 	struct key;
2140 	u64 start;
2141 	u64 end;
2142 	struct walk_control wc = {
2143 		.free = 1,
2144 		.process_func = process_one_buffer
2145 	};
2146 
2147 	if (!root->log_root || root->fs_info->log_root_recovering)
2148 		return 0;
2149 
2150 	log = root->log_root;
2151 	ret = walk_log_tree(trans, log, &wc);
2152 	BUG_ON(ret);
2153 
2154 	while (1) {
2155 		ret = find_first_extent_bit(&log->dirty_log_pages,
2156 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
2157 		if (ret)
2158 			break;
2159 
2160 		clear_extent_bits(&log->dirty_log_pages, start, end,
2161 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2162 	}
2163 
2164 	if (log->log_transid > 0) {
2165 		ret = btrfs_del_root(trans, root->fs_info->log_root_tree,
2166 				     &log->root_key);
2167 		BUG_ON(ret);
2168 	}
2169 	root->log_root = NULL;
2170 	free_extent_buffer(log->node);
2171 	kfree(log);
2172 	return 0;
2173 }
2174 
2175 /*
2176  * If both a file and directory are logged, and unlinks or renames are
2177  * mixed in, we have a few interesting corners:
2178  *
2179  * create file X in dir Y
2180  * link file X to X.link in dir Y
2181  * fsync file X
2182  * unlink file X but leave X.link
2183  * fsync dir Y
2184  *
2185  * After a crash we would expect only X.link to exist.  But file X
2186  * didn't get fsync'd again so the log has back refs for X and X.link.
2187  *
2188  * We solve this by removing directory entries and inode backrefs from the
2189  * log when a file that was logged in the current transaction is
2190  * unlinked.  Any later fsync will include the updated log entries, and
2191  * we'll be able to reconstruct the proper directory items from backrefs.
2192  *
2193  * This optimizations allows us to avoid relogging the entire inode
2194  * or the entire directory.
2195  */
2196 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2197 				 struct btrfs_root *root,
2198 				 const char *name, int name_len,
2199 				 struct inode *dir, u64 index)
2200 {
2201 	struct btrfs_root *log;
2202 	struct btrfs_dir_item *di;
2203 	struct btrfs_path *path;
2204 	int ret;
2205 	int bytes_del = 0;
2206 
2207 	if (BTRFS_I(dir)->logged_trans < trans->transid)
2208 		return 0;
2209 
2210 	ret = join_running_log_trans(root);
2211 	if (ret)
2212 		return 0;
2213 
2214 	mutex_lock(&BTRFS_I(dir)->log_mutex);
2215 
2216 	log = root->log_root;
2217 	path = btrfs_alloc_path();
2218 	di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2219 				   name, name_len, -1);
2220 	if (di && !IS_ERR(di)) {
2221 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2222 		bytes_del += name_len;
2223 		BUG_ON(ret);
2224 	}
2225 	btrfs_release_path(log, path);
2226 	di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2227 					 index, name, name_len, -1);
2228 	if (di && !IS_ERR(di)) {
2229 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2230 		bytes_del += name_len;
2231 		BUG_ON(ret);
2232 	}
2233 
2234 	/* update the directory size in the log to reflect the names
2235 	 * we have removed
2236 	 */
2237 	if (bytes_del) {
2238 		struct btrfs_key key;
2239 
2240 		key.objectid = dir->i_ino;
2241 		key.offset = 0;
2242 		key.type = BTRFS_INODE_ITEM_KEY;
2243 		btrfs_release_path(log, path);
2244 
2245 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2246 		if (ret == 0) {
2247 			struct btrfs_inode_item *item;
2248 			u64 i_size;
2249 
2250 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2251 					      struct btrfs_inode_item);
2252 			i_size = btrfs_inode_size(path->nodes[0], item);
2253 			if (i_size > bytes_del)
2254 				i_size -= bytes_del;
2255 			else
2256 				i_size = 0;
2257 			btrfs_set_inode_size(path->nodes[0], item, i_size);
2258 			btrfs_mark_buffer_dirty(path->nodes[0]);
2259 		} else
2260 			ret = 0;
2261 		btrfs_release_path(log, path);
2262 	}
2263 
2264 	btrfs_free_path(path);
2265 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2266 	btrfs_end_log_trans(root);
2267 
2268 	return 0;
2269 }
2270 
2271 /* see comments for btrfs_del_dir_entries_in_log */
2272 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2273 			       struct btrfs_root *root,
2274 			       const char *name, int name_len,
2275 			       struct inode *inode, u64 dirid)
2276 {
2277 	struct btrfs_root *log;
2278 	u64 index;
2279 	int ret;
2280 
2281 	if (BTRFS_I(inode)->logged_trans < trans->transid)
2282 		return 0;
2283 
2284 	ret = join_running_log_trans(root);
2285 	if (ret)
2286 		return 0;
2287 	log = root->log_root;
2288 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2289 
2290 	ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2291 				  dirid, &index);
2292 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2293 	btrfs_end_log_trans(root);
2294 
2295 	return ret;
2296 }
2297 
2298 /*
2299  * creates a range item in the log for 'dirid'.  first_offset and
2300  * last_offset tell us which parts of the key space the log should
2301  * be considered authoritative for.
