xref: /linux/fs/btrfs/tree-log.c (revision ec8a42e7343234802b9054874fe01810880289ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "block-group.h"
21 #include "space-info.h"
22 
23 /* magic values for the inode_only field in btrfs_log_inode:
24  *
25  * LOG_INODE_ALL means to log everything
26  * LOG_INODE_EXISTS means to log just enough to recreate the inode
27  * during log replay
28  */
29 enum {
30 	LOG_INODE_ALL,
31 	LOG_INODE_EXISTS,
32 	LOG_OTHER_INODE,
33 	LOG_OTHER_INODE_ALL,
34 };
35 
36 /*
37  * directory trouble cases
38  *
39  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
40  * log, we must force a full commit before doing an fsync of the directory
41  * where the unlink was done.
42  * ---> record transid of last unlink/rename per directory
43  *
44  * mkdir foo/some_dir
45  * normal commit
46  * rename foo/some_dir foo2/some_dir
47  * mkdir foo/some_dir
48  * fsync foo/some_dir/some_file
49  *
50  * The fsync above will unlink the original some_dir without recording
51  * it in its new location (foo2).  After a crash, some_dir will be gone
52  * unless the fsync of some_file forces a full commit
53  *
54  * 2) we must log any new names for any file or dir that is in the fsync
55  * log. ---> check inode while renaming/linking.
56  *
57  * 2a) we must log any new names for any file or dir during rename
58  * when the directory they are being removed from was logged.
59  * ---> check inode and old parent dir during rename
60  *
61  *  2a is actually the more important variant.  With the extra logging
62  *  a crash might unlink the old name without recreating the new one
63  *
64  * 3) after a crash, we must go through any directories with a link count
65  * of zero and redo the rm -rf
66  *
67  * mkdir f1/foo
68  * normal commit
69  * rm -rf f1/foo
70  * fsync(f1)
71  *
72  * The directory f1 was fully removed from the FS, but fsync was never
73  * called on f1, only its parent dir.  After a crash the rm -rf must
74  * be replayed.  This must be able to recurse down the entire
75  * directory tree.  The inode link count fixup code takes care of the
76  * ugly details.
77  */
78 
79 /*
80  * stages for the tree walking.  The first
81  * stage (0) is to only pin down the blocks we find
82  * the second stage (1) is to make sure that all the inodes
83  * we find in the log are created in the subvolume.
84  *
85  * The last stage is to deal with directories and links and extents
86  * and all the other fun semantics
87  */
88 enum {
89 	LOG_WALK_PIN_ONLY,
90 	LOG_WALK_REPLAY_INODES,
91 	LOG_WALK_REPLAY_DIR_INDEX,
92 	LOG_WALK_REPLAY_ALL,
93 };
94 
95 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
96 			   struct btrfs_root *root, struct btrfs_inode *inode,
97 			   int inode_only,
98 			   struct btrfs_log_ctx *ctx);
99 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
100 			     struct btrfs_root *root,
101 			     struct btrfs_path *path, u64 objectid);
102 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
103 				       struct btrfs_root *root,
104 				       struct btrfs_root *log,
105 				       struct btrfs_path *path,
106 				       u64 dirid, int del_all);
107 
108 /*
109  * tree logging is a special write ahead log used to make sure that
110  * fsyncs and O_SYNCs can happen without doing full tree commits.
111  *
112  * Full tree commits are expensive because they require commonly
113  * modified blocks to be recowed, creating many dirty pages in the
114  * extent tree an 4x-6x higher write load than ext3.
115  *
116  * Instead of doing a tree commit on every fsync, we use the
117  * key ranges and transaction ids to find items for a given file or directory
118  * that have changed in this transaction.  Those items are copied into
119  * a special tree (one per subvolume root), that tree is written to disk
120  * and then the fsync is considered complete.
121  *
122  * After a crash, items are copied out of the log-tree back into the
123  * subvolume tree.  Any file data extents found are recorded in the extent
124  * allocation tree, and the log-tree freed.
125  *
126  * The log tree is read three times, once to pin down all the extents it is
127  * using in ram and once, once to create all the inodes logged in the tree
128  * and once to do all the other items.
129  */
130 
131 /*
132  * start a sub transaction and setup the log tree
133  * this increments the log tree writer count to make the people
134  * syncing the tree wait for us to finish
135  */
136 static int start_log_trans(struct btrfs_trans_handle *trans,
137 			   struct btrfs_root *root,
138 			   struct btrfs_log_ctx *ctx)
139 {
140 	struct btrfs_fs_info *fs_info = root->fs_info;
141 	struct btrfs_root *tree_root = fs_info->tree_root;
142 	int ret = 0;
143 
144 	/*
145 	 * First check if the log root tree was already created. If not, create
146 	 * it before locking the root's log_mutex, just to keep lockdep happy.
147 	 */
148 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
149 		mutex_lock(&tree_root->log_mutex);
150 		if (!fs_info->log_root_tree) {
151 			ret = btrfs_init_log_root_tree(trans, fs_info);
152 			if (!ret)
153 				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
154 		}
155 		mutex_unlock(&tree_root->log_mutex);
156 		if (ret)
157 			return ret;
158 	}
159 
160 	mutex_lock(&root->log_mutex);
161 
162 	if (root->log_root) {
163 		if (btrfs_need_log_full_commit(trans)) {
164 			ret = -EAGAIN;
165 			goto out;
166 		}
167 
168 		if (!root->log_start_pid) {
169 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
170 			root->log_start_pid = current->pid;
171 		} else if (root->log_start_pid != current->pid) {
172 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
173 		}
174 	} else {
175 		ret = btrfs_add_log_tree(trans, root);
176 		if (ret)
177 			goto out;
178 
179 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
180 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
181 		root->log_start_pid = current->pid;
182 	}
183 
184 	atomic_inc(&root->log_writers);
185 	if (ctx && !ctx->logging_new_name) {
186 		int index = root->log_transid % 2;
187 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
188 		ctx->log_transid = root->log_transid;
189 	}
190 
191 out:
192 	mutex_unlock(&root->log_mutex);
193 	return ret;
194 }
195 
196 /*
197  * returns 0 if there was a log transaction running and we were able
198  * to join, or returns -ENOENT if there were not transactions
199  * in progress
200  */
201 static int join_running_log_trans(struct btrfs_root *root)
202 {
203 	int ret = -ENOENT;
204 
205 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
206 		return ret;
207 
208 	mutex_lock(&root->log_mutex);
209 	if (root->log_root) {
210 		ret = 0;
211 		atomic_inc(&root->log_writers);
212 	}
213 	mutex_unlock(&root->log_mutex);
214 	return ret;
215 }
216 
217 /*
218  * This either makes the current running log transaction wait
219  * until you call btrfs_end_log_trans() or it makes any future
220  * log transactions wait until you call btrfs_end_log_trans()
221  */
222 void btrfs_pin_log_trans(struct btrfs_root *root)
223 {
224 	atomic_inc(&root->log_writers);
225 }
226 
227 /*
228  * indicate we're done making changes to the log tree
229  * and wake up anyone waiting to do a sync
230  */
231 void btrfs_end_log_trans(struct btrfs_root *root)
232 {
233 	if (atomic_dec_and_test(&root->log_writers)) {
234 		/* atomic_dec_and_test implies a barrier */
235 		cond_wake_up_nomb(&root->log_writer_wait);
236 	}
237 }
238 
239 static int btrfs_write_tree_block(struct extent_buffer *buf)
240 {
241 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
242 					buf->start + buf->len - 1);
243 }
244 
245 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
246 {
247 	filemap_fdatawait_range(buf->pages[0]->mapping,
248 			        buf->start, buf->start + buf->len - 1);
249 }
250 
251 /*
252  * the walk control struct is used to pass state down the chain when
253  * processing the log tree.  The stage field tells us which part
254  * of the log tree processing we are currently doing.  The others
255  * are state fields used for that specific part
256  */
257 struct walk_control {
258 	/* should we free the extent on disk when done?  This is used
259 	 * at transaction commit time while freeing a log tree
260 	 */
261 	int free;
262 
263 	/* should we write out the extent buffer?  This is used
264 	 * while flushing the log tree to disk during a sync
265 	 */
266 	int write;
267 
268 	/* should we wait for the extent buffer io to finish?  Also used
269 	 * while flushing the log tree to disk for a sync
270 	 */
271 	int wait;
272 
273 	/* pin only walk, we record which extents on disk belong to the
274 	 * log trees
275 	 */
276 	int pin;
277 
278 	/* what stage of the replay code we're currently in */
279 	int stage;
280 
281 	/*
282 	 * Ignore any items from the inode currently being processed. Needs
283 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
284 	 * the LOG_WALK_REPLAY_INODES stage.
285 	 */
286 	bool ignore_cur_inode;
287 
288 	/* the root we are currently replaying */
289 	struct btrfs_root *replay_dest;
290 
291 	/* the trans handle for the current replay */
292 	struct btrfs_trans_handle *trans;
293 
294 	/* the function that gets used to process blocks we find in the
295 	 * tree.  Note the extent_buffer might not be up to date when it is
296 	 * passed in, and it must be checked or read if you need the data
297 	 * inside it
298 	 */
299 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
300 			    struct walk_control *wc, u64 gen, int level);
301 };
302 
303 /*
304  * process_func used to pin down extents, write them or wait on them
305  */
306 static int process_one_buffer(struct btrfs_root *log,
307 			      struct extent_buffer *eb,
308 			      struct walk_control *wc, u64 gen, int level)
309 {
310 	struct btrfs_fs_info *fs_info = log->fs_info;
311 	int ret = 0;
312 
313 	/*
314 	 * If this fs is mixed then we need to be able to process the leaves to
315 	 * pin down any logged extents, so we have to read the block.
316 	 */
317 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
318 		ret = btrfs_read_buffer(eb, gen, level, NULL);
319 		if (ret)
320 			return ret;
321 	}
322 
323 	if (wc->pin)
324 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
325 						      eb->len);
326 
327 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
328 		if (wc->pin && btrfs_header_level(eb) == 0)
329 			ret = btrfs_exclude_logged_extents(eb);
330 		if (wc->write)
331 			btrfs_write_tree_block(eb);
332 		if (wc->wait)
333 			btrfs_wait_tree_block_writeback(eb);
334 	}
335 	return ret;
336 }
337 
338 /*
339  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
340  * to the src data we are copying out.
341  *
342  * root is the tree we are copying into, and path is a scratch
343  * path for use in this function (it should be released on entry and
344  * will be released on exit).
345  *
346  * If the key is already in the destination tree the existing item is
347  * overwritten.  If the existing item isn't big enough, it is extended.
348  * If it is too large, it is truncated.
349  *
350  * If the key isn't in the destination yet, a new item is inserted.
351  */
352 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
353 				   struct btrfs_root *root,
354 				   struct btrfs_path *path,
355 				   struct extent_buffer *eb, int slot,
356 				   struct btrfs_key *key)
357 {
358 	int ret;
359 	u32 item_size;
360 	u64 saved_i_size = 0;
361 	int save_old_i_size = 0;
362 	unsigned long src_ptr;
363 	unsigned long dst_ptr;
364 	int overwrite_root = 0;
365 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
366 
367 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
368 		overwrite_root = 1;
369 
370 	item_size = btrfs_item_size_nr(eb, slot);
371 	src_ptr = btrfs_item_ptr_offset(eb, slot);
372 
373 	/* look for the key in the destination tree */
374 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
375 	if (ret < 0)
376 		return ret;
377 
378 	if (ret == 0) {
379 		char *src_copy;
380 		char *dst_copy;
381 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
382 						  path->slots[0]);
383 		if (dst_size != item_size)
384 			goto insert;
385 
386 		if (item_size == 0) {
387 			btrfs_release_path(path);
388 			return 0;
389 		}
390 		dst_copy = kmalloc(item_size, GFP_NOFS);
391 		src_copy = kmalloc(item_size, GFP_NOFS);
392 		if (!dst_copy || !src_copy) {
393 			btrfs_release_path(path);
394 			kfree(dst_copy);
395 			kfree(src_copy);
396 			return -ENOMEM;
397 		}
398 
399 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
400 
401 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
402 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
403 				   item_size);
404 		ret = memcmp(dst_copy, src_copy, item_size);
405 
406 		kfree(dst_copy);
407 		kfree(src_copy);
408 		/*
409 		 * they have the same contents, just return, this saves
410 		 * us from cowing blocks in the destination tree and doing
411 		 * extra writes that may not have been done by a previous
412 		 * sync
413 		 */
414 		if (ret == 0) {
415 			btrfs_release_path(path);
416 			return 0;
417 		}
418 
419 		/*
420 		 * We need to load the old nbytes into the inode so when we
421 		 * replay the extents we've logged we get the right nbytes.
422 		 */
423 		if (inode_item) {
424 			struct btrfs_inode_item *item;
425 			u64 nbytes;
426 			u32 mode;
427 
428 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
429 					      struct btrfs_inode_item);
430 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
431 			item = btrfs_item_ptr(eb, slot,
432 					      struct btrfs_inode_item);
433 			btrfs_set_inode_nbytes(eb, item, nbytes);
434 
435 			/*
436 			 * If this is a directory we need to reset the i_size to
437 			 * 0 so that we can set it up properly when replaying
438 			 * the rest of the items in this log.
439 			 */
440 			mode = btrfs_inode_mode(eb, item);
441 			if (S_ISDIR(mode))
442 				btrfs_set_inode_size(eb, item, 0);
443 		}
444 	} else if (inode_item) {
445 		struct btrfs_inode_item *item;
446 		u32 mode;
447 
448 		/*
449 		 * New inode, set nbytes to 0 so that the nbytes comes out
450 		 * properly when we replay the extents.
451 		 */
452 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
453 		btrfs_set_inode_nbytes(eb, item, 0);
454 
455 		/*
456 		 * If this is a directory we need to reset the i_size to 0 so
457 		 * that we can set it up properly when replaying the rest of
458 		 * the items in this log.
459 		 */
460 		mode = btrfs_inode_mode(eb, item);
461 		if (S_ISDIR(mode))
462 			btrfs_set_inode_size(eb, item, 0);
463 	}
464 insert:
465 	btrfs_release_path(path);
466 	/* try to insert the key into the destination tree */
467 	path->skip_release_on_error = 1;
468 	ret = btrfs_insert_empty_item(trans, root, path,
469 				      key, item_size);
470 	path->skip_release_on_error = 0;
471 
472 	/* make sure any existing item is the correct size */
473 	if (ret == -EEXIST || ret == -EOVERFLOW) {
474 		u32 found_size;
475 		found_size = btrfs_item_size_nr(path->nodes[0],
476 						path->slots[0]);
477 		if (found_size > item_size)
478 			btrfs_truncate_item(path, item_size, 1);
479 		else if (found_size < item_size)
480 			btrfs_extend_item(path, item_size - found_size);
481 	} else if (ret) {
482 		return ret;
483 	}
484 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
485 					path->slots[0]);
486 
487 	/* don't overwrite an existing inode if the generation number
488 	 * was logged as zero.  This is done when the tree logging code
489 	 * is just logging an inode to make sure it exists after recovery.
490 	 *
491 	 * Also, don't overwrite i_size on directories during replay.
492 	 * log replay inserts and removes directory items based on the
493 	 * state of the tree found in the subvolume, and i_size is modified
494 	 * as it goes
495 	 */
496 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
497 		struct btrfs_inode_item *src_item;
498 		struct btrfs_inode_item *dst_item;
499 
500 		src_item = (struct btrfs_inode_item *)src_ptr;
501 		dst_item = (struct btrfs_inode_item *)dst_ptr;
502 
503 		if (btrfs_inode_generation(eb, src_item) == 0) {
504 			struct extent_buffer *dst_eb = path->nodes[0];
505 			const u64 ino_size = btrfs_inode_size(eb, src_item);
506 
507 			/*
508 			 * For regular files an ino_size == 0 is used only when
509 			 * logging that an inode exists, as part of a directory
510 			 * fsync, and the inode wasn't fsynced before. In this
511 			 * case don't set the size of the inode in the fs/subvol
512 			 * tree, otherwise we would be throwing valid data away.
513 			 */
514 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
515 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
516 			    ino_size != 0)
517 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
518 			goto no_copy;
519 		}
520 
521 		if (overwrite_root &&
522 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
523 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
524 			save_old_i_size = 1;
525 			saved_i_size = btrfs_inode_size(path->nodes[0],
526 							dst_item);
527 		}
528 	}
529 
530 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
531 			   src_ptr, item_size);
532 
533 	if (save_old_i_size) {
534 		struct btrfs_inode_item *dst_item;
535 		dst_item = (struct btrfs_inode_item *)dst_ptr;
536 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
537 	}
538 
539 	/* make sure the generation is filled in */
540 	if (key->type == BTRFS_INODE_ITEM_KEY) {
541 		struct btrfs_inode_item *dst_item;
542 		dst_item = (struct btrfs_inode_item *)dst_ptr;
543 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
544 			btrfs_set_inode_generation(path->nodes[0], dst_item,
545 						   trans->transid);
546 		}
547 	}
548 no_copy:
549 	btrfs_mark_buffer_dirty(path->nodes[0]);
550 	btrfs_release_path(path);
551 	return 0;
552 }
553 
554 /*
555  * simple helper to read an inode off the disk from a given root
556  * This can only be called for subvolume roots and not for the log
557  */
558 static noinline struct inode *read_one_inode(struct btrfs_root *root,
559 					     u64 objectid)
560 {
561 	struct inode *inode;
562 
563 	inode = btrfs_iget(root->fs_info->sb, objectid, root);
564 	if (IS_ERR(inode))
565 		inode = NULL;
566 	return inode;
567 }
568 
569 /* replays a single extent in 'eb' at 'slot' with 'key' into the
570  * subvolume 'root'.  path is released on entry and should be released
571  * on exit.
572  *
573  * extents in the log tree have not been allocated out of the extent
574  * tree yet.  So, this completes the allocation, taking a reference
575  * as required if the extent already exists or creating a new extent
576  * if it isn't in the extent allocation tree yet.
577  *
578  * The extent is inserted into the file, dropping any existing extents
579  * from the file that overlap the new one.
580  */
581 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
582 				      struct btrfs_root *root,
583 				      struct btrfs_path *path,
584 				      struct extent_buffer *eb, int slot,
585 				      struct btrfs_key *key)
586 {
587 	struct btrfs_drop_extents_args drop_args = { 0 };
588 	struct btrfs_fs_info *fs_info = root->fs_info;
589 	int found_type;
590 	u64 extent_end;
591 	u64 start = key->offset;
592 	u64 nbytes = 0;
593 	struct btrfs_file_extent_item *item;
594 	struct inode *inode = NULL;
595 	unsigned long size;
596 	int ret = 0;
597 
598 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
599 	found_type = btrfs_file_extent_type(eb, item);
600 
601 	if (found_type == BTRFS_FILE_EXTENT_REG ||
602 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
603 		nbytes = btrfs_file_extent_num_bytes(eb, item);
604 		extent_end = start + nbytes;
605 
606 		/*
607 		 * We don't add to the inodes nbytes if we are prealloc or a
608 		 * hole.
609 		 */
610 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
611 			nbytes = 0;
612 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
613 		size = btrfs_file_extent_ram_bytes(eb, item);
614 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
615 		extent_end = ALIGN(start + size,
616 				   fs_info->sectorsize);
617 	} else {
618 		ret = 0;
619 		goto out;
620 	}
621 
622 	inode = read_one_inode(root, key->objectid);
623 	if (!inode) {
624 		ret = -EIO;
625 		goto out;
626 	}
627 
628 	/*
629 	 * first check to see if we already have this extent in the
630 	 * file.  This must be done before the btrfs_drop_extents run
631 	 * so we don't try to drop this extent.
632 	 */
633 	ret = btrfs_lookup_file_extent(trans, root, path,
634 			btrfs_ino(BTRFS_I(inode)), start, 0);
635 
636 	if (ret == 0 &&
637 	    (found_type == BTRFS_FILE_EXTENT_REG ||
638 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
639 		struct btrfs_file_extent_item cmp1;
640 		struct btrfs_file_extent_item cmp2;
641 		struct btrfs_file_extent_item *existing;
642 		struct extent_buffer *leaf;
643 
644 		leaf = path->nodes[0];
645 		existing = btrfs_item_ptr(leaf, path->slots[0],
646 					  struct btrfs_file_extent_item);
647 
648 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
649 				   sizeof(cmp1));
650 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
651 				   sizeof(cmp2));
652 
653 		/*
654 		 * we already have a pointer to this exact extent,
655 		 * we don't have to do anything
656 		 */
657 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
658 			btrfs_release_path(path);
659 			goto out;
660 		}
661 	}
662 	btrfs_release_path(path);
663 
664 	/* drop any overlapping extents */
665 	drop_args.start = start;
666 	drop_args.end = extent_end;
667 	drop_args.drop_cache = true;
668 	ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
669 	if (ret)
670 		goto out;
671 
672 	if (found_type == BTRFS_FILE_EXTENT_REG ||
673 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
674 		u64 offset;
675 		unsigned long dest_offset;
676 		struct btrfs_key ins;
677 
678 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
679 		    btrfs_fs_incompat(fs_info, NO_HOLES))
680 			goto update_inode;
681 
682 		ret = btrfs_insert_empty_item(trans, root, path, key,
683 					      sizeof(*item));
684 		if (ret)
685 			goto out;
686 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
687 						    path->slots[0]);
688 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
689 				(unsigned long)item,  sizeof(*item));
690 
691 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
692 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
693 		ins.type = BTRFS_EXTENT_ITEM_KEY;
694 		offset = key->offset - btrfs_file_extent_offset(eb, item);
695 
696 		/*
697 		 * Manually record dirty extent, as here we did a shallow
698 		 * file extent item copy and skip normal backref update,
699 		 * but modifying extent tree all by ourselves.
700 		 * So need to manually record dirty extent for qgroup,
701 		 * as the owner of the file extent changed from log tree
702 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
703 		 */
704 		ret = btrfs_qgroup_trace_extent(trans,
705 				btrfs_file_extent_disk_bytenr(eb, item),
706 				btrfs_file_extent_disk_num_bytes(eb, item),
707 				GFP_NOFS);
708 		if (ret < 0)
709 			goto out;
710 
711 		if (ins.objectid > 0) {
712 			struct btrfs_ref ref = { 0 };
713 			u64 csum_start;
714 			u64 csum_end;
715 			LIST_HEAD(ordered_sums);
716 
717 			/*
718 			 * is this extent already allocated in the extent
719 			 * allocation tree?  If so, just add a reference
720 			 */
721 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
722 						ins.offset);
723 			if (ret == 0) {
724 				btrfs_init_generic_ref(&ref,
725 						BTRFS_ADD_DELAYED_REF,
726 						ins.objectid, ins.offset, 0);
727 				btrfs_init_data_ref(&ref,
728 						root->root_key.objectid,
729 						key->objectid, offset);
730 				ret = btrfs_inc_extent_ref(trans, &ref);
731 				if (ret)
732 					goto out;
733 			} else {
734 				/*
735 				 * insert the extent pointer in the extent
736 				 * allocation tree
737 				 */
738 				ret = btrfs_alloc_logged_file_extent(trans,
739 						root->root_key.objectid,
740 						key->objectid, offset, &ins);
741 				if (ret)
742 					goto out;
743 			}
744 			btrfs_release_path(path);
745 
746 			if (btrfs_file_extent_compression(eb, item)) {
747 				csum_start = ins.objectid;
748 				csum_end = csum_start + ins.offset;
749 			} else {
750 				csum_start = ins.objectid +
751 					btrfs_file_extent_offset(eb, item);
752 				csum_end = csum_start +
753 					btrfs_file_extent_num_bytes(eb, item);
754 			}
755 
756 			ret = btrfs_lookup_csums_range(root->log_root,
757 						csum_start, csum_end - 1,
758 						&ordered_sums, 0);
759 			if (ret)
760 				goto out;
761 			/*
762 			 * Now delete all existing cums in the csum root that
763 			 * cover our range. We do this because we can have an
764 			 * extent that is completely referenced by one file
765 			 * extent item and partially referenced by another
766 			 * file extent item (like after using the clone or
767 			 * extent_same ioctls). In this case if we end up doing
768 			 * the replay of the one that partially references the
769 			 * extent first, and we do not do the csum deletion
770 			 * below, we can get 2 csum items in the csum tree that
771 			 * overlap each other. For example, imagine our log has
772 			 * the two following file extent items:
773 			 *
774 			 * key (257 EXTENT_DATA 409600)
775 			 *     extent data disk byte 12845056 nr 102400
776 			 *     extent data offset 20480 nr 20480 ram 102400
777 			 *
778 			 * key (257 EXTENT_DATA 819200)
779 			 *     extent data disk byte 12845056 nr 102400
780 			 *     extent data offset 0 nr 102400 ram 102400
781 			 *
782 			 * Where the second one fully references the 100K extent
783 			 * that starts at disk byte 12845056, and the log tree
784 			 * has a single csum item that covers the entire range
785 			 * of the extent:
786 			 *
787 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
788 			 *
789 			 * After the first file extent item is replayed, the
790 			 * csum tree gets the following csum item:
791 			 *
792 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
793 			 *
794 			 * Which covers the 20K sub-range starting at offset 20K
795 			 * of our extent. Now when we replay the second file
796 			 * extent item, if we do not delete existing csum items
797 			 * that cover any of its blocks, we end up getting two
798 			 * csum items in our csum tree that overlap each other:
799 			 *
800 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
801 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
802 			 *
803 			 * Which is a problem, because after this anyone trying
804 			 * to lookup up for the checksum of any block of our
805 			 * extent starting at an offset of 40K or higher, will
806 			 * end up looking at the second csum item only, which
807 			 * does not contain the checksum for any block starting
808 			 * at offset 40K or higher of our extent.
