xref: /linux/fs/btrfs/tree-log.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "tree-log.h"
24 #include "disk-io.h"
25 #include "locking.h"
26 #include "print-tree.h"
27 #include "backref.h"
28 #include "hash.h"
29 
30 /* magic values for the inode_only field in btrfs_log_inode:
31  *
32  * LOG_INODE_ALL means to log everything
33  * LOG_INODE_EXISTS means to log just enough to recreate the inode
34  * during log replay
35  */
36 #define LOG_INODE_ALL 0
37 #define LOG_INODE_EXISTS 1
38 
39 /*
40  * directory trouble cases
41  *
42  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
43  * log, we must force a full commit before doing an fsync of the directory
44  * where the unlink was done.
45  * ---> record transid of last unlink/rename per directory
46  *
47  * mkdir foo/some_dir
48  * normal commit
49  * rename foo/some_dir foo2/some_dir
50  * mkdir foo/some_dir
51  * fsync foo/some_dir/some_file
52  *
53  * The fsync above will unlink the original some_dir without recording
54  * it in its new location (foo2).  After a crash, some_dir will be gone
55  * unless the fsync of some_file forces a full commit
56  *
57  * 2) we must log any new names for any file or dir that is in the fsync
58  * log. ---> check inode while renaming/linking.
59  *
60  * 2a) we must log any new names for any file or dir during rename
61  * when the directory they are being removed from was logged.
62  * ---> check inode and old parent dir during rename
63  *
64  *  2a is actually the more important variant.  With the extra logging
65  *  a crash might unlink the old name without recreating the new one
66  *
67  * 3) after a crash, we must go through any directories with a link count
68  * of zero and redo the rm -rf
69  *
70  * mkdir f1/foo
71  * normal commit
72  * rm -rf f1/foo
73  * fsync(f1)
74  *
75  * The directory f1 was fully removed from the FS, but fsync was never
76  * called on f1, only its parent dir.  After a crash the rm -rf must
77  * be replayed.  This must be able to recurse down the entire
78  * directory tree.  The inode link count fixup code takes care of the
79  * ugly details.
80  */
81 
82 /*
83  * stages for the tree walking.  The first
84  * stage (0) is to only pin down the blocks we find
85  * the second stage (1) is to make sure that all the inodes
86  * we find in the log are created in the subvolume.
87  *
88  * The last stage is to deal with directories and links and extents
89  * and all the other fun semantics
90  */
91 #define LOG_WALK_PIN_ONLY 0
92 #define LOG_WALK_REPLAY_INODES 1
93 #define LOG_WALK_REPLAY_DIR_INDEX 2
94 #define LOG_WALK_REPLAY_ALL 3
95 
96 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 			   struct btrfs_root *root, struct inode *inode,
98 			   int inode_only,
99 			   const loff_t start,
100 			   const loff_t end,
101 			   struct btrfs_log_ctx *ctx);
102 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
103 			     struct btrfs_root *root,
104 			     struct btrfs_path *path, u64 objectid);
105 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
106 				       struct btrfs_root *root,
107 				       struct btrfs_root *log,
108 				       struct btrfs_path *path,
109 				       u64 dirid, int del_all);
110 
111 /*
112  * tree logging is a special write ahead log used to make sure that
113  * fsyncs and O_SYNCs can happen without doing full tree commits.
114  *
115  * Full tree commits are expensive because they require commonly
116  * modified blocks to be recowed, creating many dirty pages in the
117  * extent tree an 4x-6x higher write load than ext3.
118  *
119  * Instead of doing a tree commit on every fsync, we use the
120  * key ranges and transaction ids to find items for a given file or directory
121  * that have changed in this transaction.  Those items are copied into
122  * a special tree (one per subvolume root), that tree is written to disk
123  * and then the fsync is considered complete.
124  *
125  * After a crash, items are copied out of the log-tree back into the
126  * subvolume tree.  Any file data extents found are recorded in the extent
127  * allocation tree, and the log-tree freed.
128  *
129  * The log tree is read three times, once to pin down all the extents it is
130  * using in ram and once, once to create all the inodes logged in the tree
131  * and once to do all the other items.
132  */
133 
134 /*
135  * start a sub transaction and setup the log tree
136  * this increments the log tree writer count to make the people
137  * syncing the tree wait for us to finish
138  */
139 static int start_log_trans(struct btrfs_trans_handle *trans,
140 			   struct btrfs_root *root,
141 			   struct btrfs_log_ctx *ctx)
142 {
143 	int index;
144 	int ret;
145 
146 	mutex_lock(&root->log_mutex);
147 	if (root->log_root) {
148 		if (btrfs_need_log_full_commit(root->fs_info, trans)) {
149 			ret = -EAGAIN;
150 			goto out;
151 		}
152 		if (!root->log_start_pid) {
153 			root->log_start_pid = current->pid;
154 			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
155 		} else if (root->log_start_pid != current->pid) {
156 			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
157 		}
158 
159 		atomic_inc(&root->log_batch);
160 		atomic_inc(&root->log_writers);
161 		if (ctx) {
162 			index = root->log_transid % 2;
163 			list_add_tail(&ctx->list, &root->log_ctxs[index]);
164 			ctx->log_transid = root->log_transid;
165 		}
166 		mutex_unlock(&root->log_mutex);
167 		return 0;
168 	}
169 
170 	ret = 0;
171 	mutex_lock(&root->fs_info->tree_log_mutex);
172 	if (!root->fs_info->log_root_tree)
173 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
174 	mutex_unlock(&root->fs_info->tree_log_mutex);
175 	if (ret)
176 		goto out;
177 
178 	if (!root->log_root) {
179 		ret = btrfs_add_log_tree(trans, root);
180 		if (ret)
181 			goto out;
182 	}
183 	clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
184 	root->log_start_pid = current->pid;
185 	atomic_inc(&root->log_batch);
186 	atomic_inc(&root->log_writers);
187 	if (ctx) {
188 		index = root->log_transid % 2;
189 		list_add_tail(&ctx->list, &root->log_ctxs[index]);
190 		ctx->log_transid = root->log_transid;
191 	}
192 out:
193 	mutex_unlock(&root->log_mutex);
194 	return ret;
195 }
196 
197 /*
198  * returns 0 if there was a log transaction running and we were able
199  * to join, or returns -ENOENT if there were not transactions
200  * in progress
201  */
202 static int join_running_log_trans(struct btrfs_root *root)
203 {
204 	int ret = -ENOENT;
205 
206 	smp_mb();
207 	if (!root->log_root)
208 		return -ENOENT;
209 
210 	mutex_lock(&root->log_mutex);
211 	if (root->log_root) {
212 		ret = 0;
213 		atomic_inc(&root->log_writers);
214 	}
215 	mutex_unlock(&root->log_mutex);
216 	return ret;
217 }
218 
219 /*
220  * This either makes the current running log transaction wait
221  * until you call btrfs_end_log_trans() or it makes any future
222  * log transactions wait until you call btrfs_end_log_trans()
223  */
224 int btrfs_pin_log_trans(struct btrfs_root *root)
225 {
226 	int ret = -ENOENT;
227 
228 	mutex_lock(&root->log_mutex);
229 	atomic_inc(&root->log_writers);
230 	mutex_unlock(&root->log_mutex);
231 	return ret;
232 }
233 
234 /*
235  * indicate we're done making changes to the log tree
236  * and wake up anyone waiting to do a sync
237  */
238 void btrfs_end_log_trans(struct btrfs_root *root)
239 {
240 	if (atomic_dec_and_test(&root->log_writers)) {
241 		smp_mb();
242 		if (waitqueue_active(&root->log_writer_wait))
243 			wake_up(&root->log_writer_wait);
244 	}
245 }
246 
247 
248 /*
249  * the walk control struct is used to pass state down the chain when
250  * processing the log tree.  The stage field tells us which part
251  * of the log tree processing we are currently doing.  The others
252  * are state fields used for that specific part
253  */
254 struct walk_control {
255 	/* should we free the extent on disk when done?  This is used
256 	 * at transaction commit time while freeing a log tree
257 	 */
258 	int free;
259 
260 	/* should we write out the extent buffer?  This is used
261 	 * while flushing the log tree to disk during a sync
262 	 */
263 	int write;
264 
265 	/* should we wait for the extent buffer io to finish?  Also used
266 	 * while flushing the log tree to disk for a sync
267 	 */
268 	int wait;
269 
270 	/* pin only walk, we record which extents on disk belong to the
271 	 * log trees
272 	 */
273 	int pin;
274 
275 	/* what stage of the replay code we're currently in */
276 	int stage;
277 
278 	/* the root we are currently replaying */
279 	struct btrfs_root *replay_dest;
280 
281 	/* the trans handle for the current replay */
282 	struct btrfs_trans_handle *trans;
283 
284 	/* the function that gets used to process blocks we find in the
285 	 * tree.  Note the extent_buffer might not be up to date when it is
286 	 * passed in, and it must be checked or read if you need the data
287 	 * inside it
288 	 */
289 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
290 			    struct walk_control *wc, u64 gen);
291 };
292 
293 /*
294  * process_func used to pin down extents, write them or wait on them
295  */
296 static int process_one_buffer(struct btrfs_root *log,
297 			      struct extent_buffer *eb,
298 			      struct walk_control *wc, u64 gen)
299 {
300 	int ret = 0;
301 
302 	/*
303 	 * If this fs is mixed then we need to be able to process the leaves to
304 	 * pin down any logged extents, so we have to read the block.
305 	 */
306 	if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
307 		ret = btrfs_read_buffer(eb, gen);
308 		if (ret)
309 			return ret;
310 	}
311 
312 	if (wc->pin)
313 		ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
314 						      eb->start, eb->len);
315 
316 	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
317 		if (wc->pin && btrfs_header_level(eb) == 0)
318 			ret = btrfs_exclude_logged_extents(log, eb);
319 		if (wc->write)
320 			btrfs_write_tree_block(eb);
321 		if (wc->wait)
322 			btrfs_wait_tree_block_writeback(eb);
323 	}
324 	return ret;
325 }
326 
327 /*
328  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
329  * to the src data we are copying out.
330  *
331  * root is the tree we are copying into, and path is a scratch
332  * path for use in this function (it should be released on entry and
333  * will be released on exit).
334  *
335  * If the key is already in the destination tree the existing item is
336  * overwritten.  If the existing item isn't big enough, it is extended.
337  * If it is too large, it is truncated.
338  *
339  * If the key isn't in the destination yet, a new item is inserted.
340  */
341 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
342 				   struct btrfs_root *root,
343 				   struct btrfs_path *path,
344 				   struct extent_buffer *eb, int slot,
345 				   struct btrfs_key *key)
346 {
347 	int ret;
348 	u32 item_size;
349 	u64 saved_i_size = 0;
350 	int save_old_i_size = 0;
351 	unsigned long src_ptr;
352 	unsigned long dst_ptr;
353 	int overwrite_root = 0;
354 	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
355 
356 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
357 		overwrite_root = 1;
358 
359 	item_size = btrfs_item_size_nr(eb, slot);
360 	src_ptr = btrfs_item_ptr_offset(eb, slot);
361 
362 	/* look for the key in the destination tree */
363 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
364 	if (ret < 0)
365 		return ret;
366 
367 	if (ret == 0) {
368 		char *src_copy;
369 		char *dst_copy;
370 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
371 						  path->slots[0]);
372 		if (dst_size != item_size)
373 			goto insert;
374 
375 		if (item_size == 0) {
376 			btrfs_release_path(path);
377 			return 0;
378 		}
379 		dst_copy = kmalloc(item_size, GFP_NOFS);
380 		src_copy = kmalloc(item_size, GFP_NOFS);
381 		if (!dst_copy || !src_copy) {
382 			btrfs_release_path(path);
383 			kfree(dst_copy);
384 			kfree(src_copy);
385 			return -ENOMEM;
386 		}
387 
388 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
389 
390 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
391 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
392 				   item_size);
393 		ret = memcmp(dst_copy, src_copy, item_size);
394 
395 		kfree(dst_copy);
396 		kfree(src_copy);
397 		/*
398 		 * they have the same contents, just return, this saves
399 		 * us from cowing blocks in the destination tree and doing
400 		 * extra writes that may not have been done by a previous
401 		 * sync
402 		 */
403 		if (ret == 0) {
404 			btrfs_release_path(path);
405 			return 0;
406 		}
407 
408 		/*
409 		 * We need to load the old nbytes into the inode so when we
410 		 * replay the extents we've logged we get the right nbytes.
411 		 */
412 		if (inode_item) {
413 			struct btrfs_inode_item *item;
414 			u64 nbytes;
415 			u32 mode;
416 
417 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
418 					      struct btrfs_inode_item);
419 			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
420 			item = btrfs_item_ptr(eb, slot,
421 					      struct btrfs_inode_item);
422 			btrfs_set_inode_nbytes(eb, item, nbytes);
423 
424 			/*
425 			 * If this is a directory we need to reset the i_size to
426 			 * 0 so that we can set it up properly when replaying
427 			 * the rest of the items in this log.
428 			 */
429 			mode = btrfs_inode_mode(eb, item);
430 			if (S_ISDIR(mode))
431 				btrfs_set_inode_size(eb, item, 0);
432 		}
433 	} else if (inode_item) {
434 		struct btrfs_inode_item *item;
435 		u32 mode;
436 
437 		/*
438 		 * New inode, set nbytes to 0 so that the nbytes comes out
439 		 * properly when we replay the extents.
440 		 */
441 		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
442 		btrfs_set_inode_nbytes(eb, item, 0);
443 
444 		/*
445 		 * If this is a directory we need to reset the i_size to 0 so
446 		 * that we can set it up properly when replaying the rest of
447 		 * the items in this log.
448 		 */
449 		mode = btrfs_inode_mode(eb, item);
450 		if (S_ISDIR(mode))
451 			btrfs_set_inode_size(eb, item, 0);
452 	}
453 insert:
454 	btrfs_release_path(path);
455 	/* try to insert the key into the destination tree */
456 	path->skip_release_on_error = 1;
457 	ret = btrfs_insert_empty_item(trans, root, path,
458 				      key, item_size);
459 	path->skip_release_on_error = 0;
460 
461 	/* make sure any existing item is the correct size */
462 	if (ret == -EEXIST || ret == -EOVERFLOW) {
463 		u32 found_size;
464 		found_size = btrfs_item_size_nr(path->nodes[0],
465 						path->slots[0]);
466 		if (found_size > item_size)
467 			btrfs_truncate_item(root, path, item_size, 1);
468 		else if (found_size < item_size)
469 			btrfs_extend_item(root, path,
470 					  item_size - found_size);
471 	} else if (ret) {
472 		return ret;
473 	}
474 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
475 					path->slots[0]);
476 
477 	/* don't overwrite an existing inode if the generation number
478 	 * was logged as zero.  This is done when the tree logging code
479 	 * is just logging an inode to make sure it exists after recovery.
480 	 *
481 	 * Also, don't overwrite i_size on directories during replay.
482 	 * log replay inserts and removes directory items based on the
483 	 * state of the tree found in the subvolume, and i_size is modified
484 	 * as it goes
485 	 */
486 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
487 		struct btrfs_inode_item *src_item;
488 		struct btrfs_inode_item *dst_item;
489 
490 		src_item = (struct btrfs_inode_item *)src_ptr;
491 		dst_item = (struct btrfs_inode_item *)dst_ptr;
492 
493 		if (btrfs_inode_generation(eb, src_item) == 0) {
494 			struct extent_buffer *dst_eb = path->nodes[0];
495 
496 			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
497 			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item))) {
498 				struct btrfs_map_token token;
499 				u64 ino_size = btrfs_inode_size(eb, src_item);
500 
501 				btrfs_init_map_token(&token);
502 				btrfs_set_token_inode_size(dst_eb, dst_item,
503 							   ino_size, &token);
504 			}
505 			goto no_copy;
506 		}
507 
508 		if (overwrite_root &&
509 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
510 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
511 			save_old_i_size = 1;
512 			saved_i_size = btrfs_inode_size(path->nodes[0],
513 							dst_item);
514 		}
515 	}
516 
517 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
518 			   src_ptr, item_size);
519 
520 	if (save_old_i_size) {
521 		struct btrfs_inode_item *dst_item;
522 		dst_item = (struct btrfs_inode_item *)dst_ptr;
523 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
524 	}
525 
526 	/* make sure the generation is filled in */
527 	if (key->type == BTRFS_INODE_ITEM_KEY) {
528 		struct btrfs_inode_item *dst_item;
529 		dst_item = (struct btrfs_inode_item *)dst_ptr;
530 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
531 			btrfs_set_inode_generation(path->nodes[0], dst_item,
532 						   trans->transid);
533 		}
534 	}
535 no_copy:
536 	btrfs_mark_buffer_dirty(path->nodes[0]);
537 	btrfs_release_path(path);
538 	return 0;
539 }
540 
541 /*
542  * simple helper to read an inode off the disk from a given root
543  * This can only be called for subvolume roots and not for the log
544  */
545 static noinline struct inode *read_one_inode(struct btrfs_root *root,
546 					     u64 objectid)
547 {
548 	struct btrfs_key key;
549 	struct inode *inode;
550 
551 	key.objectid = objectid;
552 	key.type = BTRFS_INODE_ITEM_KEY;
553 	key.offset = 0;
554 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
555 	if (IS_ERR(inode)) {
556 		inode = NULL;
557 	} else if (is_bad_inode(inode)) {
558 		iput(inode);
559 		inode = NULL;
560 	}
561 	return inode;
562 }
563 
564 /* replays a single extent in 'eb' at 'slot' with 'key' into the
565  * subvolume 'root'.  path is released on entry and should be released
566  * on exit.