2302  */
2303 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2304 				       struct btrfs_root *log,
2305 				       struct btrfs_path *path,
2306 				       int key_type, u64 dirid,
2307 				       u64 first_offset, u64 last_offset)
2308 {
2309 	int ret;
2310 	struct btrfs_key key;
2311 	struct btrfs_dir_log_item *item;
2312 
2313 	key.objectid = dirid;
2314 	key.offset = first_offset;
2315 	if (key_type == BTRFS_DIR_ITEM_KEY)
2316 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2317 	else
2318 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2319 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2320 	BUG_ON(ret);
2321 
2322 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2323 			      struct btrfs_dir_log_item);
2324 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2325 	btrfs_mark_buffer_dirty(path->nodes[0]);
2326 	btrfs_release_path(log, path);
2327 	return 0;
2328 }
2329 
2330 /*
2331  * log all the items included in the current transaction for a given
2332  * directory.  This also creates the range items in the log tree required
2333  * to replay anything deleted before the fsync
2334  */
2335 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2336 			  struct btrfs_root *root, struct inode *inode,
2337 			  struct btrfs_path *path,
2338 			  struct btrfs_path *dst_path, int key_type,
2339 			  u64 min_offset, u64 *last_offset_ret)
2340 {
2341 	struct btrfs_key min_key;
2342 	struct btrfs_key max_key;
2343 	struct btrfs_root *log = root->log_root;
2344 	struct extent_buffer *src;
2345 	int ret;
2346 	int i;
2347 	int nritems;
2348 	u64 first_offset = min_offset;
2349 	u64 last_offset = (u64)-1;
2350 
2351 	log = root->log_root;
2352 	max_key.objectid = inode->i_ino;
2353 	max_key.offset = (u64)-1;
2354 	max_key.type = key_type;
2355 
2356 	min_key.objectid = inode->i_ino;
2357 	min_key.type = key_type;
2358 	min_key.offset = min_offset;
2359 
2360 	path->keep_locks = 1;
2361 
2362 	ret = btrfs_search_forward(root, &min_key, &max_key,
2363 				   path, 0, trans->transid);
2364 
2365 	/*
2366 	 * we didn't find anything from this transaction, see if there
2367 	 * is anything at all
2368 	 */
2369 	if (ret != 0 || min_key.objectid != inode->i_ino ||
2370 	    min_key.type != key_type) {
2371 		min_key.objectid = inode->i_ino;
2372 		min_key.type = key_type;
2373 		min_key.offset = (u64)-1;
2374 		btrfs_release_path(root, path);
2375 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2376 		if (ret < 0) {
2377 			btrfs_release_path(root, path);
2378 			return ret;
2379 		}
2380 		ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2381 
2382 		/* if ret == 0 there are items for this type,
2383 		 * create a range to tell us the last key of this type.
2384 		 * otherwise, there are no items in this directory after
2385 		 * *min_offset, and we create a range to indicate that.
