xref: /linux/fs/btrfs/tree-log.c (revision e6a901a00822659181c93c86d8bbc2a17779fddc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "backref.h"
17 #include "compression.h"
18 #include "qgroup.h"
19 #include "block-group.h"
20 #include "space-info.h"
21 #include "inode-item.h"
22 #include "fs.h"
23 #include "accessors.h"
24 #include "extent-tree.h"
25 #include "root-tree.h"
26 #include "dir-item.h"
27 #include "file-item.h"
28 #include "file.h"
29 #include "orphan.h"
30 #include "tree-checker.h"
31 
32 #define MAX_CONFLICT_INODES 10
33 
34 /* magic values for the inode_only field in btrfs_log_inode:
35  *
36  * LOG_INODE_ALL means to log everything
37  * LOG_INODE_EXISTS means to log just enough to recreate the inode
38  * during log replay
39  */
40 enum {
41 	LOG_INODE_ALL,
42 	LOG_INODE_EXISTS,
43 };
44 
45 /*
46  * directory trouble cases
47  *
48  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
49  * log, we must force a full commit before doing an fsync of the directory
50  * where the unlink was done.
51  * ---> record transid of last unlink/rename per directory
52  *
53  * mkdir foo/some_dir
54  * normal commit
55  * rename foo/some_dir foo2/some_dir
56  * mkdir foo/some_dir
57  * fsync foo/some_dir/some_file
58  *
59  * The fsync above will unlink the original some_dir without recording
60  * it in its new location (foo2).  After a crash, some_dir will be gone
61  * unless the fsync of some_file forces a full commit
62  *
63  * 2) we must log any new names for any file or dir that is in the fsync
64  * log. ---> check inode while renaming/linking.
65  *
66  * 2a) we must log any new names for any file or dir during rename
67  * when the directory they are being removed from was logged.
68  * ---> check inode and old parent dir during rename
69  *
70  *  2a is actually the more important variant.  With the extra logging
71  *  a crash might unlink the old name without recreating the new one
72  *
73  * 3) after a crash, we must go through any directories with a link count
74  * of zero and redo the rm -rf
75  *
76  * mkdir f1/foo
77  * normal commit
78  * rm -rf f1/foo
79  * fsync(f1)
80  *
81  * The directory f1 was fully removed from the FS, but fsync was never
82  * called on f1, only its parent dir.  After a crash the rm -rf must
83  * be replayed.  This must be able to recurse down the entire
84  * directory tree.  The inode link count fixup code takes care of the
85  * ugly details.
86  */
87 
88 /*
89  * stages for the tree walking.  The first
90  * stage (0) is to only pin down the blocks we find
91  * the second stage (1) is to make sure that all the inodes
92  * we find in the log are created in the subvolume.
93  *
94  * The last stage is to deal with directories and links and extents
95  * and all the other fun semantics
96  */
97 enum {
98 	LOG_WALK_PIN_ONLY,
99 	LOG_WALK_REPLAY_INODES,
100 	LOG_WALK_REPLAY_DIR_INDEX,
101 	LOG_WALK_REPLAY_ALL,
102 };
103 
104 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
105 			   struct btrfs_inode *inode,
106 			   int inode_only,
107 			   struct btrfs_log_ctx *ctx);
108 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
109 			     struct btrfs_root *root,
110 			     struct btrfs_path *path, u64 objectid);
111 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
112 				       struct btrfs_root *root,
113 				       struct btrfs_root *log,
114 				       struct btrfs_path *path,
115 				       u64 dirid, int del_all);
116 static void wait_log_commit(struct btrfs_root *root, int transid);
117 
118 /*
119  * tree logging is a special write ahead log used to make sure that
120  * fsyncs and O_SYNCs can happen without doing full tree commits.
121  *
122  * Full tree commits are expensive because they require commonly
123  * modified blocks to be recowed, creating many dirty pages in the
124  * extent tree an 4x-6x higher write load than ext3.
125  *
126  * Instead of doing a tree commit on every fsync, we use the
127  * key ranges and transaction ids to find items for a given file or directory
128  * that have changed in this transaction.  Those items are copied into
129  * a special tree (one per subvolume root), that tree is written to disk
130  * and then the fsync is considered complete.
131  *
132  * After a crash, items are copied out of the log-tree back into the
133  * subvolume tree.  Any file data extents found are recorded in the extent
134  * allocation tree, and the log-tree freed.
135  *
136  * The log tree is read three times, once to pin down all the extents it is
137  * using in ram and once, once to create all the inodes logged in the tree
138  * and once to do all the other items.
139  */
140 
141 /*
142  * start a sub transaction and setup the log tree
143  * this increments the log tree writer count to make the people
144  * syncing the tree wait for us to finish
145  */
146 static int start_log_trans(struct btrfs_trans_handle *trans,
147 			   struct btrfs_root *root,
148 			   struct btrfs_log_ctx *ctx)
149 {
150 	struct btrfs_fs_info *fs_info = root->fs_info;
151 	struct btrfs_root *tree_root = fs_info->tree_root;
152 	const bool zoned = btrfs_is_zoned(fs_info);
153 	int ret = 0;
154 	bool created = false;
155 
156 	/*
157 	 * First check if the log root tree was already created. If not, create
158 	 * it before locking the root's log_mutex, just to keep lockdep happy.
159 	 */
160 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
161 		mutex_lock(&tree_root->log_mutex);
162 		if (!fs_info->log_root_tree) {
163 			ret = btrfs_init_log_root_tree(trans, fs_info);
164 			if (!ret) {
165 				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
166 				created = true;
167 			}
168 		}
169 		mutex_unlock(&tree_root->log_mutex);
170 		if (ret)
171 			return ret;
172 	}
173 
174 	mutex_lock(&root->log_mutex);
175 
176 again:
177 	if (root->log_root) {
178 		int index = (root->log_transid + 1) % 2;
179 
180 		if (btrfs_need_log_full_commit(trans)) {
181 			ret = BTRFS_LOG_FORCE_COMMIT;
182 			goto out;
183 		}
184 
185 		if (zoned && atomic_read(&root->log_commit[index])) {
186 			wait_log_commit(root, root->log_transid - 1);
187 			goto again;
188 		}
189 
190 		if (!root->log_start_pid) {
191 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
192 			root->log_start_pid = current->pid;
193 		} else if (root->log_start_pid != current->pid) {
194 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
195 		}
196 	} else {
197 		/*
198 		 * This means fs_info->log_root_tree was already created
199 		 * for some other FS trees. Do the full commit not to mix
200 		 * nodes from multiple log transactions to do sequential
201 		 * writing.
202 		 */
203 		if (zoned && !created) {
204 			ret = BTRFS_LOG_FORCE_COMMIT;
205 			goto out;
206 		}
207 
208 		ret = btrfs_add_log_tree(trans, root);
209 		if (ret)
210 			goto out;
211 
212 		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
213 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
214 		root->log_start_pid = current->pid;
215 	}
216 
217 	atomic_inc(&root->log_writers);
218 	if (!ctx->logging_new_name) {
219 		int index = root->log_transid % 2;
220 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
221 		ctx->log_transid = root->log_transid;
222 	}
223 
224 out:
225 	mutex_unlock(&root->log_mutex);
226 	return ret;
227 }
228 
229 /*
230  * returns 0 if there was a log transaction running and we were able
231  * to join, or returns -ENOENT if there were not transactions
232  * in progress
233  */
234 static int join_running_log_trans(struct btrfs_root *root)
235 {
236 	const bool zoned = btrfs_is_zoned(root->fs_info);
237 	int ret = -ENOENT;
238 
239 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
240 		return ret;
241 
242 	mutex_lock(&root->log_mutex);
243 again:
244 	if (root->log_root) {
245 		int index = (root->log_transid + 1) % 2;
246 
247 		ret = 0;
248 		if (zoned && atomic_read(&root->log_commit[index])) {
249 			wait_log_commit(root, root->log_transid - 1);
250 			goto again;
251 		}
252 		atomic_inc(&root->log_writers);
253 	}
254 	mutex_unlock(&root->log_mutex);
255 	return ret;
256 }
257 
258 /*
259  * This either makes the current running log transaction wait
260  * until you call btrfs_end_log_trans() or it makes any future
261  * log transactions wait until you call btrfs_end_log_trans()
262  */
263 void btrfs_pin_log_trans(struct btrfs_root *root)
264 {
265 	atomic_inc(&root->log_writers);
266 }
267 
268 /*
269  * indicate we're done making changes to the log tree
270  * and wake up anyone waiting to do a sync
271  */
272 void btrfs_end_log_trans(struct btrfs_root *root)
273 {
274 	if (atomic_dec_and_test(&root->log_writers)) {
275 		/* atomic_dec_and_test implies a barrier */
276 		cond_wake_up_nomb(&root->log_writer_wait);
277 	}
278 }
279 
280 /*
281  * the walk control struct is used to pass state down the chain when
282  * processing the log tree.  The stage field tells us which part
283  * of the log tree processing we are currently doing.  The others
284  * are state fields used for that specific part
285  */
286 struct walk_control {
287 	/* should we free the extent on disk when done?  This is used
288 	 * at transaction commit time while freeing a log tree
289 	 */
290 	int free;
291 
292 	/* pin only walk, we record which extents on disk belong to the
293 	 * log trees
294 	 */
295 	int pin;
296 
297 	/* what stage of the replay code we're currently in */
298 	int stage;
299 
300 	/*
301 	 * Ignore any items from the inode currently being processed. Needs
302 	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
303 	 * the LOG_WALK_REPLAY_INODES stage.
304 	 */
305 	bool ignore_cur_inode;
306 
307 	/* the root we are currently replaying */
308 	struct btrfs_root *replay_dest;
309 
310 	/* the trans handle for the current replay */
311 	struct btrfs_trans_handle *trans;
312 
313 	/* the function that gets used to process blocks we find in the
314 	 * tree.  Note the extent_buffer might not be up to date when it is
315 	 * passed in, and it must be checked or read if you need the data
316 	 * inside it
317 	 */
318 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
319 			    struct walk_control *wc, u64 gen, int level);
320 };
321 
322 /*
323  * process_func used to pin down extents, write them or wait on them
324  */
325 static int process_one_buffer(struct btrfs_root *log,
326 			      struct extent_buffer *eb,
327 			      struct walk_control *wc, u64 gen, int level)
328 {
329 	struct btrfs_fs_info *fs_info = log->fs_info;
330 	int ret = 0;
331 
332 	/*
333 	 * If this fs is mixed then we need to be able to process the leaves to
334 	 * pin down any logged extents, so we have to read the block.
335 	 */
336 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
337 		struct btrfs_tree_parent_check check = {
338 			.level = level,
339 			.transid = gen
340 		};
341 
342 		ret = btrfs_read_extent_buffer(eb, &check);
343 		if (ret)
344 			return ret;
345 	}
346 
347 	if (wc->pin) {
348 		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb);
349 		if (ret)
350 			return ret;
351 
352 		if (btrfs_buffer_uptodate(eb, gen, 0) &&
353 		    btrfs_header_level(eb) == 0)
354 			ret = btrfs_exclude_logged_extents(eb);
355 	}
356 	return ret;
357 }
358 
359 /*
360  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
361  * to the src data we are copying out.
362  *
363  * root is the tree we are copying into, and path is a scratch
364  * path for use in this function (it should be released on entry and
365  * will be released on exit).
366  *
367  * If the key is already in the destination tree the existing item is
368  * overwritten.  If the existing item isn't big enough, it is extended.
369  * If it is too large, it is truncated.
370  *
371  * If the key isn't in the destination yet, a new item is inserted.
372  */
373 static int overwrite_item(struct btrfs_trans_handle *trans,
374 			  struct btrfs_root *root,
375 			  struct btrfs_path *path,
376 			  struct extent_buffer *eb, int slot,
377 			  struct btrfs_key *key)
378 {
379 	int ret;
380 	u32 item_size;
381 	u64 saved_i_size = 0;
382 	int save_old_i_size = 0;
383 	unsigned long src_ptr;
384 	unsigned long dst_ptr;
385 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
386 
387 	/*
388 	 * This is only used during log replay, so the root is always from a
389 	 * fs/subvolume tree. In case we ever need to support a log root, then
390 	 * we'll have to clone the leaf in the path, release the path and use
391 	 * the leaf before writing into the log tree. See the comments at
392 	 * copy_items() for more details.
393 	 */
394 	ASSERT(root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
395 
396 	item_size = btrfs_item_size(eb, slot);
397 	src_ptr = btrfs_item_ptr_offset(eb, slot);
398 
399 	/* Look for the key in the destination tree. */
400 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
401 	if (ret < 0)
402 		return ret;
403 
404 	if (ret == 0) {
405 		char *src_copy;
406 		char *dst_copy;
407 		u32 dst_size = btrfs_item_size(path->nodes[0],
408 						  path->slots[0]);
409 		if (dst_size != item_size)
410 			goto insert;
411 
412 		if (item_size == 0) {
413 			btrfs_release_path(path);
414 			return 0;
415 		}
416 		dst_copy = kmalloc(item_size, GFP_NOFS);
417 		src_copy = kmalloc(item_size, GFP_NOFS);
418 		if (!dst_copy || !src_copy) {
419 			btrfs_release_path(path);
420 			kfree(dst_copy);
421 			kfree(src_copy);
422 			return -ENOMEM;
423 		}
424 
425 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
426 
427 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
428 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
429 				   item_size);
430 		ret = memcmp(dst_copy, src_copy, item_size);
431 
432 		kfree(dst_copy);
433 		kfree(src_copy);
434 		/*
435 		 * they have the same contents, just return, this saves
436 		 * us from cowing blocks in the destination tree and doing
437 		 * extra writes that may not have been done by a previous
438 		 * sync
439 		 */
440 		if (ret == 0) {
441 			btrfs_release_path(path);
442 			return 0;
443 		}
444 
445 		/*
446 		 * We need to load the old nbytes into the inode so when we
447 		 * replay the extents we've logged we get the right nbytes.
448 		 */
449 		if (inode_item) {
450 			struct btrfs_inode_item *item;
451 			u64 nbytes;
452 			u32 mode;
453 
454 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
455 					      struct btrfs_inode_item);
456 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
457 			item = btrfs_item_ptr(eb, slot,
458 					      struct btrfs_inode_item);
459 			btrfs_set_inode_nbytes(eb, item, nbytes);
460 
461 			/*
462 			 * If this is a directory we need to reset the i_size to
463 			 * 0 so that we can set it up properly when replaying
464 			 * the rest of the items in this log.
465 			 */
466 			mode = btrfs_inode_mode(eb, item);
467 			if (S_ISDIR(mode))
468 				btrfs_set_inode_size(eb, item, 0);
469 		}
470 	} else if (inode_item) {
471 		struct btrfs_inode_item *item;
472 		u32 mode;
473 
474 		/*
475 		 * New inode, set nbytes to 0 so that the nbytes comes out
476 		 * properly when we replay the extents.
477 		 */
478 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
479 		btrfs_set_inode_nbytes(eb, item, 0);
480 
481 		/*
482 		 * If this is a directory we need to reset the i_size to 0 so
483 		 * that we can set it up properly when replaying the rest of
484 		 * the items in this log.
485 		 */
486 		mode = btrfs_inode_mode(eb, item);
487 		if (S_ISDIR(mode))
488 			btrfs_set_inode_size(eb, item, 0);
489 	}
490 insert:
491 	btrfs_release_path(path);
492 	/* try to insert the key into the destination tree */
493 	path->skip_release_on_error = 1;
494 	ret = btrfs_insert_empty_item(trans, root, path,
495 				      key, item_size);
496 	path->skip_release_on_error = 0;
497 
498 	/* make sure any existing item is the correct size */
499 	if (ret == -EEXIST || ret == -EOVERFLOW) {
500 		u32 found_size;
501 		found_size = btrfs_item_size(path->nodes[0],
502 						path->slots[0]);
503 		if (found_size > item_size)
504 			btrfs_truncate_item(trans, path, item_size, 1);
505 		else if (found_size < item_size)
506 			btrfs_extend_item(trans, path, item_size - found_size);
507 	} else if (ret) {
508 		return ret;
509 	}
510 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
511 					path->slots[0]);
512 
513 	/* don't overwrite an existing inode if the generation number
514 	 * was logged as zero.  This is done when the tree logging code
515 	 * is just logging an inode to make sure it exists after recovery.
516 	 *
517 	 * Also, don't overwrite i_size on directories during replay.
518 	 * log replay inserts and removes directory items based on the
519 	 * state of the tree found in the subvolume, and i_size is modified
520 	 * as it goes
521 	 */
522 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
523 		struct btrfs_inode_item *src_item;
524 		struct btrfs_inode_item *dst_item;
525 
526 		src_item = (struct btrfs_inode_item *)src_ptr;
527 		dst_item = (struct btrfs_inode_item *)dst_ptr;
528 
529 		if (btrfs_inode_generation(eb, src_item) == 0) {
530 			struct extent_buffer *dst_eb = path->nodes[0];
531 			const u64 ino_size = btrfs_inode_size(eb, src_item);
532 
533 			/*
534 			 * For regular files an ino_size == 0 is used only when
535 			 * logging that an inode exists, as part of a directory
536 			 * fsync, and the inode wasn't fsynced before. In this
537 			 * case don't set the size of the inode in the fs/subvol
538 			 * tree, otherwise we would be throwing valid data away.
539 			 */
540 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
541 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
542 			    ino_size != 0)
543 				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
544 			goto no_copy;
545 		}
546 
547 		if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
548 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
549 			save_old_i_size = 1;
550 			saved_i_size = btrfs_inode_size(path->nodes[0],
551 							dst_item);
552 		}
553 	}
554 
555 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
556 			   src_ptr, item_size);
557 
558 	if (save_old_i_size) {
559 		struct btrfs_inode_item *dst_item;
560 		dst_item = (struct btrfs_inode_item *)dst_ptr;
561 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
562 	}
563 
564 	/* make sure the generation is filled in */
565 	if (key->type == BTRFS_INODE_ITEM_KEY) {
566 		struct btrfs_inode_item *dst_item;
567 		dst_item = (struct btrfs_inode_item *)dst_ptr;
568 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
569 			btrfs_set_inode_generation(path->nodes[0], dst_item,
570 						   trans->transid);
571 		}
572 	}
573 no_copy:
574 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
575 	btrfs_release_path(path);
576 	return 0;
577 }
578 
579 static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
580 			       struct fscrypt_str *name)
581 {
582 	char *buf;
583 
584 	buf = kmalloc(len, GFP_NOFS);
585 	if (!buf)
586 		return -ENOMEM;
587 
588 	read_extent_buffer(eb, buf, (unsigned long)start, len);
589 	name->name = buf;
590 	name->len = len;
591 	return 0;
592 }
593 
594 /*
595  * simple helper to read an inode off the disk from a given root
596  * This can only be called for subvolume roots and not for the log
597  */
598 static noinline struct inode *read_one_inode(struct btrfs_root *root,
599 					     u64 objectid)
600 {
601 	struct inode *inode;
602 
603 	inode = btrfs_iget(root->fs_info->sb, objectid, root);
604 	if (IS_ERR(inode))
605 		inode = NULL;
606 	return inode;
607 }
608 
609 /* replays a single extent in 'eb' at 'slot' with 'key' into the
610  * subvolume 'root'.  path is released on entry and should be released
611  * on exit.
612  *
613  * extents in the log tree have not been allocated out of the extent
614  * tree yet.  So, this completes the allocation, taking a reference
615  * as required if the extent already exists or creating a new extent
616  * if it isn't in the extent allocation tree yet.
617  *
618  * The extent is inserted into the file, dropping any existing extents
619  * from the file that overlap the new one.
620  */
621 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
622 				      struct btrfs_root *root,
623 				      struct btrfs_path *path,
624 				      struct extent_buffer *eb, int slot,
625 				      struct btrfs_key *key)
626 {
627 	struct btrfs_drop_extents_args drop_args = { 0 };
628 	struct btrfs_fs_info *fs_info = root->fs_info;
629 	int found_type;
630 	u64 extent_end;
631 	u64 start = key->offset;
632 	u64 nbytes = 0;
633 	struct btrfs_file_extent_item *item;
634 	struct inode *inode = NULL;
635 	unsigned long size;
636 	int ret = 0;
637 
638 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
639 	found_type = btrfs_file_extent_type(eb, item);
640 
641 	if (found_type == BTRFS_FILE_EXTENT_REG ||
642 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
643 		nbytes = btrfs_file_extent_num_bytes(eb, item);
644 		extent_end = start + nbytes;
645 
646 		/*
647 		 * We don't add to the inodes nbytes if we are prealloc or a
648 		 * hole.
649 		 */
650 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
651 			nbytes = 0;
652 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
653 		size = btrfs_file_extent_ram_bytes(eb, item);
654 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
655 		extent_end = ALIGN(start + size,
656 				   fs_info->sectorsize);
657 	} else {
658 		ret = 0;
659 		goto out;
660 	}
661 
662 	inode = read_one_inode(root, key->objectid);
663 	if (!inode) {
664 		ret = -EIO;
665 		goto out;
666 	}
667 
668 	/*
669 	 * first check to see if we already have this extent in the
670 	 * file.  This must be done before the btrfs_drop_extents run
671 	 * so we don't try to drop this extent.
672 	 */
673 	ret = btrfs_lookup_file_extent(trans, root, path,
674 			btrfs_ino(BTRFS_I(inode)), start, 0);
675 
676 	if (ret == 0 &&
677 	    (found_type == BTRFS_FILE_EXTENT_REG ||
678 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
679 		struct btrfs_file_extent_item cmp1;
680 		struct btrfs_file_extent_item cmp2;
681 		struct btrfs_file_extent_item *existing;
682 		struct extent_buffer *leaf;
683 
684 		leaf = path->nodes[0];
685 		existing = btrfs_item_ptr(leaf, path->slots[0],
686 					  struct btrfs_file_extent_item);
687 
688 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
689 				   sizeof(cmp1));
690 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
691 				   sizeof(cmp2));
692 
693 		/*
694 		 * we already have a pointer to this exact extent,
695 		 * we don't have to do anything
696 		 */
697 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
698 			btrfs_release_path(path);
699 			goto out;
700 		}
701 	}
702 	btrfs_release_path(path);
703 
704 	/* drop any overlapping extents */
705 	drop_args.start = start;
706 	drop_args.end = extent_end;
707 	drop_args.drop_cache = true;
708 	ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
709 	if (ret)
710 		goto out;
711 
712 	if (found_type == BTRFS_FILE_EXTENT_REG ||
713 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
714 		u64 offset;
715 		unsigned long dest_offset;
716 		struct btrfs_key ins;
717 
718 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
719 		    btrfs_fs_incompat(fs_info, NO_HOLES))
720 			goto update_inode;
721 
722 		ret = btrfs_insert_empty_item(trans, root, path, key,
723 					      sizeof(*item));
724 		if (ret)
725 			goto out;
726 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
727 						    path->slots[0]);
728 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
729 				(unsigned long)item,  sizeof(*item));
730 
731 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
732 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
733 		ins.type = BTRFS_EXTENT_ITEM_KEY;
734 		offset = key->offset - btrfs_file_extent_offset(eb, item);
735 
736 		/*
737 		 * Manually record dirty extent, as here we did a shallow
738 		 * file extent item copy and skip normal backref update,
739 		 * but modifying extent tree all by ourselves.
740 		 * So need to manually record dirty extent for qgroup,
741 		 * as the owner of the file extent changed from log tree
742 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
743 		 */
744 		ret = btrfs_qgroup_trace_extent(trans,
745 				btrfs_file_extent_disk_bytenr(eb, item),
746 				btrfs_file_extent_disk_num_bytes(eb, item));
747 		if (ret < 0)
748 			goto out;
749 
750 		if (ins.objectid > 0) {
751 			struct btrfs_ref ref = { 0 };
752 			u64 csum_start;
753 			u64 csum_end;
754 			LIST_HEAD(ordered_sums);
755 
756 			/*
757 			 * is this extent already allocated in the extent
758 			 * allocation tree?  If so, just add a reference
759 			 */
760 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
761 						ins.offset);
762 			if (ret < 0) {
763 				goto out;
764 			} else if (ret == 0) {
765 				btrfs_init_generic_ref(&ref,
766 						BTRFS_ADD_DELAYED_REF,
767 						ins.objectid, ins.offset, 0,
768 						root->root_key.objectid);
769 				btrfs_init_data_ref(&ref,
770 						root->root_key.objectid,
771 						key->objectid, offset, 0, false);
772 				ret = btrfs_inc_extent_ref(trans, &ref);
773 				if (ret)
774 					goto out;
775 			} else {
776 				/*
777 				 * insert the extent pointer in the extent
778 				 * allocation tree
779 				 */
780 				ret = btrfs_alloc_logged_file_extent(trans,
781 						root->root_key.objectid,
782 						key->objectid, offset, &ins);
783 				if (ret)
784 					goto out;
785 			}
786 			btrfs_release_path(path);
787 
788 			if (btrfs_file_extent_compression(eb, item)) {
789 				csum_start = ins.objectid;
790 				csum_end = csum_start + ins.offset;
791 			} else {
792 				csum_start = ins.objectid +
793 					btrfs_file_extent_offset(eb, item);
794 				csum_end = csum_start +
795 					btrfs_file_extent_num_bytes(eb, item);
796 			}
797 
798 			ret = btrfs_lookup_csums_list(root->log_root,
799 						csum_start, csum_end - 1,
800 						&ordered_sums, 0, false);
801 			if (ret)
802 				goto out;
803 			/*
804 			 * Now delete all existing cums in the csum root that
805 			 * cover our range. We do this because we can have an
806 			 * extent that is completely referenced by one file
807 			 * extent item and partially referenced by another
808 			 * file extent item (like after using the clone or
809 			 * extent_same ioctls). In this case if we end up doing
810 			 * the replay of the one that partially references the
811 			 * extent first, and we do not do the csum deletion
812 			 * below, we can get 2 csum items in the csum tree that
813 			 * overlap each other. For example, imagine our log has
814 			 * the two following file extent items:
815 			 *
816 			 * key (257 EXTENT_DATA 409600)
817 			 *     extent data disk byte 12845056 nr 102400
818 			 *     extent data offset 20480 nr 20480 ram 102400
819 			 *
820 			 * key (257 EXTENT_DATA 819200)
821 			 *     extent data disk byte 12845056 nr 102400
822 			 *     extent data offset 0 nr 102400 ram 102400
823 			 *
824 			 * Where the second one fully references the 100K extent
825 			 * that starts at disk byte 12845056, and the log tree
826 			 * has a single csum item that covers the entire range
827 			 * of the extent:
828 			 *
829 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
830 			 *
831 			 * After the first file extent item is replayed, the
832 			 * csum tree gets the following csum item:
833 			 *
834 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
835 			 *
836 			 * Which covers the 20K sub-range starting at offset 20K
837 			 * of our extent. Now when we replay the second file
838 			 * extent item, if we do not delete existing csum items
839 			 * that cover any of its blocks, we end up getting two
840 			 * csum items in our csum tree that overlap each other:
841 			 *
842 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
843 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
844 			 *
845 			 * Which is a problem, because after this anyone trying
846 			 * to lookup up for the checksum of any block of our
847 			 * extent starting at an offset of 40K or higher, will
848 			 * end up looking at the second csum item only, which
849 			 * does not contain the checksum for any block starting
850 			 * at offset 40K or higher of our extent.
851 			 */
852 			while (!list_empty(&ordered_sums)) {
853 				struct btrfs_ordered_sum *sums;
854 				struct btrfs_root *csum_root;
855 
856 				sums = list_entry(ordered_sums.next,
857 						struct btrfs_ordered_sum,
858 						list);
859 				csum_root = btrfs_csum_root(fs_info,
860 							    sums->logical);
861 				if (!ret)
862 					ret = btrfs_del_csums(trans, csum_root,
863 							      sums->logical,
864 							      sums->len);
865 				if (!ret)
866 					ret = btrfs_csum_file_blocks(trans,
867 								     csum_root,
868 								     sums);
869 				list_del(&sums->list);
870 				kfree(sums);
871 			}
872 			if (ret)
873 				goto out;
874 		} else {
875 			btrfs_release_path(path);
876 		}
877 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
878 		/* inline extents are easy, we just overwrite them */
879 		ret = overwrite_item(trans, root, path, eb, slot, key);
880 		if (ret)
881 			goto out;
882 	}
883 
884 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
885 						extent_end - start);
886 	if (ret)
887 		goto out;
888 
889 update_inode:
890 	btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
891 	ret = btrfs_update_inode(trans, BTRFS_I(inode));
892 out:
893 	iput(inode);
894 	return ret;
895 }
896 
897 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
898 				       struct btrfs_inode *dir,
899 				       struct btrfs_inode *inode,
900 				       const struct fscrypt_str *name)
901 {
902 	int ret;
903 
904 	ret = btrfs_unlink_inode(trans, dir, inode, name);
905 	if (ret)
906 		return ret;
907 	/*
908 	 * Whenever we need to check if a name exists or not, we check the
909 	 * fs/subvolume tree. So after an unlink we must run delayed items, so
910 	 * that future checks for a name during log replay see that the name
911 	 * does not exists anymore.
912 	 */
913 	return btrfs_run_delayed_items(trans);
914 }
915 
916 /*
917  * when cleaning up conflicts between the directory names in the
918  * subvolume, directory names in the log and directory names in the
919  * inode back references, we may have to unlink inodes from directories.
920  *
921  * This is a helper function to do the unlink of a specific directory
922  * item
923  */
924 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
925 				      struct btrfs_path *path,
926 				      struct btrfs_inode *dir,
927 				      struct btrfs_dir_item *di)
928 {
929 	struct btrfs_root *root = dir->root;
930 	struct inode *inode;
931 	struct fscrypt_str name;
932 	struct extent_buffer *leaf;
933 	struct btrfs_key location;
934 	int ret;
935 
936 	leaf = path->nodes[0];
937 
938 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
939 	ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
940 	if (ret)
941 		return -ENOMEM;
942 
943 	btrfs_release_path(path);
944 
945 	inode = read_one_inode(root, location.objectid);
946 	if (!inode) {
947 		ret = -EIO;
948 		goto out;
949 	}
950 
951 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
952 	if (ret)
953 		goto out;
954 
955 	ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
956 out:
957 	kfree(name.name);
958 	iput(inode);
959 	return ret;
960 }
961 
962 /*
963  * See if a given name and sequence number found in an inode back reference are
964  * already in a directory and correctly point to this inode.
965  *
966  * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
967  * exists.
968  */
969 static noinline int inode_in_dir(struct btrfs_root *root,
970 				 struct btrfs_path *path,
971 				 u64 dirid, u64 objectid, u64 index,
972 				 struct fscrypt_str *name)
973 {
974 	struct btrfs_dir_item *di;
975 	struct btrfs_key location;
976 	int ret = 0;
977 
978 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
979 					 index, name, 0);
980 	if (IS_ERR(di)) {
981 		ret = PTR_ERR(di);
982 		goto out;
983 	} else if (di) {
984 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
985 		if (location.objectid != objectid)
986 			goto out;
987 	} else {
988 		goto out;
989 	}
990 
991 	btrfs_release_path(path);
992 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
993 	if (IS_ERR(di)) {
994 		ret = PTR_ERR(di);
995 		goto out;
996 	} else if (di) {
997 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
998 		if (location.objectid == objectid)
999 			ret = 1;
1000 	}
1001 out:
1002 	btrfs_release_path(path);
1003 	return ret;
1004 }
1005 
1006 /*
1007  * helper function to check a log tree for a named back reference in
1008  * an inode.  This is used to decide if a back reference that is
1009  * found in the subvolume conflicts with what we find in the log.
1010  *
1011  * inode backreferences may have multiple refs in a single item,
1012  * during replay we process one reference at a time, and we don't
1013  * want to delete valid links to a file from the subvolume if that
1014  * link is also in the log.