567  *
568  * extents in the log tree have not been allocated out of the extent
569  * tree yet.  So, this completes the allocation, taking a reference
570  * as required if the extent already exists or creating a new extent
571  * if it isn't in the extent allocation tree yet.
572  *
573  * The extent is inserted into the file, dropping any existing extents
574  * from the file that overlap the new one.
575  */
576 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
577 				      struct btrfs_root *root,
578 				      struct btrfs_path *path,
579 				      struct extent_buffer *eb, int slot,
580 				      struct btrfs_key *key)
581 {
582 	int found_type;
583 	u64 extent_end;
584 	u64 start = key->offset;
585 	u64 nbytes = 0;
586 	struct btrfs_file_extent_item *item;
587 	struct inode *inode = NULL;
588 	unsigned long size;
589 	int ret = 0;
590 
591 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
592 	found_type = btrfs_file_extent_type(eb, item);
593 
594 	if (found_type == BTRFS_FILE_EXTENT_REG ||
595 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
596 		nbytes = btrfs_file_extent_num_bytes(eb, item);
597 		extent_end = start + nbytes;
598 
599 		/*
600 		 * We don't add to the inodes nbytes if we are prealloc or a
601 		 * hole.
602 		 */
603 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
604 			nbytes = 0;
605 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
606 		size = btrfs_file_extent_inline_len(eb, slot, item);
607 		nbytes = btrfs_file_extent_ram_bytes(eb, item);
608 		extent_end = ALIGN(start + size, root->sectorsize);
609 	} else {
610 		ret = 0;
611 		goto out;
612 	}
613 
614 	inode = read_one_inode(root, key->objectid);
615 	if (!inode) {
616 		ret = -EIO;
617 		goto out;
618 	}
619 
620 	/*
621 	 * first check to see if we already have this extent in the
622 	 * file.  This must be done before the btrfs_drop_extents run
623 	 * so we don't try to drop this extent.
624 	 */
625 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
626 				       start, 0);
627 
628 	if (ret == 0 &&
629 	    (found_type == BTRFS_FILE_EXTENT_REG ||
630 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
631 		struct btrfs_file_extent_item cmp1;
632 		struct btrfs_file_extent_item cmp2;
633 		struct btrfs_file_extent_item *existing;
634 		struct extent_buffer *leaf;
635 
636 		leaf = path->nodes[0];
637 		existing = btrfs_item_ptr(leaf, path->slots[0],
638 					  struct btrfs_file_extent_item);
639 
640 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
641 				   sizeof(cmp1));
642 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
643 				   sizeof(cmp2));
644 
645 		/*
646 		 * we already have a pointer to this exact extent,
647 		 * we don't have to do anything
648 		 */
649 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
650 			btrfs_release_path(path);
651 			goto out;
652 		}
653 	}
654 	btrfs_release_path(path);
655 
656 	/* drop any overlapping extents */
657 	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
658 	if (ret)
659 		goto out;
660 
661 	if (found_type == BTRFS_FILE_EXTENT_REG ||
662 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
663 		u64 offset;
664 		unsigned long dest_offset;
665 		struct btrfs_key ins;
666 
667 		ret = btrfs_insert_empty_item(trans, root, path, key,
668 					      sizeof(*item));
669 		if (ret)
670 			goto out;
671 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
672 						    path->slots[0]);
673 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
674 				(unsigned long)item,  sizeof(*item));
675 
676 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
677 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
678 		ins.type = BTRFS_EXTENT_ITEM_KEY;
679 		offset = key->offset - btrfs_file_extent_offset(eb, item);
680 
681 		if (ins.objectid > 0) {
682 			u64 csum_start;
683 			u64 csum_end;
684 			LIST_HEAD(ordered_sums);
685 			/*
686 			 * is this extent already allocated in the extent
687 			 * allocation tree?  If so, just add a reference
688 			 */
689 			ret = btrfs_lookup_data_extent(root, ins.objectid,
690 						ins.offset);
691 			if (ret == 0) {
692 				ret = btrfs_inc_extent_ref(trans, root,
693 						ins.objectid, ins.offset,
694 						0, root->root_key.objectid,
695 						key->objectid, offset, 0);
696 				if (ret)
697 					goto out;
698 			} else {
699 				/*
700 				 * insert the extent pointer in the extent
701 				 * allocation tree
702 				 */
703 				ret = btrfs_alloc_logged_file_extent(trans,
704 						root, root->root_key.objectid,
705 						key->objectid, offset, &ins);
706 				if (ret)
707 					goto out;
708 			}
709 			btrfs_release_path(path);
710 
711 			if (btrfs_file_extent_compression(eb, item)) {
712 				csum_start = ins.objectid;
713 				csum_end = csum_start + ins.offset;
714 			} else {
715 				csum_start = ins.objectid +
716 					btrfs_file_extent_offset(eb, item);
717 				csum_end = csum_start +
718 					btrfs_file_extent_num_bytes(eb, item);
719 			}
720 
721 			ret = btrfs_lookup_csums_range(root->log_root,
722 						csum_start, csum_end - 1,
723 						&ordered_sums, 0);
724 			if (ret)
725 				goto out;
726 			while (!list_empty(&ordered_sums)) {
727 				struct btrfs_ordered_sum *sums;
728 				sums = list_entry(ordered_sums.next,
729 						struct btrfs_ordered_sum,
730 						list);
731 				if (!ret)
732 					ret = btrfs_csum_file_blocks(trans,
733 						root->fs_info->csum_root,
734 						sums);
735 				list_del(&sums->list);
736 				kfree(sums);
737 			}
738 			if (ret)
739 				goto out;
740 		} else {
741 			btrfs_release_path(path);
742 		}
743 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
744 		/* inline extents are easy, we just overwrite them */
745 		ret = overwrite_item(trans, root, path, eb, slot, key);
746 		if (ret)
747 			goto out;
748 	}
749 
750 	inode_add_bytes(inode, nbytes);
751 	ret = btrfs_update_inode(trans, root, inode);
752 out:
753 	if (inode)
754 		iput(inode);
755 	return ret;
756 }
757 
758 /*
759  * when cleaning up conflicts between the directory names in the
760  * subvolume, directory names in the log and directory names in the
761  * inode back references, we may have to unlink inodes from directories.
762  *
763  * This is a helper function to do the unlink of a specific directory
764  * item
765  */
766 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
767 				      struct btrfs_root *root,
768 				      struct btrfs_path *path,
769 				      struct inode *dir,
770 				      struct btrfs_dir_item *di)
771 {
772 	struct inode *inode;
773 	char *name;
774 	int name_len;
775 	struct extent_buffer *leaf;
776 	struct btrfs_key location;
777 	int ret;
778 
779 	leaf = path->nodes[0];
780 
781 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
782 	name_len = btrfs_dir_name_len(leaf, di);
783 	name = kmalloc(name_len, GFP_NOFS);
784 	if (!name)
785 		return -ENOMEM;
786 
787 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
788 	btrfs_release_path(path);
789 
790 	inode = read_one_inode(root, location.objectid);
791 	if (!inode) {
792 		ret = -EIO;
793 		goto out;
794 	}
795 
796 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
797 	if (ret)
798 		goto out;
799 
800 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
801 	if (ret)
802 		goto out;
803 	else
804 		ret = btrfs_run_delayed_items(trans, root);
805 out:
806 	kfree(name);
807 	iput(inode);
808 	return ret;
809 }
810 
811 /*
812  * helper function to see if a given name and sequence number found
813  * in an inode back reference are already in a directory and correctly
814  * point to this inode
815  */
816 static noinline int inode_in_dir(struct btrfs_root *root,
817 				 struct btrfs_path *path,
818 				 u64 dirid, u64 objectid, u64 index,
819 				 const char *name, int name_len)
820 {
821 	struct btrfs_dir_item *di;
822 	struct btrfs_key location;
823 	int match = 0;
824 
825 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
826 					 index, name, name_len, 0);
827 	if (di && !IS_ERR(di)) {
828 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
829 		if (location.objectid != objectid)
830 			goto out;
831 	} else
832 		goto out;
833 	btrfs_release_path(path);
834 
835 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
836 	if (di && !IS_ERR(di)) {
837 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
838 		if (location.objectid != objectid)
839 			goto out;
840 	} else
841 		goto out;
842 	match = 1;
843 out:
844 	btrfs_release_path(path);
845 	return match;
846 }
847 
848 /*
849  * helper function to check a log tree for a named back reference in
850  * an inode.  This is used to decide if a back reference that is
851  * found in the subvolume conflicts with what we find in the log.
852  *
853  * inode backreferences may have multiple refs in a single item,
854  * during replay we process one reference at a time, and we don't
855  * want to delete valid links to a file from the subvolume if that
856  * link is also in the log.
857  */
858 static noinline int backref_in_log(struct btrfs_root *log,
859 				   struct btrfs_key *key,
860 				   u64 ref_objectid,
861 				   const char *name, int namelen)
862 {
863 	struct btrfs_path *path;
864 	struct btrfs_inode_ref *ref;
865 	unsigned long ptr;
866 	unsigned long ptr_end;
867 	unsigned long name_ptr;
868 	int found_name_len;
869 	int item_size;
870 	int ret;
871 	int match = 0;
872 
873 	path = btrfs_alloc_path();
874 	if (!path)
875 		return -ENOMEM;
876 
877 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
878 	if (ret != 0)
879 		goto out;
880 
881 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
882 
883 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
884 		if (btrfs_find_name_in_ext_backref(path, ref_objectid,
885 						   name, namelen, NULL))
886 			match = 1;
887 
888 		goto out;
889 	}
890 
891 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
892 	ptr_end = ptr + item_size;
893 	while (ptr < ptr_end) {
894 		ref = (struct btrfs_inode_ref *)ptr;
895 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
896 		if (found_name_len == namelen) {
897 			name_ptr = (unsigned long)(ref + 1);
898 			ret = memcmp_extent_buffer(path->nodes[0], name,
899 						   name_ptr, namelen);
900 			if (ret == 0) {
901 				match = 1;
902 				goto out;
903 			}
904 		}
905 		ptr = (unsigned long)(ref + 1) + found_name_len;
906 	}
907 out:
908 	btrfs_free_path(path);
909 	return match;
910 }
911 
912 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
913 				  struct btrfs_root *root,
914 				  struct btrfs_path *path,
915 				  struct btrfs_root *log_root,
916 				  struct inode *dir, struct inode *inode,
917 				  struct extent_buffer *eb,
918 				  u64 inode_objectid, u64 parent_objectid,
919 				  u64 ref_index, char *name, int namelen,
920 				  int *search_done)
921 {
922 	int ret;
923 	char *victim_name;
924 	int victim_name_len;
925 	struct extent_buffer *leaf;
926 	struct btrfs_dir_item *di;
927 	struct btrfs_key search_key;
928 	struct btrfs_inode_extref *extref;
929 
930 again:
931 	/* Search old style refs */
932 	search_key.objectid = inode_objectid;
933 	search_key.type = BTRFS_INODE_REF_KEY;
934 	search_key.offset = parent_objectid;
935 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
936 	if (ret == 0) {
937 		struct btrfs_inode_ref *victim_ref;
938 		unsigned long ptr;
939 		unsigned long ptr_end;
940 
941 		leaf = path->nodes[0];
942 
943 		/* are we trying to overwrite a back ref for the root directory
944 		 * if so, just jump out, we're done
945 		 */
946 		if (search_key.objectid == search_key.offset)
947 			return 1;
948 
949 		/* check all the names in this back reference to see
950 		 * if they are in the log.  if so, we allow them to stay
951 		 * otherwise they must be unlinked as a conflict
952 		 */
953 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
954 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
955 		while (ptr < ptr_end) {
956 			victim_ref = (struct btrfs_inode_ref *)ptr;
957 			victim_name_len = btrfs_inode_ref_name_len(leaf,
958 								   victim_ref);
959 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
960 			if (!victim_name)
961 				return -ENOMEM;
962 
963 			read_extent_buffer(leaf, victim_name,
964 					   (unsigned long)(victim_ref + 1),
965 					   victim_name_len);
966 
967 			if (!backref_in_log(log_root, &search_key,
968 					    parent_objectid,
969 					    victim_name,
970 					    victim_name_len)) {
971 				inc_nlink(inode);
972 				btrfs_release_path(path);
973 
974 				ret = btrfs_unlink_inode(trans, root, dir,
975 							 inode, victim_name,
976 							 victim_name_len);
977 				kfree(victim_name);
978 				if (ret)
979 					return ret;
980 				ret = btrfs_run_delayed_items(trans, root);
981 				if (ret)
982 					return ret;
983 				*search_done = 1;
984 				goto again;
985 			}
986 			kfree(victim_name);
987 
988 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
989 		}
990 
991 		/*
992 		 * NOTE: we have searched root tree and checked the
993 		 * coresponding ref, it does not need to check again.
994 		 */
995 		*search_done = 1;
996 	}
997 	btrfs_release_path(path);
998 
999 	/* Same search but for extended refs */
1000 	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1001 					   inode_objectid, parent_objectid, 0,
1002 					   0);
1003 	if (!IS_ERR_OR_NULL(extref)) {
1004 		u32 item_size;
1005 		u32 cur_offset = 0;
1006 		unsigned long base;
1007 		struct inode *victim_parent;
1008 
1009 		leaf = path->nodes[0];
1010 
1011 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1012 		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1013 
1014 		while (cur_offset < item_size) {
1015 			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1016 
1017 			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1018 
1019 			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1020 				goto next;
1021 
1022 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1023 			if (!victim_name)
1024 				return -ENOMEM;
1025 			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1026 					   victim_name_len);
1027 
1028 			search_key.objectid = inode_objectid;
1029 			search_key.type = BTRFS_INODE_EXTREF_KEY;
1030 			search_key.offset = btrfs_extref_hash(parent_objectid,
1031 							      victim_name,
1032 							      victim_name_len);
1033 			ret = 0;
1034 			if (!backref_in_log(log_root, &search_key,
1035 					    parent_objectid, victim_name,
1036 					    victim_name_len)) {
1037 				ret = -ENOENT;
1038 				victim_parent = read_one_inode(root,
1039 							       parent_objectid);
1040 				if (victim_parent) {
1041 					inc_nlink(inode);
1042 					btrfs_release_path(path);
1043 
1044 					ret = btrfs_unlink_inode(trans, root,
1045 								 victim_parent,
1046 								 inode,
1047 								 victim_name,
1048 								 victim_name_len);
1049 					if (!ret)
1050 						ret = btrfs_run_delayed_items(
1051 								  trans, root);
1052 				}
1053 				iput(victim_parent);
1054 				kfree(victim_name);
1055 				if (ret)
1056 					return ret;
1057 				*search_done = 1;
1058 				goto again;
1059 			}
1060 			kfree(victim_name);
1061 			if (ret)
1062 				return ret;
1063 next:
1064 			cur_offset += victim_name_len + sizeof(*extref);
1065 		}
1066 		*search_done = 1;
1067 	}
1068 	btrfs_release_path(path);
1069 
1070 	/* look for a conflicting sequence number */
1071 	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1072 					 ref_index, name, namelen, 0);
1073 	if (di && !IS_ERR(di)) {
1074 		ret = drop_one_dir_item(trans, root, path, dir, di);
1075 		if (ret)
1076 			return ret;
1077 	}
1078 	btrfs_release_path(path);
1079 
1080 	/* look for a conflicing name */
1081 	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1082 				   name, namelen, 0);
1083 	if (di && !IS_ERR(di)) {
1084 		ret = drop_one_dir_item(trans, root, path, dir, di);
1085 		if (ret)
1086 			return ret;
1087 	}
1088 	btrfs_release_path(path);
1089 
1090 	return 0;
1091 }
1092 
1093 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1094 			     u32 *namelen, char **name, u64 *index,
1095 			     u64 *parent_objectid)
1096 {
1097 	struct btrfs_inode_extref *extref;
1098 
1099 	extref = (struct btrfs_inode_extref *)ref_ptr;
1100 
1101 	*namelen = btrfs_inode_extref_name_len(eb, extref);
1102 	*name = kmalloc(*namelen, GFP_NOFS);
1103 	if (*name == NULL)
1104 		return -ENOMEM;
1105 
1106 	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1107 			   *namelen);
1108 
1109 	*index = btrfs_inode_extref_index(eb, extref);
1110 	if (parent_objectid)
1111 		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1112 
1113 	return 0;
1114 }
1115 
1116 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1117 			  u32 *namelen, char **name, u64 *index)
1118 {
1119 	struct btrfs_inode_ref *ref;
1120 
1121 	ref = (struct btrfs_inode_ref *)ref_ptr;
1122 
1123 	*namelen = btrfs_inode_ref_name_len(eb, ref);
1124 	*name = kmalloc(*namelen, GFP_NOFS);
1125 	if (*name == NULL)
1126 		return -ENOMEM;
1127 
1128 	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1129 
1130 	*index = btrfs_inode_ref_index(eb, ref);
1131 
1132 	return 0;
1133 }
1134 
1135 /*
1136  * replay one inode back reference item found in the log tree.