2386 		 */
2387 		if (ret == 0) {
2388 			struct btrfs_key tmp;
2389 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2390 					      path->slots[0]);
2391 			if (key_type == tmp.type)
2392 				first_offset = max(min_offset, tmp.offset) + 1;
2393 		}
2394 		goto done;
2395 	}
2396 
2397 	/* go backward to find any previous key */
2398 	ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2399 	if (ret == 0) {
2400 		struct btrfs_key tmp;
2401 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2402 		if (key_type == tmp.type) {
2403 			first_offset = tmp.offset;
2404 			ret = overwrite_item(trans, log, dst_path,
2405 					     path->nodes[0], path->slots[0],
2406 					     &tmp);
2407 		}
2408 	}
2409 	btrfs_release_path(root, path);
2410 
2411 	/* find the first key from this transaction again */
2412 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2413 	if (ret != 0) {
2414 		WARN_ON(1);
2415 		goto done;
2416 	}
2417 
2418 	/*
2419 	 * we have a block from this transaction, log every item in it
2420 	 * from our directory
2421 	 */
2422 	while (1) {
2423 		struct btrfs_key tmp;
2424 		src = path->nodes[0];
2425 		nritems = btrfs_header_nritems(src);
2426 		for (i = path->slots[0]; i < nritems; i++) {
2427 			btrfs_item_key_to_cpu(src, &min_key, i);
2428 
2429 			if (min_key.objectid != inode->i_ino ||
2430 			    min_key.type != key_type)
2431 				goto done;
2432 			ret = overwrite_item(trans, log, dst_path, src, i,
2433 					     &min_key);
2434 			BUG_ON(ret);
2435 		}
2436 		path->slots[0] = nritems;
2437 
2438 		/*
2439 		 * look ahead to the next item and see if it is also
2440 		 * from this directory and from this transaction
2441 		 */
2442 		ret = btrfs_next_leaf(root, path);
2443 		if (ret == 1) {
2444 			last_offset = (u64)-1;
2445 			goto done;
2446 		}
2447 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2448 		if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2449 			last_offset = (u64)-1;
2450 			goto done;
2451 		}
2452 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2453 			ret = overwrite_item(trans, log, dst_path,
2454 					     path->nodes[0], path->slots[0],
2455 					     &tmp);
2456 
2457 			BUG_ON(ret);
2458 			last_offset = tmp.offset;
2459 			goto done;
2460 		}
2461 	}
2462 done:
2463 	*last_offset_ret = last_offset;
2464 	btrfs_release_path(root, path);
2465 	btrfs_release_path(log, dst_path);
2466 
2467 	/* insert the log range keys to indicate where the log is valid */
2468 	ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino,
2469 				 first_offset, last_offset);
2470 	BUG_ON(ret);
2471 	return 0;
2472 }
2473 
2474 /*
2475  * logging directories is very similar to logging inodes, We find all the items
2476  * from the current transaction and write them to the log.
2477  *
2478  * The recovery code scans the directory in the subvolume, and if it finds a
2479  * key in the range logged that is not present in the log tree, then it means
2480  * that dir entry was unlinked during the transaction.
2481  *
2482  * In order for that scan to work, we must include one key smaller than
2483  * the smallest logged by this transaction and one key larger than the largest
2484  * key logged by this transaction.
2485  */
2486 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2487 			  struct btrfs_root *root, struct inode *inode,
2488 			  struct btrfs_path *path,
2489 			  struct btrfs_path *dst_path)
2490 {
2491 	u64 min_key;
2492 	u64 max_key;
2493 	int ret;
2494 	int key_type = BTRFS_DIR_ITEM_KEY;
2495 
2496 again:
2497 	min_key = 0;
2498 	max_key = 0;
2499 	while (1) {
2500 		ret = log_dir_items(trans, root, inode, path,
2501 				    dst_path, key_type, min_key,
2502 				    &max_key);
2503 		BUG_ON(ret);
2504 		if (max_key == (u64)-1)
2505 			break;
2506 		min_key = max_key + 1;
2507 	}
2508 
2509 	if (key_type == BTRFS_DIR_ITEM_KEY) {
2510 		key_type = BTRFS_DIR_INDEX_KEY;
2511 		goto again;
2512 	}
2513 	return 0;
2514 }
2515 
2516 /*
2517  * a helper function to drop items from the log before we relog an
2518  * inode.  max_key_type indicates the highest item type to remove.
2519  * This cannot be run for file data extents because it does not
2520  * free the extents they point to.