1015  */
1016 static noinline int backref_in_log(struct btrfs_root *log,
1017 				   struct btrfs_key *key,
1018 				   u64 ref_objectid,
1019 				   const struct fscrypt_str *name)
1020 {
1021 	struct btrfs_path *path;
1022 	int ret;
1023 
1024 	path = btrfs_alloc_path();
1025 	if (!path)
1026 		return -ENOMEM;
1027 
1028 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1029 	if (ret < 0) {
1030 		goto out;
1031 	} else if (ret == 1) {
1032 		ret = 0;
1033 		goto out;
1034 	}
1035 
1036 	if (key->type == BTRFS_INODE_EXTREF_KEY)
1037 		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1038 						       path->slots[0],
1039 						       ref_objectid, name);
1040 	else
1041 		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1042 						   path->slots[0], name);
1043 out:
1044 	btrfs_free_path(path);
1045 	return ret;
1046 }
1047 
1048 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1049 				  struct btrfs_root *root,
1050 				  struct btrfs_path *path,
1051 				  struct btrfs_root *log_root,
1052 				  struct btrfs_inode *dir,
1053 				  struct btrfs_inode *inode,
1054 				  u64 inode_objectid, u64 parent_objectid,
1055 				  u64 ref_index, struct fscrypt_str *name)
1056 {
1057 	int ret;
1058 	struct extent_buffer *leaf;
1059 	struct btrfs_dir_item *di;
1060 	struct btrfs_key search_key;
1061 	struct btrfs_inode_extref *extref;
1062 
1063 again:
1064 	/* Search old style refs */
1065 	search_key.objectid = inode_objectid;
1066 	search_key.type = BTRFS_INODE_REF_KEY;
1067 	search_key.offset = parent_objectid;
1068 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1069 	if (ret == 0) {
1070 		struct btrfs_inode_ref *victim_ref;
1071 		unsigned long ptr;
1072 		unsigned long ptr_end;
1073 
1074 		leaf = path->nodes[0];
1075 
1076 		/* are we trying to overwrite a back ref for the root directory
1077 		 * if so, just jump out, we're done
1078 		 */
1079 		if (search_key.objectid == search_key.offset)
1080 			return 1;
1081 
1082 		/* check all the names in this back reference to see
1083 		 * if they are in the log.  if so, we allow them to stay
1084 		 * otherwise they must be unlinked as a conflict
1085 		 */
1086 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1087 		ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1088 		while (ptr < ptr_end) {
1089 			struct fscrypt_str victim_name;
1090 
1091 			victim_ref = (struct btrfs_inode_ref *)ptr;
1092 			ret = read_alloc_one_name(leaf, (victim_ref + 1),
1093 				 btrfs_inode_ref_name_len(leaf, victim_ref),
1094 				 &victim_name);
1095 			if (ret)
1096 				return ret;
1097 
1098 			ret = backref_in_log(log_root, &search_key,
1099 					     parent_objectid, &victim_name);
1100 			if (ret < 0) {
1101 				kfree(victim_name.name);
1102 				return ret;
1103 			} else if (!ret) {
1104 				inc_nlink(&inode->vfs_inode);
1105 				btrfs_release_path(path);
1106 
1107 				ret = unlink_inode_for_log_replay(trans, dir, inode,
1108 						&victim_name);
1109 				kfree(victim_name.name);
1110 				if (ret)
1111 					return ret;
1112 				goto again;
1113 			}
1114 			kfree(victim_name.name);
1115 
1116 			ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1117 		}
1118 	}
1119 	btrfs_release_path(path);
1120 
1121 	/* Same search but for extended refs */
1122 	extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1123 					   inode_objectid, parent_objectid, 0,
1124 					   0);
1125 	if (IS_ERR(extref)) {
1126 		return PTR_ERR(extref);
1127 	} else if (extref) {
1128 		u32 item_size;
1129 		u32 cur_offset = 0;
1130 		unsigned long base;
1131 		struct inode *victim_parent;
1132 
1133 		leaf = path->nodes[0];
1134 
1135 		item_size = btrfs_item_size(leaf, path->slots[0]);
1136 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1137 
1138 		while (cur_offset < item_size) {
1139 			struct fscrypt_str victim_name;
1140 
1141 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1142 
1143 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1144 				goto next;
1145 
1146 			ret = read_alloc_one_name(leaf, &extref->name,
1147 				 btrfs_inode_extref_name_len(leaf, extref),
1148 				 &victim_name);
1149 			if (ret)
1150 				return ret;
1151 
1152 			search_key.objectid = inode_objectid;
1153 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1154 			search_key.offset = btrfs_extref_hash(parent_objectid,
1155 							      victim_name.name,
1156 							      victim_name.len);
1157 			ret = backref_in_log(log_root, &search_key,
1158 					     parent_objectid, &victim_name);
1159 			if (ret < 0) {
1160 				kfree(victim_name.name);
1161 				return ret;
1162 			} else if (!ret) {
1163 				ret = -ENOENT;
1164 				victim_parent = read_one_inode(root,
1165 						parent_objectid);
1166 				if (victim_parent) {
1167 					inc_nlink(&inode->vfs_inode);
1168 					btrfs_release_path(path);
1169 
1170 					ret = unlink_inode_for_log_replay(trans,
1171 							BTRFS_I(victim_parent),
1172 							inode, &victim_name);
1173 				}
1174 				iput(victim_parent);
1175 				kfree(victim_name.name);
1176 				if (ret)
1177 					return ret;
1178 				goto again;
1179 			}
1180 			kfree(victim_name.name);
1181 next:
1182 			cur_offset += victim_name.len + sizeof(*extref);
1183 		}
1184 	}
1185 	btrfs_release_path(path);
1186 
1187 	/* look for a conflicting sequence number */
1188 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1189 					 ref_index, name, 0);
1190 	if (IS_ERR(di)) {
1191 		return PTR_ERR(di);
1192 	} else if (di) {
1193 		ret = drop_one_dir_item(trans, path, dir, di);
1194 		if (ret)
1195 			return ret;
1196 	}
1197 	btrfs_release_path(path);
1198 
1199 	/* look for a conflicting name */
1200 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1201 	if (IS_ERR(di)) {
1202 		return PTR_ERR(di);
1203 	} else if (di) {
1204 		ret = drop_one_dir_item(trans, path, dir, di);
1205 		if (ret)
1206 			return ret;
1207 	}
1208 	btrfs_release_path(path);
1209 
1210 	return 0;
1211 }
1212 
1213 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1214 			     struct fscrypt_str *name, u64 *index,
1215 			     u64 *parent_objectid)
1216 {
1217 	struct btrfs_inode_extref *extref;
1218 	int ret;
1219 
1220 	extref = (struct btrfs_inode_extref *)ref_ptr;
1221 
1222 	ret = read_alloc_one_name(eb, &extref->name,
1223 				  btrfs_inode_extref_name_len(eb, extref), name);
1224 	if (ret)
1225 		return ret;
1226 
1227 	if (index)
1228 		*index = btrfs_inode_extref_index(eb, extref);
1229 	if (parent_objectid)
1230 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1231 
1232 	return 0;
1233 }
1234 
1235 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1236 			  struct fscrypt_str *name, u64 *index)
1237 {
1238 	struct btrfs_inode_ref *ref;
1239 	int ret;
1240 
1241 	ref = (struct btrfs_inode_ref *)ref_ptr;
1242 
1243 	ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1244 				  name);
1245 	if (ret)
1246 		return ret;
1247 
1248 	if (index)
1249 		*index = btrfs_inode_ref_index(eb, ref);
1250 
1251 	return 0;
1252 }
1253 
1254 /*
1255  * Take an inode reference item from the log tree and iterate all names from the
1256  * inode reference item in the subvolume tree with the same key (if it exists).
1257  * For any name that is not in the inode reference item from the log tree, do a
1258  * proper unlink of that name (that is, remove its entry from the inode
1259  * reference item and both dir index keys).
1260  */
1261 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1262 				 struct btrfs_root *root,
1263 				 struct btrfs_path *path,
1264 				 struct btrfs_inode *inode,
1265 				 struct extent_buffer *log_eb,
1266 				 int log_slot,
1267 				 struct btrfs_key *key)
1268 {
1269 	int ret;
1270 	unsigned long ref_ptr;
1271 	unsigned long ref_end;
1272 	struct extent_buffer *eb;
1273 
1274 again:
1275 	btrfs_release_path(path);
1276 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1277 	if (ret > 0) {
1278 		ret = 0;
1279 		goto out;
1280 	}
1281 	if (ret < 0)
1282 		goto out;
1283 
1284 	eb = path->nodes[0];
1285 	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1286 	ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1287 	while (ref_ptr < ref_end) {
1288 		struct fscrypt_str name;
1289 		u64 parent_id;
1290 
1291 		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1292 			ret = extref_get_fields(eb, ref_ptr, &name,
1293 						NULL, &parent_id);
1294 		} else {
1295 			parent_id = key->offset;
1296 			ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1297 		}
1298 		if (ret)
1299 			goto out;
1300 
1301 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1302 			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1303 							       parent_id, &name);
1304 		else
1305 			ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1306 
1307 		if (!ret) {
1308 			struct inode *dir;
1309 
1310 			btrfs_release_path(path);
1311 			dir = read_one_inode(root, parent_id);
1312 			if (!dir) {
1313 				ret = -ENOENT;
1314 				kfree(name.name);
1315 				goto out;
1316 			}
1317 			ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1318 						 inode, &name);
1319 			kfree(name.name);
1320 			iput(dir);
1321 			if (ret)
1322 				goto out;
1323 			goto again;
1324 		}
1325 
1326 		kfree(name.name);
1327 		ref_ptr += name.len;
1328 		if (key->type == BTRFS_INODE_EXTREF_KEY)
1329 			ref_ptr += sizeof(struct btrfs_inode_extref);
1330 		else
1331 			ref_ptr += sizeof(struct btrfs_inode_ref);
1332 	}
1333 	ret = 0;
1334  out:
1335 	btrfs_release_path(path);
1336 	return ret;
1337 }
1338 
1339 /*
1340  * replay one inode back reference item found in the log tree.
1341  * eb, slot and key refer to the buffer and key found in the log tree.
1342  * root is the destination we are replaying into, and path is for temp
1343  * use by this function.  (it should be released on return).
1344  */
1345 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1346 				  struct btrfs_root *root,
1347 				  struct btrfs_root *log,
1348 				  struct btrfs_path *path,
1349 				  struct extent_buffer *eb, int slot,
1350 				  struct btrfs_key *key)
1351 {
1352 	struct inode *dir = NULL;
1353 	struct inode *inode = NULL;
1354 	unsigned long ref_ptr;
1355 	unsigned long ref_end;
1356 	struct fscrypt_str name;
1357 	int ret;
1358 	int log_ref_ver = 0;
1359 	u64 parent_objectid;
1360 	u64 inode_objectid;
1361 	u64 ref_index = 0;
1362 	int ref_struct_size;
1363 
1364 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1365 	ref_end = ref_ptr + btrfs_item_size(eb, slot);
1366 
1367 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1368 		struct btrfs_inode_extref *r;
1369 
1370 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1371 		log_ref_ver = 1;
1372 		r = (struct btrfs_inode_extref *)ref_ptr;
1373 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1374 	} else {
1375 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1376 		parent_objectid = key->offset;
1377 	}
1378 	inode_objectid = key->objectid;
1379 
1380 	/*
1381 	 * it is possible that we didn't log all the parent directories
1382 	 * for a given inode.  If we don't find the dir, just don't
1383 	 * copy the back ref in.  The link count fixup code will take
1384 	 * care of the rest
1385 	 */
1386 	dir = read_one_inode(root, parent_objectid);
1387 	if (!dir) {
1388 		ret = -ENOENT;
1389 		goto out;
1390 	}
1391 
1392 	inode = read_one_inode(root, inode_objectid);
1393 	if (!inode) {
1394 		ret = -EIO;
1395 		goto out;
1396 	}
1397 
1398 	while (ref_ptr < ref_end) {
1399 		if (log_ref_ver) {
1400 			ret = extref_get_fields(eb, ref_ptr, &name,
1401 						&ref_index, &parent_objectid);
1402 			/*
1403 			 * parent object can change from one array
1404 			 * item to another.
1405 			 */
1406 			if (!dir)
1407 				dir = read_one_inode(root, parent_objectid);
1408 			if (!dir) {
1409 				ret = -ENOENT;
1410 				goto out;
1411 			}
1412 		} else {
1413 			ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
1414 		}
1415 		if (ret)
1416 			goto out;
1417 
1418 		ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1419 				   btrfs_ino(BTRFS_I(inode)), ref_index, &name);
1420 		if (ret < 0) {
1421 			goto out;
1422 		} else if (ret == 0) {
1423 			/*
1424 			 * look for a conflicting back reference in the
1425 			 * metadata. if we find one we have to unlink that name
1426 			 * of the file before we add our new link.  Later on, we
1427 			 * overwrite any existing back reference, and we don't
1428 			 * want to create dangling pointers in the directory.
1429 			 */
1430 			ret = __add_inode_ref(trans, root, path, log,
1431 					      BTRFS_I(dir), BTRFS_I(inode),
1432 					      inode_objectid, parent_objectid,
1433 					      ref_index, &name);
1434 			if (ret) {
1435 				if (ret == 1)
1436 					ret = 0;
1437 				goto out;
1438 			}
1439 
1440 			/* insert our name */
1441 			ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1442 					     &name, 0, ref_index);
1443 			if (ret)
1444 				goto out;
1445 
1446 			ret = btrfs_update_inode(trans, BTRFS_I(inode));
1447 			if (ret)
1448 				goto out;
1449 		}
1450 		/* Else, ret == 1, we already have a perfect match, we're done. */
1451 
1452 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1453 		kfree(name.name);
1454 		name.name = NULL;
1455 		if (log_ref_ver) {
1456 			iput(dir);
1457 			dir = NULL;
1458 		}
1459 	}
1460 
1461 	/*
1462 	 * Before we overwrite the inode reference item in the subvolume tree
1463 	 * with the item from the log tree, we must unlink all names from the
1464 	 * parent directory that are in the subvolume's tree inode reference
1465 	 * item, otherwise we end up with an inconsistent subvolume tree where
1466 	 * dir index entries exist for a name but there is no inode reference
1467 	 * item with the same name.
1468 	 */
1469 	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1470 				    key);
1471 	if (ret)
1472 		goto out;
1473 
1474 	/* finally write the back reference in the inode */
1475 	ret = overwrite_item(trans, root, path, eb, slot, key);
1476 out:
1477 	btrfs_release_path(path);
1478 	kfree(name.name);
1479 	iput(dir);
1480 	iput(inode);
1481 	return ret;
1482 }
1483 
1484 static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path)
1485 {
1486 	int ret = 0;
1487 	int name_len;
1488 	unsigned int nlink = 0;
1489 	u32 item_size;
1490 	u32 cur_offset = 0;
1491 	u64 inode_objectid = btrfs_ino(inode);
1492 	u64 offset = 0;
1493 	unsigned long ptr;
1494 	struct btrfs_inode_extref *extref;
1495 	struct extent_buffer *leaf;
1496 
1497 	while (1) {
1498 		ret = btrfs_find_one_extref(inode->root, inode_objectid, offset,
1499 					    path, &extref, &offset);
1500 		if (ret)
1501 			break;
1502 
1503 		leaf = path->nodes[0];
1504 		item_size = btrfs_item_size(leaf, path->slots[0]);
1505 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1506 		cur_offset = 0;
1507 
1508 		while (cur_offset < item_size) {
1509 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1510 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1511 
1512 			nlink++;
1513 
1514 			cur_offset += name_len + sizeof(*extref);
1515 		}
1516 
1517 		offset++;
1518 		btrfs_release_path(path);
1519 	}
1520 	btrfs_release_path(path);
1521 
1522 	if (ret < 0 && ret != -ENOENT)
1523 		return ret;
1524 	return nlink;
1525 }
1526 
1527 static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path)
1528 {
1529 	int ret;
1530 	struct btrfs_key key;
1531 	unsigned int nlink = 0;
1532 	unsigned long ptr;
1533 	unsigned long ptr_end;
1534 	int name_len;
1535 	u64 ino = btrfs_ino(inode);
1536 
1537 	key.objectid = ino;
1538 	key.type = BTRFS_INODE_REF_KEY;
1539 	key.offset = (u64)-1;
1540 
1541 	while (1) {
1542 		ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0);
1543 		if (ret < 0)
1544 			break;
1545 		if (ret > 0) {
1546 			if (path->slots[0] == 0)
1547 				break;
1548 			path->slots[0]--;
1549 		}
1550 process_slot:
1551 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1552 				      path->slots[0]);
1553 		if (key.objectid != ino ||
1554 		    key.type != BTRFS_INODE_REF_KEY)
1555 			break;
1556 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1557 		ptr_end = ptr + btrfs_item_size(path->nodes[0],
1558 						   path->slots[0]);
1559 		while (ptr < ptr_end) {
1560 			struct btrfs_inode_ref *ref;
1561 
1562 			ref = (struct btrfs_inode_ref *)ptr;
1563 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1564 							    ref);
1565 			ptr = (unsigned long)(ref + 1) + name_len;
1566 			nlink++;
1567 		}
1568 
1569 		if (key.offset == 0)
1570 			break;
1571 		if (path->slots[0] > 0) {
1572 			path->slots[0]--;
1573 			goto process_slot;
1574 		}
1575 		key.offset--;
1576 		btrfs_release_path(path);
1577 	}
1578 	btrfs_release_path(path);
1579 
1580 	return nlink;
1581 }
1582 
1583 /*
1584  * There are a few corners where the link count of the file can't
1585  * be properly maintained during replay.  So, instead of adding
1586  * lots of complexity to the log code, we just scan the backrefs
1587  * for any file that has been through replay.
1588  *
1589  * The scan will update the link count on the inode to reflect the
1590  * number of back refs found.  If it goes down to zero, the iput
1591  * will free the inode.
1592  */
1593 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1594 					   struct inode *inode)
1595 {
1596 	struct btrfs_root *root = BTRFS_I(inode)->root;
1597 	struct btrfs_path *path;
1598 	int ret;
1599 	u64 nlink = 0;
1600 	u64 ino = btrfs_ino(BTRFS_I(inode));
1601 
1602 	path = btrfs_alloc_path();
1603 	if (!path)
1604 		return -ENOMEM;
1605 
1606 	ret = count_inode_refs(BTRFS_I(inode), path);
1607 	if (ret < 0)
1608 		goto out;
1609 
1610 	nlink = ret;
1611 
1612 	ret = count_inode_extrefs(BTRFS_I(inode), path);
1613 	if (ret < 0)
1614 		goto out;
1615 
1616 	nlink += ret;
1617 
1618 	ret = 0;
1619 
1620 	if (nlink != inode->i_nlink) {
1621 		set_nlink(inode, nlink);
1622 		ret = btrfs_update_inode(trans, BTRFS_I(inode));
1623 		if (ret)
1624 			goto out;
1625 	}
1626 	BTRFS_I(inode)->index_cnt = (u64)-1;
1627 
1628 	if (inode->i_nlink == 0) {
1629 		if (S_ISDIR(inode->i_mode)) {
1630 			ret = replay_dir_deletes(trans, root, NULL, path,
1631 						 ino, 1);
1632 			if (ret)
1633 				goto out;
1634 		}
1635 		ret = btrfs_insert_orphan_item(trans, root, ino);
1636 		if (ret == -EEXIST)
1637 			ret = 0;
1638 	}
1639 
1640 out:
1641 	btrfs_free_path(path);
1642 	return ret;
1643 }
1644 
1645 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1646 					    struct btrfs_root *root,
1647 					    struct btrfs_path *path)
1648 {
1649 	int ret;
1650 	struct btrfs_key key;
1651 	struct inode *inode;
1652 
1653 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1654 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1655 	key.offset = (u64)-1;
1656 	while (1) {
1657 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1658 		if (ret < 0)
1659 			break;
1660 
1661 		if (ret == 1) {
1662 			ret = 0;
1663 			if (path->slots[0] == 0)
1664 				break;
1665 			path->slots[0]--;
1666 		}
1667 
1668 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1669 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1670 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1671 			break;
1672 
1673 		ret = btrfs_del_item(trans, root, path);
1674 		if (ret)
1675 			break;
1676 
1677 		btrfs_release_path(path);
1678 		inode = read_one_inode(root, key.offset);
1679 		if (!inode) {
1680 			ret = -EIO;
1681 			break;
1682 		}
1683 
1684 		ret = fixup_inode_link_count(trans, inode);
1685 		iput(inode);
1686 		if (ret)
1687 			break;
1688 
1689 		/*
1690 		 * fixup on a directory may create new entries,
1691 		 * make sure we always look for the highset possible
1692 		 * offset
1693 		 */
1694 		key.offset = (u64)-1;
1695 	}
1696 	btrfs_release_path(path);
1697 	return ret;
1698 }
1699 
1700 
1701 /*
1702  * record a given inode in the fixup dir so we can check its link
1703  * count when replay is done.  The link count is incremented here
1704  * so the inode won't go away until we check it
1705  */
1706 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1707 				      struct btrfs_root *root,
1708 				      struct btrfs_path *path,
1709 				      u64 objectid)
1710 {
1711 	struct btrfs_key key;
1712 	int ret = 0;
1713 	struct inode *inode;
1714 
1715 	inode = read_one_inode(root, objectid);
1716 	if (!inode)
1717 		return -EIO;
1718 
1719 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1720 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1721 	key.offset = objectid;
1722 
1723 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1724 
1725 	btrfs_release_path(path);
1726 	if (ret == 0) {
1727 		if (!inode->i_nlink)
1728 			set_nlink(inode, 1);
1729 		else
1730 			inc_nlink(inode);
1731 		ret = btrfs_update_inode(trans, BTRFS_I(inode));
1732 	} else if (ret == -EEXIST) {
1733 		ret = 0;
1734 	}
1735 	iput(inode);
1736 
1737 	return ret;
1738 }
1739 
1740 /*
1741  * when replaying the log for a directory, we only insert names
1742  * for inodes that actually exist.  This means an fsync on a directory
1743  * does not implicitly fsync all the new files in it
1744  */
1745 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1746 				    struct btrfs_root *root,
1747 				    u64 dirid, u64 index,
1748 				    const struct fscrypt_str *name,
1749 				    struct btrfs_key *location)
1750 {
1751 	struct inode *inode;
1752 	struct inode *dir;
1753 	int ret;
1754 
1755 	inode = read_one_inode(root, location->objectid);
1756 	if (!inode)
1757 		return -ENOENT;
1758 
1759 	dir = read_one_inode(root, dirid);
1760 	if (!dir) {
1761 		iput(inode);
1762 		return -EIO;
1763 	}
1764 
1765 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1766 			     1, index);
1767 
1768 	/* FIXME, put inode into FIXUP list */
1769 
1770 	iput(inode);
1771 	iput(dir);
1772 	return ret;
1773 }
1774 
1775 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1776 					struct btrfs_inode *dir,
1777 					struct btrfs_path *path,
1778 					struct btrfs_dir_item *dst_di,
1779 					const struct btrfs_key *log_key,
1780 					u8 log_flags,
1781 					bool exists)
1782 {
1783 	struct btrfs_key found_key;
1784 
1785 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1786 	/* The existing dentry points to the same inode, don't delete it. */
1787 	if (found_key.objectid == log_key->objectid &&
1788 	    found_key.type == log_key->type &&
1789 	    found_key.offset == log_key->offset &&
1790 	    btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1791 		return 1;
1792 
1793 	/*
1794 	 * Don't drop the conflicting directory entry if the inode for the new
1795 	 * entry doesn't exist.
1796 	 */
1797 	if (!exists)
1798 		return 0;
1799 
1800 	return drop_one_dir_item(trans, path, dir, dst_di);
1801 }
1802 
1803 /*
1804  * take a single entry in a log directory item and replay it into
1805  * the subvolume.
1806  *
1807  * if a conflicting item exists in the subdirectory already,
1808  * the inode it points to is unlinked and put into the link count
1809  * fix up tree.
1810  *
1811  * If a name from the log points to a file or directory that does
1812  * not exist in the FS, it is skipped.  fsyncs on directories
1813  * do not force down inodes inside that directory, just changes to the
1814  * names or unlinks in a directory.
1815  *
1816  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1817  * non-existing inode) and 1 if the name was replayed.
1818  */
1819 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1820 				    struct btrfs_root *root,
1821 				    struct btrfs_path *path,
1822 				    struct extent_buffer *eb,
1823 				    struct btrfs_dir_item *di,
1824 				    struct btrfs_key *key)
1825 {
1826 	struct fscrypt_str name;
1827 	struct btrfs_dir_item *dir_dst_di;
1828 	struct btrfs_dir_item *index_dst_di;
1829 	bool dir_dst_matches = false;
1830 	bool index_dst_matches = false;
1831 	struct btrfs_key log_key;
1832 	struct btrfs_key search_key;
1833 	struct inode *dir;
1834 	u8 log_flags;
1835 	bool exists;
1836 	int ret;
1837 	bool update_size = true;
1838 	bool name_added = false;
1839 
1840 	dir = read_one_inode(root, key->objectid);
1841 	if (!dir)
1842 		return -EIO;
1843 
1844 	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1845 	if (ret)
1846 		goto out;
1847 
1848 	log_flags = btrfs_dir_flags(eb, di);
1849 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1850 	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1851 	btrfs_release_path(path);
1852 	if (ret < 0)
1853 		goto out;
1854 	exists = (ret == 0);
1855 	ret = 0;
1856 
1857 	dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1858 					   &name, 1);
1859 	if (IS_ERR(dir_dst_di)) {
1860 		ret = PTR_ERR(dir_dst_di);
1861 		goto out;
1862 	} else if (dir_dst_di) {
1863 		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1864 						   dir_dst_di, &log_key,
1865 						   log_flags, exists);
1866 		if (ret < 0)
1867 			goto out;
1868 		dir_dst_matches = (ret == 1);
1869 	}
1870 
1871 	btrfs_release_path(path);
1872 
1873 	index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1874 						   key->objectid, key->offset,
1875 						   &name, 1);
1876 	if (IS_ERR(index_dst_di)) {
1877 		ret = PTR_ERR(index_dst_di);
1878 		goto out;
1879 	} else if (index_dst_di) {
1880 		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1881 						   index_dst_di, &log_key,
1882 						   log_flags, exists);
1883 		if (ret < 0)
1884 			goto out;
1885 		index_dst_matches = (ret == 1);
1886 	}
1887 
1888 	btrfs_release_path(path);
1889 
1890 	if (dir_dst_matches && index_dst_matches) {
1891 		ret = 0;
1892 		update_size = false;
1893 		goto out;
1894 	}
1895 
1896 	/*
1897 	 * Check if the inode reference exists in the log for the given name,
1898 	 * inode and parent inode
1899 	 */
1900 	search_key.objectid = log_key.objectid;
1901 	search_key.type = BTRFS_INODE_REF_KEY;
1902 	search_key.offset = key->objectid;
1903 	ret = backref_in_log(root->log_root, &search_key, 0, &name);
1904 	if (ret < 0) {
1905 	        goto out;
1906 	} else if (ret) {
1907 	        /* The dentry will be added later. */
1908 	        ret = 0;
1909 	        update_size = false;
1910 	        goto out;
1911 	}
1912 
1913 	search_key.objectid = log_key.objectid;
1914 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1915 	search_key.offset = key->objectid;
1916 	ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1917 	if (ret < 0) {
1918 		goto out;
1919 	} else if (ret) {
1920 		/* The dentry will be added later. */
1921 		ret = 0;
1922 		update_size = false;
1923 		goto out;
1924 	}
1925 	btrfs_release_path(path);
1926 	ret = insert_one_name(trans, root, key->objectid, key->offset,
1927 			      &name, &log_key);
1928 	if (ret && ret != -ENOENT && ret != -EEXIST)
1929 		goto out;
1930 	if (!ret)
1931 		name_added = true;
1932 	update_size = false;
1933 	ret = 0;
1934 
1935 out:
1936 	if (!ret && update_size) {
1937 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
1938 		ret = btrfs_update_inode(trans, BTRFS_I(dir));
1939 	}
1940 	kfree(name.name);
1941 	iput(dir);
1942 	if (!ret && name_added)
1943 		ret = 1;
1944 	return ret;
1945 }
1946 
1947 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
1948 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1949 					struct btrfs_root *root,
1950 					struct btrfs_path *path,
1951 					struct extent_buffer *eb, int slot,
1952 					struct btrfs_key *key)
1953 {
1954 	int ret;
1955 	struct btrfs_dir_item *di;
1956 
1957 	/* We only log dir index keys, which only contain a single dir item. */
1958 	ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1959 
1960 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1961 	ret = replay_one_name(trans, root, path, eb, di, key);
1962 	if (ret < 0)
1963 		return ret;
1964 
1965 	/*
1966 	 * If this entry refers to a non-directory (directories can not have a
1967 	 * link count > 1) and it was added in the transaction that was not
1968 	 * committed, make sure we fixup the link count of the inode the entry
1969 	 * points to. Otherwise something like the following would result in a
1970 	 * directory pointing to an inode with a wrong link that does not account
1971 	 * for this dir entry:
1972 	 *
1973 	 * mkdir testdir
1974 	 * touch testdir/foo
1975 	 * touch testdir/bar
1976 	 * sync
1977 	 *
1978 	 * ln testdir/bar testdir/bar_link
1979 	 * ln testdir/foo testdir/foo_link
1980 	 * xfs_io -c "fsync" testdir/bar
1981 	 *
1982 	 * <power failure>
1983 	 *
1984 	 * mount fs, log replay happens
1985 	 *
1986 	 * File foo would remain with a link count of 1 when it has two entries
1987 	 * pointing to it in the directory testdir. This would make it impossible
1988 	 * to ever delete the parent directory has it would result in stale
1989 	 * dentries that can never be deleted.
1990 	 */
1991 	if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
1992 		struct btrfs_path *fixup_path;
1993 		struct btrfs_key di_key;
1994 
1995 		fixup_path = btrfs_alloc_path();
1996 		if (!fixup_path)
1997 			return -ENOMEM;
1998 
1999 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2000 		ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2001 		btrfs_free_path(fixup_path);
2002 	}
2003 
2004 	return ret;
2005 }
2006 
2007 /*
2008  * directory replay has two parts.  There are the standard directory
2009  * items in the log copied from the subvolume, and range items
2010  * created in the log while the subvolume was logged.
2011  *
2012  * The range items tell us which parts of the key space the log
2013  * is authoritative for.  During replay, if a key in the subvolume
2014  * directory is in a logged range item, but not actually in the log
2015  * that means it was deleted from the directory before the fsync
2016  * and should be removed.
