xref: /linux/fs/btrfs/tree-log.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "tree-log.h"
24 #include "disk-io.h"
25 #include "locking.h"
26 #include "print-tree.h"
27 #include "backref.h"
28 #include "hash.h"
29 #include "compression.h"
30 #include "qgroup.h"
31 
32 /* magic values for the inode_only field in btrfs_log_inode:
33  *
34  * LOG_INODE_ALL means to log everything
35  * LOG_INODE_EXISTS means to log just enough to recreate the inode
36  * during log replay
37  */
38 #define LOG_INODE_ALL 0
39 #define LOG_INODE_EXISTS 1
40 #define LOG_OTHER_INODE 2
41 
42 /*
43  * directory trouble cases
44  *
45  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
46  * log, we must force a full commit before doing an fsync of the directory
47  * where the unlink was done.
48  * ---> record transid of last unlink/rename per directory
49  *
50  * mkdir foo/some_dir
51  * normal commit
52  * rename foo/some_dir foo2/some_dir
53  * mkdir foo/some_dir
54  * fsync foo/some_dir/some_file
55  *
56  * The fsync above will unlink the original some_dir without recording
57  * it in its new location (foo2).  After a crash, some_dir will be gone
58  * unless the fsync of some_file forces a full commit
59  *
60  * 2) we must log any new names for any file or dir that is in the fsync
61  * log. ---> check inode while renaming/linking.
62  *
63  * 2a) we must log any new names for any file or dir during rename
64  * when the directory they are being removed from was logged.
65  * ---> check inode and old parent dir during rename
66  *
67  *  2a is actually the more important variant.  With the extra logging
68  *  a crash might unlink the old name without recreating the new one
69  *
70  * 3) after a crash, we must go through any directories with a link count
71  * of zero and redo the rm -rf
72  *
73  * mkdir f1/foo
74  * normal commit
75  * rm -rf f1/foo
76  * fsync(f1)
77  *
78  * The directory f1 was fully removed from the FS, but fsync was never
79  * called on f1, only its parent dir.  After a crash the rm -rf must
80  * be replayed.  This must be able to recurse down the entire
81  * directory tree.  The inode link count fixup code takes care of the
82  * ugly details.
83  */
84 
85 /*
86  * stages for the tree walking.  The first
87  * stage (0) is to only pin down the blocks we find
88  * the second stage (1) is to make sure that all the inodes
89  * we find in the log are created in the subvolume.
90  *
91  * The last stage is to deal with directories and links and extents
92  * and all the other fun semantics
93  */
94 #define LOG_WALK_PIN_ONLY 0
95 #define LOG_WALK_REPLAY_INODES 1
96 #define LOG_WALK_REPLAY_DIR_INDEX 2
97 #define LOG_WALK_REPLAY_ALL 3
98 
99 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
100 			   struct btrfs_root *root, struct btrfs_inode *inode,
101 			   int inode_only,
102 			   const loff_t start,
103 			   const loff_t end,
104 			   struct btrfs_log_ctx *ctx);
105 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
106 			     struct btrfs_root *root,
107 			     struct btrfs_path *path, u64 objectid);
108 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
109 				       struct btrfs_root *root,
110 				       struct btrfs_root *log,
111 				       struct btrfs_path *path,
112 				       u64 dirid, int del_all);
113 
114 /*
115  * tree logging is a special write ahead log used to make sure that
116  * fsyncs and O_SYNCs can happen without doing full tree commits.
117  *
118  * Full tree commits are expensive because they require commonly
119  * modified blocks to be recowed, creating many dirty pages in the
120  * extent tree an 4x-6x higher write load than ext3.
121  *
122  * Instead of doing a tree commit on every fsync, we use the
123  * key ranges and transaction ids to find items for a given file or directory
124  * that have changed in this transaction.  Those items are copied into
125  * a special tree (one per subvolume root), that tree is written to disk
126  * and then the fsync is considered complete.
127  *
128  * After a crash, items are copied out of the log-tree back into the
129  * subvolume tree.  Any file data extents found are recorded in the extent
130  * allocation tree, and the log-tree freed.
131  *
132  * The log tree is read three times, once to pin down all the extents it is
133  * using in ram and once, once to create all the inodes logged in the tree
134  * and once to do all the other items.
135  */
136 
137 /*
138  * start a sub transaction and setup the log tree
139  * this increments the log tree writer count to make the people
140  * syncing the tree wait for us to finish
141  */
142 static int start_log_trans(struct btrfs_trans_handle *trans,
143 			   struct btrfs_root *root,
144 			   struct btrfs_log_ctx *ctx)
145 {
146 	struct btrfs_fs_info *fs_info = root->fs_info;
147 	int ret = 0;
148 
149 	mutex_lock(&root->log_mutex);
150 
151 	if (root->log_root) {
152 		if (btrfs_need_log_full_commit(fs_info, trans)) {
153 			ret = -EAGAIN;
154 			goto out;
155 		}
156 
157 		if (!root->log_start_pid) {
158 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
159 			root->log_start_pid = current->pid;
160 		} else if (root->log_start_pid != current->pid) {
161 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
162 		}
163 	} else {
164 		mutex_lock(&fs_info->tree_log_mutex);
165 		if (!fs_info->log_root_tree)
166 			ret = btrfs_init_log_root_tree(trans, fs_info);
167 		mutex_unlock(&fs_info->tree_log_mutex);
168 		if (ret)
169 			goto out;
170 
171 		ret = btrfs_add_log_tree(trans, root);
172 		if (ret)
173 			goto out;
174 
175 		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
176 		root->log_start_pid = current->pid;
177 	}
178 
179 	atomic_inc(&root->log_batch);
180 	atomic_inc(&root->log_writers);
181 	if (ctx) {
182 		int index = root->log_transid % 2;
183 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
184 		ctx->log_transid = root->log_transid;
185 	}
186 
187 out:
188 	mutex_unlock(&root->log_mutex);
189 	return ret;
190 }
191 
192 /*
193  * returns 0 if there was a log transaction running and we were able
194  * to join, or returns -ENOENT if there were not transactions
195  * in progress
196  */
197 static int join_running_log_trans(struct btrfs_root *root)
198 {
199 	int ret = -ENOENT;
200 
201 	smp_mb();
202 	if (!root->log_root)
203 		return -ENOENT;
204 
205 	mutex_lock(&root->log_mutex);
206 	if (root->log_root) {
207 		ret = 0;
208 		atomic_inc(&root->log_writers);
209 	}
210 	mutex_unlock(&root->log_mutex);
211 	return ret;
212 }
213 
214 /*
215  * This either makes the current running log transaction wait
216  * until you call btrfs_end_log_trans() or it makes any future
217  * log transactions wait until you call btrfs_end_log_trans()
218  */
219 int btrfs_pin_log_trans(struct btrfs_root *root)
220 {
221 	int ret = -ENOENT;
222 
223 	mutex_lock(&root->log_mutex);
224 	atomic_inc(&root->log_writers);
225 	mutex_unlock(&root->log_mutex);
226 	return ret;
227 }
228 
229 /*
230  * indicate we're done making changes to the log tree
231  * and wake up anyone waiting to do a sync
232  */
233 void btrfs_end_log_trans(struct btrfs_root *root)
234 {
235 	if (atomic_dec_and_test(&root->log_writers)) {
236 		/*
237 		 * Implicit memory barrier after atomic_dec_and_test
238 		 */
239 		if (waitqueue_active(&root->log_writer_wait))
240 			wake_up(&root->log_writer_wait);
241 	}
242 }
243 
244 
245 /*
246  * the walk control struct is used to pass state down the chain when
247  * processing the log tree.  The stage field tells us which part
248  * of the log tree processing we are currently doing.  The others
249  * are state fields used for that specific part
250  */
251 struct walk_control {
252 	/* should we free the extent on disk when done?  This is used
253 	 * at transaction commit time while freeing a log tree
254 	 */
255 	int free;
256 
257 	/* should we write out the extent buffer?  This is used
258 	 * while flushing the log tree to disk during a sync
259 	 */
260 	int write;
261 
262 	/* should we wait for the extent buffer io to finish?  Also used
263 	 * while flushing the log tree to disk for a sync
264 	 */
265 	int wait;
266 
267 	/* pin only walk, we record which extents on disk belong to the
268 	 * log trees
269 	 */
270 	int pin;
271 
272 	/* what stage of the replay code we're currently in */
273 	int stage;
274 
275 	/* the root we are currently replaying */
276 	struct btrfs_root *replay_dest;
277 
278 	/* the trans handle for the current replay */
279 	struct btrfs_trans_handle *trans;
280 
281 	/* the function that gets used to process blocks we find in the
282 	 * tree.  Note the extent_buffer might not be up to date when it is
283 	 * passed in, and it must be checked or read if you need the data
284 	 * inside it
285 	 */
286 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
287 			    struct walk_control *wc, u64 gen);
288 };
289 
290 /*
291  * process_func used to pin down extents, write them or wait on them
292  */
293 static int process_one_buffer(struct btrfs_root *log,
294 			      struct extent_buffer *eb,
295 			      struct walk_control *wc, u64 gen)
296 {
297 	struct btrfs_fs_info *fs_info = log->fs_info;
298 	int ret = 0;
299 
300 	/*
301 	 * If this fs is mixed then we need to be able to process the leaves to
302 	 * pin down any logged extents, so we have to read the block.
303 	 */
304 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
305 		ret = btrfs_read_buffer(eb, gen);
306 		if (ret)
307 			return ret;
308 	}
309 
310 	if (wc->pin)
311 		ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
312 						      eb->len);
313 
314 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
315 		if (wc->pin && btrfs_header_level(eb) == 0)
316 			ret = btrfs_exclude_logged_extents(fs_info, eb);
317 		if (wc->write)
318 			btrfs_write_tree_block(eb);
319 		if (wc->wait)
320 			btrfs_wait_tree_block_writeback(eb);
321 	}
322 	return ret;
323 }
324 
325 /*
326  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
327  * to the src data we are copying out.
328  *
329  * root is the tree we are copying into, and path is a scratch
330  * path for use in this function (it should be released on entry and
331  * will be released on exit).
332  *
333  * If the key is already in the destination tree the existing item is
334  * overwritten.  If the existing item isn't big enough, it is extended.
335  * If it is too large, it is truncated.
336  *
337  * If the key isn't in the destination yet, a new item is inserted.
338  */
339 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
340 				   struct btrfs_root *root,
341 				   struct btrfs_path *path,
342 				   struct extent_buffer *eb, int slot,
343 				   struct btrfs_key *key)
344 {
345 	struct btrfs_fs_info *fs_info = root->fs_info;
346 	int ret;
347 	u32 item_size;
348 	u64 saved_i_size = 0;
349 	int save_old_i_size = 0;
350 	unsigned long src_ptr;
351 	unsigned long dst_ptr;
352 	int overwrite_root = 0;
353 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
354 
355 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
356 		overwrite_root = 1;
357 
358 	item_size = btrfs_item_size_nr(eb, slot);
359 	src_ptr = btrfs_item_ptr_offset(eb, slot);
360 
361 	/* look for the key in the destination tree */
362 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
363 	if (ret < 0)
364 		return ret;
365 
366 	if (ret == 0) {
367 		char *src_copy;
368 		char *dst_copy;
369 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
370 						  path->slots[0]);
371 		if (dst_size != item_size)
372 			goto insert;
373 
374 		if (item_size == 0) {
375 			btrfs_release_path(path);
376 			return 0;
377 		}
378 		dst_copy = kmalloc(item_size, GFP_NOFS);
379 		src_copy = kmalloc(item_size, GFP_NOFS);
380 		if (!dst_copy || !src_copy) {
381 			btrfs_release_path(path);
382 			kfree(dst_copy);
383 			kfree(src_copy);
384 			return -ENOMEM;
385 		}
386 
387 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
388 
389 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
390 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
391 				   item_size);
392 		ret = memcmp(dst_copy, src_copy, item_size);
393 
394 		kfree(dst_copy);
395 		kfree(src_copy);
396 		/*
397 		 * they have the same contents, just return, this saves
398 		 * us from cowing blocks in the destination tree and doing
399 		 * extra writes that may not have been done by a previous
400 		 * sync
401 		 */
402 		if (ret == 0) {
403 			btrfs_release_path(path);
404 			return 0;
405 		}
406 
407 		/*
408 		 * We need to load the old nbytes into the inode so when we
409 		 * replay the extents we've logged we get the right nbytes.
410 		 */
411 		if (inode_item) {
412 			struct btrfs_inode_item *item;
413 			u64 nbytes;
414 			u32 mode;
415 
416 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
417 					      struct btrfs_inode_item);
418 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
419 			item = btrfs_item_ptr(eb, slot,
420 					      struct btrfs_inode_item);
421 			btrfs_set_inode_nbytes(eb, item, nbytes);
422 
423 			/*
424 			 * If this is a directory we need to reset the i_size to
425 			 * 0 so that we can set it up properly when replaying
426 			 * the rest of the items in this log.
427 			 */
428 			mode = btrfs_inode_mode(eb, item);
429 			if (S_ISDIR(mode))
430 				btrfs_set_inode_size(eb, item, 0);
431 		}
432 	} else if (inode_item) {
433 		struct btrfs_inode_item *item;
434 		u32 mode;
435 
436 		/*
437 		 * New inode, set nbytes to 0 so that the nbytes comes out
438 		 * properly when we replay the extents.
439 		 */
440 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
441 		btrfs_set_inode_nbytes(eb, item, 0);
442 
443 		/*
444 		 * If this is a directory we need to reset the i_size to 0 so
445 		 * that we can set it up properly when replaying the rest of
446 		 * the items in this log.
447 		 */
448 		mode = btrfs_inode_mode(eb, item);
449 		if (S_ISDIR(mode))
450 			btrfs_set_inode_size(eb, item, 0);
451 	}
452 insert:
453 	btrfs_release_path(path);
454 	/* try to insert the key into the destination tree */
455 	path->skip_release_on_error = 1;
456 	ret = btrfs_insert_empty_item(trans, root, path,
457 				      key, item_size);
458 	path->skip_release_on_error = 0;
459 
460 	/* make sure any existing item is the correct size */
461 	if (ret == -EEXIST || ret == -EOVERFLOW) {
462 		u32 found_size;
463 		found_size = btrfs_item_size_nr(path->nodes[0],
464 						path->slots[0]);
465 		if (found_size > item_size)
466 			btrfs_truncate_item(fs_info, path, item_size, 1);
467 		else if (found_size < item_size)
468 			btrfs_extend_item(fs_info, path,
469 					  item_size - found_size);
470 	} else if (ret) {
471 		return ret;
472 	}
473 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
474 					path->slots[0]);
475 
476 	/* don't overwrite an existing inode if the generation number
477 	 * was logged as zero.  This is done when the tree logging code
478 	 * is just logging an inode to make sure it exists after recovery.
479 	 *
480 	 * Also, don't overwrite i_size on directories during replay.
481 	 * log replay inserts and removes directory items based on the
482 	 * state of the tree found in the subvolume, and i_size is modified
483 	 * as it goes
484 	 */
485 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
486 		struct btrfs_inode_item *src_item;
487 		struct btrfs_inode_item *dst_item;
488 
489 		src_item = (struct btrfs_inode_item *)src_ptr;
490 		dst_item = (struct btrfs_inode_item *)dst_ptr;
491 
492 		if (btrfs_inode_generation(eb, src_item) == 0) {
493 			struct extent_buffer *dst_eb = path->nodes[0];
494 			const u64 ino_size = btrfs_inode_size(eb, src_item);
495 
496 			/*
497 			 * For regular files an ino_size == 0 is used only when
498 			 * logging that an inode exists, as part of a directory
499 			 * fsync, and the inode wasn't fsynced before. In this
500 			 * case don't set the size of the inode in the fs/subvol
501 			 * tree, otherwise we would be throwing valid data away.
502 			 */
503 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
504 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
505 			    ino_size != 0) {
506 				struct btrfs_map_token token;
507 
508 				btrfs_init_map_token(&token);
509 				btrfs_set_token_inode_size(dst_eb, dst_item,
510 							   ino_size, &token);
511 			}
512 			goto no_copy;
513 		}
514 
515 		if (overwrite_root &&
516 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
517 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
518 			save_old_i_size = 1;
519 			saved_i_size = btrfs_inode_size(path->nodes[0],
520 							dst_item);
521 		}
522 	}
523 
524 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
525 			   src_ptr, item_size);
526 
527 	if (save_old_i_size) {
528 		struct btrfs_inode_item *dst_item;
529 		dst_item = (struct btrfs_inode_item *)dst_ptr;
530 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
531 	}
532 
533 	/* make sure the generation is filled in */
534 	if (key->type == BTRFS_INODE_ITEM_KEY) {
535 		struct btrfs_inode_item *dst_item;
536 		dst_item = (struct btrfs_inode_item *)dst_ptr;
537 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
538 			btrfs_set_inode_generation(path->nodes[0], dst_item,
539 						   trans->transid);
540 		}
541 	}
542 no_copy:
543 	btrfs_mark_buffer_dirty(path->nodes[0]);
544 	btrfs_release_path(path);
545 	return 0;
546 }
547 
548 /*
549  * simple helper to read an inode off the disk from a given root
550  * This can only be called for subvolume roots and not for the log
551  */
552 static noinline struct inode *read_one_inode(struct btrfs_root *root,
553 					     u64 objectid)
554 {
555 	struct btrfs_key key;
556 	struct inode *inode;
557 
558 	key.objectid = objectid;
559 	key.type = BTRFS_INODE_ITEM_KEY;
560 	key.offset = 0;
561 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
562 	if (IS_ERR(inode)) {
563 		inode = NULL;
564 	} else if (is_bad_inode(inode)) {
565 		iput(inode);
566 		inode = NULL;
567 	}
568 	return inode;
569 }
570 
571 /* replays a single extent in 'eb' at 'slot' with 'key' into the
572  * subvolume 'root'.  path is released on entry and should be released
573  * on exit.
574  *
575  * extents in the log tree have not been allocated out of the extent
576  * tree yet.  So, this completes the allocation, taking a reference
577  * as required if the extent already exists or creating a new extent
578  * if it isn't in the extent allocation tree yet.
579  *
580  * The extent is inserted into the file, dropping any existing extents
581  * from the file that overlap the new one.
582  */
583 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
584 				      struct btrfs_root *root,
585 				      struct btrfs_path *path,
586 				      struct extent_buffer *eb, int slot,
587 				      struct btrfs_key *key)
588 {
589 	struct btrfs_fs_info *fs_info = root->fs_info;
590 	int found_type;
591 	u64 extent_end;
592 	u64 start = key->offset;
593 	u64 nbytes = 0;
594 	struct btrfs_file_extent_item *item;
595 	struct inode *inode = NULL;
596 	unsigned long size;
597 	int ret = 0;
598 
599 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
600 	found_type = btrfs_file_extent_type(eb, item);
601 
602 	if (found_type == BTRFS_FILE_EXTENT_REG ||
603 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
604 		nbytes = btrfs_file_extent_num_bytes(eb, item);
605 		extent_end = start + nbytes;
606 
607 		/*
608 		 * We don't add to the inodes nbytes if we are prealloc or a
609 		 * hole.
610 		 */
611 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
612 			nbytes = 0;
613 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
614 		size = btrfs_file_extent_inline_len(eb, slot, item);
615 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
616 		extent_end = ALIGN(start + size,
617 				   fs_info->sectorsize);
618 	} else {
619 		ret = 0;
620 		goto out;
621 	}
622 
623 	inode = read_one_inode(root, key->objectid);
624 	if (!inode) {
625 		ret = -EIO;
626 		goto out;
627 	}
628 
629 	/*
630 	 * first check to see if we already have this extent in the
631 	 * file.  This must be done before the btrfs_drop_extents run
632 	 * so we don't try to drop this extent.
633 	 */
634 	ret = btrfs_lookup_file_extent(trans, root, path,
635 			btrfs_ino(BTRFS_I(inode)), start, 0);
636 
637 	if (ret == 0 &&
638 	    (found_type == BTRFS_FILE_EXTENT_REG ||
639 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
640 		struct btrfs_file_extent_item cmp1;
641 		struct btrfs_file_extent_item cmp2;
642 		struct btrfs_file_extent_item *existing;
643 		struct extent_buffer *leaf;
644 
645 		leaf = path->nodes[0];
646 		existing = btrfs_item_ptr(leaf, path->slots[0],
647 					  struct btrfs_file_extent_item);
648 
649 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
650 				   sizeof(cmp1));
651 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
652 				   sizeof(cmp2));
653 
654 		/*
655 		 * we already have a pointer to this exact extent,
656 		 * we don't have to do anything
657 		 */
658 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
659 			btrfs_release_path(path);
660 			goto out;
661 		}
662 	}
663 	btrfs_release_path(path);
664 
665 	/* drop any overlapping extents */
666 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
667 	if (ret)
668 		goto out;
669 
670 	if (found_type == BTRFS_FILE_EXTENT_REG ||
671 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
672 		u64 offset;
673 		unsigned long dest_offset;
674 		struct btrfs_key ins;
675 
676 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
677 		    btrfs_fs_incompat(fs_info, NO_HOLES))
678 			goto update_inode;
679 
680 		ret = btrfs_insert_empty_item(trans, root, path, key,
681 					      sizeof(*item));
682 		if (ret)
683 			goto out;
684 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
685 						    path->slots[0]);
686 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
687 				(unsigned long)item,  sizeof(*item));
688 
689 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
690 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
691 		ins.type = BTRFS_EXTENT_ITEM_KEY;
692 		offset = key->offset - btrfs_file_extent_offset(eb, item);
693 
694 		/*
695 		 * Manually record dirty extent, as here we did a shallow
696 		 * file extent item copy and skip normal backref update,
697 		 * but modifying extent tree all by ourselves.