2521  */
2522 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2523 				  struct btrfs_root *log,
2524 				  struct btrfs_path *path,
2525 				  u64 objectid, int max_key_type)
2526 {
2527 	int ret;
2528 	struct btrfs_key key;
2529 	struct btrfs_key found_key;
2530 
2531 	key.objectid = objectid;
2532 	key.type = max_key_type;
2533 	key.offset = (u64)-1;
2534 
2535 	while (1) {
2536 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2537 
2538 		if (ret != 1)
2539 			break;
2540 
2541 		if (path->slots[0] == 0)
2542 			break;
2543 
2544 		path->slots[0]--;
2545 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2546 				      path->slots[0]);
2547 
2548 		if (found_key.objectid != objectid)
2549 			break;
2550 
2551 		ret = btrfs_del_item(trans, log, path);
2552 		BUG_ON(ret);
2553 		btrfs_release_path(log, path);
2554 	}
2555 	btrfs_release_path(log, path);
2556 	return 0;
2557 }
2558 
2559 static noinline int copy_items(struct btrfs_trans_handle *trans,
2560 			       struct btrfs_root *log,
2561 			       struct btrfs_path *dst_path,
2562 			       struct extent_buffer *src,
2563 			       int start_slot, int nr, int inode_only)
2564 {
2565 	unsigned long src_offset;
2566 	unsigned long dst_offset;
2567 	struct btrfs_file_extent_item *extent;
2568 	struct btrfs_inode_item *inode_item;
2569 	int ret;
2570 	struct btrfs_key *ins_keys;
2571 	u32 *ins_sizes;
2572 	char *ins_data;
2573 	int i;
2574 	struct list_head ordered_sums;
2575 
2576 	INIT_LIST_HEAD(&ordered_sums);
2577 
2578 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2579 			   nr * sizeof(u32), GFP_NOFS);
2580 	ins_sizes = (u32 *)ins_data;
2581 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2582 
2583 	for (i = 0; i < nr; i++) {
2584 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2585 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2586 	}
2587 	ret = btrfs_insert_empty_items(trans, log, dst_path,
2588 				       ins_keys, ins_sizes, nr);
2589 	BUG_ON(ret);
2590 
2591 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
2592 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2593 						   dst_path->slots[0]);
2594 
2595 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2596 
2597 		copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2598 				   src_offset, ins_sizes[i]);
2599 
2600 		if (inode_only == LOG_INODE_EXISTS &&
2601 		    ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2602 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
2603 						    dst_path->slots[0],
2604 						    struct btrfs_inode_item);
2605 			btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2606 
2607 			/* set the generation to zero so the recover code
2608 			 * can tell the difference between an logging
2609 			 * just to say 'this inode exists' and a logging
2610 			 * to say 'update this inode with these values'
2611 			 */
2612 			btrfs_set_inode_generation(dst_path->nodes[0],
2613 						   inode_item, 0);
2614 		}
2615 		/* take a reference on file data extents so that truncates
2616 		 * or deletes of this inode don't have to relog the inode
2617 		 * again
2618 		 */
2619 		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2620 			int found_type;
2621 			extent = btrfs_item_ptr(src, start_slot + i,
2622 						struct btrfs_file_extent_item);
2623 
2624 			found_type = btrfs_file_extent_type(src, extent);
2625 			if (found_type == BTRFS_FILE_EXTENT_REG ||
2626 			    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2627 				u64 ds, dl, cs, cl;
2628 				ds = btrfs_file_extent_disk_bytenr(src,
2629 								extent);
2630 				/* ds == 0 is a hole */
2631 				if (ds == 0)
2632 					continue;
2633 
2634 				dl = btrfs_file_extent_disk_num_bytes(src,
2635 								extent);
2636 				cs = btrfs_file_extent_offset(src, extent);
2637 				cl = btrfs_file_extent_num_bytes(src,
2638 								extent);
2639 				if (btrfs_file_extent_compression(src,
2640 								  extent)) {
2641 					cs = 0;
2642 					cl = dl;
2643 				}
2644 
2645 				ret = btrfs_lookup_csums_range(
2646 						log->fs_info->csum_root,
2647 						ds + cs, ds + cs + cl - 1,
2648 						&ordered_sums);
2649 				BUG_ON(ret);
2650 			}
2651 		}
2652 	}
2653 
2654 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2655 	btrfs_release_path(log, dst_path);
2656 	kfree(ins_data);
2657 
2658 	/*
2659 	 * we have to do this after the loop above to avoid changing the
2660 	 * log tree while trying to change the log tree.
2661 	 */
2662 	while (!list_empty(&ordered_sums)) {
2663 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2664 						   struct btrfs_ordered_sum,
2665 						   list);
2666 		ret = btrfs_csum_file_blocks(trans, log, sums);
2667 		BUG_ON(ret);
2668 		list_del(&sums->list);
2669 		kfree(sums);
2670 	}
2671 	return 0;
2672 }
2673 
2674 /* log a single inode in the tree log.