809 			 */
810 			while (!list_empty(&ordered_sums)) {
811 				struct btrfs_ordered_sum *sums;
812 				sums = list_entry(ordered_sums.next,
813 						struct btrfs_ordered_sum,
814 						list);
815 				if (!ret)
816 					ret = btrfs_del_csums(trans,
817 							      fs_info->csum_root,
818 							      sums->bytenr,
819 							      sums->len);
820 				if (!ret)
821 					ret = btrfs_csum_file_blocks(trans,
822 						fs_info->csum_root, sums);
823 				list_del(&sums->list);
824 				kfree(sums);
825 			}
826 			if (ret)
827 				goto out;
828 		} else {
829 			btrfs_release_path(path);
830 		}
831 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
832 		/* inline extents are easy, we just overwrite them */
833 		ret = overwrite_item(trans, root, path, eb, slot, key);
834 		if (ret)
835 			goto out;
836 	}
837 
838 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
839 						extent_end - start);
840 	if (ret)
841 		goto out;
842 
843 update_inode:
844 	btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
845 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
846 out:
847 	if (inode)
848 		iput(inode);
849 	return ret;
850 }
851 
852 /*
853  * when cleaning up conflicts between the directory names in the
854  * subvolume, directory names in the log and directory names in the
855  * inode back references, we may have to unlink inodes from directories.
856  *
857  * This is a helper function to do the unlink of a specific directory
858  * item
859  */
860 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
861 				      struct btrfs_root *root,
862 				      struct btrfs_path *path,
863 				      struct btrfs_inode *dir,
864 				      struct btrfs_dir_item *di)
865 {
866 	struct inode *inode;
867 	char *name;
868 	int name_len;
869 	struct extent_buffer *leaf;
870 	struct btrfs_key location;
871 	int ret;
872 
873 	leaf = path->nodes[0];
874 
875 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
876 	name_len = btrfs_dir_name_len(leaf, di);
877 	name = kmalloc(name_len, GFP_NOFS);
878 	if (!name)
879 		return -ENOMEM;
880 
881 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
882 	btrfs_release_path(path);
883 
884 	inode = read_one_inode(root, location.objectid);
885 	if (!inode) {
886 		ret = -EIO;
887 		goto out;
888 	}
889 
890 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
891 	if (ret)
892 		goto out;
893 
894 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
895 			name_len);
896 	if (ret)
897 		goto out;
898 	else
899 		ret = btrfs_run_delayed_items(trans);
900 out:
901 	kfree(name);
902 	iput(inode);
903 	return ret;
904 }
905 
906 /*
907  * helper function to see if a given name and sequence number found
908  * in an inode back reference are already in a directory and correctly
909  * point to this inode
910  */
911 static noinline int inode_in_dir(struct btrfs_root *root,
912 				 struct btrfs_path *path,
913 				 u64 dirid, u64 objectid, u64 index,
914 				 const char *name, int name_len)
915 {
916 	struct btrfs_dir_item *di;
917 	struct btrfs_key location;
918 	int match = 0;
919 
920 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
921 					 index, name, name_len, 0);
922 	if (di && !IS_ERR(di)) {
923 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
924 		if (location.objectid != objectid)
925 			goto out;
926 	} else
927 		goto out;
928 	btrfs_release_path(path);
929 
930 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
931 	if (di && !IS_ERR(di)) {
932 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
933 		if (location.objectid != objectid)
934 			goto out;
935 	} else
936 		goto out;
937 	match = 1;
938 out:
939 	btrfs_release_path(path);
940 	return match;
941 }
942 
943 /*
944  * helper function to check a log tree for a named back reference in
945  * an inode.  This is used to decide if a back reference that is
946  * found in the subvolume conflicts with what we find in the log.
947  *
948  * inode backreferences may have multiple refs in a single item,
949  * during replay we process one reference at a time, and we don't
950  * want to delete valid links to a file from the subvolume if that
951  * link is also in the log.
952  */
953 static noinline int backref_in_log(struct btrfs_root *log,
954 				   struct btrfs_key *key,
955 				   u64 ref_objectid,
956 				   const char *name, int namelen)
957 {
958 	struct btrfs_path *path;
959 	int ret;
960 
961 	path = btrfs_alloc_path();
962 	if (!path)
963 		return -ENOMEM;
964 
965 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
966 	if (ret < 0) {
967 		goto out;
968 	} else if (ret == 1) {
969 		ret = 0;
970 		goto out;
971 	}
972 
973 	if (key->type == BTRFS_INODE_EXTREF_KEY)
974 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
975 						       path->slots[0],
976 						       ref_objectid,
977 						       name, namelen);
978 	else
979 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
980 						   path->slots[0],
981 						   name, namelen);
982 out:
983 	btrfs_free_path(path);
984 	return ret;
985 }
986 
987 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
988 				  struct btrfs_root *root,
989 				  struct btrfs_path *path,
990 				  struct btrfs_root *log_root,
991 				  struct btrfs_inode *dir,
992 				  struct btrfs_inode *inode,
993 				  u64 inode_objectid, u64 parent_objectid,
994 				  u64 ref_index, char *name, int namelen,
995 				  int *search_done)
996 {
997 	int ret;
998 	char *victim_name;
999 	int victim_name_len;
1000 	struct extent_buffer *leaf;
1001 	struct btrfs_dir_item *di;
1002 	struct btrfs_key search_key;
1003 	struct btrfs_inode_extref *extref;
1004 
1005 again:
1006 	/* Search old style refs */
1007 	search_key.objectid = inode_objectid;
1008 	search_key.type = BTRFS_INODE_REF_KEY;
1009 	search_key.offset = parent_objectid;
1010 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1011 	if (ret == 0) {
1012 		struct btrfs_inode_ref *victim_ref;
1013 		unsigned long ptr;
1014 		unsigned long ptr_end;
1015 
1016 		leaf = path->nodes[0];
1017 
1018 		/* are we trying to overwrite a back ref for the root directory
1019 		 * if so, just jump out, we're done
1020 		 */
1021 		if (search_key.objectid == search_key.offset)
1022 			return 1;
1023 
1024 		/* check all the names in this back reference to see
1025 		 * if they are in the log.  if so, we allow them to stay
1026 		 * otherwise they must be unlinked as a conflict
1027 		 */
1028 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1029 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1030 		while (ptr < ptr_end) {
1031 			victim_ref = (struct btrfs_inode_ref *)ptr;
1032 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1033 								   victim_ref);
1034 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1035 			if (!victim_name)
1036 				return -ENOMEM;
1037 
1038 			read_extent_buffer(leaf, victim_name,
1039 					   (unsigned long)(victim_ref + 1),
1040 					   victim_name_len);
1041 
1042 			ret = backref_in_log(log_root, &search_key,
1043 					     parent_objectid, victim_name,
1044 					     victim_name_len);
1045 			if (ret < 0) {
1046 				kfree(victim_name);
1047 				return ret;
1048 			} else if (!ret) {
1049 				inc_nlink(&inode->vfs_inode);
1050 				btrfs_release_path(path);
1051 
1052 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1053 						victim_name, victim_name_len);
1054 				kfree(victim_name);
1055 				if (ret)
1056 					return ret;
1057 				ret = btrfs_run_delayed_items(trans);
1058 				if (ret)
1059 					return ret;
1060 				*search_done = 1;
1061 				goto again;
1062 			}
1063 			kfree(victim_name);
1064 
1065 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1066 		}
1067 
1068 		/*
1069 		 * NOTE: we have searched root tree and checked the
1070 		 * corresponding ref, it does not need to check again.
1071 		 */
1072 		*search_done = 1;
1073 	}
1074 	btrfs_release_path(path);
1075 
1076 	/* Same search but for extended refs */
1077 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1078 					   inode_objectid, parent_objectid, 0,
1079 					   0);
1080 	if (!IS_ERR_OR_NULL(extref)) {
1081 		u32 item_size;
1082 		u32 cur_offset = 0;
1083 		unsigned long base;
1084 		struct inode *victim_parent;
1085 
1086 		leaf = path->nodes[0];
1087 
1088 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1089 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1090 
1091 		while (cur_offset < item_size) {
1092 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1093 
1094 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1095 
1096 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1097 				goto next;
1098 
1099 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1100 			if (!victim_name)
1101 				return -ENOMEM;
1102 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1103 					   victim_name_len);
1104 
1105 			search_key.objectid = inode_objectid;
1106 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1107 			search_key.offset = btrfs_extref_hash(parent_objectid,
1108 							      victim_name,
1109 							      victim_name_len);
1110 			ret = backref_in_log(log_root, &search_key,
1111 					     parent_objectid, victim_name,
1112 					     victim_name_len);
1113 			if (ret < 0) {
1114 				return ret;
1115 			} else if (!ret) {
1116 				ret = -ENOENT;
1117 				victim_parent = read_one_inode(root,
1118 						parent_objectid);
1119 				if (victim_parent) {
1120 					inc_nlink(&inode->vfs_inode);
1121 					btrfs_release_path(path);
1122 
1123 					ret = btrfs_unlink_inode(trans, root,
1124 							BTRFS_I(victim_parent),
1125 							inode,
1126 							victim_name,
1127 							victim_name_len);
1128 					if (!ret)
1129 						ret = btrfs_run_delayed_items(
1130 								  trans);
1131 				}
1132 				iput(victim_parent);
1133 				kfree(victim_name);
1134 				if (ret)
1135 					return ret;
1136 				*search_done = 1;
1137 				goto again;
1138 			}
1139 			kfree(victim_name);
1140 next:
1141 			cur_offset += victim_name_len + sizeof(*extref);
1142 		}
1143 		*search_done = 1;
1144 	}
1145 	btrfs_release_path(path);
1146 
1147 	/* look for a conflicting sequence number */
1148 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1149 					 ref_index, name, namelen, 0);
1150 	if (di && !IS_ERR(di)) {
1151 		ret = drop_one_dir_item(trans, root, path, dir, di);
1152 		if (ret)
1153 			return ret;
1154 	}
1155 	btrfs_release_path(path);
1156 
1157 	/* look for a conflicting name */
1158 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1159 				   name, namelen, 0);
1160 	if (di && !IS_ERR(di)) {
1161 		ret = drop_one_dir_item(trans, root, path, dir, di);
1162 		if (ret)
1163 			return ret;
1164 	}
1165 	btrfs_release_path(path);
1166 
1167 	return 0;
1168 }
1169 
1170 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1171 			     u32 *namelen, char **name, u64 *index,
1172 			     u64 *parent_objectid)
1173 {
1174 	struct btrfs_inode_extref *extref;
1175 
1176 	extref = (struct btrfs_inode_extref *)ref_ptr;
1177 
1178 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1179 	*name = kmalloc(*namelen, GFP_NOFS);
1180 	if (*name == NULL)
1181 		return -ENOMEM;
1182 
1183 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1184 			   *namelen);
1185 
1186 	if (index)
1187 		*index = btrfs_inode_extref_index(eb, extref);
1188 	if (parent_objectid)
1189 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1190 
1191 	return 0;
1192 }
1193 
1194 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1195 			  u32 *namelen, char **name, u64 *index)
1196 {
1197 	struct btrfs_inode_ref *ref;
1198 
1199 	ref = (struct btrfs_inode_ref *)ref_ptr;
1200 
1201 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1202 	*name = kmalloc(*namelen, GFP_NOFS);
1203 	if (*name == NULL)
1204 		return -ENOMEM;
1205 
1206 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1207 
1208 	if (index)
1209 		*index = btrfs_inode_ref_index(eb, ref);
1210 
1211 	return 0;
1212 }
1213 
1214 /*
1215  * Take an inode reference item from the log tree and iterate all names from the
1216  * inode reference item in the subvolume tree with the same key (if it exists).
1217  * For any name that is not in the inode reference item from the log tree, do a
1218  * proper unlink of that name (that is, remove its entry from the inode
1219  * reference item and both dir index keys).
1220  */
1221 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1222 				 struct btrfs_root *root,
1223 				 struct btrfs_path *path,
1224 				 struct btrfs_inode *inode,
1225 				 struct extent_buffer *log_eb,
1226 				 int log_slot,
1227 				 struct btrfs_key *key)
1228 {
1229 	int ret;
1230 	unsigned long ref_ptr;
1231 	unsigned long ref_end;
1232 	struct extent_buffer *eb;
1233 
1234 again:
1235 	btrfs_release_path(path);
1236 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1237 	if (ret > 0) {
1238 		ret = 0;
1239 		goto out;
1240 	}
1241 	if (ret < 0)
1242 		goto out;
1243 
1244 	eb = path->nodes[0];
1245 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1246 	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1247 	while (ref_ptr < ref_end) {
1248 		char *name = NULL;
1249 		int namelen;
1250 		u64 parent_id;
1251 
1252 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1253 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1254 						NULL, &parent_id);
1255 		} else {
1256 			parent_id = key->offset;
1257 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1258 					     NULL);
1259 		}
1260 		if (ret)
1261 			goto out;
1262 
1263 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1264 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1265 							       parent_id, name,
1266 							       namelen);
1267 		else
1268 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1269 							   name, namelen);
1270 
1271 		if (!ret) {
1272 			struct inode *dir;
1273 
1274 			btrfs_release_path(path);
1275 			dir = read_one_inode(root, parent_id);
1276 			if (!dir) {
1277 				ret = -ENOENT;
1278 				kfree(name);
1279 				goto out;
1280 			}
1281 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1282 						 inode, name, namelen);
1283 			kfree(name);
1284 			iput(dir);
1285 			if (ret)
1286 				goto out;
1287 			goto again;
1288 		}
1289 
1290 		kfree(name);
1291 		ref_ptr += namelen;
1292 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1293 			ref_ptr += sizeof(struct btrfs_inode_extref);
1294 		else
1295 			ref_ptr += sizeof(struct btrfs_inode_ref);
1296 	}
1297 	ret = 0;
1298  out:
1299 	btrfs_release_path(path);
1300 	return ret;
1301 }
1302 
1303 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1304 				  const u8 ref_type, const char *name,
1305 				  const int namelen)
1306 {
1307 	struct btrfs_key key;
1308 	struct btrfs_path *path;
1309 	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1310 	int ret;
1311 
1312 	path = btrfs_alloc_path();
1313 	if (!path)
1314 		return -ENOMEM;
1315 
1316 	key.objectid = btrfs_ino(BTRFS_I(inode));
1317 	key.type = ref_type;
1318 	if (key.type == BTRFS_INODE_REF_KEY)
1319 		key.offset = parent_id;
1320 	else
1321 		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1322 
1323 	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1324 	if (ret < 0)
1325 		goto out;
1326 	if (ret > 0) {
1327 		ret = 0;
1328 		goto out;
1329 	}
1330 	if (key.type == BTRFS_INODE_EXTREF_KEY)
1331 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1332 				path->slots[0], parent_id, name, namelen);
1333 	else
1334 		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1335 						   name, namelen);
1336 
1337 out:
1338 	btrfs_free_path(path);
1339 	return ret;
1340 }
1341 
1342 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1343 		    struct inode *dir, struct inode *inode, const char *name,
1344 		    int namelen, u64 ref_index)
1345 {
1346 	struct btrfs_dir_item *dir_item;
1347 	struct btrfs_key key;
1348 	struct btrfs_path *path;
1349 	struct inode *other_inode = NULL;
1350 	int ret;
1351 
1352 	path = btrfs_alloc_path();
1353 	if (!path)
1354 		return -ENOMEM;
1355 
1356 	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1357 					 btrfs_ino(BTRFS_I(dir)),
1358 					 name, namelen, 0);
1359 	if (!dir_item) {
1360 		btrfs_release_path(path);
1361 		goto add_link;
1362 	} else if (IS_ERR(dir_item)) {
1363 		ret = PTR_ERR(dir_item);
1364 		goto out;
1365 	}
1366 
1367 	/*
1368 	 * Our inode's dentry collides with the dentry of another inode which is
1369 	 * in the log but not yet processed since it has a higher inode number.
1370 	 * So delete that other dentry.
1371 	 */
1372 	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1373 	btrfs_release_path(path);
1374 	other_inode = read_one_inode(root, key.objectid);
1375 	if (!other_inode) {
1376 		ret = -ENOENT;
1377 		goto out;
1378 	}
1379 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1380 				 name, namelen);
1381 	if (ret)
1382 		goto out;
1383 	/*
1384 	 * If we dropped the link count to 0, bump it so that later the iput()
1385 	 * on the inode will not free it. We will fixup the link count later.
1386 	 */
1387 	if (other_inode->i_nlink == 0)
1388 		inc_nlink(other_inode);
1389 
1390 	ret = btrfs_run_delayed_items(trans);
1391 	if (ret)
1392 		goto out;
1393 add_link:
1394 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1395 			     name, namelen, 0, ref_index);
1396 out:
1397 	iput(other_inode);
1398 	btrfs_free_path(path);
1399 
1400 	return ret;
1401 }
1402 
1403 /*
1404  * replay one inode back reference item found in the log tree.
1405  * eb, slot and key refer to the buffer and key found in the log tree.
1406  * root is the destination we are replaying into, and path is for temp
1407  * use by this function.  (it should be released on return).
1408  */
1409 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1410 				  struct btrfs_root *root,
1411 				  struct btrfs_root *log,
1412 				  struct btrfs_path *path,
1413 				  struct extent_buffer *eb, int slot,
1414 				  struct btrfs_key *key)
1415 {
1416 	struct inode *dir = NULL;
1417 	struct inode *inode = NULL;
1418 	unsigned long ref_ptr;
1419 	unsigned long ref_end;
1420 	char *name = NULL;
1421 	int namelen;
1422 	int ret;
1423 	int search_done = 0;
1424 	int log_ref_ver = 0;
1425 	u64 parent_objectid;
1426 	u64 inode_objectid;
1427 	u64 ref_index = 0;
1428 	int ref_struct_size;
1429 
1430 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1431 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1432 
1433 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1434 		struct btrfs_inode_extref *r;
1435 
1436 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1437 		log_ref_ver = 1;
1438 		r = (struct btrfs_inode_extref *)ref_ptr;
1439 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1440 	} else {
1441 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1442 		parent_objectid = key->offset;
1443 	}
1444 	inode_objectid = key->objectid;
1445 
1446 	/*
1447 	 * it is possible that we didn't log all the parent directories
1448 	 * for a given inode.  If we don't find the dir, just don't
1449 	 * copy the back ref in.  The link count fixup code will take
1450 	 * care of the rest
1451 	 */
1452 	dir = read_one_inode(root, parent_objectid);
1453 	if (!dir) {
1454 		ret = -ENOENT;
1455 		goto out;
1456 	}
1457 
1458 	inode = read_one_inode(root, inode_objectid);
1459 	if (!inode) {
1460 		ret = -EIO;
1461 		goto out;
1462 	}
1463 
1464 	while (ref_ptr < ref_end) {
1465 		if (log_ref_ver) {
1466 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1467 						&ref_index, &parent_objectid);
1468 			/*
1469 			 * parent object can change from one array
1470 			 * item to another.
1471 			 */
1472 			if (!dir)
1473 				dir = read_one_inode(root, parent_objectid);
1474 			if (!dir) {
1475 				ret = -ENOENT;
1476 				goto out;
1477 			}
1478 		} else {
1479 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1480 					     &ref_index);
1481 		}
1482 		if (ret)
1483 			goto out;
1484 
1485 		/* if we already have a perfect match, we're done */
1486 		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1487 					btrfs_ino(BTRFS_I(inode)), ref_index,
1488 					name, namelen)) {
1489 			/*
1490 			 * look for a conflicting back reference in the
1491 			 * metadata. if we find one we have to unlink that name
1492 			 * of the file before we add our new link.  Later on, we
1493 			 * overwrite any existing back reference, and we don't
1494 			 * want to create dangling pointers in the directory.
1495 			 */
1496 
1497 			if (!search_done) {
1498 				ret = __add_inode_ref(trans, root, path, log,
1499 						      BTRFS_I(dir),
1500 						      BTRFS_I(inode),
1501 						      inode_objectid,
1502 						      parent_objectid,
1503 						      ref_index, name, namelen,
1504 						      &search_done);
1505 				if (ret) {
1506 					if (ret == 1)
1507 						ret = 0;
1508 					goto out;
1509 				}
1510 			}
1511 
1512 			/*
1513 			 * If a reference item already exists for this inode
1514 			 * with the same parent and name, but different index,
1515 			 * drop it and the corresponding directory index entries
1516 			 * from the parent before adding the new reference item
1517 			 * and dir index entries, otherwise we would fail with
1518 			 * -EEXIST returned from btrfs_add_link() below.
1519 			 */
1520 			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1521 						     name, namelen);
1522 			if (ret > 0) {
1523 				ret = btrfs_unlink_inode(trans, root,
1524 							 BTRFS_I(dir),
1525 							 BTRFS_I(inode),
1526 							 name, namelen);
1527 				/*
1528 				 * If we dropped the link count to 0, bump it so
1529 				 * that later the iput() on the inode will not
1530 				 * free it. We will fixup the link count later.
1531 				 */
1532 				if (!ret && inode->i_nlink == 0)
1533 					inc_nlink(inode);
1534 			}
1535 			if (ret < 0)
1536 				goto out;
1537 
1538 			/* insert our name */
1539 			ret = add_link(trans, root, dir, inode, name, namelen,
1540 				       ref_index);
1541 			if (ret)
1542 				goto out;
1543 
1544 			btrfs_update_inode(trans, root, BTRFS_I(inode));
1545 		}
1546 
1547 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1548 		kfree(name);
1549 		name = NULL;
1550 		if (log_ref_ver) {
1551 			iput(dir);
1552 			dir = NULL;
1553 		}
1554 	}
1555 
1556 	/*
1557 	 * Before we overwrite the inode reference item in the subvolume tree
1558 	 * with the item from the log tree, we must unlink all names from the
1559 	 * parent directory that are in the subvolume's tree inode reference
1560 	 * item, otherwise we end up with an inconsistent subvolume tree where
1561 	 * dir index entries exist for a name but there is no inode reference
1562 	 * item with the same name.
1563 	 */
1564 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1565 				    key);
1566 	if (ret)
1567 		goto out;
1568 
1569 	/* finally write the back reference in the inode */
1570 	ret = overwrite_item(trans, root, path, eb, slot, key);
1571 out:
1572 	btrfs_release_path(path);
1573 	kfree(name);
1574 	iput(dir);
1575 	iput(inode);
1576 	return ret;
1577 }
1578 
1579 static int count_inode_extrefs(struct btrfs_root *root,
1580 		struct btrfs_inode *inode, struct btrfs_path *path)
1581 {
1582 	int ret = 0;
1583 	int name_len;
1584 	unsigned int nlink = 0;
1585 	u32 item_size;
1586 	u32 cur_offset = 0;
1587 	u64 inode_objectid = btrfs_ino(inode);
1588 	u64 offset = 0;
1589 	unsigned long ptr;
1590 	struct btrfs_inode_extref *extref;
1591 	struct extent_buffer *leaf;
1592 
1593 	while (1) {
1594 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1595 					    &extref, &offset);
1596 		if (ret)
1597 			break;
1598 
1599 		leaf = path->nodes[0];
1600 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1601 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1602 		cur_offset = 0;
1603 
1604 		while (cur_offset < item_size) {
1605 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1606 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1607 
1608 			nlink++;
1609 
1610 			cur_offset += name_len + sizeof(*extref);
1611 		}
1612 
1613 		offset++;
1614 		btrfs_release_path(path);
1615 	}
1616 	btrfs_release_path(path);
1617 
1618 	if (ret < 0 && ret != -ENOENT)
1619 		return ret;
1620 	return nlink;
1621 }
1622 
1623 static int count_inode_refs(struct btrfs_root *root,
1624 			struct btrfs_inode *inode, struct btrfs_path *path)
1625 {
1626 	int ret;
1627 	struct btrfs_key key;
1628 	unsigned int nlink = 0;
1629 	unsigned long ptr;
1630 	unsigned long ptr_end;
1631 	int name_len;
1632 	u64 ino = btrfs_ino(inode);
1633 
1634 	key.objectid = ino;
1635 	key.type = BTRFS_INODE_REF_KEY;
1636 	key.offset = (u64)-1;
1637 
1638 	while (1) {
1639 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1640 		if (ret < 0)
1641 			break;
1642 		if (ret > 0) {
1643 			if (path->slots[0] == 0)
1644 				break;
1645 			path->slots[0]--;
1646 		}
1647 process_slot:
1648 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1649 				      path->slots[0]);
1650 		if (key.objectid != ino ||
1651 		    key.type != BTRFS_INODE_REF_KEY)
1652 			break;
1653 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1654 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1655 						   path->slots[0]);
1656 		while (ptr < ptr_end) {
1657 			struct btrfs_inode_ref *ref;
1658 
1659 			ref = (struct btrfs_inode_ref *)ptr;
1660 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1661 							    ref);
1662 			ptr = (unsigned long)(ref + 1) + name_len;
1663 			nlink++;
1664 		}
1665 
1666 		if (key.offset == 0)
1667 			break;
1668 		if (path->slots[0] > 0) {
1669 			path->slots[0]--;
1670 			goto process_slot;
1671 		}
1672 		key.offset--;
1673 		btrfs_release_path(path);
1674 	}
1675 	btrfs_release_path(path);
1676 
1677 	return nlink;
1678 }
1679 
1680 /*
1681  * There are a few corners where the link count of the file can't
1682  * be properly maintained during replay.  So, instead of adding
1683  * lots of complexity to the log code, we just scan the backrefs
1684  * for any file that has been through replay.
1685  *
1686  * The scan will update the link count on the inode to reflect the
1687  * number of back refs found.  If it goes down to zero, the iput
1688  * will free the inode.