698 		 * So need to manually record dirty extent for qgroup,
699 		 * as the owner of the file extent changed from log tree
700 		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
701 		 */
702 		ret = btrfs_qgroup_trace_extent(trans, fs_info,
703 				btrfs_file_extent_disk_bytenr(eb, item),
704 				btrfs_file_extent_disk_num_bytes(eb, item),
705 				GFP_NOFS);
706 		if (ret < 0)
707 			goto out;
708 
709 		if (ins.objectid > 0) {
710 			u64 csum_start;
711 			u64 csum_end;
712 			LIST_HEAD(ordered_sums);
713 			/*
714 			 * is this extent already allocated in the extent
715 			 * allocation tree?  If so, just add a reference
716 			 */
717 			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
718 						ins.offset);
719 			if (ret == 0) {
720 				ret = btrfs_inc_extent_ref(trans, fs_info,
721 						ins.objectid, ins.offset,
722 						0, root->root_key.objectid,
723 						key->objectid, offset);
724 				if (ret)
725 					goto out;
726 			} else {
727 				/*
728 				 * insert the extent pointer in the extent
729 				 * allocation tree
730 				 */
731 				ret = btrfs_alloc_logged_file_extent(trans,
732 						fs_info,
733 						root->root_key.objectid,
734 						key->objectid, offset, &ins);
735 				if (ret)
736 					goto out;
737 			}
738 			btrfs_release_path(path);
739 
740 			if (btrfs_file_extent_compression(eb, item)) {
741 				csum_start = ins.objectid;
742 				csum_end = csum_start + ins.offset;
743 			} else {
744 				csum_start = ins.objectid +
745 					btrfs_file_extent_offset(eb, item);
746 				csum_end = csum_start +
747 					btrfs_file_extent_num_bytes(eb, item);
748 			}
749 
750 			ret = btrfs_lookup_csums_range(root->log_root,
751 						csum_start, csum_end - 1,
752 						&ordered_sums, 0);
753 			if (ret)
754 				goto out;
755 			/*
756 			 * Now delete all existing cums in the csum root that
757 			 * cover our range. We do this because we can have an
758 			 * extent that is completely referenced by one file
759 			 * extent item and partially referenced by another
760 			 * file extent item (like after using the clone or
761 			 * extent_same ioctls). In this case if we end up doing
762 			 * the replay of the one that partially references the
763 			 * extent first, and we do not do the csum deletion
764 			 * below, we can get 2 csum items in the csum tree that
765 			 * overlap each other. For example, imagine our log has
766 			 * the two following file extent items:
767 			 *
768 			 * key (257 EXTENT_DATA 409600)
769 			 *     extent data disk byte 12845056 nr 102400
770 			 *     extent data offset 20480 nr 20480 ram 102400
771 			 *
772 			 * key (257 EXTENT_DATA 819200)
773 			 *     extent data disk byte 12845056 nr 102400
774 			 *     extent data offset 0 nr 102400 ram 102400
775 			 *
776 			 * Where the second one fully references the 100K extent
777 			 * that starts at disk byte 12845056, and the log tree
778 			 * has a single csum item that covers the entire range
779 			 * of the extent:
780 			 *
781 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
782 			 *
783 			 * After the first file extent item is replayed, the
784 			 * csum tree gets the following csum item:
785 			 *
786 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
787 			 *
788 			 * Which covers the 20K sub-range starting at offset 20K
789 			 * of our extent. Now when we replay the second file
790 			 * extent item, if we do not delete existing csum items
791 			 * that cover any of its blocks, we end up getting two
792 			 * csum items in our csum tree that overlap each other:
793 			 *
794 			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
795 			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
796 			 *
797 			 * Which is a problem, because after this anyone trying
798 			 * to lookup up for the checksum of any block of our
799 			 * extent starting at an offset of 40K or higher, will
800 			 * end up looking at the second csum item only, which
801 			 * does not contain the checksum for any block starting
802 			 * at offset 40K or higher of our extent.
803 			 */
804 			while (!list_empty(&ordered_sums)) {
805 				struct btrfs_ordered_sum *sums;
806 				sums = list_entry(ordered_sums.next,
807 						struct btrfs_ordered_sum,
808 						list);
809 				if (!ret)
810 					ret = btrfs_del_csums(trans, fs_info,
811 							      sums->bytenr,
812 							      sums->len);
813 				if (!ret)
814 					ret = btrfs_csum_file_blocks(trans,
815 						fs_info->csum_root, sums);
816 				list_del(&sums->list);
817 				kfree(sums);
818 			}
819 			if (ret)
820 				goto out;
821 		} else {
822 			btrfs_release_path(path);
823 		}
824 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
825 		/* inline extents are easy, we just overwrite them */
826 		ret = overwrite_item(trans, root, path, eb, slot, key);
827 		if (ret)
828 			goto out;
829 	}
830 
831 	inode_add_bytes(inode, nbytes);
832 update_inode:
833 	ret = btrfs_update_inode(trans, root, inode);
834 out:
835 	if (inode)
836 		iput(inode);
837 	return ret;
838 }
839 
840 /*
841  * when cleaning up conflicts between the directory names in the
842  * subvolume, directory names in the log and directory names in the
843  * inode back references, we may have to unlink inodes from directories.
844  *
845  * This is a helper function to do the unlink of a specific directory
846  * item
847  */
848 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
849 				      struct btrfs_root *root,
850 				      struct btrfs_path *path,
851 				      struct btrfs_inode *dir,
852 				      struct btrfs_dir_item *di)
853 {
854 	struct btrfs_fs_info *fs_info = root->fs_info;
855 	struct inode *inode;
856 	char *name;
857 	int name_len;
858 	struct extent_buffer *leaf;
859 	struct btrfs_key location;
860 	int ret;
861 
862 	leaf = path->nodes[0];
863 
864 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
865 	name_len = btrfs_dir_name_len(leaf, di);
866 	name = kmalloc(name_len, GFP_NOFS);
867 	if (!name)
868 		return -ENOMEM;
869 
870 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
871 	btrfs_release_path(path);
872 
873 	inode = read_one_inode(root, location.objectid);
874 	if (!inode) {
875 		ret = -EIO;
876 		goto out;
877 	}
878 
879 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
880 	if (ret)
881 		goto out;
882 
883 	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
884 			name_len);
885 	if (ret)
886 		goto out;
887 	else
888 		ret = btrfs_run_delayed_items(trans, fs_info);
889 out:
890 	kfree(name);
891 	iput(inode);
892 	return ret;
893 }
894 
895 /*
896  * helper function to see if a given name and sequence number found
897  * in an inode back reference are already in a directory and correctly
898  * point to this inode
899  */
900 static noinline int inode_in_dir(struct btrfs_root *root,
901 				 struct btrfs_path *path,
902 				 u64 dirid, u64 objectid, u64 index,
903 				 const char *name, int name_len)
904 {
905 	struct btrfs_dir_item *di;
906 	struct btrfs_key location;
907 	int match = 0;
908 
909 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
910 					 index, name, name_len, 0);
911 	if (di && !IS_ERR(di)) {
912 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
913 		if (location.objectid != objectid)
914 			goto out;
915 	} else
916 		goto out;
917 	btrfs_release_path(path);
918 
919 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
920 	if (di && !IS_ERR(di)) {
921 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
922 		if (location.objectid != objectid)
923 			goto out;
924 	} else
925 		goto out;
926 	match = 1;
927 out:
928 	btrfs_release_path(path);
929 	return match;
930 }
931 
932 /*
933  * helper function to check a log tree for a named back reference in
934  * an inode.  This is used to decide if a back reference that is
935  * found in the subvolume conflicts with what we find in the log.
936  *
937  * inode backreferences may have multiple refs in a single item,
938  * during replay we process one reference at a time, and we don't
939  * want to delete valid links to a file from the subvolume if that
940  * link is also in the log.
941  */
942 static noinline int backref_in_log(struct btrfs_root *log,
943 				   struct btrfs_key *key,
944 				   u64 ref_objectid,
945 				   const char *name, int namelen)
946 {
947 	struct btrfs_path *path;
948 	struct btrfs_inode_ref *ref;
949 	unsigned long ptr;
950 	unsigned long ptr_end;
951 	unsigned long name_ptr;
952 	int found_name_len;
953 	int item_size;
954 	int ret;
955 	int match = 0;
956 
957 	path = btrfs_alloc_path();
958 	if (!path)
959 		return -ENOMEM;
960 
961 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
962 	if (ret != 0)
963 		goto out;
964 
965 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
966 
967 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
968 		if (btrfs_find_name_in_ext_backref(path, ref_objectid,
969 						   name, namelen, NULL))
970 			match = 1;
971 
972 		goto out;
973 	}
974 
975 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
976 	ptr_end = ptr + item_size;
977 	while (ptr < ptr_end) {
978 		ref = (struct btrfs_inode_ref *)ptr;
979 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
980 		if (found_name_len == namelen) {
981 			name_ptr = (unsigned long)(ref + 1);
982 			ret = memcmp_extent_buffer(path->nodes[0], name,
983 						   name_ptr, namelen);
984 			if (ret == 0) {
985 				match = 1;
986 				goto out;
987 			}
988 		}
989 		ptr = (unsigned long)(ref + 1) + found_name_len;
990 	}
991 out:
992 	btrfs_free_path(path);
993 	return match;
994 }
995 
996 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
997 				  struct btrfs_root *root,
998 				  struct btrfs_path *path,
999 				  struct btrfs_root *log_root,
1000 				  struct btrfs_inode *dir,
1001 				  struct btrfs_inode *inode,
1002 				  u64 inode_objectid, u64 parent_objectid,
1003 				  u64 ref_index, char *name, int namelen,
1004 				  int *search_done)
1005 {
1006 	struct btrfs_fs_info *fs_info = root->fs_info;
1007 	int ret;
1008 	char *victim_name;
1009 	int victim_name_len;
1010 	struct extent_buffer *leaf;
1011 	struct btrfs_dir_item *di;
1012 	struct btrfs_key search_key;
1013 	struct btrfs_inode_extref *extref;
1014 
1015 again:
1016 	/* Search old style refs */
1017 	search_key.objectid = inode_objectid;
1018 	search_key.type = BTRFS_INODE_REF_KEY;
1019 	search_key.offset = parent_objectid;
1020 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1021 	if (ret == 0) {
1022 		struct btrfs_inode_ref *victim_ref;
1023 		unsigned long ptr;
1024 		unsigned long ptr_end;
1025 
1026 		leaf = path->nodes[0];
1027 
1028 		/* are we trying to overwrite a back ref for the root directory
1029 		 * if so, just jump out, we're done
1030 		 */
1031 		if (search_key.objectid == search_key.offset)
1032 			return 1;
1033 
1034 		/* check all the names in this back reference to see
1035 		 * if they are in the log.  if so, we allow them to stay
1036 		 * otherwise they must be unlinked as a conflict
1037 		 */
1038 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1039 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1040 		while (ptr < ptr_end) {
1041 			victim_ref = (struct btrfs_inode_ref *)ptr;
1042 			victim_name_len = btrfs_inode_ref_name_len(leaf,
1043 								   victim_ref);
1044 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1045 			if (!victim_name)
1046 				return -ENOMEM;
1047 
1048 			read_extent_buffer(leaf, victim_name,
1049 					   (unsigned long)(victim_ref + 1),
1050 					   victim_name_len);
1051 
1052 			if (!backref_in_log(log_root, &search_key,
1053 					    parent_objectid,
1054 					    victim_name,
1055 					    victim_name_len)) {
1056 				inc_nlink(&inode->vfs_inode);
1057 				btrfs_release_path(path);
1058 
1059 				ret = btrfs_unlink_inode(trans, root, dir, inode,
1060 						victim_name, victim_name_len);
1061 				kfree(victim_name);
1062 				if (ret)
1063 					return ret;
1064 				ret = btrfs_run_delayed_items(trans, fs_info);
1065 				if (ret)
1066 					return ret;
1067 				*search_done = 1;
1068 				goto again;
1069 			}
1070 			kfree(victim_name);
1071 
1072 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1073 		}
1074 
1075 		/*
1076 		 * NOTE: we have searched root tree and checked the
1077 		 * corresponding ref, it does not need to check again.
1078 		 */
1079 		*search_done = 1;
1080 	}
1081 	btrfs_release_path(path);
1082 
1083 	/* Same search but for extended refs */
1084 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1085 					   inode_objectid, parent_objectid, 0,
1086 					   0);
1087 	if (!IS_ERR_OR_NULL(extref)) {
1088 		u32 item_size;
1089 		u32 cur_offset = 0;
1090 		unsigned long base;
1091 		struct inode *victim_parent;
1092 
1093 		leaf = path->nodes[0];
1094 
1095 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1096 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1097 
1098 		while (cur_offset < item_size) {
1099 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1100 
1101 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1102 
1103 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1104 				goto next;
1105 
1106 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1107 			if (!victim_name)
1108 				return -ENOMEM;
1109 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1110 					   victim_name_len);
1111 
1112 			search_key.objectid = inode_objectid;
1113 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1114 			search_key.offset = btrfs_extref_hash(parent_objectid,
1115 							      victim_name,
1116 							      victim_name_len);
1117 			ret = 0;
1118 			if (!backref_in_log(log_root, &search_key,
1119 					    parent_objectid, victim_name,
1120 					    victim_name_len)) {
1121 				ret = -ENOENT;
1122 				victim_parent = read_one_inode(root,
1123 						parent_objectid);
1124 				if (victim_parent) {
1125 					inc_nlink(&inode->vfs_inode);
1126 					btrfs_release_path(path);
1127 
1128 					ret = btrfs_unlink_inode(trans, root,
1129 							BTRFS_I(victim_parent),
1130 							inode,
1131 							victim_name,
1132 							victim_name_len);
1133 					if (!ret)
1134 						ret = btrfs_run_delayed_items(
1135 								  trans,
1136 								  fs_info);
1137 				}
1138 				iput(victim_parent);
1139 				kfree(victim_name);
1140 				if (ret)
1141 					return ret;
1142 				*search_done = 1;
1143 				goto again;
1144 			}
1145 			kfree(victim_name);
1146 			if (ret)
1147 				return ret;
1148 next:
1149 			cur_offset += victim_name_len + sizeof(*extref);
1150 		}
1151 		*search_done = 1;
1152 	}
1153 	btrfs_release_path(path);
1154 
1155 	/* look for a conflicting sequence number */
1156 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1157 					 ref_index, name, namelen, 0);
1158 	if (di && !IS_ERR(di)) {
1159 		ret = drop_one_dir_item(trans, root, path, dir, di);
1160 		if (ret)
1161 			return ret;
1162 	}
1163 	btrfs_release_path(path);
1164 
1165 	/* look for a conflicing name */
1166 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1167 				   name, namelen, 0);
1168 	if (di && !IS_ERR(di)) {
1169 		ret = drop_one_dir_item(trans, root, path, dir, di);
1170 		if (ret)
1171 			return ret;
1172 	}
1173 	btrfs_release_path(path);
1174 
1175 	return 0;
1176 }
1177 
1178 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1179 			     u32 *namelen, char **name, u64 *index,
1180 			     u64 *parent_objectid)
1181 {
1182 	struct btrfs_inode_extref *extref;
1183 
1184 	extref = (struct btrfs_inode_extref *)ref_ptr;
1185 
1186 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1187 	*name = kmalloc(*namelen, GFP_NOFS);
1188 	if (*name == NULL)
1189 		return -ENOMEM;
1190 
1191 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1192 			   *namelen);
1193 
1194 	*index = btrfs_inode_extref_index(eb, extref);
1195 	if (parent_objectid)
1196 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1197 
1198 	return 0;
1199 }
1200 
1201 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1202 			  u32 *namelen, char **name, u64 *index)
1203 {
1204 	struct btrfs_inode_ref *ref;
1205 
1206 	ref = (struct btrfs_inode_ref *)ref_ptr;
1207 
1208 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1209 	*name = kmalloc(*namelen, GFP_NOFS);
1210 	if (*name == NULL)
1211 		return -ENOMEM;
1212 
1213 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1214 
1215 	*index = btrfs_inode_ref_index(eb, ref);
1216 
1217 	return 0;
1218 }
1219 
1220 /*
1221  * replay one inode back reference item found in the log tree.
1222  * eb, slot and key refer to the buffer and key found in the log tree.
1223  * root is the destination we are replaying into, and path is for temp
1224  * use by this function.  (it should be released on return).
1225  */
1226 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1227 				  struct btrfs_root *root,
1228 				  struct btrfs_root *log,
1229 				  struct btrfs_path *path,
1230 				  struct extent_buffer *eb, int slot,
1231 				  struct btrfs_key *key)
1232 {
1233 	struct inode *dir = NULL;
1234 	struct inode *inode = NULL;
1235 	unsigned long ref_ptr;
1236 	unsigned long ref_end;
1237 	char *name = NULL;
1238 	int namelen;
1239 	int ret;
1240 	int search_done = 0;
1241 	int log_ref_ver = 0;
1242 	u64 parent_objectid;
1243 	u64 inode_objectid;
1244 	u64 ref_index = 0;
1245 	int ref_struct_size;
1246 
1247 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1248 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1249 
1250 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1251 		struct btrfs_inode_extref *r;
1252 
1253 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1254 		log_ref_ver = 1;
1255 		r = (struct btrfs_inode_extref *)ref_ptr;
1256 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1257 	} else {
1258 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1259 		parent_objectid = key->offset;
1260 	}
1261 	inode_objectid = key->objectid;
1262 
1263 	/*
1264 	 * it is possible that we didn't log all the parent directories
1265 	 * for a given inode.  If we don't find the dir, just don't
1266 	 * copy the back ref in.  The link count fixup code will take
1267 	 * care of the rest
1268 	 */
1269 	dir = read_one_inode(root, parent_objectid);
1270 	if (!dir) {
1271 		ret = -ENOENT;
1272 		goto out;
1273 	}
1274 
1275 	inode = read_one_inode(root, inode_objectid);
1276 	if (!inode) {
1277 		ret = -EIO;
1278 		goto out;
1279 	}
1280 
1281 	while (ref_ptr < ref_end) {
1282 		if (log_ref_ver) {
1283 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1284 						&ref_index, &parent_objectid);
1285 			/*
1286 			 * parent object can change from one array
1287 			 * item to another.
1288 			 */
1289 			if (!dir)
1290 				dir = read_one_inode(root, parent_objectid);
1291 			if (!dir) {
1292 				ret = -ENOENT;
1293 				goto out;
1294 			}
1295 		} else {
1296 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1297 					     &ref_index);
1298 		}
1299 		if (ret)
1300 			goto out;
1301 
1302 		/* if we already have a perfect match, we're done */
1303 		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1304 					btrfs_ino(BTRFS_I(inode)), ref_index,
1305 					name, namelen)) {
1306 			/*
1307 			 * look for a conflicting back reference in the
1308 			 * metadata. if we find one we have to unlink that name
1309 			 * of the file before we add our new link.  Later on, we
1310 			 * overwrite any existing back reference, and we don't
1311 			 * want to create dangling pointers in the directory.
1312 			 */
1313 
1314 			if (!search_done) {
1315 				ret = __add_inode_ref(trans, root, path, log,
1316 						      BTRFS_I(dir),
1317 						      BTRFS_I(inode),
1318 						      inode_objectid,
1319 						      parent_objectid,
1320 						      ref_index, name, namelen,
1321 						      &search_done);
1322 				if (ret) {
1323 					if (ret == 1)
1324 						ret = 0;
1325 					goto out;
1326 				}
1327 			}
1328 
1329 			/* insert our name */
1330 			ret = btrfs_add_link(trans, BTRFS_I(dir),
1331 					BTRFS_I(inode),
1332 					name, namelen, 0, ref_index);
1333 			if (ret)
1334 				goto out;
1335 
1336 			btrfs_update_inode(trans, root, inode);
1337 		}
1338 
1339 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1340 		kfree(name);
1341 		name = NULL;
1342 		if (log_ref_ver) {
1343 			iput(dir);
1344 			dir = NULL;
1345 		}
1346 	}
1347 
1348 	/* finally write the back reference in the inode */
1349 	ret = overwrite_item(trans, root, path, eb, slot, key);
1350 out:
1351 	btrfs_release_path(path);
1352 	kfree(name);
1353 	iput(dir);
1354 	iput(inode);
1355 	return ret;
1356 }
1357 
1358 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1359 			      struct btrfs_root *root, u64 ino)
1360 {
1361 	int ret;
1362 
1363 	ret = btrfs_insert_orphan_item(trans, root, ino);
1364 	if (ret == -EEXIST)
1365 		ret = 0;
1366 
1367 	return ret;
1368 }
1369 
1370 static int count_inode_extrefs(struct btrfs_root *root,
1371 		struct btrfs_inode *inode, struct btrfs_path *path)
1372 {
1373 	int ret = 0;
1374 	int name_len;
1375 	unsigned int nlink = 0;
1376 	u32 item_size;
1377 	u32 cur_offset = 0;
1378 	u64 inode_objectid = btrfs_ino(inode);
1379 	u64 offset = 0;
1380 	unsigned long ptr;
1381 	struct btrfs_inode_extref *extref;
1382 	struct extent_buffer *leaf;
1383 
1384 	while (1) {
1385 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1386 					    &extref, &offset);
1387 		if (ret)
1388 			break;
1389 
1390 		leaf = path->nodes[0];
1391 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1392 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1393 		cur_offset = 0;
1394 
1395 		while (cur_offset < item_size) {
1396 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1397 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1398 
1399 			nlink++;
1400 
1401 			cur_offset += name_len + sizeof(*extref);
1402 		}
1403 
1404 		offset++;
1405 		btrfs_release_path(path);
1406 	}
1407 	btrfs_release_path(path);
1408 
1409 	if (ret < 0 && ret != -ENOENT)
1410 		return ret;
1411 	return nlink;
1412 }
1413 
1414 static int count_inode_refs(struct btrfs_root *root,
1415 			struct btrfs_inode *inode, struct btrfs_path *path)
1416 {
1417 	int ret;
1418 	struct btrfs_key key;
1419 	unsigned int nlink = 0;
1420 	unsigned long ptr;
1421 	unsigned long ptr_end;
1422 	int name_len;
1423 	u64 ino = btrfs_ino(inode);
1424 
1425 	key.objectid = ino;
1426 	key.type = BTRFS_INODE_REF_KEY;
1427 	key.offset = (u64)-1;
1428 
1429 	while (1) {
1430 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1431 		if (ret < 0)
1432 			break;
1433 		if (ret > 0) {
1434 			if (path->slots[0] == 0)
1435 				break;
1436 			path->slots[0]--;
1437 		}
1438 process_slot:
1439 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1440 				      path->slots[0]);
1441 		if (key.objectid != ino ||
1442 		    key.type != BTRFS_INODE_REF_KEY)
1443 			break;
1444 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1445 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1446 						   path->slots[0]);
1447 		while (ptr < ptr_end) {
1448 			struct btrfs_inode_ref *ref;
1449 
1450 			ref = (struct btrfs_inode_ref *)ptr;
1451 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1452 							    ref);
1453 			ptr = (unsigned long)(ref + 1) + name_len;
1454 			nlink++;
1455 		}
1456 
1457 		if (key.offset == 0)
1458 			break;
1459 		if (path->slots[0] > 0) {
1460 			path->slots[0]--;
1461 			goto process_slot;
1462 		}
1463 		key.offset--;
1464 		btrfs_release_path(path);
1465 	}
1466 	btrfs_release_path(path);
1467 
1468 	return nlink;
1469 }
1470 
1471 /*
1472  * There are a few corners where the link count of the file can't
1473  * be properly maintained during replay.  So, instead of adding
1474  * lots of complexity to the log code, we just scan the backrefs
1475  * for any file that has been through replay.
1476  *
1477  * The scan will update the link count on the inode to reflect the
1478  * number of back refs found.  If it goes down to zero, the iput
1479  * will free the inode.