2675  * At least one parent directory for this inode must exist in the tree
2676  * or be logged already.
2677  *
2678  * Any items from this inode changed by the current transaction are copied
2679  * to the log tree.  An extra reference is taken on any extents in this
2680  * file, allowing us to avoid a whole pile of corner cases around logging
2681  * blocks that have been removed from the tree.
2682  *
2683  * See LOG_INODE_ALL and related defines for a description of what inode_only
2684  * does.
2685  *
2686  * This handles both files and directories.
2687  */
2688 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
2689 			     struct btrfs_root *root, struct inode *inode,
2690 			     int inode_only)
2691 {
2692 	struct btrfs_path *path;
2693 	struct btrfs_path *dst_path;
2694 	struct btrfs_key min_key;
2695 	struct btrfs_key max_key;
2696 	struct btrfs_root *log = root->log_root;
2697 	struct extent_buffer *src = NULL;
2698 	u32 size;
2699 	int ret;
2700 	int nritems;
2701 	int ins_start_slot = 0;
2702 	int ins_nr;
2703 
2704 	log = root->log_root;
2705 
2706 	path = btrfs_alloc_path();
2707 	dst_path = btrfs_alloc_path();
2708 
2709 	min_key.objectid = inode->i_ino;
2710 	min_key.type = BTRFS_INODE_ITEM_KEY;
2711 	min_key.offset = 0;
2712 
2713 	max_key.objectid = inode->i_ino;
2714 
2715 	/* today the code can only do partial logging of directories */
2716 	if (!S_ISDIR(inode->i_mode))
2717 	    inode_only = LOG_INODE_ALL;
2718 
2719 	if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2720 		max_key.type = BTRFS_XATTR_ITEM_KEY;
2721 	else
2722 		max_key.type = (u8)-1;
2723 	max_key.offset = (u64)-1;
2724 
2725 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2726 
2727 	/*
2728 	 * a brute force approach to making sure we get the most uptodate
2729 	 * copies of everything.
2730 	 */
2731 	if (S_ISDIR(inode->i_mode)) {
2732 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2733 
2734 		if (inode_only == LOG_INODE_EXISTS)
2735 			max_key_type = BTRFS_XATTR_ITEM_KEY;
2736 		ret = drop_objectid_items(trans, log, path,
2737 					  inode->i_ino, max_key_type);
2738 	} else {
2739 		ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2740 	}
2741 	BUG_ON(ret);
2742 	path->keep_locks = 1;
2743 
2744 	while (1) {
2745 		ins_nr = 0;
2746 		ret = btrfs_search_forward(root, &min_key, &max_key,
2747 					   path, 0, trans->transid);
2748 		if (ret != 0)
2749 			break;
2750 again:
2751 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
2752 		if (min_key.objectid != inode->i_ino)
2753 			break;
2754 		if (min_key.type > max_key.type)
2755 			break;
2756 
2757 		src = path->nodes[0];
2758 		size = btrfs_item_size_nr(src, path->slots[0]);
2759 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2760 			ins_nr++;
2761 			goto next_slot;
2762 		} else if (!ins_nr) {
2763 			ins_start_slot = path->slots[0];
2764 			ins_nr = 1;
2765 			goto next_slot;
2766 		}
2767 
2768 		ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2769 				 ins_nr, inode_only);
2770 		BUG_ON(ret);
2771 		ins_nr = 1;
2772 		ins_start_slot = path->slots[0];
2773 next_slot:
2774 
2775 		nritems = btrfs_header_nritems(path->nodes[0]);
2776 		path->slots[0]++;
2777 		if (path->slots[0] < nritems) {
2778 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2779 					      path->slots[0]);
2780 			goto again;
2781 		}
2782 		if (ins_nr) {
2783 			ret = copy_items(trans, log, dst_path, src,
2784 					 ins_start_slot,
2785 					 ins_nr, inode_only);
2786 			BUG_ON(ret);
2787 			ins_nr = 0;
2788 		}
2789 		btrfs_release_path(root, path);
2790 
2791 		if (min_key.offset < (u64)-1)
2792 			min_key.offset++;
2793 		else if (min_key.type < (u8)-1)
2794 			min_key.type++;
2795 		else if (min_key.objectid < (u64)-1)
2796 			min_key.objectid++;
2797 		else
2798 			break;
2799 	}
2800 	if (ins_nr) {
2801 		ret = copy_items(trans, log, dst_path, src,
2802 				 ins_start_slot,
2803 				 ins_nr, inode_only);
2804 		BUG_ON(ret);
2805 		ins_nr = 0;
2806 	}
2807 	WARN_ON(ins_nr);
2808 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2809 		btrfs_release_path(root, path);
2810 		btrfs_release_path(log, dst_path);
2811 		ret = log_directory_changes(trans, root, inode, path, dst_path);
2812 		BUG_ON(ret);
2813 	}
2814 	BTRFS_I(inode)->logged_trans = trans->transid;
2815 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2816 
2817 	btrfs_free_path(path);
2818 	btrfs_free_path(dst_path);
2819 	return 0;
2820 }
2821 
2822 /*
2823  * follow the dentry parent pointers up the chain and see if any
2824  * of the directories in it require a full commit before they can
2825  * be logged.  Returns zero if nothing special needs to be done or 1 if
2826  * a full commit is required.