1137  * eb, slot and key refer to the buffer and key found in the log tree.
1138  * root is the destination we are replaying into, and path is for temp
1139  * use by this function.  (it should be released on return).
1140  */
1141 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1142 				  struct btrfs_root *root,
1143 				  struct btrfs_root *log,
1144 				  struct btrfs_path *path,
1145 				  struct extent_buffer *eb, int slot,
1146 				  struct btrfs_key *key)
1147 {
1148 	struct inode *dir = NULL;
1149 	struct inode *inode = NULL;
1150 	unsigned long ref_ptr;
1151 	unsigned long ref_end;
1152 	char *name = NULL;
1153 	int namelen;
1154 	int ret;
1155 	int search_done = 0;
1156 	int log_ref_ver = 0;
1157 	u64 parent_objectid;
1158 	u64 inode_objectid;
1159 	u64 ref_index = 0;
1160 	int ref_struct_size;
1161 
1162 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1163 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1164 
1165 	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1166 		struct btrfs_inode_extref *r;
1167 
1168 		ref_struct_size = sizeof(struct btrfs_inode_extref);
1169 		log_ref_ver = 1;
1170 		r = (struct btrfs_inode_extref *)ref_ptr;
1171 		parent_objectid = btrfs_inode_extref_parent(eb, r);
1172 	} else {
1173 		ref_struct_size = sizeof(struct btrfs_inode_ref);
1174 		parent_objectid = key->offset;
1175 	}
1176 	inode_objectid = key->objectid;
1177 
1178 	/*
1179 	 * it is possible that we didn't log all the parent directories
1180 	 * for a given inode.  If we don't find the dir, just don't
1181 	 * copy the back ref in.  The link count fixup code will take
1182 	 * care of the rest
1183 	 */
1184 	dir = read_one_inode(root, parent_objectid);
1185 	if (!dir) {
1186 		ret = -ENOENT;
1187 		goto out;
1188 	}
1189 
1190 	inode = read_one_inode(root, inode_objectid);
1191 	if (!inode) {
1192 		ret = -EIO;
1193 		goto out;
1194 	}
1195 
1196 	while (ref_ptr < ref_end) {
1197 		if (log_ref_ver) {
1198 			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1199 						&ref_index, &parent_objectid);
1200 			/*
1201 			 * parent object can change from one array
1202 			 * item to another.
1203 			 */
1204 			if (!dir)
1205 				dir = read_one_inode(root, parent_objectid);
1206 			if (!dir) {
1207 				ret = -ENOENT;
1208 				goto out;
1209 			}
1210 		} else {
1211 			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1212 					     &ref_index);
1213 		}
1214 		if (ret)
1215 			goto out;
1216 
1217 		/* if we already have a perfect match, we're done */
1218 		if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1219 				  ref_index, name, namelen)) {
1220 			/*
1221 			 * look for a conflicting back reference in the
1222 			 * metadata. if we find one we have to unlink that name
1223 			 * of the file before we add our new link.  Later on, we
1224 			 * overwrite any existing back reference, and we don't
1225 			 * want to create dangling pointers in the directory.
1226 			 */
1227 
1228 			if (!search_done) {
1229 				ret = __add_inode_ref(trans, root, path, log,
1230 						      dir, inode, eb,
1231 						      inode_objectid,
1232 						      parent_objectid,
1233 						      ref_index, name, namelen,
1234 						      &search_done);
1235 				if (ret) {
1236 					if (ret == 1)
1237 						ret = 0;
1238 					goto out;
1239 				}
1240 			}
1241 
1242 			/* insert our name */
1243 			ret = btrfs_add_link(trans, dir, inode, name, namelen,
1244 					     0, ref_index);
1245 			if (ret)
1246 				goto out;
1247 
1248 			btrfs_update_inode(trans, root, inode);
1249 		}
1250 
1251 		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1252 		kfree(name);
1253 		name = NULL;
1254 		if (log_ref_ver) {
1255 			iput(dir);
1256 			dir = NULL;
1257 		}
1258 	}
1259 
1260 	/* finally write the back reference in the inode */
1261 	ret = overwrite_item(trans, root, path, eb, slot, key);
1262 out:
1263 	btrfs_release_path(path);
1264 	kfree(name);
1265 	iput(dir);
1266 	iput(inode);
1267 	return ret;
1268 }
1269 
1270 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1271 			      struct btrfs_root *root, u64 ino)
1272 {
1273 	int ret;
1274 
1275 	ret = btrfs_insert_orphan_item(trans, root, ino);
1276 	if (ret == -EEXIST)
1277 		ret = 0;
1278 
1279 	return ret;
1280 }
1281 
1282 static int count_inode_extrefs(struct btrfs_root *root,
1283 			       struct inode *inode, struct btrfs_path *path)
1284 {
1285 	int ret = 0;
1286 	int name_len;
1287 	unsigned int nlink = 0;
1288 	u32 item_size;
1289 	u32 cur_offset = 0;
1290 	u64 inode_objectid = btrfs_ino(inode);
1291 	u64 offset = 0;
1292 	unsigned long ptr;
1293 	struct btrfs_inode_extref *extref;
1294 	struct extent_buffer *leaf;
1295 
1296 	while (1) {
1297 		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1298 					    &extref, &offset);
1299 		if (ret)
1300 			break;
1301 
1302 		leaf = path->nodes[0];
1303 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1304 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1305 		cur_offset = 0;
1306 
1307 		while (cur_offset < item_size) {
1308 			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1309 			name_len = btrfs_inode_extref_name_len(leaf, extref);
1310 
1311 			nlink++;
1312 
1313 			cur_offset += name_len + sizeof(*extref);
1314 		}
1315 
1316 		offset++;
1317 		btrfs_release_path(path);
1318 	}
1319 	btrfs_release_path(path);
1320 
1321 	if (ret < 0 && ret != -ENOENT)
1322 		return ret;
1323 	return nlink;
1324 }
1325 
1326 static int count_inode_refs(struct btrfs_root *root,
1327 			       struct inode *inode, struct btrfs_path *path)
1328 {
1329 	int ret;
1330 	struct btrfs_key key;
1331 	unsigned int nlink = 0;
1332 	unsigned long ptr;
1333 	unsigned long ptr_end;
1334 	int name_len;
1335 	u64 ino = btrfs_ino(inode);
1336 
1337 	key.objectid = ino;
1338 	key.type = BTRFS_INODE_REF_KEY;
1339 	key.offset = (u64)-1;
1340 
1341 	while (1) {
1342 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1343 		if (ret < 0)
1344 			break;
1345 		if (ret > 0) {
1346 			if (path->slots[0] == 0)
1347 				break;
1348 			path->slots[0]--;
1349 		}
1350 process_slot:
1351 		btrfs_item_key_to_cpu(path->nodes[0], &key,
1352 				      path->slots[0]);
1353 		if (key.objectid != ino ||
1354 		    key.type != BTRFS_INODE_REF_KEY)
1355 			break;
1356 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1357 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1358 						   path->slots[0]);
1359 		while (ptr < ptr_end) {
1360 			struct btrfs_inode_ref *ref;
1361 
1362 			ref = (struct btrfs_inode_ref *)ptr;
1363 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1364 							    ref);
1365 			ptr = (unsigned long)(ref + 1) + name_len;
1366 			nlink++;
1367 		}
1368 
1369 		if (key.offset == 0)
1370 			break;
1371 		if (path->slots[0] > 0) {
1372 			path->slots[0]--;
1373 			goto process_slot;
1374 		}
1375 		key.offset--;
1376 		btrfs_release_path(path);
1377 	}
1378 	btrfs_release_path(path);
1379 
1380 	return nlink;
1381 }
1382 
1383 /*
1384  * There are a few corners where the link count of the file can't
1385  * be properly maintained during replay.  So, instead of adding
1386  * lots of complexity to the log code, we just scan the backrefs
1387  * for any file that has been through replay.
1388  *
1389  * The scan will update the link count on the inode to reflect the
1390  * number of back refs found.  If it goes down to zero, the iput
1391  * will free the inode.
1392  */
1393 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1394 					   struct btrfs_root *root,
1395 					   struct inode *inode)
1396 {
1397 	struct btrfs_path *path;
1398 	int ret;
1399 	u64 nlink = 0;
1400 	u64 ino = btrfs_ino(inode);
1401 
1402 	path = btrfs_alloc_path();
1403 	if (!path)
1404 		return -ENOMEM;
1405 
1406 	ret = count_inode_refs(root, inode, path);
1407 	if (ret < 0)
1408 		goto out;
1409 
1410 	nlink = ret;
1411 
1412 	ret = count_inode_extrefs(root, inode, path);
1413 	if (ret < 0)
1414 		goto out;
1415 
1416 	nlink += ret;
1417 
1418 	ret = 0;
1419 
1420 	if (nlink != inode->i_nlink) {
1421 		set_nlink(inode, nlink);
1422 		btrfs_update_inode(trans, root, inode);
1423 	}
1424 	BTRFS_I(inode)->index_cnt = (u64)-1;
1425 
1426 	if (inode->i_nlink == 0) {
1427 		if (S_ISDIR(inode->i_mode)) {
1428 			ret = replay_dir_deletes(trans, root, NULL, path,
1429 						 ino, 1);
1430 			if (ret)
1431 				goto out;
1432 		}
1433 		ret = insert_orphan_item(trans, root, ino);
1434 	}
1435 
1436 out:
1437 	btrfs_free_path(path);
1438 	return ret;
1439 }
1440 
1441 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1442 					    struct btrfs_root *root,
1443 					    struct btrfs_path *path)
1444 {
1445 	int ret;
1446 	struct btrfs_key key;
1447 	struct inode *inode;
1448 
1449 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1450 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1451 	key.offset = (u64)-1;
1452 	while (1) {
1453 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1454 		if (ret < 0)
1455 			break;
1456 
1457 		if (ret == 1) {
1458 			if (path->slots[0] == 0)
1459 				break;
1460 			path->slots[0]--;
1461 		}
1462 
1463 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1464 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1465 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1466 			break;
1467 
1468 		ret = btrfs_del_item(trans, root, path);
1469 		if (ret)
1470 			goto out;
1471 
1472 		btrfs_release_path(path);
1473 		inode = read_one_inode(root, key.offset);
1474 		if (!inode)
1475 			return -EIO;
1476 
1477 		ret = fixup_inode_link_count(trans, root, inode);
1478 		iput(inode);
1479 		if (ret)
1480 			goto out;
1481 
1482 		/*
1483 		 * fixup on a directory may create new entries,
1484 		 * make sure we always look for the highset possible
1485 		 * offset
1486 		 */
1487 		key.offset = (u64)-1;
1488 	}
1489 	ret = 0;
1490 out:
1491 	btrfs_release_path(path);
1492 	return ret;
1493 }
1494 
1495 
1496 /*
1497  * record a given inode in the fixup dir so we can check its link
1498  * count when replay is done.  The link count is incremented here
1499  * so the inode won't go away until we check it
1500  */
1501 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1502 				      struct btrfs_root *root,
1503 				      struct btrfs_path *path,
1504 				      u64 objectid)
1505 {
1506 	struct btrfs_key key;
1507 	int ret = 0;
1508 	struct inode *inode;
1509 
1510 	inode = read_one_inode(root, objectid);
1511 	if (!inode)
1512 		return -EIO;
1513 
1514 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1515 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1516 	key.offset = objectid;
1517 
1518 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1519 
1520 	btrfs_release_path(path);
1521 	if (ret == 0) {
1522 		if (!inode->i_nlink)
1523 			set_nlink(inode, 1);
1524 		else
1525 			inc_nlink(inode);
1526 		ret = btrfs_update_inode(trans, root, inode);
1527 	} else if (ret == -EEXIST) {
1528 		ret = 0;
1529 	} else {
1530 		BUG(); /* Logic Error */
1531 	}
1532 	iput(inode);
1533 
1534 	return ret;
1535 }
1536 
1537 /*
1538  * when replaying the log for a directory, we only insert names
1539  * for inodes that actually exist.  This means an fsync on a directory
1540  * does not implicitly fsync all the new files in it
1541  */
1542 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1543 				    struct btrfs_root *root,
1544 				    struct btrfs_path *path,
1545 				    u64 dirid, u64 index,
1546 				    char *name, int name_len, u8 type,
1547 				    struct btrfs_key *location)
1548 {
1549 	struct inode *inode;
1550 	struct inode *dir;
1551 	int ret;
1552 
1553 	inode = read_one_inode(root, location->objectid);
1554 	if (!inode)
1555 		return -ENOENT;
1556 
1557 	dir = read_one_inode(root, dirid);
1558 	if (!dir) {
1559 		iput(inode);
1560 		return -EIO;
1561 	}
1562 
1563 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1564 
1565 	/* FIXME, put inode into FIXUP list */
1566 
1567 	iput(inode);
1568 	iput(dir);
1569 	return ret;
1570 }
1571 
1572 /*
1573  * Return true if an inode reference exists in the log for the given name,
1574  * inode and parent inode.
1575  */
1576 static bool name_in_log_ref(struct btrfs_root *log_root,
1577 			    const char *name, const int name_len,
1578 			    const u64 dirid, const u64 ino)
1579 {
1580 	struct btrfs_key search_key;
1581 
1582 	search_key.objectid = ino;
1583 	search_key.type = BTRFS_INODE_REF_KEY;
1584 	search_key.offset = dirid;
1585 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1586 		return true;
1587 
1588 	search_key.type = BTRFS_INODE_EXTREF_KEY;
1589 	search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1590 	if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1591 		return true;
1592 
1593 	return false;
1594 }
1595 
1596 /*
1597  * take a single entry in a log directory item and replay it into
1598  * the subvolume.
1599  *
1600  * if a conflicting item exists in the subdirectory already,
1601  * the inode it points to is unlinked and put into the link count
1602  * fix up tree.
1603  *
1604  * If a name from the log points to a file or directory that does
1605  * not exist in the FS, it is skipped.  fsyncs on directories
1606  * do not force down inodes inside that directory, just changes to the
1607  * names or unlinks in a directory.