1480  */
1481 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1482 					   struct btrfs_root *root,
1483 					   struct inode *inode)
1484 {
1485 	struct btrfs_path *path;
1486 	int ret;
1487 	u64 nlink = 0;
1488 	u64 ino = btrfs_ino(BTRFS_I(inode));
1489 
1490 	path = btrfs_alloc_path();
1491 	if (!path)
1492 		return -ENOMEM;
1493 
1494 	ret = count_inode_refs(root, BTRFS_I(inode), path);
1495 	if (ret < 0)
1496 		goto out;
1497 
1498 	nlink = ret;
1499 
1500 	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1501 	if (ret < 0)
1502 		goto out;
1503 
1504 	nlink += ret;
1505 
1506 	ret = 0;
1507 
1508 	if (nlink != inode->i_nlink) {
1509 		set_nlink(inode, nlink);
1510 		btrfs_update_inode(trans, root, inode);
1511 	}
1512 	BTRFS_I(inode)->index_cnt = (u64)-1;
1513 
1514 	if (inode->i_nlink == 0) {
1515 		if (S_ISDIR(inode->i_mode)) {
1516 			ret = replay_dir_deletes(trans, root, NULL, path,
1517 						 ino, 1);
1518 			if (ret)
1519 				goto out;
1520 		}
1521 		ret = insert_orphan_item(trans, root, ino);
1522 	}
1523 
1524 out:
1525 	btrfs_free_path(path);
1526 	return ret;
1527 }
1528 
1529 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1530 					    struct btrfs_root *root,
1531 					    struct btrfs_path *path)
1532 {
1533 	int ret;
1534 	struct btrfs_key key;
1535 	struct inode *inode;
1536 
1537 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1538 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1539 	key.offset = (u64)-1;
1540 	while (1) {
1541 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1542 		if (ret < 0)
1543 			break;
1544 
1545 		if (ret == 1) {
1546 			if (path->slots[0] == 0)
1547 				break;
1548 			path->slots[0]--;
1549 		}
1550 
1551 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1552 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1553 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1554 			break;
1555 
1556 		ret = btrfs_del_item(trans, root, path);
1557 		if (ret)
1558 			goto out;
1559 
1560 		btrfs_release_path(path);
1561 		inode = read_one_inode(root, key.offset);
1562 		if (!inode)
1563 			return -EIO;
1564 
1565 		ret = fixup_inode_link_count(trans, root, inode);
1566 		iput(inode);
1567 		if (ret)
1568 			goto out;
1569 
1570 		/*
1571 		 * fixup on a directory may create new entries,
1572 		 * make sure we always look for the highset possible
1573 		 * offset
1574 		 */
1575 		key.offset = (u64)-1;
1576 	}
1577 	ret = 0;
1578 out:
1579 	btrfs_release_path(path);
1580 	return ret;
1581 }
1582 
1583 
1584 /*
1585  * record a given inode in the fixup dir so we can check its link
1586  * count when replay is done.  The link count is incremented here
1587  * so the inode won't go away until we check it
1588  */
1589 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1590 				      struct btrfs_root *root,
1591 				      struct btrfs_path *path,
1592 				      u64 objectid)
1593 {
1594 	struct btrfs_key key;
1595 	int ret = 0;
1596 	struct inode *inode;
1597 
1598 	inode = read_one_inode(root, objectid);
1599 	if (!inode)
1600 		return -EIO;
1601 
1602 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1603 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1604 	key.offset = objectid;
1605 
1606 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1607 
1608 	btrfs_release_path(path);
1609 	if (ret == 0) {
1610 		if (!inode->i_nlink)
1611 			set_nlink(inode, 1);
1612 		else
1613 			inc_nlink(inode);
1614 		ret = btrfs_update_inode(trans, root, inode);
1615 	} else if (ret == -EEXIST) {
1616 		ret = 0;
1617 	} else {
1618 		BUG(); /* Logic Error */
1619 	}
1620 	iput(inode);
1621 
1622 	return ret;
1623 }
1624 
1625 /*
1626  * when replaying the log for a directory, we only insert names
1627  * for inodes that actually exist.  This means an fsync on a directory
1628  * does not implicitly fsync all the new files in it
1629  */
1630 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1631 				    struct btrfs_root *root,
1632 				    u64 dirid, u64 index,
1633 				    char *name, int name_len,
1634 				    struct btrfs_key *location)
1635 {
1636 	struct inode *inode;
1637 	struct inode *dir;
1638 	int ret;
1639 
1640 	inode = read_one_inode(root, location->objectid);
1641 	if (!inode)
1642 		return -ENOENT;
1643 
1644 	dir = read_one_inode(root, dirid);
1645 	if (!dir) {
1646 		iput(inode);
1647 		return -EIO;
1648 	}
1649 
1650 	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1651 			name_len, 1, index);
1652 
1653 	/* FIXME, put inode into FIXUP list */
1654 
1655 	iput(inode);
1656 	iput(dir);
1657 	return ret;
1658 }
1659 
1660 /*
1661  * Return true if an inode reference exists in the log for the given name,
1662  * inode and parent inode.
1663  */
1664 static bool name_in_log_ref(struct btrfs_root *log_root,
1665 			    const char *name, const int name_len,
1666 			    const u64 dirid, const u64 ino)
1667 {
1668 	struct btrfs_key search_key;
1669 
1670 	search_key.objectid = ino;
1671 	search_key.type = BTRFS_INODE_REF_KEY;
1672 	search_key.offset = dirid;
1673 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1674 		return true;
1675 
1676 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1677 	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1678 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1679 		return true;
1680 
1681 	return false;
1682 }
1683 
1684 /*
1685  * take a single entry in a log directory item and replay it into
1686  * the subvolume.
1687  *
1688  * if a conflicting item exists in the subdirectory already,
1689  * the inode it points to is unlinked and put into the link count
1690  * fix up tree.
1691  *
1692  * If a name from the log points to a file or directory that does
1693  * not exist in the FS, it is skipped.  fsyncs on directories
1694  * do not force down inodes inside that directory, just changes to the
1695  * names or unlinks in a directory.
1696  *
1697  * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1698  * non-existing inode) and 1 if the name was replayed.
1699  */
1700 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1701 				    struct btrfs_root *root,
1702 				    struct btrfs_path *path,
1703 				    struct extent_buffer *eb,
1704 				    struct btrfs_dir_item *di,
1705 				    struct btrfs_key *key)
1706 {
1707 	char *name;
1708 	int name_len;
1709 	struct btrfs_dir_item *dst_di;
1710 	struct btrfs_key found_key;
1711 	struct btrfs_key log_key;
1712 	struct inode *dir;
1713 	u8 log_type;
1714 	int exists;
1715 	int ret = 0;
1716 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1717 	bool name_added = false;
1718 
1719 	dir = read_one_inode(root, key->objectid);
1720 	if (!dir)
1721 		return -EIO;
1722 
1723 	name_len = btrfs_dir_name_len(eb, di);
1724 	name = kmalloc(name_len, GFP_NOFS);
1725 	if (!name) {
1726 		ret = -ENOMEM;
1727 		goto out;
1728 	}
1729 
1730 	log_type = btrfs_dir_type(eb, di);
1731 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1732 		   name_len);
1733 
1734 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1735 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1736 	if (exists == 0)
1737 		exists = 1;
1738 	else
1739 		exists = 0;
1740 	btrfs_release_path(path);
1741 
1742 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1743 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1744 				       name, name_len, 1);
1745 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1746 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1747 						     key->objectid,
1748 						     key->offset, name,
1749 						     name_len, 1);
1750 	} else {
1751 		/* Corruption */
1752 		ret = -EINVAL;
1753 		goto out;
1754 	}
1755 	if (IS_ERR_OR_NULL(dst_di)) {
1756 		/* we need a sequence number to insert, so we only
1757 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1758 		 */
1759 		if (key->type != BTRFS_DIR_INDEX_KEY)
1760 			goto out;
1761 		goto insert;
1762 	}
1763 
1764 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1765 	/* the existing item matches the logged item */
1766 	if (found_key.objectid == log_key.objectid &&
1767 	    found_key.type == log_key.type &&
1768 	    found_key.offset == log_key.offset &&
1769 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1770 		update_size = false;
1771 		goto out;
1772 	}
1773 
1774 	/*
1775 	 * don't drop the conflicting directory entry if the inode
1776 	 * for the new entry doesn't exist
1777 	 */
1778 	if (!exists)
1779 		goto out;
1780 
1781 	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1782 	if (ret)
1783 		goto out;
1784 
1785 	if (key->type == BTRFS_DIR_INDEX_KEY)
1786 		goto insert;
1787 out:
1788 	btrfs_release_path(path);
1789 	if (!ret && update_size) {
1790 		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1791 		ret = btrfs_update_inode(trans, root, dir);
1792 	}
1793 	kfree(name);
1794 	iput(dir);
1795 	if (!ret && name_added)
1796 		ret = 1;
1797 	return ret;
1798 
1799 insert:
1800 	if (name_in_log_ref(root->log_root, name, name_len,
1801 			    key->objectid, log_key.objectid)) {
1802 		/* The dentry will be added later. */
1803 		ret = 0;
1804 		update_size = false;
1805 		goto out;
1806 	}
1807 	btrfs_release_path(path);
1808 	ret = insert_one_name(trans, root, key->objectid, key->offset,
1809 			      name, name_len, &log_key);
1810 	if (ret && ret != -ENOENT && ret != -EEXIST)
1811 		goto out;
1812 	if (!ret)
1813 		name_added = true;
1814 	update_size = false;
1815 	ret = 0;
1816 	goto out;
1817 }
1818 
1819 /*
1820  * find all the names in a directory item and reconcile them into
1821  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1822  * one name in a directory item, but the same code gets used for
1823  * both directory index types
1824  */
1825 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1826 					struct btrfs_root *root,
1827 					struct btrfs_path *path,
1828 					struct extent_buffer *eb, int slot,
1829 					struct btrfs_key *key)
1830 {
1831 	struct btrfs_fs_info *fs_info = root->fs_info;
1832 	int ret = 0;
1833 	u32 item_size = btrfs_item_size_nr(eb, slot);
1834 	struct btrfs_dir_item *di;
1835 	int name_len;
1836 	unsigned long ptr;
1837 	unsigned long ptr_end;
1838 	struct btrfs_path *fixup_path = NULL;
1839 
1840 	ptr = btrfs_item_ptr_offset(eb, slot);
1841 	ptr_end = ptr + item_size;
1842 	while (ptr < ptr_end) {
1843 		di = (struct btrfs_dir_item *)ptr;
1844 		if (verify_dir_item(fs_info, eb, di))
1845 			return -EIO;
1846 		name_len = btrfs_dir_name_len(eb, di);
1847 		ret = replay_one_name(trans, root, path, eb, di, key);
1848 		if (ret < 0)
1849 			break;
1850 		ptr = (unsigned long)(di + 1);
1851 		ptr += name_len;
1852 
1853 		/*
1854 		 * If this entry refers to a non-directory (directories can not
1855 		 * have a link count > 1) and it was added in the transaction
1856 		 * that was not committed, make sure we fixup the link count of
1857 		 * the inode it the entry points to. Otherwise something like
1858 		 * the following would result in a directory pointing to an
1859 		 * inode with a wrong link that does not account for this dir
1860 		 * entry:
1861 		 *
1862 		 * mkdir testdir
1863 		 * touch testdir/foo
1864 		 * touch testdir/bar
1865 		 * sync
1866 		 *
1867 		 * ln testdir/bar testdir/bar_link
1868 		 * ln testdir/foo testdir/foo_link
1869 		 * xfs_io -c "fsync" testdir/bar
1870 		 *
1871 		 * <power failure>
1872 		 *
1873 		 * mount fs, log replay happens
1874 		 *
1875 		 * File foo would remain with a link count of 1 when it has two
1876 		 * entries pointing to it in the directory testdir. This would
1877 		 * make it impossible to ever delete the parent directory has
1878 		 * it would result in stale dentries that can never be deleted.
1879 		 */
1880 		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1881 			struct btrfs_key di_key;
1882 
1883 			if (!fixup_path) {
1884 				fixup_path = btrfs_alloc_path();
1885 				if (!fixup_path) {
1886 					ret = -ENOMEM;
1887 					break;
1888 				}
1889 			}
1890 
1891 			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1892 			ret = link_to_fixup_dir(trans, root, fixup_path,
1893 						di_key.objectid);
1894 			if (ret)
1895 				break;
1896 		}
1897 		ret = 0;
1898 	}
1899 	btrfs_free_path(fixup_path);
1900 	return ret;
1901 }
1902 
1903 /*
1904  * directory replay has two parts.  There are the standard directory
1905  * items in the log copied from the subvolume, and range items
1906  * created in the log while the subvolume was logged.
1907  *
1908  * The range items tell us which parts of the key space the log
1909  * is authoritative for.  During replay, if a key in the subvolume
1910  * directory is in a logged range item, but not actually in the log
1911  * that means it was deleted from the directory before the fsync
1912  * and should be removed.
1913  */
1914 static noinline int find_dir_range(struct btrfs_root *root,
1915 				   struct btrfs_path *path,
1916 				   u64 dirid, int key_type,
1917 				   u64 *start_ret, u64 *end_ret)
1918 {
1919 	struct btrfs_key key;
1920 	u64 found_end;
1921 	struct btrfs_dir_log_item *item;
1922 	int ret;
1923 	int nritems;
1924 
1925 	if (*start_ret == (u64)-1)
1926 		return 1;
1927 
1928 	key.objectid = dirid;
1929 	key.type = key_type;
1930 	key.offset = *start_ret;
1931 
1932 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1933 	if (ret < 0)
1934 		goto out;
1935 	if (ret > 0) {
1936 		if (path->slots[0] == 0)
1937 			goto out;
1938 		path->slots[0]--;
1939 	}
1940 	if (ret != 0)
1941 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1942 
1943 	if (key.type != key_type || key.objectid != dirid) {
1944 		ret = 1;
1945 		goto next;
1946 	}
1947 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1948 			      struct btrfs_dir_log_item);
1949 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1950 
1951 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1952 		ret = 0;
1953 		*start_ret = key.offset;
1954 		*end_ret = found_end;
1955 		goto out;
1956 	}
1957 	ret = 1;
1958 next:
1959 	/* check the next slot in the tree to see if it is a valid item */
1960 	nritems = btrfs_header_nritems(path->nodes[0]);
1961 	path->slots[0]++;
1962 	if (path->slots[0] >= nritems) {
1963 		ret = btrfs_next_leaf(root, path);
1964 		if (ret)
1965 			goto out;
1966 	}
1967 
1968 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1969 
1970 	if (key.type != key_type || key.objectid != dirid) {
1971 		ret = 1;
1972 		goto out;
1973 	}
1974 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1975 			      struct btrfs_dir_log_item);
1976 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1977 	*start_ret = key.offset;
1978 	*end_ret = found_end;
1979 	ret = 0;
1980 out:
1981 	btrfs_release_path(path);
1982 	return ret;
1983 }
1984 
1985 /*
1986  * this looks for a given directory item in the log.  If the directory
1987  * item is not in the log, the item is removed and the inode it points
1988  * to is unlinked
1989  */
1990 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1991 				      struct btrfs_root *root,
1992 				      struct btrfs_root *log,
1993 				      struct btrfs_path *path,
1994 				      struct btrfs_path *log_path,
1995 				      struct inode *dir,
1996 				      struct btrfs_key *dir_key)
1997 {
1998 	struct btrfs_fs_info *fs_info = root->fs_info;
1999 	int ret;
2000 	struct extent_buffer *eb;
2001 	int slot;
2002 	u32 item_size;
2003 	struct btrfs_dir_item *di;
2004 	struct btrfs_dir_item *log_di;
2005 	int name_len;
2006 	unsigned long ptr;
2007 	unsigned long ptr_end;
2008 	char *name;
2009 	struct inode *inode;
2010 	struct btrfs_key location;
2011 
2012 again:
2013 	eb = path->nodes[0];
2014 	slot = path->slots[0];
2015 	item_size = btrfs_item_size_nr(eb, slot);
2016 	ptr = btrfs_item_ptr_offset(eb, slot);
2017 	ptr_end = ptr + item_size;
2018 	while (ptr < ptr_end) {
2019 		di = (struct btrfs_dir_item *)ptr;
2020 		if (verify_dir_item(fs_info, eb, di)) {
2021 			ret = -EIO;
2022 			goto out;
2023 		}
2024 
2025 		name_len = btrfs_dir_name_len(eb, di);
2026 		name = kmalloc(name_len, GFP_NOFS);
2027 		if (!name) {
2028 			ret = -ENOMEM;
2029 			goto out;
2030 		}
2031 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2032 				  name_len);
2033 		log_di = NULL;
2034 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2035 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2036 						       dir_key->objectid,
2037 						       name, name_len, 0);
2038 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2039 			log_di = btrfs_lookup_dir_index_item(trans, log,
2040 						     log_path,
2041 						     dir_key->objectid,
2042 						     dir_key->offset,
2043 						     name, name_len, 0);
2044 		}
2045 		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2046 			btrfs_dir_item_key_to_cpu(eb, di, &location);
2047 			btrfs_release_path(path);
2048 			btrfs_release_path(log_path);
2049 			inode = read_one_inode(root, location.objectid);
2050 			if (!inode) {
2051 				kfree(name);
2052 				return -EIO;
2053 			}
2054 
2055 			ret = link_to_fixup_dir(trans, root,
2056 						path, location.objectid);
2057 			if (ret) {
2058 				kfree(name);
2059 				iput(inode);
2060 				goto out;
2061 			}
2062 
2063 			inc_nlink(inode);
2064 			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2065 					BTRFS_I(inode), name, name_len);
2066 			if (!ret)
2067 				ret = btrfs_run_delayed_items(trans, fs_info);
2068 			kfree(name);
2069 			iput(inode);
2070 			if (ret)
2071 				goto out;
2072 
2073 			/* there might still be more names under this key
2074 			 * check and repeat if required
2075 			 */
2076 			ret = btrfs_search_slot(NULL, root, dir_key, path,
2077 						0, 0);
2078 			if (ret == 0)
2079 				goto again;
2080 			ret = 0;
2081 			goto out;
2082 		} else if (IS_ERR(log_di)) {
2083 			kfree(name);
2084 			return PTR_ERR(log_di);
2085 		}
2086 		btrfs_release_path(log_path);
2087 		kfree(name);
2088 
2089 		ptr = (unsigned long)(di + 1);
2090 		ptr += name_len;
2091 	}
2092 	ret = 0;
2093 out:
2094 	btrfs_release_path(path);
2095 	btrfs_release_path(log_path);
2096 	return ret;
2097 }
2098 
2099 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2100 			      struct btrfs_root *root,
2101 			      struct btrfs_root *log,
2102 			      struct btrfs_path *path,
2103 			      const u64 ino)
2104 {
2105 	struct btrfs_key search_key;
2106 	struct btrfs_path *log_path;
2107 	int i;
2108 	int nritems;
2109 	int ret;
2110 
2111 	log_path = btrfs_alloc_path();
2112 	if (!log_path)
2113 		return -ENOMEM;
2114 
2115 	search_key.objectid = ino;
2116 	search_key.type = BTRFS_XATTR_ITEM_KEY;
2117 	search_key.offset = 0;
2118 again:
2119 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2120 	if (ret < 0)
2121 		goto out;
2122 process_leaf:
2123 	nritems = btrfs_header_nritems(path->nodes[0]);
2124 	for (i = path->slots[0]; i < nritems; i++) {
2125 		struct btrfs_key key;
2126 		struct btrfs_dir_item *di;
2127 		struct btrfs_dir_item *log_di;
2128 		u32 total_size;
2129 		u32 cur;
2130 
2131 		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2132 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2133 			ret = 0;
2134 			goto out;
2135 		}
2136 
2137 		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2138 		total_size = btrfs_item_size_nr(path->nodes[0], i);
2139 		cur = 0;
2140 		while (cur < total_size) {
2141 			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2142 			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2143 			u32 this_len = sizeof(*di) + name_len + data_len;
2144 			char *name;
2145 
2146 			name = kmalloc(name_len, GFP_NOFS);
2147 			if (!name) {
2148 				ret = -ENOMEM;
2149 				goto out;
2150 			}
2151 			read_extent_buffer(path->nodes[0], name,
2152 					   (unsigned long)(di + 1), name_len);
2153 
2154 			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2155 						    name, name_len, 0);
2156 			btrfs_release_path(log_path);
2157 			if (!log_di) {
2158 				/* Doesn't exist in log tree, so delete it. */
2159 				btrfs_release_path(path);
2160 				di = btrfs_lookup_xattr(trans, root, path, ino,
2161 							name, name_len, -1);
2162 				kfree(name);
2163 				if (IS_ERR(di)) {
2164 					ret = PTR_ERR(di);
2165 					goto out;
2166 				}
2167 				ASSERT(di);
2168 				ret = btrfs_delete_one_dir_name(trans, root,
2169 								path, di);
2170 				if (ret)
2171 					goto out;
2172 				btrfs_release_path(path);
2173 				search_key = key;
2174 				goto again;
2175 			}
2176 			kfree(name);
2177 			if (IS_ERR(log_di)) {
2178 				ret = PTR_ERR(log_di);
2179 				goto out;
2180 			}
2181 			cur += this_len;
2182 			di = (struct btrfs_dir_item *)((char *)di + this_len);
2183 		}
2184 	}
2185 	ret = btrfs_next_leaf(root, path);
2186 	if (ret > 0)
2187 		ret = 0;
2188 	else if (ret == 0)
2189 		goto process_leaf;
2190 out:
2191 	btrfs_free_path(log_path);
2192 	btrfs_release_path(path);
2193 	return ret;
2194 }
2195 
2196 
2197 /*
2198  * deletion replay happens before we copy any new directory items
2199  * out of the log or out of backreferences from inodes.  It
2200  * scans the log to find ranges of keys that log is authoritative for,
2201  * and then scans the directory to find items in those ranges that are
2202  * not present in the log.
2203  *
2204  * Anything we don't find in the log is unlinked and removed from the
2205  * directory.
2206  */
2207 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2208 				       struct btrfs_root *root,
2209 				       struct btrfs_root *log,
2210 				       struct btrfs_path *path,
2211 				       u64 dirid, int del_all)
2212 {
2213 	u64 range_start;
2214 	u64 range_end;
2215 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2216 	int ret = 0;
2217 	struct btrfs_key dir_key;
2218 	struct btrfs_key found_key;
2219 	struct btrfs_path *log_path;
2220 	struct inode *dir;
2221 
2222 	dir_key.objectid = dirid;
2223 	dir_key.type = BTRFS_DIR_ITEM_KEY;
2224 	log_path = btrfs_alloc_path();
2225 	if (!log_path)
2226 		return -ENOMEM;
2227 
2228 	dir = read_one_inode(root, dirid);
2229 	/* it isn't an error if the inode isn't there, that can happen
2230 	 * because we replay the deletes before we copy in the inode item
2231 	 * from the log
2232 	 */
2233 	if (!dir) {
2234 		btrfs_free_path(log_path);
2235 		return 0;
2236 	}
2237 again:
2238 	range_start = 0;
2239 	range_end = 0;
2240 	while (1) {
2241 		if (del_all)
2242 			range_end = (u64)-1;
2243 		else {
2244 			ret = find_dir_range(log, path, dirid, key_type,
2245 					     &range_start, &range_end);
2246 			if (ret != 0)
2247 				break;
2248 		}
2249 
2250 		dir_key.offset = range_start;
2251 		while (1) {
2252 			int nritems;
2253 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2254 						0, 0);
2255 			if (ret < 0)
2256 				goto out;
2257 
2258 			nritems = btrfs_header_nritems(path->nodes[0]);
2259 			if (path->slots[0] >= nritems) {
2260 				ret = btrfs_next_leaf(root, path);
2261 				if (ret)
2262 					break;
2263 			}
2264 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2265 					      path->slots[0]);
2266 			if (found_key.objectid != dirid ||
2267 			    found_key.type != dir_key.type)
2268 				goto next_type;
2269 
2270 			if (found_key.offset > range_end)
2271 				break;
2272 
2273 			ret = check_item_in_log(trans, root, log, path,
2274 						log_path, dir,
2275 						&found_key);
2276 			if (ret)
2277 				goto out;
2278 			if (found_key.offset == (u64)-1)
2279 				break;
2280 			dir_key.offset = found_key.offset + 1;
2281 		}
2282 		btrfs_release_path(path);
2283 		if (range_end == (u64)-1)
2284 			break;
2285 		range_start = range_end + 1;
2286 	}
2287 
2288 next_type:
2289 	ret = 0;
2290 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2291 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2292 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2293 		btrfs_release_path(path);
2294 		goto again;
2295 	}
2296 out:
2297 	btrfs_release_path(path);
2298 	btrfs_free_path(log_path);
2299 	iput(dir);
2300 	return ret;
2301 }
2302 
2303 /*
2304  * the process_func used to replay items from the log tree.  This
2305  * gets called in two different stages.  The first stage just looks
2306  * for inodes and makes sure they are all copied into the subvolume.