2017  */
2018 static noinline int find_dir_range(struct btrfs_root *root,
2019 				   struct btrfs_path *path,
2020 				   u64 dirid,
2021 				   u64 *start_ret, u64 *end_ret)
2022 {
2023 	struct btrfs_key key;
2024 	u64 found_end;
2025 	struct btrfs_dir_log_item *item;
2026 	int ret;
2027 	int nritems;
2028 
2029 	if (*start_ret == (u64)-1)
2030 		return 1;
2031 
2032 	key.objectid = dirid;
2033 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
2034 	key.offset = *start_ret;
2035 
2036 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2037 	if (ret < 0)
2038 		goto out;
2039 	if (ret > 0) {
2040 		if (path->slots[0] == 0)
2041 			goto out;
2042 		path->slots[0]--;
2043 	}
2044 	if (ret != 0)
2045 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2046 
2047 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2048 		ret = 1;
2049 		goto next;
2050 	}
2051 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2052 			      struct btrfs_dir_log_item);
2053 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2054 
2055 	if (*start_ret >= key.offset && *start_ret <= found_end) {
2056 		ret = 0;
2057 		*start_ret = key.offset;
2058 		*end_ret = found_end;
2059 		goto out;
2060 	}
2061 	ret = 1;
2062 next:
2063 	/* check the next slot in the tree to see if it is a valid item */
2064 	nritems = btrfs_header_nritems(path->nodes[0]);
2065 	path->slots[0]++;
2066 	if (path->slots[0] >= nritems) {
2067 		ret = btrfs_next_leaf(root, path);
2068 		if (ret)
2069 			goto out;
2070 	}
2071 
2072 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2073 
2074 	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2075 		ret = 1;
2076 		goto out;
2077 	}
2078 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2079 			      struct btrfs_dir_log_item);
2080 	found_end = btrfs_dir_log_end(path->nodes[0], item);
2081 	*start_ret = key.offset;
2082 	*end_ret = found_end;
2083 	ret = 0;
2084 out:
2085 	btrfs_release_path(path);
2086 	return ret;
2087 }
2088 
2089 /*
2090  * this looks for a given directory item in the log.  If the directory
2091  * item is not in the log, the item is removed and the inode it points
2092  * to is unlinked
2093  */
2094 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2095 				      struct btrfs_root *log,
2096 				      struct btrfs_path *path,
2097 				      struct btrfs_path *log_path,
2098 				      struct inode *dir,
2099 				      struct btrfs_key *dir_key)
2100 {
2101 	struct btrfs_root *root = BTRFS_I(dir)->root;
2102 	int ret;
2103 	struct extent_buffer *eb;
2104 	int slot;
2105 	struct btrfs_dir_item *di;
2106 	struct fscrypt_str name;
2107 	struct inode *inode = NULL;
2108 	struct btrfs_key location;
2109 
2110 	/*
2111 	 * Currently we only log dir index keys. Even if we replay a log created
2112 	 * by an older kernel that logged both dir index and dir item keys, all
2113 	 * we need to do is process the dir index keys, we (and our caller) can
2114 	 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2115 	 */
2116 	ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2117 
2118 	eb = path->nodes[0];
2119 	slot = path->slots[0];
2120 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2121 	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2122 	if (ret)
2123 		goto out;
2124 
2125 	if (log) {
2126 		struct btrfs_dir_item *log_di;
2127 
2128 		log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2129 						     dir_key->objectid,
2130 						     dir_key->offset, &name, 0);
2131 		if (IS_ERR(log_di)) {
2132 			ret = PTR_ERR(log_di);
2133 			goto out;
2134 		} else if (log_di) {
2135 			/* The dentry exists in the log, we have nothing to do. */
2136 			ret = 0;
2137 			goto out;
2138 		}
2139 	}
2140 
2141 	btrfs_dir_item_key_to_cpu(eb, di, &location);
2142 	btrfs_release_path(path);
2143 	btrfs_release_path(log_path);
2144 	inode = read_one_inode(root, location.objectid);
2145 	if (!inode) {
2146 		ret = -EIO;
2147 		goto out;
2148 	}
2149 
2150 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
2151 	if (ret)
2152 		goto out;
2153 
2154 	inc_nlink(inode);
2155 	ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2156 					  &name);
2157 	/*
2158 	 * Unlike dir item keys, dir index keys can only have one name (entry) in
2159 	 * them, as there are no key collisions since each key has a unique offset
2160 	 * (an index number), so we're done.
2161 	 */
2162 out:
2163 	btrfs_release_path(path);
2164 	btrfs_release_path(log_path);
2165 	kfree(name.name);
2166 	iput(inode);
2167 	return ret;
2168 }
2169 
2170 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2171 			      struct btrfs_root *root,
2172 			      struct btrfs_root *log,
2173 			      struct btrfs_path *path,
2174 			      const u64 ino)
2175 {
2176 	struct btrfs_key search_key;
2177 	struct btrfs_path *log_path;
2178 	int i;
2179 	int nritems;
2180 	int ret;
2181 
2182 	log_path = btrfs_alloc_path();
2183 	if (!log_path)
2184 		return -ENOMEM;
2185 
2186 	search_key.objectid = ino;
2187 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2188 	search_key.offset = 0;
2189 again:
2190 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2191 	if (ret < 0)
2192 		goto out;
2193 process_leaf:
2194 	nritems = btrfs_header_nritems(path->nodes[0]);
2195 	for (i = path->slots[0]; i < nritems; i++) {
2196 		struct btrfs_key key;
2197 		struct btrfs_dir_item *di;
2198 		struct btrfs_dir_item *log_di;
2199 		u32 total_size;
2200 		u32 cur;
2201 
2202 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2203 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2204 			ret = 0;
2205 			goto out;
2206 		}
2207 
2208 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2209 		total_size = btrfs_item_size(path->nodes[0], i);
2210 		cur = 0;
2211 		while (cur < total_size) {
2212 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2213 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2214 			u32 this_len = sizeof(*di) + name_len + data_len;
2215 			char *name;
2216 
2217 			name = kmalloc(name_len, GFP_NOFS);
2218 			if (!name) {
2219 				ret = -ENOMEM;
2220 				goto out;
2221 			}
2222 			read_extent_buffer(path->nodes[0], name,
2223 					   (unsigned long)(di + 1), name_len);
2224 
2225 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2226 						    name, name_len, 0);
2227 			btrfs_release_path(log_path);
2228 			if (!log_di) {
2229 				/* Doesn't exist in log tree, so delete it. */
2230 				btrfs_release_path(path);
2231 				di = btrfs_lookup_xattr(trans, root, path, ino,
2232 							name, name_len, -1);
2233 				kfree(name);
2234 				if (IS_ERR(di)) {
2235 					ret = PTR_ERR(di);
2236 					goto out;
2237 				}
2238 				ASSERT(di);
2239 				ret = btrfs_delete_one_dir_name(trans, root,
2240 								path, di);
2241 				if (ret)
2242 					goto out;
2243 				btrfs_release_path(path);
2244 				search_key = key;
2245 				goto again;
2246 			}
2247 			kfree(name);
2248 			if (IS_ERR(log_di)) {
2249 				ret = PTR_ERR(log_di);
2250 				goto out;
2251 			}
2252 			cur += this_len;
2253 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2254 		}
2255 	}
2256 	ret = btrfs_next_leaf(root, path);
2257 	if (ret > 0)
2258 		ret = 0;
2259 	else if (ret == 0)
2260 		goto process_leaf;
2261 out:
2262 	btrfs_free_path(log_path);
2263 	btrfs_release_path(path);
2264 	return ret;
2265 }
2266 
2267 
2268 /*
2269  * deletion replay happens before we copy any new directory items
2270  * out of the log or out of backreferences from inodes.  It
2271  * scans the log to find ranges of keys that log is authoritative for,
2272  * and then scans the directory to find items in those ranges that are
2273  * not present in the log.
2274  *
2275  * Anything we don't find in the log is unlinked and removed from the
2276  * directory.
2277  */
2278 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2279 				       struct btrfs_root *root,
2280 				       struct btrfs_root *log,
2281 				       struct btrfs_path *path,
2282 				       u64 dirid, int del_all)
2283 {
2284 	u64 range_start;
2285 	u64 range_end;
2286 	int ret = 0;
2287 	struct btrfs_key dir_key;
2288 	struct btrfs_key found_key;
2289 	struct btrfs_path *log_path;
2290 	struct inode *dir;
2291 
2292 	dir_key.objectid = dirid;
2293 	dir_key.type = BTRFS_DIR_INDEX_KEY;
2294 	log_path = btrfs_alloc_path();
2295 	if (!log_path)
2296 		return -ENOMEM;
2297 
2298 	dir = read_one_inode(root, dirid);
2299 	/* it isn't an error if the inode isn't there, that can happen
2300 	 * because we replay the deletes before we copy in the inode item
2301 	 * from the log
2302 	 */
2303 	if (!dir) {
2304 		btrfs_free_path(log_path);
2305 		return 0;
2306 	}
2307 
2308 	range_start = 0;
2309 	range_end = 0;
2310 	while (1) {
2311 		if (del_all)
2312 			range_end = (u64)-1;
2313 		else {
2314 			ret = find_dir_range(log, path, dirid,
2315 					     &range_start, &range_end);
2316 			if (ret < 0)
2317 				goto out;
2318 			else if (ret > 0)
2319 				break;
2320 		}
2321 
2322 		dir_key.offset = range_start;
2323 		while (1) {
2324 			int nritems;
2325 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2326 						0, 0);
2327 			if (ret < 0)
2328 				goto out;
2329 
2330 			nritems = btrfs_header_nritems(path->nodes[0]);
2331 			if (path->slots[0] >= nritems) {
2332 				ret = btrfs_next_leaf(root, path);
2333 				if (ret == 1)
2334 					break;
2335 				else if (ret < 0)
2336 					goto out;
2337 			}
2338 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2339 					      path->slots[0]);
2340 			if (found_key.objectid != dirid ||
2341 			    found_key.type != dir_key.type) {
2342 				ret = 0;
2343 				goto out;
2344 			}
2345 
2346 			if (found_key.offset > range_end)
2347 				break;
2348 
2349 			ret = check_item_in_log(trans, log, path,
2350 						log_path, dir,
2351 						&found_key);
2352 			if (ret)
2353 				goto out;
2354 			if (found_key.offset == (u64)-1)
2355 				break;
2356 			dir_key.offset = found_key.offset + 1;
2357 		}
2358 		btrfs_release_path(path);
2359 		if (range_end == (u64)-1)
2360 			break;
2361 		range_start = range_end + 1;
2362 	}
2363 	ret = 0;
2364 out:
2365 	btrfs_release_path(path);
2366 	btrfs_free_path(log_path);
2367 	iput(dir);
2368 	return ret;
2369 }
2370 
2371 /*
2372  * the process_func used to replay items from the log tree.  This
2373  * gets called in two different stages.  The first stage just looks
2374  * for inodes and makes sure they are all copied into the subvolume.
2375  *
2376  * The second stage copies all the other item types from the log into
2377  * the subvolume.  The two stage approach is slower, but gets rid of
2378  * lots of complexity around inodes referencing other inodes that exist
2379  * only in the log (references come from either directory items or inode
2380  * back refs).
2381  */
2382 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2383 			     struct walk_control *wc, u64 gen, int level)
2384 {
2385 	int nritems;
2386 	struct btrfs_tree_parent_check check = {
2387 		.transid = gen,
2388 		.level = level
2389 	};
2390 	struct btrfs_path *path;
2391 	struct btrfs_root *root = wc->replay_dest;
2392 	struct btrfs_key key;
2393 	int i;
2394 	int ret;
2395 
2396 	ret = btrfs_read_extent_buffer(eb, &check);
2397 	if (ret)
2398 		return ret;
2399 
2400 	level = btrfs_header_level(eb);
2401 
2402 	if (level != 0)
2403 		return 0;
2404 
2405 	path = btrfs_alloc_path();
2406 	if (!path)
2407 		return -ENOMEM;
2408 
2409 	nritems = btrfs_header_nritems(eb);
2410 	for (i = 0; i < nritems; i++) {
2411 		btrfs_item_key_to_cpu(eb, &key, i);
2412 
2413 		/* inode keys are done during the first stage */
2414 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2415 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2416 			struct btrfs_inode_item *inode_item;
2417 			u32 mode;
2418 
2419 			inode_item = btrfs_item_ptr(eb, i,
2420 					    struct btrfs_inode_item);
2421 			/*
2422 			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2423 			 * and never got linked before the fsync, skip it, as
2424 			 * replaying it is pointless since it would be deleted
2425 			 * later. We skip logging tmpfiles, but it's always
2426 			 * possible we are replaying a log created with a kernel
2427 			 * that used to log tmpfiles.
2428 			 */
2429 			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2430 				wc->ignore_cur_inode = true;
2431 				continue;
2432 			} else {
2433 				wc->ignore_cur_inode = false;
2434 			}
2435 			ret = replay_xattr_deletes(wc->trans, root, log,
2436 						   path, key.objectid);
2437 			if (ret)
2438 				break;
2439 			mode = btrfs_inode_mode(eb, inode_item);
2440 			if (S_ISDIR(mode)) {
2441 				ret = replay_dir_deletes(wc->trans,
2442 					 root, log, path, key.objectid, 0);
2443 				if (ret)
2444 					break;
2445 			}
2446 			ret = overwrite_item(wc->trans, root, path,
2447 					     eb, i, &key);
2448 			if (ret)
2449 				break;
2450 
2451 			/*
2452 			 * Before replaying extents, truncate the inode to its
2453 			 * size. We need to do it now and not after log replay
2454 			 * because before an fsync we can have prealloc extents
2455 			 * added beyond the inode's i_size. If we did it after,
2456 			 * through orphan cleanup for example, we would drop
2457 			 * those prealloc extents just after replaying them.
2458 			 */
2459 			if (S_ISREG(mode)) {
2460 				struct btrfs_drop_extents_args drop_args = { 0 };
2461 				struct inode *inode;
2462 				u64 from;
2463 
2464 				inode = read_one_inode(root, key.objectid);
2465 				if (!inode) {
2466 					ret = -EIO;
2467 					break;
2468 				}
2469 				from = ALIGN(i_size_read(inode),
2470 					     root->fs_info->sectorsize);
2471 				drop_args.start = from;
2472 				drop_args.end = (u64)-1;
2473 				drop_args.drop_cache = true;
2474 				ret = btrfs_drop_extents(wc->trans, root,
2475 							 BTRFS_I(inode),
2476 							 &drop_args);
2477 				if (!ret) {
2478 					inode_sub_bytes(inode,
2479 							drop_args.bytes_found);
2480 					/* Update the inode's nbytes. */
2481 					ret = btrfs_update_inode(wc->trans,
2482 								 BTRFS_I(inode));
2483 				}
2484 				iput(inode);
2485 				if (ret)
2486 					break;
2487 			}
2488 
2489 			ret = link_to_fixup_dir(wc->trans, root,
2490 						path, key.objectid);
2491 			if (ret)
2492 				break;
2493 		}
2494 
2495 		if (wc->ignore_cur_inode)
2496 			continue;
2497 
2498 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2499 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2500 			ret = replay_one_dir_item(wc->trans, root, path,
2501 						  eb, i, &key);
2502 			if (ret)
2503 				break;
2504 		}
2505 
2506 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2507 			continue;
2508 
2509 		/* these keys are simply copied */
2510 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2511 			ret = overwrite_item(wc->trans, root, path,
2512 					     eb, i, &key);
2513 			if (ret)
2514 				break;
2515 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2516 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2517 			ret = add_inode_ref(wc->trans, root, log, path,
2518 					    eb, i, &key);
2519 			if (ret && ret != -ENOENT)
2520 				break;
2521 			ret = 0;
2522 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2523 			ret = replay_one_extent(wc->trans, root, path,
2524 						eb, i, &key);
2525 			if (ret)
2526 				break;
2527 		}
2528 		/*
2529 		 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2530 		 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2531 		 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2532 		 * older kernel with such keys, ignore them.
2533 		 */
2534 	}
2535 	btrfs_free_path(path);
2536 	return ret;
2537 }
2538 
2539 /*
2540  * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2541  */
2542 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2543 {
2544 	struct btrfs_block_group *cache;
2545 
2546 	cache = btrfs_lookup_block_group(fs_info, start);
2547 	if (!cache) {
2548 		btrfs_err(fs_info, "unable to find block group for %llu", start);
2549 		return;
2550 	}
2551 
2552 	spin_lock(&cache->space_info->lock);
2553 	spin_lock(&cache->lock);
2554 	cache->reserved -= fs_info->nodesize;
2555 	cache->space_info->bytes_reserved -= fs_info->nodesize;
2556 	spin_unlock(&cache->lock);
2557 	spin_unlock(&cache->space_info->lock);
2558 
2559 	btrfs_put_block_group(cache);
2560 }
2561 
2562 static int clean_log_buffer(struct btrfs_trans_handle *trans,
2563 			    struct extent_buffer *eb)
2564 {
2565 	int ret;
2566 
2567 	btrfs_tree_lock(eb);
2568 	btrfs_clear_buffer_dirty(trans, eb);
2569 	wait_on_extent_buffer_writeback(eb);
2570 	btrfs_tree_unlock(eb);
2571 
2572 	if (trans) {
2573 		ret = btrfs_pin_reserved_extent(trans, eb);
2574 		if (ret)
2575 			return ret;
2576 	} else {
2577 		unaccount_log_buffer(eb->fs_info, eb->start);
2578 	}
2579 
2580 	return 0;
2581 }
2582 
2583 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2584 				   struct btrfs_root *root,
2585 				   struct btrfs_path *path, int *level,
2586 				   struct walk_control *wc)
2587 {
2588 	struct btrfs_fs_info *fs_info = root->fs_info;
2589 	u64 bytenr;
2590 	u64 ptr_gen;
2591 	struct extent_buffer *next;
2592 	struct extent_buffer *cur;
2593 	int ret = 0;
2594 
2595 	while (*level > 0) {
2596 		struct btrfs_tree_parent_check check = { 0 };
2597 
2598 		cur = path->nodes[*level];
2599 
2600 		WARN_ON(btrfs_header_level(cur) != *level);
2601 
2602 		if (path->slots[*level] >=
2603 		    btrfs_header_nritems(cur))
2604 			break;
2605 
2606 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2607 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2608 		check.transid = ptr_gen;
2609 		check.level = *level - 1;
2610 		check.has_first_key = true;
2611 		btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2612 
2613 		next = btrfs_find_create_tree_block(fs_info, bytenr,
2614 						    btrfs_header_owner(cur),
2615 						    *level - 1);
2616 		if (IS_ERR(next))
2617 			return PTR_ERR(next);
2618 
2619 		if (*level == 1) {
2620 			ret = wc->process_func(root, next, wc, ptr_gen,
2621 					       *level - 1);
2622 			if (ret) {
2623 				free_extent_buffer(next);
2624 				return ret;
2625 			}
2626 
2627 			path->slots[*level]++;
2628 			if (wc->free) {
2629 				ret = btrfs_read_extent_buffer(next, &check);
2630 				if (ret) {
2631 					free_extent_buffer(next);
2632 					return ret;
2633 				}
2634 
2635 				ret = clean_log_buffer(trans, next);
2636 				if (ret) {
2637 					free_extent_buffer(next);
2638 					return ret;
2639 				}
2640 			}
2641 			free_extent_buffer(next);
2642 			continue;
2643 		}
2644 		ret = btrfs_read_extent_buffer(next, &check);
2645 		if (ret) {
2646 			free_extent_buffer(next);
2647 			return ret;
2648 		}
2649 
2650 		if (path->nodes[*level-1])
2651 			free_extent_buffer(path->nodes[*level-1]);
2652 		path->nodes[*level-1] = next;
2653 		*level = btrfs_header_level(next);
2654 		path->slots[*level] = 0;
2655 		cond_resched();
2656 	}
2657 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2658 
2659 	cond_resched();
2660 	return 0;
2661 }
2662 
2663 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2664 				 struct btrfs_root *root,
2665 				 struct btrfs_path *path, int *level,
2666 				 struct walk_control *wc)
2667 {
2668 	int i;
2669 	int slot;
2670 	int ret;
2671 
2672 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2673 		slot = path->slots[i];
2674 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2675 			path->slots[i]++;
2676 			*level = i;
2677 			WARN_ON(*level == 0);
2678 			return 0;
2679 		} else {
2680 			ret = wc->process_func(root, path->nodes[*level], wc,
2681 				 btrfs_header_generation(path->nodes[*level]),
2682 				 *level);
2683 			if (ret)
2684 				return ret;
2685 
2686 			if (wc->free) {
2687 				ret = clean_log_buffer(trans, path->nodes[*level]);
2688 				if (ret)
2689 					return ret;
2690 			}
2691 			free_extent_buffer(path->nodes[*level]);
2692 			path->nodes[*level] = NULL;
2693 			*level = i + 1;
2694 		}
2695 	}
2696 	return 1;
2697 }
2698 
2699 /*
2700  * drop the reference count on the tree rooted at 'snap'.  This traverses
2701  * the tree freeing any blocks that have a ref count of zero after being
2702  * decremented.
2703  */
2704 static int walk_log_tree(struct btrfs_trans_handle *trans,
2705 			 struct btrfs_root *log, struct walk_control *wc)
2706 {
2707 	int ret = 0;
2708 	int wret;
2709 	int level;
2710 	struct btrfs_path *path;
2711 	int orig_level;
2712 
2713 	path = btrfs_alloc_path();
2714 	if (!path)
2715 		return -ENOMEM;
2716 
2717 	level = btrfs_header_level(log->node);
2718 	orig_level = level;
2719 	path->nodes[level] = log->node;
2720 	atomic_inc(&log->node->refs);
2721 	path->slots[level] = 0;
2722 
2723 	while (1) {
2724 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2725 		if (wret > 0)
2726 			break;
2727 		if (wret < 0) {
2728 			ret = wret;
2729 			goto out;
2730 		}
2731 
2732 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2733 		if (wret > 0)
2734 			break;
2735 		if (wret < 0) {
2736 			ret = wret;
2737 			goto out;
2738 		}
2739 	}
2740 
2741 	/* was the root node processed? if not, catch it here */
2742 	if (path->nodes[orig_level]) {
2743 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2744 			 btrfs_header_generation(path->nodes[orig_level]),
2745 			 orig_level);
2746 		if (ret)
2747 			goto out;
2748 		if (wc->free)
2749 			ret = clean_log_buffer(trans, path->nodes[orig_level]);
2750 	}
2751 
2752 out:
2753 	btrfs_free_path(path);
2754 	return ret;
2755 }
2756 
2757 /*
2758  * helper function to update the item for a given subvolumes log root
2759  * in the tree of log roots
2760  */
2761 static int update_log_root(struct btrfs_trans_handle *trans,
2762 			   struct btrfs_root *log,
2763 			   struct btrfs_root_item *root_item)
2764 {
2765 	struct btrfs_fs_info *fs_info = log->fs_info;
2766 	int ret;
2767 
2768 	if (log->log_transid == 1) {
2769 		/* insert root item on the first sync */
2770 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2771 				&log->root_key, root_item);
2772 	} else {
2773 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2774 				&log->root_key, root_item);
2775 	}
2776 	return ret;
2777 }
2778 
2779 static void wait_log_commit(struct btrfs_root *root, int transid)
2780 {
2781 	DEFINE_WAIT(wait);
2782 	int index = transid % 2;
2783 
2784 	/*
2785 	 * we only allow two pending log transactions at a time,
2786 	 * so we know that if ours is more than 2 older than the
2787 	 * current transaction, we're done
2788 	 */
2789 	for (;;) {
2790 		prepare_to_wait(&root->log_commit_wait[index],
2791 				&wait, TASK_UNINTERRUPTIBLE);
2792 
2793 		if (!(root->log_transid_committed < transid &&
2794 		      atomic_read(&root->log_commit[index])))
2795 			break;
2796 
2797 		mutex_unlock(&root->log_mutex);
2798 		schedule();
2799 		mutex_lock(&root->log_mutex);
2800 	}
2801 	finish_wait(&root->log_commit_wait[index], &wait);
2802 }
2803 
2804 static void wait_for_writer(struct btrfs_root *root)
2805 {
2806 	DEFINE_WAIT(wait);
2807 
2808 	for (;;) {
2809 		prepare_to_wait(&root->log_writer_wait, &wait,
2810 				TASK_UNINTERRUPTIBLE);
2811 		if (!atomic_read(&root->log_writers))
2812 			break;
2813 
2814 		mutex_unlock(&root->log_mutex);
2815 		schedule();
2816 		mutex_lock(&root->log_mutex);
2817 	}
2818 	finish_wait(&root->log_writer_wait, &wait);
2819 }
2820 
2821 void btrfs_init_log_ctx(struct btrfs_log_ctx *ctx, struct inode *inode)
2822 {
2823 	ctx->log_ret = 0;
2824 	ctx->log_transid = 0;
2825 	ctx->log_new_dentries = false;
2826 	ctx->logging_new_name = false;
2827 	ctx->logging_new_delayed_dentries = false;
2828 	ctx->logged_before = false;
2829 	ctx->inode = inode;
2830 	INIT_LIST_HEAD(&ctx->list);
2831 	INIT_LIST_HEAD(&ctx->ordered_extents);
2832 	INIT_LIST_HEAD(&ctx->conflict_inodes);
2833 	ctx->num_conflict_inodes = 0;
2834 	ctx->logging_conflict_inodes = false;
2835 	ctx->scratch_eb = NULL;
2836 }
2837 
2838 void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx *ctx)
2839 {
2840 	struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2841 
2842 	if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
2843 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
2844 		return;
2845 
2846 	/*
2847 	 * Don't care about allocation failure. This is just for optimization,
2848 	 * if we fail to allocate here, we will try again later if needed.
2849 	 */
2850 	ctx->scratch_eb = alloc_dummy_extent_buffer(inode->root->fs_info, 0);
2851 }
2852 
2853 void btrfs_release_log_ctx_extents(struct btrfs_log_ctx *ctx)
2854 {
2855 	struct btrfs_ordered_extent *ordered;
2856 	struct btrfs_ordered_extent *tmp;
2857 
2858 	ASSERT(inode_is_locked(ctx->inode));
2859 
2860 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
2861 		list_del_init(&ordered->log_list);
2862 		btrfs_put_ordered_extent(ordered);
2863 	}
2864 }
2865 
2866 
2867 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2868 					struct btrfs_log_ctx *ctx)
2869 {
2870 	mutex_lock(&root->log_mutex);
2871 	list_del_init(&ctx->list);
2872 	mutex_unlock(&root->log_mutex);
2873 }
2874 
2875 /*
2876  * Invoked in log mutex context, or be sure there is no other task which
2877  * can access the list.
2878  */
2879 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2880 					     int index, int error)
2881 {
2882 	struct btrfs_log_ctx *ctx;
2883 	struct btrfs_log_ctx *safe;
2884 
2885 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2886 		list_del_init(&ctx->list);
2887 		ctx->log_ret = error;
2888 	}
2889 }
2890 
2891 /*
2892  * Sends a given tree log down to the disk and updates the super blocks to
2893  * record it.  When this call is done, you know that any inodes previously
2894  * logged are safely on disk only if it returns 0.
2895  *
2896  * Any other return value means you need to call btrfs_commit_transaction.
2897  * Some of the edge cases for fsyncing directories that have had unlinks
2898  * or renames done in the past mean that sometimes the only safe
2899  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2900  * that has happened.
2901  */
2902 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2903 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2904 {
2905 	int index1;
2906 	int index2;
2907 	int mark;
2908 	int ret;
2909 	struct btrfs_fs_info *fs_info = root->fs_info;
2910 	struct btrfs_root *log = root->log_root;
2911 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2912 	struct btrfs_root_item new_root_item;
2913 	int log_transid = 0;
2914 	struct btrfs_log_ctx root_log_ctx;
2915 	struct blk_plug plug;
2916 	u64 log_root_start;
2917 	u64 log_root_level;
2918 
2919 	mutex_lock(&root->log_mutex);
2920 	log_transid = ctx->log_transid;
2921 	if (root->log_transid_committed >= log_transid) {
2922 		mutex_unlock(&root->log_mutex);
2923 		return ctx->log_ret;
2924 	}
2925 
2926 	index1 = log_transid % 2;
2927 	if (atomic_read(&root->log_commit[index1])) {
2928 		wait_log_commit(root, log_transid);
2929 		mutex_unlock(&root->log_mutex);
2930 		return ctx->log_ret;
2931 	}
2932 	ASSERT(log_transid == root->log_transid);
2933 	atomic_set(&root->log_commit[index1], 1);
2934 
2935 	/* wait for previous tree log sync to complete */
2936 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2937 		wait_log_commit(root, log_transid - 1);
2938 
2939 	while (1) {
2940 		int batch = atomic_read(&root->log_batch);
2941 		/* when we're on an ssd, just kick the log commit out */
2942 		if (!btrfs_test_opt(fs_info, SSD) &&
2943 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2944 			mutex_unlock(&root->log_mutex);
2945 			schedule_timeout_uninterruptible(1);
2946 			mutex_lock(&root->log_mutex);
2947 		}
2948 		wait_for_writer(root);
2949 		if (batch == atomic_read(&root->log_batch))
2950 			break;
2951 	}
2952 
2953 	/* bail out if we need to do a full commit */
2954 	if (btrfs_need_log_full_commit(trans)) {
2955 		ret = BTRFS_LOG_FORCE_COMMIT;
2956 		mutex_unlock(&root->log_mutex);
2957 		goto out;
2958 	}
2959 
2960 	if (log_transid % 2 == 0)
2961 		mark = EXTENT_DIRTY;
2962 	else
2963 		mark = EXTENT_NEW;
2964 
2965 	/* we start IO on  all the marked extents here, but we don't actually
2966 	 * wait for them until later.
2967 	 */
2968 	blk_start_plug(&plug);
2969 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2970 	/*
2971 	 * -EAGAIN happens when someone, e.g., a concurrent transaction
2972 	 *  commit, writes a dirty extent in this tree-log commit. This
2973 	 *  concurrent write will create a hole writing out the extents,
2974 	 *  and we cannot proceed on a zoned filesystem, requiring
2975 	 *  sequential writing. While we can bail out to a full commit
2976 	 *  here, but we can continue hoping the concurrent writing fills
2977 	 *  the hole.
2978 	 */
2979 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
2980 		ret = 0;
2981 	if (ret) {
2982 		blk_finish_plug(&plug);
2983 		btrfs_set_log_full_commit(trans);
2984 		mutex_unlock(&root->log_mutex);
2985 		goto out;
2986 	}
2987 
2988 	/*
2989 	 * We _must_ update under the root->log_mutex in order to make sure we
2990 	 * have a consistent view of the log root we are trying to commit at
2991 	 * this moment.
2992 	 *
2993 	 * We _must_ copy this into a local copy, because we are not holding the
2994 	 * log_root_tree->log_mutex yet.  This is important because when we
2995 	 * commit the log_root_tree we must have a consistent view of the
2996 	 * log_root_tree when we update the super block to point at the
2997 	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
2998 	 * with the commit and possibly point at the new block which we may not
2999 	 * have written out.
3000 	 */
3001 	btrfs_set_root_node(&log->root_item, log->node);
3002 	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3003 
3004 	btrfs_set_root_log_transid(root, root->log_transid + 1);
3005 	log->log_transid = root->log_transid;
3006 	root->log_start_pid = 0;
3007 	/*
3008 	 * IO has been started, blocks of the log tree have WRITTEN flag set
3009 	 * in their headers. new modifications of the log will be written to
3010 	 * new positions. so it's safe to allow log writers to go in.
3011 	 */
3012 	mutex_unlock(&root->log_mutex);
3013 
3014 	if (btrfs_is_zoned(fs_info)) {
3015 		mutex_lock(&fs_info->tree_root->log_mutex);
3016 		if (!log_root_tree->node) {
3017 			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3018 			if (ret) {
3019 				mutex_unlock(&fs_info->tree_root->log_mutex);
3020 				blk_finish_plug(&plug);
3021 				goto out;
3022 			}
3023 		}
3024 		mutex_unlock(&fs_info->tree_root->log_mutex);
3025 	}
3026 
3027 	btrfs_init_log_ctx(&root_log_ctx, NULL);
3028 
3029 	mutex_lock(&log_root_tree->log_mutex);
3030 
3031 	index2 = log_root_tree->log_transid % 2;
3032 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3033 	root_log_ctx.log_transid = log_root_tree->log_transid;
3034 
3035 	/*
3036 	 * Now we are safe to update the log_root_tree because we're under the
3037 	 * log_mutex, and we're a current writer so we're holding the commit
3038 	 * open until we drop the log_mutex.