1689  */
1690 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1691 					   struct btrfs_root *root,
1692 					   struct inode *inode)
1693 {
1694 	struct btrfs_path *path;
1695 	int ret;
1696 	u64 nlink = 0;
1697 	u64 ino = btrfs_ino(BTRFS_I(inode));
1698 
1699 	path = btrfs_alloc_path();
1700 	if (!path)
1701 		return -ENOMEM;
1702 
1703 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1704 	if (ret < 0)
1705 		goto out;
1706 
1707 	nlink = ret;
1708 
1709 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1710 	if (ret < 0)
1711 		goto out;
1712 
1713 	nlink += ret;
1714 
1715 	ret = 0;
1716 
1717 	if (nlink != inode->i_nlink) {
1718 		set_nlink(inode, nlink);
1719 		btrfs_update_inode(trans, root, BTRFS_I(inode));
1720 	}
1721 	BTRFS_I(inode)->index_cnt = (u64)-1;
1722 
1723 	if (inode->i_nlink == 0) {
1724 		if (S_ISDIR(inode->i_mode)) {
1725 			ret = replay_dir_deletes(trans, root, NULL, path,
1726 						 ino, 1);
1727 			if (ret)
1728 				goto out;
1729 		}
1730 		ret = btrfs_insert_orphan_item(trans, root, ino);
1731 		if (ret == -EEXIST)
1732 			ret = 0;
1733 	}
1734 
1735 out:
1736 	btrfs_free_path(path);
1737 	return ret;
1738 }
1739 
1740 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1741 					    struct btrfs_root *root,
1742 					    struct btrfs_path *path)
1743 {
1744 	int ret;
1745 	struct btrfs_key key;
1746 	struct inode *inode;
1747 
1748 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1749 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1750 	key.offset = (u64)-1;
1751 	while (1) {
1752 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1753 		if (ret < 0)
1754 			break;
1755 
1756 		if (ret == 1) {
1757 			if (path->slots[0] == 0)
1758 				break;
1759 			path->slots[0]--;
1760 		}
1761 
1762 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1763 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1764 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1765 			break;
1766 
1767 		ret = btrfs_del_item(trans, root, path);
1768 		if (ret)
1769 			goto out;
1770 
1771 		btrfs_release_path(path);
1772 		inode = read_one_inode(root, key.offset);
1773 		if (!inode)
1774 			return -EIO;
1775 
1776 		ret = fixup_inode_link_count(trans, root, inode);
1777 		iput(inode);
1778 		if (ret)
1779 			goto out;
1780 
1781 		/*
1782 		 * fixup on a directory may create new entries,
1783 		 * make sure we always look for the highset possible
1784 		 * offset
1785 		 */
1786 		key.offset = (u64)-1;
1787 	}
1788 	ret = 0;
1789 out:
1790 	btrfs_release_path(path);
1791 	return ret;
1792 }
1793 
1794 
1795 /*
1796  * record a given inode in the fixup dir so we can check its link
1797  * count when replay is done.  The link count is incremented here
1798  * so the inode won't go away until we check it
1799  */
1800 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1801 				      struct btrfs_root *root,
1802 				      struct btrfs_path *path,
1803 				      u64 objectid)
1804 {
1805 	struct btrfs_key key;
1806 	int ret = 0;
1807 	struct inode *inode;
1808 
1809 	inode = read_one_inode(root, objectid);
1810 	if (!inode)
1811 		return -EIO;
1812 
1813 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1814 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1815 	key.offset = objectid;
1816 
1817 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1818 
1819 	btrfs_release_path(path);
1820 	if (ret == 0) {
1821 		if (!inode->i_nlink)
1822 			set_nlink(inode, 1);
1823 		else
1824 			inc_nlink(inode);
1825 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
1826 	} else if (ret == -EEXIST) {
1827 		ret = 0;
1828 	} else {
1829 		BUG(); /* Logic Error */
1830 	}
1831 	iput(inode);
1832 
1833 	return ret;
1834 }
1835 
1836 /*
1837  * when replaying the log for a directory, we only insert names
1838  * for inodes that actually exist.  This means an fsync on a directory
1839  * does not implicitly fsync all the new files in it
1840  */
1841 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1842 				    struct btrfs_root *root,
1843 				    u64 dirid, u64 index,
1844 				    char *name, int name_len,
1845 				    struct btrfs_key *location)
1846 {
1847 	struct inode *inode;
1848 	struct inode *dir;
1849 	int ret;
1850 
1851 	inode = read_one_inode(root, location->objectid);
1852 	if (!inode)
1853 		return -ENOENT;
1854 
1855 	dir = read_one_inode(root, dirid);
1856 	if (!dir) {
1857 		iput(inode);
1858 		return -EIO;
1859 	}
1860 
1861 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1862 			name_len, 1, index);
1863 
1864 	/* FIXME, put inode into FIXUP list */
1865 
1866 	iput(inode);
1867 	iput(dir);
1868 	return ret;
1869 }
1870 
1871 /*
1872  * take a single entry in a log directory item and replay it into
1873  * the subvolume.
1874  *
1875  * if a conflicting item exists in the subdirectory already,
1876  * the inode it points to is unlinked and put into the link count
1877  * fix up tree.
1878  *
1879  * If a name from the log points to a file or directory that does
1880  * not exist in the FS, it is skipped.  fsyncs on directories
1881  * do not force down inodes inside that directory, just changes to the
1882  * names or unlinks in a directory.
1883  *
1884  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1885  * non-existing inode) and 1 if the name was replayed.
1886  */
1887 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1888 				    struct btrfs_root *root,
1889 				    struct btrfs_path *path,
1890 				    struct extent_buffer *eb,
1891 				    struct btrfs_dir_item *di,
1892 				    struct btrfs_key *key)
1893 {
1894 	char *name;
1895 	int name_len;
1896 	struct btrfs_dir_item *dst_di;
1897 	struct btrfs_key found_key;
1898 	struct btrfs_key log_key;
1899 	struct inode *dir;
1900 	u8 log_type;
1901 	int exists;
1902 	int ret = 0;
1903 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1904 	bool name_added = false;
1905 
1906 	dir = read_one_inode(root, key->objectid);
1907 	if (!dir)
1908 		return -EIO;
1909 
1910 	name_len = btrfs_dir_name_len(eb, di);
1911 	name = kmalloc(name_len, GFP_NOFS);
1912 	if (!name) {
1913 		ret = -ENOMEM;
1914 		goto out;
1915 	}
1916 
1917 	log_type = btrfs_dir_type(eb, di);
1918 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1919 		   name_len);
1920 
1921 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1922 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1923 	if (exists == 0)
1924 		exists = 1;
1925 	else
1926 		exists = 0;
1927 	btrfs_release_path(path);
1928 
1929 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1930 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1931 				       name, name_len, 1);
1932 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1933 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1934 						     key->objectid,
1935 						     key->offset, name,
1936 						     name_len, 1);
1937 	} else {
1938 		/* Corruption */
1939 		ret = -EINVAL;
1940 		goto out;
1941 	}
1942 	if (IS_ERR_OR_NULL(dst_di)) {
1943 		/* we need a sequence number to insert, so we only
1944 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1945 		 */
1946 		if (key->type != BTRFS_DIR_INDEX_KEY)
1947 			goto out;
1948 		goto insert;
1949 	}
1950 
1951 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1952 	/* the existing item matches the logged item */
1953 	if (found_key.objectid == log_key.objectid &&
1954 	    found_key.type == log_key.type &&
1955 	    found_key.offset == log_key.offset &&
1956 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1957 		update_size = false;
1958 		goto out;
1959 	}
1960 
1961 	/*
1962 	 * don't drop the conflicting directory entry if the inode
1963 	 * for the new entry doesn't exist
1964 	 */
1965 	if (!exists)
1966 		goto out;
1967 
1968 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1969 	if (ret)
1970 		goto out;
1971 
1972 	if (key->type == BTRFS_DIR_INDEX_KEY)
1973 		goto insert;
1974 out:
1975 	btrfs_release_path(path);
1976 	if (!ret && update_size) {
1977 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1978 		ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
1979 	}
1980 	kfree(name);
1981 	iput(dir);
1982 	if (!ret && name_added)
1983 		ret = 1;
1984 	return ret;
1985 
1986 insert:
1987 	/*
1988 	 * Check if the inode reference exists in the log for the given name,
1989 	 * inode and parent inode
1990 	 */
1991 	found_key.objectid = log_key.objectid;
1992 	found_key.type = BTRFS_INODE_REF_KEY;
1993 	found_key.offset = key->objectid;
1994 	ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
1995 	if (ret < 0) {
1996 	        goto out;
1997 	} else if (ret) {
1998 	        /* The dentry will be added later. */
1999 	        ret = 0;
2000 	        update_size = false;
2001 	        goto out;
2002 	}
2003 
2004 	found_key.objectid = log_key.objectid;
2005 	found_key.type = BTRFS_INODE_EXTREF_KEY;
2006 	found_key.offset = key->objectid;
2007 	ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2008 			     name_len);
2009 	if (ret < 0) {
2010 		goto out;
2011 	} else if (ret) {
2012 		/* The dentry will be added later. */
2013 		ret = 0;
2014 		update_size = false;
2015 		goto out;
2016 	}
2017 	btrfs_release_path(path);
2018 	ret = insert_one_name(trans, root, key->objectid, key->offset,
2019 			      name, name_len, &log_key);
2020 	if (ret && ret != -ENOENT && ret != -EEXIST)
2021 		goto out;
2022 	if (!ret)
2023 		name_added = true;
2024 	update_size = false;
2025 	ret = 0;
2026 	goto out;
2027 }
2028 
2029 /*
2030  * find all the names in a directory item and reconcile them into
2031  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2032  * one name in a directory item, but the same code gets used for
2033  * both directory index types
2034  */
2035 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2036 					struct btrfs_root *root,
2037 					struct btrfs_path *path,
2038 					struct extent_buffer *eb, int slot,
2039 					struct btrfs_key *key)
2040 {
2041 	int ret = 0;
2042 	u32 item_size = btrfs_item_size_nr(eb, slot);
2043 	struct btrfs_dir_item *di;
2044 	int name_len;
2045 	unsigned long ptr;
2046 	unsigned long ptr_end;
2047 	struct btrfs_path *fixup_path = NULL;
2048 
2049 	ptr = btrfs_item_ptr_offset(eb, slot);
2050 	ptr_end = ptr + item_size;
2051 	while (ptr < ptr_end) {
2052 		di = (struct btrfs_dir_item *)ptr;
2053 		name_len = btrfs_dir_name_len(eb, di);
2054 		ret = replay_one_name(trans, root, path, eb, di, key);
2055 		if (ret < 0)
2056 			break;
2057 		ptr = (unsigned long)(di + 1);
2058 		ptr += name_len;
2059 
2060 		/*
2061 		 * If this entry refers to a non-directory (directories can not
2062 		 * have a link count > 1) and it was added in the transaction
2063 		 * that was not committed, make sure we fixup the link count of
2064 		 * the inode it the entry points to. Otherwise something like
2065 		 * the following would result in a directory pointing to an
2066 		 * inode with a wrong link that does not account for this dir
2067 		 * entry:
2068 		 *
2069 		 * mkdir testdir
2070 		 * touch testdir/foo
2071 		 * touch testdir/bar
2072 		 * sync
2073 		 *
2074 		 * ln testdir/bar testdir/bar_link
2075 		 * ln testdir/foo testdir/foo_link
2076 		 * xfs_io -c "fsync" testdir/bar
2077 		 *
2078 		 * <power failure>
2079 		 *
2080 		 * mount fs, log replay happens
2081 		 *
2082 		 * File foo would remain with a link count of 1 when it has two
2083 		 * entries pointing to it in the directory testdir. This would
2084 		 * make it impossible to ever delete the parent directory has
2085 		 * it would result in stale dentries that can never be deleted.
2086 		 */
2087 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2088 			struct btrfs_key di_key;
2089 
2090 			if (!fixup_path) {
2091 				fixup_path = btrfs_alloc_path();
2092 				if (!fixup_path) {
2093 					ret = -ENOMEM;
2094 					break;
2095 				}
2096 			}
2097 
2098 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2099 			ret = link_to_fixup_dir(trans, root, fixup_path,
2100 						di_key.objectid);
2101 			if (ret)
2102 				break;
2103 		}
2104 		ret = 0;
2105 	}
2106 	btrfs_free_path(fixup_path);
2107 	return ret;
2108 }
2109 
2110 /*
2111  * directory replay has two parts.  There are the standard directory
2112  * items in the log copied from the subvolume, and range items
2113  * created in the log while the subvolume was logged.
2114  *
2115  * The range items tell us which parts of the key space the log
2116  * is authoritative for.  During replay, if a key in the subvolume
2117  * directory is in a logged range item, but not actually in the log
2118  * that means it was deleted from the directory before the fsync
2119  * and should be removed.
2120  */
2121 static noinline int find_dir_range(struct btrfs_root *root,
2122 				   struct btrfs_path *path,
2123 				   u64 dirid, int key_type,
2124 				   u64 *start_ret, u64 *end_ret)
2125 {
2126 	struct btrfs_key key;
2127 	u64 found_end;
2128 	struct btrfs_dir_log_item *item;
2129 	int ret;
2130 	int nritems;
2131 
2132 	if (*start_ret == (u64)-1)
2133 		return 1;
2134 
2135 	key.objectid = dirid;
2136 	key.type = key_type;
2137 	key.offset = *start_ret;
2138 
2139 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2140 	if (ret < 0)
2141 		goto out;
2142 	if (ret > 0) {
2143 		if (path->slots[0] == 0)
2144 			goto out;
2145 		path->slots[0]--;
2146 	}
2147 	if (ret != 0)
2148 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2149 
2150 	if (key.type != key_type || key.objectid != dirid) {
2151 		ret = 1;
2152 		goto next;
2153 	}
2154 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2155 			      struct btrfs_dir_log_item);
2156 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2157 
2158 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2159 		ret = 0;
2160 		*start_ret = key.offset;
2161 		*end_ret = found_end;
2162 		goto out;
2163 	}
2164 	ret = 1;
2165 next:
2166 	/* check the next slot in the tree to see if it is a valid item */
2167 	nritems = btrfs_header_nritems(path->nodes[0]);
2168 	path->slots[0]++;
2169 	if (path->slots[0] >= nritems) {
2170 		ret = btrfs_next_leaf(root, path);
2171 		if (ret)
2172 			goto out;
2173 	}
2174 
2175 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2176 
2177 	if (key.type != key_type || key.objectid != dirid) {
2178 		ret = 1;
2179 		goto out;
2180 	}
2181 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2182 			      struct btrfs_dir_log_item);
2183 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2184 	*start_ret = key.offset;
2185 	*end_ret = found_end;
2186 	ret = 0;
2187 out:
2188 	btrfs_release_path(path);
2189 	return ret;
2190 }
2191 
2192 /*
2193  * this looks for a given directory item in the log.  If the directory
2194  * item is not in the log, the item is removed and the inode it points
2195  * to is unlinked
2196  */
2197 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2198 				      struct btrfs_root *root,
2199 				      struct btrfs_root *log,
2200 				      struct btrfs_path *path,
2201 				      struct btrfs_path *log_path,
2202 				      struct inode *dir,
2203 				      struct btrfs_key *dir_key)
2204 {
2205 	int ret;
2206 	struct extent_buffer *eb;
2207 	int slot;
2208 	u32 item_size;
2209 	struct btrfs_dir_item *di;
2210 	struct btrfs_dir_item *log_di;
2211 	int name_len;
2212 	unsigned long ptr;
2213 	unsigned long ptr_end;
2214 	char *name;
2215 	struct inode *inode;
2216 	struct btrfs_key location;
2217 
2218 again:
2219 	eb = path->nodes[0];
2220 	slot = path->slots[0];
2221 	item_size = btrfs_item_size_nr(eb, slot);
2222 	ptr = btrfs_item_ptr_offset(eb, slot);
2223 	ptr_end = ptr + item_size;
2224 	while (ptr < ptr_end) {
2225 		di = (struct btrfs_dir_item *)ptr;
2226 		name_len = btrfs_dir_name_len(eb, di);
2227 		name = kmalloc(name_len, GFP_NOFS);
2228 		if (!name) {
2229 			ret = -ENOMEM;
2230 			goto out;
2231 		}
2232 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2233 				  name_len);
2234 		log_di = NULL;
2235 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2236 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2237 						       dir_key->objectid,
2238 						       name, name_len, 0);
2239 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2240 			log_di = btrfs_lookup_dir_index_item(trans, log,
2241 						     log_path,
2242 						     dir_key->objectid,
2243 						     dir_key->offset,
2244 						     name, name_len, 0);
2245 		}
2246 		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2247 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2248 			btrfs_release_path(path);
2249 			btrfs_release_path(log_path);
2250 			inode = read_one_inode(root, location.objectid);
2251 			if (!inode) {
2252 				kfree(name);
2253 				return -EIO;
2254 			}
2255 
2256 			ret = link_to_fixup_dir(trans, root,
2257 						path, location.objectid);
2258 			if (ret) {
2259 				kfree(name);
2260 				iput(inode);
2261 				goto out;
2262 			}
2263 
2264 			inc_nlink(inode);
2265 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2266 					BTRFS_I(inode), name, name_len);
2267 			if (!ret)
2268 				ret = btrfs_run_delayed_items(trans);
2269 			kfree(name);
2270 			iput(inode);
2271 			if (ret)
2272 				goto out;
2273 
2274 			/* there might still be more names under this key
2275 			 * check and repeat if required
2276 			 */
2277 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2278 						0, 0);
2279 			if (ret == 0)
2280 				goto again;
2281 			ret = 0;
2282 			goto out;
2283 		} else if (IS_ERR(log_di)) {
2284 			kfree(name);
2285 			return PTR_ERR(log_di);
2286 		}
2287 		btrfs_release_path(log_path);
2288 		kfree(name);
2289 
2290 		ptr = (unsigned long)(di + 1);
2291 		ptr += name_len;
2292 	}
2293 	ret = 0;
2294 out:
2295 	btrfs_release_path(path);
2296 	btrfs_release_path(log_path);
2297 	return ret;
2298 }
2299 
2300 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2301 			      struct btrfs_root *root,
2302 			      struct btrfs_root *log,
2303 			      struct btrfs_path *path,
2304 			      const u64 ino)
2305 {
2306 	struct btrfs_key search_key;
2307 	struct btrfs_path *log_path;
2308 	int i;
2309 	int nritems;
2310 	int ret;
2311 
2312 	log_path = btrfs_alloc_path();
2313 	if (!log_path)
2314 		return -ENOMEM;
2315 
2316 	search_key.objectid = ino;
2317 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2318 	search_key.offset = 0;
2319 again:
2320 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2321 	if (ret < 0)
2322 		goto out;
2323 process_leaf:
2324 	nritems = btrfs_header_nritems(path->nodes[0]);
2325 	for (i = path->slots[0]; i < nritems; i++) {
2326 		struct btrfs_key key;
2327 		struct btrfs_dir_item *di;
2328 		struct btrfs_dir_item *log_di;
2329 		u32 total_size;
2330 		u32 cur;
2331 
2332 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2333 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2334 			ret = 0;
2335 			goto out;
2336 		}
2337 
2338 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2339 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2340 		cur = 0;
2341 		while (cur < total_size) {
2342 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2343 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2344 			u32 this_len = sizeof(*di) + name_len + data_len;
2345 			char *name;
2346 
2347 			name = kmalloc(name_len, GFP_NOFS);
2348 			if (!name) {
2349 				ret = -ENOMEM;
2350 				goto out;
2351 			}
2352 			read_extent_buffer(path->nodes[0], name,
2353 					   (unsigned long)(di + 1), name_len);
2354 
2355 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2356 						    name, name_len, 0);
2357 			btrfs_release_path(log_path);
2358 			if (!log_di) {
2359 				/* Doesn't exist in log tree, so delete it. */
2360 				btrfs_release_path(path);
2361 				di = btrfs_lookup_xattr(trans, root, path, ino,
2362 							name, name_len, -1);
2363 				kfree(name);
2364 				if (IS_ERR(di)) {
2365 					ret = PTR_ERR(di);
2366 					goto out;
2367 				}
2368 				ASSERT(di);
2369 				ret = btrfs_delete_one_dir_name(trans, root,
2370 								path, di);
2371 				if (ret)
2372 					goto out;
2373 				btrfs_release_path(path);
2374 				search_key = key;
2375 				goto again;
2376 			}
2377 			kfree(name);
2378 			if (IS_ERR(log_di)) {
2379 				ret = PTR_ERR(log_di);
2380 				goto out;
2381 			}
2382 			cur += this_len;
2383 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2384 		}
2385 	}
2386 	ret = btrfs_next_leaf(root, path);
2387 	if (ret > 0)
2388 		ret = 0;
2389 	else if (ret == 0)
2390 		goto process_leaf;
2391 out:
2392 	btrfs_free_path(log_path);
2393 	btrfs_release_path(path);
2394 	return ret;
2395 }
2396 
2397 
2398 /*
2399  * deletion replay happens before we copy any new directory items
2400  * out of the log or out of backreferences from inodes.  It
2401  * scans the log to find ranges of keys that log is authoritative for,
2402  * and then scans the directory to find items in those ranges that are
2403  * not present in the log.
2404  *
2405  * Anything we don't find in the log is unlinked and removed from the
2406  * directory.
2407  */
2408 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2409 				       struct btrfs_root *root,
2410 				       struct btrfs_root *log,
2411 				       struct btrfs_path *path,
2412 				       u64 dirid, int del_all)
2413 {
2414 	u64 range_start;
2415 	u64 range_end;
2416 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2417 	int ret = 0;
2418 	struct btrfs_key dir_key;
2419 	struct btrfs_key found_key;
2420 	struct btrfs_path *log_path;
2421 	struct inode *dir;
2422 
2423 	dir_key.objectid = dirid;
2424 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2425 	log_path = btrfs_alloc_path();
2426 	if (!log_path)
2427 		return -ENOMEM;
2428 
2429 	dir = read_one_inode(root, dirid);
2430 	/* it isn't an error if the inode isn't there, that can happen
2431 	 * because we replay the deletes before we copy in the inode item
2432 	 * from the log
2433 	 */
2434 	if (!dir) {
2435 		btrfs_free_path(log_path);
2436 		return 0;
2437 	}
2438 again:
2439 	range_start = 0;
2440 	range_end = 0;
2441 	while (1) {
2442 		if (del_all)
2443 			range_end = (u64)-1;
2444 		else {
2445 			ret = find_dir_range(log, path, dirid, key_type,
2446 					     &range_start, &range_end);
2447 			if (ret != 0)
2448 				break;
2449 		}
2450 
2451 		dir_key.offset = range_start;
2452 		while (1) {
2453 			int nritems;
2454 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2455 						0, 0);
2456 			if (ret < 0)
2457 				goto out;
2458 
2459 			nritems = btrfs_header_nritems(path->nodes[0]);
2460 			if (path->slots[0] >= nritems) {
2461 				ret = btrfs_next_leaf(root, path);
2462 				if (ret == 1)
2463 					break;
2464 				else if (ret < 0)
2465 					goto out;
2466 			}
2467 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2468 					      path->slots[0]);
2469 			if (found_key.objectid != dirid ||
2470 			    found_key.type != dir_key.type)
2471 				goto next_type;
2472 
2473 			if (found_key.offset > range_end)
2474 				break;
2475 
2476 			ret = check_item_in_log(trans, root, log, path,
2477 						log_path, dir,
2478 						&found_key);
2479 			if (ret)
2480 				goto out;
2481 			if (found_key.offset == (u64)-1)
2482 				break;
2483 			dir_key.offset = found_key.offset + 1;
2484 		}
2485 		btrfs_release_path(path);
2486 		if (range_end == (u64)-1)
2487 			break;
2488 		range_start = range_end + 1;
2489 	}
2490 
2491 next_type:
2492 	ret = 0;
2493 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2494 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2495 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2496 		btrfs_release_path(path);
2497 		goto again;
2498 	}
2499 out:
2500 	btrfs_release_path(path);
2501 	btrfs_free_path(log_path);
2502 	iput(dir);
2503 	return ret;
2504 }
2505 
2506 /*
2507  * the process_func used to replay items from the log tree.  This
2508  * gets called in two different stages.  The first stage just looks
2509  * for inodes and makes sure they are all copied into the subvolume.
2510  *
2511  * The second stage copies all the other item types from the log into
2512  * the subvolume.  The two stage approach is slower, but gets rid of
2513  * lots of complexity around inodes referencing other inodes that exist
2514  * only in the log (references come from either directory items or inode
2515  * back refs).
2516  */
2517 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2518 			     struct walk_control *wc, u64 gen, int level)
2519 {
2520 	int nritems;
2521 	struct btrfs_path *path;
2522 	struct btrfs_root *root = wc->replay_dest;
2523 	struct btrfs_key key;
2524 	int i;
2525 	int ret;
2526 
2527 	ret = btrfs_read_buffer(eb, gen, level, NULL);
2528 	if (ret)
2529 		return ret;
2530 
2531 	level = btrfs_header_level(eb);
2532 
2533 	if (level != 0)
2534 		return 0;
2535 
2536 	path = btrfs_alloc_path();
2537 	if (!path)
2538 		return -ENOMEM;
2539 
2540 	nritems = btrfs_header_nritems(eb);
2541 	for (i = 0; i < nritems; i++) {
2542 		btrfs_item_key_to_cpu(eb, &key, i);
2543 
2544 		/* inode keys are done during the first stage */
2545 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2546 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2547 			struct btrfs_inode_item *inode_item;
2548 			u32 mode;
2549 
2550 			inode_item = btrfs_item_ptr(eb, i,
2551 					    struct btrfs_inode_item);
2552 			/*
2553 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2554 			 * and never got linked before the fsync, skip it, as
2555 			 * replaying it is pointless since it would be deleted
2556 			 * later. We skip logging tmpfiles, but it's always
2557 			 * possible we are replaying a log created with a kernel
2558 			 * that used to log tmpfiles.