1608  */
1609 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1610 				    struct btrfs_root *root,
1611 				    struct btrfs_path *path,
1612 				    struct extent_buffer *eb,
1613 				    struct btrfs_dir_item *di,
1614 				    struct btrfs_key *key)
1615 {
1616 	char *name;
1617 	int name_len;
1618 	struct btrfs_dir_item *dst_di;
1619 	struct btrfs_key found_key;
1620 	struct btrfs_key log_key;
1621 	struct inode *dir;
1622 	u8 log_type;
1623 	int exists;
1624 	int ret = 0;
1625 	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1626 
1627 	dir = read_one_inode(root, key->objectid);
1628 	if (!dir)
1629 		return -EIO;
1630 
1631 	name_len = btrfs_dir_name_len(eb, di);
1632 	name = kmalloc(name_len, GFP_NOFS);
1633 	if (!name) {
1634 		ret = -ENOMEM;
1635 		goto out;
1636 	}
1637 
1638 	log_type = btrfs_dir_type(eb, di);
1639 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1640 		   name_len);
1641 
1642 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1643 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1644 	if (exists == 0)
1645 		exists = 1;
1646 	else
1647 		exists = 0;
1648 	btrfs_release_path(path);
1649 
1650 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1651 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1652 				       name, name_len, 1);
1653 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1654 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1655 						     key->objectid,
1656 						     key->offset, name,
1657 						     name_len, 1);
1658 	} else {
1659 		/* Corruption */
1660 		ret = -EINVAL;
1661 		goto out;
1662 	}
1663 	if (IS_ERR_OR_NULL(dst_di)) {
1664 		/* we need a sequence number to insert, so we only
1665 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1666 		 */
1667 		if (key->type != BTRFS_DIR_INDEX_KEY)
1668 			goto out;
1669 		goto insert;
1670 	}
1671 
1672 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1673 	/* the existing item matches the logged item */
1674 	if (found_key.objectid == log_key.objectid &&
1675 	    found_key.type == log_key.type &&
1676 	    found_key.offset == log_key.offset &&
1677 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1678 		update_size = false;
1679 		goto out;
1680 	}
1681 
1682 	/*
1683 	 * don't drop the conflicting directory entry if the inode
1684 	 * for the new entry doesn't exist
1685 	 */
1686 	if (!exists)
1687 		goto out;
1688 
1689 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1690 	if (ret)
1691 		goto out;
1692 
1693 	if (key->type == BTRFS_DIR_INDEX_KEY)
1694 		goto insert;
1695 out:
1696 	btrfs_release_path(path);
1697 	if (!ret && update_size) {
1698 		btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1699 		ret = btrfs_update_inode(trans, root, dir);
1700 	}
1701 	kfree(name);
1702 	iput(dir);
1703 	return ret;
1704 
1705 insert:
1706 	if (name_in_log_ref(root->log_root, name, name_len,
1707 			    key->objectid, log_key.objectid)) {
1708 		/* The dentry will be added later. */
1709 		ret = 0;
1710 		update_size = false;
1711 		goto out;
1712 	}
1713 	btrfs_release_path(path);
1714 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1715 			      name, name_len, log_type, &log_key);
1716 	if (ret && ret != -ENOENT && ret != -EEXIST)
1717 		goto out;
1718 	update_size = false;
1719 	ret = 0;
1720 	goto out;
1721 }
1722 
1723 /*
1724  * find all the names in a directory item and reconcile them into
1725  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1726  * one name in a directory item, but the same code gets used for
1727  * both directory index types
1728  */
1729 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1730 					struct btrfs_root *root,
1731 					struct btrfs_path *path,
1732 					struct extent_buffer *eb, int slot,
1733 					struct btrfs_key *key)
1734 {
1735 	int ret;
1736 	u32 item_size = btrfs_item_size_nr(eb, slot);
1737 	struct btrfs_dir_item *di;
1738 	int name_len;
1739 	unsigned long ptr;
1740 	unsigned long ptr_end;
1741 
1742 	ptr = btrfs_item_ptr_offset(eb, slot);
1743 	ptr_end = ptr + item_size;
1744 	while (ptr < ptr_end) {
1745 		di = (struct btrfs_dir_item *)ptr;
1746 		if (verify_dir_item(root, eb, di))
1747 			return -EIO;
1748 		name_len = btrfs_dir_name_len(eb, di);
1749 		ret = replay_one_name(trans, root, path, eb, di, key);
1750 		if (ret)
1751 			return ret;
1752 		ptr = (unsigned long)(di + 1);
1753 		ptr += name_len;
1754 	}
1755 	return 0;
1756 }
1757 
1758 /*
1759  * directory replay has two parts.  There are the standard directory
1760  * items in the log copied from the subvolume, and range items
1761  * created in the log while the subvolume was logged.
1762  *
1763  * The range items tell us which parts of the key space the log
1764  * is authoritative for.  During replay, if a key in the subvolume
1765  * directory is in a logged range item, but not actually in the log
1766  * that means it was deleted from the directory before the fsync
1767  * and should be removed.
1768  */
1769 static noinline int find_dir_range(struct btrfs_root *root,
1770 				   struct btrfs_path *path,
1771 				   u64 dirid, int key_type,
1772 				   u64 *start_ret, u64 *end_ret)
1773 {
1774 	struct btrfs_key key;
1775 	u64 found_end;
1776 	struct btrfs_dir_log_item *item;
1777 	int ret;
1778 	int nritems;
1779 
1780 	if (*start_ret == (u64)-1)
1781 		return 1;
1782 
1783 	key.objectid = dirid;
1784 	key.type = key_type;
1785 	key.offset = *start_ret;
1786 
1787 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1788 	if (ret < 0)
1789 		goto out;
1790 	if (ret > 0) {
1791 		if (path->slots[0] == 0)
1792 			goto out;
1793 		path->slots[0]--;
1794 	}
1795 	if (ret != 0)
1796 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1797 
1798 	if (key.type != key_type || key.objectid != dirid) {
1799 		ret = 1;
1800 		goto next;
1801 	}
1802 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1803 			      struct btrfs_dir_log_item);
1804 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1805 
1806 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1807 		ret = 0;
1808 		*start_ret = key.offset;
1809 		*end_ret = found_end;
1810 		goto out;
1811 	}
1812 	ret = 1;
1813 next:
1814 	/* check the next slot in the tree to see if it is a valid item */
1815 	nritems = btrfs_header_nritems(path->nodes[0]);
1816 	if (path->slots[0] >= nritems) {
1817 		ret = btrfs_next_leaf(root, path);
1818 		if (ret)
1819 			goto out;
1820 	} else {
1821 		path->slots[0]++;
1822 	}
1823 
1824 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1825 
1826 	if (key.type != key_type || key.objectid != dirid) {
1827 		ret = 1;
1828 		goto out;
1829 	}
1830 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1831 			      struct btrfs_dir_log_item);
1832 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1833 	*start_ret = key.offset;
1834 	*end_ret = found_end;
1835 	ret = 0;
1836 out:
1837 	btrfs_release_path(path);
1838 	return ret;
1839 }
1840 
1841 /*
1842  * this looks for a given directory item in the log.  If the directory
1843  * item is not in the log, the item is removed and the inode it points
1844  * to is unlinked
1845  */
1846 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1847 				      struct btrfs_root *root,
1848 				      struct btrfs_root *log,
1849 				      struct btrfs_path *path,
1850 				      struct btrfs_path *log_path,
1851 				      struct inode *dir,
1852 				      struct btrfs_key *dir_key)
1853 {
1854 	int ret;
1855 	struct extent_buffer *eb;
1856 	int slot;
1857 	u32 item_size;
1858 	struct btrfs_dir_item *di;
1859 	struct btrfs_dir_item *log_di;
1860 	int name_len;
1861 	unsigned long ptr;
1862 	unsigned long ptr_end;
1863 	char *name;
1864 	struct inode *inode;
1865 	struct btrfs_key location;
1866 
1867 again:
1868 	eb = path->nodes[0];
1869 	slot = path->slots[0];
1870 	item_size = btrfs_item_size_nr(eb, slot);
1871 	ptr = btrfs_item_ptr_offset(eb, slot);
1872 	ptr_end = ptr + item_size;
1873 	while (ptr < ptr_end) {
1874 		di = (struct btrfs_dir_item *)ptr;
1875 		if (verify_dir_item(root, eb, di)) {
1876 			ret = -EIO;
1877 			goto out;
1878 		}
1879 
1880 		name_len = btrfs_dir_name_len(eb, di);
1881 		name = kmalloc(name_len, GFP_NOFS);
1882 		if (!name) {
1883 			ret = -ENOMEM;
1884 			goto out;
1885 		}
1886 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1887 				  name_len);
1888 		log_di = NULL;
1889 		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1890 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1891 						       dir_key->objectid,
1892 						       name, name_len, 0);
1893 		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1894 			log_di = btrfs_lookup_dir_index_item(trans, log,
1895 						     log_path,
1896 						     dir_key->objectid,
1897 						     dir_key->offset,
1898 						     name, name_len, 0);
1899 		}
1900 		if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
1901 			btrfs_dir_item_key_to_cpu(eb, di, &location);
1902 			btrfs_release_path(path);
1903 			btrfs_release_path(log_path);
1904 			inode = read_one_inode(root, location.objectid);
1905 			if (!inode) {
1906 				kfree(name);
1907 				return -EIO;
1908 			}
1909 
1910 			ret = link_to_fixup_dir(trans, root,
1911 						path, location.objectid);
1912 			if (ret) {
1913 				kfree(name);
1914 				iput(inode);
1915 				goto out;
1916 			}
1917 
1918 			inc_nlink(inode);
1919 			ret = btrfs_unlink_inode(trans, root, dir, inode,
1920 						 name, name_len);
1921 			if (!ret)
1922 				ret = btrfs_run_delayed_items(trans, root);
1923 			kfree(name);
1924 			iput(inode);
1925 			if (ret)
1926 				goto out;
1927 
1928 			/* there might still be more names under this key
1929 			 * check and repeat if required
1930 			 */
1931 			ret = btrfs_search_slot(NULL, root, dir_key, path,
1932 						0, 0);
1933 			if (ret == 0)
1934 				goto again;
1935 			ret = 0;
1936 			goto out;
1937 		} else if (IS_ERR(log_di)) {
1938 			kfree(name);
1939 			return PTR_ERR(log_di);
1940 		}
1941 		btrfs_release_path(log_path);
1942 		kfree(name);
1943 
1944 		ptr = (unsigned long)(di + 1);
1945 		ptr += name_len;
1946 	}
1947 	ret = 0;
1948 out:
1949 	btrfs_release_path(path);
1950 	btrfs_release_path(log_path);
1951 	return ret;
1952 }
1953 
1954 /*
1955  * deletion replay happens before we copy any new directory items
1956  * out of the log or out of backreferences from inodes.  It
1957  * scans the log to find ranges of keys that log is authoritative for,
1958  * and then scans the directory to find items in those ranges that are
1959  * not present in the log.
1960  *
1961  * Anything we don't find in the log is unlinked and removed from the
1962  * directory.
1963  */
1964 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1965 				       struct btrfs_root *root,
1966 				       struct btrfs_root *log,
1967 				       struct btrfs_path *path,
1968 				       u64 dirid, int del_all)
1969 {
1970 	u64 range_start;
1971 	u64 range_end;
1972 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1973 	int ret = 0;
1974 	struct btrfs_key dir_key;
1975 	struct btrfs_key found_key;
1976 	struct btrfs_path *log_path;
1977 	struct inode *dir;
1978 
1979 	dir_key.objectid = dirid;
1980 	dir_key.type = BTRFS_DIR_ITEM_KEY;
1981 	log_path = btrfs_alloc_path();
1982 	if (!log_path)
1983 		return -ENOMEM;
1984 
1985 	dir = read_one_inode(root, dirid);
1986 	/* it isn't an error if the inode isn't there, that can happen
1987 	 * because we replay the deletes before we copy in the inode item
1988 	 * from the log
1989 	 */
1990 	if (!dir) {
1991 		btrfs_free_path(log_path);
1992 		return 0;
1993 	}
1994 again:
1995 	range_start = 0;
1996 	range_end = 0;
1997 	while (1) {
1998 		if (del_all)
1999 			range_end = (u64)-1;
2000 		else {
2001 			ret = find_dir_range(log, path, dirid, key_type,
2002 					     &range_start, &range_end);
2003 			if (ret != 0)
2004 				break;
2005 		}
2006 
2007 		dir_key.offset = range_start;
2008 		while (1) {
2009 			int nritems;
2010 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2011 						0, 0);
2012 			if (ret < 0)
2013 				goto out;
2014 
2015 			nritems = btrfs_header_nritems(path->nodes[0]);
2016 			if (path->slots[0] >= nritems) {
2017 				ret = btrfs_next_leaf(root, path);
2018 				if (ret)
2019 					break;
2020 			}
2021 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2022 					      path->slots[0]);
2023 			if (found_key.objectid != dirid ||
2024 			    found_key.type != dir_key.type)
2025 				goto next_type;
2026 
2027 			if (found_key.offset > range_end)
2028 				break;
2029 
2030 			ret = check_item_in_log(trans, root, log, path,
2031 						log_path, dir,
2032 						&found_key);
2033 			if (ret)
2034 				goto out;
2035 			if (found_key.offset == (u64)-1)
2036 				break;
2037 			dir_key.offset = found_key.offset + 1;
2038 		}
2039 		btrfs_release_path(path);
2040 		if (range_end == (u64)-1)
2041 			break;
2042 		range_start = range_end + 1;
2043 	}
2044 
2045 next_type:
2046 	ret = 0;
2047 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2048 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2049 		dir_key.type = BTRFS_DIR_INDEX_KEY;
2050 		btrfs_release_path(path);
2051 		goto again;
2052 	}
2053 out:
2054 	btrfs_release_path(path);
2055 	btrfs_free_path(log_path);
2056 	iput(dir);
2057 	return ret;
2058 }
2059 
2060 /*
2061  * the process_func used to replay items from the log tree.  This
2062  * gets called in two different stages.  The first stage just looks
2063  * for inodes and makes sure they are all copied into the subvolume.
2064  *
2065  * The second stage copies all the other item types from the log into
2066  * the subvolume.  The two stage approach is slower, but gets rid of
2067  * lots of complexity around inodes referencing other inodes that exist
2068  * only in the log (references come from either directory items or inode
2069  * back refs).
2070  */
2071 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2072 			     struct walk_control *wc, u64 gen)
2073 {
2074 	int nritems;
2075 	struct btrfs_path *path;
2076 	struct btrfs_root *root = wc->replay_dest;
2077 	struct btrfs_key key;
2078 	int level;
2079 	int i;
2080 	int ret;
2081 
2082 	ret = btrfs_read_buffer(eb, gen);
2083 	if (ret)
2084 		return ret;
2085 
2086 	level = btrfs_header_level(eb);
2087 
2088 	if (level != 0)
2089 		return 0;
2090 
2091 	path = btrfs_alloc_path();
2092 	if (!path)
2093 		return -ENOMEM;
2094 
2095 	nritems = btrfs_header_nritems(eb);
2096 	for (i = 0; i < nritems; i++) {
2097 		btrfs_item_key_to_cpu(eb, &key, i);
2098 
2099 		/* inode keys are done during the first stage */
2100 		if (key.type == BTRFS_INODE_ITEM_KEY &&
2101 		    wc->stage == LOG_WALK_REPLAY_INODES) {
2102 			struct btrfs_inode_item *inode_item;
2103 			u32 mode;
2104 
2105 			inode_item = btrfs_item_ptr(eb, i,
2106 					    struct btrfs_inode_item);
2107 			mode = btrfs_inode_mode(eb, inode_item);
2108 			if (S_ISDIR(mode)) {
2109 				ret = replay_dir_deletes(wc->trans,
2110 					 root, log, path, key.objectid, 0);
2111 				if (ret)
2112 					break;
2113 			}
2114 			ret = overwrite_item(wc->trans, root, path,
2115 					     eb, i, &key);
2116 			if (ret)
2117 				break;
2118 
2119 			/* for regular files, make sure corresponding
2120 			 * orhpan item exist. extents past the new EOF
2121 			 * will be truncated later by orphan cleanup.