3039 	 */
3040 	ret = update_log_root(trans, log, &new_root_item);
3041 	if (ret) {
3042 		list_del_init(&root_log_ctx.list);
3043 		blk_finish_plug(&plug);
3044 		btrfs_set_log_full_commit(trans);
3045 		if (ret != -ENOSPC)
3046 			btrfs_err(fs_info,
3047 				  "failed to update log for root %llu ret %d",
3048 				  root->root_key.objectid, ret);
3049 		btrfs_wait_tree_log_extents(log, mark);
3050 		mutex_unlock(&log_root_tree->log_mutex);
3051 		goto out;
3052 	}
3053 
3054 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3055 		blk_finish_plug(&plug);
3056 		list_del_init(&root_log_ctx.list);
3057 		mutex_unlock(&log_root_tree->log_mutex);
3058 		ret = root_log_ctx.log_ret;
3059 		goto out;
3060 	}
3061 
3062 	if (atomic_read(&log_root_tree->log_commit[index2])) {
3063 		blk_finish_plug(&plug);
3064 		ret = btrfs_wait_tree_log_extents(log, mark);
3065 		wait_log_commit(log_root_tree,
3066 				root_log_ctx.log_transid);
3067 		mutex_unlock(&log_root_tree->log_mutex);
3068 		if (!ret)
3069 			ret = root_log_ctx.log_ret;
3070 		goto out;
3071 	}
3072 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3073 	atomic_set(&log_root_tree->log_commit[index2], 1);
3074 
3075 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3076 		wait_log_commit(log_root_tree,
3077 				root_log_ctx.log_transid - 1);
3078 	}
3079 
3080 	/*
3081 	 * now that we've moved on to the tree of log tree roots,
3082 	 * check the full commit flag again
3083 	 */
3084 	if (btrfs_need_log_full_commit(trans)) {
3085 		blk_finish_plug(&plug);
3086 		btrfs_wait_tree_log_extents(log, mark);
3087 		mutex_unlock(&log_root_tree->log_mutex);
3088 		ret = BTRFS_LOG_FORCE_COMMIT;
3089 		goto out_wake_log_root;
3090 	}
3091 
3092 	ret = btrfs_write_marked_extents(fs_info,
3093 					 &log_root_tree->dirty_log_pages,
3094 					 EXTENT_DIRTY | EXTENT_NEW);
3095 	blk_finish_plug(&plug);
3096 	/*
3097 	 * As described above, -EAGAIN indicates a hole in the extents. We
3098 	 * cannot wait for these write outs since the waiting cause a
3099 	 * deadlock. Bail out to the full commit instead.
3100 	 */
3101 	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3102 		btrfs_set_log_full_commit(trans);
3103 		btrfs_wait_tree_log_extents(log, mark);
3104 		mutex_unlock(&log_root_tree->log_mutex);
3105 		goto out_wake_log_root;
3106 	} else if (ret) {
3107 		btrfs_set_log_full_commit(trans);
3108 		mutex_unlock(&log_root_tree->log_mutex);
3109 		goto out_wake_log_root;
3110 	}
3111 	ret = btrfs_wait_tree_log_extents(log, mark);
3112 	if (!ret)
3113 		ret = btrfs_wait_tree_log_extents(log_root_tree,
3114 						  EXTENT_NEW | EXTENT_DIRTY);
3115 	if (ret) {
3116 		btrfs_set_log_full_commit(trans);
3117 		mutex_unlock(&log_root_tree->log_mutex);
3118 		goto out_wake_log_root;
3119 	}
3120 
3121 	log_root_start = log_root_tree->node->start;
3122 	log_root_level = btrfs_header_level(log_root_tree->node);
3123 	log_root_tree->log_transid++;
3124 	mutex_unlock(&log_root_tree->log_mutex);
3125 
3126 	/*
3127 	 * Here we are guaranteed that nobody is going to write the superblock
3128 	 * for the current transaction before us and that neither we do write
3129 	 * our superblock before the previous transaction finishes its commit
3130 	 * and writes its superblock, because:
3131 	 *
3132 	 * 1) We are holding a handle on the current transaction, so no body
3133 	 *    can commit it until we release the handle;
3134 	 *
3135 	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3136 	 *    if the previous transaction is still committing, and hasn't yet
3137 	 *    written its superblock, we wait for it to do it, because a
3138 	 *    transaction commit acquires the tree_log_mutex when the commit
3139 	 *    begins and releases it only after writing its superblock.
3140 	 */
3141 	mutex_lock(&fs_info->tree_log_mutex);
3142 
3143 	/*
3144 	 * The previous transaction writeout phase could have failed, and thus
3145 	 * marked the fs in an error state.  We must not commit here, as we
3146 	 * could have updated our generation in the super_for_commit and
3147 	 * writing the super here would result in transid mismatches.  If there
3148 	 * is an error here just bail.
3149 	 */
3150 	if (BTRFS_FS_ERROR(fs_info)) {
3151 		ret = -EIO;
3152 		btrfs_set_log_full_commit(trans);
3153 		btrfs_abort_transaction(trans, ret);
3154 		mutex_unlock(&fs_info->tree_log_mutex);
3155 		goto out_wake_log_root;
3156 	}
3157 
3158 	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3159 	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3160 	ret = write_all_supers(fs_info, 1);
3161 	mutex_unlock(&fs_info->tree_log_mutex);
3162 	if (ret) {
3163 		btrfs_set_log_full_commit(trans);
3164 		btrfs_abort_transaction(trans, ret);
3165 		goto out_wake_log_root;
3166 	}
3167 
3168 	/*
3169 	 * We know there can only be one task here, since we have not yet set
3170 	 * root->log_commit[index1] to 0 and any task attempting to sync the
3171 	 * log must wait for the previous log transaction to commit if it's
3172 	 * still in progress or wait for the current log transaction commit if
3173 	 * someone else already started it. We use <= and not < because the
3174 	 * first log transaction has an ID of 0.
3175 	 */
3176 	ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid);
3177 	btrfs_set_root_last_log_commit(root, log_transid);
3178 
3179 out_wake_log_root:
3180 	mutex_lock(&log_root_tree->log_mutex);
3181 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3182 
3183 	log_root_tree->log_transid_committed++;
3184 	atomic_set(&log_root_tree->log_commit[index2], 0);
3185 	mutex_unlock(&log_root_tree->log_mutex);
3186 
3187 	/*
3188 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3189 	 * all the updates above are seen by the woken threads. It might not be
3190 	 * necessary, but proving that seems to be hard.
3191 	 */
3192 	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3193 out:
3194 	mutex_lock(&root->log_mutex);
3195 	btrfs_remove_all_log_ctxs(root, index1, ret);
3196 	root->log_transid_committed++;
3197 	atomic_set(&root->log_commit[index1], 0);
3198 	mutex_unlock(&root->log_mutex);
3199 
3200 	/*
3201 	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3202 	 * all the updates above are seen by the woken threads. It might not be
3203 	 * necessary, but proving that seems to be hard.
3204 	 */
3205 	cond_wake_up(&root->log_commit_wait[index1]);
3206 	return ret;
3207 }
3208 
3209 static void free_log_tree(struct btrfs_trans_handle *trans,
3210 			  struct btrfs_root *log)
3211 {
3212 	int ret;
3213 	struct walk_control wc = {
3214 		.free = 1,
3215 		.process_func = process_one_buffer
3216 	};
3217 
3218 	if (log->node) {
3219 		ret = walk_log_tree(trans, log, &wc);
3220 		if (ret) {
3221 			/*
3222 			 * We weren't able to traverse the entire log tree, the
3223 			 * typical scenario is getting an -EIO when reading an
3224 			 * extent buffer of the tree, due to a previous writeback
3225 			 * failure of it.
3226 			 */
3227 			set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3228 				&log->fs_info->fs_state);
3229 
3230 			/*
3231 			 * Some extent buffers of the log tree may still be dirty
3232 			 * and not yet written back to storage, because we may
3233 			 * have updates to a log tree without syncing a log tree,
3234 			 * such as during rename and link operations. So flush
3235 			 * them out and wait for their writeback to complete, so
3236 			 * that we properly cleanup their state and pages.
3237 			 */
3238 			btrfs_write_marked_extents(log->fs_info,
3239 						   &log->dirty_log_pages,
3240 						   EXTENT_DIRTY | EXTENT_NEW);
3241 			btrfs_wait_tree_log_extents(log,
3242 						    EXTENT_DIRTY | EXTENT_NEW);
3243 
3244 			if (trans)
3245 				btrfs_abort_transaction(trans, ret);
3246 			else
3247 				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3248 		}
3249 	}
3250 
3251 	extent_io_tree_release(&log->dirty_log_pages);
3252 	extent_io_tree_release(&log->log_csum_range);
3253 
3254 	btrfs_put_root(log);
3255 }
3256 
3257 /*
3258  * free all the extents used by the tree log.  This should be called
3259  * at commit time of the full transaction
3260  */
3261 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3262 {
3263 	if (root->log_root) {
3264 		free_log_tree(trans, root->log_root);
3265 		root->log_root = NULL;
3266 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3267 	}
3268 	return 0;
3269 }
3270 
3271 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3272 			     struct btrfs_fs_info *fs_info)
3273 {
3274 	if (fs_info->log_root_tree) {
3275 		free_log_tree(trans, fs_info->log_root_tree);
3276 		fs_info->log_root_tree = NULL;
3277 		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3278 	}
3279 	return 0;
3280 }
3281 
3282 /*
3283  * Check if an inode was logged in the current transaction. This correctly deals
3284  * with the case where the inode was logged but has a logged_trans of 0, which
3285  * happens if the inode is evicted and loaded again, as logged_trans is an in
3286  * memory only field (not persisted).
3287  *
3288  * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3289  * and < 0 on error.
3290  */
3291 static int inode_logged(const struct btrfs_trans_handle *trans,
3292 			struct btrfs_inode *inode,
3293 			struct btrfs_path *path_in)
3294 {
3295 	struct btrfs_path *path = path_in;
3296 	struct btrfs_key key;
3297 	int ret;
3298 
3299 	if (inode->logged_trans == trans->transid)
3300 		return 1;
3301 
3302 	/*
3303 	 * If logged_trans is not 0, then we know the inode logged was not logged
3304 	 * in this transaction, so we can return false right away.
3305 	 */
3306 	if (inode->logged_trans > 0)
3307 		return 0;
3308 
3309 	/*
3310 	 * If no log tree was created for this root in this transaction, then
3311 	 * the inode can not have been logged in this transaction. In that case
3312 	 * set logged_trans to anything greater than 0 and less than the current
3313 	 * transaction's ID, to avoid the search below in a future call in case
3314 	 * a log tree gets created after this.
3315 	 */
3316 	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3317 		inode->logged_trans = trans->transid - 1;
3318 		return 0;
3319 	}
3320 
3321 	/*
3322 	 * We have a log tree and the inode's logged_trans is 0. We can't tell
3323 	 * for sure if the inode was logged before in this transaction by looking
3324 	 * only at logged_trans. We could be pessimistic and assume it was, but
3325 	 * that can lead to unnecessarily logging an inode during rename and link
3326 	 * operations, and then further updating the log in followup rename and
3327 	 * link operations, specially if it's a directory, which adds latency
3328 	 * visible to applications doing a series of rename or link operations.
3329 	 *
3330 	 * A logged_trans of 0 here can mean several things:
3331 	 *
3332 	 * 1) The inode was never logged since the filesystem was mounted, and may
3333 	 *    or may have not been evicted and loaded again;
3334 	 *
3335 	 * 2) The inode was logged in a previous transaction, then evicted and
3336 	 *    then loaded again;
3337 	 *
3338 	 * 3) The inode was logged in the current transaction, then evicted and
3339 	 *    then loaded again.
3340 	 *
3341 	 * For cases 1) and 2) we don't want to return true, but we need to detect
3342 	 * case 3) and return true. So we do a search in the log root for the inode
3343 	 * item.
3344 	 */
3345 	key.objectid = btrfs_ino(inode);
3346 	key.type = BTRFS_INODE_ITEM_KEY;
3347 	key.offset = 0;
3348 
3349 	if (!path) {
3350 		path = btrfs_alloc_path();
3351 		if (!path)
3352 			return -ENOMEM;
3353 	}
3354 
3355 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3356 
3357 	if (path_in)
3358 		btrfs_release_path(path);
3359 	else
3360 		btrfs_free_path(path);
3361 
3362 	/*
3363 	 * Logging an inode always results in logging its inode item. So if we
3364 	 * did not find the item we know the inode was not logged for sure.
3365 	 */
3366 	if (ret < 0) {
3367 		return ret;
3368 	} else if (ret > 0) {
3369 		/*
3370 		 * Set logged_trans to a value greater than 0 and less then the
3371 		 * current transaction to avoid doing the search in future calls.
3372 		 */
3373 		inode->logged_trans = trans->transid - 1;
3374 		return 0;
3375 	}
3376 
3377 	/*
3378 	 * The inode was previously logged and then evicted, set logged_trans to
3379 	 * the current transacion's ID, to avoid future tree searches as long as
3380 	 * the inode is not evicted again.
3381 	 */
3382 	inode->logged_trans = trans->transid;
3383 
3384 	/*
3385 	 * If it's a directory, then we must set last_dir_index_offset to the
3386 	 * maximum possible value, so that the next attempt to log the inode does
3387 	 * not skip checking if dir index keys found in modified subvolume tree
3388 	 * leaves have been logged before, otherwise it would result in attempts
3389 	 * to insert duplicate dir index keys in the log tree. This must be done
3390 	 * because last_dir_index_offset is an in-memory only field, not persisted
3391 	 * in the inode item or any other on-disk structure, so its value is lost
3392 	 * once the inode is evicted.
3393 	 */
3394 	if (S_ISDIR(inode->vfs_inode.i_mode))
3395 		inode->last_dir_index_offset = (u64)-1;
3396 
3397 	return 1;
3398 }
3399 
3400 /*
3401  * Delete a directory entry from the log if it exists.
3402  *
3403  * Returns < 0 on error
3404  *           1 if the entry does not exists
3405  *           0 if the entry existed and was successfully deleted
3406  */
3407 static int del_logged_dentry(struct btrfs_trans_handle *trans,
3408 			     struct btrfs_root *log,
3409 			     struct btrfs_path *path,
3410 			     u64 dir_ino,
3411 			     const struct fscrypt_str *name,
3412 			     u64 index)
3413 {
3414 	struct btrfs_dir_item *di;
3415 
3416 	/*
3417 	 * We only log dir index items of a directory, so we don't need to look
3418 	 * for dir item keys.
3419 	 */
3420 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3421 					 index, name, -1);
3422 	if (IS_ERR(di))
3423 		return PTR_ERR(di);
3424 	else if (!di)
3425 		return 1;
3426 
3427 	/*
3428 	 * We do not need to update the size field of the directory's
3429 	 * inode item because on log replay we update the field to reflect
3430 	 * all existing entries in the directory (see overwrite_item()).
3431 	 */
3432 	return btrfs_delete_one_dir_name(trans, log, path, di);
3433 }
3434 
3435 /*
3436  * If both a file and directory are logged, and unlinks or renames are
3437  * mixed in, we have a few interesting corners:
3438  *
3439  * create file X in dir Y
3440  * link file X to X.link in dir Y
3441  * fsync file X
3442  * unlink file X but leave X.link
3443  * fsync dir Y
3444  *
3445  * After a crash we would expect only X.link to exist.  But file X
3446  * didn't get fsync'd again so the log has back refs for X and X.link.
3447  *
3448  * We solve this by removing directory entries and inode backrefs from the
3449  * log when a file that was logged in the current transaction is
3450  * unlinked.  Any later fsync will include the updated log entries, and
3451  * we'll be able to reconstruct the proper directory items from backrefs.
3452  *
3453  * This optimizations allows us to avoid relogging the entire inode
3454  * or the entire directory.
3455  */
3456 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3457 				  struct btrfs_root *root,
3458 				  const struct fscrypt_str *name,
3459 				  struct btrfs_inode *dir, u64 index)
3460 {
3461 	struct btrfs_path *path;
3462 	int ret;
3463 
3464 	ret = inode_logged(trans, dir, NULL);
3465 	if (ret == 0)
3466 		return;
3467 	else if (ret < 0) {
3468 		btrfs_set_log_full_commit(trans);
3469 		return;
3470 	}
3471 
3472 	ret = join_running_log_trans(root);
3473 	if (ret)
3474 		return;
3475 
3476 	mutex_lock(&dir->log_mutex);
3477 
3478 	path = btrfs_alloc_path();
3479 	if (!path) {
3480 		ret = -ENOMEM;
3481 		goto out_unlock;
3482 	}
3483 
3484 	ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3485 				name, index);
3486 	btrfs_free_path(path);
3487 out_unlock:
3488 	mutex_unlock(&dir->log_mutex);
3489 	if (ret < 0)
3490 		btrfs_set_log_full_commit(trans);
3491 	btrfs_end_log_trans(root);
3492 }
3493 
3494 /* see comments for btrfs_del_dir_entries_in_log */
3495 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3496 				struct btrfs_root *root,
3497 				const struct fscrypt_str *name,
3498 				struct btrfs_inode *inode, u64 dirid)
3499 {
3500 	struct btrfs_root *log;
3501 	u64 index;
3502 	int ret;
3503 
3504 	ret = inode_logged(trans, inode, NULL);
3505 	if (ret == 0)
3506 		return;
3507 	else if (ret < 0) {
3508 		btrfs_set_log_full_commit(trans);
3509 		return;
3510 	}
3511 
3512 	ret = join_running_log_trans(root);
3513 	if (ret)
3514 		return;
3515 	log = root->log_root;
3516 	mutex_lock(&inode->log_mutex);
3517 
3518 	ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3519 				  dirid, &index);
3520 	mutex_unlock(&inode->log_mutex);
3521 	if (ret < 0 && ret != -ENOENT)
3522 		btrfs_set_log_full_commit(trans);
3523 	btrfs_end_log_trans(root);
3524 }
3525 
3526 /*
3527  * creates a range item in the log for 'dirid'.  first_offset and
3528  * last_offset tell us which parts of the key space the log should
3529  * be considered authoritative for.
3530  */
3531 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3532 				       struct btrfs_root *log,
3533 				       struct btrfs_path *path,
3534 				       u64 dirid,
3535 				       u64 first_offset, u64 last_offset)
3536 {
3537 	int ret;
3538 	struct btrfs_key key;
3539 	struct btrfs_dir_log_item *item;
3540 
3541 	key.objectid = dirid;
3542 	key.offset = first_offset;
3543 	key.type = BTRFS_DIR_LOG_INDEX_KEY;
3544 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3545 	/*
3546 	 * -EEXIST is fine and can happen sporadically when we are logging a
3547 	 * directory and have concurrent insertions in the subvolume's tree for
3548 	 * items from other inodes and that result in pushing off some dir items
3549 	 * from one leaf to another in order to accommodate for the new items.
3550 	 * This results in logging the same dir index range key.
3551 	 */
3552 	if (ret && ret != -EEXIST)
3553 		return ret;
3554 
3555 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3556 			      struct btrfs_dir_log_item);
3557 	if (ret == -EEXIST) {
3558 		const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3559 
3560 		/*
3561 		 * btrfs_del_dir_entries_in_log() might have been called during
3562 		 * an unlink between the initial insertion of this key and the
3563 		 * current update, or we might be logging a single entry deletion
3564 		 * during a rename, so set the new last_offset to the max value.
3565 		 */
3566 		last_offset = max(last_offset, curr_end);
3567 	}
3568 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3569 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3570 	btrfs_release_path(path);
3571 	return 0;
3572 }
3573 
3574 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3575 				 struct btrfs_inode *inode,
3576 				 struct extent_buffer *src,
3577 				 struct btrfs_path *dst_path,
3578 				 int start_slot,
3579 				 int count)
3580 {
3581 	struct btrfs_root *log = inode->root->log_root;
3582 	char *ins_data = NULL;
3583 	struct btrfs_item_batch batch;
3584 	struct extent_buffer *dst;
3585 	unsigned long src_offset;
3586 	unsigned long dst_offset;
3587 	u64 last_index;
3588 	struct btrfs_key key;
3589 	u32 item_size;
3590 	int ret;
3591 	int i;
3592 
3593 	ASSERT(count > 0);
3594 	batch.nr = count;
3595 
3596 	if (count == 1) {
3597 		btrfs_item_key_to_cpu(src, &key, start_slot);
3598 		item_size = btrfs_item_size(src, start_slot);
3599 		batch.keys = &key;
3600 		batch.data_sizes = &item_size;
3601 		batch.total_data_size = item_size;
3602 	} else {
3603 		struct btrfs_key *ins_keys;
3604 		u32 *ins_sizes;
3605 
3606 		ins_data = kmalloc(count * sizeof(u32) +
3607 				   count * sizeof(struct btrfs_key), GFP_NOFS);
3608 		if (!ins_data)
3609 			return -ENOMEM;
3610 
3611 		ins_sizes = (u32 *)ins_data;
3612 		ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3613 		batch.keys = ins_keys;
3614 		batch.data_sizes = ins_sizes;
3615 		batch.total_data_size = 0;
3616 
3617 		for (i = 0; i < count; i++) {
3618 			const int slot = start_slot + i;
3619 
3620 			btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3621 			ins_sizes[i] = btrfs_item_size(src, slot);
3622 			batch.total_data_size += ins_sizes[i];
3623 		}
3624 	}
3625 
3626 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3627 	if (ret)
3628 		goto out;
3629 
3630 	dst = dst_path->nodes[0];
3631 	/*
3632 	 * Copy all the items in bulk, in a single copy operation. Item data is
3633 	 * organized such that it's placed at the end of a leaf and from right
3634 	 * to left. For example, the data for the second item ends at an offset
3635 	 * that matches the offset where the data for the first item starts, the
3636 	 * data for the third item ends at an offset that matches the offset
3637 	 * where the data of the second items starts, and so on.
3638 	 * Therefore our source and destination start offsets for copy match the
3639 	 * offsets of the last items (highest slots).
3640 	 */
3641 	dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3642 	src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3643 	copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3644 	btrfs_release_path(dst_path);
3645 
3646 	last_index = batch.keys[count - 1].offset;
3647 	ASSERT(last_index > inode->last_dir_index_offset);
3648 
3649 	/*
3650 	 * If for some unexpected reason the last item's index is not greater
3651 	 * than the last index we logged, warn and force a transaction commit.
3652 	 */
3653 	if (WARN_ON(last_index <= inode->last_dir_index_offset))
3654 		ret = BTRFS_LOG_FORCE_COMMIT;
3655 	else
3656 		inode->last_dir_index_offset = last_index;
3657 
3658 	if (btrfs_get_first_dir_index_to_log(inode) == 0)
3659 		btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset);
3660 out:
3661 	kfree(ins_data);
3662 
3663 	return ret;
3664 }
3665 
3666 static int clone_leaf(struct btrfs_path *path, struct btrfs_log_ctx *ctx)
3667 {
3668 	const int slot = path->slots[0];
3669 
3670 	if (ctx->scratch_eb) {
3671 		copy_extent_buffer_full(ctx->scratch_eb, path->nodes[0]);
3672 	} else {
3673 		ctx->scratch_eb = btrfs_clone_extent_buffer(path->nodes[0]);
3674 		if (!ctx->scratch_eb)
3675 			return -ENOMEM;
3676 	}
3677 
3678 	btrfs_release_path(path);
3679 	path->nodes[0] = ctx->scratch_eb;
3680 	path->slots[0] = slot;
3681 	/*
3682 	 * Add extra ref to scratch eb so that it is not freed when callers
3683 	 * release the path, so we can reuse it later if needed.
3684 	 */
3685 	atomic_inc(&ctx->scratch_eb->refs);
3686 
3687 	return 0;
3688 }
3689 
3690 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3691 				  struct btrfs_inode *inode,
3692 				  struct btrfs_path *path,
3693 				  struct btrfs_path *dst_path,
3694 				  struct btrfs_log_ctx *ctx,
3695 				  u64 *last_old_dentry_offset)
3696 {
3697 	struct btrfs_root *log = inode->root->log_root;
3698 	struct extent_buffer *src;
3699 	const int nritems = btrfs_header_nritems(path->nodes[0]);
3700 	const u64 ino = btrfs_ino(inode);
3701 	bool last_found = false;
3702 	int batch_start = 0;
3703 	int batch_size = 0;
3704 	int ret;
3705 
3706 	/*
3707 	 * We need to clone the leaf, release the read lock on it, and use the
3708 	 * clone before modifying the log tree. See the comment at copy_items()
3709 	 * about why we need to do this.
3710 	 */
3711 	ret = clone_leaf(path, ctx);
3712 	if (ret < 0)
3713 		return ret;
3714 
3715 	src = path->nodes[0];
3716 
3717 	for (int i = path->slots[0]; i < nritems; i++) {
3718 		struct btrfs_dir_item *di;
3719 		struct btrfs_key key;
3720 		int ret;
3721 
3722 		btrfs_item_key_to_cpu(src, &key, i);
3723 
3724 		if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3725 			last_found = true;
3726 			break;
3727 		}
3728 
3729 		di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3730 
3731 		/*
3732 		 * Skip ranges of items that consist only of dir item keys created
3733 		 * in past transactions. However if we find a gap, we must log a
3734 		 * dir index range item for that gap, so that index keys in that
3735 		 * gap are deleted during log replay.
3736 		 */
3737 		if (btrfs_dir_transid(src, di) < trans->transid) {
3738 			if (key.offset > *last_old_dentry_offset + 1) {
3739 				ret = insert_dir_log_key(trans, log, dst_path,
3740 						 ino, *last_old_dentry_offset + 1,
3741 						 key.offset - 1);
3742 				if (ret < 0)
3743 					return ret;
3744 			}
3745 
3746 			*last_old_dentry_offset = key.offset;
3747 			continue;
3748 		}
3749 
3750 		/* If we logged this dir index item before, we can skip it. */
3751 		if (key.offset <= inode->last_dir_index_offset)
3752 			continue;
3753 
3754 		/*
3755 		 * We must make sure that when we log a directory entry, the
3756 		 * corresponding inode, after log replay, has a matching link
3757 		 * count. For example:
3758 		 *
3759 		 * touch foo
3760 		 * mkdir mydir
3761 		 * sync
3762 		 * ln foo mydir/bar
3763 		 * xfs_io -c "fsync" mydir
3764 		 * <crash>
3765 		 * <mount fs and log replay>
3766 		 *
3767 		 * Would result in a fsync log that when replayed, our file inode
3768 		 * would have a link count of 1, but we get two directory entries
3769 		 * pointing to the same inode. After removing one of the names,
3770 		 * it would not be possible to remove the other name, which
3771 		 * resulted always in stale file handle errors, and would not be
3772 		 * possible to rmdir the parent directory, since its i_size could
3773 		 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3774 		 * resulting in -ENOTEMPTY errors.
3775 		 */
3776 		if (!ctx->log_new_dentries) {
3777 			struct btrfs_key di_key;
3778 
3779 			btrfs_dir_item_key_to_cpu(src, di, &di_key);
3780 			if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3781 				ctx->log_new_dentries = true;
3782 		}
3783 
3784 		if (batch_size == 0)
3785 			batch_start = i;
3786 		batch_size++;
3787 	}
3788 
3789 	if (batch_size > 0) {
3790 		int ret;
3791 
3792 		ret = flush_dir_items_batch(trans, inode, src, dst_path,
3793 					    batch_start, batch_size);
3794 		if (ret < 0)
3795 			return ret;
3796 	}
3797 
3798 	return last_found ? 1 : 0;
3799 }
3800 
3801 /*
3802  * log all the items included in the current transaction for a given
3803  * directory.  This also creates the range items in the log tree required
3804  * to replay anything deleted before the fsync
3805  */
3806 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3807 			  struct btrfs_inode *inode,
3808 			  struct btrfs_path *path,
3809 			  struct btrfs_path *dst_path,
3810 			  struct btrfs_log_ctx *ctx,
3811 			  u64 min_offset, u64 *last_offset_ret)
3812 {
3813 	struct btrfs_key min_key;
3814 	struct btrfs_root *root = inode->root;
3815 	struct btrfs_root *log = root->log_root;
3816 	int ret;
3817 	u64 last_old_dentry_offset = min_offset - 1;
3818 	u64 last_offset = (u64)-1;
3819 	u64 ino = btrfs_ino(inode);
3820 
3821 	min_key.objectid = ino;
3822 	min_key.type = BTRFS_DIR_INDEX_KEY;
3823 	min_key.offset = min_offset;
3824 
3825 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3826 
3827 	/*
3828 	 * we didn't find anything from this transaction, see if there
3829 	 * is anything at all
3830 	 */
3831 	if (ret != 0 || min_key.objectid != ino ||
3832 	    min_key.type != BTRFS_DIR_INDEX_KEY) {
3833 		min_key.objectid = ino;
3834 		min_key.type = BTRFS_DIR_INDEX_KEY;
3835 		min_key.offset = (u64)-1;
3836 		btrfs_release_path(path);
3837 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3838 		if (ret < 0) {
3839 			btrfs_release_path(path);
3840 			return ret;
3841 		}
3842 		ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3843 
3844 		/* if ret == 0 there are items for this type,
3845 		 * create a range to tell us the last key of this type.
3846 		 * otherwise, there are no items in this directory after
3847 		 * *min_offset, and we create a range to indicate that.
3848 		 */
3849 		if (ret == 0) {
3850 			struct btrfs_key tmp;
3851 
3852 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3853 					      path->slots[0]);
3854 			if (tmp.type == BTRFS_DIR_INDEX_KEY)
3855 				last_old_dentry_offset = tmp.offset;
3856 		} else if (ret > 0) {
3857 			ret = 0;
3858 		}
3859 
3860 		goto done;
3861 	}
3862 
3863 	/* go backward to find any previous key */
3864 	ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3865 	if (ret == 0) {
3866 		struct btrfs_key tmp;
3867 
3868 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3869 		/*
3870 		 * The dir index key before the first one we found that needs to
3871 		 * be logged might be in a previous leaf, and there might be a
3872 		 * gap between these keys, meaning that we had deletions that
3873 		 * happened. So the key range item we log (key type
3874 		 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3875 		 * previous key's offset plus 1, so that those deletes are replayed.
3876 		 */
3877 		if (tmp.type == BTRFS_DIR_INDEX_KEY)
3878 			last_old_dentry_offset = tmp.offset;
3879 	} else if (ret < 0) {
3880 		goto done;
3881 	}
3882 
3883 	btrfs_release_path(path);
3884 
3885 	/*
3886 	 * Find the first key from this transaction again or the one we were at
3887 	 * in the loop below in case we had to reschedule. We may be logging the
3888 	 * directory without holding its VFS lock, which happen when logging new
3889 	 * dentries (through log_new_dir_dentries()) or in some cases when we
3890 	 * need to log the parent directory of an inode. This means a dir index
3891 	 * key might be deleted from the inode's root, and therefore we may not
3892 	 * find it anymore. If we can't find it, just move to the next key. We
3893 	 * can not bail out and ignore, because if we do that we will simply
3894 	 * not log dir index keys that come after the one that was just deleted
3895 	 * and we can end up logging a dir index range that ends at (u64)-1
3896 	 * (@last_offset is initialized to that), resulting in removing dir
3897 	 * entries we should not remove at log replay time.