2559 			 */
2560 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2561 				wc->ignore_cur_inode = true;
2562 				continue;
2563 			} else {
2564 				wc->ignore_cur_inode = false;
2565 			}
2566 			ret = replay_xattr_deletes(wc->trans, root, log,
2567 						   path, key.objectid);
2568 			if (ret)
2569 				break;
2570 			mode = btrfs_inode_mode(eb, inode_item);
2571 			if (S_ISDIR(mode)) {
2572 				ret = replay_dir_deletes(wc->trans,
2573 					 root, log, path, key.objectid, 0);
2574 				if (ret)
2575 					break;
2576 			}
2577 			ret = overwrite_item(wc->trans, root, path,
2578 					     eb, i, &key);
2579 			if (ret)
2580 				break;
2581 
2582 			/*
2583 			 * Before replaying extents, truncate the inode to its
2584 			 * size. We need to do it now and not after log replay
2585 			 * because before an fsync we can have prealloc extents
2586 			 * added beyond the inode's i_size. If we did it after,
2587 			 * through orphan cleanup for example, we would drop
2588 			 * those prealloc extents just after replaying them.
2589 			 */
2590 			if (S_ISREG(mode)) {
2591 				struct btrfs_drop_extents_args drop_args = { 0 };
2592 				struct inode *inode;
2593 				u64 from;
2594 
2595 				inode = read_one_inode(root, key.objectid);
2596 				if (!inode) {
2597 					ret = -EIO;
2598 					break;
2599 				}
2600 				from = ALIGN(i_size_read(inode),
2601 					     root->fs_info->sectorsize);
2602 				drop_args.start = from;
2603 				drop_args.end = (u64)-1;
2604 				drop_args.drop_cache = true;
2605 				ret = btrfs_drop_extents(wc->trans, root,
2606 							 BTRFS_I(inode),
2607 							 &drop_args);
2608 				if (!ret) {
2609 					inode_sub_bytes(inode,
2610 							drop_args.bytes_found);
2611 					/* Update the inode's nbytes. */
2612 					ret = btrfs_update_inode(wc->trans,
2613 							root, BTRFS_I(inode));
2614 				}
2615 				iput(inode);
2616 				if (ret)
2617 					break;
2618 			}
2619 
2620 			ret = link_to_fixup_dir(wc->trans, root,
2621 						path, key.objectid);
2622 			if (ret)
2623 				break;
2624 		}
2625 
2626 		if (wc->ignore_cur_inode)
2627 			continue;
2628 
2629 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2630 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2631 			ret = replay_one_dir_item(wc->trans, root, path,
2632 						  eb, i, &key);
2633 			if (ret)
2634 				break;
2635 		}
2636 
2637 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2638 			continue;
2639 
2640 		/* these keys are simply copied */
2641 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2642 			ret = overwrite_item(wc->trans, root, path,
2643 					     eb, i, &key);
2644 			if (ret)
2645 				break;
2646 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2647 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2648 			ret = add_inode_ref(wc->trans, root, log, path,
2649 					    eb, i, &key);
2650 			if (ret && ret != -ENOENT)
2651 				break;
2652 			ret = 0;
2653 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2654 			ret = replay_one_extent(wc->trans, root, path,
2655 						eb, i, &key);
2656 			if (ret)
2657 				break;
2658 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2659 			ret = replay_one_dir_item(wc->trans, root, path,
2660 						  eb, i, &key);
2661 			if (ret)
2662 				break;
2663 		}
2664 	}
2665 	btrfs_free_path(path);
2666 	return ret;
2667 }
2668 
2669 /*
2670  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2671  */
2672 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2673 {
2674 	struct btrfs_block_group *cache;
2675 
2676 	cache = btrfs_lookup_block_group(fs_info, start);
2677 	if (!cache) {
2678 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2679 		return;
2680 	}
2681 
2682 	spin_lock(&cache->space_info->lock);
2683 	spin_lock(&cache->lock);
2684 	cache->reserved -= fs_info->nodesize;
2685 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2686 	spin_unlock(&cache->lock);
2687 	spin_unlock(&cache->space_info->lock);
2688 
2689 	btrfs_put_block_group(cache);
2690 }
2691 
2692 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2693 				   struct btrfs_root *root,
2694 				   struct btrfs_path *path, int *level,
2695 				   struct walk_control *wc)
2696 {
2697 	struct btrfs_fs_info *fs_info = root->fs_info;
2698 	u64 bytenr;
2699 	u64 ptr_gen;
2700 	struct extent_buffer *next;
2701 	struct extent_buffer *cur;
2702 	u32 blocksize;
2703 	int ret = 0;
2704 
2705 	while (*level > 0) {
2706 		struct btrfs_key first_key;
2707 
2708 		cur = path->nodes[*level];
2709 
2710 		WARN_ON(btrfs_header_level(cur) != *level);
2711 
2712 		if (path->slots[*level] >=
2713 		    btrfs_header_nritems(cur))
2714 			break;
2715 
2716 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2717 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2718 		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2719 		blocksize = fs_info->nodesize;
2720 
2721 		next = btrfs_find_create_tree_block(fs_info, bytenr,
2722 						    btrfs_header_owner(cur),
2723 						    *level - 1);
2724 		if (IS_ERR(next))
2725 			return PTR_ERR(next);
2726 
2727 		if (*level == 1) {
2728 			ret = wc->process_func(root, next, wc, ptr_gen,
2729 					       *level - 1);
2730 			if (ret) {
2731 				free_extent_buffer(next);
2732 				return ret;
2733 			}
2734 
2735 			path->slots[*level]++;
2736 			if (wc->free) {
2737 				ret = btrfs_read_buffer(next, ptr_gen,
2738 							*level - 1, &first_key);
2739 				if (ret) {
2740 					free_extent_buffer(next);
2741 					return ret;
2742 				}
2743 
2744 				if (trans) {
2745 					btrfs_tree_lock(next);
2746 					btrfs_clean_tree_block(next);
2747 					btrfs_wait_tree_block_writeback(next);
2748 					btrfs_tree_unlock(next);
2749 					ret = btrfs_pin_reserved_extent(trans,
2750 							bytenr, blocksize);
2751 					if (ret) {
2752 						free_extent_buffer(next);
2753 						return ret;
2754 					}
2755 				} else {
2756 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2757 						clear_extent_buffer_dirty(next);
2758 					unaccount_log_buffer(fs_info, bytenr);
2759 				}
2760 			}
2761 			free_extent_buffer(next);
2762 			continue;
2763 		}
2764 		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2765 		if (ret) {
2766 			free_extent_buffer(next);
2767 			return ret;
2768 		}
2769 
2770 		if (path->nodes[*level-1])
2771 			free_extent_buffer(path->nodes[*level-1]);
2772 		path->nodes[*level-1] = next;
2773 		*level = btrfs_header_level(next);
2774 		path->slots[*level] = 0;
2775 		cond_resched();
2776 	}
2777 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2778 
2779 	cond_resched();
2780 	return 0;
2781 }
2782 
2783 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2784 				 struct btrfs_root *root,
2785 				 struct btrfs_path *path, int *level,
2786 				 struct walk_control *wc)
2787 {
2788 	struct btrfs_fs_info *fs_info = root->fs_info;
2789 	int i;
2790 	int slot;
2791 	int ret;
2792 
2793 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2794 		slot = path->slots[i];
2795 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2796 			path->slots[i]++;
2797 			*level = i;
2798 			WARN_ON(*level == 0);
2799 			return 0;
2800 		} else {
2801 			ret = wc->process_func(root, path->nodes[*level], wc,
2802 				 btrfs_header_generation(path->nodes[*level]),
2803 				 *level);
2804 			if (ret)
2805 				return ret;
2806 
2807 			if (wc->free) {
2808 				struct extent_buffer *next;
2809 
2810 				next = path->nodes[*level];
2811 
2812 				if (trans) {
2813 					btrfs_tree_lock(next);
2814 					btrfs_clean_tree_block(next);
2815 					btrfs_wait_tree_block_writeback(next);
2816 					btrfs_tree_unlock(next);
2817 					ret = btrfs_pin_reserved_extent(trans,
2818 						     path->nodes[*level]->start,
2819 						     path->nodes[*level]->len);
2820 					if (ret)
2821 						return ret;
2822 				} else {
2823 					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2824 						clear_extent_buffer_dirty(next);
2825 
2826 					unaccount_log_buffer(fs_info,
2827 						path->nodes[*level]->start);
2828 				}
2829 			}
2830 			free_extent_buffer(path->nodes[*level]);
2831 			path->nodes[*level] = NULL;
2832 			*level = i + 1;
2833 		}
2834 	}
2835 	return 1;
2836 }
2837 
2838 /*
2839  * drop the reference count on the tree rooted at 'snap'.  This traverses
2840  * the tree freeing any blocks that have a ref count of zero after being
2841  * decremented.
2842  */
2843 static int walk_log_tree(struct btrfs_trans_handle *trans,
2844 			 struct btrfs_root *log, struct walk_control *wc)
2845 {
2846 	struct btrfs_fs_info *fs_info = log->fs_info;
2847 	int ret = 0;
2848 	int wret;
2849 	int level;
2850 	struct btrfs_path *path;
2851 	int orig_level;
2852 
2853 	path = btrfs_alloc_path();
2854 	if (!path)
2855 		return -ENOMEM;
2856 
2857 	level = btrfs_header_level(log->node);
2858 	orig_level = level;
2859 	path->nodes[level] = log->node;
2860 	atomic_inc(&log->node->refs);
2861 	path->slots[level] = 0;
2862 
2863 	while (1) {
2864 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2865 		if (wret > 0)
2866 			break;
2867 		if (wret < 0) {
2868 			ret = wret;
2869 			goto out;
2870 		}
2871 
2872 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2873 		if (wret > 0)
2874 			break;
2875 		if (wret < 0) {
2876 			ret = wret;
2877 			goto out;
2878 		}
2879 	}
2880 
2881 	/* was the root node processed? if not, catch it here */
2882 	if (path->nodes[orig_level]) {
2883 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2884 			 btrfs_header_generation(path->nodes[orig_level]),
2885 			 orig_level);
2886 		if (ret)
2887 			goto out;
2888 		if (wc->free) {
2889 			struct extent_buffer *next;
2890 
2891 			next = path->nodes[orig_level];
2892 
2893 			if (trans) {
2894 				btrfs_tree_lock(next);
2895 				btrfs_clean_tree_block(next);
2896 				btrfs_wait_tree_block_writeback(next);
2897 				btrfs_tree_unlock(next);
2898 				ret = btrfs_pin_reserved_extent(trans,
2899 						next->start, next->len);
2900 				if (ret)
2901 					goto out;
2902 			} else {
2903 				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2904 					clear_extent_buffer_dirty(next);
2905 				unaccount_log_buffer(fs_info, next->start);
2906 			}
2907 		}
2908 	}
2909 
2910 out:
2911 	btrfs_free_path(path);
2912 	return ret;
2913 }
2914 
2915 /*
2916  * helper function to update the item for a given subvolumes log root
2917  * in the tree of log roots
2918  */
2919 static int update_log_root(struct btrfs_trans_handle *trans,
2920 			   struct btrfs_root *log,
2921 			   struct btrfs_root_item *root_item)
2922 {
2923 	struct btrfs_fs_info *fs_info = log->fs_info;
2924 	int ret;
2925 
2926 	if (log->log_transid == 1) {
2927 		/* insert root item on the first sync */
2928 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2929 				&log->root_key, root_item);
2930 	} else {
2931 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2932 				&log->root_key, root_item);
2933 	}
2934 	return ret;
2935 }
2936 
2937 static void wait_log_commit(struct btrfs_root *root, int transid)
2938 {
2939 	DEFINE_WAIT(wait);
2940 	int index = transid % 2;
2941 
2942 	/*
2943 	 * we only allow two pending log transactions at a time,
2944 	 * so we know that if ours is more than 2 older than the
2945 	 * current transaction, we're done
2946 	 */
2947 	for (;;) {
2948 		prepare_to_wait(&root->log_commit_wait[index],
2949 				&wait, TASK_UNINTERRUPTIBLE);
2950 
2951 		if (!(root->log_transid_committed < transid &&
2952 		      atomic_read(&root->log_commit[index])))
2953 			break;
2954 
2955 		mutex_unlock(&root->log_mutex);
2956 		schedule();
2957 		mutex_lock(&root->log_mutex);
2958 	}
2959 	finish_wait(&root->log_commit_wait[index], &wait);
2960 }
2961 
2962 static void wait_for_writer(struct btrfs_root *root)
2963 {
2964 	DEFINE_WAIT(wait);
2965 
2966 	for (;;) {
2967 		prepare_to_wait(&root->log_writer_wait, &wait,
2968 				TASK_UNINTERRUPTIBLE);
2969 		if (!atomic_read(&root->log_writers))
2970 			break;
2971 
2972 		mutex_unlock(&root->log_mutex);
2973 		schedule();
2974 		mutex_lock(&root->log_mutex);
2975 	}
2976 	finish_wait(&root->log_writer_wait, &wait);
2977 }
2978 
2979 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2980 					struct btrfs_log_ctx *ctx)
2981 {
2982 	if (!ctx)
2983 		return;
2984 
2985 	mutex_lock(&root->log_mutex);
2986 	list_del_init(&ctx->list);
2987 	mutex_unlock(&root->log_mutex);
2988 }
2989 
2990 /*
2991  * Invoked in log mutex context, or be sure there is no other task which
2992  * can access the list.
2993  */
2994 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2995 					     int index, int error)
2996 {
2997 	struct btrfs_log_ctx *ctx;
2998 	struct btrfs_log_ctx *safe;
2999 
3000 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3001 		list_del_init(&ctx->list);
3002 		ctx->log_ret = error;
3003 	}
3004 
3005 	INIT_LIST_HEAD(&root->log_ctxs[index]);
3006 }
3007 
3008 /*
3009  * btrfs_sync_log does sends a given tree log down to the disk and
3010  * updates the super blocks to record it.  When this call is done,
3011  * you know that any inodes previously logged are safely on disk only
3012  * if it returns 0.
3013  *
3014  * Any other return value means you need to call btrfs_commit_transaction.
3015  * Some of the edge cases for fsyncing directories that have had unlinks
3016  * or renames done in the past mean that sometimes the only safe
3017  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3018  * that has happened.
3019  */
3020 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3021 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3022 {
3023 	int index1;
3024 	int index2;
3025 	int mark;
3026 	int ret;
3027 	struct btrfs_fs_info *fs_info = root->fs_info;
3028 	struct btrfs_root *log = root->log_root;
3029 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3030 	struct btrfs_root_item new_root_item;
3031 	int log_transid = 0;
3032 	struct btrfs_log_ctx root_log_ctx;
3033 	struct blk_plug plug;
3034 	u64 log_root_start;
3035 	u64 log_root_level;
3036 
3037 	mutex_lock(&root->log_mutex);
3038 	log_transid = ctx->log_transid;
3039 	if (root->log_transid_committed >= log_transid) {
3040 		mutex_unlock(&root->log_mutex);
3041 		return ctx->log_ret;
3042 	}
3043 
3044 	index1 = log_transid % 2;
3045 	if (atomic_read(&root->log_commit[index1])) {
3046 		wait_log_commit(root, log_transid);
3047 		mutex_unlock(&root->log_mutex);
3048 		return ctx->log_ret;
3049 	}
3050 	ASSERT(log_transid == root->log_transid);
3051 	atomic_set(&root->log_commit[index1], 1);
3052 
3053 	/* wait for previous tree log sync to complete */
3054 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3055 		wait_log_commit(root, log_transid - 1);
3056 
3057 	while (1) {
3058 		int batch = atomic_read(&root->log_batch);
3059 		/* when we're on an ssd, just kick the log commit out */
3060 		if (!btrfs_test_opt(fs_info, SSD) &&
3061 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3062 			mutex_unlock(&root->log_mutex);
3063 			schedule_timeout_uninterruptible(1);
3064 			mutex_lock(&root->log_mutex);
3065 		}
3066 		wait_for_writer(root);
3067 		if (batch == atomic_read(&root->log_batch))
3068 			break;
3069 	}
3070 
3071 	/* bail out if we need to do a full commit */
3072 	if (btrfs_need_log_full_commit(trans)) {
3073 		ret = -EAGAIN;
3074 		mutex_unlock(&root->log_mutex);
3075 		goto out;
3076 	}
3077 
3078 	if (log_transid % 2 == 0)
3079 		mark = EXTENT_DIRTY;
3080 	else
3081 		mark = EXTENT_NEW;
3082 
3083 	/* we start IO on  all the marked extents here, but we don't actually
3084 	 * wait for them until later.
3085 	 */
3086 	blk_start_plug(&plug);
3087 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3088 	if (ret) {
3089 		blk_finish_plug(&plug);
3090 		btrfs_abort_transaction(trans, ret);
3091 		btrfs_set_log_full_commit(trans);
3092 		mutex_unlock(&root->log_mutex);
3093 		goto out;
3094 	}
3095 
3096 	/*
3097 	 * We _must_ update under the root->log_mutex in order to make sure we
3098 	 * have a consistent view of the log root we are trying to commit at
3099 	 * this moment.
3100 	 *
3101 	 * We _must_ copy this into a local copy, because we are not holding the
3102 	 * log_root_tree->log_mutex yet.  This is important because when we
3103 	 * commit the log_root_tree we must have a consistent view of the
3104 	 * log_root_tree when we update the super block to point at the
3105 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3106 	 * with the commit and possibly point at the new block which we may not
3107 	 * have written out.
3108 	 */
3109 	btrfs_set_root_node(&log->root_item, log->node);
3110 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3111 
3112 	root->log_transid++;
3113 	log->log_transid = root->log_transid;
3114 	root->log_start_pid = 0;
3115 	/*
3116 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3117 	 * in their headers. new modifications of the log will be written to
3118 	 * new positions. so it's safe to allow log writers to go in.
3119 	 */
3120 	mutex_unlock(&root->log_mutex);
3121 
3122 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3123 
3124 	mutex_lock(&log_root_tree->log_mutex);
3125 
3126 	index2 = log_root_tree->log_transid % 2;
3127 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3128 	root_log_ctx.log_transid = log_root_tree->log_transid;
3129 
3130 	/*
3131 	 * Now we are safe to update the log_root_tree because we're under the
3132 	 * log_mutex, and we're a current writer so we're holding the commit
3133 	 * open until we drop the log_mutex.
3134 	 */
3135 	ret = update_log_root(trans, log, &new_root_item);
3136 	if (ret) {
3137 		if (!list_empty(&root_log_ctx.list))
3138 			list_del_init(&root_log_ctx.list);
3139 
3140 		blk_finish_plug(&plug);
3141 		btrfs_set_log_full_commit(trans);
3142 
3143 		if (ret != -ENOSPC) {
3144 			btrfs_abort_transaction(trans, ret);
3145 			mutex_unlock(&log_root_tree->log_mutex);
3146 			goto out;
3147 		}
3148 		btrfs_wait_tree_log_extents(log, mark);
3149 		mutex_unlock(&log_root_tree->log_mutex);
3150 		ret = -EAGAIN;
3151 		goto out;
3152 	}
3153 
3154 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3155 		blk_finish_plug(&plug);
3156 		list_del_init(&root_log_ctx.list);
3157 		mutex_unlock(&log_root_tree->log_mutex);
3158 		ret = root_log_ctx.log_ret;
3159 		goto out;
3160 	}
3161 
3162 	index2 = root_log_ctx.log_transid % 2;
3163 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3164 		blk_finish_plug(&plug);
3165 		ret = btrfs_wait_tree_log_extents(log, mark);
3166 		wait_log_commit(log_root_tree,
3167 				root_log_ctx.log_transid);
3168 		mutex_unlock(&log_root_tree->log_mutex);
3169 		if (!ret)
3170 			ret = root_log_ctx.log_ret;
3171 		goto out;
3172 	}
3173 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3174 	atomic_set(&log_root_tree->log_commit[index2], 1);
3175 
3176 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3177 		wait_log_commit(log_root_tree,
3178 				root_log_ctx.log_transid - 1);
3179 	}
3180 
3181 	/*
3182 	 * now that we've moved on to the tree of log tree roots,
3183 	 * check the full commit flag again
3184 	 */
3185 	if (btrfs_need_log_full_commit(trans)) {
3186 		blk_finish_plug(&plug);
3187 		btrfs_wait_tree_log_extents(log, mark);
3188 		mutex_unlock(&log_root_tree->log_mutex);
3189 		ret = -EAGAIN;
3190 		goto out_wake_log_root;
3191 	}
3192 
3193 	ret = btrfs_write_marked_extents(fs_info,
3194 					 &log_root_tree->dirty_log_pages,
3195 					 EXTENT_DIRTY | EXTENT_NEW);
3196 	blk_finish_plug(&plug);
3197 	if (ret) {
3198 		btrfs_set_log_full_commit(trans);
3199 		btrfs_abort_transaction(trans, ret);
3200 		mutex_unlock(&log_root_tree->log_mutex);
3201 		goto out_wake_log_root;
3202 	}
3203 	ret = btrfs_wait_tree_log_extents(log, mark);
3204 	if (!ret)
3205 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3206 						  EXTENT_NEW | EXTENT_DIRTY);
3207 	if (ret) {
3208 		btrfs_set_log_full_commit(trans);
3209 		mutex_unlock(&log_root_tree->log_mutex);
3210 		goto out_wake_log_root;
3211 	}
3212 
3213 	log_root_start = log_root_tree->node->start;
3214 	log_root_level = btrfs_header_level(log_root_tree->node);
3215 	log_root_tree->log_transid++;
3216 	mutex_unlock(&log_root_tree->log_mutex);
3217 
3218 	/*
3219 	 * Here we are guaranteed that nobody is going to write the superblock
3220 	 * for the current transaction before us and that neither we do write
3221 	 * our superblock before the previous transaction finishes its commit
3222 	 * and writes its superblock, because:
3223 	 *
3224 	 * 1) We are holding a handle on the current transaction, so no body
3225 	 *    can commit it until we release the handle;
3226 	 *
3227 	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3228 	 *    if the previous transaction is still committing, and hasn't yet
3229 	 *    written its superblock, we wait for it to do it, because a
3230 	 *    transaction commit acquires the tree_log_mutex when the commit
3231 	 *    begins and releases it only after writing its superblock.
3232 	 */
3233 	mutex_lock(&fs_info->tree_log_mutex);
3234 	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3235 	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3236 	ret = write_all_supers(fs_info, 1);
3237 	mutex_unlock(&fs_info->tree_log_mutex);
3238 	if (ret) {
3239 		btrfs_set_log_full_commit(trans);
3240 		btrfs_abort_transaction(trans, ret);
3241 		goto out_wake_log_root;
3242 	}
3243 
3244 	mutex_lock(&root->log_mutex);
3245 	if (root->last_log_commit < log_transid)
3246 		root->last_log_commit = log_transid;
3247 	mutex_unlock(&root->log_mutex);
3248 
3249 out_wake_log_root:
3250 	mutex_lock(&log_root_tree->log_mutex);
3251 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3252 
3253 	log_root_tree->log_transid_committed++;
3254 	atomic_set(&log_root_tree->log_commit[index2], 0);
3255 	mutex_unlock(&log_root_tree->log_mutex);
3256 
3257 	/*
3258 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3259 	 * all the updates above are seen by the woken threads. It might not be
3260 	 * necessary, but proving that seems to be hard.
3261 	 */
3262 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3263 out:
3264 	mutex_lock(&root->log_mutex);
3265 	btrfs_remove_all_log_ctxs(root, index1, ret);
3266 	root->log_transid_committed++;
3267 	atomic_set(&root->log_commit[index1], 0);
3268 	mutex_unlock(&root->log_mutex);
3269 
3270 	/*
3271 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3272 	 * all the updates above are seen by the woken threads. It might not be
3273 	 * necessary, but proving that seems to be hard.
3274 	 */
3275 	cond_wake_up(&root->log_commit_wait[index1]);
3276 	return ret;
3277 }
3278 
3279 static void free_log_tree(struct btrfs_trans_handle *trans,
3280 			  struct btrfs_root *log)
3281 {
3282 	int ret;
3283 	struct walk_control wc = {
3284 		.free = 1,
3285 		.process_func = process_one_buffer
3286 	};
3287 
3288 	ret = walk_log_tree(trans, log, &wc);
3289 	if (ret) {
3290 		if (trans)
3291 			btrfs_abort_transaction(trans, ret);
3292 		else
3293 			btrfs_handle_fs_error(log->fs_info, ret, NULL);
3294 	}
3295 
3296 	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3297 			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3298 	extent_io_tree_release(&log->log_csum_range);
3299 	btrfs_put_root(log);
3300 }
3301 
3302 /*
3303  * free all the extents used by the tree log.  This should be called
3304  * at commit time of the full transaction
3305  */
3306 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3307 {
3308 	if (root->log_root) {
3309 		free_log_tree(trans, root->log_root);
3310 		root->log_root = NULL;
3311 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3312 	}
3313 	return 0;
3314 }
3315 
3316 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3317 			     struct btrfs_fs_info *fs_info)
3318 {
3319 	if (fs_info->log_root_tree) {
3320 		free_log_tree(trans, fs_info->log_root_tree);
3321 		fs_info->log_root_tree = NULL;
3322 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3323 	}
3324 	return 0;
3325 }
3326 
3327 /*
3328  * Check if an inode was logged in the current transaction. We can't always rely
3329  * on an inode's logged_trans value, because it's an in-memory only field and
3330  * therefore not persisted. This means that its value is lost if the inode gets
3331  * evicted and loaded again from disk (in which case it has a value of 0, and
3332  * certainly it is smaller then any possible transaction ID), when that happens
3333  * the full_sync flag is set in the inode's runtime flags, so on that case we
3334  * assume eviction happened and ignore the logged_trans value, assuming the
3335  * worst case, that the inode was logged before in the current transaction.
3336  */
3337 static bool inode_logged(struct btrfs_trans_handle *trans,
3338 			 struct btrfs_inode *inode)
3339 {
3340 	if (inode->logged_trans == trans->transid)
3341 		return true;
3342 
3343 	if (inode->last_trans == trans->transid &&
3344 	    test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3345 	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3346 		return true;
3347 
3348 	return false;
3349 }
3350 
3351 /*
3352  * If both a file and directory are logged, and unlinks or renames are
3353  * mixed in, we have a few interesting corners:
3354  *
3355  * create file X in dir Y
3356  * link file X to X.link in dir Y
3357  * fsync file X
3358  * unlink file X but leave X.link
3359  * fsync dir Y
3360  *
3361  * After a crash we would expect only X.link to exist.  But file X
3362  * didn't get fsync'd again so the log has back refs for X and X.link.