2122 			 */
2123 			if (S_ISREG(mode)) {
2124 				ret = insert_orphan_item(wc->trans, root,
2125 							 key.objectid);
2126 				if (ret)
2127 					break;
2128 			}
2129 
2130 			ret = link_to_fixup_dir(wc->trans, root,
2131 						path, key.objectid);
2132 			if (ret)
2133 				break;
2134 		}
2135 
2136 		if (key.type == BTRFS_DIR_INDEX_KEY &&
2137 		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2138 			ret = replay_one_dir_item(wc->trans, root, path,
2139 						  eb, i, &key);
2140 			if (ret)
2141 				break;
2142 		}
2143 
2144 		if (wc->stage < LOG_WALK_REPLAY_ALL)
2145 			continue;
2146 
2147 		/* these keys are simply copied */
2148 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2149 			ret = overwrite_item(wc->trans, root, path,
2150 					     eb, i, &key);
2151 			if (ret)
2152 				break;
2153 		} else if (key.type == BTRFS_INODE_REF_KEY ||
2154 			   key.type == BTRFS_INODE_EXTREF_KEY) {
2155 			ret = add_inode_ref(wc->trans, root, log, path,
2156 					    eb, i, &key);
2157 			if (ret && ret != -ENOENT)
2158 				break;
2159 			ret = 0;
2160 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2161 			ret = replay_one_extent(wc->trans, root, path,
2162 						eb, i, &key);
2163 			if (ret)
2164 				break;
2165 		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2166 			ret = replay_one_dir_item(wc->trans, root, path,
2167 						  eb, i, &key);
2168 			if (ret)
2169 				break;
2170 		}
2171 	}
2172 	btrfs_free_path(path);
2173 	return ret;
2174 }
2175 
2176 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2177 				   struct btrfs_root *root,
2178 				   struct btrfs_path *path, int *level,
2179 				   struct walk_control *wc)
2180 {
2181 	u64 root_owner;
2182 	u64 bytenr;
2183 	u64 ptr_gen;
2184 	struct extent_buffer *next;
2185 	struct extent_buffer *cur;
2186 	struct extent_buffer *parent;
2187 	u32 blocksize;
2188 	int ret = 0;
2189 
2190 	WARN_ON(*level < 0);
2191 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2192 
2193 	while (*level > 0) {
2194 		WARN_ON(*level < 0);
2195 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
2196 		cur = path->nodes[*level];
2197 
2198 		WARN_ON(btrfs_header_level(cur) != *level);
2199 
2200 		if (path->slots[*level] >=
2201 		    btrfs_header_nritems(cur))
2202 			break;
2203 
2204 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2205 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2206 		blocksize = root->nodesize;
2207 
2208 		parent = path->nodes[*level];
2209 		root_owner = btrfs_header_owner(parent);
2210 
2211 		next = btrfs_find_create_tree_block(root, bytenr);
2212 		if (!next)
2213 			return -ENOMEM;
2214 
2215 		if (*level == 1) {
2216 			ret = wc->process_func(root, next, wc, ptr_gen);
2217 			if (ret) {
2218 				free_extent_buffer(next);
2219 				return ret;
2220 			}
2221 
2222 			path->slots[*level]++;
2223 			if (wc->free) {
2224 				ret = btrfs_read_buffer(next, ptr_gen);
2225 				if (ret) {
2226 					free_extent_buffer(next);
2227 					return ret;
2228 				}
2229 
2230 				if (trans) {
2231 					btrfs_tree_lock(next);
2232 					btrfs_set_lock_blocking(next);
2233 					clean_tree_block(trans, root, next);
2234 					btrfs_wait_tree_block_writeback(next);
2235 					btrfs_tree_unlock(next);
2236 				}
2237 
2238 				WARN_ON(root_owner !=
2239 					BTRFS_TREE_LOG_OBJECTID);
2240 				ret = btrfs_free_and_pin_reserved_extent(root,
2241 							 bytenr, blocksize);
2242 				if (ret) {
2243 					free_extent_buffer(next);
2244 					return ret;
2245 				}
2246 			}
2247 			free_extent_buffer(next);
2248 			continue;
2249 		}
2250 		ret = btrfs_read_buffer(next, ptr_gen);
2251 		if (ret) {
2252 			free_extent_buffer(next);
2253 			return ret;
2254 		}
2255 
2256 		WARN_ON(*level <= 0);
2257 		if (path->nodes[*level-1])
2258 			free_extent_buffer(path->nodes[*level-1]);
2259 		path->nodes[*level-1] = next;
2260 		*level = btrfs_header_level(next);
2261 		path->slots[*level] = 0;
2262 		cond_resched();
2263 	}
2264 	WARN_ON(*level < 0);
2265 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
2266 
2267 	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2268 
2269 	cond_resched();
2270 	return 0;
2271 }
2272 
2273 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2274 				 struct btrfs_root *root,
2275 				 struct btrfs_path *path, int *level,
2276 				 struct walk_control *wc)
2277 {
2278 	u64 root_owner;
2279 	int i;
2280 	int slot;
2281 	int ret;
2282 
2283 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2284 		slot = path->slots[i];
2285 		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2286 			path->slots[i]++;
2287 			*level = i;
2288 			WARN_ON(*level == 0);
2289 			return 0;
2290 		} else {
2291 			struct extent_buffer *parent;
2292 			if (path->nodes[*level] == root->node)
2293 				parent = path->nodes[*level];
2294 			else
2295 				parent = path->nodes[*level + 1];
2296 
2297 			root_owner = btrfs_header_owner(parent);
2298 			ret = wc->process_func(root, path->nodes[*level], wc,
2299 				 btrfs_header_generation(path->nodes[*level]));
2300 			if (ret)
2301 				return ret;
2302 
2303 			if (wc->free) {
2304 				struct extent_buffer *next;
2305 
2306 				next = path->nodes[*level];
2307 
2308 				if (trans) {
2309 					btrfs_tree_lock(next);
2310 					btrfs_set_lock_blocking(next);
2311 					clean_tree_block(trans, root, next);
2312 					btrfs_wait_tree_block_writeback(next);
2313 					btrfs_tree_unlock(next);
2314 				}
2315 
2316 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2317 				ret = btrfs_free_and_pin_reserved_extent(root,
2318 						path->nodes[*level]->start,
2319 						path->nodes[*level]->len);
2320 				if (ret)
2321 					return ret;
2322 			}
2323 			free_extent_buffer(path->nodes[*level]);
2324 			path->nodes[*level] = NULL;
2325 			*level = i + 1;
2326 		}
2327 	}
2328 	return 1;
2329 }
2330 
2331 /*
2332  * drop the reference count on the tree rooted at 'snap'.  This traverses
2333  * the tree freeing any blocks that have a ref count of zero after being
2334  * decremented.
2335  */
2336 static int walk_log_tree(struct btrfs_trans_handle *trans,
2337 			 struct btrfs_root *log, struct walk_control *wc)
2338 {
2339 	int ret = 0;
2340 	int wret;
2341 	int level;
2342 	struct btrfs_path *path;
2343 	int orig_level;
2344 
2345 	path = btrfs_alloc_path();
2346 	if (!path)
2347 		return -ENOMEM;
2348 
2349 	level = btrfs_header_level(log->node);
2350 	orig_level = level;
2351 	path->nodes[level] = log->node;
2352 	extent_buffer_get(log->node);
2353 	path->slots[level] = 0;
2354 
2355 	while (1) {
2356 		wret = walk_down_log_tree(trans, log, path, &level, wc);
2357 		if (wret > 0)
2358 			break;
2359 		if (wret < 0) {
2360 			ret = wret;
2361 			goto out;
2362 		}
2363 
2364 		wret = walk_up_log_tree(trans, log, path, &level, wc);
2365 		if (wret > 0)
2366 			break;
2367 		if (wret < 0) {
2368 			ret = wret;
2369 			goto out;
2370 		}
2371 	}
2372 
2373 	/* was the root node processed? if not, catch it here */
2374 	if (path->nodes[orig_level]) {
2375 		ret = wc->process_func(log, path->nodes[orig_level], wc,
2376 			 btrfs_header_generation(path->nodes[orig_level]));
2377 		if (ret)
2378 			goto out;
2379 		if (wc->free) {
2380 			struct extent_buffer *next;
2381 
2382 			next = path->nodes[orig_level];
2383 
2384 			if (trans) {
2385 				btrfs_tree_lock(next);
2386 				btrfs_set_lock_blocking(next);
2387 				clean_tree_block(trans, log, next);
2388 				btrfs_wait_tree_block_writeback(next);
2389 				btrfs_tree_unlock(next);
2390 			}
2391 
2392 			WARN_ON(log->root_key.objectid !=
2393 				BTRFS_TREE_LOG_OBJECTID);
2394 			ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2395 							 next->len);
2396 			if (ret)
2397 				goto out;
2398 		}
2399 	}
2400 
2401 out:
2402 	btrfs_free_path(path);
2403 	return ret;
2404 }
2405 
2406 /*
2407  * helper function to update the item for a given subvolumes log root
2408  * in the tree of log roots
2409  */
2410 static int update_log_root(struct btrfs_trans_handle *trans,
2411 			   struct btrfs_root *log)
2412 {
2413 	int ret;
2414 
2415 	if (log->log_transid == 1) {
2416 		/* insert root item on the first sync */
2417 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2418 				&log->root_key, &log->root_item);
2419 	} else {
2420 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2421 				&log->root_key, &log->root_item);
2422 	}
2423 	return ret;
2424 }
2425 
2426 static void wait_log_commit(struct btrfs_trans_handle *trans,
2427 			    struct btrfs_root *root, int transid)
2428 {
2429 	DEFINE_WAIT(wait);
2430 	int index = transid % 2;
2431 
2432 	/*
2433 	 * we only allow two pending log transactions at a time,
2434 	 * so we know that if ours is more than 2 older than the
2435 	 * current transaction, we're done
2436 	 */
2437 	do {
2438 		prepare_to_wait(&root->log_commit_wait[index],
2439 				&wait, TASK_UNINTERRUPTIBLE);
2440 		mutex_unlock(&root->log_mutex);
2441 
2442 		if (root->log_transid_committed < transid &&
2443 		    atomic_read(&root->log_commit[index]))
2444 			schedule();
2445 
2446 		finish_wait(&root->log_commit_wait[index], &wait);
2447 		mutex_lock(&root->log_mutex);
2448 	} while (root->log_transid_committed < transid &&
2449 		 atomic_read(&root->log_commit[index]));
2450 }
2451 
2452 static void wait_for_writer(struct btrfs_trans_handle *trans,
2453 			    struct btrfs_root *root)
2454 {
2455 	DEFINE_WAIT(wait);
2456 
2457 	while (atomic_read(&root->log_writers)) {
2458 		prepare_to_wait(&root->log_writer_wait,
2459 				&wait, TASK_UNINTERRUPTIBLE);
2460 		mutex_unlock(&root->log_mutex);
2461 		if (atomic_read(&root->log_writers))
2462 			schedule();
2463 		finish_wait(&root->log_writer_wait, &wait);
2464 		mutex_lock(&root->log_mutex);
2465 	}
2466 }
2467 
2468 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2469 					struct btrfs_log_ctx *ctx)
2470 {
2471 	if (!ctx)
2472 		return;
2473 
2474 	mutex_lock(&root->log_mutex);
2475 	list_del_init(&ctx->list);
2476 	mutex_unlock(&root->log_mutex);
2477 }
2478 
2479 /*
2480  * Invoked in log mutex context, or be sure there is no other task which
2481  * can access the list.
2482  */
2483 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2484 					     int index, int error)
2485 {
2486 	struct btrfs_log_ctx *ctx;
2487 
2488 	if (!error) {
2489 		INIT_LIST_HEAD(&root->log_ctxs[index]);
2490 		return;
2491 	}
2492 
2493 	list_for_each_entry(ctx, &root->log_ctxs[index], list)
2494 		ctx->log_ret = error;
2495 
2496 	INIT_LIST_HEAD(&root->log_ctxs[index]);
2497 }
2498 
2499 /*
2500  * btrfs_sync_log does sends a given tree log down to the disk and
2501  * updates the super blocks to record it.  When this call is done,
2502  * you know that any inodes previously logged are safely on disk only
2503  * if it returns 0.
2504  *
2505  * Any other return value means you need to call btrfs_commit_transaction.
2506  * Some of the edge cases for fsyncing directories that have had unlinks
2507  * or renames done in the past mean that sometimes the only safe
2508  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2509  * that has happened.
2510  */
2511 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2512 		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2513 {
2514 	int index1;
2515 	int index2;
2516 	int mark;
2517 	int ret;
2518 	struct btrfs_root *log = root->log_root;
2519 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2520 	int log_transid = 0;
2521 	struct btrfs_log_ctx root_log_ctx;
2522 	struct blk_plug plug;
2523 
2524 	mutex_lock(&root->log_mutex);
2525 	log_transid = ctx->log_transid;
2526 	if (root->log_transid_committed >= log_transid) {
2527 		mutex_unlock(&root->log_mutex);
2528 		return ctx->log_ret;
2529 	}
2530 
2531 	index1 = log_transid % 2;
2532 	if (atomic_read(&root->log_commit[index1])) {
2533 		wait_log_commit(trans, root, log_transid);
2534 		mutex_unlock(&root->log_mutex);
2535 		return ctx->log_ret;
2536 	}
2537 	ASSERT(log_transid == root->log_transid);
2538 	atomic_set(&root->log_commit[index1], 1);
2539 
2540 	/* wait for previous tree log sync to complete */
2541 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2542 		wait_log_commit(trans, root, log_transid - 1);
2543 
2544 	while (1) {
2545 		int batch = atomic_read(&root->log_batch);
2546 		/* when we're on an ssd, just kick the log commit out */
2547 		if (!btrfs_test_opt(root, SSD) &&
2548 		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2549 			mutex_unlock(&root->log_mutex);
2550 			schedule_timeout_uninterruptible(1);
2551 			mutex_lock(&root->log_mutex);
2552 		}
2553 		wait_for_writer(trans, root);
2554 		if (batch == atomic_read(&root->log_batch))
2555 			break;
2556 	}
2557 
2558 	/* bail out if we need to do a full commit */
2559 	if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2560 		ret = -EAGAIN;
2561 		btrfs_free_logged_extents(log, log_transid);
2562 		mutex_unlock(&root->log_mutex);
2563 		goto out;
2564 	}
2565 
2566 	if (log_transid % 2 == 0)
2567 		mark = EXTENT_DIRTY;
2568 	else
2569 		mark = EXTENT_NEW;
2570 
2571 	/* we start IO on  all the marked extents here, but we don't actually
2572 	 * wait for them until later.
2573 	 */
2574 	blk_start_plug(&plug);
2575 	ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2576 	if (ret) {
2577 		blk_finish_plug(&plug);
2578 		btrfs_abort_transaction(trans, root, ret);
2579 		btrfs_free_logged_extents(log, log_transid);
2580 		btrfs_set_log_full_commit(root->fs_info, trans);
2581 		mutex_unlock(&root->log_mutex);
2582 		goto out;
2583 	}
2584 
2585 	btrfs_set_root_node(&log->root_item, log->node);
2586 
2587 	root->log_transid++;
2588 	log->log_transid = root->log_transid;
2589 	root->log_start_pid = 0;
2590 	/*
2591 	 * IO has been started, blocks of the log tree have WRITTEN flag set
2592 	 * in their headers. new modifications of the log will be written to
2593 	 * new positions. so it's safe to allow log writers to go in.
2594 	 */
2595 	mutex_unlock(&root->log_mutex);
2596 
2597 	btrfs_init_log_ctx(&root_log_ctx);
2598 
2599 	mutex_lock(&log_root_tree->log_mutex);
2600 	atomic_inc(&log_root_tree->log_batch);
2601 	atomic_inc(&log_root_tree->log_writers);
2602 
2603 	index2 = log_root_tree->log_transid % 2;
2604 	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2605 	root_log_ctx.log_transid = log_root_tree->log_transid;
2606 
2607 	mutex_unlock(&log_root_tree->log_mutex);
2608 
2609 	ret = update_log_root(trans, log);
2610 
2611 	mutex_lock(&log_root_tree->log_mutex);
2612 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2613 		smp_mb();
2614 		if (waitqueue_active(&log_root_tree->log_writer_wait))
2615 			wake_up(&log_root_tree->log_writer_wait);
2616 	}
2617 
2618 	if (ret) {
2619 		if (!list_empty(&root_log_ctx.list))
2620 			list_del_init(&root_log_ctx.list);
2621 
2622 		blk_finish_plug(&plug);
2623 		btrfs_set_log_full_commit(root->fs_info, trans);
2624 
2625 		if (ret != -ENOSPC) {
2626 			btrfs_abort_transaction(trans, root, ret);
2627 			mutex_unlock(&log_root_tree->log_mutex);
2628 			goto out;
2629 		}
2630 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2631 		btrfs_free_logged_extents(log, log_transid);
2632 		mutex_unlock(&log_root_tree->log_mutex);
2633 		ret = -EAGAIN;
2634 		goto out;
2635 	}
2636 
2637 	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2638 		blk_finish_plug(&plug);
2639 		mutex_unlock(&log_root_tree->log_mutex);
2640 		ret = root_log_ctx.log_ret;
2641 		goto out;
2642 	}
2643 
2644 	index2 = root_log_ctx.log_transid % 2;
2645 	if (atomic_read(&log_root_tree->log_commit[index2])) {
2646 		blk_finish_plug(&plug);
2647 		ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages,
2648 						mark);
2649 		btrfs_wait_logged_extents(trans, log, log_transid);
2650 		wait_log_commit(trans, log_root_tree,
2651 				root_log_ctx.log_transid);
2652 		mutex_unlock(&log_root_tree->log_mutex);
2653 		if (!ret)
2654 			ret = root_log_ctx.log_ret;
2655 		goto out;
2656 	}
2657 	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2658 	atomic_set(&log_root_tree->log_commit[index2], 1);
2659 
2660 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2661 		wait_log_commit(trans, log_root_tree,
2662 				root_log_ctx.log_transid - 1);
2663 	}
2664 
2665 	wait_for_writer(trans, log_root_tree);
2666 
2667 	/*
2668 	 * now that we've moved on to the tree of log tree roots,
2669 	 * check the full commit flag again
2670 	 */
2671 	if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2672 		blk_finish_plug(&plug);
2673 		btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2674 		btrfs_free_logged_extents(log, log_transid);
2675 		mutex_unlock(&log_root_tree->log_mutex);
2676 		ret = -EAGAIN;
2677 		goto out_wake_log_root;
2678 	}
2679 
2680 	ret = btrfs_write_marked_extents(log_root_tree,
2681 					 &log_root_tree->dirty_log_pages,
2682 					 EXTENT_DIRTY | EXTENT_NEW);
2683 	blk_finish_plug(&plug);
2684 	if (ret) {
2685 		btrfs_set_log_full_commit(root->fs_info, trans);
2686 		btrfs_abort_transaction(trans, root, ret);
2687 		btrfs_free_logged_extents(log, log_transid);
2688 		mutex_unlock(&log_root_tree->log_mutex);
2689 		goto out_wake_log_root;
2690 	}
2691 	ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2692 	if (!ret)
2693 		ret = btrfs_wait_marked_extents(log_root_tree,
2694 						&log_root_tree->dirty_log_pages,
2695 						EXTENT_NEW | EXTENT_DIRTY);
2696 	if (ret) {
2697 		btrfs_set_log_full_commit(root->fs_info, trans);
2698 		btrfs_free_logged_extents(log, log_transid);
2699 		mutex_unlock(&log_root_tree->log_mutex);
2700 		goto out_wake_log_root;
2701 	}
2702 	btrfs_wait_logged_extents(trans, log, log_transid);
2703 
2704 	btrfs_set_super_log_root(root->fs_info->super_for_commit,
2705 				log_root_tree->node->start);
2706 	btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2707 				btrfs_header_level(log_root_tree->node));
2708 
2709 	log_root_tree->log_transid++;
2710 	mutex_unlock(&log_root_tree->log_mutex);
2711 
2712 	/*
2713 	 * nobody else is going to jump in and write the the ctree
2714 	 * super here because the log_commit atomic below is protecting
2715 	 * us.  We must be called with a transaction handle pinning
2716 	 * the running transaction open, so a full commit can't hop
2717 	 * in and cause problems either.