2827  */
2828 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2829 					       struct inode *inode,
2830 					       struct dentry *parent,
2831 					       struct super_block *sb,
2832 					       u64 last_committed)
2833 {
2834 	int ret = 0;
2835 	struct btrfs_root *root;
2836 
2837 	/*
2838 	 * for regular files, if its inode is already on disk, we don't
2839 	 * have to worry about the parents at all.  This is because
2840 	 * we can use the last_unlink_trans field to record renames
2841 	 * and other fun in this file.
2842 	 */
2843 	if (S_ISREG(inode->i_mode) &&
2844 	    BTRFS_I(inode)->generation <= last_committed &&
2845 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
2846 			goto out;
2847 
2848 	if (!S_ISDIR(inode->i_mode)) {
2849 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2850 			goto out;
2851 		inode = parent->d_inode;
2852 	}
2853 
2854 	while (1) {
2855 		BTRFS_I(inode)->logged_trans = trans->transid;
2856 		smp_mb();
2857 
2858 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2859 			root = BTRFS_I(inode)->root;
2860 
2861 			/*
2862 			 * make sure any commits to the log are forced
2863 			 * to be full commits
2864 			 */
2865 			root->fs_info->last_trans_log_full_commit =
2866 				trans->transid;
2867 			ret = 1;
2868 			break;
2869 		}
2870 
2871 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2872 			break;
2873 
2874 		if (IS_ROOT(parent))
2875 			break;
2876 
2877 		parent = parent->d_parent;
2878 		inode = parent->d_inode;
2879 
2880 	}
2881 out:
2882 	return ret;
2883 }
2884 
2885 static int inode_in_log(struct btrfs_trans_handle *trans,
2886 		 struct inode *inode)
2887 {
2888 	struct btrfs_root *root = BTRFS_I(inode)->root;
2889 	int ret = 0;
2890 
2891 	mutex_lock(&root->log_mutex);
2892 	if (BTRFS_I(inode)->logged_trans == trans->transid &&
2893 	    BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
2894 		ret = 1;
2895 	mutex_unlock(&root->log_mutex);
2896 	return ret;
2897 }
2898 
2899 
2900 /*
2901  * helper function around btrfs_log_inode to make sure newly created
2902  * parent directories also end up in the log.  A minimal inode and backref
2903  * only logging is done of any parent directories that are older than
2904  * the last committed transaction
2905  */
2906 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
2907 		    struct btrfs_root *root, struct inode *inode,
2908 		    struct dentry *parent, int exists_only)
2909 {
2910 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
2911 	struct super_block *sb;
2912 	int ret = 0;
2913 	u64 last_committed = root->fs_info->last_trans_committed;
2914 
2915 	sb = inode->i_sb;
2916 
2917 	if (btrfs_test_opt(root, NOTREELOG)) {
2918 		ret = 1;
2919 		goto end_no_trans;
2920 	}
2921 
2922 	if (root->fs_info->last_trans_log_full_commit >
2923 	    root->fs_info->last_trans_committed) {
2924 		ret = 1;
2925 		goto end_no_trans;
2926 	}
2927 
2928 	if (root != BTRFS_I(inode)->root ||
2929 	    btrfs_root_refs(&root->root_item) == 0) {
2930 		ret = 1;
2931 		goto end_no_trans;
2932 	}
2933 
2934 	ret = check_parent_dirs_for_sync(trans, inode, parent,
2935 					 sb, last_committed);
2936 	if (ret)
2937 		goto end_no_trans;
2938 
2939 	if (inode_in_log(trans, inode)) {
2940 		ret = BTRFS_NO_LOG_SYNC;
2941 		goto end_no_trans;
2942 	}
2943 
2944 	start_log_trans(trans, root);
2945 
2946 	ret = btrfs_log_inode(trans, root, inode, inode_only);
2947 	BUG_ON(ret);
2948 
2949 	/*
2950 	 * for regular files, if its inode is already on disk, we don't
2951 	 * have to worry about the parents at all.  This is because
2952 	 * we can use the last_unlink_trans field to record renames
2953 	 * and other fun in this file.