2307  *
2308  * The second stage copies all the other item types from the log into
2309  * the subvolume.  The two stage approach is slower, but gets rid of
2310  * lots of complexity around inodes referencing other inodes that exist
2311  * only in the log (references come from either directory items or inode
2312  * back refs).
2313  */
2314 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2315 			     struct walk_control *wc, u64 gen)
2316 {
2317 	int nritems;
2318 	struct btrfs_path *path;
2319 	struct btrfs_root *root = wc->replay_dest;
2320 	struct btrfs_key key;
2321 	int level;
2322 	int i;
2323 	int ret;
2324 
2325 	ret = btrfs_read_buffer(eb, gen);
2326 	if (ret)
2327 		return ret;
2328 
2329 	level = btrfs_header_level(eb);
2330 
2331 	if (level != 0)
2332 		return 0;
2333 
2334 	path = btrfs_alloc_path();
2335 	if (!path)
2336 		return -ENOMEM;
2337 
2338 	nritems = btrfs_header_nritems(eb);
2339 	for (i = 0; i < nritems; i++) {
2340 		btrfs_item_key_to_cpu(eb, &key, i);
2341 
2342 		/* inode keys are done during the first stage */
2343 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2344 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2345 			struct btrfs_inode_item *inode_item;
2346 			u32 mode;
2347 
2348 			inode_item = btrfs_item_ptr(eb, i,
2349 					    struct btrfs_inode_item);
2350 			ret = replay_xattr_deletes(wc->trans, root, log,
2351 						   path, key.objectid);
2352 			if (ret)
2353 				break;
2354 			mode = btrfs_inode_mode(eb, inode_item);
2355 			if (S_ISDIR(mode)) {
2356 				ret = replay_dir_deletes(wc->trans,
2357 					 root, log, path, key.objectid, 0);
2358 				if (ret)
2359 					break;
2360 			}
2361 			ret = overwrite_item(wc->trans, root, path,
2362 					     eb, i, &key);
2363 			if (ret)
2364 				break;
2365 
2366 			/* for regular files, make sure corresponding
2367 			 * orphan item exist. extents past the new EOF
2368 			 * will be truncated later by orphan cleanup.
2369 			 */
2370 			if (S_ISREG(mode)) {
2371 				ret = insert_orphan_item(wc->trans, root,
2372 							 key.objectid);
2373 				if (ret)
2374 					break;
2375 			}
2376 
2377 			ret = link_to_fixup_dir(wc->trans, root,
2378 						path, key.objectid);
2379 			if (ret)
2380 				break;
2381 		}
2382 
2383 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2384 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2385 			ret = replay_one_dir_item(wc->trans, root, path,
2386 						  eb, i, &key);
2387 			if (ret)
2388 				break;
2389 		}
2390 
2391 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2392 			continue;
2393 
2394 		/* these keys are simply copied */
2395 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2396 			ret = overwrite_item(wc->trans, root, path,
2397 					     eb, i, &key);
2398 			if (ret)
2399 				break;
2400 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2401 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2402 			ret = add_inode_ref(wc->trans, root, log, path,
2403 					    eb, i, &key);
2404 			if (ret && ret != -ENOENT)
2405 				break;
2406 			ret = 0;
2407 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2408 			ret = replay_one_extent(wc->trans, root, path,
2409 						eb, i, &key);
2410 			if (ret)
2411 				break;
2412 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2413 			ret = replay_one_dir_item(wc->trans, root, path,
2414 						  eb, i, &key);
2415 			if (ret)
2416 				break;
2417 		}
2418 	}
2419 	btrfs_free_path(path);
2420 	return ret;
2421 }
2422 
2423 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2424 				   struct btrfs_root *root,
2425 				   struct btrfs_path *path, int *level,
2426 				   struct walk_control *wc)
2427 {
2428 	struct btrfs_fs_info *fs_info = root->fs_info;
2429 	u64 root_owner;
2430 	u64 bytenr;
2431 	u64 ptr_gen;
2432 	struct extent_buffer *next;
2433 	struct extent_buffer *cur;
2434 	struct extent_buffer *parent;
2435 	u32 blocksize;
2436 	int ret = 0;
2437 
2438 	WARN_ON(*level < 0);
2439 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2440 
2441 	while (*level > 0) {
2442 		WARN_ON(*level < 0);
2443 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2444 		cur = path->nodes[*level];
2445 
2446 		WARN_ON(btrfs_header_level(cur) != *level);
2447 
2448 		if (path->slots[*level] >=
2449 		    btrfs_header_nritems(cur))
2450 			break;
2451 
2452 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2453 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2454 		blocksize = fs_info->nodesize;
2455 
2456 		parent = path->nodes[*level];
2457 		root_owner = btrfs_header_owner(parent);
2458 
2459 		next = btrfs_find_create_tree_block(fs_info, bytenr);
2460 		if (IS_ERR(next))
2461 			return PTR_ERR(next);
2462 
2463 		if (*level == 1) {
2464 			ret = wc->process_func(root, next, wc, ptr_gen);
2465 			if (ret) {
2466 				free_extent_buffer(next);
2467 				return ret;
2468 			}
2469 
2470 			path->slots[*level]++;
2471 			if (wc->free) {
2472 				ret = btrfs_read_buffer(next, ptr_gen);
2473 				if (ret) {
2474 					free_extent_buffer(next);
2475 					return ret;
2476 				}
2477 
2478 				if (trans) {
2479 					btrfs_tree_lock(next);
2480 					btrfs_set_lock_blocking(next);
2481 					clean_tree_block(fs_info, next);
2482 					btrfs_wait_tree_block_writeback(next);
2483 					btrfs_tree_unlock(next);
2484 				}
2485 
2486 				WARN_ON(root_owner !=
2487 					BTRFS_TREE_LOG_OBJECTID);
2488 				ret = btrfs_free_and_pin_reserved_extent(
2489 							fs_info, bytenr,
2490 							blocksize);
2491 				if (ret) {
2492 					free_extent_buffer(next);
2493 					return ret;
2494 				}
2495 			}
2496 			free_extent_buffer(next);
2497 			continue;
2498 		}
2499 		ret = btrfs_read_buffer(next, ptr_gen);
2500 		if (ret) {
2501 			free_extent_buffer(next);
2502 			return ret;
2503 		}
2504 
2505 		WARN_ON(*level <= 0);
2506 		if (path->nodes[*level-1])
2507 			free_extent_buffer(path->nodes[*level-1]);
2508 		path->nodes[*level-1] = next;
2509 		*level = btrfs_header_level(next);
2510 		path->slots[*level] = 0;
2511 		cond_resched();
2512 	}
2513 	WARN_ON(*level < 0);
2514 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2515 
2516 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2517 
2518 	cond_resched();
2519 	return 0;
2520 }
2521 
2522 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2523 				 struct btrfs_root *root,
2524 				 struct btrfs_path *path, int *level,
2525 				 struct walk_control *wc)
2526 {
2527 	struct btrfs_fs_info *fs_info = root->fs_info;
2528 	u64 root_owner;
2529 	int i;
2530 	int slot;
2531 	int ret;
2532 
2533 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2534 		slot = path->slots[i];
2535 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2536 			path->slots[i]++;
2537 			*level = i;
2538 			WARN_ON(*level == 0);
2539 			return 0;
2540 		} else {
2541 			struct extent_buffer *parent;
2542 			if (path->nodes[*level] == root->node)
2543 				parent = path->nodes[*level];
2544 			else
2545 				parent = path->nodes[*level + 1];
2546 
2547 			root_owner = btrfs_header_owner(parent);
2548 			ret = wc->process_func(root, path->nodes[*level], wc,
2549 				 btrfs_header_generation(path->nodes[*level]));
2550 			if (ret)
2551 				return ret;
2552 
2553 			if (wc->free) {
2554 				struct extent_buffer *next;
2555 
2556 				next = path->nodes[*level];
2557 
2558 				if (trans) {
2559 					btrfs_tree_lock(next);
2560 					btrfs_set_lock_blocking(next);
2561 					clean_tree_block(fs_info, next);
2562 					btrfs_wait_tree_block_writeback(next);
2563 					btrfs_tree_unlock(next);
2564 				}
2565 
2566 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2567 				ret = btrfs_free_and_pin_reserved_extent(
2568 						fs_info,
2569 						path->nodes[*level]->start,
2570 						path->nodes[*level]->len);
2571 				if (ret)
2572 					return ret;
2573 			}
2574 			free_extent_buffer(path->nodes[*level]);
2575 			path->nodes[*level] = NULL;
2576 			*level = i + 1;
2577 		}
2578 	}
2579 	return 1;
2580 }
2581 
2582 /*
2583  * drop the reference count on the tree rooted at 'snap'.  This traverses
2584  * the tree freeing any blocks that have a ref count of zero after being
2585  * decremented.
2586  */
2587 static int walk_log_tree(struct btrfs_trans_handle *trans,
2588 			 struct btrfs_root *log, struct walk_control *wc)
2589 {
2590 	struct btrfs_fs_info *fs_info = log->fs_info;
2591 	int ret = 0;
2592 	int wret;
2593 	int level;
2594 	struct btrfs_path *path;
2595 	int orig_level;
2596 
2597 	path = btrfs_alloc_path();
2598 	if (!path)
2599 		return -ENOMEM;
2600 
2601 	level = btrfs_header_level(log->node);
2602 	orig_level = level;
2603 	path->nodes[level] = log->node;
2604 	extent_buffer_get(log->node);
2605 	path->slots[level] = 0;
2606 
2607 	while (1) {
2608 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2609 		if (wret > 0)
2610 			break;
2611 		if (wret < 0) {
2612 			ret = wret;
2613 			goto out;
2614 		}
2615 
2616 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2617 		if (wret > 0)
2618 			break;
2619 		if (wret < 0) {
2620 			ret = wret;
2621 			goto out;
2622 		}
2623 	}
2624 
2625 	/* was the root node processed? if not, catch it here */
2626 	if (path->nodes[orig_level]) {
2627 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2628 			 btrfs_header_generation(path->nodes[orig_level]));
2629 		if (ret)
2630 			goto out;
2631 		if (wc->free) {
2632 			struct extent_buffer *next;
2633 
2634 			next = path->nodes[orig_level];
2635 
2636 			if (trans) {
2637 				btrfs_tree_lock(next);
2638 				btrfs_set_lock_blocking(next);
2639 				clean_tree_block(fs_info, next);
2640 				btrfs_wait_tree_block_writeback(next);
2641 				btrfs_tree_unlock(next);
2642 			}
2643 
2644 			WARN_ON(log->root_key.objectid !=
2645 				BTRFS_TREE_LOG_OBJECTID);
2646 			ret = btrfs_free_and_pin_reserved_extent(fs_info,
2647 							next->start, next->len);
2648 			if (ret)
2649 				goto out;
2650 		}
2651 	}
2652 
2653 out:
2654 	btrfs_free_path(path);
2655 	return ret;
2656 }
2657 
2658 /*
2659  * helper function to update the item for a given subvolumes log root
2660  * in the tree of log roots
2661  */
2662 static int update_log_root(struct btrfs_trans_handle *trans,
2663 			   struct btrfs_root *log)
2664 {
2665 	struct btrfs_fs_info *fs_info = log->fs_info;
2666 	int ret;
2667 
2668 	if (log->log_transid == 1) {
2669 		/* insert root item on the first sync */
2670 		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2671 				&log->root_key, &log->root_item);
2672 	} else {
2673 		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2674 				&log->root_key, &log->root_item);
2675 	}
2676 	return ret;
2677 }
2678 
2679 static void wait_log_commit(struct btrfs_root *root, int transid)
2680 {
2681 	DEFINE_WAIT(wait);
2682 	int index = transid % 2;
2683 
2684 	/*
2685 	 * we only allow two pending log transactions at a time,
2686 	 * so we know that if ours is more than 2 older than the
2687 	 * current transaction, we're done
2688 	 */
2689 	do {
2690 		prepare_to_wait(&root->log_commit_wait[index],
2691 				&wait, TASK_UNINTERRUPTIBLE);
2692 		mutex_unlock(&root->log_mutex);
2693 
2694 		if (root->log_transid_committed < transid &&
2695 		    atomic_read(&root->log_commit[index]))
2696 			schedule();
2697 
2698 		finish_wait(&root->log_commit_wait[index], &wait);
2699 		mutex_lock(&root->log_mutex);
2700 	} while (root->log_transid_committed < transid &&
2701 		 atomic_read(&root->log_commit[index]));
2702 }
2703 
2704 static void wait_for_writer(struct btrfs_root *root)
2705 {
2706 	DEFINE_WAIT(wait);
2707 
2708 	while (atomic_read(&root->log_writers)) {
2709 		prepare_to_wait(&root->log_writer_wait,
2710 				&wait, TASK_UNINTERRUPTIBLE);
2711 		mutex_unlock(&root->log_mutex);
2712 		if (atomic_read(&root->log_writers))
2713 			schedule();
2714 		finish_wait(&root->log_writer_wait, &wait);
2715 		mutex_lock(&root->log_mutex);
2716 	}
2717 }
2718 
2719 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2720 					struct btrfs_log_ctx *ctx)
2721 {
2722 	if (!ctx)
2723 		return;
2724 
2725 	mutex_lock(&root->log_mutex);
2726 	list_del_init(&ctx->list);
2727 	mutex_unlock(&root->log_mutex);
2728 }
2729 
2730 /*
2731  * Invoked in log mutex context, or be sure there is no other task which
2732  * can access the list.
2733  */
2734 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2735 					     int index, int error)
2736 {
2737 	struct btrfs_log_ctx *ctx;
2738 	struct btrfs_log_ctx *safe;
2739 
2740 	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2741 		list_del_init(&ctx->list);
2742 		ctx->log_ret = error;
2743 	}
2744 
2745 	INIT_LIST_HEAD(&root->log_ctxs[index]);
2746 }
2747 
2748 /*
2749  * btrfs_sync_log does sends a given tree log down to the disk and
2750  * updates the super blocks to record it.  When this call is done,
2751  * you know that any inodes previously logged are safely on disk only
2752  * if it returns 0.
2753  *
2754  * Any other return value means you need to call btrfs_commit_transaction.
2755  * Some of the edge cases for fsyncing directories that have had unlinks
2756  * or renames done in the past mean that sometimes the only safe
2757  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2758  * that has happened.
2759  */
2760 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2761 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2762 {
2763 	int index1;
2764 	int index2;
2765 	int mark;
2766 	int ret;
2767 	struct btrfs_fs_info *fs_info = root->fs_info;
2768 	struct btrfs_root *log = root->log_root;
2769 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2770 	int log_transid = 0;
2771 	struct btrfs_log_ctx root_log_ctx;
2772 	struct blk_plug plug;
2773 
2774 	mutex_lock(&root->log_mutex);
2775 	log_transid = ctx->log_transid;
2776 	if (root->log_transid_committed >= log_transid) {
2777 		mutex_unlock(&root->log_mutex);
2778 		return ctx->log_ret;
2779 	}
2780 
2781 	index1 = log_transid % 2;
2782 	if (atomic_read(&root->log_commit[index1])) {
2783 		wait_log_commit(root, log_transid);
2784 		mutex_unlock(&root->log_mutex);
2785 		return ctx->log_ret;
2786 	}
2787 	ASSERT(log_transid == root->log_transid);
2788 	atomic_set(&root->log_commit[index1], 1);
2789 
2790 	/* wait for previous tree log sync to complete */
2791 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2792 		wait_log_commit(root, log_transid - 1);
2793 
2794 	while (1) {
2795 		int batch = atomic_read(&root->log_batch);
2796 		/* when we're on an ssd, just kick the log commit out */
2797 		if (!btrfs_test_opt(fs_info, SSD) &&
2798 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2799 			mutex_unlock(&root->log_mutex);
2800 			schedule_timeout_uninterruptible(1);
2801 			mutex_lock(&root->log_mutex);
2802 		}
2803 		wait_for_writer(root);
2804 		if (batch == atomic_read(&root->log_batch))
2805 			break;
2806 	}
2807 
2808 	/* bail out if we need to do a full commit */
2809 	if (btrfs_need_log_full_commit(fs_info, trans)) {
2810 		ret = -EAGAIN;
2811 		btrfs_free_logged_extents(log, log_transid);
2812 		mutex_unlock(&root->log_mutex);
2813 		goto out;
2814 	}
2815 
2816 	if (log_transid % 2 == 0)
2817 		mark = EXTENT_DIRTY;
2818 	else
2819 		mark = EXTENT_NEW;
2820 
2821 	/* we start IO on  all the marked extents here, but we don't actually
2822 	 * wait for them until later.
2823 	 */
2824 	blk_start_plug(&plug);
2825 	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2826 	if (ret) {
2827 		blk_finish_plug(&plug);
2828 		btrfs_abort_transaction(trans, ret);
2829 		btrfs_free_logged_extents(log, log_transid);
2830 		btrfs_set_log_full_commit(fs_info, trans);
2831 		mutex_unlock(&root->log_mutex);
2832 		goto out;
2833 	}
2834 
2835 	btrfs_set_root_node(&log->root_item, log->node);
2836 
2837 	root->log_transid++;
2838 	log->log_transid = root->log_transid;
2839 	root->log_start_pid = 0;
2840 	/*
2841 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2842 	 * in their headers. new modifications of the log will be written to
2843 	 * new positions. so it's safe to allow log writers to go in.
2844 	 */
2845 	mutex_unlock(&root->log_mutex);
2846 
2847 	btrfs_init_log_ctx(&root_log_ctx, NULL);
2848 
2849 	mutex_lock(&log_root_tree->log_mutex);
2850 	atomic_inc(&log_root_tree->log_batch);
2851 	atomic_inc(&log_root_tree->log_writers);
2852 
2853 	index2 = log_root_tree->log_transid % 2;
2854 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2855 	root_log_ctx.log_transid = log_root_tree->log_transid;
2856 
2857 	mutex_unlock(&log_root_tree->log_mutex);
2858 
2859 	ret = update_log_root(trans, log);
2860 
2861 	mutex_lock(&log_root_tree->log_mutex);
2862 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2863 		/*
2864 		 * Implicit memory barrier after atomic_dec_and_test
2865 		 */
2866 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2867 			wake_up(&log_root_tree->log_writer_wait);
2868 	}
2869 
2870 	if (ret) {
2871 		if (!list_empty(&root_log_ctx.list))
2872 			list_del_init(&root_log_ctx.list);
2873 
2874 		blk_finish_plug(&plug);
2875 		btrfs_set_log_full_commit(fs_info, trans);
2876 
2877 		if (ret != -ENOSPC) {
2878 			btrfs_abort_transaction(trans, ret);
2879 			mutex_unlock(&log_root_tree->log_mutex);
2880 			goto out;
2881 		}
2882 		btrfs_wait_tree_log_extents(log, mark);
2883 		btrfs_free_logged_extents(log, log_transid);
2884 		mutex_unlock(&log_root_tree->log_mutex);
2885 		ret = -EAGAIN;
2886 		goto out;
2887 	}
2888 
2889 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2890 		blk_finish_plug(&plug);
2891 		list_del_init(&root_log_ctx.list);
2892 		mutex_unlock(&log_root_tree->log_mutex);
2893 		ret = root_log_ctx.log_ret;
2894 		goto out;
2895 	}
2896 
2897 	index2 = root_log_ctx.log_transid % 2;
2898 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2899 		blk_finish_plug(&plug);
2900 		ret = btrfs_wait_tree_log_extents(log, mark);
2901 		btrfs_wait_logged_extents(trans, log, log_transid);
2902 		wait_log_commit(log_root_tree,
2903 				root_log_ctx.log_transid);
2904 		mutex_unlock(&log_root_tree->log_mutex);
2905 		if (!ret)
2906 			ret = root_log_ctx.log_ret;
2907 		goto out;
2908 	}
2909 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2910 	atomic_set(&log_root_tree->log_commit[index2], 1);
2911 
2912 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2913 		wait_log_commit(log_root_tree,
2914 				root_log_ctx.log_transid - 1);
2915 	}
2916 
2917 	wait_for_writer(log_root_tree);
2918 
2919 	/*
2920 	 * now that we've moved on to the tree of log tree roots,
2921 	 * check the full commit flag again
2922 	 */
2923 	if (btrfs_need_log_full_commit(fs_info, trans)) {
2924 		blk_finish_plug(&plug);
2925 		btrfs_wait_tree_log_extents(log, mark);
2926 		btrfs_free_logged_extents(log, log_transid);
2927 		mutex_unlock(&log_root_tree->log_mutex);
2928 		ret = -EAGAIN;
2929 		goto out_wake_log_root;
2930 	}
2931 
2932 	ret = btrfs_write_marked_extents(fs_info,
2933 					 &log_root_tree->dirty_log_pages,
2934 					 EXTENT_DIRTY | EXTENT_NEW);
2935 	blk_finish_plug(&plug);
2936 	if (ret) {
2937 		btrfs_set_log_full_commit(fs_info, trans);
2938 		btrfs_abort_transaction(trans, ret);
2939 		btrfs_free_logged_extents(log, log_transid);
2940 		mutex_unlock(&log_root_tree->log_mutex);
2941 		goto out_wake_log_root;
2942 	}
2943 	ret = btrfs_wait_tree_log_extents(log, mark);
2944 	if (!ret)
2945 		ret = btrfs_wait_tree_log_extents(log_root_tree,
2946 						  EXTENT_NEW | EXTENT_DIRTY);
2947 	if (ret) {
2948 		btrfs_set_log_full_commit(fs_info, trans);
2949 		btrfs_free_logged_extents(log, log_transid);
2950 		mutex_unlock(&log_root_tree->log_mutex);
2951 		goto out_wake_log_root;
2952 	}
2953 	btrfs_wait_logged_extents(trans, log, log_transid);
2954 
2955 	btrfs_set_super_log_root(fs_info->super_for_commit,
2956 				 log_root_tree->node->start);
2957 	btrfs_set_super_log_root_level(fs_info->super_for_commit,
2958 				       btrfs_header_level(log_root_tree->node));
2959 
2960 	log_root_tree->log_transid++;
2961 	mutex_unlock(&log_root_tree->log_mutex);
2962 
2963 	/*
2964 	 * nobody else is going to jump in and write the the ctree
2965 	 * super here because the log_commit atomic below is protecting
2966 	 * us.  We must be called with a transaction handle pinning
2967 	 * the running transaction open, so a full commit can't hop
2968 	 * in and cause problems either.