2718 	 */
2719 	ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2720 	if (ret) {
2721 		btrfs_set_log_full_commit(root->fs_info, trans);
2722 		btrfs_abort_transaction(trans, root, ret);
2723 		goto out_wake_log_root;
2724 	}
2725 
2726 	mutex_lock(&root->log_mutex);
2727 	if (root->last_log_commit < log_transid)
2728 		root->last_log_commit = log_transid;
2729 	mutex_unlock(&root->log_mutex);
2730 
2731 out_wake_log_root:
2732 	/*
2733 	 * We needn't get log_mutex here because we are sure all
2734 	 * the other tasks are blocked.
2735 	 */
2736 	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2737 
2738 	mutex_lock(&log_root_tree->log_mutex);
2739 	log_root_tree->log_transid_committed++;
2740 	atomic_set(&log_root_tree->log_commit[index2], 0);
2741 	mutex_unlock(&log_root_tree->log_mutex);
2742 
2743 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2744 		wake_up(&log_root_tree->log_commit_wait[index2]);
2745 out:
2746 	/* See above. */
2747 	btrfs_remove_all_log_ctxs(root, index1, ret);
2748 
2749 	mutex_lock(&root->log_mutex);
2750 	root->log_transid_committed++;
2751 	atomic_set(&root->log_commit[index1], 0);
2752 	mutex_unlock(&root->log_mutex);
2753 
2754 	if (waitqueue_active(&root->log_commit_wait[index1]))
2755 		wake_up(&root->log_commit_wait[index1]);
2756 	return ret;
2757 }
2758 
2759 static void free_log_tree(struct btrfs_trans_handle *trans,
2760 			  struct btrfs_root *log)
2761 {
2762 	int ret;
2763 	u64 start;
2764 	u64 end;
2765 	struct walk_control wc = {
2766 		.free = 1,
2767 		.process_func = process_one_buffer
2768 	};
2769 
2770 	ret = walk_log_tree(trans, log, &wc);
2771 	/* I don't think this can happen but just in case */
2772 	if (ret)
2773 		btrfs_abort_transaction(trans, log, ret);
2774 
2775 	while (1) {
2776 		ret = find_first_extent_bit(&log->dirty_log_pages,
2777 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2778 				NULL);
2779 		if (ret)
2780 			break;
2781 
2782 		clear_extent_bits(&log->dirty_log_pages, start, end,
2783 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2784 	}
2785 
2786 	/*
2787 	 * We may have short-circuited the log tree with the full commit logic
2788 	 * and left ordered extents on our list, so clear these out to keep us
2789 	 * from leaking inodes and memory.
2790 	 */
2791 	btrfs_free_logged_extents(log, 0);
2792 	btrfs_free_logged_extents(log, 1);
2793 
2794 	free_extent_buffer(log->node);
2795 	kfree(log);
2796 }
2797 
2798 /*
2799  * free all the extents used by the tree log.  This should be called
2800  * at commit time of the full transaction
2801  */
2802 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2803 {
2804 	if (root->log_root) {
2805 		free_log_tree(trans, root->log_root);
2806 		root->log_root = NULL;
2807 	}
2808 	return 0;
2809 }
2810 
2811 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2812 			     struct btrfs_fs_info *fs_info)
2813 {
2814 	if (fs_info->log_root_tree) {
2815 		free_log_tree(trans, fs_info->log_root_tree);
2816 		fs_info->log_root_tree = NULL;
2817 	}
2818 	return 0;
2819 }
2820 
2821 /*
2822  * If both a file and directory are logged, and unlinks or renames are
2823  * mixed in, we have a few interesting corners:
2824  *
2825  * create file X in dir Y
2826  * link file X to X.link in dir Y
2827  * fsync file X
2828  * unlink file X but leave X.link
2829  * fsync dir Y
2830  *
2831  * After a crash we would expect only X.link to exist.  But file X
2832  * didn't get fsync'd again so the log has back refs for X and X.link.
2833  *
2834  * We solve this by removing directory entries and inode backrefs from the
2835  * log when a file that was logged in the current transaction is
2836  * unlinked.  Any later fsync will include the updated log entries, and
2837  * we'll be able to reconstruct the proper directory items from backrefs.
2838  *
2839  * This optimizations allows us to avoid relogging the entire inode
2840  * or the entire directory.
2841  */
2842 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2843 				 struct btrfs_root *root,
2844 				 const char *name, int name_len,
2845 				 struct inode *dir, u64 index)
2846 {
2847 	struct btrfs_root *log;
2848 	struct btrfs_dir_item *di;
2849 	struct btrfs_path *path;
2850 	int ret;
2851 	int err = 0;
2852 	int bytes_del = 0;
2853 	u64 dir_ino = btrfs_ino(dir);
2854 
2855 	if (BTRFS_I(dir)->logged_trans < trans->transid)
2856 		return 0;
2857 
2858 	ret = join_running_log_trans(root);
2859 	if (ret)
2860 		return 0;
2861 
2862 	mutex_lock(&BTRFS_I(dir)->log_mutex);
2863 
2864 	log = root->log_root;
2865 	path = btrfs_alloc_path();
2866 	if (!path) {
2867 		err = -ENOMEM;
2868 		goto out_unlock;
2869 	}
2870 
2871 	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2872 				   name, name_len, -1);
2873 	if (IS_ERR(di)) {
2874 		err = PTR_ERR(di);
2875 		goto fail;
2876 	}
2877 	if (di) {
2878 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2879 		bytes_del += name_len;
2880 		if (ret) {
2881 			err = ret;
2882 			goto fail;
2883 		}
2884 	}
2885 	btrfs_release_path(path);
2886 	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2887 					 index, name, name_len, -1);
2888 	if (IS_ERR(di)) {
2889 		err = PTR_ERR(di);
2890 		goto fail;
2891 	}
2892 	if (di) {
2893 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2894 		bytes_del += name_len;
2895 		if (ret) {
2896 			err = ret;
2897 			goto fail;
2898 		}
2899 	}
2900 
2901 	/* update the directory size in the log to reflect the names
2902 	 * we have removed
2903 	 */
2904 	if (bytes_del) {
2905 		struct btrfs_key key;
2906 
2907 		key.objectid = dir_ino;
2908 		key.offset = 0;
2909 		key.type = BTRFS_INODE_ITEM_KEY;
2910 		btrfs_release_path(path);
2911 
2912 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2913 		if (ret < 0) {
2914 			err = ret;
2915 			goto fail;
2916 		}
2917 		if (ret == 0) {
2918 			struct btrfs_inode_item *item;
2919 			u64 i_size;
2920 
2921 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2922 					      struct btrfs_inode_item);
2923 			i_size = btrfs_inode_size(path->nodes[0], item);
2924 			if (i_size > bytes_del)
2925 				i_size -= bytes_del;
2926 			else
2927 				i_size = 0;
2928 			btrfs_set_inode_size(path->nodes[0], item, i_size);
2929 			btrfs_mark_buffer_dirty(path->nodes[0]);
2930 		} else
2931 			ret = 0;
2932 		btrfs_release_path(path);
2933 	}
2934 fail:
2935 	btrfs_free_path(path);
2936 out_unlock:
2937 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2938 	if (ret == -ENOSPC) {
2939 		btrfs_set_log_full_commit(root->fs_info, trans);
2940 		ret = 0;
2941 	} else if (ret < 0)
2942 		btrfs_abort_transaction(trans, root, ret);
2943 
2944 	btrfs_end_log_trans(root);
2945 
2946 	return err;
2947 }
2948 
2949 /* see comments for btrfs_del_dir_entries_in_log */
2950 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2951 			       struct btrfs_root *root,
2952 			       const char *name, int name_len,
2953 			       struct inode *inode, u64 dirid)
2954 {
2955 	struct btrfs_root *log;
2956 	u64 index;
2957 	int ret;
2958 
2959 	if (BTRFS_I(inode)->logged_trans < trans->transid)
2960 		return 0;
2961 
2962 	ret = join_running_log_trans(root);
2963 	if (ret)
2964 		return 0;
2965 	log = root->log_root;
2966 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2967 
2968 	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2969 				  dirid, &index);
2970 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2971 	if (ret == -ENOSPC) {
2972 		btrfs_set_log_full_commit(root->fs_info, trans);
2973 		ret = 0;
2974 	} else if (ret < 0 && ret != -ENOENT)
2975 		btrfs_abort_transaction(trans, root, ret);
2976 	btrfs_end_log_trans(root);
2977 
2978 	return ret;
2979 }
2980 
2981 /*
2982  * creates a range item in the log for 'dirid'.  first_offset and
2983  * last_offset tell us which parts of the key space the log should
2984  * be considered authoritative for.
2985  */
2986 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2987 				       struct btrfs_root *log,
2988 				       struct btrfs_path *path,
2989 				       int key_type, u64 dirid,
2990 				       u64 first_offset, u64 last_offset)
2991 {
2992 	int ret;
2993 	struct btrfs_key key;
2994 	struct btrfs_dir_log_item *item;
2995 
2996 	key.objectid = dirid;
2997 	key.offset = first_offset;
2998 	if (key_type == BTRFS_DIR_ITEM_KEY)
2999 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3000 	else
3001 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3002 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3003 	if (ret)
3004 		return ret;
3005 
3006 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3007 			      struct btrfs_dir_log_item);
3008 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3009 	btrfs_mark_buffer_dirty(path->nodes[0]);
3010 	btrfs_release_path(path);
3011 	return 0;
3012 }
3013 
3014 /*
3015  * log all the items included in the current transaction for a given
3016  * directory.  This also creates the range items in the log tree required
3017  * to replay anything deleted before the fsync
3018  */
3019 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3020 			  struct btrfs_root *root, struct inode *inode,
3021 			  struct btrfs_path *path,
3022 			  struct btrfs_path *dst_path, int key_type,
3023 			  u64 min_offset, u64 *last_offset_ret)
3024 {
3025 	struct btrfs_key min_key;
3026 	struct btrfs_root *log = root->log_root;
3027 	struct extent_buffer *src;
3028 	int err = 0;
3029 	int ret;
3030 	int i;
3031 	int nritems;
3032 	u64 first_offset = min_offset;
3033 	u64 last_offset = (u64)-1;
3034 	u64 ino = btrfs_ino(inode);
3035 
3036 	log = root->log_root;
3037 
3038 	min_key.objectid = ino;
3039 	min_key.type = key_type;
3040 	min_key.offset = min_offset;
3041 
3042 	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3043 
3044 	/*
3045 	 * we didn't find anything from this transaction, see if there
3046 	 * is anything at all
3047 	 */
3048 	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3049 		min_key.objectid = ino;
3050 		min_key.type = key_type;
3051 		min_key.offset = (u64)-1;
3052 		btrfs_release_path(path);
3053 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3054 		if (ret < 0) {
3055 			btrfs_release_path(path);
3056 			return ret;
3057 		}
3058 		ret = btrfs_previous_item(root, path, ino, key_type);
3059 
3060 		/* if ret == 0 there are items for this type,
3061 		 * create a range to tell us the last key of this type.
3062 		 * otherwise, there are no items in this directory after
3063 		 * *min_offset, and we create a range to indicate that.
3064 		 */
3065 		if (ret == 0) {
3066 			struct btrfs_key tmp;
3067 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3068 					      path->slots[0]);
3069 			if (key_type == tmp.type)
3070 				first_offset = max(min_offset, tmp.offset) + 1;
3071 		}
3072 		goto done;
3073 	}
3074 
3075 	/* go backward to find any previous key */
3076 	ret = btrfs_previous_item(root, path, ino, key_type);
3077 	if (ret == 0) {
3078 		struct btrfs_key tmp;
3079 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3080 		if (key_type == tmp.type) {
3081 			first_offset = tmp.offset;
3082 			ret = overwrite_item(trans, log, dst_path,
3083 					     path->nodes[0], path->slots[0],
3084 					     &tmp);
3085 			if (ret) {
3086 				err = ret;
3087 				goto done;
3088 			}
3089 		}
3090 	}
3091 	btrfs_release_path(path);
3092 
3093 	/* find the first key from this transaction again */
3094 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3095 	if (WARN_ON(ret != 0))
3096 		goto done;
3097 
3098 	/*
3099 	 * we have a block from this transaction, log every item in it
3100 	 * from our directory
3101 	 */
3102 	while (1) {
3103 		struct btrfs_key tmp;
3104 		src = path->nodes[0];
3105 		nritems = btrfs_header_nritems(src);
3106 		for (i = path->slots[0]; i < nritems; i++) {
3107 			btrfs_item_key_to_cpu(src, &min_key, i);
3108 
3109 			if (min_key.objectid != ino || min_key.type != key_type)
3110 				goto done;
3111 			ret = overwrite_item(trans, log, dst_path, src, i,
3112 					     &min_key);
3113 			if (ret) {
3114 				err = ret;
3115 				goto done;
3116 			}
3117 		}
3118 		path->slots[0] = nritems;
3119 
3120 		/*
3121 		 * look ahead to the next item and see if it is also
3122 		 * from this directory and from this transaction
3123 		 */
3124 		ret = btrfs_next_leaf(root, path);
3125 		if (ret == 1) {
3126 			last_offset = (u64)-1;
3127 			goto done;
3128 		}
3129 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3130 		if (tmp.objectid != ino || tmp.type != key_type) {
3131 			last_offset = (u64)-1;
3132 			goto done;
3133 		}
3134 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3135 			ret = overwrite_item(trans, log, dst_path,
3136 					     path->nodes[0], path->slots[0],
3137 					     &tmp);
3138 			if (ret)
3139 				err = ret;
3140 			else
3141 				last_offset = tmp.offset;
3142 			goto done;
3143 		}
3144 	}
3145 done:
3146 	btrfs_release_path(path);
3147 	btrfs_release_path(dst_path);
3148 
3149 	if (err == 0) {
3150 		*last_offset_ret = last_offset;
3151 		/*
3152 		 * insert the log range keys to indicate where the log
3153 		 * is valid
3154 		 */
3155 		ret = insert_dir_log_key(trans, log, path, key_type,
3156 					 ino, first_offset, last_offset);
3157 		if (ret)
3158 			err = ret;
3159 	}
3160 	return err;
3161 }
3162 
3163 /*
3164  * logging directories is very similar to logging inodes, We find all the items
3165  * from the current transaction and write them to the log.
3166  *
3167  * The recovery code scans the directory in the subvolume, and if it finds a
3168  * key in the range logged that is not present in the log tree, then it means
3169  * that dir entry was unlinked during the transaction.
3170  *
3171  * In order for that scan to work, we must include one key smaller than
3172  * the smallest logged by this transaction and one key larger than the largest
3173  * key logged by this transaction.