2954 	 */
2955 	if (S_ISREG(inode->i_mode) &&
2956 	    BTRFS_I(inode)->generation <= last_committed &&
2957 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
2958 			goto no_parent;
2959 
2960 	inode_only = LOG_INODE_EXISTS;
2961 	while (1) {
2962 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2963 			break;
2964 
2965 		inode = parent->d_inode;
2966 		if (root != BTRFS_I(inode)->root)
2967 			break;
2968 
2969 		if (BTRFS_I(inode)->generation >
2970 		    root->fs_info->last_trans_committed) {
2971 			ret = btrfs_log_inode(trans, root, inode, inode_only);
2972 			BUG_ON(ret);
2973 		}
2974 		if (IS_ROOT(parent))
2975 			break;
2976 
2977 		parent = parent->d_parent;
2978 	}
2979 no_parent:
2980 	ret = 0;
2981 	btrfs_end_log_trans(root);
2982 end_no_trans:
2983 	return ret;
2984 }
2985 
2986 /*
2987  * it is not safe to log dentry if the chunk root has added new
2988  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
2989  * If this returns 1, you must commit the transaction to safely get your
2990  * data on disk.
2991  */
2992 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
2993 			  struct btrfs_root *root, struct dentry *dentry)
2994 {
2995 	return btrfs_log_inode_parent(trans, root, dentry->d_inode,
2996 				      dentry->d_parent, 0);
2997 }
2998 
2999 /*
3000  * should be called during mount to recover any replay any log trees
3001  * from the FS
3002  */
3003 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3004 {
3005 	int ret;
3006 	struct btrfs_path *path;
3007 	struct btrfs_trans_handle *trans;
3008 	struct btrfs_key key;
3009 	struct btrfs_key found_key;
3010 	struct btrfs_key tmp_key;
3011 	struct btrfs_root *log;
3012 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3013 	struct walk_control wc = {
3014 		.process_func = process_one_buffer,
3015 		.stage = 0,
3016 	};
3017 
3018 	fs_info->log_root_recovering = 1;
3019 	path = btrfs_alloc_path();
3020 	BUG_ON(!path);
3021 
3022 	trans = btrfs_start_transaction(fs_info->tree_root, 1);
3023 
3024 	wc.trans = trans;
3025 	wc.pin = 1;
3026 
3027 	walk_log_tree(trans, log_root_tree, &wc);
3028 
3029 again:
3030 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
3031 	key.offset = (u64)-1;
3032 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3033 
3034 	while (1) {
3035 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3036 		if (ret < 0)
3037 			break;
3038 		if (ret > 0) {
3039 			if (path->slots[0] == 0)
3040 				break;
3041 			path->slots[0]--;
3042 		}
3043 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3044 				      path->slots[0]);
3045 		btrfs_release_path(log_root_tree, path);
3046 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3047 			break;
3048 
3049 		log = btrfs_read_fs_root_no_radix(log_root_tree,
3050 						  &found_key);
3051 		BUG_ON(!log);
3052 
3053 
3054 		tmp_key.objectid = found_key.offset;
3055 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3056 		tmp_key.offset = (u64)-1;
3057 
3058 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3059 		BUG_ON(!wc.replay_dest);
3060 
3061 		wc.replay_dest->log_root = log;
3062 		btrfs_record_root_in_trans(trans, wc.replay_dest);
3063 		ret = walk_log_tree(trans, log, &wc);
3064 		BUG_ON(ret);
3065 
3066 		if (wc.stage == LOG_WALK_REPLAY_ALL) {
3067 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
3068 						      path);
3069 			BUG_ON(ret);
3070 		}
3071 
3072 		key.offset = found_key.offset - 1;
3073 		wc.replay_dest->log_root = NULL;
3074 		free_extent_buffer(log->node);
3075 		free_extent_buffer(log->commit_root);
3076 		kfree(log);
3077 
3078 		if (found_key.offset == 0)
3079 			break;
3080 	}
3081 	btrfs_release_path(log_root_tree, path);
3082 
3083 	/* step one is to pin it all, step two is to replay just inodes */
3084 	if (wc.pin) {
3085 		wc.pin = 0;