2969 	 */
2970 	ret = write_all_supers(fs_info, 1);
2971 	if (ret) {
2972 		btrfs_set_log_full_commit(fs_info, trans);
2973 		btrfs_abort_transaction(trans, ret);
2974 		goto out_wake_log_root;
2975 	}
2976 
2977 	mutex_lock(&root->log_mutex);
2978 	if (root->last_log_commit < log_transid)
2979 		root->last_log_commit = log_transid;
2980 	mutex_unlock(&root->log_mutex);
2981 
2982 out_wake_log_root:
2983 	mutex_lock(&log_root_tree->log_mutex);
2984 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2985 
2986 	log_root_tree->log_transid_committed++;
2987 	atomic_set(&log_root_tree->log_commit[index2], 0);
2988 	mutex_unlock(&log_root_tree->log_mutex);
2989 
2990 	/*
2991 	 * The barrier before waitqueue_active is implied by mutex_unlock
2992 	 */
2993 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2994 		wake_up(&log_root_tree->log_commit_wait[index2]);
2995 out:
2996 	mutex_lock(&root->log_mutex);
2997 	btrfs_remove_all_log_ctxs(root, index1, ret);
2998 	root->log_transid_committed++;
2999 	atomic_set(&root->log_commit[index1], 0);
3000 	mutex_unlock(&root->log_mutex);
3001 
3002 	/*
3003 	 * The barrier before waitqueue_active is implied by mutex_unlock
3004 	 */
3005 	if (waitqueue_active(&root->log_commit_wait[index1]))
3006 		wake_up(&root->log_commit_wait[index1]);
3007 	return ret;
3008 }
3009 
3010 static void free_log_tree(struct btrfs_trans_handle *trans,
3011 			  struct btrfs_root *log)
3012 {
3013 	int ret;
3014 	u64 start;
3015 	u64 end;
3016 	struct walk_control wc = {
3017 		.free = 1,
3018 		.process_func = process_one_buffer
3019 	};
3020 
3021 	ret = walk_log_tree(trans, log, &wc);
3022 	/* I don't think this can happen but just in case */
3023 	if (ret)
3024 		btrfs_abort_transaction(trans, ret);
3025 
3026 	while (1) {
3027 		ret = find_first_extent_bit(&log->dirty_log_pages,
3028 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
3029 				NULL);
3030 		if (ret)
3031 			break;
3032 
3033 		clear_extent_bits(&log->dirty_log_pages, start, end,
3034 				  EXTENT_DIRTY | EXTENT_NEW);
3035 	}
3036 
3037 	/*
3038 	 * We may have short-circuited the log tree with the full commit logic
3039 	 * and left ordered extents on our list, so clear these out to keep us
3040 	 * from leaking inodes and memory.
3041 	 */
3042 	btrfs_free_logged_extents(log, 0);
3043 	btrfs_free_logged_extents(log, 1);
3044 
3045 	free_extent_buffer(log->node);
3046 	kfree(log);
3047 }
3048 
3049 /*
3050  * free all the extents used by the tree log.  This should be called
3051  * at commit time of the full transaction
3052  */
3053 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3054 {
3055 	if (root->log_root) {
3056 		free_log_tree(trans, root->log_root);
3057 		root->log_root = NULL;
3058 	}
3059 	return 0;
3060 }
3061 
3062 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3063 			     struct btrfs_fs_info *fs_info)
3064 {
3065 	if (fs_info->log_root_tree) {
3066 		free_log_tree(trans, fs_info->log_root_tree);
3067 		fs_info->log_root_tree = NULL;
3068 	}
3069 	return 0;
3070 }
3071 
3072 /*
3073  * If both a file and directory are logged, and unlinks or renames are
3074  * mixed in, we have a few interesting corners:
3075  *
3076  * create file X in dir Y
3077  * link file X to X.link in dir Y
3078  * fsync file X
3079  * unlink file X but leave X.link
3080  * fsync dir Y
3081  *
3082  * After a crash we would expect only X.link to exist.  But file X
3083  * didn't get fsync'd again so the log has back refs for X and X.link.
3084  *
3085  * We solve this by removing directory entries and inode backrefs from the
3086  * log when a file that was logged in the current transaction is
3087  * unlinked.  Any later fsync will include the updated log entries, and
3088  * we'll be able to reconstruct the proper directory items from backrefs.
3089  *
3090  * This optimizations allows us to avoid relogging the entire inode
3091  * or the entire directory.
3092  */
3093 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3094 				 struct btrfs_root *root,
3095 				 const char *name, int name_len,
3096 				 struct btrfs_inode *dir, u64 index)
3097 {
3098 	struct btrfs_root *log;
3099 	struct btrfs_dir_item *di;
3100 	struct btrfs_path *path;
3101 	int ret;
3102 	int err = 0;
3103 	int bytes_del = 0;
3104 	u64 dir_ino = btrfs_ino(dir);
3105 
3106 	if (dir->logged_trans < trans->transid)
3107 		return 0;
3108 
3109 	ret = join_running_log_trans(root);
3110 	if (ret)
3111 		return 0;
3112 
3113 	mutex_lock(&dir->log_mutex);
3114 
3115 	log = root->log_root;
3116 	path = btrfs_alloc_path();
3117 	if (!path) {
3118 		err = -ENOMEM;
3119 		goto out_unlock;
3120 	}
3121 
3122 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3123 				   name, name_len, -1);
3124 	if (IS_ERR(di)) {
3125 		err = PTR_ERR(di);
3126 		goto fail;
3127 	}
3128 	if (di) {
3129 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3130 		bytes_del += name_len;
3131 		if (ret) {
3132 			err = ret;
3133 			goto fail;
3134 		}
3135 	}
3136 	btrfs_release_path(path);
3137 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3138 					 index, name, name_len, -1);
3139 	if (IS_ERR(di)) {
3140 		err = PTR_ERR(di);
3141 		goto fail;
3142 	}
3143 	if (di) {
3144 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3145 		bytes_del += name_len;
3146 		if (ret) {
3147 			err = ret;
3148 			goto fail;
3149 		}
3150 	}
3151 
3152 	/* update the directory size in the log to reflect the names
3153 	 * we have removed
3154 	 */
3155 	if (bytes_del) {
3156 		struct btrfs_key key;
3157 
3158 		key.objectid = dir_ino;
3159 		key.offset = 0;
3160 		key.type = BTRFS_INODE_ITEM_KEY;
3161 		btrfs_release_path(path);
3162 
3163 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3164 		if (ret < 0) {
3165 			err = ret;
3166 			goto fail;
3167 		}
3168 		if (ret == 0) {
3169 			struct btrfs_inode_item *item;
3170 			u64 i_size;
3171 
3172 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3173 					      struct btrfs_inode_item);
3174 			i_size = btrfs_inode_size(path->nodes[0], item);
3175 			if (i_size > bytes_del)
3176 				i_size -= bytes_del;
3177 			else
3178 				i_size = 0;
3179 			btrfs_set_inode_size(path->nodes[0], item, i_size);
3180 			btrfs_mark_buffer_dirty(path->nodes[0]);
3181 		} else
3182 			ret = 0;
3183 		btrfs_release_path(path);
3184 	}
3185 fail:
3186 	btrfs_free_path(path);
3187 out_unlock:
3188 	mutex_unlock(&dir->log_mutex);
3189 	if (ret == -ENOSPC) {
3190 		btrfs_set_log_full_commit(root->fs_info, trans);
3191 		ret = 0;
3192 	} else if (ret < 0)
3193 		btrfs_abort_transaction(trans, ret);
3194 
3195 	btrfs_end_log_trans(root);
3196 
3197 	return err;
3198 }
3199 
3200 /* see comments for btrfs_del_dir_entries_in_log */
3201 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3202 			       struct btrfs_root *root,
3203 			       const char *name, int name_len,
3204 			       struct btrfs_inode *inode, u64 dirid)
3205 {
3206 	struct btrfs_fs_info *fs_info = root->fs_info;
3207 	struct btrfs_root *log;
3208 	u64 index;
3209 	int ret;
3210 
3211 	if (inode->logged_trans < trans->transid)
3212 		return 0;
3213 
3214 	ret = join_running_log_trans(root);
3215 	if (ret)
3216 		return 0;
3217 	log = root->log_root;
3218 	mutex_lock(&inode->log_mutex);
3219 
3220 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3221 				  dirid, &index);
3222 	mutex_unlock(&inode->log_mutex);
3223 	if (ret == -ENOSPC) {
3224 		btrfs_set_log_full_commit(fs_info, trans);
3225 		ret = 0;
3226 	} else if (ret < 0 && ret != -ENOENT)
3227 		btrfs_abort_transaction(trans, ret);
3228 	btrfs_end_log_trans(root);
3229 
3230 	return ret;
3231 }
3232 
3233 /*
3234  * creates a range item in the log for 'dirid'.  first_offset and
3235  * last_offset tell us which parts of the key space the log should
3236  * be considered authoritative for.
3237  */
3238 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3239 				       struct btrfs_root *log,
3240 				       struct btrfs_path *path,
3241 				       int key_type, u64 dirid,
3242 				       u64 first_offset, u64 last_offset)
3243 {
3244 	int ret;
3245 	struct btrfs_key key;
3246 	struct btrfs_dir_log_item *item;
3247 
3248 	key.objectid = dirid;
3249 	key.offset = first_offset;
3250 	if (key_type == BTRFS_DIR_ITEM_KEY)
3251 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3252 	else
3253 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3254 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3255 	if (ret)
3256 		return ret;
3257 
3258 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3259 			      struct btrfs_dir_log_item);
3260 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3261 	btrfs_mark_buffer_dirty(path->nodes[0]);
3262 	btrfs_release_path(path);
3263 	return 0;
3264 }
3265 
3266 /*
3267  * log all the items included in the current transaction for a given
3268  * directory.  This also creates the range items in the log tree required
3269  * to replay anything deleted before the fsync
3270  */
3271 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3272 			  struct btrfs_root *root, struct btrfs_inode *inode,
3273 			  struct btrfs_path *path,
3274 			  struct btrfs_path *dst_path, int key_type,
3275 			  struct btrfs_log_ctx *ctx,
3276 			  u64 min_offset, u64 *last_offset_ret)
3277 {
3278 	struct btrfs_key min_key;
3279 	struct btrfs_root *log = root->log_root;
3280 	struct extent_buffer *src;
3281 	int err = 0;
3282 	int ret;
3283 	int i;
3284 	int nritems;
3285 	u64 first_offset = min_offset;
3286 	u64 last_offset = (u64)-1;
3287 	u64 ino = btrfs_ino(inode);
3288 
3289 	log = root->log_root;
3290 
3291 	min_key.objectid = ino;
3292 	min_key.type = key_type;
3293 	min_key.offset = min_offset;
3294 
3295 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3296 
3297 	/*
3298 	 * we didn't find anything from this transaction, see if there
3299 	 * is anything at all
3300 	 */
3301 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3302 		min_key.objectid = ino;
3303 		min_key.type = key_type;
3304 		min_key.offset = (u64)-1;
3305 		btrfs_release_path(path);
3306 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3307 		if (ret < 0) {
3308 			btrfs_release_path(path);
3309 			return ret;
3310 		}
3311 		ret = btrfs_previous_item(root, path, ino, key_type);
3312 
3313 		/* if ret == 0 there are items for this type,
3314 		 * create a range to tell us the last key of this type.
3315 		 * otherwise, there are no items in this directory after
3316 		 * *min_offset, and we create a range to indicate that.
3317 		 */
3318 		if (ret == 0) {
3319 			struct btrfs_key tmp;
3320 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3321 					      path->slots[0]);
3322 			if (key_type == tmp.type)
3323 				first_offset = max(min_offset, tmp.offset) + 1;
3324 		}
3325 		goto done;
3326 	}
3327 
3328 	/* go backward to find any previous key */
3329 	ret = btrfs_previous_item(root, path, ino, key_type);
3330 	if (ret == 0) {
3331 		struct btrfs_key tmp;
3332 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3333 		if (key_type == tmp.type) {
3334 			first_offset = tmp.offset;
3335 			ret = overwrite_item(trans, log, dst_path,
3336 					     path->nodes[0], path->slots[0],
3337 					     &tmp);
3338 			if (ret) {
3339 				err = ret;
3340 				goto done;
3341 			}
3342 		}
3343 	}
3344 	btrfs_release_path(path);
3345 
3346 	/* find the first key from this transaction again */
3347 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3348 	if (WARN_ON(ret != 0))
3349 		goto done;
3350 
3351 	/*
3352 	 * we have a block from this transaction, log every item in it
3353 	 * from our directory
3354 	 */
3355 	while (1) {
3356 		struct btrfs_key tmp;
3357 		src = path->nodes[0];
3358 		nritems = btrfs_header_nritems(src);
3359 		for (i = path->slots[0]; i < nritems; i++) {
3360 			struct btrfs_dir_item *di;
3361 
3362 			btrfs_item_key_to_cpu(src, &min_key, i);
3363 
3364 			if (min_key.objectid != ino || min_key.type != key_type)
3365 				goto done;
3366 			ret = overwrite_item(trans, log, dst_path, src, i,
3367 					     &min_key);
3368 			if (ret) {
3369 				err = ret;
3370 				goto done;
3371 			}
3372 
3373 			/*
3374 			 * We must make sure that when we log a directory entry,
3375 			 * the corresponding inode, after log replay, has a
3376 			 * matching link count. For example:
3377 			 *
3378 			 * touch foo
3379 			 * mkdir mydir
3380 			 * sync
3381 			 * ln foo mydir/bar
3382 			 * xfs_io -c "fsync" mydir
3383 			 * <crash>
3384 			 * <mount fs and log replay>
3385 			 *
3386 			 * Would result in a fsync log that when replayed, our
3387 			 * file inode would have a link count of 1, but we get
3388 			 * two directory entries pointing to the same inode.
3389 			 * After removing one of the names, it would not be
3390 			 * possible to remove the other name, which resulted
3391 			 * always in stale file handle errors, and would not
3392 			 * be possible to rmdir the parent directory, since
3393 			 * its i_size could never decrement to the value
3394 			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3395 			 */
3396 			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3397 			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3398 			if (ctx &&
3399 			    (btrfs_dir_transid(src, di) == trans->transid ||
3400 			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3401 			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3402 				ctx->log_new_dentries = true;
3403 		}
3404 		path->slots[0] = nritems;
3405 
3406 		/*
3407 		 * look ahead to the next item and see if it is also
3408 		 * from this directory and from this transaction
3409 		 */
3410 		ret = btrfs_next_leaf(root, path);
3411 		if (ret == 1) {
3412 			last_offset = (u64)-1;
3413 			goto done;
3414 		}
3415 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3416 		if (tmp.objectid != ino || tmp.type != key_type) {
3417 			last_offset = (u64)-1;
3418 			goto done;
3419 		}
3420 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3421 			ret = overwrite_item(trans, log, dst_path,
3422 					     path->nodes[0], path->slots[0],
3423 					     &tmp);
3424 			if (ret)
3425 				err = ret;
3426 			else
3427 				last_offset = tmp.offset;
3428 			goto done;
3429 		}
3430 	}
3431 done:
3432 	btrfs_release_path(path);
3433 	btrfs_release_path(dst_path);
3434 
3435 	if (err == 0) {
3436 		*last_offset_ret = last_offset;
3437 		/*
3438 		 * insert the log range keys to indicate where the log
3439 		 * is valid
3440 		 */
3441 		ret = insert_dir_log_key(trans, log, path, key_type,
3442 					 ino, first_offset, last_offset);
3443 		if (ret)
3444 			err = ret;
3445 	}
3446 	return err;
3447 }
3448 
3449 /*
3450  * logging directories is very similar to logging inodes, We find all the items
3451  * from the current transaction and write them to the log.
3452  *
3453  * The recovery code scans the directory in the subvolume, and if it finds a
3454  * key in the range logged that is not present in the log tree, then it means
3455  * that dir entry was unlinked during the transaction.
3456  *
3457  * In order for that scan to work, we must include one key smaller than
3458  * the smallest logged by this transaction and one key larger than the largest
3459  * key logged by this transaction.
3460  */
3461 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3462 			  struct btrfs_root *root, struct btrfs_inode *inode,
3463 			  struct btrfs_path *path,
3464 			  struct btrfs_path *dst_path,
3465 			  struct btrfs_log_ctx *ctx)
3466 {
3467 	u64 min_key;
3468 	u64 max_key;
3469 	int ret;
3470 	int key_type = BTRFS_DIR_ITEM_KEY;
3471 
3472 again:
3473 	min_key = 0;
3474 	max_key = 0;
3475 	while (1) {
3476 		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3477 				ctx, min_key, &max_key);
3478 		if (ret)
3479 			return ret;
3480 		if (max_key == (u64)-1)
3481 			break;
3482 		min_key = max_key + 1;
3483 	}
3484 
3485 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3486 		key_type = BTRFS_DIR_INDEX_KEY;
3487 		goto again;
3488 	}
3489 	return 0;
3490 }
3491 
3492 /*
3493  * a helper function to drop items from the log before we relog an
3494  * inode.  max_key_type indicates the highest item type to remove.
3495  * This cannot be run for file data extents because it does not
3496  * free the extents they point to.
3497  */
3498 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3499 				  struct btrfs_root *log,
3500 				  struct btrfs_path *path,
3501 				  u64 objectid, int max_key_type)
3502 {
3503 	int ret;
3504 	struct btrfs_key key;
3505 	struct btrfs_key found_key;
3506 	int start_slot;
3507 
3508 	key.objectid = objectid;
3509 	key.type = max_key_type;
3510 	key.offset = (u64)-1;
3511 
3512 	while (1) {
3513 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3514 		BUG_ON(ret == 0); /* Logic error */
3515 		if (ret < 0)
3516 			break;
3517 
3518 		if (path->slots[0] == 0)
3519 			break;
3520 
3521 		path->slots[0]--;
3522 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3523 				      path->slots[0]);
3524 
3525 		if (found_key.objectid != objectid)
3526 			break;
3527 
3528 		found_key.offset = 0;
3529 		found_key.type = 0;
3530 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3531 				       &start_slot);
3532 
3533 		ret = btrfs_del_items(trans, log, path, start_slot,
3534 				      path->slots[0] - start_slot + 1);
3535 		/*
3536 		 * If start slot isn't 0 then we don't need to re-search, we've
3537 		 * found the last guy with the objectid in this tree.
3538 		 */
3539 		if (ret || start_slot != 0)
3540 			break;
3541 		btrfs_release_path(path);
3542 	}
3543 	btrfs_release_path(path);
3544 	if (ret > 0)
3545 		ret = 0;
3546 	return ret;
3547 }
3548 
3549 static void fill_inode_item(struct btrfs_trans_handle *trans,
3550 			    struct extent_buffer *leaf,
3551 			    struct btrfs_inode_item *item,
3552 			    struct inode *inode, int log_inode_only,
3553 			    u64 logged_isize)
3554 {
3555 	struct btrfs_map_token token;
3556 
3557 	btrfs_init_map_token(&token);
3558 
3559 	if (log_inode_only) {
3560 		/* set the generation to zero so the recover code
3561 		 * can tell the difference between an logging
3562 		 * just to say 'this inode exists' and a logging
3563 		 * to say 'update this inode with these values'
3564 		 */
3565 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3566 		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3567 	} else {
3568 		btrfs_set_token_inode_generation(leaf, item,
3569 						 BTRFS_I(inode)->generation,
3570 						 &token);
3571 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3572 	}
3573 
3574 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3575 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3576 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3577 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3578 
3579 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3580 				     inode->i_atime.tv_sec, &token);
3581 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3582 				      inode->i_atime.tv_nsec, &token);
3583 
3584 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3585 				     inode->i_mtime.tv_sec, &token);
3586 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3587 				      inode->i_mtime.tv_nsec, &token);
3588 
3589 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3590 				     inode->i_ctime.tv_sec, &token);
3591 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3592 				      inode->i_ctime.tv_nsec, &token);
3593 
3594 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3595 				     &token);
3596 
3597 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3598 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3599 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3600 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3601 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3602 }
3603 
3604 static int log_inode_item(struct btrfs_trans_handle *trans,
3605 			  struct btrfs_root *log, struct btrfs_path *path,
3606 			  struct btrfs_inode *inode)
3607 {
3608 	struct btrfs_inode_item *inode_item;
3609 	int ret;
3610 
3611 	ret = btrfs_insert_empty_item(trans, log, path,
3612 				      &inode->location, sizeof(*inode_item));
3613 	if (ret && ret != -EEXIST)
3614 		return ret;
3615 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3616 				    struct btrfs_inode_item);
3617 	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3618 			0, 0);
3619 	btrfs_release_path(path);
3620 	return 0;
3621 }
3622 
3623 static noinline int copy_items(struct btrfs_trans_handle *trans,
3624 			       struct btrfs_inode *inode,
3625 			       struct btrfs_path *dst_path,
3626 			       struct btrfs_path *src_path, u64 *last_extent,
3627 			       int start_slot, int nr, int inode_only,
3628 			       u64 logged_isize)
3629 {
3630 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3631 	unsigned long src_offset;
3632 	unsigned long dst_offset;
3633 	struct btrfs_root *log = inode->root->log_root;
3634 	struct btrfs_file_extent_item *extent;
3635 	struct btrfs_inode_item *inode_item;
3636 	struct extent_buffer *src = src_path->nodes[0];
3637 	struct btrfs_key first_key, last_key, key;
3638 	int ret;
3639 	struct btrfs_key *ins_keys;
3640 	u32 *ins_sizes;
3641 	char *ins_data;
3642 	int i;
3643 	struct list_head ordered_sums;
3644 	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3645 	bool has_extents = false;
3646 	bool need_find_last_extent = true;
3647 	bool done = false;
3648 
3649 	INIT_LIST_HEAD(&ordered_sums);
3650 
3651 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3652 			   nr * sizeof(u32), GFP_NOFS);
3653 	if (!ins_data)
3654 		return -ENOMEM;
3655 
3656 	first_key.objectid = (u64)-1;
3657 
3658 	ins_sizes = (u32 *)ins_data;
3659 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3660 
3661 	for (i = 0; i < nr; i++) {
3662 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3663 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3664 	}
3665 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3666 				       ins_keys, ins_sizes, nr);
3667 	if (ret) {
3668 		kfree(ins_data);
3669 		return ret;
3670 	}
3671 
3672 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3673 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3674 						   dst_path->slots[0]);
3675 
3676 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3677 
3678 		if ((i == (nr - 1)))
3679 			last_key = ins_keys[i];
3680 
3681 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3682 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3683 						    dst_path->slots[0],
3684 						    struct btrfs_inode_item);
3685 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3686 					&inode->vfs_inode,
3687 					inode_only == LOG_INODE_EXISTS,
3688 					logged_isize);
3689 		} else {
3690 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3691 					   src_offset, ins_sizes[i]);
3692 		}
3693 
3694 		/*
3695 		 * We set need_find_last_extent here in case we know we were
3696 		 * processing other items and then walk into the first extent in
3697 		 * the inode.  If we don't hit an extent then nothing changes,
3698 		 * we'll do the last search the next time around.
3699 		 */
3700 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3701 			has_extents = true;
3702 			if (first_key.objectid == (u64)-1)
3703 				first_key = ins_keys[i];
3704 		} else {
3705 			need_find_last_extent = false;
3706 		}
3707 
3708 		/* take a reference on file data extents so that truncates
3709 		 * or deletes of this inode don't have to relog the inode
3710 		 * again
3711 		 */
3712 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3713 		    !skip_csum) {
3714 			int found_type;
3715 			extent = btrfs_item_ptr(src, start_slot + i,
3716 						struct btrfs_file_extent_item);
3717 
3718 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3719 				continue;
3720 
3721 			found_type = btrfs_file_extent_type(src, extent);
3722 			if (found_type == BTRFS_FILE_EXTENT_REG) {
3723 				u64 ds, dl, cs, cl;
3724 				ds = btrfs_file_extent_disk_bytenr(src,
3725 								extent);
3726 				/* ds == 0 is a hole */
3727 				if (ds == 0)
3728 					continue;
3729 
3730 				dl = btrfs_file_extent_disk_num_bytes(src,
3731 								extent);
3732 				cs = btrfs_file_extent_offset(src, extent);
3733 				cl = btrfs_file_extent_num_bytes(src,
3734 								extent);
3735 				if (btrfs_file_extent_compression(src,
3736 								  extent)) {
3737 					cs = 0;
3738 					cl = dl;
3739 				}
3740 
3741 				ret = btrfs_lookup_csums_range(
3742 						fs_info->csum_root,
3743 						ds + cs, ds + cs + cl - 1,
3744 						&ordered_sums, 0);
3745 				if (ret) {
3746 					btrfs_release_path(dst_path);
3747 					kfree(ins_data);
3748 					return ret;
3749 				}
3750 			}
3751 		}
3752 	}
3753 
3754 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3755 	btrfs_release_path(dst_path);
3756 	kfree(ins_data);
3757 
3758 	/*
3759 	 * we have to do this after the loop above to avoid changing the
3760 	 * log tree while trying to change the log tree.