3174  */
3175 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3176 			  struct btrfs_root *root, struct inode *inode,
3177 			  struct btrfs_path *path,
3178 			  struct btrfs_path *dst_path)
3179 {
3180 	u64 min_key;
3181 	u64 max_key;
3182 	int ret;
3183 	int key_type = BTRFS_DIR_ITEM_KEY;
3184 
3185 again:
3186 	min_key = 0;
3187 	max_key = 0;
3188 	while (1) {
3189 		ret = log_dir_items(trans, root, inode, path,
3190 				    dst_path, key_type, min_key,
3191 				    &max_key);
3192 		if (ret)
3193 			return ret;
3194 		if (max_key == (u64)-1)
3195 			break;
3196 		min_key = max_key + 1;
3197 	}
3198 
3199 	if (key_type == BTRFS_DIR_ITEM_KEY) {
3200 		key_type = BTRFS_DIR_INDEX_KEY;
3201 		goto again;
3202 	}
3203 	return 0;
3204 }
3205 
3206 /*
3207  * a helper function to drop items from the log before we relog an
3208  * inode.  max_key_type indicates the highest item type to remove.
3209  * This cannot be run for file data extents because it does not
3210  * free the extents they point to.
3211  */
3212 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3213 				  struct btrfs_root *log,
3214 				  struct btrfs_path *path,
3215 				  u64 objectid, int max_key_type)
3216 {
3217 	int ret;
3218 	struct btrfs_key key;
3219 	struct btrfs_key found_key;
3220 	int start_slot;
3221 
3222 	key.objectid = objectid;
3223 	key.type = max_key_type;
3224 	key.offset = (u64)-1;
3225 
3226 	while (1) {
3227 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3228 		BUG_ON(ret == 0); /* Logic error */
3229 		if (ret < 0)
3230 			break;
3231 
3232 		if (path->slots[0] == 0)
3233 			break;
3234 
3235 		path->slots[0]--;
3236 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3237 				      path->slots[0]);
3238 
3239 		if (found_key.objectid != objectid)
3240 			break;
3241 
3242 		found_key.offset = 0;
3243 		found_key.type = 0;
3244 		ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3245 				       &start_slot);
3246 
3247 		ret = btrfs_del_items(trans, log, path, start_slot,
3248 				      path->slots[0] - start_slot + 1);
3249 		/*
3250 		 * If start slot isn't 0 then we don't need to re-search, we've
3251 		 * found the last guy with the objectid in this tree.
3252 		 */
3253 		if (ret || start_slot != 0)
3254 			break;
3255 		btrfs_release_path(path);
3256 	}
3257 	btrfs_release_path(path);
3258 	if (ret > 0)
3259 		ret = 0;
3260 	return ret;
3261 }
3262 
3263 static void fill_inode_item(struct btrfs_trans_handle *trans,
3264 			    struct extent_buffer *leaf,
3265 			    struct btrfs_inode_item *item,
3266 			    struct inode *inode, int log_inode_only,
3267 			    u64 logged_isize)
3268 {
3269 	struct btrfs_map_token token;
3270 
3271 	btrfs_init_map_token(&token);
3272 
3273 	if (log_inode_only) {
3274 		/* set the generation to zero so the recover code
3275 		 * can tell the difference between an logging
3276 		 * just to say 'this inode exists' and a logging
3277 		 * to say 'update this inode with these values'
3278 		 */
3279 		btrfs_set_token_inode_generation(leaf, item, 0, &token);
3280 		btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3281 	} else {
3282 		btrfs_set_token_inode_generation(leaf, item,
3283 						 BTRFS_I(inode)->generation,
3284 						 &token);
3285 		btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3286 	}
3287 
3288 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3289 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3290 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3291 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3292 
3293 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3294 				     inode->i_atime.tv_sec, &token);
3295 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3296 				      inode->i_atime.tv_nsec, &token);
3297 
3298 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3299 				     inode->i_mtime.tv_sec, &token);
3300 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3301 				      inode->i_mtime.tv_nsec, &token);
3302 
3303 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3304 				     inode->i_ctime.tv_sec, &token);
3305 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3306 				      inode->i_ctime.tv_nsec, &token);
3307 
3308 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3309 				     &token);
3310 
3311 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3312 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3313 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3314 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3315 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3316 }
3317 
3318 static int log_inode_item(struct btrfs_trans_handle *trans,
3319 			  struct btrfs_root *log, struct btrfs_path *path,
3320 			  struct inode *inode)
3321 {
3322 	struct btrfs_inode_item *inode_item;
3323 	int ret;
3324 
3325 	ret = btrfs_insert_empty_item(trans, log, path,
3326 				      &BTRFS_I(inode)->location,
3327 				      sizeof(*inode_item));
3328 	if (ret && ret != -EEXIST)
3329 		return ret;
3330 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3331 				    struct btrfs_inode_item);
3332 	fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
3333 	btrfs_release_path(path);
3334 	return 0;
3335 }
3336 
3337 static noinline int copy_items(struct btrfs_trans_handle *trans,
3338 			       struct inode *inode,
3339 			       struct btrfs_path *dst_path,
3340 			       struct btrfs_path *src_path, u64 *last_extent,
3341 			       int start_slot, int nr, int inode_only,
3342 			       u64 logged_isize)
3343 {
3344 	unsigned long src_offset;
3345 	unsigned long dst_offset;
3346 	struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3347 	struct btrfs_file_extent_item *extent;
3348 	struct btrfs_inode_item *inode_item;
3349 	struct extent_buffer *src = src_path->nodes[0];
3350 	struct btrfs_key first_key, last_key, key;
3351 	int ret;
3352 	struct btrfs_key *ins_keys;
3353 	u32 *ins_sizes;
3354 	char *ins_data;
3355 	int i;
3356 	struct list_head ordered_sums;
3357 	int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3358 	bool has_extents = false;
3359 	bool need_find_last_extent = true;
3360 	bool done = false;
3361 
3362 	INIT_LIST_HEAD(&ordered_sums);
3363 
3364 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3365 			   nr * sizeof(u32), GFP_NOFS);
3366 	if (!ins_data)
3367 		return -ENOMEM;
3368 
3369 	first_key.objectid = (u64)-1;
3370 
3371 	ins_sizes = (u32 *)ins_data;
3372 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3373 
3374 	for (i = 0; i < nr; i++) {
3375 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3376 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3377 	}
3378 	ret = btrfs_insert_empty_items(trans, log, dst_path,
3379 				       ins_keys, ins_sizes, nr);
3380 	if (ret) {
3381 		kfree(ins_data);
3382 		return ret;
3383 	}
3384 
3385 	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3386 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3387 						   dst_path->slots[0]);
3388 
3389 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3390 
3391 		if ((i == (nr - 1)))
3392 			last_key = ins_keys[i];
3393 
3394 		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3395 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3396 						    dst_path->slots[0],
3397 						    struct btrfs_inode_item);
3398 			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3399 					inode, inode_only == LOG_INODE_EXISTS,
3400 					logged_isize);
3401 		} else {
3402 			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3403 					   src_offset, ins_sizes[i]);
3404 		}
3405 
3406 		/*
3407 		 * We set need_find_last_extent here in case we know we were
3408 		 * processing other items and then walk into the first extent in
3409 		 * the inode.  If we don't hit an extent then nothing changes,
3410 		 * we'll do the last search the next time around.
3411 		 */
3412 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3413 			has_extents = true;
3414 			if (first_key.objectid == (u64)-1)
3415 				first_key = ins_keys[i];
3416 		} else {
3417 			need_find_last_extent = false;
3418 		}
3419 
3420 		/* take a reference on file data extents so that truncates
3421 		 * or deletes of this inode don't have to relog the inode
3422 		 * again
3423 		 */
3424 		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3425 		    !skip_csum) {
3426 			int found_type;
3427 			extent = btrfs_item_ptr(src, start_slot + i,
3428 						struct btrfs_file_extent_item);
3429 
3430 			if (btrfs_file_extent_generation(src, extent) < trans->transid)
3431 				continue;
3432 
3433 			found_type = btrfs_file_extent_type(src, extent);
3434 			if (found_type == BTRFS_FILE_EXTENT_REG) {
3435 				u64 ds, dl, cs, cl;
3436 				ds = btrfs_file_extent_disk_bytenr(src,
3437 								extent);
3438 				/* ds == 0 is a hole */
3439 				if (ds == 0)
3440 					continue;
3441 
3442 				dl = btrfs_file_extent_disk_num_bytes(src,
3443 								extent);
3444 				cs = btrfs_file_extent_offset(src, extent);
3445 				cl = btrfs_file_extent_num_bytes(src,
3446 								extent);
3447 				if (btrfs_file_extent_compression(src,
3448 								  extent)) {
3449 					cs = 0;
3450 					cl = dl;
3451 				}
3452 
3453 				ret = btrfs_lookup_csums_range(
3454 						log->fs_info->csum_root,
3455 						ds + cs, ds + cs + cl - 1,
3456 						&ordered_sums, 0);
3457 				if (ret) {
3458 					btrfs_release_path(dst_path);
3459 					kfree(ins_data);
3460 					return ret;
3461 				}
3462 			}
3463 		}
3464 	}
3465 
3466 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3467 	btrfs_release_path(dst_path);
3468 	kfree(ins_data);
3469 
3470 	/*
3471 	 * we have to do this after the loop above to avoid changing the
3472 	 * log tree while trying to change the log tree.
3473 	 */
3474 	ret = 0;
3475 	while (!list_empty(&ordered_sums)) {
3476 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3477 						   struct btrfs_ordered_sum,
3478 						   list);
3479 		if (!ret)
3480 			ret = btrfs_csum_file_blocks(trans, log, sums);
3481 		list_del(&sums->list);
3482 		kfree(sums);
3483 	}
3484 
3485 	if (!has_extents)
3486 		return ret;
3487 
3488 	if (need_find_last_extent && *last_extent == first_key.offset) {
3489 		/*
3490 		 * We don't have any leafs between our current one and the one
3491 		 * we processed before that can have file extent items for our
3492 		 * inode (and have a generation number smaller than our current
3493 		 * transaction id).
3494 		 */
3495 		need_find_last_extent = false;
3496 	}
3497 
3498 	/*
3499 	 * Because we use btrfs_search_forward we could skip leaves that were
3500 	 * not modified and then assume *last_extent is valid when it really
3501 	 * isn't.  So back up to the previous leaf and read the end of the last
3502 	 * extent before we go and fill in holes.
3503 	 */
3504 	if (need_find_last_extent) {
3505 		u64 len;
3506 
3507 		ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3508 		if (ret < 0)
3509 			return ret;
3510 		if (ret)
3511 			goto fill_holes;
3512 		if (src_path->slots[0])
3513 			src_path->slots[0]--;
3514 		src = src_path->nodes[0];
3515 		btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3516 		if (key.objectid != btrfs_ino(inode) ||
3517 		    key.type != BTRFS_EXTENT_DATA_KEY)
3518 			goto fill_holes;
3519 		extent = btrfs_item_ptr(src, src_path->slots[0],
3520 					struct btrfs_file_extent_item);
3521 		if (btrfs_file_extent_type(src, extent) ==
3522 		    BTRFS_FILE_EXTENT_INLINE) {
3523 			len = btrfs_file_extent_inline_len(src,
3524 							   src_path->slots[0],
3525 							   extent);
3526 			*last_extent = ALIGN(key.offset + len,
3527 					     log->sectorsize);
3528 		} else {
3529 			len = btrfs_file_extent_num_bytes(src, extent);
3530 			*last_extent = key.offset + len;
3531 		}
3532 	}
3533 fill_holes:
3534 	/* So we did prev_leaf, now we need to move to the next leaf, but a few
3535 	 * things could have happened
3536 	 *
3537 	 * 1) A merge could have happened, so we could currently be on a leaf
3538 	 * that holds what we were copying in the first place.
3539 	 * 2) A split could have happened, and now not all of the items we want
3540 	 * are on the same leaf.
3541 	 *
3542 	 * So we need to adjust how we search for holes, we need to drop the
3543 	 * path and re-search for the first extent key we found, and then walk
3544 	 * forward until we hit the last one we copied.
3545 	 */
3546 	if (need_find_last_extent) {
3547 		/* btrfs_prev_leaf could return 1 without releasing the path */
3548 		btrfs_release_path(src_path);
3549 		ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3550 					src_path, 0, 0);
3551 		if (ret < 0)
3552 			return ret;
3553 		ASSERT(ret == 0);
3554 		src = src_path->nodes[0];
3555 		i = src_path->slots[0];
3556 	} else {
3557 		i = start_slot;
3558 	}
3559 
3560 	/*
3561 	 * Ok so here we need to go through and fill in any holes we may have
3562 	 * to make sure that holes are punched for those areas in case they had
3563 	 * extents previously.
3564 	 */
3565 	while (!done) {
3566 		u64 offset, len;
3567 		u64 extent_end;
3568 
3569 		if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3570 			ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3571 			if (ret < 0)
3572 				return ret;
3573 			ASSERT(ret == 0);
3574 			src = src_path->nodes[0];
3575 			i = 0;
3576 		}
3577 
3578 		btrfs_item_key_to_cpu(src, &key, i);
3579 		if (!btrfs_comp_cpu_keys(&key, &last_key))
3580 			done = true;
3581 		if (key.objectid != btrfs_ino(inode) ||
3582 		    key.type != BTRFS_EXTENT_DATA_KEY) {
3583 			i++;
3584 			continue;
3585 		}
3586 		extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3587 		if (btrfs_file_extent_type(src, extent) ==
3588 		    BTRFS_FILE_EXTENT_INLINE) {
3589 			len = btrfs_file_extent_inline_len(src, i, extent);
3590 			extent_end = ALIGN(key.offset + len, log->sectorsize);
3591 		} else {
3592 			len = btrfs_file_extent_num_bytes(src, extent);
3593 			extent_end = key.offset + len;
3594 		}
3595 		i++;
3596 
3597 		if (*last_extent == key.offset) {
3598 			*last_extent = extent_end;
3599 			continue;
3600 		}
3601 		offset = *last_extent;
3602 		len = key.offset - *last_extent;
3603 		ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3604 					       offset, 0, 0, len, 0, len, 0,
3605 					       0, 0);
3606 		if (ret)
3607 			break;
3608 		*last_extent = extent_end;
3609 	}
3610 	/*
3611 	 * Need to let the callers know we dropped the path so they should
3612 	 * re-search.
3613 	 */
3614 	if (!ret && need_find_last_extent)
3615 		ret = 1;
3616 	return ret;
3617 }
3618 
3619 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3620 {
3621 	struct extent_map *em1, *em2;
3622 
3623 	em1 = list_entry(a, struct extent_map, list);
3624 	em2 = list_entry(b, struct extent_map, list);
3625 
3626 	if (em1->start < em2->start)
3627 		return -1;
3628 	else if (em1->start > em2->start)
3629 		return 1;
3630 	return 0;
3631 }
3632 
3633 static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3634 				struct inode *inode,
3635 				struct btrfs_root *root,
3636 				const struct extent_map *em,
3637 				const struct list_head *logged_list,
3638 				bool *ordered_io_error)
3639 {
3640 	struct btrfs_ordered_extent *ordered;
3641 	struct btrfs_root *log = root->log_root;
3642 	u64 mod_start = em->mod_start;
3643 	u64 mod_len = em->mod_len;
3644 	const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3645 	u64 csum_offset;
3646 	u64 csum_len;
3647 	LIST_HEAD(ordered_sums);
3648 	int ret = 0;
3649 
3650 	*ordered_io_error = false;
3651 
3652 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3653 	    em->block_start == EXTENT_MAP_HOLE)
3654 		return 0;
3655 
3656 	/*
3657 	 * Wait far any ordered extent that covers our extent map. If it
3658 	 * finishes without an error, first check and see if our csums are on
3659 	 * our outstanding ordered extents.
3660 	 */
3661 	list_for_each_entry(ordered, logged_list, log_list) {
3662 		struct btrfs_ordered_sum *sum;
3663 
3664 		if (!mod_len)
3665 			break;
3666 
3667 		if (ordered->file_offset + ordered->len <= mod_start ||
3668 		    mod_start + mod_len <= ordered->file_offset)
3669 			continue;
3670 
3671 		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3672 		    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3673 		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3674 			const u64 start = ordered->file_offset;
3675 			const u64 end = ordered->file_offset + ordered->len - 1;
3676 
3677 			WARN_ON(ordered->inode != inode);
3678 			filemap_fdatawrite_range(inode->i_mapping, start, end);
3679 		}
3680 
3681 		wait_event(ordered->wait,
3682 			   (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3683 			    test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3684 
3685 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3686 			/*
3687 			 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3688 			 * i_mapping flags, so that the next fsync won't get
3689 			 * an outdated io error too.
3690 			 */
3691 			btrfs_inode_check_errors(inode);
3692 			*ordered_io_error = true;
3693 			break;
3694 		}
3695 		/*
3696 		 * We are going to copy all the csums on this ordered extent, so
3697 		 * go ahead and adjust mod_start and mod_len in case this
3698 		 * ordered extent has already been logged.