3898 	 */
3899 search:
3900 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3901 	if (ret > 0) {
3902 		ret = btrfs_next_item(root, path);
3903 		if (ret > 0) {
3904 			/* There are no more keys in the inode's root. */
3905 			ret = 0;
3906 			goto done;
3907 		}
3908 	}
3909 	if (ret < 0)
3910 		goto done;
3911 
3912 	/*
3913 	 * we have a block from this transaction, log every item in it
3914 	 * from our directory
3915 	 */
3916 	while (1) {
3917 		ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3918 					     &last_old_dentry_offset);
3919 		if (ret != 0) {
3920 			if (ret > 0)
3921 				ret = 0;
3922 			goto done;
3923 		}
3924 		path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3925 
3926 		/*
3927 		 * look ahead to the next item and see if it is also
3928 		 * from this directory and from this transaction
3929 		 */
3930 		ret = btrfs_next_leaf(root, path);
3931 		if (ret) {
3932 			if (ret == 1) {
3933 				last_offset = (u64)-1;
3934 				ret = 0;
3935 			}
3936 			goto done;
3937 		}
3938 		btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3939 		if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3940 			last_offset = (u64)-1;
3941 			goto done;
3942 		}
3943 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3944 			/*
3945 			 * The next leaf was not changed in the current transaction
3946 			 * and has at least one dir index key.
3947 			 * We check for the next key because there might have been
3948 			 * one or more deletions between the last key we logged and
3949 			 * that next key. So the key range item we log (key type
3950 			 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3951 			 * offset minus 1, so that those deletes are replayed.
3952 			 */
3953 			last_offset = min_key.offset - 1;
3954 			goto done;
3955 		}
3956 		if (need_resched()) {
3957 			btrfs_release_path(path);
3958 			cond_resched();
3959 			goto search;
3960 		}
3961 	}
3962 done:
3963 	btrfs_release_path(path);
3964 	btrfs_release_path(dst_path);
3965 
3966 	if (ret == 0) {
3967 		*last_offset_ret = last_offset;
3968 		/*
3969 		 * In case the leaf was changed in the current transaction but
3970 		 * all its dir items are from a past transaction, the last item
3971 		 * in the leaf is a dir item and there's no gap between that last
3972 		 * dir item and the first one on the next leaf (which did not
3973 		 * change in the current transaction), then we don't need to log
3974 		 * a range, last_old_dentry_offset is == to last_offset.
3975 		 */
3976 		ASSERT(last_old_dentry_offset <= last_offset);
3977 		if (last_old_dentry_offset < last_offset)
3978 			ret = insert_dir_log_key(trans, log, path, ino,
3979 						 last_old_dentry_offset + 1,
3980 						 last_offset);
3981 	}
3982 
3983 	return ret;
3984 }
3985 
3986 /*
3987  * If the inode was logged before and it was evicted, then its
3988  * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3989  * key offset. If that's the case, search for it and update the inode. This
3990  * is to avoid lookups in the log tree every time we try to insert a dir index
3991  * key from a leaf changed in the current transaction, and to allow us to always
3992  * do batch insertions of dir index keys.
3993  */
3994 static int update_last_dir_index_offset(struct btrfs_inode *inode,
3995 					struct btrfs_path *path,
3996 					const struct btrfs_log_ctx *ctx)
3997 {
3998 	const u64 ino = btrfs_ino(inode);
3999 	struct btrfs_key key;
4000 	int ret;
4001 
4002 	lockdep_assert_held(&inode->log_mutex);
4003 
4004 	if (inode->last_dir_index_offset != (u64)-1)
4005 		return 0;
4006 
4007 	if (!ctx->logged_before) {
4008 		inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4009 		return 0;
4010 	}
4011 
4012 	key.objectid = ino;
4013 	key.type = BTRFS_DIR_INDEX_KEY;
4014 	key.offset = (u64)-1;
4015 
4016 	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
4017 	/*
4018 	 * An error happened or we actually have an index key with an offset
4019 	 * value of (u64)-1. Bail out, we're done.
4020 	 */
4021 	if (ret <= 0)
4022 		goto out;
4023 
4024 	ret = 0;
4025 	inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4026 
4027 	/*
4028 	 * No dir index items, bail out and leave last_dir_index_offset with
4029 	 * the value right before the first valid index value.
4030 	 */
4031 	if (path->slots[0] == 0)
4032 		goto out;
4033 
4034 	/*
4035 	 * btrfs_search_slot() left us at one slot beyond the slot with the last
4036 	 * index key, or beyond the last key of the directory that is not an
4037 	 * index key. If we have an index key before, set last_dir_index_offset
4038 	 * to its offset value, otherwise leave it with a value right before the
4039 	 * first valid index value, as it means we have an empty directory.
4040 	 */
4041 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4042 	if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4043 		inode->last_dir_index_offset = key.offset;
4044 
4045 out:
4046 	btrfs_release_path(path);
4047 
4048 	return ret;
4049 }
4050 
4051 /*
4052  * logging directories is very similar to logging inodes, We find all the items
4053  * from the current transaction and write them to the log.
4054  *
4055  * The recovery code scans the directory in the subvolume, and if it finds a
4056  * key in the range logged that is not present in the log tree, then it means
4057  * that dir entry was unlinked during the transaction.
4058  *
4059  * In order for that scan to work, we must include one key smaller than
4060  * the smallest logged by this transaction and one key larger than the largest
4061  * key logged by this transaction.
4062  */
4063 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4064 			  struct btrfs_inode *inode,
4065 			  struct btrfs_path *path,
4066 			  struct btrfs_path *dst_path,
4067 			  struct btrfs_log_ctx *ctx)
4068 {
4069 	u64 min_key;
4070 	u64 max_key;
4071 	int ret;
4072 
4073 	ret = update_last_dir_index_offset(inode, path, ctx);
4074 	if (ret)
4075 		return ret;
4076 
4077 	min_key = BTRFS_DIR_START_INDEX;
4078 	max_key = 0;
4079 
4080 	while (1) {
4081 		ret = log_dir_items(trans, inode, path, dst_path,
4082 				ctx, min_key, &max_key);
4083 		if (ret)
4084 			return ret;
4085 		if (max_key == (u64)-1)
4086 			break;
4087 		min_key = max_key + 1;
4088 	}
4089 
4090 	return 0;
4091 }
4092 
4093 /*
4094  * a helper function to drop items from the log before we relog an
4095  * inode.  max_key_type indicates the highest item type to remove.
4096  * This cannot be run for file data extents because it does not
4097  * free the extents they point to.
4098  */
4099 static int drop_inode_items(struct btrfs_trans_handle *trans,
4100 				  struct btrfs_root *log,
4101 				  struct btrfs_path *path,
4102 				  struct btrfs_inode *inode,
4103 				  int max_key_type)
4104 {
4105 	int ret;
4106 	struct btrfs_key key;
4107 	struct btrfs_key found_key;
4108 	int start_slot;
4109 
4110 	key.objectid = btrfs_ino(inode);
4111 	key.type = max_key_type;
4112 	key.offset = (u64)-1;
4113 
4114 	while (1) {
4115 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4116 		if (ret < 0) {
4117 			break;
4118 		} else if (ret > 0) {
4119 			if (path->slots[0] == 0)
4120 				break;
4121 			path->slots[0]--;
4122 		}
4123 
4124 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4125 				      path->slots[0]);
4126 
4127 		if (found_key.objectid != key.objectid)
4128 			break;
4129 
4130 		found_key.offset = 0;
4131 		found_key.type = 0;
4132 		ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
4133 		if (ret < 0)
4134 			break;
4135 
4136 		ret = btrfs_del_items(trans, log, path, start_slot,
4137 				      path->slots[0] - start_slot + 1);
4138 		/*
4139 		 * If start slot isn't 0 then we don't need to re-search, we've
4140 		 * found the last guy with the objectid in this tree.
4141 		 */
4142 		if (ret || start_slot != 0)
4143 			break;
4144 		btrfs_release_path(path);
4145 	}
4146 	btrfs_release_path(path);
4147 	if (ret > 0)
4148 		ret = 0;
4149 	return ret;
4150 }
4151 
4152 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4153 				struct btrfs_root *log_root,
4154 				struct btrfs_inode *inode,
4155 				u64 new_size, u32 min_type)
4156 {
4157 	struct btrfs_truncate_control control = {
4158 		.new_size = new_size,
4159 		.ino = btrfs_ino(inode),
4160 		.min_type = min_type,
4161 		.skip_ref_updates = true,
4162 	};
4163 
4164 	return btrfs_truncate_inode_items(trans, log_root, &control);
4165 }
4166 
4167 static void fill_inode_item(struct btrfs_trans_handle *trans,
4168 			    struct extent_buffer *leaf,
4169 			    struct btrfs_inode_item *item,
4170 			    struct inode *inode, int log_inode_only,
4171 			    u64 logged_isize)
4172 {
4173 	struct btrfs_map_token token;
4174 	u64 flags;
4175 
4176 	btrfs_init_map_token(&token, leaf);
4177 
4178 	if (log_inode_only) {
4179 		/* set the generation to zero so the recover code
4180 		 * can tell the difference between an logging
4181 		 * just to say 'this inode exists' and a logging
4182 		 * to say 'update this inode with these values'
4183 		 */
4184 		btrfs_set_token_inode_generation(&token, item, 0);
4185 		btrfs_set_token_inode_size(&token, item, logged_isize);
4186 	} else {
4187 		btrfs_set_token_inode_generation(&token, item,
4188 						 BTRFS_I(inode)->generation);
4189 		btrfs_set_token_inode_size(&token, item, inode->i_size);
4190 	}
4191 
4192 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4193 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4194 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4195 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4196 
4197 	btrfs_set_token_timespec_sec(&token, &item->atime,
4198 				     inode_get_atime_sec(inode));
4199 	btrfs_set_token_timespec_nsec(&token, &item->atime,
4200 				      inode_get_atime_nsec(inode));
4201 
4202 	btrfs_set_token_timespec_sec(&token, &item->mtime,
4203 				     inode_get_mtime_sec(inode));
4204 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4205 				      inode_get_mtime_nsec(inode));
4206 
4207 	btrfs_set_token_timespec_sec(&token, &item->ctime,
4208 				     inode_get_ctime_sec(inode));
4209 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4210 				      inode_get_ctime_nsec(inode));
4211 
4212 	/*
4213 	 * We do not need to set the nbytes field, in fact during a fast fsync
4214 	 * its value may not even be correct, since a fast fsync does not wait
4215 	 * for ordered extent completion, which is where we update nbytes, it
4216 	 * only waits for writeback to complete. During log replay as we find
4217 	 * file extent items and replay them, we adjust the nbytes field of the
4218 	 * inode item in subvolume tree as needed (see overwrite_item()).
4219 	 */
4220 
4221 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4222 	btrfs_set_token_inode_transid(&token, item, trans->transid);
4223 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4224 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4225 					  BTRFS_I(inode)->ro_flags);
4226 	btrfs_set_token_inode_flags(&token, item, flags);
4227 	btrfs_set_token_inode_block_group(&token, item, 0);
4228 }
4229 
4230 static int log_inode_item(struct btrfs_trans_handle *trans,
4231 			  struct btrfs_root *log, struct btrfs_path *path,
4232 			  struct btrfs_inode *inode, bool inode_item_dropped)
4233 {
4234 	struct btrfs_inode_item *inode_item;
4235 	int ret;
4236 
4237 	/*
4238 	 * If we are doing a fast fsync and the inode was logged before in the
4239 	 * current transaction, then we know the inode was previously logged and
4240 	 * it exists in the log tree. For performance reasons, in this case use
4241 	 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4242 	 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4243 	 * contention in case there are concurrent fsyncs for other inodes of the
4244 	 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4245 	 * already exists can also result in unnecessarily splitting a leaf.
4246 	 */
4247 	if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4248 		ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4249 		ASSERT(ret <= 0);
4250 		if (ret > 0)
4251 			ret = -ENOENT;
4252 	} else {
4253 		/*
4254 		 * This means it is the first fsync in the current transaction,
4255 		 * so the inode item is not in the log and we need to insert it.
4256 		 * We can never get -EEXIST because we are only called for a fast
4257 		 * fsync and in case an inode eviction happens after the inode was
4258 		 * logged before in the current transaction, when we load again
4259 		 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4260 		 * flags and set ->logged_trans to 0.
4261 		 */
4262 		ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4263 					      sizeof(*inode_item));
4264 		ASSERT(ret != -EEXIST);
4265 	}
4266 	if (ret)
4267 		return ret;
4268 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4269 				    struct btrfs_inode_item);
4270 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4271 			0, 0);
4272 	btrfs_release_path(path);
4273 	return 0;
4274 }
4275 
4276 static int log_csums(struct btrfs_trans_handle *trans,
4277 		     struct btrfs_inode *inode,
4278 		     struct btrfs_root *log_root,
4279 		     struct btrfs_ordered_sum *sums)
4280 {
4281 	const u64 lock_end = sums->logical + sums->len - 1;
4282 	struct extent_state *cached_state = NULL;
4283 	int ret;
4284 
4285 	/*
4286 	 * If this inode was not used for reflink operations in the current
4287 	 * transaction with new extents, then do the fast path, no need to
4288 	 * worry about logging checksum items with overlapping ranges.
4289 	 */
4290 	if (inode->last_reflink_trans < trans->transid)
4291 		return btrfs_csum_file_blocks(trans, log_root, sums);
4292 
4293 	/*
4294 	 * Serialize logging for checksums. This is to avoid racing with the
4295 	 * same checksum being logged by another task that is logging another
4296 	 * file which happens to refer to the same extent as well. Such races
4297 	 * can leave checksum items in the log with overlapping ranges.
4298 	 */
4299 	ret = lock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4300 			  &cached_state);
4301 	if (ret)
4302 		return ret;
4303 	/*
4304 	 * Due to extent cloning, we might have logged a csum item that covers a
4305 	 * subrange of a cloned extent, and later we can end up logging a csum
4306 	 * item for a larger subrange of the same extent or the entire range.
4307 	 * This would leave csum items in the log tree that cover the same range
4308 	 * and break the searches for checksums in the log tree, resulting in
4309 	 * some checksums missing in the fs/subvolume tree. So just delete (or
4310 	 * trim and adjust) any existing csum items in the log for this range.
4311 	 */
4312 	ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len);
4313 	if (!ret)
4314 		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4315 
4316 	unlock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4317 		      &cached_state);
4318 
4319 	return ret;
4320 }
4321 
4322 static noinline int copy_items(struct btrfs_trans_handle *trans,
4323 			       struct btrfs_inode *inode,
4324 			       struct btrfs_path *dst_path,
4325 			       struct btrfs_path *src_path,
4326 			       int start_slot, int nr, int inode_only,
4327 			       u64 logged_isize, struct btrfs_log_ctx *ctx)
4328 {
4329 	struct btrfs_root *log = inode->root->log_root;
4330 	struct btrfs_file_extent_item *extent;
4331 	struct extent_buffer *src;
4332 	int ret;
4333 	struct btrfs_key *ins_keys;
4334 	u32 *ins_sizes;
4335 	struct btrfs_item_batch batch;
4336 	char *ins_data;
4337 	int dst_index;
4338 	const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4339 	const u64 i_size = i_size_read(&inode->vfs_inode);
4340 
4341 	/*
4342 	 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4343 	 * use the clone. This is because otherwise we would be changing the log
4344 	 * tree, to insert items from the subvolume tree or insert csum items,
4345 	 * while holding a read lock on a leaf from the subvolume tree, which
4346 	 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4347 	 *
4348 	 * 1) Modifying the log tree triggers an extent buffer allocation while
4349 	 *    holding a write lock on a parent extent buffer from the log tree.
4350 	 *    Allocating the pages for an extent buffer, or the extent buffer
4351 	 *    struct, can trigger inode eviction and finally the inode eviction
4352 	 *    will trigger a release/remove of a delayed node, which requires
4353 	 *    taking the delayed node's mutex;
4354 	 *
4355 	 * 2) Allocating a metadata extent for a log tree can trigger the async
4356 	 *    reclaim thread and make us wait for it to release enough space and
4357 	 *    unblock our reservation ticket. The reclaim thread can start
4358 	 *    flushing delayed items, and that in turn results in the need to
4359 	 *    lock delayed node mutexes and in the need to write lock extent
4360 	 *    buffers of a subvolume tree - all this while holding a write lock
4361 	 *    on the parent extent buffer in the log tree.
4362 	 *
4363 	 * So one task in scenario 1) running in parallel with another task in
4364 	 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4365 	 * node mutex while having a read lock on a leaf from the subvolume,
4366 	 * while the other is holding the delayed node's mutex and wants to
4367 	 * write lock the same subvolume leaf for flushing delayed items.
4368 	 */
4369 	ret = clone_leaf(src_path, ctx);
4370 	if (ret < 0)
4371 		return ret;
4372 
4373 	src = src_path->nodes[0];
4374 
4375 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4376 			   nr * sizeof(u32), GFP_NOFS);
4377 	if (!ins_data)
4378 		return -ENOMEM;
4379 
4380 	ins_sizes = (u32 *)ins_data;
4381 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4382 	batch.keys = ins_keys;
4383 	batch.data_sizes = ins_sizes;
4384 	batch.total_data_size = 0;
4385 	batch.nr = 0;
4386 
4387 	dst_index = 0;
4388 	for (int i = 0; i < nr; i++) {
4389 		const int src_slot = start_slot + i;
4390 		struct btrfs_root *csum_root;
4391 		struct btrfs_ordered_sum *sums;
4392 		struct btrfs_ordered_sum *sums_next;
4393 		LIST_HEAD(ordered_sums);
4394 		u64 disk_bytenr;
4395 		u64 disk_num_bytes;
4396 		u64 extent_offset;
4397 		u64 extent_num_bytes;
4398 		bool is_old_extent;
4399 
4400 		btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4401 
4402 		if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4403 			goto add_to_batch;
4404 
4405 		extent = btrfs_item_ptr(src, src_slot,
4406 					struct btrfs_file_extent_item);
4407 
4408 		is_old_extent = (btrfs_file_extent_generation(src, extent) <
4409 				 trans->transid);
4410 
4411 		/*
4412 		 * Don't copy extents from past generations. That would make us
4413 		 * log a lot more metadata for common cases like doing only a
4414 		 * few random writes into a file and then fsync it for the first
4415 		 * time or after the full sync flag is set on the inode. We can
4416 		 * get leaves full of extent items, most of which are from past
4417 		 * generations, so we can skip them - as long as the inode has
4418 		 * not been the target of a reflink operation in this transaction,
4419 		 * as in that case it might have had file extent items with old
4420 		 * generations copied into it. We also must always log prealloc
4421 		 * extents that start at or beyond eof, otherwise we would lose
4422 		 * them on log replay.
4423 		 */
4424 		if (is_old_extent &&
4425 		    ins_keys[dst_index].offset < i_size &&
4426 		    inode->last_reflink_trans < trans->transid)
4427 			continue;
4428 
4429 		if (skip_csum)
4430 			goto add_to_batch;
4431 
4432 		/* Only regular extents have checksums. */
4433 		if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4434 			goto add_to_batch;
4435 
4436 		/*
4437 		 * If it's an extent created in a past transaction, then its
4438 		 * checksums are already accessible from the committed csum tree,
4439 		 * no need to log them.
4440 		 */
4441 		if (is_old_extent)
4442 			goto add_to_batch;
4443 
4444 		disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4445 		/* If it's an explicit hole, there are no checksums. */
4446 		if (disk_bytenr == 0)
4447 			goto add_to_batch;
4448 
4449 		disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4450 
4451 		if (btrfs_file_extent_compression(src, extent)) {
4452 			extent_offset = 0;
4453 			extent_num_bytes = disk_num_bytes;
4454 		} else {
4455 			extent_offset = btrfs_file_extent_offset(src, extent);
4456 			extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4457 		}
4458 
4459 		csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4460 		disk_bytenr += extent_offset;
4461 		ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4462 					      disk_bytenr + extent_num_bytes - 1,
4463 					      &ordered_sums, 0, false);
4464 		if (ret)
4465 			goto out;
4466 
4467 		list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4468 			if (!ret)
4469 				ret = log_csums(trans, inode, log, sums);
4470 			list_del(&sums->list);
4471 			kfree(sums);
4472 		}
4473 		if (ret)
4474 			goto out;
4475 
4476 add_to_batch:
4477 		ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4478 		batch.total_data_size += ins_sizes[dst_index];
4479 		batch.nr++;
4480 		dst_index++;
4481 	}
4482 
4483 	/*
4484 	 * We have a leaf full of old extent items that don't need to be logged,
4485 	 * so we don't need to do anything.
4486 	 */
4487 	if (batch.nr == 0)
4488 		goto out;
4489 
4490 	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4491 	if (ret)
4492 		goto out;
4493 
4494 	dst_index = 0;
4495 	for (int i = 0; i < nr; i++) {
4496 		const int src_slot = start_slot + i;
4497 		const int dst_slot = dst_path->slots[0] + dst_index;
4498 		struct btrfs_key key;
4499 		unsigned long src_offset;
4500 		unsigned long dst_offset;
4501 
4502 		/*
4503 		 * We're done, all the remaining items in the source leaf
4504 		 * correspond to old file extent items.
4505 		 */
4506 		if (dst_index >= batch.nr)
4507 			break;
4508 
4509 		btrfs_item_key_to_cpu(src, &key, src_slot);
4510 
4511 		if (key.type != BTRFS_EXTENT_DATA_KEY)
4512 			goto copy_item;
4513 
4514 		extent = btrfs_item_ptr(src, src_slot,
4515 					struct btrfs_file_extent_item);
4516 
4517 		/* See the comment in the previous loop, same logic. */
4518 		if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4519 		    key.offset < i_size &&
4520 		    inode->last_reflink_trans < trans->transid)
4521 			continue;
4522 
4523 copy_item:
4524 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4525 		src_offset = btrfs_item_ptr_offset(src, src_slot);
4526 
4527 		if (key.type == BTRFS_INODE_ITEM_KEY) {
4528 			struct btrfs_inode_item *inode_item;
4529 
4530 			inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4531 						    struct btrfs_inode_item);
4532 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4533 					&inode->vfs_inode,
4534 					inode_only == LOG_INODE_EXISTS,
4535 					logged_isize);
4536 		} else {
4537 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4538 					   src_offset, ins_sizes[dst_index]);
4539 		}
4540 
4541 		dst_index++;
4542 	}
4543 
4544 	btrfs_mark_buffer_dirty(trans, dst_path->nodes[0]);
4545 	btrfs_release_path(dst_path);
4546 out:
4547 	kfree(ins_data);
4548 
4549 	return ret;
4550 }
4551 
4552 static int extent_cmp(void *priv, const struct list_head *a,
4553 		      const struct list_head *b)
4554 {
4555 	const struct extent_map *em1, *em2;
4556 
4557 	em1 = list_entry(a, struct extent_map, list);
4558 	em2 = list_entry(b, struct extent_map, list);
4559 
4560 	if (em1->start < em2->start)
4561 		return -1;
4562 	else if (em1->start > em2->start)
4563 		return 1;
4564 	return 0;
4565 }
4566 
4567 static int log_extent_csums(struct btrfs_trans_handle *trans,
4568 			    struct btrfs_inode *inode,
4569 			    struct btrfs_root *log_root,
4570 			    const struct extent_map *em,
4571 			    struct btrfs_log_ctx *ctx)
4572 {
4573 	struct btrfs_ordered_extent *ordered;
4574 	struct btrfs_root *csum_root;
4575 	u64 csum_offset;
4576 	u64 csum_len;
4577 	u64 mod_start = em->mod_start;
4578 	u64 mod_len = em->mod_len;
4579 	LIST_HEAD(ordered_sums);
4580 	int ret = 0;
4581 
4582 	if (inode->flags & BTRFS_INODE_NODATASUM ||
4583 	    (em->flags & EXTENT_FLAG_PREALLOC) ||
4584 	    em->block_start == EXTENT_MAP_HOLE)
4585 		return 0;
4586 
4587 	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4588 		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4589 		const u64 mod_end = mod_start + mod_len;
4590 		struct btrfs_ordered_sum *sums;
4591 
4592 		if (mod_len == 0)
4593 			break;
4594 
4595 		if (ordered_end <= mod_start)
4596 			continue;
4597 		if (mod_end <= ordered->file_offset)
4598 			break;
4599 
4600 		/*
4601 		 * We are going to copy all the csums on this ordered extent, so
4602 		 * go ahead and adjust mod_start and mod_len in case this ordered
4603 		 * extent has already been logged.
4604 		 */
4605 		if (ordered->file_offset > mod_start) {
4606 			if (ordered_end >= mod_end)
4607 				mod_len = ordered->file_offset - mod_start;
4608 			/*
4609 			 * If we have this case
4610 			 *
4611 			 * |--------- logged extent ---------|
4612 			 *       |----- ordered extent ----|
4613 			 *
4614 			 * Just don't mess with mod_start and mod_len, we'll
4615 			 * just end up logging more csums than we need and it
4616 			 * will be ok.
4617 			 */
4618 		} else {
4619 			if (ordered_end < mod_end) {
4620 				mod_len = mod_end - ordered_end;
4621 				mod_start = ordered_end;
4622 			} else {
4623 				mod_len = 0;
4624 			}
4625 		}
4626 
4627 		/*
4628 		 * To keep us from looping for the above case of an ordered
4629 		 * extent that falls inside of the logged extent.
4630 		 */
4631 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4632 			continue;
4633 
4634 		list_for_each_entry(sums, &ordered->list, list) {
4635 			ret = log_csums(trans, inode, log_root, sums);
4636 			if (ret)
4637 				return ret;
4638 		}
4639 	}
4640 
4641 	/* We're done, found all csums in the ordered extents. */
4642 	if (mod_len == 0)
4643 		return 0;
4644 
4645 	/* If we're compressed we have to save the entire range of csums. */
4646 	if (extent_map_is_compressed(em)) {
4647 		csum_offset = 0;
4648 		csum_len = max(em->block_len, em->orig_block_len);
4649 	} else {
4650 		csum_offset = mod_start - em->start;
4651 		csum_len = mod_len;
4652 	}
4653 
4654 	/* block start is already adjusted for the file extent offset. */
4655 	csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4656 	ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset,
4657 				      em->block_start + csum_offset +
4658 				      csum_len - 1, &ordered_sums, 0, false);
4659 	if (ret)
4660 		return ret;
4661 
4662 	while (!list_empty(&ordered_sums)) {
4663 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4664 						   struct btrfs_ordered_sum,
4665 						   list);
4666 		if (!ret)
4667 			ret = log_csums(trans, inode, log_root, sums);
4668 		list_del(&sums->list);
4669 		kfree(sums);
4670 	}
4671 
4672 	return ret;
4673 }
4674 
4675 static int log_one_extent(struct btrfs_trans_handle *trans,
4676 			  struct btrfs_inode *inode,
4677 			  const struct extent_map *em,
4678 			  struct btrfs_path *path,
4679 			  struct btrfs_log_ctx *ctx)
4680 {
4681 	struct btrfs_drop_extents_args drop_args = { 0 };
4682 	struct btrfs_root *log = inode->root->log_root;
4683 	struct btrfs_file_extent_item fi = { 0 };
4684 	struct extent_buffer *leaf;
4685 	struct btrfs_key key;
4686 	enum btrfs_compression_type compress_type;
4687 	u64 extent_offset = em->start - em->orig_start;
4688 	u64 block_len;
4689 	int ret;
4690 
4691 	btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4692 	if (em->flags & EXTENT_FLAG_PREALLOC)
4693 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4694 	else
4695 		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4696 
4697 	block_len = max(em->block_len, em->orig_block_len);
4698 	compress_type = extent_map_compression(em);
4699 	if (compress_type != BTRFS_COMPRESS_NONE) {
4700 		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4701 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4702 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4703 		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4704 							extent_offset);
4705 		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4706 	}
4707 
4708 	btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4709 	btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4710 	btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4711 	btrfs_set_stack_file_extent_compression(&fi, compress_type);
4712 
4713 	ret = log_extent_csums(trans, inode, log, em, ctx);
4714 	if (ret)
4715 		return ret;
4716 
4717 	/*
4718 	 * If this is the first time we are logging the inode in the current
4719 	 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4720 	 * because it does a deletion search, which always acquires write locks
4721 	 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4722 	 * but also adds significant contention in a log tree, since log trees
4723 	 * are small, with a root at level 2 or 3 at most, due to their short
4724 	 * life span.
4725 	 */
4726 	if (ctx->logged_before) {
4727 		drop_args.path = path;
4728 		drop_args.start = em->start;
4729 		drop_args.end = em->start + em->len;
4730 		drop_args.replace_extent = true;
4731 		drop_args.extent_item_size = sizeof(fi);
4732 		ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4733 		if (ret)
4734 			return ret;
4735 	}
4736 
4737 	if (!drop_args.extent_inserted) {
4738 		key.objectid = btrfs_ino(inode);
4739 		key.type = BTRFS_EXTENT_DATA_KEY;
4740 		key.offset = em->start;
4741 
4742 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4743 					      sizeof(fi));
4744 		if (ret)
4745 			return ret;
4746 	}
4747 	leaf = path->nodes[0];
4748 	write_extent_buffer(leaf, &fi,
4749 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4750 			    sizeof(fi));
4751 	btrfs_mark_buffer_dirty(trans, leaf);
4752 
4753 	btrfs_release_path(path);
4754 
4755 	return ret;
4756 }
4757 
4758 /*
4759  * Log all prealloc extents beyond the inode's i_size to make sure we do not
4760  * lose them after doing a full/fast fsync and replaying the log. We scan the
4761  * subvolume's root instead of iterating the inode's extent map tree because
4762  * otherwise we can log incorrect extent items based on extent map conversion.
4763  * That can happen due to the fact that extent maps are merged when they
4764  * are not in the extent map tree's list of modified extents.
4765  */
4766 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4767 				      struct btrfs_inode *inode,
4768 				      struct btrfs_path *path,
4769 				      struct btrfs_log_ctx *ctx)
4770 {
4771 	struct btrfs_root *root = inode->root;
4772 	struct btrfs_key key;
4773 	const u64 i_size = i_size_read(&inode->vfs_inode);
4774 	const u64 ino = btrfs_ino(inode);
4775 	struct btrfs_path *dst_path = NULL;
4776 	bool dropped_extents = false;
4777 	u64 truncate_offset = i_size;
4778 	struct extent_buffer *leaf;
4779 	int slot;
4780 	int ins_nr = 0;
4781 	int start_slot = 0;
4782 	int ret;
4783 
4784 	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4785 		return 0;
4786 
4787 	key.objectid = ino;
4788 	key.type = BTRFS_EXTENT_DATA_KEY;
4789 	key.offset = i_size;
4790 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4791 	if (ret < 0)
4792 		goto out;
4793 
4794 	/*
4795 	 * We must check if there is a prealloc extent that starts before the
4796 	 * i_size and crosses the i_size boundary. This is to ensure later we
4797 	 * truncate down to the end of that extent and not to the i_size, as
4798 	 * otherwise we end up losing part of the prealloc extent after a log
4799 	 * replay and with an implicit hole if there is another prealloc extent
4800 	 * that starts at an offset beyond i_size.
4801 	 */
4802 	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4803 	if (ret < 0)
4804 		goto out;
4805 
4806 	if (ret == 0) {
4807 		struct btrfs_file_extent_item *ei;
4808 
4809 		leaf = path->nodes[0];
4810 		slot = path->slots[0];
4811 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4812 
4813 		if (btrfs_file_extent_type(leaf, ei) ==
4814 		    BTRFS_FILE_EXTENT_PREALLOC) {
4815 			u64 extent_end;
4816 
4817 			btrfs_item_key_to_cpu(leaf, &key, slot);
4818 			extent_end = key.offset +
4819 				btrfs_file_extent_num_bytes(leaf, ei);
4820 
4821 			if (extent_end > i_size)
4822 				truncate_offset = extent_end;
4823 		}
4824 	} else {
4825 		ret = 0;
4826 	}
4827 
4828 	while (true) {
4829 		leaf = path->nodes[0];
4830 		slot = path->slots[0];
4831 
4832 		if (slot >= btrfs_header_nritems(leaf)) {
4833 			if (ins_nr > 0) {
4834 				ret = copy_items(trans, inode, dst_path, path,
4835 						 start_slot, ins_nr, 1, 0, ctx);
4836 				if (ret < 0)
4837 					goto out;
4838 				ins_nr = 0;
4839 			}
4840 			ret = btrfs_next_leaf(root, path);
4841 			if (ret < 0)
4842 				goto out;
4843 			if (ret > 0) {
4844 				ret = 0;
4845 				break;
4846 			}
4847 			continue;
4848 		}
4849 
4850 		btrfs_item_key_to_cpu(leaf, &key, slot);
4851 		if (key.objectid > ino)
4852 			break;
4853 		if (WARN_ON_ONCE(key.objectid < ino) ||
4854 		    key.type < BTRFS_EXTENT_DATA_KEY ||
4855 		    key.offset < i_size) {
4856 			path->slots[0]++;
4857 			continue;
4858 		}
4859 		if (!dropped_extents) {
4860 			/*
4861 			 * Avoid logging extent items logged in past fsync calls
4862 			 * and leading to duplicate keys in the log tree.