3761 	 */
3762 	ret = 0;
3763 	while (!list_empty(&ordered_sums)) {
3764 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3765 						   struct btrfs_ordered_sum,
3766 						   list);
3767 		if (!ret)
3768 			ret = btrfs_csum_file_blocks(trans, log, sums);
3769 		list_del(&sums->list);
3770 		kfree(sums);
3771 	}
3772 
3773 	if (!has_extents)
3774 		return ret;
3775 
3776 	if (need_find_last_extent && *last_extent == first_key.offset) {
3777 		/*
3778 		 * We don't have any leafs between our current one and the one
3779 		 * we processed before that can have file extent items for our
3780 		 * inode (and have a generation number smaller than our current
3781 		 * transaction id).
3782 		 */
3783 		need_find_last_extent = false;
3784 	}
3785 
3786 	/*
3787 	 * Because we use btrfs_search_forward we could skip leaves that were
3788 	 * not modified and then assume *last_extent is valid when it really
3789 	 * isn't.  So back up to the previous leaf and read the end of the last
3790 	 * extent before we go and fill in holes.
3791 	 */
3792 	if (need_find_last_extent) {
3793 		u64 len;
3794 
3795 		ret = btrfs_prev_leaf(inode->root, src_path);
3796 		if (ret < 0)
3797 			return ret;
3798 		if (ret)
3799 			goto fill_holes;
3800 		if (src_path->slots[0])
3801 			src_path->slots[0]--;
3802 		src = src_path->nodes[0];
3803 		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3804 		if (key.objectid != btrfs_ino(inode) ||
3805 		    key.type != BTRFS_EXTENT_DATA_KEY)
3806 			goto fill_holes;
3807 		extent = btrfs_item_ptr(src, src_path->slots[0],
3808 					struct btrfs_file_extent_item);
3809 		if (btrfs_file_extent_type(src, extent) ==
3810 		    BTRFS_FILE_EXTENT_INLINE) {
3811 			len = btrfs_file_extent_inline_len(src,
3812 							   src_path->slots[0],
3813 							   extent);
3814 			*last_extent = ALIGN(key.offset + len,
3815 					     fs_info->sectorsize);
3816 		} else {
3817 			len = btrfs_file_extent_num_bytes(src, extent);
3818 			*last_extent = key.offset + len;
3819 		}
3820 	}
3821 fill_holes:
3822 	/* So we did prev_leaf, now we need to move to the next leaf, but a few
3823 	 * things could have happened
3824 	 *
3825 	 * 1) A merge could have happened, so we could currently be on a leaf
3826 	 * that holds what we were copying in the first place.
3827 	 * 2) A split could have happened, and now not all of the items we want
3828 	 * are on the same leaf.
3829 	 *
3830 	 * So we need to adjust how we search for holes, we need to drop the
3831 	 * path and re-search for the first extent key we found, and then walk
3832 	 * forward until we hit the last one we copied.
3833 	 */
3834 	if (need_find_last_extent) {
3835 		/* btrfs_prev_leaf could return 1 without releasing the path */
3836 		btrfs_release_path(src_path);
3837 		ret = btrfs_search_slot(NULL, inode->root, &first_key,
3838 				src_path, 0, 0);
3839 		if (ret < 0)
3840 			return ret;
3841 		ASSERT(ret == 0);
3842 		src = src_path->nodes[0];
3843 		i = src_path->slots[0];
3844 	} else {
3845 		i = start_slot;
3846 	}
3847 
3848 	/*
3849 	 * Ok so here we need to go through and fill in any holes we may have
3850 	 * to make sure that holes are punched for those areas in case they had
3851 	 * extents previously.
3852 	 */
3853 	while (!done) {
3854 		u64 offset, len;
3855 		u64 extent_end;
3856 
3857 		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3858 			ret = btrfs_next_leaf(inode->root, src_path);
3859 			if (ret < 0)
3860 				return ret;
3861 			ASSERT(ret == 0);
3862 			src = src_path->nodes[0];
3863 			i = 0;
3864 		}
3865 
3866 		btrfs_item_key_to_cpu(src, &key, i);
3867 		if (!btrfs_comp_cpu_keys(&key, &last_key))
3868 			done = true;
3869 		if (key.objectid != btrfs_ino(inode) ||
3870 		    key.type != BTRFS_EXTENT_DATA_KEY) {
3871 			i++;
3872 			continue;
3873 		}
3874 		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3875 		if (btrfs_file_extent_type(src, extent) ==
3876 		    BTRFS_FILE_EXTENT_INLINE) {
3877 			len = btrfs_file_extent_inline_len(src, i, extent);
3878 			extent_end = ALIGN(key.offset + len,
3879 					   fs_info->sectorsize);
3880 		} else {
3881 			len = btrfs_file_extent_num_bytes(src, extent);
3882 			extent_end = key.offset + len;
3883 		}
3884 		i++;
3885 
3886 		if (*last_extent == key.offset) {
3887 			*last_extent = extent_end;
3888 			continue;
3889 		}
3890 		offset = *last_extent;
3891 		len = key.offset - *last_extent;
3892 		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3893 				offset, 0, 0, len, 0, len, 0, 0, 0);
3894 		if (ret)
3895 			break;
3896 		*last_extent = extent_end;
3897 	}
3898 	/*
3899 	 * Need to let the callers know we dropped the path so they should
3900 	 * re-search.
3901 	 */
3902 	if (!ret && need_find_last_extent)
3903 		ret = 1;
3904 	return ret;
3905 }
3906 
3907 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3908 {
3909 	struct extent_map *em1, *em2;
3910 
3911 	em1 = list_entry(a, struct extent_map, list);
3912 	em2 = list_entry(b, struct extent_map, list);
3913 
3914 	if (em1->start < em2->start)
3915 		return -1;
3916 	else if (em1->start > em2->start)
3917 		return 1;
3918 	return 0;
3919 }
3920 
3921 static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3922 				struct inode *inode,
3923 				struct btrfs_root *root,
3924 				const struct extent_map *em,
3925 				const struct list_head *logged_list,
3926 				bool *ordered_io_error)
3927 {
3928 	struct btrfs_fs_info *fs_info = root->fs_info;
3929 	struct btrfs_ordered_extent *ordered;
3930 	struct btrfs_root *log = root->log_root;
3931 	u64 mod_start = em->mod_start;
3932 	u64 mod_len = em->mod_len;
3933 	const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3934 	u64 csum_offset;
3935 	u64 csum_len;
3936 	LIST_HEAD(ordered_sums);
3937 	int ret = 0;
3938 
3939 	*ordered_io_error = false;
3940 
3941 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3942 	    em->block_start == EXTENT_MAP_HOLE)
3943 		return 0;
3944 
3945 	/*
3946 	 * Wait far any ordered extent that covers our extent map. If it
3947 	 * finishes without an error, first check and see if our csums are on
3948 	 * our outstanding ordered extents.
3949 	 */
3950 	list_for_each_entry(ordered, logged_list, log_list) {
3951 		struct btrfs_ordered_sum *sum;
3952 
3953 		if (!mod_len)
3954 			break;
3955 
3956 		if (ordered->file_offset + ordered->len <= mod_start ||
3957 		    mod_start + mod_len <= ordered->file_offset)
3958 			continue;
3959 
3960 		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3961 		    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3962 		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3963 			const u64 start = ordered->file_offset;
3964 			const u64 end = ordered->file_offset + ordered->len - 1;
3965 
3966 			WARN_ON(ordered->inode != inode);
3967 			filemap_fdatawrite_range(inode->i_mapping, start, end);
3968 		}
3969 
3970 		wait_event(ordered->wait,
3971 			   (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3972 			    test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3973 
3974 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3975 			/*
3976 			 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3977 			 * i_mapping flags, so that the next fsync won't get
3978 			 * an outdated io error too.
3979 			 */
3980 			filemap_check_errors(inode->i_mapping);
3981 			*ordered_io_error = true;
3982 			break;
3983 		}
3984 		/*
3985 		 * We are going to copy all the csums on this ordered extent, so
3986 		 * go ahead and adjust mod_start and mod_len in case this
3987 		 * ordered extent has already been logged.
3988 		 */
3989 		if (ordered->file_offset > mod_start) {
3990 			if (ordered->file_offset + ordered->len >=
3991 			    mod_start + mod_len)
3992 				mod_len = ordered->file_offset - mod_start;
3993 			/*
3994 			 * If we have this case
3995 			 *
3996 			 * |--------- logged extent ---------|
3997 			 *       |----- ordered extent ----|
3998 			 *
3999 			 * Just don't mess with mod_start and mod_len, we'll
4000 			 * just end up logging more csums than we need and it
4001 			 * will be ok.
4002 			 */
4003 		} else {
4004 			if (ordered->file_offset + ordered->len <
4005 			    mod_start + mod_len) {
4006 				mod_len = (mod_start + mod_len) -
4007 					(ordered->file_offset + ordered->len);
4008 				mod_start = ordered->file_offset +
4009 					ordered->len;
4010 			} else {
4011 				mod_len = 0;
4012 			}
4013 		}
4014 
4015 		if (skip_csum)
4016 			continue;
4017 
4018 		/*
4019 		 * To keep us from looping for the above case of an ordered
4020 		 * extent that falls inside of the logged extent.
4021 		 */
4022 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4023 				     &ordered->flags))
4024 			continue;
4025 
4026 		list_for_each_entry(sum, &ordered->list, list) {
4027 			ret = btrfs_csum_file_blocks(trans, log, sum);
4028 			if (ret)
4029 				break;
4030 		}
4031 	}
4032 
4033 	if (*ordered_io_error || !mod_len || ret || skip_csum)
4034 		return ret;
4035 
4036 	if (em->compress_type) {
4037 		csum_offset = 0;
4038 		csum_len = max(em->block_len, em->orig_block_len);
4039 	} else {
4040 		csum_offset = mod_start - em->start;
4041 		csum_len = mod_len;
4042 	}
4043 
4044 	/* block start is already adjusted for the file extent offset. */
4045 	ret = btrfs_lookup_csums_range(fs_info->csum_root,
4046 				       em->block_start + csum_offset,
4047 				       em->block_start + csum_offset +
4048 				       csum_len - 1, &ordered_sums, 0);
4049 	if (ret)
4050 		return ret;
4051 
4052 	while (!list_empty(&ordered_sums)) {
4053 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4054 						   struct btrfs_ordered_sum,
4055 						   list);
4056 		if (!ret)
4057 			ret = btrfs_csum_file_blocks(trans, log, sums);
4058 		list_del(&sums->list);
4059 		kfree(sums);
4060 	}
4061 
4062 	return ret;
4063 }
4064 
4065 static int log_one_extent(struct btrfs_trans_handle *trans,
4066 			  struct btrfs_inode *inode, struct btrfs_root *root,
4067 			  const struct extent_map *em,
4068 			  struct btrfs_path *path,
4069 			  const struct list_head *logged_list,
4070 			  struct btrfs_log_ctx *ctx)
4071 {
4072 	struct btrfs_root *log = root->log_root;
4073 	struct btrfs_file_extent_item *fi;
4074 	struct extent_buffer *leaf;
4075 	struct btrfs_map_token token;
4076 	struct btrfs_key key;
4077 	u64 extent_offset = em->start - em->orig_start;
4078 	u64 block_len;
4079 	int ret;
4080 	int extent_inserted = 0;
4081 	bool ordered_io_err = false;
4082 
4083 	ret = wait_ordered_extents(trans, &inode->vfs_inode, root, em,
4084 			logged_list, &ordered_io_err);
4085 	if (ret)
4086 		return ret;
4087 
4088 	if (ordered_io_err) {
4089 		ctx->io_err = -EIO;
4090 		return 0;
4091 	}
4092 
4093 	btrfs_init_map_token(&token);
4094 
4095 	ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4096 				   em->start + em->len, NULL, 0, 1,
4097 				   sizeof(*fi), &extent_inserted);
4098 	if (ret)
4099 		return ret;
4100 
4101 	if (!extent_inserted) {
4102 		key.objectid = btrfs_ino(inode);
4103 		key.type = BTRFS_EXTENT_DATA_KEY;
4104 		key.offset = em->start;
4105 
4106 		ret = btrfs_insert_empty_item(trans, log, path, &key,
4107 					      sizeof(*fi));
4108 		if (ret)
4109 			return ret;
4110 	}
4111 	leaf = path->nodes[0];
4112 	fi = btrfs_item_ptr(leaf, path->slots[0],
4113 			    struct btrfs_file_extent_item);
4114 
4115 	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4116 					       &token);
4117 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4118 		btrfs_set_token_file_extent_type(leaf, fi,
4119 						 BTRFS_FILE_EXTENT_PREALLOC,
4120 						 &token);
4121 	else
4122 		btrfs_set_token_file_extent_type(leaf, fi,
4123 						 BTRFS_FILE_EXTENT_REG,
4124 						 &token);
4125 
4126 	block_len = max(em->block_len, em->orig_block_len);
4127 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4128 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4129 							em->block_start,
4130 							&token);
4131 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4132 							   &token);
4133 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4134 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4135 							em->block_start -
4136 							extent_offset, &token);
4137 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4138 							   &token);
4139 	} else {
4140 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4141 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4142 							   &token);
4143 	}
4144 
4145 	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4146 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4147 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4148 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4149 						&token);
4150 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4151 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4152 	btrfs_mark_buffer_dirty(leaf);
4153 
4154 	btrfs_release_path(path);
4155 
4156 	return ret;
4157 }
4158 
4159 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4160 				     struct btrfs_root *root,
4161 				     struct btrfs_inode *inode,
4162 				     struct btrfs_path *path,
4163 				     struct list_head *logged_list,
4164 				     struct btrfs_log_ctx *ctx,
4165 				     const u64 start,
4166 				     const u64 end)
4167 {
4168 	struct extent_map *em, *n;
4169 	struct list_head extents;
4170 	struct extent_map_tree *tree = &inode->extent_tree;
4171 	u64 test_gen;
4172 	int ret = 0;
4173 	int num = 0;
4174 
4175 	INIT_LIST_HEAD(&extents);
4176 
4177 	down_write(&inode->dio_sem);
4178 	write_lock(&tree->lock);
4179 	test_gen = root->fs_info->last_trans_committed;
4180 
4181 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4182 		list_del_init(&em->list);
4183 
4184 		/*
4185 		 * Just an arbitrary number, this can be really CPU intensive
4186 		 * once we start getting a lot of extents, and really once we
4187 		 * have a bunch of extents we just want to commit since it will
4188 		 * be faster.
4189 		 */
4190 		if (++num > 32768) {
4191 			list_del_init(&tree->modified_extents);
4192 			ret = -EFBIG;
4193 			goto process;
4194 		}
4195 
4196 		if (em->generation <= test_gen)
4197 			continue;
4198 		/* Need a ref to keep it from getting evicted from cache */
4199 		refcount_inc(&em->refs);
4200 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4201 		list_add_tail(&em->list, &extents);
4202 		num++;
4203 	}
4204 
4205 	list_sort(NULL, &extents, extent_cmp);
4206 	btrfs_get_logged_extents(inode, logged_list, start, end);
4207 	/*
4208 	 * Some ordered extents started by fsync might have completed
4209 	 * before we could collect them into the list logged_list, which
4210 	 * means they're gone, not in our logged_list nor in the inode's
4211 	 * ordered tree. We want the application/user space to know an
4212 	 * error happened while attempting to persist file data so that
4213 	 * it can take proper action. If such error happened, we leave
4214 	 * without writing to the log tree and the fsync must report the
4215 	 * file data write error and not commit the current transaction.
4216 	 */
4217 	ret = filemap_check_errors(inode->vfs_inode.i_mapping);
4218 	if (ret)
4219 		ctx->io_err = ret;
4220 process:
4221 	while (!list_empty(&extents)) {
4222 		em = list_entry(extents.next, struct extent_map, list);
4223 
4224 		list_del_init(&em->list);
4225 
4226 		/*
4227 		 * If we had an error we just need to delete everybody from our
4228 		 * private list.
4229 		 */
4230 		if (ret) {
4231 			clear_em_logging(tree, em);
4232 			free_extent_map(em);
4233 			continue;
4234 		}
4235 
4236 		write_unlock(&tree->lock);
4237 
4238 		ret = log_one_extent(trans, inode, root, em, path, logged_list,
4239 				     ctx);
4240 		write_lock(&tree->lock);
4241 		clear_em_logging(tree, em);
4242 		free_extent_map(em);
4243 	}
4244 	WARN_ON(!list_empty(&extents));
4245 	write_unlock(&tree->lock);
4246 	up_write(&inode->dio_sem);
4247 
4248 	btrfs_release_path(path);
4249 	return ret;
4250 }
4251 
4252 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4253 			     struct btrfs_path *path, u64 *size_ret)
4254 {
4255 	struct btrfs_key key;
4256 	int ret;
4257 
4258 	key.objectid = btrfs_ino(inode);
4259 	key.type = BTRFS_INODE_ITEM_KEY;
4260 	key.offset = 0;
4261 
4262 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4263 	if (ret < 0) {
4264 		return ret;
4265 	} else if (ret > 0) {
4266 		*size_ret = 0;
4267 	} else {
4268 		struct btrfs_inode_item *item;
4269 
4270 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4271 				      struct btrfs_inode_item);
4272 		*size_ret = btrfs_inode_size(path->nodes[0], item);
4273 	}
4274 
4275 	btrfs_release_path(path);
4276 	return 0;
4277 }
4278 
4279 /*
4280  * At the moment we always log all xattrs. This is to figure out at log replay
4281  * time which xattrs must have their deletion replayed. If a xattr is missing
4282  * in the log tree and exists in the fs/subvol tree, we delete it. This is
4283  * because if a xattr is deleted, the inode is fsynced and a power failure
4284  * happens, causing the log to be replayed the next time the fs is mounted,
4285  * we want the xattr to not exist anymore (same behaviour as other filesystems
4286  * with a journal, ext3/4, xfs, f2fs, etc).
4287  */
4288 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4289 				struct btrfs_root *root,
4290 				struct btrfs_inode *inode,
4291 				struct btrfs_path *path,
4292 				struct btrfs_path *dst_path)
4293 {
4294 	int ret;
4295 	struct btrfs_key key;
4296 	const u64 ino = btrfs_ino(inode);
4297 	int ins_nr = 0;
4298 	int start_slot = 0;
4299 
4300 	key.objectid = ino;
4301 	key.type = BTRFS_XATTR_ITEM_KEY;
4302 	key.offset = 0;
4303 
4304 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4305 	if (ret < 0)
4306 		return ret;
4307 
4308 	while (true) {
4309 		int slot = path->slots[0];
4310 		struct extent_buffer *leaf = path->nodes[0];
4311 		int nritems = btrfs_header_nritems(leaf);
4312 
4313 		if (slot >= nritems) {
4314 			if (ins_nr > 0) {
4315 				u64 last_extent = 0;
4316 
4317 				ret = copy_items(trans, inode, dst_path, path,
4318 						 &last_extent, start_slot,
4319 						 ins_nr, 1, 0);
4320 				/* can't be 1, extent items aren't processed */
4321 				ASSERT(ret <= 0);
4322 				if (ret < 0)
4323 					return ret;
4324 				ins_nr = 0;
4325 			}
4326 			ret = btrfs_next_leaf(root, path);
4327 			if (ret < 0)
4328 				return ret;
4329 			else if (ret > 0)
4330 				break;
4331 			continue;
4332 		}
4333 
4334 		btrfs_item_key_to_cpu(leaf, &key, slot);
4335 		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4336 			break;
4337 
4338 		if (ins_nr == 0)
4339 			start_slot = slot;
4340 		ins_nr++;
4341 		path->slots[0]++;
4342 		cond_resched();
4343 	}
4344 	if (ins_nr > 0) {
4345 		u64 last_extent = 0;
4346 
4347 		ret = copy_items(trans, inode, dst_path, path,
4348 				 &last_extent, start_slot,
4349 				 ins_nr, 1, 0);
4350 		/* can't be 1, extent items aren't processed */
4351 		ASSERT(ret <= 0);
4352 		if (ret < 0)
4353 			return ret;
4354 	}
4355 
4356 	return 0;
4357 }
4358 
4359 /*
4360  * If the no holes feature is enabled we need to make sure any hole between the
4361  * last extent and the i_size of our inode is explicitly marked in the log. This
4362  * is to make sure that doing something like:
4363  *
4364  *      1) create file with 128Kb of data
4365  *      2) truncate file to 64Kb
4366  *      3) truncate file to 256Kb
4367  *      4) fsync file
4368  *      5) <crash/power failure>
4369  *      6) mount fs and trigger log replay
4370  *
4371  * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4372  * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4373  * file correspond to a hole. The presence of explicit holes in a log tree is
4374  * what guarantees that log replay will remove/adjust file extent items in the
4375  * fs/subvol tree.
4376  *
4377  * Here we do not need to care about holes between extents, that is already done
4378  * by copy_items(). We also only need to do this in the full sync path, where we
4379  * lookup for extents from the fs/subvol tree only. In the fast path case, we
4380  * lookup the list of modified extent maps and if any represents a hole, we
4381  * insert a corresponding extent representing a hole in the log tree.
4382  */
4383 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4384 				   struct btrfs_root *root,
4385 				   struct btrfs_inode *inode,
4386 				   struct btrfs_path *path)
4387 {
4388 	struct btrfs_fs_info *fs_info = root->fs_info;
4389 	int ret;
4390 	struct btrfs_key key;
4391 	u64 hole_start;
4392 	u64 hole_size;
4393 	struct extent_buffer *leaf;
4394 	struct btrfs_root *log = root->log_root;
4395 	const u64 ino = btrfs_ino(inode);
4396 	const u64 i_size = i_size_read(&inode->vfs_inode);
4397 
4398 	if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4399 		return 0;
4400 
4401 	key.objectid = ino;
4402 	key.type = BTRFS_EXTENT_DATA_KEY;
4403 	key.offset = (u64)-1;
4404 
4405 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4406 	ASSERT(ret != 0);
4407 	if (ret < 0)
4408 		return ret;
4409 
4410 	ASSERT(path->slots[0] > 0);
4411 	path->slots[0]--;
4412 	leaf = path->nodes[0];
4413 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4414 
4415 	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4416 		/* inode does not have any extents */
4417 		hole_start = 0;
4418 		hole_size = i_size;
4419 	} else {
4420 		struct btrfs_file_extent_item *extent;
4421 		u64 len;
4422 
4423 		/*
4424 		 * If there's an extent beyond i_size, an explicit hole was
4425 		 * already inserted by copy_items().