3363  *
3364  * We solve this by removing directory entries and inode backrefs from the
3365  * log when a file that was logged in the current transaction is
3366  * unlinked.  Any later fsync will include the updated log entries, and
3367  * we'll be able to reconstruct the proper directory items from backrefs.
3368  *
3369  * This optimizations allows us to avoid relogging the entire inode
3370  * or the entire directory.
3371  */
3372 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3373 				 struct btrfs_root *root,
3374 				 const char *name, int name_len,
3375 				 struct btrfs_inode *dir, u64 index)
3376 {
3377 	struct btrfs_root *log;
3378 	struct btrfs_dir_item *di;
3379 	struct btrfs_path *path;
3380 	int ret;
3381 	int err = 0;
3382 	int bytes_del = 0;
3383 	u64 dir_ino = btrfs_ino(dir);
3384 
3385 	if (!inode_logged(trans, dir))
3386 		return 0;
3387 
3388 	ret = join_running_log_trans(root);
3389 	if (ret)
3390 		return 0;
3391 
3392 	mutex_lock(&dir->log_mutex);
3393 
3394 	log = root->log_root;
3395 	path = btrfs_alloc_path();
3396 	if (!path) {
3397 		err = -ENOMEM;
3398 		goto out_unlock;
3399 	}
3400 
3401 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3402 				   name, name_len, -1);
3403 	if (IS_ERR(di)) {
3404 		err = PTR_ERR(di);
3405 		goto fail;
3406 	}
3407 	if (di) {
3408 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3409 		bytes_del += name_len;
3410 		if (ret) {
3411 			err = ret;
3412 			goto fail;
3413 		}
3414 	}
3415 	btrfs_release_path(path);
3416 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3417 					 index, name, name_len, -1);
3418 	if (IS_ERR(di)) {
3419 		err = PTR_ERR(di);
3420 		goto fail;
3421 	}
3422 	if (di) {
3423 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3424 		bytes_del += name_len;
3425 		if (ret) {
3426 			err = ret;
3427 			goto fail;
3428 		}
3429 	}
3430 
3431 	/* update the directory size in the log to reflect the names
3432 	 * we have removed
3433 	 */
3434 	if (bytes_del) {
3435 		struct btrfs_key key;
3436 
3437 		key.objectid = dir_ino;
3438 		key.offset = 0;
3439 		key.type = BTRFS_INODE_ITEM_KEY;
3440 		btrfs_release_path(path);
3441 
3442 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3443 		if (ret < 0) {
3444 			err = ret;
3445 			goto fail;
3446 		}
3447 		if (ret == 0) {
3448 			struct btrfs_inode_item *item;
3449 			u64 i_size;
3450 
3451 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3452 					      struct btrfs_inode_item);
3453 			i_size = btrfs_inode_size(path->nodes[0], item);
3454 			if (i_size > bytes_del)
3455 				i_size -= bytes_del;
3456 			else
3457 				i_size = 0;
3458 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3459 			btrfs_mark_buffer_dirty(path->nodes[0]);
3460 		} else
3461 			ret = 0;
3462 		btrfs_release_path(path);
3463 	}
3464 fail:
3465 	btrfs_free_path(path);
3466 out_unlock:
3467 	mutex_unlock(&dir->log_mutex);
3468 	if (err == -ENOSPC) {
3469 		btrfs_set_log_full_commit(trans);
3470 		err = 0;
3471 	} else if (err < 0 && err != -ENOENT) {
3472 		/* ENOENT can be returned if the entry hasn't been fsynced yet */
3473 		btrfs_abort_transaction(trans, err);
3474 	}
3475 
3476 	btrfs_end_log_trans(root);
3477 
3478 	return err;
3479 }
3480 
3481 /* see comments for btrfs_del_dir_entries_in_log */
3482 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3483 			       struct btrfs_root *root,
3484 			       const char *name, int name_len,
3485 			       struct btrfs_inode *inode, u64 dirid)
3486 {
3487 	struct btrfs_root *log;
3488 	u64 index;
3489 	int ret;
3490 
3491 	if (!inode_logged(trans, inode))
3492 		return 0;
3493 
3494 	ret = join_running_log_trans(root);
3495 	if (ret)
3496 		return 0;
3497 	log = root->log_root;
3498 	mutex_lock(&inode->log_mutex);
3499 
3500 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3501 				  dirid, &index);
3502 	mutex_unlock(&inode->log_mutex);
3503 	if (ret == -ENOSPC) {
3504 		btrfs_set_log_full_commit(trans);
3505 		ret = 0;
3506 	} else if (ret < 0 && ret != -ENOENT)
3507 		btrfs_abort_transaction(trans, ret);
3508 	btrfs_end_log_trans(root);
3509 
3510 	return ret;
3511 }
3512 
3513 /*
3514  * creates a range item in the log for 'dirid'.  first_offset and
3515  * last_offset tell us which parts of the key space the log should
3516  * be considered authoritative for.
3517  */
3518 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3519 				       struct btrfs_root *log,
3520 				       struct btrfs_path *path,
3521 				       int key_type, u64 dirid,
3522 				       u64 first_offset, u64 last_offset)
3523 {
3524 	int ret;
3525 	struct btrfs_key key;
3526 	struct btrfs_dir_log_item *item;
3527 
3528 	key.objectid = dirid;
3529 	key.offset = first_offset;
3530 	if (key_type == BTRFS_DIR_ITEM_KEY)
3531 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3532 	else
3533 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3534 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3535 	if (ret)
3536 		return ret;
3537 
3538 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3539 			      struct btrfs_dir_log_item);
3540 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3541 	btrfs_mark_buffer_dirty(path->nodes[0]);
3542 	btrfs_release_path(path);
3543 	return 0;
3544 }
3545 
3546 /*
3547  * log all the items included in the current transaction for a given
3548  * directory.  This also creates the range items in the log tree required
3549  * to replay anything deleted before the fsync
3550  */
3551 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3552 			  struct btrfs_root *root, struct btrfs_inode *inode,
3553 			  struct btrfs_path *path,
3554 			  struct btrfs_path *dst_path, int key_type,
3555 			  struct btrfs_log_ctx *ctx,
3556 			  u64 min_offset, u64 *last_offset_ret)
3557 {
3558 	struct btrfs_key min_key;
3559 	struct btrfs_root *log = root->log_root;
3560 	struct extent_buffer *src;
3561 	int err = 0;
3562 	int ret;
3563 	int i;
3564 	int nritems;
3565 	u64 first_offset = min_offset;
3566 	u64 last_offset = (u64)-1;
3567 	u64 ino = btrfs_ino(inode);
3568 
3569 	log = root->log_root;
3570 
3571 	min_key.objectid = ino;
3572 	min_key.type = key_type;
3573 	min_key.offset = min_offset;
3574 
3575 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3576 
3577 	/*
3578 	 * we didn't find anything from this transaction, see if there
3579 	 * is anything at all
3580 	 */
3581 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3582 		min_key.objectid = ino;
3583 		min_key.type = key_type;
3584 		min_key.offset = (u64)-1;
3585 		btrfs_release_path(path);
3586 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3587 		if (ret < 0) {
3588 			btrfs_release_path(path);
3589 			return ret;
3590 		}
3591 		ret = btrfs_previous_item(root, path, ino, key_type);
3592 
3593 		/* if ret == 0 there are items for this type,
3594 		 * create a range to tell us the last key of this type.
3595 		 * otherwise, there are no items in this directory after
3596 		 * *min_offset, and we create a range to indicate that.
3597 		 */
3598 		if (ret == 0) {
3599 			struct btrfs_key tmp;
3600 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3601 					      path->slots[0]);
3602 			if (key_type == tmp.type)
3603 				first_offset = max(min_offset, tmp.offset) + 1;
3604 		}
3605 		goto done;
3606 	}
3607 
3608 	/* go backward to find any previous key */
3609 	ret = btrfs_previous_item(root, path, ino, key_type);
3610 	if (ret == 0) {
3611 		struct btrfs_key tmp;
3612 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3613 		if (key_type == tmp.type) {
3614 			first_offset = tmp.offset;
3615 			ret = overwrite_item(trans, log, dst_path,
3616 					     path->nodes[0], path->slots[0],
3617 					     &tmp);
3618 			if (ret) {
3619 				err = ret;
3620 				goto done;
3621 			}
3622 		}
3623 	}
3624 	btrfs_release_path(path);
3625 
3626 	/*
3627 	 * Find the first key from this transaction again.  See the note for
3628 	 * log_new_dir_dentries, if we're logging a directory recursively we
3629 	 * won't be holding its i_mutex, which means we can modify the directory
3630 	 * while we're logging it.  If we remove an entry between our first
3631 	 * search and this search we'll not find the key again and can just
3632 	 * bail.
3633 	 */
3634 search:
3635 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3636 	if (ret != 0)
3637 		goto done;
3638 
3639 	/*
3640 	 * we have a block from this transaction, log every item in it
3641 	 * from our directory
3642 	 */
3643 	while (1) {
3644 		struct btrfs_key tmp;
3645 		src = path->nodes[0];
3646 		nritems = btrfs_header_nritems(src);
3647 		for (i = path->slots[0]; i < nritems; i++) {
3648 			struct btrfs_dir_item *di;
3649 
3650 			btrfs_item_key_to_cpu(src, &min_key, i);
3651 
3652 			if (min_key.objectid != ino || min_key.type != key_type)
3653 				goto done;
3654 
3655 			if (need_resched()) {
3656 				btrfs_release_path(path);
3657 				cond_resched();
3658 				goto search;
3659 			}
3660 
3661 			ret = overwrite_item(trans, log, dst_path, src, i,
3662 					     &min_key);
3663 			if (ret) {
3664 				err = ret;
3665 				goto done;
3666 			}
3667 
3668 			/*
3669 			 * We must make sure that when we log a directory entry,
3670 			 * the corresponding inode, after log replay, has a
3671 			 * matching link count. For example:
3672 			 *
3673 			 * touch foo
3674 			 * mkdir mydir
3675 			 * sync
3676 			 * ln foo mydir/bar
3677 			 * xfs_io -c "fsync" mydir
3678 			 * <crash>
3679 			 * <mount fs and log replay>
3680 			 *
3681 			 * Would result in a fsync log that when replayed, our
3682 			 * file inode would have a link count of 1, but we get
3683 			 * two directory entries pointing to the same inode.
3684 			 * After removing one of the names, it would not be
3685 			 * possible to remove the other name, which resulted
3686 			 * always in stale file handle errors, and would not
3687 			 * be possible to rmdir the parent directory, since
3688 			 * its i_size could never decrement to the value
3689 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3690 			 */
3691 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3692 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3693 			if (ctx &&
3694 			    (btrfs_dir_transid(src, di) == trans->transid ||
3695 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3696 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3697 				ctx->log_new_dentries = true;
3698 		}
3699 		path->slots[0] = nritems;
3700 
3701 		/*
3702 		 * look ahead to the next item and see if it is also
3703 		 * from this directory and from this transaction
3704 		 */
3705 		ret = btrfs_next_leaf(root, path);
3706 		if (ret) {
3707 			if (ret == 1)
3708 				last_offset = (u64)-1;
3709 			else
3710 				err = ret;
3711 			goto done;
3712 		}
3713 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3714 		if (tmp.objectid != ino || tmp.type != key_type) {
3715 			last_offset = (u64)-1;
3716 			goto done;
3717 		}
3718 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3719 			ret = overwrite_item(trans, log, dst_path,
3720 					     path->nodes[0], path->slots[0],
3721 					     &tmp);
3722 			if (ret)
3723 				err = ret;
3724 			else
3725 				last_offset = tmp.offset;
3726 			goto done;
3727 		}
3728 	}
3729 done:
3730 	btrfs_release_path(path);
3731 	btrfs_release_path(dst_path);
3732 
3733 	if (err == 0) {
3734 		*last_offset_ret = last_offset;
3735 		/*
3736 		 * insert the log range keys to indicate where the log
3737 		 * is valid
3738 		 */
3739 		ret = insert_dir_log_key(trans, log, path, key_type,
3740 					 ino, first_offset, last_offset);
3741 		if (ret)
3742 			err = ret;
3743 	}
3744 	return err;
3745 }
3746 
3747 /*
3748  * logging directories is very similar to logging inodes, We find all the items
3749  * from the current transaction and write them to the log.
3750  *
3751  * The recovery code scans the directory in the subvolume, and if it finds a
3752  * key in the range logged that is not present in the log tree, then it means
3753  * that dir entry was unlinked during the transaction.
3754  *
3755  * In order for that scan to work, we must include one key smaller than
3756  * the smallest logged by this transaction and one key larger than the largest
3757  * key logged by this transaction.
3758  */
3759 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3760 			  struct btrfs_root *root, struct btrfs_inode *inode,
3761 			  struct btrfs_path *path,
3762 			  struct btrfs_path *dst_path,
3763 			  struct btrfs_log_ctx *ctx)
3764 {
3765 	u64 min_key;
3766 	u64 max_key;
3767 	int ret;
3768 	int key_type = BTRFS_DIR_ITEM_KEY;
3769 
3770 again:
3771 	min_key = 0;
3772 	max_key = 0;
3773 	while (1) {
3774 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3775 				ctx, min_key, &max_key);
3776 		if (ret)
3777 			return ret;
3778 		if (max_key == (u64)-1)
3779 			break;
3780 		min_key = max_key + 1;
3781 	}
3782 
3783 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3784 		key_type = BTRFS_DIR_INDEX_KEY;
3785 		goto again;
3786 	}
3787 	return 0;
3788 }
3789 
3790 /*
3791  * a helper function to drop items from the log before we relog an
3792  * inode.  max_key_type indicates the highest item type to remove.
3793  * This cannot be run for file data extents because it does not
3794  * free the extents they point to.
3795  */
3796 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3797 				  struct btrfs_root *log,
3798 				  struct btrfs_path *path,
3799 				  u64 objectid, int max_key_type)
3800 {
3801 	int ret;
3802 	struct btrfs_key key;
3803 	struct btrfs_key found_key;
3804 	int start_slot;
3805 
3806 	key.objectid = objectid;
3807 	key.type = max_key_type;
3808 	key.offset = (u64)-1;
3809 
3810 	while (1) {
3811 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3812 		BUG_ON(ret == 0); /* Logic error */
3813 		if (ret < 0)
3814 			break;
3815 
3816 		if (path->slots[0] == 0)
3817 			break;
3818 
3819 		path->slots[0]--;
3820 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3821 				      path->slots[0]);
3822 
3823 		if (found_key.objectid != objectid)
3824 			break;
3825 
3826 		found_key.offset = 0;
3827 		found_key.type = 0;
3828 		ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
3829 		if (ret < 0)
3830 			break;
3831 
3832 		ret = btrfs_del_items(trans, log, path, start_slot,
3833 				      path->slots[0] - start_slot + 1);
3834 		/*
3835 		 * If start slot isn't 0 then we don't need to re-search, we've
3836 		 * found the last guy with the objectid in this tree.
3837 		 */
3838 		if (ret || start_slot != 0)
3839 			break;
3840 		btrfs_release_path(path);
3841 	}
3842 	btrfs_release_path(path);
3843 	if (ret > 0)
3844 		ret = 0;
3845 	return ret;
3846 }
3847 
3848 static void fill_inode_item(struct btrfs_trans_handle *trans,
3849 			    struct extent_buffer *leaf,
3850 			    struct btrfs_inode_item *item,
3851 			    struct inode *inode, int log_inode_only,
3852 			    u64 logged_isize)
3853 {
3854 	struct btrfs_map_token token;
3855 
3856 	btrfs_init_map_token(&token, leaf);
3857 
3858 	if (log_inode_only) {
3859 		/* set the generation to zero so the recover code
3860 		 * can tell the difference between an logging
3861 		 * just to say 'this inode exists' and a logging
3862 		 * to say 'update this inode with these values'
3863 		 */
3864 		btrfs_set_token_inode_generation(&token, item, 0);
3865 		btrfs_set_token_inode_size(&token, item, logged_isize);
3866 	} else {
3867 		btrfs_set_token_inode_generation(&token, item,
3868 						 BTRFS_I(inode)->generation);
3869 		btrfs_set_token_inode_size(&token, item, inode->i_size);
3870 	}
3871 
3872 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3873 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3874 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3875 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3876 
3877 	btrfs_set_token_timespec_sec(&token, &item->atime,
3878 				     inode->i_atime.tv_sec);
3879 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3880 				      inode->i_atime.tv_nsec);
3881 
3882 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3883 				     inode->i_mtime.tv_sec);
3884 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3885 				      inode->i_mtime.tv_nsec);
3886 
3887 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3888 				     inode->i_ctime.tv_sec);
3889 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3890 				      inode->i_ctime.tv_nsec);
3891 
3892 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3893 
3894 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3895 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3896 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3897 	btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3898 	btrfs_set_token_inode_block_group(&token, item, 0);
3899 }
3900 
3901 static int log_inode_item(struct btrfs_trans_handle *trans,
3902 			  struct btrfs_root *log, struct btrfs_path *path,
3903 			  struct btrfs_inode *inode)
3904 {
3905 	struct btrfs_inode_item *inode_item;
3906 	int ret;
3907 
3908 	ret = btrfs_insert_empty_item(trans, log, path,
3909 				      &inode->location, sizeof(*inode_item));
3910 	if (ret && ret != -EEXIST)
3911 		return ret;
3912 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3913 				    struct btrfs_inode_item);
3914 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3915 			0, 0);
3916 	btrfs_release_path(path);
3917 	return 0;
3918 }
3919 
3920 static int log_csums(struct btrfs_trans_handle *trans,
3921 		     struct btrfs_inode *inode,
3922 		     struct btrfs_root *log_root,
3923 		     struct btrfs_ordered_sum *sums)
3924 {
3925 	const u64 lock_end = sums->bytenr + sums->len - 1;
3926 	struct extent_state *cached_state = NULL;
3927 	int ret;
3928 
3929 	/*
3930 	 * If this inode was not used for reflink operations in the current
3931 	 * transaction with new extents, then do the fast path, no need to
3932 	 * worry about logging checksum items with overlapping ranges.
3933 	 */
3934 	if (inode->last_reflink_trans < trans->transid)
3935 		return btrfs_csum_file_blocks(trans, log_root, sums);
3936 
3937 	/*
3938 	 * Serialize logging for checksums. This is to avoid racing with the
3939 	 * same checksum being logged by another task that is logging another
3940 	 * file which happens to refer to the same extent as well. Such races
3941 	 * can leave checksum items in the log with overlapping ranges.
3942 	 */
3943 	ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
3944 			       lock_end, &cached_state);
3945 	if (ret)
3946 		return ret;
3947 	/*
3948 	 * Due to extent cloning, we might have logged a csum item that covers a
3949 	 * subrange of a cloned extent, and later we can end up logging a csum
3950 	 * item for a larger subrange of the same extent or the entire range.
3951 	 * This would leave csum items in the log tree that cover the same range
3952 	 * and break the searches for checksums in the log tree, resulting in
3953 	 * some checksums missing in the fs/subvolume tree. So just delete (or
3954 	 * trim and adjust) any existing csum items in the log for this range.
3955 	 */
3956 	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
3957 	if (!ret)
3958 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
3959 
3960 	unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
3961 			     &cached_state);
3962 
3963 	return ret;
3964 }
3965 
3966 static noinline int copy_items(struct btrfs_trans_handle *trans,
3967 			       struct btrfs_inode *inode,
3968 			       struct btrfs_path *dst_path,
3969 			       struct btrfs_path *src_path,
3970 			       int start_slot, int nr, int inode_only,
3971 			       u64 logged_isize)
3972 {
3973 	struct btrfs_fs_info *fs_info = trans->fs_info;
3974 	unsigned long src_offset;
3975 	unsigned long dst_offset;
3976 	struct btrfs_root *log = inode->root->log_root;
3977 	struct btrfs_file_extent_item *extent;
3978 	struct btrfs_inode_item *inode_item;
3979 	struct extent_buffer *src = src_path->nodes[0];
3980 	int ret;
3981 	struct btrfs_key *ins_keys;
3982 	u32 *ins_sizes;
3983 	char *ins_data;
3984 	int i;
3985 	struct list_head ordered_sums;
3986 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3987 
3988 	INIT_LIST_HEAD(&ordered_sums);
3989 
3990 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3991 			   nr * sizeof(u32), GFP_NOFS);
3992 	if (!ins_data)
3993 		return -ENOMEM;
3994 
3995 	ins_sizes = (u32 *)ins_data;
3996 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3997 
3998 	for (i = 0; i < nr; i++) {
3999 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
4000 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
4001 	}
4002 	ret = btrfs_insert_empty_items(trans, log, dst_path,
4003 				       ins_keys, ins_sizes, nr);
4004 	if (ret) {
4005 		kfree(ins_data);
4006 		return ret;
4007 	}
4008 
4009 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
4010 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
4011 						   dst_path->slots[0]);
4012 
4013 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
4014 
4015 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
4016 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
4017 						    dst_path->slots[0],
4018 						    struct btrfs_inode_item);
4019 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4020 					&inode->vfs_inode,
4021 					inode_only == LOG_INODE_EXISTS,
4022 					logged_isize);
4023 		} else {
4024 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4025 					   src_offset, ins_sizes[i]);
4026 		}
4027 
4028 		/* take a reference on file data extents so that truncates
4029 		 * or deletes of this inode don't have to relog the inode
4030 		 * again
4031 		 */
4032 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4033 		    !skip_csum) {
4034 			int found_type;
4035 			extent = btrfs_item_ptr(src, start_slot + i,
4036 						struct btrfs_file_extent_item);
4037 
4038 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
4039 				continue;
4040 
4041 			found_type = btrfs_file_extent_type(src, extent);
4042 			if (found_type == BTRFS_FILE_EXTENT_REG) {
4043 				u64 ds, dl, cs, cl;
4044 				ds = btrfs_file_extent_disk_bytenr(src,
4045 								extent);
4046 				/* ds == 0 is a hole */
4047 				if (ds == 0)
4048 					continue;
4049 
4050 				dl = btrfs_file_extent_disk_num_bytes(src,
4051 								extent);
4052 				cs = btrfs_file_extent_offset(src, extent);
4053 				cl = btrfs_file_extent_num_bytes(src,
4054 								extent);
4055 				if (btrfs_file_extent_compression(src,
4056 								  extent)) {
4057 					cs = 0;
4058 					cl = dl;
4059 				}
4060 
4061 				ret = btrfs_lookup_csums_range(
4062 						fs_info->csum_root,
4063 						ds + cs, ds + cs + cl - 1,
4064 						&ordered_sums, 0);
4065 				if (ret)
4066 					break;
4067 			}
4068 		}
4069 	}
4070 
4071 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4072 	btrfs_release_path(dst_path);
4073 	kfree(ins_data);
4074 
4075 	/*
4076 	 * we have to do this after the loop above to avoid changing the
4077 	 * log tree while trying to change the log tree.
4078 	 */
4079 	while (!list_empty(&ordered_sums)) {
4080 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4081 						   struct btrfs_ordered_sum,
4082 						   list);
4083 		if (!ret)
4084 			ret = log_csums(trans, inode, log, sums);
4085 		list_del(&sums->list);
4086 		kfree(sums);
4087 	}
4088 
4089 	return ret;
4090 }
4091 
4092 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4093 {
4094 	struct extent_map *em1, *em2;
4095 
4096 	em1 = list_entry(a, struct extent_map, list);
4097 	em2 = list_entry(b, struct extent_map, list);
4098 
4099 	if (em1->start < em2->start)
4100 		return -1;
4101 	else if (em1->start > em2->start)
4102 		return 1;
4103 	return 0;
4104 }
4105 
4106 static int log_extent_csums(struct btrfs_trans_handle *trans,
4107 			    struct btrfs_inode *inode,
4108 			    struct btrfs_root *log_root,
4109 			    const struct extent_map *em,
4110 			    struct btrfs_log_ctx *ctx)
4111 {
4112 	struct btrfs_ordered_extent *ordered;
4113 	u64 csum_offset;
4114 	u64 csum_len;
4115 	u64 mod_start = em->mod_start;
4116 	u64 mod_len = em->mod_len;
4117 	LIST_HEAD(ordered_sums);
4118 	int ret = 0;
4119 
4120 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4121 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4122 	    em->block_start == EXTENT_MAP_HOLE)
4123 		return 0;
4124 
4125 	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4126 		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4127 		const u64 mod_end = mod_start + mod_len;
4128 		struct btrfs_ordered_sum *sums;
4129 
4130 		if (mod_len == 0)
4131 			break;
4132 
4133 		if (ordered_end <= mod_start)
4134 			continue;
4135 		if (mod_end <= ordered->file_offset)
4136 			break;
4137 
4138 		/*
4139 		 * We are going to copy all the csums on this ordered extent, so
4140 		 * go ahead and adjust mod_start and mod_len in case this ordered
4141 		 * extent has already been logged.
4142 		 */
4143 		if (ordered->file_offset > mod_start) {
4144 			if (ordered_end >= mod_end)
4145 				mod_len = ordered->file_offset - mod_start;
4146 			/*
4147 			 * If we have this case
4148 			 *
4149 			 * |--------- logged extent ---------|
4150 			 *       |----- ordered extent ----|
4151 			 *
4152 			 * Just don't mess with mod_start and mod_len, we'll
4153 			 * just end up logging more csums than we need and it
4154 			 * will be ok.
4155 			 */
4156 		} else {
4157 			if (ordered_end < mod_end) {
4158 				mod_len = mod_end - ordered_end;
4159 				mod_start = ordered_end;
4160 			} else {
4161 				mod_len = 0;
4162 			}
4163 		}
4164 
4165 		/*
4166 		 * To keep us from looping for the above case of an ordered
4167 		 * extent that falls inside of the logged extent.