4863 			 */
4864 			ret = truncate_inode_items(trans, root->log_root, inode,
4865 						   truncate_offset,
4866 						   BTRFS_EXTENT_DATA_KEY);
4867 			if (ret)
4868 				goto out;
4869 			dropped_extents = true;
4870 		}
4871 		if (ins_nr == 0)
4872 			start_slot = slot;
4873 		ins_nr++;
4874 		path->slots[0]++;
4875 		if (!dst_path) {
4876 			dst_path = btrfs_alloc_path();
4877 			if (!dst_path) {
4878 				ret = -ENOMEM;
4879 				goto out;
4880 			}
4881 		}
4882 	}
4883 	if (ins_nr > 0)
4884 		ret = copy_items(trans, inode, dst_path, path,
4885 				 start_slot, ins_nr, 1, 0, ctx);
4886 out:
4887 	btrfs_release_path(path);
4888 	btrfs_free_path(dst_path);
4889 	return ret;
4890 }
4891 
4892 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4893 				     struct btrfs_inode *inode,
4894 				     struct btrfs_path *path,
4895 				     struct btrfs_log_ctx *ctx)
4896 {
4897 	struct btrfs_ordered_extent *ordered;
4898 	struct btrfs_ordered_extent *tmp;
4899 	struct extent_map *em, *n;
4900 	LIST_HEAD(extents);
4901 	struct extent_map_tree *tree = &inode->extent_tree;
4902 	int ret = 0;
4903 	int num = 0;
4904 
4905 	write_lock(&tree->lock);
4906 
4907 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4908 		list_del_init(&em->list);
4909 		/*
4910 		 * Just an arbitrary number, this can be really CPU intensive
4911 		 * once we start getting a lot of extents, and really once we
4912 		 * have a bunch of extents we just want to commit since it will
4913 		 * be faster.
4914 		 */
4915 		if (++num > 32768) {
4916 			list_del_init(&tree->modified_extents);
4917 			ret = -EFBIG;
4918 			goto process;
4919 		}
4920 
4921 		if (em->generation < trans->transid)
4922 			continue;
4923 
4924 		/* We log prealloc extents beyond eof later. */
4925 		if ((em->flags & EXTENT_FLAG_PREALLOC) &&
4926 		    em->start >= i_size_read(&inode->vfs_inode))
4927 			continue;
4928 
4929 		/* Need a ref to keep it from getting evicted from cache */
4930 		refcount_inc(&em->refs);
4931 		em->flags |= EXTENT_FLAG_LOGGING;
4932 		list_add_tail(&em->list, &extents);
4933 		num++;
4934 	}
4935 
4936 	list_sort(NULL, &extents, extent_cmp);
4937 process:
4938 	while (!list_empty(&extents)) {
4939 		em = list_entry(extents.next, struct extent_map, list);
4940 
4941 		list_del_init(&em->list);
4942 
4943 		/*
4944 		 * If we had an error we just need to delete everybody from our
4945 		 * private list.
4946 		 */
4947 		if (ret) {
4948 			clear_em_logging(tree, em);
4949 			free_extent_map(em);
4950 			continue;
4951 		}
4952 
4953 		write_unlock(&tree->lock);
4954 
4955 		ret = log_one_extent(trans, inode, em, path, ctx);
4956 		write_lock(&tree->lock);
4957 		clear_em_logging(tree, em);
4958 		free_extent_map(em);
4959 	}
4960 	WARN_ON(!list_empty(&extents));
4961 	write_unlock(&tree->lock);
4962 
4963 	if (!ret)
4964 		ret = btrfs_log_prealloc_extents(trans, inode, path, ctx);
4965 	if (ret)
4966 		return ret;
4967 
4968 	/*
4969 	 * We have logged all extents successfully, now make sure the commit of
4970 	 * the current transaction waits for the ordered extents to complete
4971 	 * before it commits and wipes out the log trees, otherwise we would
4972 	 * lose data if an ordered extents completes after the transaction
4973 	 * commits and a power failure happens after the transaction commit.
4974 	 */
4975 	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4976 		list_del_init(&ordered->log_list);
4977 		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4978 
4979 		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4980 			spin_lock_irq(&inode->ordered_tree_lock);
4981 			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4982 				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4983 				atomic_inc(&trans->transaction->pending_ordered);
4984 			}
4985 			spin_unlock_irq(&inode->ordered_tree_lock);
4986 		}
4987 		btrfs_put_ordered_extent(ordered);
4988 	}
4989 
4990 	return 0;
4991 }
4992 
4993 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4994 			     struct btrfs_path *path, u64 *size_ret)
4995 {
4996 	struct btrfs_key key;
4997 	int ret;
4998 
4999 	key.objectid = btrfs_ino(inode);
5000 	key.type = BTRFS_INODE_ITEM_KEY;
5001 	key.offset = 0;
5002 
5003 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
5004 	if (ret < 0) {
5005 		return ret;
5006 	} else if (ret > 0) {
5007 		*size_ret = 0;
5008 	} else {
5009 		struct btrfs_inode_item *item;
5010 
5011 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5012 				      struct btrfs_inode_item);
5013 		*size_ret = btrfs_inode_size(path->nodes[0], item);
5014 		/*
5015 		 * If the in-memory inode's i_size is smaller then the inode
5016 		 * size stored in the btree, return the inode's i_size, so
5017 		 * that we get a correct inode size after replaying the log
5018 		 * when before a power failure we had a shrinking truncate
5019 		 * followed by addition of a new name (rename / new hard link).
5020 		 * Otherwise return the inode size from the btree, to avoid
5021 		 * data loss when replaying a log due to previously doing a
5022 		 * write that expands the inode's size and logging a new name
5023 		 * immediately after.
5024 		 */
5025 		if (*size_ret > inode->vfs_inode.i_size)
5026 			*size_ret = inode->vfs_inode.i_size;
5027 	}
5028 
5029 	btrfs_release_path(path);
5030 	return 0;
5031 }
5032 
5033 /*
5034  * At the moment we always log all xattrs. This is to figure out at log replay
5035  * time which xattrs must have their deletion replayed. If a xattr is missing
5036  * in the log tree and exists in the fs/subvol tree, we delete it. This is
5037  * because if a xattr is deleted, the inode is fsynced and a power failure
5038  * happens, causing the log to be replayed the next time the fs is mounted,
5039  * we want the xattr to not exist anymore (same behaviour as other filesystems
5040  * with a journal, ext3/4, xfs, f2fs, etc).
5041  */
5042 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5043 				struct btrfs_inode *inode,
5044 				struct btrfs_path *path,
5045 				struct btrfs_path *dst_path,
5046 				struct btrfs_log_ctx *ctx)
5047 {
5048 	struct btrfs_root *root = inode->root;
5049 	int ret;
5050 	struct btrfs_key key;
5051 	const u64 ino = btrfs_ino(inode);
5052 	int ins_nr = 0;
5053 	int start_slot = 0;
5054 	bool found_xattrs = false;
5055 
5056 	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5057 		return 0;
5058 
5059 	key.objectid = ino;
5060 	key.type = BTRFS_XATTR_ITEM_KEY;
5061 	key.offset = 0;
5062 
5063 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5064 	if (ret < 0)
5065 		return ret;
5066 
5067 	while (true) {
5068 		int slot = path->slots[0];
5069 		struct extent_buffer *leaf = path->nodes[0];
5070 		int nritems = btrfs_header_nritems(leaf);
5071 
5072 		if (slot >= nritems) {
5073 			if (ins_nr > 0) {
5074 				ret = copy_items(trans, inode, dst_path, path,
5075 						 start_slot, ins_nr, 1, 0, ctx);
5076 				if (ret < 0)
5077 					return ret;
5078 				ins_nr = 0;
5079 			}
5080 			ret = btrfs_next_leaf(root, path);
5081 			if (ret < 0)
5082 				return ret;
5083 			else if (ret > 0)
5084 				break;
5085 			continue;
5086 		}
5087 
5088 		btrfs_item_key_to_cpu(leaf, &key, slot);
5089 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5090 			break;
5091 
5092 		if (ins_nr == 0)
5093 			start_slot = slot;
5094 		ins_nr++;
5095 		path->slots[0]++;
5096 		found_xattrs = true;
5097 		cond_resched();
5098 	}
5099 	if (ins_nr > 0) {
5100 		ret = copy_items(trans, inode, dst_path, path,
5101 				 start_slot, ins_nr, 1, 0, ctx);
5102 		if (ret < 0)
5103 			return ret;
5104 	}
5105 
5106 	if (!found_xattrs)
5107 		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5108 
5109 	return 0;
5110 }
5111 
5112 /*
5113  * When using the NO_HOLES feature if we punched a hole that causes the
5114  * deletion of entire leafs or all the extent items of the first leaf (the one
5115  * that contains the inode item and references) we may end up not processing
5116  * any extents, because there are no leafs with a generation matching the
5117  * current transaction that have extent items for our inode. So we need to find
5118  * if any holes exist and then log them. We also need to log holes after any
5119  * truncate operation that changes the inode's size.
5120  */
5121 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5122 			   struct btrfs_inode *inode,
5123 			   struct btrfs_path *path)
5124 {
5125 	struct btrfs_root *root = inode->root;
5126 	struct btrfs_fs_info *fs_info = root->fs_info;
5127 	struct btrfs_key key;
5128 	const u64 ino = btrfs_ino(inode);
5129 	const u64 i_size = i_size_read(&inode->vfs_inode);
5130 	u64 prev_extent_end = 0;
5131 	int ret;
5132 
5133 	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5134 		return 0;
5135 
5136 	key.objectid = ino;
5137 	key.type = BTRFS_EXTENT_DATA_KEY;
5138 	key.offset = 0;
5139 
5140 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5141 	if (ret < 0)
5142 		return ret;
5143 
5144 	while (true) {
5145 		struct extent_buffer *leaf = path->nodes[0];
5146 
5147 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5148 			ret = btrfs_next_leaf(root, path);
5149 			if (ret < 0)
5150 				return ret;
5151 			if (ret > 0) {
5152 				ret = 0;
5153 				break;
5154 			}
5155 			leaf = path->nodes[0];
5156 		}
5157 
5158 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5159 		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5160 			break;
5161 
5162 		/* We have a hole, log it. */
5163 		if (prev_extent_end < key.offset) {
5164 			const u64 hole_len = key.offset - prev_extent_end;
5165 
5166 			/*
5167 			 * Release the path to avoid deadlocks with other code
5168 			 * paths that search the root while holding locks on
5169 			 * leafs from the log root.
5170 			 */
5171 			btrfs_release_path(path);
5172 			ret = btrfs_insert_hole_extent(trans, root->log_root,
5173 						       ino, prev_extent_end,
5174 						       hole_len);
5175 			if (ret < 0)
5176 				return ret;
5177 
5178 			/*
5179 			 * Search for the same key again in the root. Since it's
5180 			 * an extent item and we are holding the inode lock, the
5181 			 * key must still exist. If it doesn't just emit warning
5182 			 * and return an error to fall back to a transaction
5183 			 * commit.
5184 			 */
5185 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5186 			if (ret < 0)
5187 				return ret;
5188 			if (WARN_ON(ret > 0))
5189 				return -ENOENT;
5190 			leaf = path->nodes[0];
5191 		}
5192 
5193 		prev_extent_end = btrfs_file_extent_end(path);
5194 		path->slots[0]++;
5195 		cond_resched();
5196 	}
5197 
5198 	if (prev_extent_end < i_size) {
5199 		u64 hole_len;
5200 
5201 		btrfs_release_path(path);
5202 		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5203 		ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5204 					       prev_extent_end, hole_len);
5205 		if (ret < 0)
5206 			return ret;
5207 	}
5208 
5209 	return 0;
5210 }
5211 
5212 /*
5213  * When we are logging a new inode X, check if it doesn't have a reference that
5214  * matches the reference from some other inode Y created in a past transaction
5215  * and that was renamed in the current transaction. If we don't do this, then at
5216  * log replay time we can lose inode Y (and all its files if it's a directory):
5217  *
5218  * mkdir /mnt/x
5219  * echo "hello world" > /mnt/x/foobar
5220  * sync
5221  * mv /mnt/x /mnt/y
5222  * mkdir /mnt/x                 # or touch /mnt/x
5223  * xfs_io -c fsync /mnt/x
5224  * <power fail>
5225  * mount fs, trigger log replay
5226  *
5227  * After the log replay procedure, we would lose the first directory and all its
5228  * files (file foobar).
5229  * For the case where inode Y is not a directory we simply end up losing it:
5230  *
5231  * echo "123" > /mnt/foo
5232  * sync
5233  * mv /mnt/foo /mnt/bar
5234  * echo "abc" > /mnt/foo
5235  * xfs_io -c fsync /mnt/foo
5236  * <power fail>
5237  *
5238  * We also need this for cases where a snapshot entry is replaced by some other
5239  * entry (file or directory) otherwise we end up with an unreplayable log due to
5240  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5241  * if it were a regular entry:
5242  *
5243  * mkdir /mnt/x
5244  * btrfs subvolume snapshot /mnt /mnt/x/snap
5245  * btrfs subvolume delete /mnt/x/snap
5246  * rmdir /mnt/x
5247  * mkdir /mnt/x
5248  * fsync /mnt/x or fsync some new file inside it
5249  * <power fail>
5250  *
5251  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5252  * the same transaction.
5253  */
5254 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5255 					 const int slot,
5256 					 const struct btrfs_key *key,
5257 					 struct btrfs_inode *inode,
5258 					 u64 *other_ino, u64 *other_parent)
5259 {
5260 	int ret;
5261 	struct btrfs_path *search_path;
5262 	char *name = NULL;
5263 	u32 name_len = 0;
5264 	u32 item_size = btrfs_item_size(eb, slot);
5265 	u32 cur_offset = 0;
5266 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5267 
5268 	search_path = btrfs_alloc_path();
5269 	if (!search_path)
5270 		return -ENOMEM;
5271 	search_path->search_commit_root = 1;
5272 	search_path->skip_locking = 1;
5273 
5274 	while (cur_offset < item_size) {
5275 		u64 parent;
5276 		u32 this_name_len;
5277 		u32 this_len;
5278 		unsigned long name_ptr;
5279 		struct btrfs_dir_item *di;
5280 		struct fscrypt_str name_str;
5281 
5282 		if (key->type == BTRFS_INODE_REF_KEY) {
5283 			struct btrfs_inode_ref *iref;
5284 
5285 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5286 			parent = key->offset;
5287 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
5288 			name_ptr = (unsigned long)(iref + 1);
5289 			this_len = sizeof(*iref) + this_name_len;
5290 		} else {
5291 			struct btrfs_inode_extref *extref;
5292 
5293 			extref = (struct btrfs_inode_extref *)(ptr +
5294 							       cur_offset);
5295 			parent = btrfs_inode_extref_parent(eb, extref);
5296 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
5297 			name_ptr = (unsigned long)&extref->name;
5298 			this_len = sizeof(*extref) + this_name_len;
5299 		}
5300 
5301 		if (this_name_len > name_len) {
5302 			char *new_name;
5303 
5304 			new_name = krealloc(name, this_name_len, GFP_NOFS);
5305 			if (!new_name) {
5306 				ret = -ENOMEM;
5307 				goto out;
5308 			}
5309 			name_len = this_name_len;
5310 			name = new_name;
5311 		}
5312 
5313 		read_extent_buffer(eb, name, name_ptr, this_name_len);
5314 
5315 		name_str.name = name;
5316 		name_str.len = this_name_len;
5317 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5318 				parent, &name_str, 0);
5319 		if (di && !IS_ERR(di)) {
5320 			struct btrfs_key di_key;
5321 
5322 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5323 						  di, &di_key);
5324 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5325 				if (di_key.objectid != key->objectid) {
5326 					ret = 1;
5327 					*other_ino = di_key.objectid;
5328 					*other_parent = parent;
5329 				} else {
5330 					ret = 0;
5331 				}
5332 			} else {
5333 				ret = -EAGAIN;
5334 			}
5335 			goto out;
5336 		} else if (IS_ERR(di)) {
5337 			ret = PTR_ERR(di);
5338 			goto out;
5339 		}
5340 		btrfs_release_path(search_path);
5341 
5342 		cur_offset += this_len;
5343 	}
5344 	ret = 0;
5345 out:
5346 	btrfs_free_path(search_path);
5347 	kfree(name);
5348 	return ret;
5349 }
5350 
5351 /*
5352  * Check if we need to log an inode. This is used in contexts where while
5353  * logging an inode we need to log another inode (either that it exists or in
5354  * full mode). This is used instead of btrfs_inode_in_log() because the later
5355  * requires the inode to be in the log and have the log transaction committed,
5356  * while here we do not care if the log transaction was already committed - our
5357  * caller will commit the log later - and we want to avoid logging an inode
5358  * multiple times when multiple tasks have joined the same log transaction.
5359  */
5360 static bool need_log_inode(const struct btrfs_trans_handle *trans,
5361 			   struct btrfs_inode *inode)
5362 {
5363 	/*
5364 	 * If a directory was not modified, no dentries added or removed, we can
5365 	 * and should avoid logging it.
5366 	 */
5367 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5368 		return false;
5369 
5370 	/*
5371 	 * If this inode does not have new/updated/deleted xattrs since the last
5372 	 * time it was logged and is flagged as logged in the current transaction,
5373 	 * we can skip logging it. As for new/deleted names, those are updated in
5374 	 * the log by link/unlink/rename operations.
5375 	 * In case the inode was logged and then evicted and reloaded, its
5376 	 * logged_trans will be 0, in which case we have to fully log it since
5377 	 * logged_trans is a transient field, not persisted.
5378 	 */
5379 	if (inode_logged(trans, inode, NULL) == 1 &&
5380 	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5381 		return false;
5382 
5383 	return true;
5384 }
5385 
5386 struct btrfs_dir_list {
5387 	u64 ino;
5388 	struct list_head list;
5389 };
5390 
5391 /*
5392  * Log the inodes of the new dentries of a directory.
5393  * See process_dir_items_leaf() for details about why it is needed.
5394  * This is a recursive operation - if an existing dentry corresponds to a
5395  * directory, that directory's new entries are logged too (same behaviour as
5396  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5397  * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5398  * complains about the following circular lock dependency / possible deadlock:
5399  *
5400  *        CPU0                                        CPU1
5401  *        ----                                        ----
5402  * lock(&type->i_mutex_dir_key#3/2);
5403  *                                            lock(sb_internal#2);
5404  *                                            lock(&type->i_mutex_dir_key#3/2);
5405  * lock(&sb->s_type->i_mutex_key#14);
5406  *
5407  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5408  * sb_start_intwrite() in btrfs_start_transaction().
5409  * Not acquiring the VFS lock of the inodes is still safe because:
5410  *
5411  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5412  *    that while logging the inode new references (names) are added or removed
5413  *    from the inode, leaving the logged inode item with a link count that does
5414  *    not match the number of logged inode reference items. This is fine because
5415  *    at log replay time we compute the real number of links and correct the
5416  *    link count in the inode item (see replay_one_buffer() and
5417  *    link_to_fixup_dir());
5418  *
5419  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5420  *    while logging the inode's items new index items (key type
5421  *    BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5422  *    has a size that doesn't match the sum of the lengths of all the logged
5423  *    names - this is ok, not a problem, because at log replay time we set the
5424  *    directory's i_size to the correct value (see replay_one_name() and
5425  *    overwrite_item()).
5426  */
5427 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5428 				struct btrfs_inode *start_inode,
5429 				struct btrfs_log_ctx *ctx)
5430 {
5431 	struct btrfs_root *root = start_inode->root;
5432 	struct btrfs_fs_info *fs_info = root->fs_info;
5433 	struct btrfs_path *path;
5434 	LIST_HEAD(dir_list);
5435 	struct btrfs_dir_list *dir_elem;
5436 	u64 ino = btrfs_ino(start_inode);
5437 	struct btrfs_inode *curr_inode = start_inode;
5438 	int ret = 0;
5439 
5440 	/*
5441 	 * If we are logging a new name, as part of a link or rename operation,
5442 	 * don't bother logging new dentries, as we just want to log the names
5443 	 * of an inode and that any new parents exist.
5444 	 */
5445 	if (ctx->logging_new_name)
5446 		return 0;
5447 
5448 	path = btrfs_alloc_path();
5449 	if (!path)
5450 		return -ENOMEM;
5451 
5452 	/* Pairs with btrfs_add_delayed_iput below. */
5453 	ihold(&curr_inode->vfs_inode);
5454 
5455 	while (true) {
5456 		struct inode *vfs_inode;
5457 		struct btrfs_key key;
5458 		struct btrfs_key found_key;
5459 		u64 next_index;
5460 		bool continue_curr_inode = true;
5461 		int iter_ret;
5462 
5463 		key.objectid = ino;
5464 		key.type = BTRFS_DIR_INDEX_KEY;
5465 		key.offset = btrfs_get_first_dir_index_to_log(curr_inode);
5466 		next_index = key.offset;
5467 again:
5468 		btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5469 			struct extent_buffer *leaf = path->nodes[0];
5470 			struct btrfs_dir_item *di;
5471 			struct btrfs_key di_key;
5472 			struct inode *di_inode;
5473 			int log_mode = LOG_INODE_EXISTS;
5474 			int type;
5475 
5476 			if (found_key.objectid != ino ||
5477 			    found_key.type != BTRFS_DIR_INDEX_KEY) {
5478 				continue_curr_inode = false;
5479 				break;
5480 			}
5481 
5482 			next_index = found_key.offset + 1;
5483 
5484 			di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5485 			type = btrfs_dir_ftype(leaf, di);
5486 			if (btrfs_dir_transid(leaf, di) < trans->transid)
5487 				continue;
5488 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5489 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5490 				continue;
5491 
5492 			btrfs_release_path(path);
5493 			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5494 			if (IS_ERR(di_inode)) {
5495 				ret = PTR_ERR(di_inode);
5496 				goto out;
5497 			}
5498 
5499 			if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5500 				btrfs_add_delayed_iput(BTRFS_I(di_inode));
5501 				break;
5502 			}
5503 
5504 			ctx->log_new_dentries = false;
5505 			if (type == BTRFS_FT_DIR)
5506 				log_mode = LOG_INODE_ALL;
5507 			ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5508 					      log_mode, ctx);
5509 			btrfs_add_delayed_iput(BTRFS_I(di_inode));
5510 			if (ret)
5511 				goto out;
5512 			if (ctx->log_new_dentries) {
5513 				dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5514 				if (!dir_elem) {
5515 					ret = -ENOMEM;
5516 					goto out;
5517 				}
5518 				dir_elem->ino = di_key.objectid;
5519 				list_add_tail(&dir_elem->list, &dir_list);
5520 			}
5521 			break;
5522 		}
5523 
5524 		btrfs_release_path(path);
5525 
5526 		if (iter_ret < 0) {
5527 			ret = iter_ret;
5528 			goto out;
5529 		} else if (iter_ret > 0) {
5530 			continue_curr_inode = false;
5531 		} else {
5532 			key = found_key;
5533 		}
5534 
5535 		if (continue_curr_inode && key.offset < (u64)-1) {
5536 			key.offset++;
5537 			goto again;
5538 		}
5539 
5540 		btrfs_set_first_dir_index_to_log(curr_inode, next_index);
5541 
5542 		if (list_empty(&dir_list))
5543 			break;
5544 
5545 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5546 		ino = dir_elem->ino;
5547 		list_del(&dir_elem->list);
5548 		kfree(dir_elem);
5549 
5550 		btrfs_add_delayed_iput(curr_inode);
5551 		curr_inode = NULL;
5552 
5553 		vfs_inode = btrfs_iget(fs_info->sb, ino, root);
5554 		if (IS_ERR(vfs_inode)) {
5555 			ret = PTR_ERR(vfs_inode);
5556 			break;
5557 		}
5558 		curr_inode = BTRFS_I(vfs_inode);
5559 	}
5560 out:
5561 	btrfs_free_path(path);
5562 	if (curr_inode)
5563 		btrfs_add_delayed_iput(curr_inode);
5564 
5565 	if (ret) {
5566 		struct btrfs_dir_list *next;
5567 
5568 		list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5569 			kfree(dir_elem);
5570 	}
5571 
5572 	return ret;
5573 }
5574 
5575 struct btrfs_ino_list {
5576 	u64 ino;
5577 	u64 parent;
5578 	struct list_head list;
5579 };
5580 
5581 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5582 {
5583 	struct btrfs_ino_list *curr;
5584 	struct btrfs_ino_list *next;
5585 
5586 	list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5587 		list_del(&curr->list);
5588 		kfree(curr);
5589 	}
5590 }
5591 
5592 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5593 				    struct btrfs_path *path)
5594 {
5595 	struct btrfs_key key;
5596 	int ret;
5597 
5598 	key.objectid = ino;
5599 	key.type = BTRFS_INODE_ITEM_KEY;
5600 	key.offset = 0;
5601 
5602 	path->search_commit_root = 1;
5603 	path->skip_locking = 1;
5604 
5605 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5606 	if (WARN_ON_ONCE(ret > 0)) {
5607 		/*
5608 		 * We have previously found the inode through the commit root
5609 		 * so this should not happen. If it does, just error out and
5610 		 * fallback to a transaction commit.
5611 		 */
5612 		ret = -ENOENT;
5613 	} else if (ret == 0) {
5614 		struct btrfs_inode_item *item;
5615 
5616 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5617 				      struct btrfs_inode_item);
5618 		if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5619 			ret = 1;
5620 	}
5621 
5622 	btrfs_release_path(path);
5623 	path->search_commit_root = 0;
5624 	path->skip_locking = 0;
5625 
5626 	return ret;
5627 }
5628 
5629 static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5630 				 struct btrfs_root *root,
5631 				 struct btrfs_path *path,
5632 				 u64 ino, u64 parent,
5633 				 struct btrfs_log_ctx *ctx)
5634 {
5635 	struct btrfs_ino_list *ino_elem;
5636 	struct inode *inode;
5637 
5638 	/*
5639 	 * It's rare to have a lot of conflicting inodes, in practice it is not
5640 	 * common to have more than 1 or 2. We don't want to collect too many,
5641 	 * as we could end up logging too many inodes (even if only in
5642 	 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5643 	 * commits.
5644 	 */
5645 	if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5646 		return BTRFS_LOG_FORCE_COMMIT;
5647 
5648 	inode = btrfs_iget(root->fs_info->sb, ino, root);
5649 	/*
5650 	 * If the other inode that had a conflicting dir entry was deleted in
5651 	 * the current transaction then we either:
5652 	 *
5653 	 * 1) Log the parent directory (later after adding it to the list) if
5654 	 *    the inode is a directory. This is because it may be a deleted
5655 	 *    subvolume/snapshot or it may be a regular directory that had
5656 	 *    deleted subvolumes/snapshots (or subdirectories that had them),
5657 	 *    and at the moment we can't deal with dropping subvolumes/snapshots
5658 	 *    during log replay. So we just log the parent, which will result in
5659 	 *    a fallback to a transaction commit if we are dealing with those
5660 	 *    cases (last_unlink_trans will match the current transaction);
5661 	 *
5662 	 * 2) Do nothing if it's not a directory. During log replay we simply
5663 	 *    unlink the conflicting dentry from the parent directory and then
5664 	 *    add the dentry for our inode. Like this we can avoid logging the
5665 	 *    parent directory (and maybe fallback to a transaction commit in
5666 	 *    case it has a last_unlink_trans == trans->transid, due to moving
5667 	 *    some inode from it to some other directory).
5668 	 */
5669 	if (IS_ERR(inode)) {
5670 		int ret = PTR_ERR(inode);
5671 
5672 		if (ret != -ENOENT)
5673 			return ret;
5674 
5675 		ret = conflicting_inode_is_dir(root, ino, path);
5676 		/* Not a directory or we got an error. */
5677 		if (ret <= 0)
5678 			return ret;
5679 
5680 		/* Conflicting inode is a directory, so we'll log its parent. */
5681 		ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5682 		if (!ino_elem)
5683 			return -ENOMEM;
5684 		ino_elem->ino = ino;
5685 		ino_elem->parent = parent;
5686 		list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5687 		ctx->num_conflict_inodes++;
5688 
5689 		return 0;
5690 	}
5691 
5692 	/*
5693 	 * If the inode was already logged skip it - otherwise we can hit an
5694 	 * infinite loop. Example:
5695 	 *
5696 	 * From the commit root (previous transaction) we have the following
5697 	 * inodes:
5698 	 *
5699 	 * inode 257 a directory
5700 	 * inode 258 with references "zz" and "zz_link" on inode 257
5701 	 * inode 259 with reference "a" on inode 257
5702 	 *
5703 	 * And in the current (uncommitted) transaction we have:
5704 	 *
5705 	 * inode 257 a directory, unchanged
5706 	 * inode 258 with references "a" and "a2" on inode 257
5707 	 * inode 259 with reference "zz_link" on inode 257
5708 	 * inode 261 with reference "zz" on inode 257
5709 	 *
5710 	 * When logging inode 261 the following infinite loop could
5711 	 * happen if we don't skip already logged inodes:
5712 	 *
5713 	 * - we detect inode 258 as a conflicting inode, with inode 261
5714 	 *   on reference "zz", and log it;
5715 	 *
5716 	 * - we detect inode 259 as a conflicting inode, with inode 258
5717 	 *   on reference "a", and log it;
5718 	 *
5719 	 * - we detect inode 258 as a conflicting inode, with inode 259
5720 	 *   on reference "zz_link", and log it - again! After this we
5721 	 *   repeat the above steps forever.
5722 	 *
5723 	 * Here we can use need_log_inode() because we only need to log the
5724 	 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5725 	 * so that the log ends up with the new name and without the old name.
5726 	 */
5727 	if (!need_log_inode(trans, BTRFS_I(inode))) {
5728 		btrfs_add_delayed_iput(BTRFS_I(inode));
5729 		return 0;
5730 	}
5731 
5732 	btrfs_add_delayed_iput(BTRFS_I(inode));
5733 
5734 	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5735 	if (!ino_elem)
5736 		return -ENOMEM;
5737 	ino_elem->ino = ino;
5738 	ino_elem->parent = parent;
5739 	list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5740 	ctx->num_conflict_inodes++;
5741 
5742 	return 0;
5743 }
5744 
5745 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5746 				  struct btrfs_root *root,
5747 				  struct btrfs_log_ctx *ctx)
5748 {
5749 	struct btrfs_fs_info *fs_info = root->fs_info;
5750 	int ret = 0;
5751 
5752 	/*
5753 	 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5754 	 * otherwise we could have unbounded recursion of btrfs_log_inode()
5755 	 * calls. This check guarantees we can have only 1 level of recursion.
5756 	 */
5757 	if (ctx->logging_conflict_inodes)
5758 		return 0;
5759 
5760 	ctx->logging_conflict_inodes = true;
5761 
5762 	/*
5763 	 * New conflicting inodes may be found and added to the list while we
5764 	 * are logging a conflicting inode, so keep iterating while the list is
5765 	 * not empty.