3086 		wc.process_func = replay_one_buffer;
3087 		wc.stage = LOG_WALK_REPLAY_INODES;
3088 		goto again;
3089 	}
3090 	/* step three is to replay everything */
3091 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
3092 		wc.stage++;
3093 		goto again;
3094 	}
3095 
3096 	btrfs_free_path(path);
3097 
3098 	free_extent_buffer(log_root_tree->node);
3099 	log_root_tree->log_root = NULL;
3100 	fs_info->log_root_recovering = 0;
3101 
3102 	/* step 4: commit the transaction, which also unpins the blocks */
3103 	btrfs_commit_transaction(trans, fs_info->tree_root);
3104 
3105 	kfree(log_root_tree);
3106 	return 0;
3107 }
3108 
3109 /*
3110  * there are some corner cases where we want to force a full
3111  * commit instead of allowing a directory to be logged.
3112  *
3113  * They revolve around files there were unlinked from the directory, and
3114  * this function updates the parent directory so that a full commit is
3115  * properly done if it is fsync'd later after the unlinks are done.
3116  */
3117 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3118 			     struct inode *dir, struct inode *inode,
3119 			     int for_rename)
3120 {
3121 	/*
3122 	 * when we're logging a file, if it hasn't been renamed
3123 	 * or unlinked, and its inode is fully committed on disk,
3124 	 * we don't have to worry about walking up the directory chain
3125 	 * to log its parents.
3126 	 *
3127 	 * So, we use the last_unlink_trans field to put this transid
3128 	 * into the file.  When the file is logged we check it and
3129 	 * don't log the parents if the file is fully on disk.
3130 	 */
3131 	if (S_ISREG(inode->i_mode))
3132 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3133 
3134 	/*
3135 	 * if this directory was already logged any new
3136 	 * names for this file/dir will get recorded
3137 	 */
3138 	smp_mb();
3139 	if (BTRFS_I(dir)->logged_trans == trans->transid)
3140 		return;
3141 
3142 	/*
3143 	 * if the inode we're about to unlink was logged,
3144 	 * the log will be properly updated for any new names
3145 	 */
3146 	if (BTRFS_I(inode)->logged_trans == trans->transid)
3147 		return;
3148 
3149 	/*
3150 	 * when renaming files across directories, if the directory
3151 	 * there we're unlinking from gets fsync'd later on, there's
3152 	 * no way to find the destination directory later and fsync it
3153 	 * properly.  So, we have to be conservative and force commits
3154 	 * so the new name gets discovered.
3155 	 */
3156 	if (for_rename)
3157 		goto record;
3158 
3159 	/* we can safely do the unlink without any special recording */
3160 	return;
3161 
3162 record:
3163 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
3164 }
3165 
3166 /*
3167  * Call this after adding a new name for a file and it will properly
3168  * update the log to reflect the new name.
3169  *
3170  * It will return zero if all goes well, and it will return 1 if a
3171  * full transaction commit is required.
3172  */
3173 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3174 			struct inode *inode, struct inode *old_dir,
3175 			struct dentry *parent)
3176 {
3177 	struct btrfs_root * root = BTRFS_I(inode)->root;
3178 
3179 	/*
3180 	 * this will force the logging code to walk the dentry chain
3181 	 * up for the file
3182 	 */
3183 	if (S_ISREG(inode->i_mode))
3184 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
3185 
3186 	/*
3187 	 * if this inode hasn't been logged and directory we're renaming it
3188 	 * from hasn't been logged, we don't need to log it
3189 	 */
3190 	if (BTRFS_I(inode)->logged_trans <=
3191 	    root->fs_info->last_trans_committed &&
3192 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3193 		    root->fs_info->last_trans_committed))
3194 		return 0;
3195 
3196 	return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3197 }
3198 
3199