4168 		 */
4169 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4170 			continue;
4171 
4172 		list_for_each_entry(sums, &ordered->list, list) {
4173 			ret = log_csums(trans, inode, log_root, sums);
4174 			if (ret)
4175 				return ret;
4176 		}
4177 	}
4178 
4179 	/* We're done, found all csums in the ordered extents. */
4180 	if (mod_len == 0)
4181 		return 0;
4182 
4183 	/* If we're compressed we have to save the entire range of csums. */
4184 	if (em->compress_type) {
4185 		csum_offset = 0;
4186 		csum_len = max(em->block_len, em->orig_block_len);
4187 	} else {
4188 		csum_offset = mod_start - em->start;
4189 		csum_len = mod_len;
4190 	}
4191 
4192 	/* block start is already adjusted for the file extent offset. */
4193 	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4194 				       em->block_start + csum_offset,
4195 				       em->block_start + csum_offset +
4196 				       csum_len - 1, &ordered_sums, 0);
4197 	if (ret)
4198 		return ret;
4199 
4200 	while (!list_empty(&ordered_sums)) {
4201 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4202 						   struct btrfs_ordered_sum,
4203 						   list);
4204 		if (!ret)
4205 			ret = log_csums(trans, inode, log_root, sums);
4206 		list_del(&sums->list);
4207 		kfree(sums);
4208 	}
4209 
4210 	return ret;
4211 }
4212 
4213 static int log_one_extent(struct btrfs_trans_handle *trans,
4214 			  struct btrfs_inode *inode, struct btrfs_root *root,
4215 			  const struct extent_map *em,
4216 			  struct btrfs_path *path,
4217 			  struct btrfs_log_ctx *ctx)
4218 {
4219 	struct btrfs_drop_extents_args drop_args = { 0 };
4220 	struct btrfs_root *log = root->log_root;
4221 	struct btrfs_file_extent_item *fi;
4222 	struct extent_buffer *leaf;
4223 	struct btrfs_map_token token;
4224 	struct btrfs_key key;
4225 	u64 extent_offset = em->start - em->orig_start;
4226 	u64 block_len;
4227 	int ret;
4228 
4229 	ret = log_extent_csums(trans, inode, log, em, ctx);
4230 	if (ret)
4231 		return ret;
4232 
4233 	drop_args.path = path;
4234 	drop_args.start = em->start;
4235 	drop_args.end = em->start + em->len;
4236 	drop_args.replace_extent = true;
4237 	drop_args.extent_item_size = sizeof(*fi);
4238 	ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4239 	if (ret)
4240 		return ret;
4241 
4242 	if (!drop_args.extent_inserted) {
4243 		key.objectid = btrfs_ino(inode);
4244 		key.type = BTRFS_EXTENT_DATA_KEY;
4245 		key.offset = em->start;
4246 
4247 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4248 					      sizeof(*fi));
4249 		if (ret)
4250 			return ret;
4251 	}
4252 	leaf = path->nodes[0];
4253 	btrfs_init_map_token(&token, leaf);
4254 	fi = btrfs_item_ptr(leaf, path->slots[0],
4255 			    struct btrfs_file_extent_item);
4256 
4257 	btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
4258 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4259 		btrfs_set_token_file_extent_type(&token, fi,
4260 						 BTRFS_FILE_EXTENT_PREALLOC);
4261 	else
4262 		btrfs_set_token_file_extent_type(&token, fi,
4263 						 BTRFS_FILE_EXTENT_REG);
4264 
4265 	block_len = max(em->block_len, em->orig_block_len);
4266 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4267 		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4268 							em->block_start);
4269 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4270 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4271 		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4272 							em->block_start -
4273 							extent_offset);
4274 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4275 	} else {
4276 		btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4277 		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
4278 	}
4279 
4280 	btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4281 	btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4282 	btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4283 	btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4284 	btrfs_set_token_file_extent_encryption(&token, fi, 0);
4285 	btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
4286 	btrfs_mark_buffer_dirty(leaf);
4287 
4288 	btrfs_release_path(path);
4289 
4290 	return ret;
4291 }
4292 
4293 /*
4294  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4295  * lose them after doing a fast fsync and replaying the log. We scan the
4296  * subvolume's root instead of iterating the inode's extent map tree because
4297  * otherwise we can log incorrect extent items based on extent map conversion.
4298  * That can happen due to the fact that extent maps are merged when they
4299  * are not in the extent map tree's list of modified extents.
4300  */
4301 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4302 				      struct btrfs_inode *inode,
4303 				      struct btrfs_path *path)
4304 {
4305 	struct btrfs_root *root = inode->root;
4306 	struct btrfs_key key;
4307 	const u64 i_size = i_size_read(&inode->vfs_inode);
4308 	const u64 ino = btrfs_ino(inode);
4309 	struct btrfs_path *dst_path = NULL;
4310 	bool dropped_extents = false;
4311 	u64 truncate_offset = i_size;
4312 	struct extent_buffer *leaf;
4313 	int slot;
4314 	int ins_nr = 0;
4315 	int start_slot;
4316 	int ret;
4317 
4318 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4319 		return 0;
4320 
4321 	key.objectid = ino;
4322 	key.type = BTRFS_EXTENT_DATA_KEY;
4323 	key.offset = i_size;
4324 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4325 	if (ret < 0)
4326 		goto out;
4327 
4328 	/*
4329 	 * We must check if there is a prealloc extent that starts before the
4330 	 * i_size and crosses the i_size boundary. This is to ensure later we
4331 	 * truncate down to the end of that extent and not to the i_size, as
4332 	 * otherwise we end up losing part of the prealloc extent after a log
4333 	 * replay and with an implicit hole if there is another prealloc extent
4334 	 * that starts at an offset beyond i_size.
4335 	 */
4336 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4337 	if (ret < 0)
4338 		goto out;
4339 
4340 	if (ret == 0) {
4341 		struct btrfs_file_extent_item *ei;
4342 
4343 		leaf = path->nodes[0];
4344 		slot = path->slots[0];
4345 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4346 
4347 		if (btrfs_file_extent_type(leaf, ei) ==
4348 		    BTRFS_FILE_EXTENT_PREALLOC) {
4349 			u64 extent_end;
4350 
4351 			btrfs_item_key_to_cpu(leaf, &key, slot);
4352 			extent_end = key.offset +
4353 				btrfs_file_extent_num_bytes(leaf, ei);
4354 
4355 			if (extent_end > i_size)
4356 				truncate_offset = extent_end;
4357 		}
4358 	} else {
4359 		ret = 0;
4360 	}
4361 
4362 	while (true) {
4363 		leaf = path->nodes[0];
4364 		slot = path->slots[0];
4365 
4366 		if (slot >= btrfs_header_nritems(leaf)) {
4367 			if (ins_nr > 0) {
4368 				ret = copy_items(trans, inode, dst_path, path,
4369 						 start_slot, ins_nr, 1, 0);
4370 				if (ret < 0)
4371 					goto out;
4372 				ins_nr = 0;
4373 			}
4374 			ret = btrfs_next_leaf(root, path);
4375 			if (ret < 0)
4376 				goto out;
4377 			if (ret > 0) {
4378 				ret = 0;
4379 				break;
4380 			}
4381 			continue;
4382 		}
4383 
4384 		btrfs_item_key_to_cpu(leaf, &key, slot);
4385 		if (key.objectid > ino)
4386 			break;
4387 		if (WARN_ON_ONCE(key.objectid < ino) ||
4388 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4389 		    key.offset < i_size) {
4390 			path->slots[0]++;
4391 			continue;
4392 		}
4393 		if (!dropped_extents) {
4394 			/*
4395 			 * Avoid logging extent items logged in past fsync calls
4396 			 * and leading to duplicate keys in the log tree.
4397 			 */
4398 			do {
4399 				ret = btrfs_truncate_inode_items(trans,
4400 							 root->log_root,
4401 							 inode, truncate_offset,
4402 							 BTRFS_EXTENT_DATA_KEY);
4403 			} while (ret == -EAGAIN);
4404 			if (ret)
4405 				goto out;
4406 			dropped_extents = true;
4407 		}
4408 		if (ins_nr == 0)
4409 			start_slot = slot;
4410 		ins_nr++;
4411 		path->slots[0]++;
4412 		if (!dst_path) {
4413 			dst_path = btrfs_alloc_path();
4414 			if (!dst_path) {
4415 				ret = -ENOMEM;
4416 				goto out;
4417 			}
4418 		}
4419 	}
4420 	if (ins_nr > 0)
4421 		ret = copy_items(trans, inode, dst_path, path,
4422 				 start_slot, ins_nr, 1, 0);
4423 out:
4424 	btrfs_release_path(path);
4425 	btrfs_free_path(dst_path);
4426 	return ret;
4427 }
4428 
4429 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4430 				     struct btrfs_root *root,
4431 				     struct btrfs_inode *inode,
4432 				     struct btrfs_path *path,
4433 				     struct btrfs_log_ctx *ctx)
4434 {
4435 	struct btrfs_ordered_extent *ordered;
4436 	struct btrfs_ordered_extent *tmp;
4437 	struct extent_map *em, *n;
4438 	struct list_head extents;
4439 	struct extent_map_tree *tree = &inode->extent_tree;
4440 	int ret = 0;
4441 	int num = 0;
4442 
4443 	INIT_LIST_HEAD(&extents);
4444 
4445 	write_lock(&tree->lock);
4446 
4447 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4448 		list_del_init(&em->list);
4449 		/*
4450 		 * Just an arbitrary number, this can be really CPU intensive
4451 		 * once we start getting a lot of extents, and really once we
4452 		 * have a bunch of extents we just want to commit since it will
4453 		 * be faster.
4454 		 */
4455 		if (++num > 32768) {
4456 			list_del_init(&tree->modified_extents);
4457 			ret = -EFBIG;
4458 			goto process;
4459 		}
4460 
4461 		if (em->generation < trans->transid)
4462 			continue;
4463 
4464 		/* We log prealloc extents beyond eof later. */
4465 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4466 		    em->start >= i_size_read(&inode->vfs_inode))
4467 			continue;
4468 
4469 		/* Need a ref to keep it from getting evicted from cache */
4470 		refcount_inc(&em->refs);
4471 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4472 		list_add_tail(&em->list, &extents);
4473 		num++;
4474 	}
4475 
4476 	list_sort(NULL, &extents, extent_cmp);
4477 process:
4478 	while (!list_empty(&extents)) {
4479 		em = list_entry(extents.next, struct extent_map, list);
4480 
4481 		list_del_init(&em->list);
4482 
4483 		/*
4484 		 * If we had an error we just need to delete everybody from our
4485 		 * private list.
4486 		 */
4487 		if (ret) {
4488 			clear_em_logging(tree, em);
4489 			free_extent_map(em);
4490 			continue;
4491 		}
4492 
4493 		write_unlock(&tree->lock);
4494 
4495 		ret = log_one_extent(trans, inode, root, em, path, ctx);
4496 		write_lock(&tree->lock);
4497 		clear_em_logging(tree, em);
4498 		free_extent_map(em);
4499 	}
4500 	WARN_ON(!list_empty(&extents));
4501 	write_unlock(&tree->lock);
4502 
4503 	btrfs_release_path(path);
4504 	if (!ret)
4505 		ret = btrfs_log_prealloc_extents(trans, inode, path);
4506 	if (ret)
4507 		return ret;
4508 
4509 	/*
4510 	 * We have logged all extents successfully, now make sure the commit of
4511 	 * the current transaction waits for the ordered extents to complete
4512 	 * before it commits and wipes out the log trees, otherwise we would
4513 	 * lose data if an ordered extents completes after the transaction
4514 	 * commits and a power failure happens after the transaction commit.
4515 	 */
4516 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4517 		list_del_init(&ordered->log_list);
4518 		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4519 
4520 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4521 			spin_lock_irq(&inode->ordered_tree.lock);
4522 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4523 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4524 				atomic_inc(&trans->transaction->pending_ordered);
4525 			}
4526 			spin_unlock_irq(&inode->ordered_tree.lock);
4527 		}
4528 		btrfs_put_ordered_extent(ordered);
4529 	}
4530 
4531 	return 0;
4532 }
4533 
4534 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4535 			     struct btrfs_path *path, u64 *size_ret)
4536 {
4537 	struct btrfs_key key;
4538 	int ret;
4539 
4540 	key.objectid = btrfs_ino(inode);
4541 	key.type = BTRFS_INODE_ITEM_KEY;
4542 	key.offset = 0;
4543 
4544 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4545 	if (ret < 0) {
4546 		return ret;
4547 	} else if (ret > 0) {
4548 		*size_ret = 0;
4549 	} else {
4550 		struct btrfs_inode_item *item;
4551 
4552 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4553 				      struct btrfs_inode_item);
4554 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4555 		/*
4556 		 * If the in-memory inode's i_size is smaller then the inode
4557 		 * size stored in the btree, return the inode's i_size, so
4558 		 * that we get a correct inode size after replaying the log
4559 		 * when before a power failure we had a shrinking truncate
4560 		 * followed by addition of a new name (rename / new hard link).
4561 		 * Otherwise return the inode size from the btree, to avoid
4562 		 * data loss when replaying a log due to previously doing a
4563 		 * write that expands the inode's size and logging a new name
4564 		 * immediately after.
4565 		 */
4566 		if (*size_ret > inode->vfs_inode.i_size)
4567 			*size_ret = inode->vfs_inode.i_size;
4568 	}
4569 
4570 	btrfs_release_path(path);
4571 	return 0;
4572 }
4573 
4574 /*
4575  * At the moment we always log all xattrs. This is to figure out at log replay
4576  * time which xattrs must have their deletion replayed. If a xattr is missing
4577  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4578  * because if a xattr is deleted, the inode is fsynced and a power failure
4579  * happens, causing the log to be replayed the next time the fs is mounted,
4580  * we want the xattr to not exist anymore (same behaviour as other filesystems
4581  * with a journal, ext3/4, xfs, f2fs, etc).
4582  */
4583 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4584 				struct btrfs_root *root,
4585 				struct btrfs_inode *inode,
4586 				struct btrfs_path *path,
4587 				struct btrfs_path *dst_path)
4588 {
4589 	int ret;
4590 	struct btrfs_key key;
4591 	const u64 ino = btrfs_ino(inode);
4592 	int ins_nr = 0;
4593 	int start_slot = 0;
4594 	bool found_xattrs = false;
4595 
4596 	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
4597 		return 0;
4598 
4599 	key.objectid = ino;
4600 	key.type = BTRFS_XATTR_ITEM_KEY;
4601 	key.offset = 0;
4602 
4603 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4604 	if (ret < 0)
4605 		return ret;
4606 
4607 	while (true) {
4608 		int slot = path->slots[0];
4609 		struct extent_buffer *leaf = path->nodes[0];
4610 		int nritems = btrfs_header_nritems(leaf);
4611 
4612 		if (slot >= nritems) {
4613 			if (ins_nr > 0) {
4614 				ret = copy_items(trans, inode, dst_path, path,
4615 						 start_slot, ins_nr, 1, 0);
4616 				if (ret < 0)
4617 					return ret;
4618 				ins_nr = 0;
4619 			}
4620 			ret = btrfs_next_leaf(root, path);
4621 			if (ret < 0)
4622 				return ret;
4623 			else if (ret > 0)
4624 				break;
4625 			continue;
4626 		}
4627 
4628 		btrfs_item_key_to_cpu(leaf, &key, slot);
4629 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4630 			break;
4631 
4632 		if (ins_nr == 0)
4633 			start_slot = slot;
4634 		ins_nr++;
4635 		path->slots[0]++;
4636 		found_xattrs = true;
4637 		cond_resched();
4638 	}
4639 	if (ins_nr > 0) {
4640 		ret = copy_items(trans, inode, dst_path, path,
4641 				 start_slot, ins_nr, 1, 0);
4642 		if (ret < 0)
4643 			return ret;
4644 	}
4645 
4646 	if (!found_xattrs)
4647 		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
4648 
4649 	return 0;
4650 }
4651 
4652 /*
4653  * When using the NO_HOLES feature if we punched a hole that causes the
4654  * deletion of entire leafs or all the extent items of the first leaf (the one
4655  * that contains the inode item and references) we may end up not processing
4656  * any extents, because there are no leafs with a generation matching the
4657  * current transaction that have extent items for our inode. So we need to find
4658  * if any holes exist and then log them. We also need to log holes after any
4659  * truncate operation that changes the inode's size.
4660  */
4661 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4662 			   struct btrfs_root *root,
4663 			   struct btrfs_inode *inode,
4664 			   struct btrfs_path *path)
4665 {
4666 	struct btrfs_fs_info *fs_info = root->fs_info;
4667 	struct btrfs_key key;
4668 	const u64 ino = btrfs_ino(inode);
4669 	const u64 i_size = i_size_read(&inode->vfs_inode);
4670 	u64 prev_extent_end = 0;
4671 	int ret;
4672 
4673 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4674 		return 0;
4675 
4676 	key.objectid = ino;
4677 	key.type = BTRFS_EXTENT_DATA_KEY;
4678 	key.offset = 0;
4679 
4680 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4681 	if (ret < 0)
4682 		return ret;
4683 
4684 	while (true) {
4685 		struct extent_buffer *leaf = path->nodes[0];
4686 
4687 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4688 			ret = btrfs_next_leaf(root, path);
4689 			if (ret < 0)
4690 				return ret;
4691 			if (ret > 0) {
4692 				ret = 0;
4693 				break;
4694 			}
4695 			leaf = path->nodes[0];
4696 		}
4697 
4698 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4699 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4700 			break;
4701 
4702 		/* We have a hole, log it. */
4703 		if (prev_extent_end < key.offset) {
4704 			const u64 hole_len = key.offset - prev_extent_end;
4705 
4706 			/*
4707 			 * Release the path to avoid deadlocks with other code
4708 			 * paths that search the root while holding locks on
4709 			 * leafs from the log root.
4710 			 */
4711 			btrfs_release_path(path);
4712 			ret = btrfs_insert_file_extent(trans, root->log_root,
4713 						       ino, prev_extent_end, 0,
4714 						       0, hole_len, 0, hole_len,
4715 						       0, 0, 0);
4716 			if (ret < 0)
4717 				return ret;
4718 
4719 			/*
4720 			 * Search for the same key again in the root. Since it's
4721 			 * an extent item and we are holding the inode lock, the
4722 			 * key must still exist. If it doesn't just emit warning
4723 			 * and return an error to fall back to a transaction
4724 			 * commit.
4725 			 */
4726 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4727 			if (ret < 0)
4728 				return ret;
4729 			if (WARN_ON(ret > 0))
4730 				return -ENOENT;
4731 			leaf = path->nodes[0];
4732 		}
4733 
4734 		prev_extent_end = btrfs_file_extent_end(path);
4735 		path->slots[0]++;
4736 		cond_resched();
4737 	}
4738 
4739 	if (prev_extent_end < i_size) {
4740 		u64 hole_len;
4741 
4742 		btrfs_release_path(path);
4743 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4744 		ret = btrfs_insert_file_extent(trans, root->log_root,
4745 					       ino, prev_extent_end, 0, 0,
4746 					       hole_len, 0, hole_len,
4747 					       0, 0, 0);
4748 		if (ret < 0)
4749 			return ret;
4750 	}
4751 
4752 	return 0;
4753 }
4754 
4755 /*
4756  * When we are logging a new inode X, check if it doesn't have a reference that
4757  * matches the reference from some other inode Y created in a past transaction
4758  * and that was renamed in the current transaction. If we don't do this, then at
4759  * log replay time we can lose inode Y (and all its files if it's a directory):
4760  *
4761  * mkdir /mnt/x
4762  * echo "hello world" > /mnt/x/foobar
4763  * sync
4764  * mv /mnt/x /mnt/y
4765  * mkdir /mnt/x                 # or touch /mnt/x
4766  * xfs_io -c fsync /mnt/x
4767  * <power fail>
4768  * mount fs, trigger log replay
4769  *
4770  * After the log replay procedure, we would lose the first directory and all its
4771  * files (file foobar).
4772  * For the case where inode Y is not a directory we simply end up losing it:
4773  *
4774  * echo "123" > /mnt/foo
4775  * sync
4776  * mv /mnt/foo /mnt/bar
4777  * echo "abc" > /mnt/foo
4778  * xfs_io -c fsync /mnt/foo
4779  * <power fail>
4780  *
4781  * We also need this for cases where a snapshot entry is replaced by some other
4782  * entry (file or directory) otherwise we end up with an unreplayable log due to
4783  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4784  * if it were a regular entry:
4785  *
4786  * mkdir /mnt/x
4787  * btrfs subvolume snapshot /mnt /mnt/x/snap
4788  * btrfs subvolume delete /mnt/x/snap
4789  * rmdir /mnt/x
4790  * mkdir /mnt/x
4791  * fsync /mnt/x or fsync some new file inside it
4792  * <power fail>
4793  *
4794  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4795  * the same transaction.
4796  */
4797 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4798 					 const int slot,
4799 					 const struct btrfs_key *key,
4800 					 struct btrfs_inode *inode,
4801 					 u64 *other_ino, u64 *other_parent)
4802 {
4803 	int ret;
4804 	struct btrfs_path *search_path;
4805 	char *name = NULL;
4806 	u32 name_len = 0;
4807 	u32 item_size = btrfs_item_size_nr(eb, slot);
4808 	u32 cur_offset = 0;
4809 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4810 
4811 	search_path = btrfs_alloc_path();
4812 	if (!search_path)
4813 		return -ENOMEM;
4814 	search_path->search_commit_root = 1;
4815 	search_path->skip_locking = 1;
4816 
4817 	while (cur_offset < item_size) {
4818 		u64 parent;
4819 		u32 this_name_len;
4820 		u32 this_len;
4821 		unsigned long name_ptr;
4822 		struct btrfs_dir_item *di;
4823 
4824 		if (key->type == BTRFS_INODE_REF_KEY) {
4825 			struct btrfs_inode_ref *iref;
4826 
4827 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4828 			parent = key->offset;
4829 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4830 			name_ptr = (unsigned long)(iref + 1);
4831 			this_len = sizeof(*iref) + this_name_len;
4832 		} else {
4833 			struct btrfs_inode_extref *extref;
4834 
4835 			extref = (struct btrfs_inode_extref *)(ptr +
4836 							       cur_offset);
4837 			parent = btrfs_inode_extref_parent(eb, extref);
4838 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4839 			name_ptr = (unsigned long)&extref->name;
4840 			this_len = sizeof(*extref) + this_name_len;
4841 		}
4842 
4843 		if (this_name_len > name_len) {
4844 			char *new_name;
4845 
4846 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4847 			if (!new_name) {
4848 				ret = -ENOMEM;
4849 				goto out;
4850 			}
4851 			name_len = this_name_len;
4852 			name = new_name;
4853 		}
4854 
4855 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4856 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4857 				parent, name, this_name_len, 0);
4858 		if (di && !IS_ERR(di)) {
4859 			struct btrfs_key di_key;
4860 
4861 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4862 						  di, &di_key);
4863 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4864 				if (di_key.objectid != key->objectid) {
4865 					ret = 1;
4866 					*other_ino = di_key.objectid;
4867 					*other_parent = parent;
4868 				} else {
4869 					ret = 0;
4870 				}
4871 			} else {
4872 				ret = -EAGAIN;
4873 			}
4874 			goto out;
4875 		} else if (IS_ERR(di)) {
4876 			ret = PTR_ERR(di);
4877 			goto out;
4878 		}
4879 		btrfs_release_path(search_path);
4880 
4881 		cur_offset += this_len;
4882 	}
4883 	ret = 0;
4884 out:
4885 	btrfs_free_path(search_path);
4886 	kfree(name);
4887 	return ret;
4888 }
4889 
4890 struct btrfs_ino_list {
4891 	u64 ino;
4892 	u64 parent;
4893 	struct list_head list;
4894 };
4895 
4896 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4897 				  struct btrfs_root *root,
4898 				  struct btrfs_path *path,
4899 				  struct btrfs_log_ctx *ctx,
4900 				  u64 ino, u64 parent)
4901 {
4902 	struct btrfs_ino_list *ino_elem;
4903 	LIST_HEAD(inode_list);
4904 	int ret = 0;
4905 
4906 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4907 	if (!ino_elem)
4908 		return -ENOMEM;
4909 	ino_elem->ino = ino;
4910 	ino_elem->parent = parent;
4911 	list_add_tail(&ino_elem->list, &inode_list);
4912 
4913 	while (!list_empty(&inode_list)) {
4914 		struct btrfs_fs_info *fs_info = root->fs_info;
4915 		struct btrfs_key key;
4916 		struct inode *inode;
4917 
4918 		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4919 					    list);
4920 		ino = ino_elem->ino;
4921 		parent = ino_elem->parent;
4922 		list_del(&ino_elem->list);
4923 		kfree(ino_elem);
4924 		if (ret)
4925 			continue;
4926 
4927 		btrfs_release_path(path);
4928 
4929 		inode = btrfs_iget(fs_info->sb, ino, root);
4930 		/*
4931 		 * If the other inode that had a conflicting dir entry was
4932 		 * deleted in the current transaction, we need to log its parent
4933 		 * directory.