4426 		 */
4427 		if (key.offset >= i_size)
4428 			return 0;
4429 
4430 		extent = btrfs_item_ptr(leaf, path->slots[0],
4431 					struct btrfs_file_extent_item);
4432 
4433 		if (btrfs_file_extent_type(leaf, extent) ==
4434 		    BTRFS_FILE_EXTENT_INLINE) {
4435 			len = btrfs_file_extent_inline_len(leaf,
4436 							   path->slots[0],
4437 							   extent);
4438 			ASSERT(len == i_size);
4439 			return 0;
4440 		}
4441 
4442 		len = btrfs_file_extent_num_bytes(leaf, extent);
4443 		/* Last extent goes beyond i_size, no need to log a hole. */
4444 		if (key.offset + len > i_size)
4445 			return 0;
4446 		hole_start = key.offset + len;
4447 		hole_size = i_size - hole_start;
4448 	}
4449 	btrfs_release_path(path);
4450 
4451 	/* Last extent ends at i_size. */
4452 	if (hole_size == 0)
4453 		return 0;
4454 
4455 	hole_size = ALIGN(hole_size, fs_info->sectorsize);
4456 	ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4457 				       hole_size, 0, hole_size, 0, 0, 0);
4458 	return ret;
4459 }
4460 
4461 /*
4462  * When we are logging a new inode X, check if it doesn't have a reference that
4463  * matches the reference from some other inode Y created in a past transaction
4464  * and that was renamed in the current transaction. If we don't do this, then at
4465  * log replay time we can lose inode Y (and all its files if it's a directory):
4466  *
4467  * mkdir /mnt/x
4468  * echo "hello world" > /mnt/x/foobar
4469  * sync
4470  * mv /mnt/x /mnt/y
4471  * mkdir /mnt/x                 # or touch /mnt/x
4472  * xfs_io -c fsync /mnt/x
4473  * <power fail>
4474  * mount fs, trigger log replay
4475  *
4476  * After the log replay procedure, we would lose the first directory and all its
4477  * files (file foobar).
4478  * For the case where inode Y is not a directory we simply end up losing it:
4479  *
4480  * echo "123" > /mnt/foo
4481  * sync
4482  * mv /mnt/foo /mnt/bar
4483  * echo "abc" > /mnt/foo
4484  * xfs_io -c fsync /mnt/foo
4485  * <power fail>
4486  *
4487  * We also need this for cases where a snapshot entry is replaced by some other
4488  * entry (file or directory) otherwise we end up with an unreplayable log due to
4489  * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4490  * if it were a regular entry:
4491  *
4492  * mkdir /mnt/x
4493  * btrfs subvolume snapshot /mnt /mnt/x/snap
4494  * btrfs subvolume delete /mnt/x/snap
4495  * rmdir /mnt/x
4496  * mkdir /mnt/x
4497  * fsync /mnt/x or fsync some new file inside it
4498  * <power fail>
4499  *
4500  * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4501  * the same transaction.
4502  */
4503 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4504 					 const int slot,
4505 					 const struct btrfs_key *key,
4506 					 struct btrfs_inode *inode,
4507 					 u64 *other_ino)
4508 {
4509 	int ret;
4510 	struct btrfs_path *search_path;
4511 	char *name = NULL;
4512 	u32 name_len = 0;
4513 	u32 item_size = btrfs_item_size_nr(eb, slot);
4514 	u32 cur_offset = 0;
4515 	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4516 
4517 	search_path = btrfs_alloc_path();
4518 	if (!search_path)
4519 		return -ENOMEM;
4520 	search_path->search_commit_root = 1;
4521 	search_path->skip_locking = 1;
4522 
4523 	while (cur_offset < item_size) {
4524 		u64 parent;
4525 		u32 this_name_len;
4526 		u32 this_len;
4527 		unsigned long name_ptr;
4528 		struct btrfs_dir_item *di;
4529 
4530 		if (key->type == BTRFS_INODE_REF_KEY) {
4531 			struct btrfs_inode_ref *iref;
4532 
4533 			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4534 			parent = key->offset;
4535 			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4536 			name_ptr = (unsigned long)(iref + 1);
4537 			this_len = sizeof(*iref) + this_name_len;
4538 		} else {
4539 			struct btrfs_inode_extref *extref;
4540 
4541 			extref = (struct btrfs_inode_extref *)(ptr +
4542 							       cur_offset);
4543 			parent = btrfs_inode_extref_parent(eb, extref);
4544 			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4545 			name_ptr = (unsigned long)&extref->name;
4546 			this_len = sizeof(*extref) + this_name_len;
4547 		}
4548 
4549 		if (this_name_len > name_len) {
4550 			char *new_name;
4551 
4552 			new_name = krealloc(name, this_name_len, GFP_NOFS);
4553 			if (!new_name) {
4554 				ret = -ENOMEM;
4555 				goto out;
4556 			}
4557 			name_len = this_name_len;
4558 			name = new_name;
4559 		}
4560 
4561 		read_extent_buffer(eb, name, name_ptr, this_name_len);
4562 		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4563 				parent, name, this_name_len, 0);
4564 		if (di && !IS_ERR(di)) {
4565 			struct btrfs_key di_key;
4566 
4567 			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4568 						  di, &di_key);
4569 			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4570 				ret = 1;
4571 				*other_ino = di_key.objectid;
4572 			} else {
4573 				ret = -EAGAIN;
4574 			}
4575 			goto out;
4576 		} else if (IS_ERR(di)) {
4577 			ret = PTR_ERR(di);
4578 			goto out;
4579 		}
4580 		btrfs_release_path(search_path);
4581 
4582 		cur_offset += this_len;
4583 	}
4584 	ret = 0;
4585 out:
4586 	btrfs_free_path(search_path);
4587 	kfree(name);
4588 	return ret;
4589 }
4590 
4591 /* log a single inode in the tree log.
4592  * At least one parent directory for this inode must exist in the tree
4593  * or be logged already.
4594  *
4595  * Any items from this inode changed by the current transaction are copied
4596  * to the log tree.  An extra reference is taken on any extents in this
4597  * file, allowing us to avoid a whole pile of corner cases around logging
4598  * blocks that have been removed from the tree.
4599  *
4600  * See LOG_INODE_ALL and related defines for a description of what inode_only
4601  * does.
4602  *
4603  * This handles both files and directories.
4604  */
4605 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4606 			   struct btrfs_root *root, struct btrfs_inode *inode,
4607 			   int inode_only,
4608 			   const loff_t start,
4609 			   const loff_t end,
4610 			   struct btrfs_log_ctx *ctx)
4611 {
4612 	struct btrfs_fs_info *fs_info = root->fs_info;
4613 	struct btrfs_path *path;
4614 	struct btrfs_path *dst_path;
4615 	struct btrfs_key min_key;
4616 	struct btrfs_key max_key;
4617 	struct btrfs_root *log = root->log_root;
4618 	struct extent_buffer *src = NULL;
4619 	LIST_HEAD(logged_list);
4620 	u64 last_extent = 0;
4621 	int err = 0;
4622 	int ret;
4623 	int nritems;
4624 	int ins_start_slot = 0;
4625 	int ins_nr;
4626 	bool fast_search = false;
4627 	u64 ino = btrfs_ino(inode);
4628 	struct extent_map_tree *em_tree = &inode->extent_tree;
4629 	u64 logged_isize = 0;
4630 	bool need_log_inode_item = true;
4631 
4632 	path = btrfs_alloc_path();
4633 	if (!path)
4634 		return -ENOMEM;
4635 	dst_path = btrfs_alloc_path();
4636 	if (!dst_path) {
4637 		btrfs_free_path(path);
4638 		return -ENOMEM;
4639 	}
4640 
4641 	min_key.objectid = ino;
4642 	min_key.type = BTRFS_INODE_ITEM_KEY;
4643 	min_key.offset = 0;
4644 
4645 	max_key.objectid = ino;
4646 
4647 
4648 	/* today the code can only do partial logging of directories */
4649 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
4650 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4651 		       &inode->runtime_flags) &&
4652 	     inode_only >= LOG_INODE_EXISTS))
4653 		max_key.type = BTRFS_XATTR_ITEM_KEY;
4654 	else
4655 		max_key.type = (u8)-1;
4656 	max_key.offset = (u64)-1;
4657 
4658 	/*
4659 	 * Only run delayed items if we are a dir or a new file.
4660 	 * Otherwise commit the delayed inode only, which is needed in
4661 	 * order for the log replay code to mark inodes for link count
4662 	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4663 	 */
4664 	if (S_ISDIR(inode->vfs_inode.i_mode) ||
4665 	    inode->generation > fs_info->last_trans_committed)
4666 		ret = btrfs_commit_inode_delayed_items(trans, inode);
4667 	else
4668 		ret = btrfs_commit_inode_delayed_inode(inode);
4669 
4670 	if (ret) {
4671 		btrfs_free_path(path);
4672 		btrfs_free_path(dst_path);
4673 		return ret;
4674 	}
4675 
4676 	if (inode_only == LOG_OTHER_INODE) {
4677 		inode_only = LOG_INODE_EXISTS;
4678 		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
4679 	} else {
4680 		mutex_lock(&inode->log_mutex);
4681 	}
4682 
4683 	/*
4684 	 * a brute force approach to making sure we get the most uptodate
4685 	 * copies of everything.
4686 	 */
4687 	if (S_ISDIR(inode->vfs_inode.i_mode)) {
4688 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4689 
4690 		if (inode_only == LOG_INODE_EXISTS)
4691 			max_key_type = BTRFS_XATTR_ITEM_KEY;
4692 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4693 	} else {
4694 		if (inode_only == LOG_INODE_EXISTS) {
4695 			/*
4696 			 * Make sure the new inode item we write to the log has
4697 			 * the same isize as the current one (if it exists).
4698 			 * This is necessary to prevent data loss after log
4699 			 * replay, and also to prevent doing a wrong expanding
4700 			 * truncate - for e.g. create file, write 4K into offset
4701 			 * 0, fsync, write 4K into offset 4096, add hard link,
4702 			 * fsync some other file (to sync log), power fail - if
4703 			 * we use the inode's current i_size, after log replay
4704 			 * we get a 8Kb file, with the last 4Kb extent as a hole
4705 			 * (zeroes), as if an expanding truncate happened,
4706 			 * instead of getting a file of 4Kb only.
4707 			 */
4708 			err = logged_inode_size(log, inode, path, &logged_isize);
4709 			if (err)
4710 				goto out_unlock;
4711 		}
4712 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4713 			     &inode->runtime_flags)) {
4714 			if (inode_only == LOG_INODE_EXISTS) {
4715 				max_key.type = BTRFS_XATTR_ITEM_KEY;
4716 				ret = drop_objectid_items(trans, log, path, ino,
4717 							  max_key.type);
4718 			} else {
4719 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4720 					  &inode->runtime_flags);
4721 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4722 					  &inode->runtime_flags);
4723 				while(1) {
4724 					ret = btrfs_truncate_inode_items(trans,
4725 						log, &inode->vfs_inode, 0, 0);
4726 					if (ret != -EAGAIN)
4727 						break;
4728 				}
4729 			}
4730 		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4731 					      &inode->runtime_flags) ||
4732 			   inode_only == LOG_INODE_EXISTS) {
4733 			if (inode_only == LOG_INODE_ALL)
4734 				fast_search = true;
4735 			max_key.type = BTRFS_XATTR_ITEM_KEY;
4736 			ret = drop_objectid_items(trans, log, path, ino,
4737 						  max_key.type);
4738 		} else {
4739 			if (inode_only == LOG_INODE_ALL)
4740 				fast_search = true;
4741 			goto log_extents;
4742 		}
4743 
4744 	}
4745 	if (ret) {
4746 		err = ret;
4747 		goto out_unlock;
4748 	}
4749 
4750 	while (1) {
4751 		ins_nr = 0;
4752 		ret = btrfs_search_forward(root, &min_key,
4753 					   path, trans->transid);
4754 		if (ret < 0) {
4755 			err = ret;
4756 			goto out_unlock;
4757 		}
4758 		if (ret != 0)
4759 			break;
4760 again:
4761 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
4762 		if (min_key.objectid != ino)
4763 			break;
4764 		if (min_key.type > max_key.type)
4765 			break;
4766 
4767 		if (min_key.type == BTRFS_INODE_ITEM_KEY)
4768 			need_log_inode_item = false;
4769 
4770 		if ((min_key.type == BTRFS_INODE_REF_KEY ||
4771 		     min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4772 		    inode->generation == trans->transid) {
4773 			u64 other_ino = 0;
4774 
4775 			ret = btrfs_check_ref_name_override(path->nodes[0],
4776 					path->slots[0], &min_key, inode,
4777 					&other_ino);
4778 			if (ret < 0) {
4779 				err = ret;
4780 				goto out_unlock;
4781 			} else if (ret > 0 && ctx &&
4782 				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
4783 				struct btrfs_key inode_key;
4784 				struct inode *other_inode;
4785 
4786 				if (ins_nr > 0) {
4787 					ins_nr++;
4788 				} else {
4789 					ins_nr = 1;
4790 					ins_start_slot = path->slots[0];
4791 				}
4792 				ret = copy_items(trans, inode, dst_path, path,
4793 						 &last_extent, ins_start_slot,
4794 						 ins_nr, inode_only,
4795 						 logged_isize);
4796 				if (ret < 0) {
4797 					err = ret;
4798 					goto out_unlock;
4799 				}
4800 				ins_nr = 0;
4801 				btrfs_release_path(path);
4802 				inode_key.objectid = other_ino;
4803 				inode_key.type = BTRFS_INODE_ITEM_KEY;
4804 				inode_key.offset = 0;
4805 				other_inode = btrfs_iget(fs_info->sb,
4806 							 &inode_key, root,
4807 							 NULL);
4808 				/*
4809 				 * If the other inode that had a conflicting dir
4810 				 * entry was deleted in the current transaction,
4811 				 * we don't need to do more work nor fallback to
4812 				 * a transaction commit.
4813 				 */
4814 				if (IS_ERR(other_inode) &&
4815 				    PTR_ERR(other_inode) == -ENOENT) {
4816 					goto next_key;
4817 				} else if (IS_ERR(other_inode)) {
4818 					err = PTR_ERR(other_inode);
4819 					goto out_unlock;
4820 				}
4821 				/*
4822 				 * We are safe logging the other inode without
4823 				 * acquiring its i_mutex as long as we log with
4824 				 * the LOG_INODE_EXISTS mode. We're safe against
4825 				 * concurrent renames of the other inode as well
4826 				 * because during a rename we pin the log and
4827 				 * update the log with the new name before we
4828 				 * unpin it.
4829 				 */
4830 				err = btrfs_log_inode(trans, root,
4831 						BTRFS_I(other_inode),
4832 						LOG_OTHER_INODE, 0, LLONG_MAX,
4833 						ctx);
4834 				iput(other_inode);
4835 				if (err)
4836 					goto out_unlock;
4837 				else
4838 					goto next_key;
4839 			}
4840 		}
4841 
4842 		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4843 		if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4844 			if (ins_nr == 0)
4845 				goto next_slot;
4846 			ret = copy_items(trans, inode, dst_path, path,
4847 					 &last_extent, ins_start_slot,
4848 					 ins_nr, inode_only, logged_isize);
4849 			if (ret < 0) {
4850 				err = ret;
4851 				goto out_unlock;
4852 			}
4853 			ins_nr = 0;
4854 			if (ret) {
4855 				btrfs_release_path(path);
4856 				continue;
4857 			}
4858 			goto next_slot;
4859 		}
4860 
4861 		src = path->nodes[0];
4862 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4863 			ins_nr++;
4864 			goto next_slot;
4865 		} else if (!ins_nr) {
4866 			ins_start_slot = path->slots[0];
4867 			ins_nr = 1;
4868 			goto next_slot;
4869 		}
4870 
4871 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4872 				 ins_start_slot, ins_nr, inode_only,
4873 				 logged_isize);
4874 		if (ret < 0) {
4875 			err = ret;
4876 			goto out_unlock;
4877 		}
4878 		if (ret) {
4879 			ins_nr = 0;
4880 			btrfs_release_path(path);
4881 			continue;
4882 		}
4883 		ins_nr = 1;
4884 		ins_start_slot = path->slots[0];
4885 next_slot:
4886 
4887 		nritems = btrfs_header_nritems(path->nodes[0]);
4888 		path->slots[0]++;
4889 		if (path->slots[0] < nritems) {
4890 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4891 					      path->slots[0]);
4892 			goto again;
4893 		}
4894 		if (ins_nr) {
4895 			ret = copy_items(trans, inode, dst_path, path,
4896 					 &last_extent, ins_start_slot,
4897 					 ins_nr, inode_only, logged_isize);
4898 			if (ret < 0) {
4899 				err = ret;
4900 				goto out_unlock;
4901 			}
4902 			ret = 0;
4903 			ins_nr = 0;
4904 		}
4905 		btrfs_release_path(path);
4906 next_key:
4907 		if (min_key.offset < (u64)-1) {
4908 			min_key.offset++;
4909 		} else if (min_key.type < max_key.type) {
4910 			min_key.type++;
4911 			min_key.offset = 0;
4912 		} else {
4913 			break;
4914 		}
4915 	}
4916 	if (ins_nr) {
4917 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4918 				 ins_start_slot, ins_nr, inode_only,
4919 				 logged_isize);
4920 		if (ret < 0) {
4921 			err = ret;
4922 			goto out_unlock;
4923 		}
4924 		ret = 0;
4925 		ins_nr = 0;
4926 	}
4927 
4928 	btrfs_release_path(path);
4929 	btrfs_release_path(dst_path);
4930 	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4931 	if (err)
4932 		goto out_unlock;
4933 	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4934 		btrfs_release_path(path);
4935 		btrfs_release_path(dst_path);
4936 		err = btrfs_log_trailing_hole(trans, root, inode, path);
4937 		if (err)
4938 			goto out_unlock;
4939 	}
4940 log_extents:
4941 	btrfs_release_path(path);
4942 	btrfs_release_path(dst_path);
4943 	if (need_log_inode_item) {
4944 		err = log_inode_item(trans, log, dst_path, inode);
4945 		if (err)
4946 			goto out_unlock;
4947 	}
4948 	if (fast_search) {
4949 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4950 						&logged_list, ctx, start, end);
4951 		if (ret) {
4952 			err = ret;
4953 			goto out_unlock;
4954 		}
4955 	} else if (inode_only == LOG_INODE_ALL) {
4956 		struct extent_map *em, *n;
4957 
4958 		write_lock(&em_tree->lock);
4959 		/*
4960 		 * We can't just remove every em if we're called for a ranged
4961 		 * fsync - that is, one that doesn't cover the whole possible
4962 		 * file range (0 to LLONG_MAX). This is because we can have
4963 		 * em's that fall outside the range we're logging and therefore
4964 		 * their ordered operations haven't completed yet
4965 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
4966 		 * didn't get their respective file extent item in the fs/subvol
4967 		 * tree yet, and need to let the next fast fsync (one which
4968 		 * consults the list of modified extent maps) find the em so
4969 		 * that it logs a matching file extent item and waits for the
4970 		 * respective ordered operation to complete (if it's still
4971 		 * running).
4972 		 *
4973 		 * Removing every em outside the range we're logging would make
4974 		 * the next fast fsync not log their matching file extent items,
4975 		 * therefore making us lose data after a log replay.
4976 		 */
4977 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4978 					 list) {
4979 			const u64 mod_end = em->mod_start + em->mod_len - 1;
4980 
4981 			if (em->mod_start >= start && mod_end <= end)
4982 				list_del_init(&em->list);
4983 		}
4984 		write_unlock(&em_tree->lock);
4985 	}
4986 
4987 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
4988 		ret = log_directory_changes(trans, root, inode, path, dst_path,
4989 					ctx);
4990 		if (ret) {
4991 			err = ret;
4992 			goto out_unlock;
4993 		}
4994 	}
4995 
4996 	spin_lock(&inode->lock);
4997 	inode->logged_trans = trans->transid;
4998 	inode->last_log_commit = inode->last_sub_trans;
4999 	spin_unlock(&inode->lock);
5000 out_unlock:
5001 	if (unlikely(err))
5002 		btrfs_put_logged_extents(&logged_list);
5003 	else
5004 		btrfs_submit_logged_extents(&logged_list, log);
5005 	mutex_unlock(&inode->log_mutex);
5006 
5007 	btrfs_free_path(path);
5008 	btrfs_free_path(dst_path);
5009 	return err;
5010 }
5011 
5012 /*
5013  * Check if we must fallback to a transaction commit when logging an inode.
5014  * This must be called after logging the inode and is used only in the context
5015  * when fsyncing an inode requires the need to log some other inode - in which
5016  * case we can't lock the i_mutex of each other inode we need to log as that
5017  * can lead to deadlocks with concurrent fsync against other inodes (as we can
5018  * log inodes up or down in the hierarchy) or rename operations for example. So
5019  * we take the log_mutex of the inode after we have logged it and then check for
5020  * its last_unlink_trans value - this is safe because any task setting
5021  * last_unlink_trans must take the log_mutex and it must do this before it does
5022  * the actual unlink operation, so if we do this check before a concurrent task
5023  * sets last_unlink_trans it means we've logged a consistent version/state of
5024  * all the inode items, otherwise we are not sure and must do a transaction
5025  * commit (the concurrent task might have only updated last_unlink_trans before
5026  * we logged the inode or it might have also done the unlink).
5027  */
5028 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5029 					  struct btrfs_inode *inode)
5030 {
5031 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5032 	bool ret = false;
5033 
5034 	mutex_lock(&inode->log_mutex);
5035 	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5036 		/*
5037 		 * Make sure any commits to the log are forced to be full
5038 		 * commits.
5039 		 */
5040 		btrfs_set_log_full_commit(fs_info, trans);
5041 		ret = true;
5042 	}
5043 	mutex_unlock(&inode->log_mutex);
5044 
5045 	return ret;
5046 }
5047 
5048 /*
5049  * follow the dentry parent pointers up the chain and see if any
5050  * of the directories in it require a full commit before they can
5051  * be logged.  Returns zero if nothing special needs to be done or 1 if
5052  * a full commit is required.
5053  */
5054 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5055 					       struct btrfs_inode *inode,
5056 					       struct dentry *parent,
5057 					       struct super_block *sb,
5058 					       u64 last_committed)
5059 {
5060 	int ret = 0;
5061 	struct dentry *old_parent = NULL;
5062 	struct btrfs_inode *orig_inode = inode;
5063 
5064 	/*
5065 	 * for regular files, if its inode is already on disk, we don't
5066 	 * have to worry about the parents at all.  This is because
5067 	 * we can use the last_unlink_trans field to record renames
5068 	 * and other fun in this file.
5069 	 */
5070 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5071 	    inode->generation <= last_committed &&
5072 	    inode->last_unlink_trans <= last_committed)
5073 		goto out;
5074 
5075 	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5076 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5077 			goto out;
5078 		inode = BTRFS_I(d_inode(parent));
5079 	}
5080 
5081 	while (1) {
5082 		/*
5083 		 * If we are logging a directory then we start with our inode,
5084 		 * not our parent's inode, so we need to skip setting the
5085 		 * logged_trans so that further down in the log code we don't
5086 		 * think this inode has already been logged.
5087 		 */
5088 		if (inode != orig_inode)
5089 			inode->logged_trans = trans->transid;
5090 		smp_mb();
5091 
5092 		if (btrfs_must_commit_transaction(trans, inode)) {
5093 			ret = 1;
5094 			break;
5095 		}
5096 
5097 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5098 			break;
5099 
5100 		if (IS_ROOT(parent)) {
5101 			inode = BTRFS_I(d_inode(parent));
5102 			if (btrfs_must_commit_transaction(trans, inode))
5103 				ret = 1;
5104 			break;
5105 		}
5106 
5107 		parent = dget_parent(parent);
5108 		dput(old_parent);
5109 		old_parent = parent;
5110 		inode = BTRFS_I(d_inode(parent));
5111 
5112 	}
5113 	dput(old_parent);
5114 out:
5115 	return ret;
5116 }
5117 
5118 struct btrfs_dir_list {
5119 	u64 ino;
5120 	struct list_head list;
5121 };
5122 
5123 /*
5124  * Log the inodes of the new dentries of a directory. See log_dir_items() for
5125  * details about the why it is needed.