5766 	 */
5767 	while (!list_empty(&ctx->conflict_inodes)) {
5768 		struct btrfs_ino_list *curr;
5769 		struct inode *inode;
5770 		u64 ino;
5771 		u64 parent;
5772 
5773 		curr = list_first_entry(&ctx->conflict_inodes,
5774 					struct btrfs_ino_list, list);
5775 		ino = curr->ino;
5776 		parent = curr->parent;
5777 		list_del(&curr->list);
5778 		kfree(curr);
5779 
5780 		inode = btrfs_iget(fs_info->sb, ino, root);
5781 		/*
5782 		 * If the other inode that had a conflicting dir entry was
5783 		 * deleted in the current transaction, we need to log its parent
5784 		 * directory. See the comment at add_conflicting_inode().
5785 		 */
5786 		if (IS_ERR(inode)) {
5787 			ret = PTR_ERR(inode);
5788 			if (ret != -ENOENT)
5789 				break;
5790 
5791 			inode = btrfs_iget(fs_info->sb, parent, root);
5792 			if (IS_ERR(inode)) {
5793 				ret = PTR_ERR(inode);
5794 				break;
5795 			}
5796 
5797 			/*
5798 			 * Always log the directory, we cannot make this
5799 			 * conditional on need_log_inode() because the directory
5800 			 * might have been logged in LOG_INODE_EXISTS mode or
5801 			 * the dir index of the conflicting inode is not in a
5802 			 * dir index key range logged for the directory. So we
5803 			 * must make sure the deletion is recorded.
5804 			 */
5805 			ret = btrfs_log_inode(trans, BTRFS_I(inode),
5806 					      LOG_INODE_ALL, ctx);
5807 			btrfs_add_delayed_iput(BTRFS_I(inode));
5808 			if (ret)
5809 				break;
5810 			continue;
5811 		}
5812 
5813 		/*
5814 		 * Here we can use need_log_inode() because we only need to log
5815 		 * the inode in LOG_INODE_EXISTS mode and rename operations
5816 		 * update the log, so that the log ends up with the new name and
5817 		 * without the old name.
5818 		 *
5819 		 * We did this check at add_conflicting_inode(), but here we do
5820 		 * it again because if some other task logged the inode after
5821 		 * that, we can avoid doing it again.
5822 		 */
5823 		if (!need_log_inode(trans, BTRFS_I(inode))) {
5824 			btrfs_add_delayed_iput(BTRFS_I(inode));
5825 			continue;
5826 		}
5827 
5828 		/*
5829 		 * We are safe logging the other inode without acquiring its
5830 		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5831 		 * are safe against concurrent renames of the other inode as
5832 		 * well because during a rename we pin the log and update the
5833 		 * log with the new name before we unpin it.
5834 		 */
5835 		ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5836 		btrfs_add_delayed_iput(BTRFS_I(inode));
5837 		if (ret)
5838 			break;
5839 	}
5840 
5841 	ctx->logging_conflict_inodes = false;
5842 	if (ret)
5843 		free_conflicting_inodes(ctx);
5844 
5845 	return ret;
5846 }
5847 
5848 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5849 				   struct btrfs_inode *inode,
5850 				   struct btrfs_key *min_key,
5851 				   const struct btrfs_key *max_key,
5852 				   struct btrfs_path *path,
5853 				   struct btrfs_path *dst_path,
5854 				   const u64 logged_isize,
5855 				   const int inode_only,
5856 				   struct btrfs_log_ctx *ctx,
5857 				   bool *need_log_inode_item)
5858 {
5859 	const u64 i_size = i_size_read(&inode->vfs_inode);
5860 	struct btrfs_root *root = inode->root;
5861 	int ins_start_slot = 0;
5862 	int ins_nr = 0;
5863 	int ret;
5864 
5865 	while (1) {
5866 		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5867 		if (ret < 0)
5868 			return ret;
5869 		if (ret > 0) {
5870 			ret = 0;
5871 			break;
5872 		}
5873 again:
5874 		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5875 		if (min_key->objectid != max_key->objectid)
5876 			break;
5877 		if (min_key->type > max_key->type)
5878 			break;
5879 
5880 		if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5881 			*need_log_inode_item = false;
5882 		} else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5883 			   min_key->offset >= i_size) {
5884 			/*
5885 			 * Extents at and beyond eof are logged with
5886 			 * btrfs_log_prealloc_extents().
5887 			 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5888 			 * and no keys greater than that, so bail out.
5889 			 */
5890 			break;
5891 		} else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5892 			    min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5893 			   (inode->generation == trans->transid ||
5894 			    ctx->logging_conflict_inodes)) {
5895 			u64 other_ino = 0;
5896 			u64 other_parent = 0;
5897 
5898 			ret = btrfs_check_ref_name_override(path->nodes[0],
5899 					path->slots[0], min_key, inode,
5900 					&other_ino, &other_parent);
5901 			if (ret < 0) {
5902 				return ret;
5903 			} else if (ret > 0 &&
5904 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5905 				if (ins_nr > 0) {
5906 					ins_nr++;
5907 				} else {
5908 					ins_nr = 1;
5909 					ins_start_slot = path->slots[0];
5910 				}
5911 				ret = copy_items(trans, inode, dst_path, path,
5912 						 ins_start_slot, ins_nr,
5913 						 inode_only, logged_isize, ctx);
5914 				if (ret < 0)
5915 					return ret;
5916 				ins_nr = 0;
5917 
5918 				btrfs_release_path(path);
5919 				ret = add_conflicting_inode(trans, root, path,
5920 							    other_ino,
5921 							    other_parent, ctx);
5922 				if (ret)
5923 					return ret;
5924 				goto next_key;
5925 			}
5926 		} else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5927 			/* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5928 			if (ins_nr == 0)
5929 				goto next_slot;
5930 			ret = copy_items(trans, inode, dst_path, path,
5931 					 ins_start_slot,
5932 					 ins_nr, inode_only, logged_isize, ctx);
5933 			if (ret < 0)
5934 				return ret;
5935 			ins_nr = 0;
5936 			goto next_slot;
5937 		}
5938 
5939 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5940 			ins_nr++;
5941 			goto next_slot;
5942 		} else if (!ins_nr) {
5943 			ins_start_slot = path->slots[0];
5944 			ins_nr = 1;
5945 			goto next_slot;
5946 		}
5947 
5948 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5949 				 ins_nr, inode_only, logged_isize, ctx);
5950 		if (ret < 0)
5951 			return ret;
5952 		ins_nr = 1;
5953 		ins_start_slot = path->slots[0];
5954 next_slot:
5955 		path->slots[0]++;
5956 		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5957 			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5958 					      path->slots[0]);
5959 			goto again;
5960 		}
5961 		if (ins_nr) {
5962 			ret = copy_items(trans, inode, dst_path, path,
5963 					 ins_start_slot, ins_nr, inode_only,
5964 					 logged_isize, ctx);
5965 			if (ret < 0)
5966 				return ret;
5967 			ins_nr = 0;
5968 		}
5969 		btrfs_release_path(path);
5970 next_key:
5971 		if (min_key->offset < (u64)-1) {
5972 			min_key->offset++;
5973 		} else if (min_key->type < max_key->type) {
5974 			min_key->type++;
5975 			min_key->offset = 0;
5976 		} else {
5977 			break;
5978 		}
5979 
5980 		/*
5981 		 * We may process many leaves full of items for our inode, so
5982 		 * avoid monopolizing a cpu for too long by rescheduling while
5983 		 * not holding locks on any tree.
5984 		 */
5985 		cond_resched();
5986 	}
5987 	if (ins_nr) {
5988 		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5989 				 ins_nr, inode_only, logged_isize, ctx);
5990 		if (ret)
5991 			return ret;
5992 	}
5993 
5994 	if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5995 		/*
5996 		 * Release the path because otherwise we might attempt to double
5997 		 * lock the same leaf with btrfs_log_prealloc_extents() below.
5998 		 */
5999 		btrfs_release_path(path);
6000 		ret = btrfs_log_prealloc_extents(trans, inode, dst_path, ctx);
6001 	}
6002 
6003 	return ret;
6004 }
6005 
6006 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
6007 				      struct btrfs_root *log,
6008 				      struct btrfs_path *path,
6009 				      const struct btrfs_item_batch *batch,
6010 				      const struct btrfs_delayed_item *first_item)
6011 {
6012 	const struct btrfs_delayed_item *curr = first_item;
6013 	int ret;
6014 
6015 	ret = btrfs_insert_empty_items(trans, log, path, batch);
6016 	if (ret)
6017 		return ret;
6018 
6019 	for (int i = 0; i < batch->nr; i++) {
6020 		char *data_ptr;
6021 
6022 		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
6023 		write_extent_buffer(path->nodes[0], &curr->data,
6024 				    (unsigned long)data_ptr, curr->data_len);
6025 		curr = list_next_entry(curr, log_list);
6026 		path->slots[0]++;
6027 	}
6028 
6029 	btrfs_release_path(path);
6030 
6031 	return 0;
6032 }
6033 
6034 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6035 				       struct btrfs_inode *inode,
6036 				       struct btrfs_path *path,
6037 				       const struct list_head *delayed_ins_list,
6038 				       struct btrfs_log_ctx *ctx)
6039 {
6040 	/* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6041 	const int max_batch_size = 195;
6042 	const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6043 	const u64 ino = btrfs_ino(inode);
6044 	struct btrfs_root *log = inode->root->log_root;
6045 	struct btrfs_item_batch batch = {
6046 		.nr = 0,
6047 		.total_data_size = 0,
6048 	};
6049 	const struct btrfs_delayed_item *first = NULL;
6050 	const struct btrfs_delayed_item *curr;
6051 	char *ins_data;
6052 	struct btrfs_key *ins_keys;
6053 	u32 *ins_sizes;
6054 	u64 curr_batch_size = 0;
6055 	int batch_idx = 0;
6056 	int ret;
6057 
6058 	/* We are adding dir index items to the log tree. */
6059 	lockdep_assert_held(&inode->log_mutex);
6060 
6061 	/*
6062 	 * We collect delayed items before copying index keys from the subvolume
6063 	 * to the log tree. However just after we collected them, they may have
6064 	 * been flushed (all of them or just some of them), and therefore we
6065 	 * could have copied them from the subvolume tree to the log tree.
6066 	 * So find the first delayed item that was not yet logged (they are
6067 	 * sorted by index number).
6068 	 */
6069 	list_for_each_entry(curr, delayed_ins_list, log_list) {
6070 		if (curr->index > inode->last_dir_index_offset) {
6071 			first = curr;
6072 			break;
6073 		}
6074 	}
6075 
6076 	/* Empty list or all delayed items were already logged. */
6077 	if (!first)
6078 		return 0;
6079 
6080 	ins_data = kmalloc(max_batch_size * sizeof(u32) +
6081 			   max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6082 	if (!ins_data)
6083 		return -ENOMEM;
6084 	ins_sizes = (u32 *)ins_data;
6085 	batch.data_sizes = ins_sizes;
6086 	ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6087 	batch.keys = ins_keys;
6088 
6089 	curr = first;
6090 	while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6091 		const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6092 
6093 		if (curr_batch_size + curr_size > leaf_data_size ||
6094 		    batch.nr == max_batch_size) {
6095 			ret = insert_delayed_items_batch(trans, log, path,
6096 							 &batch, first);
6097 			if (ret)
6098 				goto out;
6099 			batch_idx = 0;
6100 			batch.nr = 0;
6101 			batch.total_data_size = 0;
6102 			curr_batch_size = 0;
6103 			first = curr;
6104 		}
6105 
6106 		ins_sizes[batch_idx] = curr->data_len;
6107 		ins_keys[batch_idx].objectid = ino;
6108 		ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6109 		ins_keys[batch_idx].offset = curr->index;
6110 		curr_batch_size += curr_size;
6111 		batch.total_data_size += curr->data_len;
6112 		batch.nr++;
6113 		batch_idx++;
6114 		curr = list_next_entry(curr, log_list);
6115 	}
6116 
6117 	ASSERT(batch.nr >= 1);
6118 	ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6119 
6120 	curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6121 			       log_list);
6122 	inode->last_dir_index_offset = curr->index;
6123 out:
6124 	kfree(ins_data);
6125 
6126 	return ret;
6127 }
6128 
6129 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6130 				      struct btrfs_inode *inode,
6131 				      struct btrfs_path *path,
6132 				      const struct list_head *delayed_del_list,
6133 				      struct btrfs_log_ctx *ctx)
6134 {
6135 	const u64 ino = btrfs_ino(inode);
6136 	const struct btrfs_delayed_item *curr;
6137 
6138 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6139 				log_list);
6140 
6141 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6142 		u64 first_dir_index = curr->index;
6143 		u64 last_dir_index;
6144 		const struct btrfs_delayed_item *next;
6145 		int ret;
6146 
6147 		/*
6148 		 * Find a range of consecutive dir index items to delete. Like
6149 		 * this we log a single dir range item spanning several contiguous
6150 		 * dir items instead of logging one range item per dir index item.
6151 		 */
6152 		next = list_next_entry(curr, log_list);
6153 		while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6154 			if (next->index != curr->index + 1)
6155 				break;
6156 			curr = next;
6157 			next = list_next_entry(next, log_list);
6158 		}
6159 
6160 		last_dir_index = curr->index;
6161 		ASSERT(last_dir_index >= first_dir_index);
6162 
6163 		ret = insert_dir_log_key(trans, inode->root->log_root, path,
6164 					 ino, first_dir_index, last_dir_index);
6165 		if (ret)
6166 			return ret;
6167 		curr = list_next_entry(curr, log_list);
6168 	}
6169 
6170 	return 0;
6171 }
6172 
6173 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6174 					struct btrfs_inode *inode,
6175 					struct btrfs_path *path,
6176 					struct btrfs_log_ctx *ctx,
6177 					const struct list_head *delayed_del_list,
6178 					const struct btrfs_delayed_item *first,
6179 					const struct btrfs_delayed_item **last_ret)
6180 {
6181 	const struct btrfs_delayed_item *next;
6182 	struct extent_buffer *leaf = path->nodes[0];
6183 	const int last_slot = btrfs_header_nritems(leaf) - 1;
6184 	int slot = path->slots[0] + 1;
6185 	const u64 ino = btrfs_ino(inode);
6186 
6187 	next = list_next_entry(first, log_list);
6188 
6189 	while (slot < last_slot &&
6190 	       !list_entry_is_head(next, delayed_del_list, log_list)) {
6191 		struct btrfs_key key;
6192 
6193 		btrfs_item_key_to_cpu(leaf, &key, slot);
6194 		if (key.objectid != ino ||
6195 		    key.type != BTRFS_DIR_INDEX_KEY ||
6196 		    key.offset != next->index)
6197 			break;
6198 
6199 		slot++;
6200 		*last_ret = next;
6201 		next = list_next_entry(next, log_list);
6202 	}
6203 
6204 	return btrfs_del_items(trans, inode->root->log_root, path,
6205 			       path->slots[0], slot - path->slots[0]);
6206 }
6207 
6208 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6209 					     struct btrfs_inode *inode,
6210 					     struct btrfs_path *path,
6211 					     const struct list_head *delayed_del_list,
6212 					     struct btrfs_log_ctx *ctx)
6213 {
6214 	struct btrfs_root *log = inode->root->log_root;
6215 	const struct btrfs_delayed_item *curr;
6216 	u64 last_range_start = 0;
6217 	u64 last_range_end = 0;
6218 	struct btrfs_key key;
6219 
6220 	key.objectid = btrfs_ino(inode);
6221 	key.type = BTRFS_DIR_INDEX_KEY;
6222 	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6223 				log_list);
6224 
6225 	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6226 		const struct btrfs_delayed_item *last = curr;
6227 		u64 first_dir_index = curr->index;
6228 		u64 last_dir_index;
6229 		bool deleted_items = false;
6230 		int ret;
6231 
6232 		key.offset = curr->index;
6233 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6234 		if (ret < 0) {
6235 			return ret;
6236 		} else if (ret == 0) {
6237 			ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6238 							   delayed_del_list, curr,
6239 							   &last);
6240 			if (ret)
6241 				return ret;
6242 			deleted_items = true;
6243 		}
6244 
6245 		btrfs_release_path(path);
6246 
6247 		/*
6248 		 * If we deleted items from the leaf, it means we have a range
6249 		 * item logging their range, so no need to add one or update an
6250 		 * existing one. Otherwise we have to log a dir range item.
6251 		 */
6252 		if (deleted_items)
6253 			goto next_batch;
6254 
6255 		last_dir_index = last->index;
6256 		ASSERT(last_dir_index >= first_dir_index);
6257 		/*
6258 		 * If this range starts right after where the previous one ends,
6259 		 * then we want to reuse the previous range item and change its
6260 		 * end offset to the end of this range. This is just to minimize
6261 		 * leaf space usage, by avoiding adding a new range item.
6262 		 */
6263 		if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6264 			first_dir_index = last_range_start;
6265 
6266 		ret = insert_dir_log_key(trans, log, path, key.objectid,
6267 					 first_dir_index, last_dir_index);
6268 		if (ret)
6269 			return ret;
6270 
6271 		last_range_start = first_dir_index;
6272 		last_range_end = last_dir_index;
6273 next_batch:
6274 		curr = list_next_entry(last, log_list);
6275 	}
6276 
6277 	return 0;
6278 }
6279 
6280 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6281 				      struct btrfs_inode *inode,
6282 				      struct btrfs_path *path,
6283 				      const struct list_head *delayed_del_list,
6284 				      struct btrfs_log_ctx *ctx)
6285 {
6286 	/*
6287 	 * We are deleting dir index items from the log tree or adding range
6288 	 * items to it.
6289 	 */
6290 	lockdep_assert_held(&inode->log_mutex);
6291 
6292 	if (list_empty(delayed_del_list))
6293 		return 0;
6294 
6295 	if (ctx->logged_before)
6296 		return log_delayed_deletions_incremental(trans, inode, path,
6297 							 delayed_del_list, ctx);
6298 
6299 	return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6300 					  ctx);
6301 }
6302 
6303 /*
6304  * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6305  * items instead of the subvolume tree.
6306  */
6307 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6308 				    struct btrfs_inode *inode,
6309 				    const struct list_head *delayed_ins_list,
6310 				    struct btrfs_log_ctx *ctx)
6311 {
6312 	const bool orig_log_new_dentries = ctx->log_new_dentries;
6313 	struct btrfs_fs_info *fs_info = trans->fs_info;
6314 	struct btrfs_delayed_item *item;
6315 	int ret = 0;
6316 
6317 	/*
6318 	 * No need for the log mutex, plus to avoid potential deadlocks or
6319 	 * lockdep annotations due to nesting of delayed inode mutexes and log
6320 	 * mutexes.
6321 	 */
6322 	lockdep_assert_not_held(&inode->log_mutex);
6323 
6324 	ASSERT(!ctx->logging_new_delayed_dentries);
6325 	ctx->logging_new_delayed_dentries = true;
6326 
6327 	list_for_each_entry(item, delayed_ins_list, log_list) {
6328 		struct btrfs_dir_item *dir_item;
6329 		struct inode *di_inode;
6330 		struct btrfs_key key;
6331 		int log_mode = LOG_INODE_EXISTS;
6332 
6333 		dir_item = (struct btrfs_dir_item *)item->data;
6334 		btrfs_disk_key_to_cpu(&key, &dir_item->location);
6335 
6336 		if (key.type == BTRFS_ROOT_ITEM_KEY)
6337 			continue;
6338 
6339 		di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root);
6340 		if (IS_ERR(di_inode)) {
6341 			ret = PTR_ERR(di_inode);
6342 			break;
6343 		}
6344 
6345 		if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6346 			btrfs_add_delayed_iput(BTRFS_I(di_inode));
6347 			continue;
6348 		}
6349 
6350 		if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6351 			log_mode = LOG_INODE_ALL;
6352 
6353 		ctx->log_new_dentries = false;
6354 		ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6355 
6356 		if (!ret && ctx->log_new_dentries)
6357 			ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6358 
6359 		btrfs_add_delayed_iput(BTRFS_I(di_inode));
6360 
6361 		if (ret)
6362 			break;
6363 	}
6364 
6365 	ctx->log_new_dentries = orig_log_new_dentries;
6366 	ctx->logging_new_delayed_dentries = false;
6367 
6368 	return ret;
6369 }
6370 
6371 /* log a single inode in the tree log.
6372  * At least one parent directory for this inode must exist in the tree
6373  * or be logged already.
6374  *
6375  * Any items from this inode changed by the current transaction are copied
6376  * to the log tree.  An extra reference is taken on any extents in this
6377  * file, allowing us to avoid a whole pile of corner cases around logging
6378  * blocks that have been removed from the tree.
6379  *
6380  * See LOG_INODE_ALL and related defines for a description of what inode_only
6381  * does.
6382  *
6383  * This handles both files and directories.
6384  */
6385 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6386 			   struct btrfs_inode *inode,
6387 			   int inode_only,
6388 			   struct btrfs_log_ctx *ctx)
6389 {
6390 	struct btrfs_path *path;
6391 	struct btrfs_path *dst_path;
6392 	struct btrfs_key min_key;
6393 	struct btrfs_key max_key;
6394 	struct btrfs_root *log = inode->root->log_root;
6395 	int ret;
6396 	bool fast_search = false;
6397 	u64 ino = btrfs_ino(inode);
6398 	struct extent_map_tree *em_tree = &inode->extent_tree;
6399 	u64 logged_isize = 0;
6400 	bool need_log_inode_item = true;
6401 	bool xattrs_logged = false;
6402 	bool inode_item_dropped = true;
6403 	bool full_dir_logging = false;
6404 	LIST_HEAD(delayed_ins_list);
6405 	LIST_HEAD(delayed_del_list);
6406 
6407 	path = btrfs_alloc_path();
6408 	if (!path)
6409 		return -ENOMEM;
6410 	dst_path = btrfs_alloc_path();
6411 	if (!dst_path) {
6412 		btrfs_free_path(path);
6413 		return -ENOMEM;
6414 	}
6415 
6416 	min_key.objectid = ino;
6417 	min_key.type = BTRFS_INODE_ITEM_KEY;
6418 	min_key.offset = 0;
6419 
6420 	max_key.objectid = ino;
6421 
6422 
6423 	/* today the code can only do partial logging of directories */
6424 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
6425 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6426 		       &inode->runtime_flags) &&
6427 	     inode_only >= LOG_INODE_EXISTS))
6428 		max_key.type = BTRFS_XATTR_ITEM_KEY;
6429 	else
6430 		max_key.type = (u8)-1;
6431 	max_key.offset = (u64)-1;
6432 
6433 	if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6434 		full_dir_logging = true;
6435 
6436 	/*
6437 	 * If we are logging a directory while we are logging dentries of the
6438 	 * delayed items of some other inode, then we need to flush the delayed
6439 	 * items of this directory and not log the delayed items directly. This
6440 	 * is to prevent more than one level of recursion into btrfs_log_inode()
6441 	 * by having something like this:
6442 	 *
6443 	 *     $ mkdir -p a/b/c/d/e/f/g/h/...
6444 	 *     $ xfs_io -c "fsync" a
6445 	 *
6446 	 * Where all directories in the path did not exist before and are
6447 	 * created in the current transaction.
6448 	 * So in such a case we directly log the delayed items of the main
6449 	 * directory ("a") without flushing them first, while for each of its
6450 	 * subdirectories we flush their delayed items before logging them.
6451 	 * This prevents a potential unbounded recursion like this:
6452 	 *
6453 	 * btrfs_log_inode()
6454 	 *   log_new_delayed_dentries()
6455 	 *      btrfs_log_inode()
6456 	 *        log_new_delayed_dentries()
6457 	 *          btrfs_log_inode()
6458 	 *            log_new_delayed_dentries()
6459 	 *              (...)
6460 	 *
6461 	 * We have thresholds for the maximum number of delayed items to have in
6462 	 * memory, and once they are hit, the items are flushed asynchronously.
6463 	 * However the limit is quite high, so lets prevent deep levels of
6464 	 * recursion to happen by limiting the maximum depth to be 1.
6465 	 */
6466 	if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6467 		ret = btrfs_commit_inode_delayed_items(trans, inode);
6468 		if (ret)
6469 			goto out;
6470 	}
6471 
6472 	mutex_lock(&inode->log_mutex);
6473 
6474 	/*
6475 	 * For symlinks, we must always log their content, which is stored in an
6476 	 * inline extent, otherwise we could end up with an empty symlink after
6477 	 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6478 	 * one attempts to create an empty symlink).
6479 	 * We don't need to worry about flushing delalloc, because when we create
6480 	 * the inline extent when the symlink is created (we never have delalloc
6481 	 * for symlinks).
6482 	 */
6483 	if (S_ISLNK(inode->vfs_inode.i_mode))
6484 		inode_only = LOG_INODE_ALL;
6485 
6486 	/*
6487 	 * Before logging the inode item, cache the value returned by
6488 	 * inode_logged(), because after that we have the need to figure out if
6489 	 * the inode was previously logged in this transaction.
6490 	 */
6491 	ret = inode_logged(trans, inode, path);
6492 	if (ret < 0)
6493 		goto out_unlock;
6494 	ctx->logged_before = (ret == 1);
6495 	ret = 0;
6496 
6497 	/*
6498 	 * This is for cases where logging a directory could result in losing a
6499 	 * a file after replaying the log. For example, if we move a file from a
6500 	 * directory A to a directory B, then fsync directory A, we have no way
6501 	 * to known the file was moved from A to B, so logging just A would
6502 	 * result in losing the file after a log replay.
6503 	 */
6504 	if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6505 		ret = BTRFS_LOG_FORCE_COMMIT;
6506 		goto out_unlock;
6507 	}
6508 
6509 	/*
6510 	 * a brute force approach to making sure we get the most uptodate
6511 	 * copies of everything.
6512 	 */
6513 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
6514 		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6515 		if (ctx->logged_before)
6516 			ret = drop_inode_items(trans, log, path, inode,
6517 					       BTRFS_XATTR_ITEM_KEY);
6518 	} else {
6519 		if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6520 			/*
6521 			 * Make sure the new inode item we write to the log has
6522 			 * the same isize as the current one (if it exists).
6523 			 * This is necessary to prevent data loss after log
6524 			 * replay, and also to prevent doing a wrong expanding
6525 			 * truncate - for e.g. create file, write 4K into offset
6526 			 * 0, fsync, write 4K into offset 4096, add hard link,
6527 			 * fsync some other file (to sync log), power fail - if
6528 			 * we use the inode's current i_size, after log replay
6529 			 * we get a 8Kb file, with the last 4Kb extent as a hole
6530 			 * (zeroes), as if an expanding truncate happened,
6531 			 * instead of getting a file of 4Kb only.
6532 			 */
6533 			ret = logged_inode_size(log, inode, path, &logged_isize);
6534 			if (ret)
6535 				goto out_unlock;
6536 		}
6537 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6538 			     &inode->runtime_flags)) {
6539 			if (inode_only == LOG_INODE_EXISTS) {
6540 				max_key.type = BTRFS_XATTR_ITEM_KEY;
6541 				if (ctx->logged_before)
6542 					ret = drop_inode_items(trans, log, path,
6543 							       inode, max_key.type);
6544 			} else {
6545 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6546 					  &inode->runtime_flags);
6547 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6548 					  &inode->runtime_flags);
6549 				if (ctx->logged_before)
6550 					ret = truncate_inode_items(trans, log,
6551 								   inode, 0, 0);
6552 			}
6553 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6554 					      &inode->runtime_flags) ||
6555 			   inode_only == LOG_INODE_EXISTS) {
6556 			if (inode_only == LOG_INODE_ALL)
6557 				fast_search = true;
6558 			max_key.type = BTRFS_XATTR_ITEM_KEY;
6559 			if (ctx->logged_before)
6560 				ret = drop_inode_items(trans, log, path, inode,
6561 						       max_key.type);
6562 		} else {
6563 			if (inode_only == LOG_INODE_ALL)
6564 				fast_search = true;
6565 			inode_item_dropped = false;
6566 			goto log_extents;
6567 		}
6568 
6569 	}
6570 	if (ret)
6571 		goto out_unlock;
6572 
6573 	/*
6574 	 * If we are logging a directory in full mode, collect the delayed items
6575 	 * before iterating the subvolume tree, so that we don't miss any new
6576 	 * dir index items in case they get flushed while or right after we are
6577 	 * iterating the subvolume tree.
6578 	 */
6579 	if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6580 		btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6581 					    &delayed_del_list);
6582 
6583 	ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6584 				      path, dst_path, logged_isize,
6585 				      inode_only, ctx,
6586 				      &need_log_inode_item);
6587 	if (ret)
6588 		goto out_unlock;
6589 
6590 	btrfs_release_path(path);
6591 	btrfs_release_path(dst_path);
6592 	ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6593 	if (ret)
6594 		goto out_unlock;
6595 	xattrs_logged = true;
6596 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6597 		btrfs_release_path(path);
6598 		btrfs_release_path(dst_path);
6599 		ret = btrfs_log_holes(trans, inode, path);
6600 		if (ret)
6601 			goto out_unlock;
6602 	}
6603 log_extents:
6604 	btrfs_release_path(path);
6605 	btrfs_release_path(dst_path);
6606 	if (need_log_inode_item) {
6607 		ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6608 		if (ret)
6609 			goto out_unlock;
6610 		/*
6611 		 * If we are doing a fast fsync and the inode was logged before
6612 		 * in this transaction, we don't need to log the xattrs because
6613 		 * they were logged before. If xattrs were added, changed or
6614 		 * deleted since the last time we logged the inode, then we have
6615 		 * already logged them because the inode had the runtime flag
6616 		 * BTRFS_INODE_COPY_EVERYTHING set.
6617 		 */
6618 		if (!xattrs_logged && inode->logged_trans < trans->transid) {
6619 			ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6620 			if (ret)
6621 				goto out_unlock;
6622 			btrfs_release_path(path);
6623 		}
6624 	}
6625 	if (fast_search) {
6626 		ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6627 		if (ret)
6628 			goto out_unlock;
6629 	} else if (inode_only == LOG_INODE_ALL) {
6630 		struct extent_map *em, *n;
6631 
6632 		write_lock(&em_tree->lock);
6633 		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6634 			list_del_init(&em->list);
6635 		write_unlock(&em_tree->lock);
6636 	}
6637 
6638 	if (full_dir_logging) {
6639 		ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6640 		if (ret)
6641 			goto out_unlock;
6642 		ret = log_delayed_insertion_items(trans, inode, path,
6643 						  &delayed_ins_list, ctx);
6644 		if (ret)
6645 			goto out_unlock;
6646 		ret = log_delayed_deletion_items(trans, inode, path,
6647 						 &delayed_del_list, ctx);
6648 		if (ret)
6649 			goto out_unlock;
6650 	}
6651 
6652 	spin_lock(&inode->lock);
6653 	inode->logged_trans = trans->transid;
6654 	/*
6655 	 * Don't update last_log_commit if we logged that an inode exists.
6656 	 * We do this for three reasons:
6657 	 *
6658 	 * 1) We might have had buffered writes to this inode that were
6659 	 *    flushed and had their ordered extents completed in this
6660 	 *    transaction, but we did not previously log the inode with
6661 	 *    LOG_INODE_ALL. Later the inode was evicted and after that
6662 	 *    it was loaded again and this LOG_INODE_EXISTS log operation
6663 	 *    happened. We must make sure that if an explicit fsync against
6664 	 *    the inode is performed later, it logs the new extents, an
6665 	 *    updated inode item, etc, and syncs the log. The same logic
6666 	 *    applies to direct IO writes instead of buffered writes.