4934 		 */
4935 		if (IS_ERR(inode)) {
4936 			ret = PTR_ERR(inode);
4937 			if (ret == -ENOENT) {
4938 				inode = btrfs_iget(fs_info->sb, parent, root);
4939 				if (IS_ERR(inode)) {
4940 					ret = PTR_ERR(inode);
4941 				} else {
4942 					ret = btrfs_log_inode(trans, root,
4943 						      BTRFS_I(inode),
4944 						      LOG_OTHER_INODE_ALL,
4945 						      ctx);
4946 					btrfs_add_delayed_iput(inode);
4947 				}
4948 			}
4949 			continue;
4950 		}
4951 		/*
4952 		 * If the inode was already logged skip it - otherwise we can
4953 		 * hit an infinite loop. Example:
4954 		 *
4955 		 * From the commit root (previous transaction) we have the
4956 		 * following inodes:
4957 		 *
4958 		 * inode 257 a directory
4959 		 * inode 258 with references "zz" and "zz_link" on inode 257
4960 		 * inode 259 with reference "a" on inode 257
4961 		 *
4962 		 * And in the current (uncommitted) transaction we have:
4963 		 *
4964 		 * inode 257 a directory, unchanged
4965 		 * inode 258 with references "a" and "a2" on inode 257
4966 		 * inode 259 with reference "zz_link" on inode 257
4967 		 * inode 261 with reference "zz" on inode 257
4968 		 *
4969 		 * When logging inode 261 the following infinite loop could
4970 		 * happen if we don't skip already logged inodes:
4971 		 *
4972 		 * - we detect inode 258 as a conflicting inode, with inode 261
4973 		 *   on reference "zz", and log it;
4974 		 *
4975 		 * - we detect inode 259 as a conflicting inode, with inode 258
4976 		 *   on reference "a", and log it;
4977 		 *
4978 		 * - we detect inode 258 as a conflicting inode, with inode 259
4979 		 *   on reference "zz_link", and log it - again! After this we
4980 		 *   repeat the above steps forever.
4981 		 */
4982 		spin_lock(&BTRFS_I(inode)->lock);
4983 		/*
4984 		 * Check the inode's logged_trans only instead of
4985 		 * btrfs_inode_in_log(). This is because the last_log_commit of
4986 		 * the inode is not updated when we only log that it exists and
4987 		 * it has the full sync bit set (see btrfs_log_inode()).
4988 		 */
4989 		if (BTRFS_I(inode)->logged_trans == trans->transid) {
4990 			spin_unlock(&BTRFS_I(inode)->lock);
4991 			btrfs_add_delayed_iput(inode);
4992 			continue;
4993 		}
4994 		spin_unlock(&BTRFS_I(inode)->lock);
4995 		/*
4996 		 * We are safe logging the other inode without acquiring its
4997 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4998 		 * are safe against concurrent renames of the other inode as
4999 		 * well because during a rename we pin the log and update the
5000 		 * log with the new name before we unpin it.
5001 		 */
5002 		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5003 				      LOG_OTHER_INODE, ctx);
5004 		if (ret) {
5005 			btrfs_add_delayed_iput(inode);
5006 			continue;
5007 		}
5008 
5009 		key.objectid = ino;
5010 		key.type = BTRFS_INODE_REF_KEY;
5011 		key.offset = 0;
5012 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5013 		if (ret < 0) {
5014 			btrfs_add_delayed_iput(inode);
5015 			continue;
5016 		}
5017 
5018 		while (true) {
5019 			struct extent_buffer *leaf = path->nodes[0];
5020 			int slot = path->slots[0];
5021 			u64 other_ino = 0;
5022 			u64 other_parent = 0;
5023 
5024 			if (slot >= btrfs_header_nritems(leaf)) {
5025 				ret = btrfs_next_leaf(root, path);
5026 				if (ret < 0) {
5027 					break;
5028 				} else if (ret > 0) {
5029 					ret = 0;
5030 					break;
5031 				}
5032 				continue;
5033 			}
5034 
5035 			btrfs_item_key_to_cpu(leaf, &key, slot);
5036 			if (key.objectid != ino ||
5037 			    (key.type != BTRFS_INODE_REF_KEY &&
5038 			     key.type != BTRFS_INODE_EXTREF_KEY)) {
5039 				ret = 0;
5040 				break;
5041 			}
5042 
5043 			ret = btrfs_check_ref_name_override(leaf, slot, &key,
5044 					BTRFS_I(inode), &other_ino,
5045 					&other_parent);
5046 			if (ret < 0)
5047 				break;
5048 			if (ret > 0) {
5049 				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5050 				if (!ino_elem) {
5051 					ret = -ENOMEM;
5052 					break;
5053 				}
5054 				ino_elem->ino = other_ino;
5055 				ino_elem->parent = other_parent;
5056 				list_add_tail(&ino_elem->list, &inode_list);
5057 				ret = 0;
5058 			}
5059 			path->slots[0]++;
5060 		}
5061 		btrfs_add_delayed_iput(inode);
5062 	}
5063 
5064 	return ret;
5065 }
5066 
5067 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5068 				   struct btrfs_inode *inode,
5069 				   struct btrfs_key *min_key,
5070 				   const struct btrfs_key *max_key,
5071 				   struct btrfs_path *path,
5072 				   struct btrfs_path *dst_path,
5073 				   const u64 logged_isize,
5074 				   const bool recursive_logging,
5075 				   const int inode_only,
5076 				   struct btrfs_log_ctx *ctx,
5077 				   bool *need_log_inode_item)
5078 {
5079 	struct btrfs_root *root = inode->root;
5080 	int ins_start_slot = 0;
5081 	int ins_nr = 0;
5082 	int ret;
5083 
5084 	while (1) {
5085 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5086 		if (ret < 0)
5087 			return ret;
5088 		if (ret > 0) {
5089 			ret = 0;
5090 			break;
5091 		}
5092 again:
5093 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5094 		if (min_key->objectid != max_key->objectid)
5095 			break;
5096 		if (min_key->type > max_key->type)
5097 			break;
5098 
5099 		if (min_key->type == BTRFS_INODE_ITEM_KEY)
5100 			*need_log_inode_item = false;
5101 
5102 		if ((min_key->type == BTRFS_INODE_REF_KEY ||
5103 		     min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5104 		    inode->generation == trans->transid &&
5105 		    !recursive_logging) {
5106 			u64 other_ino = 0;
5107 			u64 other_parent = 0;
5108 
5109 			ret = btrfs_check_ref_name_override(path->nodes[0],
5110 					path->slots[0], min_key, inode,
5111 					&other_ino, &other_parent);
5112 			if (ret < 0) {
5113 				return ret;
5114 			} else if (ret > 0 && ctx &&
5115 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5116 				if (ins_nr > 0) {
5117 					ins_nr++;
5118 				} else {
5119 					ins_nr = 1;
5120 					ins_start_slot = path->slots[0];
5121 				}
5122 				ret = copy_items(trans, inode, dst_path, path,
5123 						 ins_start_slot, ins_nr,
5124 						 inode_only, logged_isize);
5125 				if (ret < 0)
5126 					return ret;
5127 				ins_nr = 0;
5128 
5129 				ret = log_conflicting_inodes(trans, root, path,
5130 						ctx, other_ino, other_parent);
5131 				if (ret)
5132 					return ret;
5133 				btrfs_release_path(path);
5134 				goto next_key;
5135 			}
5136 		}
5137 
5138 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5139 		if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5140 			if (ins_nr == 0)
5141 				goto next_slot;
5142 			ret = copy_items(trans, inode, dst_path, path,
5143 					 ins_start_slot,
5144 					 ins_nr, inode_only, logged_isize);
5145 			if (ret < 0)
5146 				return ret;
5147 			ins_nr = 0;
5148 			goto next_slot;
5149 		}
5150 
5151 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5152 			ins_nr++;
5153 			goto next_slot;
5154 		} else if (!ins_nr) {
5155 			ins_start_slot = path->slots[0];
5156 			ins_nr = 1;
5157 			goto next_slot;
5158 		}
5159 
5160 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5161 				 ins_nr, inode_only, logged_isize);
5162 		if (ret < 0)
5163 			return ret;
5164 		ins_nr = 1;
5165 		ins_start_slot = path->slots[0];
5166 next_slot:
5167 		path->slots[0]++;
5168 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5169 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5170 					      path->slots[0]);
5171 			goto again;
5172 		}
5173 		if (ins_nr) {
5174 			ret = copy_items(trans, inode, dst_path, path,
5175 					 ins_start_slot, ins_nr, inode_only,
5176 					 logged_isize);
5177 			if (ret < 0)
5178 				return ret;
5179 			ins_nr = 0;
5180 		}
5181 		btrfs_release_path(path);
5182 next_key:
5183 		if (min_key->offset < (u64)-1) {
5184 			min_key->offset++;
5185 		} else if (min_key->type < max_key->type) {
5186 			min_key->type++;
5187 			min_key->offset = 0;
5188 		} else {
5189 			break;
5190 		}
5191 	}
5192 	if (ins_nr)
5193 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5194 				 ins_nr, inode_only, logged_isize);
5195 
5196 	return ret;
5197 }
5198 
5199 /* log a single inode in the tree log.
5200  * At least one parent directory for this inode must exist in the tree
5201  * or be logged already.
5202  *
5203  * Any items from this inode changed by the current transaction are copied
5204  * to the log tree.  An extra reference is taken on any extents in this
5205  * file, allowing us to avoid a whole pile of corner cases around logging
5206  * blocks that have been removed from the tree.
5207  *
5208  * See LOG_INODE_ALL and related defines for a description of what inode_only
5209  * does.
5210  *
5211  * This handles both files and directories.
5212  */
5213 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5214 			   struct btrfs_root *root, struct btrfs_inode *inode,
5215 			   int inode_only,
5216 			   struct btrfs_log_ctx *ctx)
5217 {
5218 	struct btrfs_path *path;
5219 	struct btrfs_path *dst_path;
5220 	struct btrfs_key min_key;
5221 	struct btrfs_key max_key;
5222 	struct btrfs_root *log = root->log_root;
5223 	int err = 0;
5224 	int ret = 0;
5225 	bool fast_search = false;
5226 	u64 ino = btrfs_ino(inode);
5227 	struct extent_map_tree *em_tree = &inode->extent_tree;
5228 	u64 logged_isize = 0;
5229 	bool need_log_inode_item = true;
5230 	bool xattrs_logged = false;
5231 	bool recursive_logging = false;
5232 
5233 	path = btrfs_alloc_path();
5234 	if (!path)
5235 		return -ENOMEM;
5236 	dst_path = btrfs_alloc_path();
5237 	if (!dst_path) {
5238 		btrfs_free_path(path);
5239 		return -ENOMEM;
5240 	}
5241 
5242 	min_key.objectid = ino;
5243 	min_key.type = BTRFS_INODE_ITEM_KEY;
5244 	min_key.offset = 0;
5245 
5246 	max_key.objectid = ino;
5247 
5248 
5249 	/* today the code can only do partial logging of directories */
5250 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5251 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5252 		       &inode->runtime_flags) &&
5253 	     inode_only >= LOG_INODE_EXISTS))
5254 		max_key.type = BTRFS_XATTR_ITEM_KEY;
5255 	else
5256 		max_key.type = (u8)-1;
5257 	max_key.offset = (u64)-1;
5258 
5259 	/*
5260 	 * Only run delayed items if we are a directory. We want to make sure
5261 	 * all directory indexes hit the fs/subvolume tree so we can find them
5262 	 * and figure out which index ranges have to be logged.
5263 	 *
5264 	 * Otherwise commit the delayed inode only if the full sync flag is set,
5265 	 * as we want to make sure an up to date version is in the subvolume
5266 	 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5267 	 * it to the log tree. For a non full sync, we always log the inode item
5268 	 * based on the in-memory struct btrfs_inode which is always up to date.
5269 	 */
5270 	if (S_ISDIR(inode->vfs_inode.i_mode))
5271 		ret = btrfs_commit_inode_delayed_items(trans, inode);
5272 	else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5273 		ret = btrfs_commit_inode_delayed_inode(inode);
5274 
5275 	if (ret) {
5276 		btrfs_free_path(path);
5277 		btrfs_free_path(dst_path);
5278 		return ret;
5279 	}
5280 
5281 	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5282 		recursive_logging = true;
5283 		if (inode_only == LOG_OTHER_INODE)
5284 			inode_only = LOG_INODE_EXISTS;
5285 		else
5286 			inode_only = LOG_INODE_ALL;
5287 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5288 	} else {
5289 		mutex_lock(&inode->log_mutex);
5290 	}
5291 
5292 	/*
5293 	 * a brute force approach to making sure we get the most uptodate
5294 	 * copies of everything.
5295 	 */
5296 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5297 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5298 
5299 		if (inode_only == LOG_INODE_EXISTS)
5300 			max_key_type = BTRFS_XATTR_ITEM_KEY;
5301 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5302 	} else {
5303 		if (inode_only == LOG_INODE_EXISTS) {
5304 			/*
5305 			 * Make sure the new inode item we write to the log has
5306 			 * the same isize as the current one (if it exists).
5307 			 * This is necessary to prevent data loss after log
5308 			 * replay, and also to prevent doing a wrong expanding
5309 			 * truncate - for e.g. create file, write 4K into offset
5310 			 * 0, fsync, write 4K into offset 4096, add hard link,
5311 			 * fsync some other file (to sync log), power fail - if
5312 			 * we use the inode's current i_size, after log replay
5313 			 * we get a 8Kb file, with the last 4Kb extent as a hole
5314 			 * (zeroes), as if an expanding truncate happened,
5315 			 * instead of getting a file of 4Kb only.
5316 			 */
5317 			err = logged_inode_size(log, inode, path, &logged_isize);
5318 			if (err)
5319 				goto out_unlock;
5320 		}
5321 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5322 			     &inode->runtime_flags)) {
5323 			if (inode_only == LOG_INODE_EXISTS) {
5324 				max_key.type = BTRFS_XATTR_ITEM_KEY;
5325 				ret = drop_objectid_items(trans, log, path, ino,
5326 							  max_key.type);
5327 			} else {
5328 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5329 					  &inode->runtime_flags);
5330 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5331 					  &inode->runtime_flags);
5332 				while(1) {
5333 					ret = btrfs_truncate_inode_items(trans,
5334 						log, inode, 0, 0);
5335 					if (ret != -EAGAIN)
5336 						break;
5337 				}
5338 			}
5339 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5340 					      &inode->runtime_flags) ||
5341 			   inode_only == LOG_INODE_EXISTS) {
5342 			if (inode_only == LOG_INODE_ALL)
5343 				fast_search = true;
5344 			max_key.type = BTRFS_XATTR_ITEM_KEY;
5345 			ret = drop_objectid_items(trans, log, path, ino,
5346 						  max_key.type);
5347 		} else {
5348 			if (inode_only == LOG_INODE_ALL)
5349 				fast_search = true;
5350 			goto log_extents;
5351 		}
5352 
5353 	}
5354 	if (ret) {
5355 		err = ret;
5356 		goto out_unlock;
5357 	}
5358 
5359 	err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5360 				      path, dst_path, logged_isize,
5361 				      recursive_logging, inode_only, ctx,
5362 				      &need_log_inode_item);
5363 	if (err)
5364 		goto out_unlock;
5365 
5366 	btrfs_release_path(path);
5367 	btrfs_release_path(dst_path);
5368 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5369 	if (err)
5370 		goto out_unlock;
5371 	xattrs_logged = true;
5372 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5373 		btrfs_release_path(path);
5374 		btrfs_release_path(dst_path);
5375 		err = btrfs_log_holes(trans, root, inode, path);
5376 		if (err)
5377 			goto out_unlock;
5378 	}
5379 log_extents:
5380 	btrfs_release_path(path);
5381 	btrfs_release_path(dst_path);
5382 	if (need_log_inode_item) {
5383 		err = log_inode_item(trans, log, dst_path, inode);
5384 		if (!err && !xattrs_logged) {
5385 			err = btrfs_log_all_xattrs(trans, root, inode, path,
5386 						   dst_path);
5387 			btrfs_release_path(path);
5388 		}
5389 		if (err)
5390 			goto out_unlock;
5391 	}
5392 	if (fast_search) {
5393 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5394 						ctx);
5395 		if (ret) {
5396 			err = ret;
5397 			goto out_unlock;
5398 		}
5399 	} else if (inode_only == LOG_INODE_ALL) {
5400 		struct extent_map *em, *n;
5401 
5402 		write_lock(&em_tree->lock);
5403 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5404 			list_del_init(&em->list);
5405 		write_unlock(&em_tree->lock);
5406 	}
5407 
5408 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5409 		ret = log_directory_changes(trans, root, inode, path, dst_path,
5410 					ctx);
5411 		if (ret) {
5412 			err = ret;
5413 			goto out_unlock;
5414 		}
5415 	}
5416 
5417 	/*
5418 	 * If we are logging that an ancestor inode exists as part of logging a
5419 	 * new name from a link or rename operation, don't mark the inode as
5420 	 * logged - otherwise if an explicit fsync is made against an ancestor,
5421 	 * the fsync considers the inode in the log and doesn't sync the log,
5422 	 * resulting in the ancestor missing after a power failure unless the
5423 	 * log was synced as part of an fsync against any other unrelated inode.
5424 	 * So keep it simple for this case and just don't flag the ancestors as
5425 	 * logged.
5426 	 */
5427 	if (!ctx ||
5428 	    !(S_ISDIR(inode->vfs_inode.i_mode) && ctx->logging_new_name &&
5429 	      &inode->vfs_inode != ctx->inode)) {
5430 		spin_lock(&inode->lock);
5431 		inode->logged_trans = trans->transid;
5432 		/*
5433 		 * Don't update last_log_commit if we logged that an inode exists
5434 		 * after it was loaded to memory (full_sync bit set).
5435 		 * This is to prevent data loss when we do a write to the inode,
5436 		 * then the inode gets evicted after all delalloc was flushed,
5437 		 * then we log it exists (due to a rename for example) and then
5438 		 * fsync it. This last fsync would do nothing (not logging the
5439 		 * extents previously written).
5440 		 */
5441 		if (inode_only != LOG_INODE_EXISTS ||
5442 		    !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5443 			inode->last_log_commit = inode->last_sub_trans;
5444 		spin_unlock(&inode->lock);
5445 	}
5446 out_unlock:
5447 	mutex_unlock(&inode->log_mutex);
5448 
5449 	btrfs_free_path(path);
5450 	btrfs_free_path(dst_path);
5451 	return err;
5452 }
5453 
5454 /*
5455  * Check if we must fallback to a transaction commit when logging an inode.
5456  * This must be called after logging the inode and is used only in the context
5457  * when fsyncing an inode requires the need to log some other inode - in which
5458  * case we can't lock the i_mutex of each other inode we need to log as that
5459  * can lead to deadlocks with concurrent fsync against other inodes (as we can
5460  * log inodes up or down in the hierarchy) or rename operations for example. So
5461  * we take the log_mutex of the inode after we have logged it and then check for
5462  * its last_unlink_trans value - this is safe because any task setting
5463  * last_unlink_trans must take the log_mutex and it must do this before it does
5464  * the actual unlink operation, so if we do this check before a concurrent task
5465  * sets last_unlink_trans it means we've logged a consistent version/state of
5466  * all the inode items, otherwise we are not sure and must do a transaction
5467  * commit (the concurrent task might have only updated last_unlink_trans before
5468  * we logged the inode or it might have also done the unlink).
5469  */
5470 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5471 					  struct btrfs_inode *inode)
5472 {
5473 	bool ret = false;
5474 
5475 	mutex_lock(&inode->log_mutex);
5476 	if (inode->last_unlink_trans >= trans->transid) {
5477 		/*
5478 		 * Make sure any commits to the log are forced to be full
5479 		 * commits.
5480 		 */
5481 		btrfs_set_log_full_commit(trans);
5482 		ret = true;
5483 	}
5484 	mutex_unlock(&inode->log_mutex);
5485 
5486 	return ret;
5487 }
5488 
5489 /*
5490  * follow the dentry parent pointers up the chain and see if any
5491  * of the directories in it require a full commit before they can
5492  * be logged.  Returns zero if nothing special needs to be done or 1 if
5493  * a full commit is required.
5494  */
5495 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5496 					       struct btrfs_inode *inode,
5497 					       struct dentry *parent,
5498 					       struct super_block *sb)
5499 {
5500 	int ret = 0;
5501 	struct dentry *old_parent = NULL;
5502 
5503 	/*
5504 	 * for regular files, if its inode is already on disk, we don't
5505 	 * have to worry about the parents at all.  This is because
5506 	 * we can use the last_unlink_trans field to record renames
5507 	 * and other fun in this file.
5508 	 */
5509 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5510 	    inode->generation < trans->transid &&
5511 	    inode->last_unlink_trans < trans->transid)
5512 		goto out;
5513 
5514 	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5515 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5516 			goto out;
5517 		inode = BTRFS_I(d_inode(parent));
5518 	}
5519 
5520 	while (1) {
5521 		if (btrfs_must_commit_transaction(trans, inode)) {
5522 			ret = 1;
5523 			break;
5524 		}
5525 
5526 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5527 			break;
5528 
5529 		if (IS_ROOT(parent)) {
5530 			inode = BTRFS_I(d_inode(parent));
5531 			if (btrfs_must_commit_transaction(trans, inode))
5532 				ret = 1;
5533 			break;
5534 		}
5535 
5536 		parent = dget_parent(parent);
5537 		dput(old_parent);
5538 		old_parent = parent;
5539 		inode = BTRFS_I(d_inode(parent));
5540 
5541 	}
5542 	dput(old_parent);
5543 out:
5544 	return ret;
5545 }
5546 
5547 struct btrfs_dir_list {
5548 	u64 ino;
5549 	struct list_head list;
5550 };
5551 
5552 /*
5553  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5554  * details about the why it is needed.
5555  * This is a recursive operation - if an existing dentry corresponds to a
5556  * directory, that directory's new entries are logged too (same behaviour as
5557  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5558  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5559  * complains about the following circular lock dependency / possible deadlock:
5560  *
5561  *        CPU0                                        CPU1
5562  *        ----                                        ----
5563  * lock(&type->i_mutex_dir_key#3/2);
5564  *                                            lock(sb_internal#2);
5565  *                                            lock(&type->i_mutex_dir_key#3/2);
5566  * lock(&sb->s_type->i_mutex_key#14);
5567  *
5568  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5569  * sb_start_intwrite() in btrfs_start_transaction().
5570  * Not locking i_mutex of the inodes is still safe because:
5571  *
5572  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5573  *    that while logging the inode new references (names) are added or removed
5574  *    from the inode, leaving the logged inode item with a link count that does
5575  *    not match the number of logged inode reference items. This is fine because
5576  *    at log replay time we compute the real number of links and correct the
5577  *    link count in the inode item (see replay_one_buffer() and
5578  *    link_to_fixup_dir());
5579  *
5580  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5581  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5582  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5583  *    has a size that doesn't match the sum of the lengths of all the logged
5584  *    names. This does not result in a problem because if a dir_item key is
5585  *    logged but its matching dir_index key is not logged, at log replay time we
5586  *    don't use it to replay the respective name (see replay_one_name()). On the
5587  *    other hand if only the dir_index key ends up being logged, the respective
5588  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5589  *    keys created (see replay_one_name()).
5590  *    The directory's inode item with a wrong i_size is not a problem as well,
5591  *    since we don't use it at log replay time to set the i_size in the inode
5592  *    item of the fs/subvol tree (see overwrite_item()).