5126  * This is a recursive operation - if an existing dentry corresponds to a
5127  * directory, that directory's new entries are logged too (same behaviour as
5128  * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5129  * the dentries point to we do not lock their i_mutex, otherwise lockdep
5130  * complains about the following circular lock dependency / possible deadlock:
5131  *
5132  *        CPU0                                        CPU1
5133  *        ----                                        ----
5134  * lock(&type->i_mutex_dir_key#3/2);
5135  *                                            lock(sb_internal#2);
5136  *                                            lock(&type->i_mutex_dir_key#3/2);
5137  * lock(&sb->s_type->i_mutex_key#14);
5138  *
5139  * Where sb_internal is the lock (a counter that works as a lock) acquired by
5140  * sb_start_intwrite() in btrfs_start_transaction().
5141  * Not locking i_mutex of the inodes is still safe because:
5142  *
5143  * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5144  *    that while logging the inode new references (names) are added or removed
5145  *    from the inode, leaving the logged inode item with a link count that does
5146  *    not match the number of logged inode reference items. This is fine because
5147  *    at log replay time we compute the real number of links and correct the
5148  *    link count in the inode item (see replay_one_buffer() and
5149  *    link_to_fixup_dir());
5150  *
5151  * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5152  *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5153  *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5154  *    has a size that doesn't match the sum of the lengths of all the logged
5155  *    names. This does not result in a problem because if a dir_item key is
5156  *    logged but its matching dir_index key is not logged, at log replay time we
5157  *    don't use it to replay the respective name (see replay_one_name()). On the
5158  *    other hand if only the dir_index key ends up being logged, the respective
5159  *    name is added to the fs/subvol tree with both the dir_item and dir_index
5160  *    keys created (see replay_one_name()).
5161  *    The directory's inode item with a wrong i_size is not a problem as well,
5162  *    since we don't use it at log replay time to set the i_size in the inode
5163  *    item of the fs/subvol tree (see overwrite_item()).
5164  */
5165 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5166 				struct btrfs_root *root,
5167 				struct btrfs_inode *start_inode,
5168 				struct btrfs_log_ctx *ctx)
5169 {
5170 	struct btrfs_fs_info *fs_info = root->fs_info;
5171 	struct btrfs_root *log = root->log_root;
5172 	struct btrfs_path *path;
5173 	LIST_HEAD(dir_list);
5174 	struct btrfs_dir_list *dir_elem;
5175 	int ret = 0;
5176 
5177 	path = btrfs_alloc_path();
5178 	if (!path)
5179 		return -ENOMEM;
5180 
5181 	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5182 	if (!dir_elem) {
5183 		btrfs_free_path(path);
5184 		return -ENOMEM;
5185 	}
5186 	dir_elem->ino = btrfs_ino(start_inode);
5187 	list_add_tail(&dir_elem->list, &dir_list);
5188 
5189 	while (!list_empty(&dir_list)) {
5190 		struct extent_buffer *leaf;
5191 		struct btrfs_key min_key;
5192 		int nritems;
5193 		int i;
5194 
5195 		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5196 					    list);
5197 		if (ret)
5198 			goto next_dir_inode;
5199 
5200 		min_key.objectid = dir_elem->ino;
5201 		min_key.type = BTRFS_DIR_ITEM_KEY;
5202 		min_key.offset = 0;
5203 again:
5204 		btrfs_release_path(path);
5205 		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5206 		if (ret < 0) {
5207 			goto next_dir_inode;
5208 		} else if (ret > 0) {
5209 			ret = 0;
5210 			goto next_dir_inode;
5211 		}
5212 
5213 process_leaf:
5214 		leaf = path->nodes[0];
5215 		nritems = btrfs_header_nritems(leaf);
5216 		for (i = path->slots[0]; i < nritems; i++) {
5217 			struct btrfs_dir_item *di;
5218 			struct btrfs_key di_key;
5219 			struct inode *di_inode;
5220 			struct btrfs_dir_list *new_dir_elem;
5221 			int log_mode = LOG_INODE_EXISTS;
5222 			int type;
5223 
5224 			btrfs_item_key_to_cpu(leaf, &min_key, i);
5225 			if (min_key.objectid != dir_elem->ino ||
5226 			    min_key.type != BTRFS_DIR_ITEM_KEY)
5227 				goto next_dir_inode;
5228 
5229 			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5230 			type = btrfs_dir_type(leaf, di);
5231 			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5232 			    type != BTRFS_FT_DIR)
5233 				continue;
5234 			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5235 			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5236 				continue;
5237 
5238 			btrfs_release_path(path);
5239 			di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5240 			if (IS_ERR(di_inode)) {
5241 				ret = PTR_ERR(di_inode);
5242 				goto next_dir_inode;
5243 			}
5244 
5245 			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5246 				iput(di_inode);
5247 				break;
5248 			}
5249 
5250 			ctx->log_new_dentries = false;
5251 			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5252 				log_mode = LOG_INODE_ALL;
5253 			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5254 					      log_mode, 0, LLONG_MAX, ctx);
5255 			if (!ret &&
5256 			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5257 				ret = 1;
5258 			iput(di_inode);
5259 			if (ret)
5260 				goto next_dir_inode;
5261 			if (ctx->log_new_dentries) {
5262 				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5263 						       GFP_NOFS);
5264 				if (!new_dir_elem) {
5265 					ret = -ENOMEM;
5266 					goto next_dir_inode;
5267 				}
5268 				new_dir_elem->ino = di_key.objectid;
5269 				list_add_tail(&new_dir_elem->list, &dir_list);
5270 			}
5271 			break;
5272 		}
5273 		if (i == nritems) {
5274 			ret = btrfs_next_leaf(log, path);
5275 			if (ret < 0) {
5276 				goto next_dir_inode;
5277 			} else if (ret > 0) {
5278 				ret = 0;
5279 				goto next_dir_inode;
5280 			}
5281 			goto process_leaf;
5282 		}
5283 		if (min_key.offset < (u64)-1) {
5284 			min_key.offset++;
5285 			goto again;
5286 		}
5287 next_dir_inode:
5288 		list_del(&dir_elem->list);
5289 		kfree(dir_elem);
5290 	}
5291 
5292 	btrfs_free_path(path);
5293 	return ret;
5294 }
5295 
5296 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5297 				 struct btrfs_inode *inode,
5298 				 struct btrfs_log_ctx *ctx)
5299 {
5300 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5301 	int ret;
5302 	struct btrfs_path *path;
5303 	struct btrfs_key key;
5304 	struct btrfs_root *root = inode->root;
5305 	const u64 ino = btrfs_ino(inode);
5306 
5307 	path = btrfs_alloc_path();
5308 	if (!path)
5309 		return -ENOMEM;
5310 	path->skip_locking = 1;
5311 	path->search_commit_root = 1;
5312 
5313 	key.objectid = ino;
5314 	key.type = BTRFS_INODE_REF_KEY;
5315 	key.offset = 0;
5316 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5317 	if (ret < 0)
5318 		goto out;
5319 
5320 	while (true) {
5321 		struct extent_buffer *leaf = path->nodes[0];
5322 		int slot = path->slots[0];
5323 		u32 cur_offset = 0;
5324 		u32 item_size;
5325 		unsigned long ptr;
5326 
5327 		if (slot >= btrfs_header_nritems(leaf)) {
5328 			ret = btrfs_next_leaf(root, path);
5329 			if (ret < 0)
5330 				goto out;
5331 			else if (ret > 0)
5332 				break;
5333 			continue;
5334 		}
5335 
5336 		btrfs_item_key_to_cpu(leaf, &key, slot);
5337 		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5338 		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5339 			break;
5340 
5341 		item_size = btrfs_item_size_nr(leaf, slot);
5342 		ptr = btrfs_item_ptr_offset(leaf, slot);
5343 		while (cur_offset < item_size) {
5344 			struct btrfs_key inode_key;
5345 			struct inode *dir_inode;
5346 
5347 			inode_key.type = BTRFS_INODE_ITEM_KEY;
5348 			inode_key.offset = 0;
5349 
5350 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5351 				struct btrfs_inode_extref *extref;
5352 
5353 				extref = (struct btrfs_inode_extref *)
5354 					(ptr + cur_offset);
5355 				inode_key.objectid = btrfs_inode_extref_parent(
5356 					leaf, extref);
5357 				cur_offset += sizeof(*extref);
5358 				cur_offset += btrfs_inode_extref_name_len(leaf,
5359 					extref);
5360 			} else {
5361 				inode_key.objectid = key.offset;
5362 				cur_offset = item_size;
5363 			}
5364 
5365 			dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5366 					       root, NULL);
5367 			/* If parent inode was deleted, skip it. */
5368 			if (IS_ERR(dir_inode))
5369 				continue;
5370 
5371 			if (ctx)
5372 				ctx->log_new_dentries = false;
5373 			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5374 					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5375 			if (!ret &&
5376 			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5377 				ret = 1;
5378 			if (!ret && ctx && ctx->log_new_dentries)
5379 				ret = log_new_dir_dentries(trans, root,
5380 						   BTRFS_I(dir_inode), ctx);
5381 			iput(dir_inode);
5382 			if (ret)
5383 				goto out;
5384 		}
5385 		path->slots[0]++;
5386 	}
5387 	ret = 0;
5388 out:
5389 	btrfs_free_path(path);
5390 	return ret;
5391 }
5392 
5393 /*
5394  * helper function around btrfs_log_inode to make sure newly created
5395  * parent directories also end up in the log.  A minimal inode and backref
5396  * only logging is done of any parent directories that are older than
5397  * the last committed transaction
5398  */
5399 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5400 				  struct btrfs_root *root,
5401 				  struct btrfs_inode *inode,
5402 				  struct dentry *parent,
5403 				  const loff_t start,
5404 				  const loff_t end,
5405 				  int exists_only,
5406 				  struct btrfs_log_ctx *ctx)
5407 {
5408 	struct btrfs_fs_info *fs_info = root->fs_info;
5409 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
5410 	struct super_block *sb;
5411 	struct dentry *old_parent = NULL;
5412 	int ret = 0;
5413 	u64 last_committed = fs_info->last_trans_committed;
5414 	bool log_dentries = false;
5415 	struct btrfs_inode *orig_inode = inode;
5416 
5417 	sb = inode->vfs_inode.i_sb;
5418 
5419 	if (btrfs_test_opt(fs_info, NOTREELOG)) {
5420 		ret = 1;
5421 		goto end_no_trans;
5422 	}
5423 
5424 	/*
5425 	 * The prev transaction commit doesn't complete, we need do
5426 	 * full commit by ourselves.
5427 	 */
5428 	if (fs_info->last_trans_log_full_commit >
5429 	    fs_info->last_trans_committed) {
5430 		ret = 1;
5431 		goto end_no_trans;
5432 	}
5433 
5434 	if (root != inode->root || btrfs_root_refs(&root->root_item) == 0) {
5435 		ret = 1;
5436 		goto end_no_trans;
5437 	}
5438 
5439 	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5440 			last_committed);
5441 	if (ret)
5442 		goto end_no_trans;
5443 
5444 	if (btrfs_inode_in_log(inode, trans->transid)) {
5445 		ret = BTRFS_NO_LOG_SYNC;
5446 		goto end_no_trans;
5447 	}
5448 
5449 	ret = start_log_trans(trans, root, ctx);
5450 	if (ret)
5451 		goto end_no_trans;
5452 
5453 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5454 	if (ret)
5455 		goto end_trans;
5456 
5457 	/*
5458 	 * for regular files, if its inode is already on disk, we don't
5459 	 * have to worry about the parents at all.  This is because
5460 	 * we can use the last_unlink_trans field to record renames
5461 	 * and other fun in this file.
5462 	 */
5463 	if (S_ISREG(inode->vfs_inode.i_mode) &&
5464 	    inode->generation <= last_committed &&
5465 	    inode->last_unlink_trans <= last_committed) {
5466 		ret = 0;
5467 		goto end_trans;
5468 	}
5469 
5470 	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
5471 		log_dentries = true;
5472 
5473 	/*
5474 	 * On unlink we must make sure all our current and old parent directory
5475 	 * inodes are fully logged. This is to prevent leaving dangling
5476 	 * directory index entries in directories that were our parents but are
5477 	 * not anymore. Not doing this results in old parent directory being
5478 	 * impossible to delete after log replay (rmdir will always fail with
5479 	 * error -ENOTEMPTY).
5480 	 *
5481 	 * Example 1:
5482 	 *
5483 	 * mkdir testdir
5484 	 * touch testdir/foo
5485 	 * ln testdir/foo testdir/bar
5486 	 * sync
5487 	 * unlink testdir/bar
5488 	 * xfs_io -c fsync testdir/foo
5489 	 * <power failure>
5490 	 * mount fs, triggers log replay
5491 	 *
5492 	 * If we don't log the parent directory (testdir), after log replay the
5493 	 * directory still has an entry pointing to the file inode using the bar
5494 	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5495 	 * the file inode has a link count of 1.
5496 	 *
5497 	 * Example 2:
5498 	 *
5499 	 * mkdir testdir
5500 	 * touch foo
5501 	 * ln foo testdir/foo2
5502 	 * ln foo testdir/foo3
5503 	 * sync
5504 	 * unlink testdir/foo3
5505 	 * xfs_io -c fsync foo
5506 	 * <power failure>
5507 	 * mount fs, triggers log replay
5508 	 *
5509 	 * Similar as the first example, after log replay the parent directory
5510 	 * testdir still has an entry pointing to the inode file with name foo3
5511 	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5512 	 * and has a link count of 2.
5513 	 */
5514 	if (inode->last_unlink_trans > last_committed) {
5515 		ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5516 		if (ret)
5517 			goto end_trans;
5518 	}
5519 
5520 	while (1) {
5521 		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5522 			break;
5523 
5524 		inode = BTRFS_I(d_inode(parent));
5525 		if (root != inode->root)
5526 			break;
5527 
5528 		if (inode->generation > last_committed) {
5529 			ret = btrfs_log_inode(trans, root, inode,
5530 					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5531 			if (ret)
5532 				goto end_trans;
5533 		}
5534 		if (IS_ROOT(parent))
5535 			break;
5536 
5537 		parent = dget_parent(parent);
5538 		dput(old_parent);
5539 		old_parent = parent;
5540 	}
5541 	if (log_dentries)
5542 		ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5543 	else
5544 		ret = 0;
5545 end_trans:
5546 	dput(old_parent);
5547 	if (ret < 0) {
5548 		btrfs_set_log_full_commit(fs_info, trans);
5549 		ret = 1;
5550 	}
5551 
5552 	if (ret)
5553 		btrfs_remove_log_ctx(root, ctx);
5554 	btrfs_end_log_trans(root);
5555 end_no_trans:
5556 	return ret;
5557 }
5558 
5559 /*
5560  * it is not safe to log dentry if the chunk root has added new
5561  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
5562  * If this returns 1, you must commit the transaction to safely get your
5563  * data on disk.
5564  */
5565 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5566 			  struct btrfs_root *root, struct dentry *dentry,
5567 			  const loff_t start,
5568 			  const loff_t end,
5569 			  struct btrfs_log_ctx *ctx)
5570 {
5571 	struct dentry *parent = dget_parent(dentry);
5572 	int ret;
5573 
5574 	ret = btrfs_log_inode_parent(trans, root, BTRFS_I(d_inode(dentry)),
5575 			parent, start, end, 0, ctx);
5576 	dput(parent);
5577 
5578 	return ret;
5579 }
5580 
5581 /*
5582  * should be called during mount to recover any replay any log trees
5583  * from the FS
5584  */
5585 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5586 {
5587 	int ret;
5588 	struct btrfs_path *path;
5589 	struct btrfs_trans_handle *trans;
5590 	struct btrfs_key key;
5591 	struct btrfs_key found_key;
5592 	struct btrfs_key tmp_key;
5593 	struct btrfs_root *log;
5594 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5595 	struct walk_control wc = {
5596 		.process_func = process_one_buffer,
5597 		.stage = 0,
5598 	};
5599 
5600 	path = btrfs_alloc_path();
5601 	if (!path)
5602 		return -ENOMEM;
5603 
5604 	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5605 
5606 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
5607 	if (IS_ERR(trans)) {
5608 		ret = PTR_ERR(trans);
5609 		goto error;
5610 	}
5611 
5612 	wc.trans = trans;
5613 	wc.pin = 1;
5614 
5615 	ret = walk_log_tree(trans, log_root_tree, &wc);
5616 	if (ret) {
5617 		btrfs_handle_fs_error(fs_info, ret,
5618 			"Failed to pin buffers while recovering log root tree.");
5619 		goto error;
5620 	}
5621 
5622 again:
5623 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
5624 	key.offset = (u64)-1;
5625 	key.type = BTRFS_ROOT_ITEM_KEY;
5626 
5627 	while (1) {
5628 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5629 
5630 		if (ret < 0) {
5631 			btrfs_handle_fs_error(fs_info, ret,
5632 				    "Couldn't find tree log root.");
5633 			goto error;
5634 		}
5635 		if (ret > 0) {
5636 			if (path->slots[0] == 0)
5637 				break;
5638 			path->slots[0]--;
5639 		}
5640 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5641 				      path->slots[0]);
5642 		btrfs_release_path(path);
5643 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5644 			break;
5645 
5646 		log = btrfs_read_fs_root(log_root_tree, &found_key);
5647 		if (IS_ERR(log)) {
5648 			ret = PTR_ERR(log);
5649 			btrfs_handle_fs_error(fs_info, ret,
5650 				    "Couldn't read tree log root.");
5651 			goto error;
5652 		}
5653 
5654 		tmp_key.objectid = found_key.offset;
5655 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5656 		tmp_key.offset = (u64)-1;
5657 
5658 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5659 		if (IS_ERR(wc.replay_dest)) {
5660 			ret = PTR_ERR(wc.replay_dest);
5661 			free_extent_buffer(log->node);
5662 			free_extent_buffer(log->commit_root);
5663 			kfree(log);
5664 			btrfs_handle_fs_error(fs_info, ret,
5665 				"Couldn't read target root for tree log recovery.");
5666 			goto error;
5667 		}
5668 
5669 		wc.replay_dest->log_root = log;
5670 		btrfs_record_root_in_trans(trans, wc.replay_dest);
5671 		ret = walk_log_tree(trans, log, &wc);
5672 
5673 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5674 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
5675 						      path);
5676 		}
5677 
5678 		key.offset = found_key.offset - 1;
5679 		wc.replay_dest->log_root = NULL;
5680 		free_extent_buffer(log->node);
5681 		free_extent_buffer(log->commit_root);
5682 		kfree(log);
5683 
5684 		if (ret)
5685 			goto error;
5686 
5687 		if (found_key.offset == 0)
5688 			break;
5689 	}
5690 	btrfs_release_path(path);
5691 
5692 	/* step one is to pin it all, step two is to replay just inodes */
5693 	if (wc.pin) {
5694 		wc.pin = 0;
5695 		wc.process_func = replay_one_buffer;
5696 		wc.stage = LOG_WALK_REPLAY_INODES;
5697 		goto again;
5698 	}
5699 	/* step three is to replay everything */
5700 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
5701 		wc.stage++;
5702 		goto again;
5703 	}
5704 
5705 	btrfs_free_path(path);
5706 
5707 	/* step 4: commit the transaction, which also unpins the blocks */
5708 	ret = btrfs_commit_transaction(trans);
5709 	if (ret)
5710 		return ret;
5711 
5712 	free_extent_buffer(log_root_tree->node);
5713 	log_root_tree->log_root = NULL;
5714 	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5715 	kfree(log_root_tree);
5716 
5717 	return 0;
5718 error:
5719 	if (wc.trans)
5720 		btrfs_end_transaction(wc.trans);
5721 	btrfs_free_path(path);
5722 	return ret;
5723 }
5724 
5725 /*
5726  * there are some corner cases where we want to force a full
5727  * commit instead of allowing a directory to be logged.
5728  *
5729  * They revolve around files there were unlinked from the directory, and
5730  * this function updates the parent directory so that a full commit is
5731  * properly done if it is fsync'd later after the unlinks are done.
5732  *
5733  * Must be called before the unlink operations (updates to the subvolume tree,
5734  * inodes, etc) are done.
5735  */
5736 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5737 			     struct btrfs_inode *dir, struct btrfs_inode *inode,
5738 			     int for_rename)
5739 {
5740 	/*
5741 	 * when we're logging a file, if it hasn't been renamed
5742 	 * or unlinked, and its inode is fully committed on disk,
5743 	 * we don't have to worry about walking up the directory chain
5744 	 * to log its parents.
5745 	 *
5746 	 * So, we use the last_unlink_trans field to put this transid
5747 	 * into the file.  When the file is logged we check it and
5748 	 * don't log the parents if the file is fully on disk.
5749 	 */
5750 	mutex_lock(&inode->log_mutex);
5751 	inode->last_unlink_trans = trans->transid;
5752 	mutex_unlock(&inode->log_mutex);
5753 
5754 	/*
5755 	 * if this directory was already logged any new
5756 	 * names for this file/dir will get recorded
5757 	 */
5758 	smp_mb();
5759 	if (dir->logged_trans == trans->transid)
5760 		return;
5761 
5762 	/*
5763 	 * if the inode we're about to unlink was logged,
5764 	 * the log will be properly updated for any new names
5765 	 */
5766 	if (inode->logged_trans == trans->transid)
5767 		return;
5768 
5769 	/*
5770 	 * when renaming files across directories, if the directory
5771 	 * there we're unlinking from gets fsync'd later on, there's
5772 	 * no way to find the destination directory later and fsync it
5773 	 * properly.  So, we have to be conservative and force commits
5774 	 * so the new name gets discovered.
5775 	 */
5776 	if (for_rename)
5777 		goto record;
5778 
5779 	/* we can safely do the unlink without any special recording */
5780 	return;
5781 
5782 record:
5783 	mutex_lock(&dir->log_mutex);
5784 	dir->last_unlink_trans = trans->transid;
5785 	mutex_unlock(&dir->log_mutex);
5786 }
5787 
5788 /*
5789  * Make sure that if someone attempts to fsync the parent directory of a deleted
5790  * snapshot, it ends up triggering a transaction commit. This is to guarantee
5791  * that after replaying the log tree of the parent directory's root we will not
5792  * see the snapshot anymore and at log replay time we will not see any log tree
5793  * corresponding to the deleted snapshot's root, which could lead to replaying
5794  * it after replaying the log tree of the parent directory (which would replay
5795  * the snapshot delete operation).
5796  *
5797  * Must be called before the actual snapshot destroy operation (updates to the
5798  * parent root and tree of tree roots trees, etc) are done.
5799  */
5800 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
5801 				   struct btrfs_inode *dir)
5802 {
5803 	mutex_lock(&dir->log_mutex);
5804 	dir->last_unlink_trans = trans->transid;
5805 	mutex_unlock(&dir->log_mutex);
5806 }
5807 
5808 /*
5809  * Call this after adding a new name for a file and it will properly
5810  * update the log to reflect the new name.
5811  *
5812  * It will return zero if all goes well, and it will return 1 if a
5813  * full transaction commit is required.
5814  */
5815 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5816 			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
5817 			struct dentry *parent)
5818 {
5819 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5820 	struct btrfs_root *root = inode->root;
5821 
5822 	/*
5823 	 * this will force the logging code to walk the dentry chain
5824 	 * up for the file
5825 	 */
5826 	if (S_ISREG(inode->vfs_inode.i_mode))
5827 		inode->last_unlink_trans = trans->transid;
5828 
5829 	/*
5830 	 * if this inode hasn't been logged and directory we're renaming it
5831 	 * from hasn't been logged, we don't need to log it
5832 	 */
5833 	if (inode->logged_trans <= fs_info->last_trans_committed &&
5834 	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
5835 		return 0;
5836 
5837 	return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5838 				      LLONG_MAX, 1, NULL);
5839 }
5840 
5841