6667 	 *
6668 	 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6669 	 *    is logged with an i_size of 0 or whatever value was logged
6670 	 *    before. If later the i_size of the inode is increased by a
6671 	 *    truncate operation, the log is synced through an fsync of
6672 	 *    some other inode and then finally an explicit fsync against
6673 	 *    this inode is made, we must make sure this fsync logs the
6674 	 *    inode with the new i_size, the hole between old i_size and
6675 	 *    the new i_size, and syncs the log.
6676 	 *
6677 	 * 3) If we are logging that an ancestor inode exists as part of
6678 	 *    logging a new name from a link or rename operation, don't update
6679 	 *    its last_log_commit - otherwise if an explicit fsync is made
6680 	 *    against an ancestor, the fsync considers the inode in the log
6681 	 *    and doesn't sync the log, resulting in the ancestor missing after
6682 	 *    a power failure unless the log was synced as part of an fsync
6683 	 *    against any other unrelated inode.
6684 	 */
6685 	if (inode_only != LOG_INODE_EXISTS)
6686 		inode->last_log_commit = inode->last_sub_trans;
6687 	spin_unlock(&inode->lock);
6688 
6689 	/*
6690 	 * Reset the last_reflink_trans so that the next fsync does not need to
6691 	 * go through the slower path when logging extents and their checksums.
6692 	 */
6693 	if (inode_only == LOG_INODE_ALL)
6694 		inode->last_reflink_trans = 0;
6695 
6696 out_unlock:
6697 	mutex_unlock(&inode->log_mutex);
6698 out:
6699 	btrfs_free_path(path);
6700 	btrfs_free_path(dst_path);
6701 
6702 	if (ret)
6703 		free_conflicting_inodes(ctx);
6704 	else
6705 		ret = log_conflicting_inodes(trans, inode->root, ctx);
6706 
6707 	if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6708 		if (!ret)
6709 			ret = log_new_delayed_dentries(trans, inode,
6710 						       &delayed_ins_list, ctx);
6711 
6712 		btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6713 					    &delayed_del_list);
6714 	}
6715 
6716 	return ret;
6717 }
6718 
6719 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6720 				 struct btrfs_inode *inode,
6721 				 struct btrfs_log_ctx *ctx)
6722 {
6723 	struct btrfs_fs_info *fs_info = trans->fs_info;
6724 	int ret;
6725 	struct btrfs_path *path;
6726 	struct btrfs_key key;
6727 	struct btrfs_root *root = inode->root;
6728 	const u64 ino = btrfs_ino(inode);
6729 
6730 	path = btrfs_alloc_path();
6731 	if (!path)
6732 		return -ENOMEM;
6733 	path->skip_locking = 1;
6734 	path->search_commit_root = 1;
6735 
6736 	key.objectid = ino;
6737 	key.type = BTRFS_INODE_REF_KEY;
6738 	key.offset = 0;
6739 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6740 	if (ret < 0)
6741 		goto out;
6742 
6743 	while (true) {
6744 		struct extent_buffer *leaf = path->nodes[0];
6745 		int slot = path->slots[0];
6746 		u32 cur_offset = 0;
6747 		u32 item_size;
6748 		unsigned long ptr;
6749 
6750 		if (slot >= btrfs_header_nritems(leaf)) {
6751 			ret = btrfs_next_leaf(root, path);
6752 			if (ret < 0)
6753 				goto out;
6754 			else if (ret > 0)
6755 				break;
6756 			continue;
6757 		}
6758 
6759 		btrfs_item_key_to_cpu(leaf, &key, slot);
6760 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6761 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6762 			break;
6763 
6764 		item_size = btrfs_item_size(leaf, slot);
6765 		ptr = btrfs_item_ptr_offset(leaf, slot);
6766 		while (cur_offset < item_size) {
6767 			struct btrfs_key inode_key;
6768 			struct inode *dir_inode;
6769 
6770 			inode_key.type = BTRFS_INODE_ITEM_KEY;
6771 			inode_key.offset = 0;
6772 
6773 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
6774 				struct btrfs_inode_extref *extref;
6775 
6776 				extref = (struct btrfs_inode_extref *)
6777 					(ptr + cur_offset);
6778 				inode_key.objectid = btrfs_inode_extref_parent(
6779 					leaf, extref);
6780 				cur_offset += sizeof(*extref);
6781 				cur_offset += btrfs_inode_extref_name_len(leaf,
6782 					extref);
6783 			} else {
6784 				inode_key.objectid = key.offset;
6785 				cur_offset = item_size;
6786 			}
6787 
6788 			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6789 					       root);
6790 			/*
6791 			 * If the parent inode was deleted, return an error to
6792 			 * fallback to a transaction commit. This is to prevent
6793 			 * getting an inode that was moved from one parent A to
6794 			 * a parent B, got its former parent A deleted and then
6795 			 * it got fsync'ed, from existing at both parents after
6796 			 * a log replay (and the old parent still existing).
6797 			 * Example:
6798 			 *
6799 			 * mkdir /mnt/A
6800 			 * mkdir /mnt/B
6801 			 * touch /mnt/B/bar
6802 			 * sync
6803 			 * mv /mnt/B/bar /mnt/A/bar
6804 			 * mv -T /mnt/A /mnt/B
6805 			 * fsync /mnt/B/bar
6806 			 * <power fail>
6807 			 *
6808 			 * If we ignore the old parent B which got deleted,
6809 			 * after a log replay we would have file bar linked
6810 			 * at both parents and the old parent B would still
6811 			 * exist.
6812 			 */
6813 			if (IS_ERR(dir_inode)) {
6814 				ret = PTR_ERR(dir_inode);
6815 				goto out;
6816 			}
6817 
6818 			if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6819 				btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6820 				continue;
6821 			}
6822 
6823 			ctx->log_new_dentries = false;
6824 			ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6825 					      LOG_INODE_ALL, ctx);
6826 			if (!ret && ctx->log_new_dentries)
6827 				ret = log_new_dir_dentries(trans,
6828 						   BTRFS_I(dir_inode), ctx);
6829 			btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6830 			if (ret)
6831 				goto out;
6832 		}
6833 		path->slots[0]++;
6834 	}
6835 	ret = 0;
6836 out:
6837 	btrfs_free_path(path);
6838 	return ret;
6839 }
6840 
6841 static int log_new_ancestors(struct btrfs_trans_handle *trans,
6842 			     struct btrfs_root *root,
6843 			     struct btrfs_path *path,
6844 			     struct btrfs_log_ctx *ctx)
6845 {
6846 	struct btrfs_key found_key;
6847 
6848 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6849 
6850 	while (true) {
6851 		struct btrfs_fs_info *fs_info = root->fs_info;
6852 		struct extent_buffer *leaf;
6853 		int slot;
6854 		struct btrfs_key search_key;
6855 		struct inode *inode;
6856 		u64 ino;
6857 		int ret = 0;
6858 
6859 		btrfs_release_path(path);
6860 
6861 		ino = found_key.offset;
6862 
6863 		search_key.objectid = found_key.offset;
6864 		search_key.type = BTRFS_INODE_ITEM_KEY;
6865 		search_key.offset = 0;
6866 		inode = btrfs_iget(fs_info->sb, ino, root);
6867 		if (IS_ERR(inode))
6868 			return PTR_ERR(inode);
6869 
6870 		if (BTRFS_I(inode)->generation >= trans->transid &&
6871 		    need_log_inode(trans, BTRFS_I(inode)))
6872 			ret = btrfs_log_inode(trans, BTRFS_I(inode),
6873 					      LOG_INODE_EXISTS, ctx);
6874 		btrfs_add_delayed_iput(BTRFS_I(inode));
6875 		if (ret)
6876 			return ret;
6877 
6878 		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6879 			break;
6880 
6881 		search_key.type = BTRFS_INODE_REF_KEY;
6882 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6883 		if (ret < 0)
6884 			return ret;
6885 
6886 		leaf = path->nodes[0];
6887 		slot = path->slots[0];
6888 		if (slot >= btrfs_header_nritems(leaf)) {
6889 			ret = btrfs_next_leaf(root, path);
6890 			if (ret < 0)
6891 				return ret;
6892 			else if (ret > 0)
6893 				return -ENOENT;
6894 			leaf = path->nodes[0];
6895 			slot = path->slots[0];
6896 		}
6897 
6898 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6899 		if (found_key.objectid != search_key.objectid ||
6900 		    found_key.type != BTRFS_INODE_REF_KEY)
6901 			return -ENOENT;
6902 	}
6903 	return 0;
6904 }
6905 
6906 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6907 				  struct btrfs_inode *inode,
6908 				  struct dentry *parent,
6909 				  struct btrfs_log_ctx *ctx)
6910 {
6911 	struct btrfs_root *root = inode->root;
6912 	struct dentry *old_parent = NULL;
6913 	struct super_block *sb = inode->vfs_inode.i_sb;
6914 	int ret = 0;
6915 
6916 	while (true) {
6917 		if (!parent || d_really_is_negative(parent) ||
6918 		    sb != parent->d_sb)
6919 			break;
6920 
6921 		inode = BTRFS_I(d_inode(parent));
6922 		if (root != inode->root)
6923 			break;
6924 
6925 		if (inode->generation >= trans->transid &&
6926 		    need_log_inode(trans, inode)) {
6927 			ret = btrfs_log_inode(trans, inode,
6928 					      LOG_INODE_EXISTS, ctx);
6929 			if (ret)
6930 				break;
6931 		}
6932 		if (IS_ROOT(parent))
6933 			break;
6934 
6935 		parent = dget_parent(parent);
6936 		dput(old_parent);
6937 		old_parent = parent;
6938 	}
6939 	dput(old_parent);
6940 
6941 	return ret;
6942 }
6943 
6944 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6945 				 struct btrfs_inode *inode,
6946 				 struct dentry *parent,
6947 				 struct btrfs_log_ctx *ctx)
6948 {
6949 	struct btrfs_root *root = inode->root;
6950 	const u64 ino = btrfs_ino(inode);
6951 	struct btrfs_path *path;
6952 	struct btrfs_key search_key;
6953 	int ret;
6954 
6955 	/*
6956 	 * For a single hard link case, go through a fast path that does not
6957 	 * need to iterate the fs/subvolume tree.
6958 	 */
6959 	if (inode->vfs_inode.i_nlink < 2)
6960 		return log_new_ancestors_fast(trans, inode, parent, ctx);
6961 
6962 	path = btrfs_alloc_path();
6963 	if (!path)
6964 		return -ENOMEM;
6965 
6966 	search_key.objectid = ino;
6967 	search_key.type = BTRFS_INODE_REF_KEY;
6968 	search_key.offset = 0;
6969 again:
6970 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6971 	if (ret < 0)
6972 		goto out;
6973 	if (ret == 0)
6974 		path->slots[0]++;
6975 
6976 	while (true) {
6977 		struct extent_buffer *leaf = path->nodes[0];
6978 		int slot = path->slots[0];
6979 		struct btrfs_key found_key;
6980 
6981 		if (slot >= btrfs_header_nritems(leaf)) {
6982 			ret = btrfs_next_leaf(root, path);
6983 			if (ret < 0)
6984 				goto out;
6985 			else if (ret > 0)
6986 				break;
6987 			continue;
6988 		}
6989 
6990 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6991 		if (found_key.objectid != ino ||
6992 		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6993 			break;
6994 
6995 		/*
6996 		 * Don't deal with extended references because they are rare
6997 		 * cases and too complex to deal with (we would need to keep
6998 		 * track of which subitem we are processing for each item in
6999 		 * this loop, etc). So just return some error to fallback to
7000 		 * a transaction commit.
7001 		 */
7002 		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
7003 			ret = -EMLINK;
7004 			goto out;
7005 		}
7006 
7007 		/*
7008 		 * Logging ancestors needs to do more searches on the fs/subvol
7009 		 * tree, so it releases the path as needed to avoid deadlocks.
7010 		 * Keep track of the last inode ref key and resume from that key
7011 		 * after logging all new ancestors for the current hard link.
7012 		 */
7013 		memcpy(&search_key, &found_key, sizeof(search_key));
7014 
7015 		ret = log_new_ancestors(trans, root, path, ctx);
7016 		if (ret)
7017 			goto out;
7018 		btrfs_release_path(path);
7019 		goto again;
7020 	}
7021 	ret = 0;
7022 out:
7023 	btrfs_free_path(path);
7024 	return ret;
7025 }
7026 
7027 /*
7028  * helper function around btrfs_log_inode to make sure newly created
7029  * parent directories also end up in the log.  A minimal inode and backref
7030  * only logging is done of any parent directories that are older than
7031  * the last committed transaction
7032  */
7033 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
7034 				  struct btrfs_inode *inode,
7035 				  struct dentry *parent,
7036 				  int inode_only,
7037 				  struct btrfs_log_ctx *ctx)
7038 {
7039 	struct btrfs_root *root = inode->root;
7040 	struct btrfs_fs_info *fs_info = root->fs_info;
7041 	int ret = 0;
7042 	bool log_dentries = false;
7043 
7044 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
7045 		ret = BTRFS_LOG_FORCE_COMMIT;
7046 		goto end_no_trans;
7047 	}
7048 
7049 	if (btrfs_root_refs(&root->root_item) == 0) {
7050 		ret = BTRFS_LOG_FORCE_COMMIT;
7051 		goto end_no_trans;
7052 	}
7053 
7054 	/*
7055 	 * Skip already logged inodes or inodes corresponding to tmpfiles
7056 	 * (since logging them is pointless, a link count of 0 means they
7057 	 * will never be accessible).
7058 	 */
7059 	if ((btrfs_inode_in_log(inode, trans->transid) &&
7060 	     list_empty(&ctx->ordered_extents)) ||
7061 	    inode->vfs_inode.i_nlink == 0) {
7062 		ret = BTRFS_NO_LOG_SYNC;
7063 		goto end_no_trans;
7064 	}
7065 
7066 	ret = start_log_trans(trans, root, ctx);
7067 	if (ret)
7068 		goto end_no_trans;
7069 
7070 	ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7071 	if (ret)
7072 		goto end_trans;
7073 
7074 	/*
7075 	 * for regular files, if its inode is already on disk, we don't
7076 	 * have to worry about the parents at all.  This is because
7077 	 * we can use the last_unlink_trans field to record renames
7078 	 * and other fun in this file.
7079 	 */
7080 	if (S_ISREG(inode->vfs_inode.i_mode) &&
7081 	    inode->generation < trans->transid &&
7082 	    inode->last_unlink_trans < trans->transid) {
7083 		ret = 0;
7084 		goto end_trans;
7085 	}
7086 
7087 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7088 		log_dentries = true;
7089 
7090 	/*
7091 	 * On unlink we must make sure all our current and old parent directory
7092 	 * inodes are fully logged. This is to prevent leaving dangling
7093 	 * directory index entries in directories that were our parents but are
7094 	 * not anymore. Not doing this results in old parent directory being
7095 	 * impossible to delete after log replay (rmdir will always fail with
7096 	 * error -ENOTEMPTY).
7097 	 *
7098 	 * Example 1:
7099 	 *
7100 	 * mkdir testdir
7101 	 * touch testdir/foo
7102 	 * ln testdir/foo testdir/bar
7103 	 * sync
7104 	 * unlink testdir/bar
7105 	 * xfs_io -c fsync testdir/foo
7106 	 * <power failure>
7107 	 * mount fs, triggers log replay
7108 	 *
7109 	 * If we don't log the parent directory (testdir), after log replay the
7110 	 * directory still has an entry pointing to the file inode using the bar
7111 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7112 	 * the file inode has a link count of 1.
7113 	 *
7114 	 * Example 2:
7115 	 *
7116 	 * mkdir testdir
7117 	 * touch foo
7118 	 * ln foo testdir/foo2
7119 	 * ln foo testdir/foo3
7120 	 * sync
7121 	 * unlink testdir/foo3
7122 	 * xfs_io -c fsync foo
7123 	 * <power failure>
7124 	 * mount fs, triggers log replay
7125 	 *
7126 	 * Similar as the first example, after log replay the parent directory
7127 	 * testdir still has an entry pointing to the inode file with name foo3
7128 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7129 	 * and has a link count of 2.
7130 	 */
7131 	if (inode->last_unlink_trans >= trans->transid) {
7132 		ret = btrfs_log_all_parents(trans, inode, ctx);
7133 		if (ret)
7134 			goto end_trans;
7135 	}
7136 
7137 	ret = log_all_new_ancestors(trans, inode, parent, ctx);
7138 	if (ret)
7139 		goto end_trans;
7140 
7141 	if (log_dentries)
7142 		ret = log_new_dir_dentries(trans, inode, ctx);
7143 	else
7144 		ret = 0;
7145 end_trans:
7146 	if (ret < 0) {
7147 		btrfs_set_log_full_commit(trans);
7148 		ret = BTRFS_LOG_FORCE_COMMIT;
7149 	}
7150 
7151 	if (ret)
7152 		btrfs_remove_log_ctx(root, ctx);
7153 	btrfs_end_log_trans(root);
7154 end_no_trans:
7155 	return ret;
7156 }
7157 
7158 /*
7159  * it is not safe to log dentry if the chunk root has added new
7160  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
7161  * If this returns 1, you must commit the transaction to safely get your
7162  * data on disk.
7163  */
7164 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7165 			  struct dentry *dentry,
7166 			  struct btrfs_log_ctx *ctx)
7167 {
7168 	struct dentry *parent = dget_parent(dentry);
7169 	int ret;
7170 
7171 	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7172 				     LOG_INODE_ALL, ctx);
7173 	dput(parent);
7174 
7175 	return ret;
7176 }
7177 
7178 /*
7179  * should be called during mount to recover any replay any log trees
7180  * from the FS
7181  */
7182 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7183 {
7184 	int ret;
7185 	struct btrfs_path *path;
7186 	struct btrfs_trans_handle *trans;
7187 	struct btrfs_key key;
7188 	struct btrfs_key found_key;
7189 	struct btrfs_root *log;
7190 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7191 	struct walk_control wc = {
7192 		.process_func = process_one_buffer,
7193 		.stage = LOG_WALK_PIN_ONLY,
7194 	};
7195 
7196 	path = btrfs_alloc_path();
7197 	if (!path)
7198 		return -ENOMEM;
7199 
7200 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7201 
7202 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
7203 	if (IS_ERR(trans)) {
7204 		ret = PTR_ERR(trans);
7205 		goto error;
7206 	}
7207 
7208 	wc.trans = trans;
7209 	wc.pin = 1;
7210 
7211 	ret = walk_log_tree(trans, log_root_tree, &wc);
7212 	if (ret) {
7213 		btrfs_abort_transaction(trans, ret);
7214 		goto error;
7215 	}
7216 
7217 again:
7218 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
7219 	key.offset = (u64)-1;
7220 	key.type = BTRFS_ROOT_ITEM_KEY;
7221 
7222 	while (1) {
7223 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7224 
7225 		if (ret < 0) {
7226 			btrfs_abort_transaction(trans, ret);
7227 			goto error;
7228 		}
7229 		if (ret > 0) {
7230 			if (path->slots[0] == 0)
7231 				break;
7232 			path->slots[0]--;
7233 		}
7234 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7235 				      path->slots[0]);
7236 		btrfs_release_path(path);
7237 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7238 			break;
7239 
7240 		log = btrfs_read_tree_root(log_root_tree, &found_key);
7241 		if (IS_ERR(log)) {
7242 			ret = PTR_ERR(log);
7243 			btrfs_abort_transaction(trans, ret);
7244 			goto error;
7245 		}
7246 
7247 		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7248 						   true);
7249 		if (IS_ERR(wc.replay_dest)) {
7250 			ret = PTR_ERR(wc.replay_dest);
7251 
7252 			/*
7253 			 * We didn't find the subvol, likely because it was
7254 			 * deleted.  This is ok, simply skip this log and go to
7255 			 * the next one.
7256 			 *
7257 			 * We need to exclude the root because we can't have
7258 			 * other log replays overwriting this log as we'll read
7259 			 * it back in a few more times.  This will keep our
7260 			 * block from being modified, and we'll just bail for
7261 			 * each subsequent pass.
7262 			 */
7263 			if (ret == -ENOENT)
7264 				ret = btrfs_pin_extent_for_log_replay(trans, log->node);
7265 			btrfs_put_root(log);
7266 
7267 			if (!ret)
7268 				goto next;
7269 			btrfs_abort_transaction(trans, ret);
7270 			goto error;
7271 		}
7272 
7273 		wc.replay_dest->log_root = log;
7274 		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7275 		if (ret)
7276 			/* The loop needs to continue due to the root refs */
7277 			btrfs_abort_transaction(trans, ret);
7278 		else
7279 			ret = walk_log_tree(trans, log, &wc);
7280 
7281 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7282 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
7283 						      path);
7284 			if (ret)
7285 				btrfs_abort_transaction(trans, ret);
7286 		}
7287 
7288 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7289 			struct btrfs_root *root = wc.replay_dest;
7290 
7291 			btrfs_release_path(path);
7292 
7293 			/*
7294 			 * We have just replayed everything, and the highest
7295 			 * objectid of fs roots probably has changed in case
7296 			 * some inode_item's got replayed.
7297 			 *
7298 			 * root->objectid_mutex is not acquired as log replay
7299 			 * could only happen during mount.
7300 			 */
7301 			ret = btrfs_init_root_free_objectid(root);
7302 			if (ret)
7303 				btrfs_abort_transaction(trans, ret);
7304 		}
7305 
7306 		wc.replay_dest->log_root = NULL;
7307 		btrfs_put_root(wc.replay_dest);
7308 		btrfs_put_root(log);
7309 
7310 		if (ret)
7311 			goto error;
7312 next:
7313 		if (found_key.offset == 0)
7314 			break;
7315 		key.offset = found_key.offset - 1;
7316 	}
7317 	btrfs_release_path(path);
7318 
7319 	/* step one is to pin it all, step two is to replay just inodes */
7320 	if (wc.pin) {
7321 		wc.pin = 0;
7322 		wc.process_func = replay_one_buffer;
7323 		wc.stage = LOG_WALK_REPLAY_INODES;
7324 		goto again;
7325 	}
7326 	/* step three is to replay everything */
7327 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
7328 		wc.stage++;
7329 		goto again;
7330 	}
7331 
7332 	btrfs_free_path(path);
7333 
7334 	/* step 4: commit the transaction, which also unpins the blocks */
7335 	ret = btrfs_commit_transaction(trans);
7336 	if (ret)
7337 		return ret;
7338 
7339 	log_root_tree->log_root = NULL;
7340 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7341 	btrfs_put_root(log_root_tree);
7342 
7343 	return 0;
7344 error:
7345 	if (wc.trans)
7346 		btrfs_end_transaction(wc.trans);
7347 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7348 	btrfs_free_path(path);
7349 	return ret;
7350 }
7351 
7352 /*
7353  * there are some corner cases where we want to force a full
7354  * commit instead of allowing a directory to be logged.
7355  *
7356  * They revolve around files there were unlinked from the directory, and
7357  * this function updates the parent directory so that a full commit is
7358  * properly done if it is fsync'd later after the unlinks are done.
7359  *
7360  * Must be called before the unlink operations (updates to the subvolume tree,
7361  * inodes, etc) are done.
7362  */
7363 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7364 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
7365 			     bool for_rename)
7366 {
7367 	/*
7368 	 * when we're logging a file, if it hasn't been renamed
7369 	 * or unlinked, and its inode is fully committed on disk,
7370 	 * we don't have to worry about walking up the directory chain
7371 	 * to log its parents.
7372 	 *
7373 	 * So, we use the last_unlink_trans field to put this transid
7374 	 * into the file.  When the file is logged we check it and
7375 	 * don't log the parents if the file is fully on disk.
7376 	 */
7377 	mutex_lock(&inode->log_mutex);
7378 	inode->last_unlink_trans = trans->transid;
7379 	mutex_unlock(&inode->log_mutex);
7380 
7381 	if (!for_rename)
7382 		return;
7383 
7384 	/*
7385 	 * If this directory was already logged, any new names will be logged
7386 	 * with btrfs_log_new_name() and old names will be deleted from the log
7387 	 * tree with btrfs_del_dir_entries_in_log() or with
7388 	 * btrfs_del_inode_ref_in_log().
7389 	 */
7390 	if (inode_logged(trans, dir, NULL) == 1)
7391 		return;
7392 
7393 	/*
7394 	 * If the inode we're about to unlink was logged before, the log will be
7395 	 * properly updated with the new name with btrfs_log_new_name() and the
7396 	 * old name removed with btrfs_del_dir_entries_in_log() or with
7397 	 * btrfs_del_inode_ref_in_log().
7398 	 */
7399 	if (inode_logged(trans, inode, NULL) == 1)
7400 		return;
7401 
7402 	/*
7403 	 * when renaming files across directories, if the directory
7404 	 * there we're unlinking from gets fsync'd later on, there's
7405 	 * no way to find the destination directory later and fsync it
7406 	 * properly.  So, we have to be conservative and force commits
7407 	 * so the new name gets discovered.
7408 	 */
7409 	mutex_lock(&dir->log_mutex);
7410 	dir->last_unlink_trans = trans->transid;
7411 	mutex_unlock(&dir->log_mutex);
7412 }
7413 
7414 /*
7415  * Make sure that if someone attempts to fsync the parent directory of a deleted
7416  * snapshot, it ends up triggering a transaction commit. This is to guarantee
7417  * that after replaying the log tree of the parent directory's root we will not
7418  * see the snapshot anymore and at log replay time we will not see any log tree
7419  * corresponding to the deleted snapshot's root, which could lead to replaying
7420  * it after replaying the log tree of the parent directory (which would replay
7421  * the snapshot delete operation).
7422  *
7423  * Must be called before the actual snapshot destroy operation (updates to the
7424  * parent root and tree of tree roots trees, etc) are done.
7425  */
7426 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7427 				   struct btrfs_inode *dir)
7428 {
7429 	mutex_lock(&dir->log_mutex);
7430 	dir->last_unlink_trans = trans->transid;
7431 	mutex_unlock(&dir->log_mutex);
7432 }
7433 
7434 /*
7435  * Update the log after adding a new name for an inode.
7436  *
7437  * @trans:              Transaction handle.
7438  * @old_dentry:         The dentry associated with the old name and the old
7439  *                      parent directory.
7440  * @old_dir:            The inode of the previous parent directory for the case
7441  *                      of a rename. For a link operation, it must be NULL.
7442  * @old_dir_index:      The index number associated with the old name, meaningful
7443  *                      only for rename operations (when @old_dir is not NULL).
7444  *                      Ignored for link operations.
7445  * @parent:             The dentry associated with the directory under which the
7446  *                      new name is located.
7447  *
7448  * Call this after adding a new name for an inode, as a result of a link or
7449  * rename operation, and it will properly update the log to reflect the new name.
7450  */
7451 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7452 			struct dentry *old_dentry, struct btrfs_inode *old_dir,
7453 			u64 old_dir_index, struct dentry *parent)
7454 {
7455 	struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7456 	struct btrfs_root *root = inode->root;
7457 	struct btrfs_log_ctx ctx;
7458 	bool log_pinned = false;
7459 	int ret;
7460 
7461 	/*
7462 	 * this will force the logging code to walk the dentry chain
7463 	 * up for the file
7464 	 */
7465 	if (!S_ISDIR(inode->vfs_inode.i_mode))
7466 		inode->last_unlink_trans = trans->transid;
7467 
7468 	/*
7469 	 * if this inode hasn't been logged and directory we're renaming it
7470 	 * from hasn't been logged, we don't need to log it
7471 	 */
7472 	ret = inode_logged(trans, inode, NULL);
7473 	if (ret < 0) {
7474 		goto out;
7475 	} else if (ret == 0) {
7476 		if (!old_dir)
7477 			return;
7478 		/*
7479 		 * If the inode was not logged and we are doing a rename (old_dir is not
7480 		 * NULL), check if old_dir was logged - if it was not we can return and
7481 		 * do nothing.
7482 		 */
7483 		ret = inode_logged(trans, old_dir, NULL);
7484 		if (ret < 0)
7485 			goto out;
7486 		else if (ret == 0)
7487 			return;
7488 	}
7489 	ret = 0;
7490 
7491 	/*
7492 	 * If we are doing a rename (old_dir is not NULL) from a directory that
7493 	 * was previously logged, make sure that on log replay we get the old
7494 	 * dir entry deleted. This is needed because we will also log the new
7495 	 * name of the renamed inode, so we need to make sure that after log
7496 	 * replay we don't end up with both the new and old dir entries existing.
7497 	 */
7498 	if (old_dir && old_dir->logged_trans == trans->transid) {
7499 		struct btrfs_root *log = old_dir->root->log_root;
7500 		struct btrfs_path *path;
7501 		struct fscrypt_name fname;
7502 
7503 		ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7504 
7505 		ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7506 					     &old_dentry->d_name, 0, &fname);
7507 		if (ret)
7508 			goto out;
7509 		/*
7510 		 * We have two inodes to update in the log, the old directory and
7511 		 * the inode that got renamed, so we must pin the log to prevent
7512 		 * anyone from syncing the log until we have updated both inodes
7513 		 * in the log.
7514 		 */
7515 		ret = join_running_log_trans(root);
7516 		/*
7517 		 * At least one of the inodes was logged before, so this should
7518 		 * not fail, but if it does, it's not serious, just bail out and
7519 		 * mark the log for a full commit.
7520 		 */
7521 		if (WARN_ON_ONCE(ret < 0)) {
7522 			fscrypt_free_filename(&fname);
7523 			goto out;
7524 		}
7525 
7526 		log_pinned = true;
7527 
7528 		path = btrfs_alloc_path();
7529 		if (!path) {
7530 			ret = -ENOMEM;
7531 			fscrypt_free_filename(&fname);
7532 			goto out;
7533 		}
7534 
7535 		/*
7536 		 * Other concurrent task might be logging the old directory,
7537 		 * as it can be triggered when logging other inode that had or
7538 		 * still has a dentry in the old directory. We lock the old
7539 		 * directory's log_mutex to ensure the deletion of the old
7540 		 * name is persisted, because during directory logging we
7541 		 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7542 		 * the old name's dir index item is in the delayed items, so
7543 		 * it could be missed by an in progress directory logging.
7544 		 */
7545 		mutex_lock(&old_dir->log_mutex);
7546 		ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7547 					&fname.disk_name, old_dir_index);
7548 		if (ret > 0) {
7549 			/*
7550 			 * The dentry does not exist in the log, so record its
7551 			 * deletion.
7552 			 */
7553 			btrfs_release_path(path);
7554 			ret = insert_dir_log_key(trans, log, path,
7555 						 btrfs_ino(old_dir),
7556 						 old_dir_index, old_dir_index);
7557 		}
7558 		mutex_unlock(&old_dir->log_mutex);
7559 
7560 		btrfs_free_path(path);
7561 		fscrypt_free_filename(&fname);
7562 		if (ret < 0)
7563 			goto out;
7564 	}
7565 
7566 	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7567 	ctx.logging_new_name = true;
7568 	btrfs_init_log_ctx_scratch_eb(&ctx);
7569 	/*
7570 	 * We don't care about the return value. If we fail to log the new name
7571 	 * then we know the next attempt to sync the log will fallback to a full
7572 	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7573 	 * we don't need to worry about getting a log committed that has an
7574 	 * inconsistent state after a rename operation.
7575 	 */
7576 	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7577 	free_extent_buffer(ctx.scratch_eb);
7578 	ASSERT(list_empty(&ctx.conflict_inodes));
7579 out:
7580 	/*
7581 	 * If an error happened mark the log for a full commit because it's not
7582 	 * consistent and up to date or we couldn't find out if one of the
7583 	 * inodes was logged before in this transaction. Do it before unpinning
7584 	 * the log, to avoid any races with someone else trying to commit it.
7585 	 */
7586 	if (ret < 0)
7587 		btrfs_set_log_full_commit(trans);
7588 	if (log_pinned)
7589 		btrfs_end_log_trans(root);
7590 }
7591 
7592