5593  */
5594 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5595 				struct btrfs_root *root,
5596 				struct btrfs_inode *start_inode,
5597 				struct btrfs_log_ctx *ctx)
5598 {
5599 	struct btrfs_fs_info *fs_info = root->fs_info;
5600 	struct btrfs_root *log = root->log_root;
5601 	struct btrfs_path *path;
5602 	LIST_HEAD(dir_list);
5603 	struct btrfs_dir_list *dir_elem;
5604 	int ret = 0;
5605 
5606 	path = btrfs_alloc_path();
5607 	if (!path)
5608 		return -ENOMEM;
5609 
5610 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5611 	if (!dir_elem) {
5612 		btrfs_free_path(path);
5613 		return -ENOMEM;
5614 	}
5615 	dir_elem->ino = btrfs_ino(start_inode);
5616 	list_add_tail(&dir_elem->list, &dir_list);
5617 
5618 	while (!list_empty(&dir_list)) {
5619 		struct extent_buffer *leaf;
5620 		struct btrfs_key min_key;
5621 		int nritems;
5622 		int i;
5623 
5624 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5625 					    list);
5626 		if (ret)
5627 			goto next_dir_inode;
5628 
5629 		min_key.objectid = dir_elem->ino;
5630 		min_key.type = BTRFS_DIR_ITEM_KEY;
5631 		min_key.offset = 0;
5632 again:
5633 		btrfs_release_path(path);
5634 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5635 		if (ret < 0) {
5636 			goto next_dir_inode;
5637 		} else if (ret > 0) {
5638 			ret = 0;
5639 			goto next_dir_inode;
5640 		}
5641 
5642 process_leaf:
5643 		leaf = path->nodes[0];
5644 		nritems = btrfs_header_nritems(leaf);
5645 		for (i = path->slots[0]; i < nritems; i++) {
5646 			struct btrfs_dir_item *di;
5647 			struct btrfs_key di_key;
5648 			struct inode *di_inode;
5649 			struct btrfs_dir_list *new_dir_elem;
5650 			int log_mode = LOG_INODE_EXISTS;
5651 			int type;
5652 
5653 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5654 			if (min_key.objectid != dir_elem->ino ||
5655 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5656 				goto next_dir_inode;
5657 
5658 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5659 			type = btrfs_dir_type(leaf, di);
5660 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5661 			    type != BTRFS_FT_DIR)
5662 				continue;
5663 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5664 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5665 				continue;
5666 
5667 			btrfs_release_path(path);
5668 			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5669 			if (IS_ERR(di_inode)) {
5670 				ret = PTR_ERR(di_inode);
5671 				goto next_dir_inode;
5672 			}
5673 
5674 			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5675 				btrfs_add_delayed_iput(di_inode);
5676 				break;
5677 			}
5678 
5679 			ctx->log_new_dentries = false;
5680 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5681 				log_mode = LOG_INODE_ALL;
5682 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5683 					      log_mode, ctx);
5684 			if (!ret &&
5685 			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5686 				ret = 1;
5687 			btrfs_add_delayed_iput(di_inode);
5688 			if (ret)
5689 				goto next_dir_inode;
5690 			if (ctx->log_new_dentries) {
5691 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5692 						       GFP_NOFS);
5693 				if (!new_dir_elem) {
5694 					ret = -ENOMEM;
5695 					goto next_dir_inode;
5696 				}
5697 				new_dir_elem->ino = di_key.objectid;
5698 				list_add_tail(&new_dir_elem->list, &dir_list);
5699 			}
5700 			break;
5701 		}
5702 		if (i == nritems) {
5703 			ret = btrfs_next_leaf(log, path);
5704 			if (ret < 0) {
5705 				goto next_dir_inode;
5706 			} else if (ret > 0) {
5707 				ret = 0;
5708 				goto next_dir_inode;
5709 			}
5710 			goto process_leaf;
5711 		}
5712 		if (min_key.offset < (u64)-1) {
5713 			min_key.offset++;
5714 			goto again;
5715 		}
5716 next_dir_inode:
5717 		list_del(&dir_elem->list);
5718 		kfree(dir_elem);
5719 	}
5720 
5721 	btrfs_free_path(path);
5722 	return ret;
5723 }
5724 
5725 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5726 				 struct btrfs_inode *inode,
5727 				 struct btrfs_log_ctx *ctx)
5728 {
5729 	struct btrfs_fs_info *fs_info = trans->fs_info;
5730 	int ret;
5731 	struct btrfs_path *path;
5732 	struct btrfs_key key;
5733 	struct btrfs_root *root = inode->root;
5734 	const u64 ino = btrfs_ino(inode);
5735 
5736 	path = btrfs_alloc_path();
5737 	if (!path)
5738 		return -ENOMEM;
5739 	path->skip_locking = 1;
5740 	path->search_commit_root = 1;
5741 
5742 	key.objectid = ino;
5743 	key.type = BTRFS_INODE_REF_KEY;
5744 	key.offset = 0;
5745 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5746 	if (ret < 0)
5747 		goto out;
5748 
5749 	while (true) {
5750 		struct extent_buffer *leaf = path->nodes[0];
5751 		int slot = path->slots[0];
5752 		u32 cur_offset = 0;
5753 		u32 item_size;
5754 		unsigned long ptr;
5755 
5756 		if (slot >= btrfs_header_nritems(leaf)) {
5757 			ret = btrfs_next_leaf(root, path);
5758 			if (ret < 0)
5759 				goto out;
5760 			else if (ret > 0)
5761 				break;
5762 			continue;
5763 		}
5764 
5765 		btrfs_item_key_to_cpu(leaf, &key, slot);
5766 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5767 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5768 			break;
5769 
5770 		item_size = btrfs_item_size_nr(leaf, slot);
5771 		ptr = btrfs_item_ptr_offset(leaf, slot);
5772 		while (cur_offset < item_size) {
5773 			struct btrfs_key inode_key;
5774 			struct inode *dir_inode;
5775 
5776 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5777 			inode_key.offset = 0;
5778 
5779 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5780 				struct btrfs_inode_extref *extref;
5781 
5782 				extref = (struct btrfs_inode_extref *)
5783 					(ptr + cur_offset);
5784 				inode_key.objectid = btrfs_inode_extref_parent(
5785 					leaf, extref);
5786 				cur_offset += sizeof(*extref);
5787 				cur_offset += btrfs_inode_extref_name_len(leaf,
5788 					extref);
5789 			} else {
5790 				inode_key.objectid = key.offset;
5791 				cur_offset = item_size;
5792 			}
5793 
5794 			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5795 					       root);
5796 			/*
5797 			 * If the parent inode was deleted, return an error to
5798 			 * fallback to a transaction commit. This is to prevent
5799 			 * getting an inode that was moved from one parent A to
5800 			 * a parent B, got its former parent A deleted and then
5801 			 * it got fsync'ed, from existing at both parents after
5802 			 * a log replay (and the old parent still existing).
5803 			 * Example:
5804 			 *
5805 			 * mkdir /mnt/A
5806 			 * mkdir /mnt/B
5807 			 * touch /mnt/B/bar
5808 			 * sync
5809 			 * mv /mnt/B/bar /mnt/A/bar
5810 			 * mv -T /mnt/A /mnt/B
5811 			 * fsync /mnt/B/bar
5812 			 * <power fail>
5813 			 *
5814 			 * If we ignore the old parent B which got deleted,
5815 			 * after a log replay we would have file bar linked
5816 			 * at both parents and the old parent B would still
5817 			 * exist.
5818 			 */
5819 			if (IS_ERR(dir_inode)) {
5820 				ret = PTR_ERR(dir_inode);
5821 				goto out;
5822 			}
5823 
5824 			if (ctx)
5825 				ctx->log_new_dentries = false;
5826 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5827 					      LOG_INODE_ALL, ctx);
5828 			if (!ret &&
5829 			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5830 				ret = 1;
5831 			if (!ret && ctx && ctx->log_new_dentries)
5832 				ret = log_new_dir_dentries(trans, root,
5833 						   BTRFS_I(dir_inode), ctx);
5834 			btrfs_add_delayed_iput(dir_inode);
5835 			if (ret)
5836 				goto out;
5837 		}
5838 		path->slots[0]++;
5839 	}
5840 	ret = 0;
5841 out:
5842 	btrfs_free_path(path);
5843 	return ret;
5844 }
5845 
5846 static int log_new_ancestors(struct btrfs_trans_handle *trans,
5847 			     struct btrfs_root *root,
5848 			     struct btrfs_path *path,
5849 			     struct btrfs_log_ctx *ctx)
5850 {
5851 	struct btrfs_key found_key;
5852 
5853 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5854 
5855 	while (true) {
5856 		struct btrfs_fs_info *fs_info = root->fs_info;
5857 		struct extent_buffer *leaf = path->nodes[0];
5858 		int slot = path->slots[0];
5859 		struct btrfs_key search_key;
5860 		struct inode *inode;
5861 		u64 ino;
5862 		int ret = 0;
5863 
5864 		btrfs_release_path(path);
5865 
5866 		ino = found_key.offset;
5867 
5868 		search_key.objectid = found_key.offset;
5869 		search_key.type = BTRFS_INODE_ITEM_KEY;
5870 		search_key.offset = 0;
5871 		inode = btrfs_iget(fs_info->sb, ino, root);
5872 		if (IS_ERR(inode))
5873 			return PTR_ERR(inode);
5874 
5875 		if (BTRFS_I(inode)->generation >= trans->transid)
5876 			ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5877 					      LOG_INODE_EXISTS, ctx);
5878 		btrfs_add_delayed_iput(inode);
5879 		if (ret)
5880 			return ret;
5881 
5882 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5883 			break;
5884 
5885 		search_key.type = BTRFS_INODE_REF_KEY;
5886 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5887 		if (ret < 0)
5888 			return ret;
5889 
5890 		leaf = path->nodes[0];
5891 		slot = path->slots[0];
5892 		if (slot >= btrfs_header_nritems(leaf)) {
5893 			ret = btrfs_next_leaf(root, path);
5894 			if (ret < 0)
5895 				return ret;
5896 			else if (ret > 0)
5897 				return -ENOENT;
5898 			leaf = path->nodes[0];
5899 			slot = path->slots[0];
5900 		}
5901 
5902 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5903 		if (found_key.objectid != search_key.objectid ||
5904 		    found_key.type != BTRFS_INODE_REF_KEY)
5905 			return -ENOENT;
5906 	}
5907 	return 0;
5908 }
5909 
5910 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5911 				  struct btrfs_inode *inode,
5912 				  struct dentry *parent,
5913 				  struct btrfs_log_ctx *ctx)
5914 {
5915 	struct btrfs_root *root = inode->root;
5916 	struct dentry *old_parent = NULL;
5917 	struct super_block *sb = inode->vfs_inode.i_sb;
5918 	int ret = 0;
5919 
5920 	while (true) {
5921 		if (!parent || d_really_is_negative(parent) ||
5922 		    sb != parent->d_sb)
5923 			break;
5924 
5925 		inode = BTRFS_I(d_inode(parent));
5926 		if (root != inode->root)
5927 			break;
5928 
5929 		if (inode->generation >= trans->transid) {
5930 			ret = btrfs_log_inode(trans, root, inode,
5931 					      LOG_INODE_EXISTS, ctx);
5932 			if (ret)
5933 				break;
5934 		}
5935 		if (IS_ROOT(parent))
5936 			break;
5937 
5938 		parent = dget_parent(parent);
5939 		dput(old_parent);
5940 		old_parent = parent;
5941 	}
5942 	dput(old_parent);
5943 
5944 	return ret;
5945 }
5946 
5947 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5948 				 struct btrfs_inode *inode,
5949 				 struct dentry *parent,
5950 				 struct btrfs_log_ctx *ctx)
5951 {
5952 	struct btrfs_root *root = inode->root;
5953 	const u64 ino = btrfs_ino(inode);
5954 	struct btrfs_path *path;
5955 	struct btrfs_key search_key;
5956 	int ret;
5957 
5958 	/*
5959 	 * For a single hard link case, go through a fast path that does not
5960 	 * need to iterate the fs/subvolume tree.
5961 	 */
5962 	if (inode->vfs_inode.i_nlink < 2)
5963 		return log_new_ancestors_fast(trans, inode, parent, ctx);
5964 
5965 	path = btrfs_alloc_path();
5966 	if (!path)
5967 		return -ENOMEM;
5968 
5969 	search_key.objectid = ino;
5970 	search_key.type = BTRFS_INODE_REF_KEY;
5971 	search_key.offset = 0;
5972 again:
5973 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5974 	if (ret < 0)
5975 		goto out;
5976 	if (ret == 0)
5977 		path->slots[0]++;
5978 
5979 	while (true) {
5980 		struct extent_buffer *leaf = path->nodes[0];
5981 		int slot = path->slots[0];
5982 		struct btrfs_key found_key;
5983 
5984 		if (slot >= btrfs_header_nritems(leaf)) {
5985 			ret = btrfs_next_leaf(root, path);
5986 			if (ret < 0)
5987 				goto out;
5988 			else if (ret > 0)
5989 				break;
5990 			continue;
5991 		}
5992 
5993 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5994 		if (found_key.objectid != ino ||
5995 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
5996 			break;
5997 
5998 		/*
5999 		 * Don't deal with extended references because they are rare
6000 		 * cases and too complex to deal with (we would need to keep
6001 		 * track of which subitem we are processing for each item in
6002 		 * this loop, etc). So just return some error to fallback to
6003 		 * a transaction commit.
6004 		 */
6005 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6006 			ret = -EMLINK;
6007 			goto out;
6008 		}
6009 
6010 		/*
6011 		 * Logging ancestors needs to do more searches on the fs/subvol
6012 		 * tree, so it releases the path as needed to avoid deadlocks.
6013 		 * Keep track of the last inode ref key and resume from that key
6014 		 * after logging all new ancestors for the current hard link.
6015 		 */
6016 		memcpy(&search_key, &found_key, sizeof(search_key));
6017 
6018 		ret = log_new_ancestors(trans, root, path, ctx);
6019 		if (ret)
6020 			goto out;
6021 		btrfs_release_path(path);
6022 		goto again;
6023 	}
6024 	ret = 0;
6025 out:
6026 	btrfs_free_path(path);
6027 	return ret;
6028 }
6029 
6030 /*
6031  * helper function around btrfs_log_inode to make sure newly created
6032  * parent directories also end up in the log.  A minimal inode and backref
6033  * only logging is done of any parent directories that are older than
6034  * the last committed transaction
6035  */
6036 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6037 				  struct btrfs_inode *inode,
6038 				  struct dentry *parent,
6039 				  int inode_only,
6040 				  struct btrfs_log_ctx *ctx)
6041 {
6042 	struct btrfs_root *root = inode->root;
6043 	struct btrfs_fs_info *fs_info = root->fs_info;
6044 	struct super_block *sb;
6045 	int ret = 0;
6046 	bool log_dentries = false;
6047 
6048 	sb = inode->vfs_inode.i_sb;
6049 
6050 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6051 		ret = 1;
6052 		goto end_no_trans;
6053 	}
6054 
6055 	if (btrfs_root_refs(&root->root_item) == 0) {
6056 		ret = 1;
6057 		goto end_no_trans;
6058 	}
6059 
6060 	ret = check_parent_dirs_for_sync(trans, inode, parent, sb);
6061 	if (ret)
6062 		goto end_no_trans;
6063 
6064 	/*
6065 	 * Skip already logged inodes or inodes corresponding to tmpfiles
6066 	 * (since logging them is pointless, a link count of 0 means they
6067 	 * will never be accessible).
6068 	 */
6069 	if (btrfs_inode_in_log(inode, trans->transid) ||
6070 	    inode->vfs_inode.i_nlink == 0) {
6071 		ret = BTRFS_NO_LOG_SYNC;
6072 		goto end_no_trans;
6073 	}
6074 
6075 	ret = start_log_trans(trans, root, ctx);
6076 	if (ret)
6077 		goto end_no_trans;
6078 
6079 	ret = btrfs_log_inode(trans, root, inode, inode_only, ctx);
6080 	if (ret)
6081 		goto end_trans;
6082 
6083 	/*
6084 	 * for regular files, if its inode is already on disk, we don't
6085 	 * have to worry about the parents at all.  This is because
6086 	 * we can use the last_unlink_trans field to record renames
6087 	 * and other fun in this file.
6088 	 */
6089 	if (S_ISREG(inode->vfs_inode.i_mode) &&
6090 	    inode->generation < trans->transid &&
6091 	    inode->last_unlink_trans < trans->transid) {
6092 		ret = 0;
6093 		goto end_trans;
6094 	}
6095 
6096 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6097 		log_dentries = true;
6098 
6099 	/*
6100 	 * On unlink we must make sure all our current and old parent directory
6101 	 * inodes are fully logged. This is to prevent leaving dangling
6102 	 * directory index entries in directories that were our parents but are
6103 	 * not anymore. Not doing this results in old parent directory being
6104 	 * impossible to delete after log replay (rmdir will always fail with
6105 	 * error -ENOTEMPTY).
6106 	 *
6107 	 * Example 1:
6108 	 *
6109 	 * mkdir testdir
6110 	 * touch testdir/foo
6111 	 * ln testdir/foo testdir/bar
6112 	 * sync
6113 	 * unlink testdir/bar
6114 	 * xfs_io -c fsync testdir/foo
6115 	 * <power failure>
6116 	 * mount fs, triggers log replay
6117 	 *
6118 	 * If we don't log the parent directory (testdir), after log replay the
6119 	 * directory still has an entry pointing to the file inode using the bar
6120 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6121 	 * the file inode has a link count of 1.
6122 	 *
6123 	 * Example 2:
6124 	 *
6125 	 * mkdir testdir
6126 	 * touch foo
6127 	 * ln foo testdir/foo2
6128 	 * ln foo testdir/foo3
6129 	 * sync
6130 	 * unlink testdir/foo3
6131 	 * xfs_io -c fsync foo
6132 	 * <power failure>
6133 	 * mount fs, triggers log replay
6134 	 *
6135 	 * Similar as the first example, after log replay the parent directory
6136 	 * testdir still has an entry pointing to the inode file with name foo3
6137 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6138 	 * and has a link count of 2.
6139 	 */
6140 	if (inode->last_unlink_trans >= trans->transid) {
6141 		ret = btrfs_log_all_parents(trans, inode, ctx);
6142 		if (ret)
6143 			goto end_trans;
6144 	}
6145 
6146 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6147 	if (ret)
6148 		goto end_trans;
6149 
6150 	if (log_dentries)
6151 		ret = log_new_dir_dentries(trans, root, inode, ctx);
6152 	else
6153 		ret = 0;
6154 end_trans:
6155 	if (ret < 0) {
6156 		btrfs_set_log_full_commit(trans);
6157 		ret = 1;
6158 	}
6159 
6160 	if (ret)
6161 		btrfs_remove_log_ctx(root, ctx);
6162 	btrfs_end_log_trans(root);
6163 end_no_trans:
6164 	return ret;
6165 }
6166 
6167 /*
6168  * it is not safe to log dentry if the chunk root has added new
6169  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6170  * If this returns 1, you must commit the transaction to safely get your
6171  * data on disk.
6172  */
6173 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6174 			  struct dentry *dentry,
6175 			  struct btrfs_log_ctx *ctx)
6176 {
6177 	struct dentry *parent = dget_parent(dentry);
6178 	int ret;
6179 
6180 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6181 				     LOG_INODE_ALL, ctx);
6182 	dput(parent);
6183 
6184 	return ret;
6185 }
6186 
6187 /*
6188  * should be called during mount to recover any replay any log trees
6189  * from the FS
6190  */
6191 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6192 {
6193 	int ret;
6194 	struct btrfs_path *path;
6195 	struct btrfs_trans_handle *trans;
6196 	struct btrfs_key key;
6197 	struct btrfs_key found_key;
6198 	struct btrfs_root *log;
6199 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6200 	struct walk_control wc = {
6201 		.process_func = process_one_buffer,
6202 		.stage = LOG_WALK_PIN_ONLY,
6203 	};
6204 
6205 	path = btrfs_alloc_path();
6206 	if (!path)
6207 		return -ENOMEM;
6208 
6209 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6210 
6211 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6212 	if (IS_ERR(trans)) {
6213 		ret = PTR_ERR(trans);
6214 		goto error;
6215 	}
6216 
6217 	wc.trans = trans;
6218 	wc.pin = 1;
6219 
6220 	ret = walk_log_tree(trans, log_root_tree, &wc);
6221 	if (ret) {
6222 		btrfs_handle_fs_error(fs_info, ret,
6223 			"Failed to pin buffers while recovering log root tree.");
6224 		goto error;
6225 	}
6226 
6227 again:
6228 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6229 	key.offset = (u64)-1;
6230 	key.type = BTRFS_ROOT_ITEM_KEY;
6231 
6232 	while (1) {
6233 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6234 
6235 		if (ret < 0) {
6236 			btrfs_handle_fs_error(fs_info, ret,
6237 				    "Couldn't find tree log root.");
6238 			goto error;
6239 		}
6240 		if (ret > 0) {
6241 			if (path->slots[0] == 0)
6242 				break;
6243 			path->slots[0]--;
6244 		}
6245 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6246 				      path->slots[0]);
6247 		btrfs_release_path(path);
6248 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6249 			break;
6250 
6251 		log = btrfs_read_tree_root(log_root_tree, &found_key);
6252 		if (IS_ERR(log)) {
6253 			ret = PTR_ERR(log);
6254 			btrfs_handle_fs_error(fs_info, ret,
6255 				    "Couldn't read tree log root.");
6256 			goto error;
6257 		}
6258 
6259 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6260 						   true);
6261 		if (IS_ERR(wc.replay_dest)) {
6262 			ret = PTR_ERR(wc.replay_dest);
6263 
6264 			/*
6265 			 * We didn't find the subvol, likely because it was
6266 			 * deleted.  This is ok, simply skip this log and go to
6267 			 * the next one.
6268 			 *
6269 			 * We need to exclude the root because we can't have
6270 			 * other log replays overwriting this log as we'll read
6271 			 * it back in a few more times.  This will keep our
6272 			 * block from being modified, and we'll just bail for
6273 			 * each subsequent pass.
6274 			 */
6275 			if (ret == -ENOENT)
6276 				ret = btrfs_pin_extent_for_log_replay(trans,
6277 							log->node->start,
6278 							log->node->len);
6279 			btrfs_put_root(log);
6280 
6281 			if (!ret)
6282 				goto next;
6283 			btrfs_handle_fs_error(fs_info, ret,
6284 				"Couldn't read target root for tree log recovery.");
6285 			goto error;
6286 		}
6287 
6288 		wc.replay_dest->log_root = log;
6289 		btrfs_record_root_in_trans(trans, wc.replay_dest);
6290 		ret = walk_log_tree(trans, log, &wc);
6291 
6292 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6293 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6294 						      path);
6295 		}
6296 
6297 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6298 			struct btrfs_root *root = wc.replay_dest;
6299 
6300 			btrfs_release_path(path);
6301 
6302 			/*
6303 			 * We have just replayed everything, and the highest
6304 			 * objectid of fs roots probably has changed in case
6305 			 * some inode_item's got replayed.
6306 			 *
6307 			 * root->objectid_mutex is not acquired as log replay
6308 			 * could only happen during mount.
6309 			 */
6310 			ret = btrfs_find_highest_objectid(root,
6311 						  &root->highest_objectid);
6312 		}
6313 
6314 		wc.replay_dest->log_root = NULL;
6315 		btrfs_put_root(wc.replay_dest);
6316 		btrfs_put_root(log);
6317 
6318 		if (ret)
6319 			goto error;
6320 next:
6321 		if (found_key.offset == 0)
6322 			break;
6323 		key.offset = found_key.offset - 1;
6324 	}
6325 	btrfs_release_path(path);
6326 
6327 	/* step one is to pin it all, step two is to replay just inodes */
6328 	if (wc.pin) {
6329 		wc.pin = 0;
6330 		wc.process_func = replay_one_buffer;
6331 		wc.stage = LOG_WALK_REPLAY_INODES;
6332 		goto again;
6333 	}
6334 	/* step three is to replay everything */
6335 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6336 		wc.stage++;
6337 		goto again;
6338 	}
6339 
6340 	btrfs_free_path(path);
6341 
6342 	/* step 4: commit the transaction, which also unpins the blocks */
6343 	ret = btrfs_commit_transaction(trans);
6344 	if (ret)
6345 		return ret;
6346 
6347 	log_root_tree->log_root = NULL;
6348 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6349 	btrfs_put_root(log_root_tree);
6350 
6351 	return 0;
6352 error:
6353 	if (wc.trans)
6354 		btrfs_end_transaction(wc.trans);
6355 	btrfs_free_path(path);
6356 	return ret;
6357 }
6358 
6359 /*
6360  * there are some corner cases where we want to force a full
6361  * commit instead of allowing a directory to be logged.
6362  *
6363  * They revolve around files there were unlinked from the directory, and
6364  * this function updates the parent directory so that a full commit is
6365  * properly done if it is fsync'd later after the unlinks are done.
6366  *
6367  * Must be called before the unlink operations (updates to the subvolume tree,
6368  * inodes, etc) are done.
6369  */
6370 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6371 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6372 			     int for_rename)
6373 {
6374 	/*
6375 	 * when we're logging a file, if it hasn't been renamed
6376 	 * or unlinked, and its inode is fully committed on disk,
6377 	 * we don't have to worry about walking up the directory chain
6378 	 * to log its parents.
6379 	 *
6380 	 * So, we use the last_unlink_trans field to put this transid
6381 	 * into the file.  When the file is logged we check it and
6382 	 * don't log the parents if the file is fully on disk.
6383 	 */
6384 	mutex_lock(&inode->log_mutex);
6385 	inode->last_unlink_trans = trans->transid;
6386 	mutex_unlock(&inode->log_mutex);
6387 
6388 	/*
6389 	 * if this directory was already logged any new
6390 	 * names for this file/dir will get recorded
6391 	 */
6392 	if (dir->logged_trans == trans->transid)
6393 		return;
6394 
6395 	/*
6396 	 * if the inode we're about to unlink was logged,
6397 	 * the log will be properly updated for any new names
6398 	 */
6399 	if (inode->logged_trans == trans->transid)
6400 		return;
6401 
6402 	/*
6403 	 * when renaming files across directories, if the directory
6404 	 * there we're unlinking from gets fsync'd later on, there's
6405 	 * no way to find the destination directory later and fsync it
6406 	 * properly.  So, we have to be conservative and force commits
6407 	 * so the new name gets discovered.
6408 	 */
6409 	if (for_rename)
6410 		goto record;
6411 
6412 	/* we can safely do the unlink without any special recording */
6413 	return;
6414 
6415 record:
6416 	mutex_lock(&dir->log_mutex);
6417 	dir->last_unlink_trans = trans->transid;
6418 	mutex_unlock(&dir->log_mutex);
6419 }
6420 
6421 /*
6422  * Make sure that if someone attempts to fsync the parent directory of a deleted
6423  * snapshot, it ends up triggering a transaction commit. This is to guarantee
6424  * that after replaying the log tree of the parent directory's root we will not
6425  * see the snapshot anymore and at log replay time we will not see any log tree
6426  * corresponding to the deleted snapshot's root, which could lead to replaying
6427  * it after replaying the log tree of the parent directory (which would replay
6428  * the snapshot delete operation).
6429  *
6430  * Must be called before the actual snapshot destroy operation (updates to the
6431  * parent root and tree of tree roots trees, etc) are done.
6432  */
6433 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6434 				   struct btrfs_inode *dir)
6435 {
6436 	mutex_lock(&dir->log_mutex);
6437 	dir->last_unlink_trans = trans->transid;
6438 	mutex_unlock(&dir->log_mutex);
6439 }
6440 
6441 /*
6442  * Call this after adding a new name for a file and it will properly
6443  * update the log to reflect the new name.
6444  */
6445 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
6446 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6447 			struct dentry *parent)
6448 {
6449 	struct btrfs_log_ctx ctx;
6450 
6451 	/*
6452 	 * this will force the logging code to walk the dentry chain
6453 	 * up for the file
6454 	 */
6455 	if (!S_ISDIR(inode->vfs_inode.i_mode))
6456 		inode->last_unlink_trans = trans->transid;
6457 
6458 	/*
6459 	 * if this inode hasn't been logged and directory we're renaming it
6460 	 * from hasn't been logged, we don't need to log it
6461 	 */
6462 	if (inode->logged_trans < trans->transid &&
6463 	    (!old_dir || old_dir->logged_trans < trans->transid))
6464 		return;
6465 
6466 	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
6467 	ctx.logging_new_name = true;
6468 	/*
6469 	 * We don't care about the return value. If we fail to log the new name
6470 	 * then we know the next attempt to sync the log will fallback to a full
6471 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
6472 	 * we don't need to worry about getting a log committed that has an
6473 	 * inconsistent state after a rename operation.
6474 	 */
6475 	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
6476 }
6477 
6478