3699 		 */
3700 		if (ordered->file_offset > mod_start) {
3701 			if (ordered->file_offset + ordered->len >=
3702 			    mod_start + mod_len)
3703 				mod_len = ordered->file_offset - mod_start;
3704 			/*
3705 			 * If we have this case
3706 			 *
3707 			 * |--------- logged extent ---------|
3708 			 *       |----- ordered extent ----|
3709 			 *
3710 			 * Just don't mess with mod_start and mod_len, we'll
3711 			 * just end up logging more csums than we need and it
3712 			 * will be ok.
3713 			 */
3714 		} else {
3715 			if (ordered->file_offset + ordered->len <
3716 			    mod_start + mod_len) {
3717 				mod_len = (mod_start + mod_len) -
3718 					(ordered->file_offset + ordered->len);
3719 				mod_start = ordered->file_offset +
3720 					ordered->len;
3721 			} else {
3722 				mod_len = 0;
3723 			}
3724 		}
3725 
3726 		if (skip_csum)
3727 			continue;
3728 
3729 		/*
3730 		 * To keep us from looping for the above case of an ordered
3731 		 * extent that falls inside of the logged extent.
3732 		 */
3733 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3734 				     &ordered->flags))
3735 			continue;
3736 
3737 		if (ordered->csum_bytes_left) {
3738 			btrfs_start_ordered_extent(inode, ordered, 0);
3739 			wait_event(ordered->wait,
3740 				   ordered->csum_bytes_left == 0);
3741 		}
3742 
3743 		list_for_each_entry(sum, &ordered->list, list) {
3744 			ret = btrfs_csum_file_blocks(trans, log, sum);
3745 			if (ret)
3746 				break;
3747 		}
3748 	}
3749 
3750 	if (*ordered_io_error || !mod_len || ret || skip_csum)
3751 		return ret;
3752 
3753 	if (em->compress_type) {
3754 		csum_offset = 0;
3755 		csum_len = max(em->block_len, em->orig_block_len);
3756 	} else {
3757 		csum_offset = mod_start - em->start;
3758 		csum_len = mod_len;
3759 	}
3760 
3761 	/* block start is already adjusted for the file extent offset. */
3762 	ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3763 				       em->block_start + csum_offset,
3764 				       em->block_start + csum_offset +
3765 				       csum_len - 1, &ordered_sums, 0);
3766 	if (ret)
3767 		return ret;
3768 
3769 	while (!list_empty(&ordered_sums)) {
3770 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3771 						   struct btrfs_ordered_sum,
3772 						   list);
3773 		if (!ret)
3774 			ret = btrfs_csum_file_blocks(trans, log, sums);
3775 		list_del(&sums->list);
3776 		kfree(sums);
3777 	}
3778 
3779 	return ret;
3780 }
3781 
3782 static int log_one_extent(struct btrfs_trans_handle *trans,
3783 			  struct inode *inode, struct btrfs_root *root,
3784 			  const struct extent_map *em,
3785 			  struct btrfs_path *path,
3786 			  const struct list_head *logged_list,
3787 			  struct btrfs_log_ctx *ctx)
3788 {
3789 	struct btrfs_root *log = root->log_root;
3790 	struct btrfs_file_extent_item *fi;
3791 	struct extent_buffer *leaf;
3792 	struct btrfs_map_token token;
3793 	struct btrfs_key key;
3794 	u64 extent_offset = em->start - em->orig_start;
3795 	u64 block_len;
3796 	int ret;
3797 	int extent_inserted = 0;
3798 	bool ordered_io_err = false;
3799 
3800 	ret = wait_ordered_extents(trans, inode, root, em, logged_list,
3801 				   &ordered_io_err);
3802 	if (ret)
3803 		return ret;
3804 
3805 	if (ordered_io_err) {
3806 		ctx->io_err = -EIO;
3807 		return 0;
3808 	}
3809 
3810 	btrfs_init_map_token(&token);
3811 
3812 	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3813 				   em->start + em->len, NULL, 0, 1,
3814 				   sizeof(*fi), &extent_inserted);
3815 	if (ret)
3816 		return ret;
3817 
3818 	if (!extent_inserted) {
3819 		key.objectid = btrfs_ino(inode);
3820 		key.type = BTRFS_EXTENT_DATA_KEY;
3821 		key.offset = em->start;
3822 
3823 		ret = btrfs_insert_empty_item(trans, log, path, &key,
3824 					      sizeof(*fi));
3825 		if (ret)
3826 			return ret;
3827 	}
3828 	leaf = path->nodes[0];
3829 	fi = btrfs_item_ptr(leaf, path->slots[0],
3830 			    struct btrfs_file_extent_item);
3831 
3832 	btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
3833 					       &token);
3834 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3835 		btrfs_set_token_file_extent_type(leaf, fi,
3836 						 BTRFS_FILE_EXTENT_PREALLOC,
3837 						 &token);
3838 	else
3839 		btrfs_set_token_file_extent_type(leaf, fi,
3840 						 BTRFS_FILE_EXTENT_REG,
3841 						 &token);
3842 
3843 	block_len = max(em->block_len, em->orig_block_len);
3844 	if (em->compress_type != BTRFS_COMPRESS_NONE) {
3845 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3846 							em->block_start,
3847 							&token);
3848 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3849 							   &token);
3850 	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3851 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3852 							em->block_start -
3853 							extent_offset, &token);
3854 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3855 							   &token);
3856 	} else {
3857 		btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3858 		btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3859 							   &token);
3860 	}
3861 
3862 	btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
3863 	btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3864 	btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3865 	btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3866 						&token);
3867 	btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3868 	btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3869 	btrfs_mark_buffer_dirty(leaf);
3870 
3871 	btrfs_release_path(path);
3872 
3873 	return ret;
3874 }
3875 
3876 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3877 				     struct btrfs_root *root,
3878 				     struct inode *inode,
3879 				     struct btrfs_path *path,
3880 				     struct list_head *logged_list,
3881 				     struct btrfs_log_ctx *ctx)
3882 {
3883 	struct extent_map *em, *n;
3884 	struct list_head extents;
3885 	struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3886 	u64 test_gen;
3887 	int ret = 0;
3888 	int num = 0;
3889 
3890 	INIT_LIST_HEAD(&extents);
3891 
3892 	write_lock(&tree->lock);
3893 	test_gen = root->fs_info->last_trans_committed;
3894 
3895 	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3896 		list_del_init(&em->list);
3897 
3898 		/*
3899 		 * Just an arbitrary number, this can be really CPU intensive
3900 		 * once we start getting a lot of extents, and really once we
3901 		 * have a bunch of extents we just want to commit since it will
3902 		 * be faster.
3903 		 */
3904 		if (++num > 32768) {
3905 			list_del_init(&tree->modified_extents);
3906 			ret = -EFBIG;
3907 			goto process;
3908 		}
3909 
3910 		if (em->generation <= test_gen)
3911 			continue;
3912 		/* Need a ref to keep it from getting evicted from cache */
3913 		atomic_inc(&em->refs);
3914 		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3915 		list_add_tail(&em->list, &extents);
3916 		num++;
3917 	}
3918 
3919 	list_sort(NULL, &extents, extent_cmp);
3920 
3921 process:
3922 	while (!list_empty(&extents)) {
3923 		em = list_entry(extents.next, struct extent_map, list);
3924 
3925 		list_del_init(&em->list);
3926 
3927 		/*
3928 		 * If we had an error we just need to delete everybody from our
3929 		 * private list.
3930 		 */
3931 		if (ret) {
3932 			clear_em_logging(tree, em);
3933 			free_extent_map(em);
3934 			continue;
3935 		}
3936 
3937 		write_unlock(&tree->lock);
3938 
3939 		ret = log_one_extent(trans, inode, root, em, path, logged_list,
3940 				     ctx);
3941 		write_lock(&tree->lock);
3942 		clear_em_logging(tree, em);
3943 		free_extent_map(em);
3944 	}
3945 	WARN_ON(!list_empty(&extents));
3946 	write_unlock(&tree->lock);
3947 
3948 	btrfs_release_path(path);
3949 	return ret;
3950 }
3951 
3952 static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
3953 			     struct btrfs_path *path, u64 *size_ret)
3954 {
3955 	struct btrfs_key key;
3956 	int ret;
3957 
3958 	key.objectid = btrfs_ino(inode);
3959 	key.type = BTRFS_INODE_ITEM_KEY;
3960 	key.offset = 0;
3961 
3962 	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
3963 	if (ret < 0) {
3964 		return ret;
3965 	} else if (ret > 0) {
3966 		*size_ret = i_size_read(inode);
3967 	} else {
3968 		struct btrfs_inode_item *item;
3969 
3970 		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3971 				      struct btrfs_inode_item);
3972 		*size_ret = btrfs_inode_size(path->nodes[0], item);
3973 	}
3974 
3975 	btrfs_release_path(path);
3976 	return 0;
3977 }
3978 
3979 /* log a single inode in the tree log.
3980  * At least one parent directory for this inode must exist in the tree
3981  * or be logged already.
3982  *
3983  * Any items from this inode changed by the current transaction are copied
3984  * to the log tree.  An extra reference is taken on any extents in this
3985  * file, allowing us to avoid a whole pile of corner cases around logging
3986  * blocks that have been removed from the tree.
3987  *
3988  * See LOG_INODE_ALL and related defines for a description of what inode_only
3989  * does.
3990  *
3991  * This handles both files and directories.
3992  */
3993 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3994 			   struct btrfs_root *root, struct inode *inode,
3995 			   int inode_only,
3996 			   const loff_t start,
3997 			   const loff_t end,
3998 			   struct btrfs_log_ctx *ctx)
3999 {
4000 	struct btrfs_path *path;
4001 	struct btrfs_path *dst_path;
4002 	struct btrfs_key min_key;
4003 	struct btrfs_key max_key;
4004 	struct btrfs_root *log = root->log_root;
4005 	struct extent_buffer *src = NULL;
4006 	LIST_HEAD(logged_list);
4007 	u64 last_extent = 0;
4008 	int err = 0;
4009 	int ret;
4010 	int nritems;
4011 	int ins_start_slot = 0;
4012 	int ins_nr;
4013 	bool fast_search = false;
4014 	u64 ino = btrfs_ino(inode);
4015 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4016 	u64 logged_isize = 0;
4017 
4018 	path = btrfs_alloc_path();
4019 	if (!path)
4020 		return -ENOMEM;
4021 	dst_path = btrfs_alloc_path();
4022 	if (!dst_path) {
4023 		btrfs_free_path(path);
4024 		return -ENOMEM;
4025 	}
4026 
4027 	min_key.objectid = ino;
4028 	min_key.type = BTRFS_INODE_ITEM_KEY;
4029 	min_key.offset = 0;
4030 
4031 	max_key.objectid = ino;
4032 
4033 
4034 	/* today the code can only do partial logging of directories */
4035 	if (S_ISDIR(inode->i_mode) ||
4036 	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4037 		       &BTRFS_I(inode)->runtime_flags) &&
4038 	     inode_only == LOG_INODE_EXISTS))
4039 		max_key.type = BTRFS_XATTR_ITEM_KEY;
4040 	else
4041 		max_key.type = (u8)-1;
4042 	max_key.offset = (u64)-1;
4043 
4044 	/*
4045 	 * Only run delayed items if we are a dir or a new file.
4046 	 * Otherwise commit the delayed inode only, which is needed in
4047 	 * order for the log replay code to mark inodes for link count
4048 	 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4049 	 */
4050 	if (S_ISDIR(inode->i_mode) ||
4051 	    BTRFS_I(inode)->generation > root->fs_info->last_trans_committed)
4052 		ret = btrfs_commit_inode_delayed_items(trans, inode);
4053 	else
4054 		ret = btrfs_commit_inode_delayed_inode(inode);
4055 
4056 	if (ret) {
4057 		btrfs_free_path(path);
4058 		btrfs_free_path(dst_path);
4059 		return ret;
4060 	}
4061 
4062 	mutex_lock(&BTRFS_I(inode)->log_mutex);
4063 
4064 	btrfs_get_logged_extents(inode, &logged_list, start, end);
4065 
4066 	/*
4067 	 * a brute force approach to making sure we get the most uptodate
4068 	 * copies of everything.
4069 	 */
4070 	if (S_ISDIR(inode->i_mode)) {
4071 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4072 
4073 		if (inode_only == LOG_INODE_EXISTS) {
4074 			max_key_type = BTRFS_INODE_EXTREF_KEY;
4075 			max_key.type = max_key_type;
4076 		}
4077 		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4078 	} else {
4079 		if (inode_only == LOG_INODE_EXISTS) {
4080 			/*
4081 			 * Make sure the new inode item we write to the log has
4082 			 * the same isize as the current one (if it exists).
4083 			 * This is necessary to prevent data loss after log
4084 			 * replay, and also to prevent doing a wrong expanding
4085 			 * truncate - for e.g. create file, write 4K into offset
4086 			 * 0, fsync, write 4K into offset 4096, add hard link,
4087 			 * fsync some other file (to sync log), power fail - if
4088 			 * we use the inode's current i_size, after log replay
4089 			 * we get a 8Kb file, with the last 4Kb extent as a hole
4090 			 * (zeroes), as if an expanding truncate happened,
4091 			 * instead of getting a file of 4Kb only.
4092 			 */
4093 			err = logged_inode_size(log, inode, path,
4094 						&logged_isize);
4095 			if (err)
4096 				goto out_unlock;
4097 		}
4098 		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4099 			     &BTRFS_I(inode)->runtime_flags)) {
4100 			if (inode_only == LOG_INODE_EXISTS) {
4101 				max_key.type = BTRFS_INODE_EXTREF_KEY;
4102 				ret = drop_objectid_items(trans, log, path, ino,
4103 							  max_key.type);
4104 			} else {
4105 				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4106 					  &BTRFS_I(inode)->runtime_flags);
4107 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4108 					  &BTRFS_I(inode)->runtime_flags);
4109 				ret = btrfs_truncate_inode_items(trans, log,
4110 								 inode, 0, 0);
4111 			}
4112 		} else if (test_bit(BTRFS_INODE_COPY_EVERYTHING,
4113 				    &BTRFS_I(inode)->runtime_flags) ||
4114 			   inode_only == LOG_INODE_EXISTS) {
4115 			if (inode_only == LOG_INODE_ALL) {
4116 				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4117 					  &BTRFS_I(inode)->runtime_flags);
4118 				fast_search = true;
4119 				max_key.type = BTRFS_XATTR_ITEM_KEY;
4120 			} else {
4121 				max_key.type = BTRFS_INODE_EXTREF_KEY;
4122 			}
4123 			ret = drop_objectid_items(trans, log, path, ino,
4124 						  max_key.type);
4125 		} else {
4126 			if (inode_only == LOG_INODE_ALL)
4127 				fast_search = true;
4128 			ret = log_inode_item(trans, log, dst_path, inode);
4129 			if (ret) {
4130 				err = ret;
4131 				goto out_unlock;
4132 			}
4133 			goto log_extents;
4134 		}
4135 
4136 	}
4137 	if (ret) {
4138 		err = ret;
4139 		goto out_unlock;
4140 	}
4141 
4142 	while (1) {
4143 		ins_nr = 0;
4144 		ret = btrfs_search_forward(root, &min_key,
4145 					   path, trans->transid);
4146 		if (ret != 0)
4147 			break;
4148 again:
4149 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
4150 		if (min_key.objectid != ino)
4151 			break;
4152 		if (min_key.type > max_key.type)
4153 			break;
4154 
4155 		src = path->nodes[0];
4156 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4157 			ins_nr++;
4158 			goto next_slot;
4159 		} else if (!ins_nr) {
4160 			ins_start_slot = path->slots[0];
4161 			ins_nr = 1;
4162 			goto next_slot;
4163 		}
4164 
4165 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4166 				 ins_start_slot, ins_nr, inode_only,
4167 				 logged_isize);
4168 		if (ret < 0) {
4169 			err = ret;
4170 			goto out_unlock;
4171 		}
4172 		if (ret) {
4173 			ins_nr = 0;
4174 			btrfs_release_path(path);
4175 			continue;
4176 		}
4177 		ins_nr = 1;
4178 		ins_start_slot = path->slots[0];
4179 next_slot:
4180 
4181 		nritems = btrfs_header_nritems(path->nodes[0]);
4182 		path->slots[0]++;
4183 		if (path->slots[0] < nritems) {
4184 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4185 					      path->slots[0]);
4186 			goto again;
4187 		}
4188 		if (ins_nr) {
4189 			ret = copy_items(trans, inode, dst_path, path,
4190 					 &last_extent, ins_start_slot,
4191 					 ins_nr, inode_only, logged_isize);
4192 			if (ret < 0) {
4193 				err = ret;
4194 				goto out_unlock;
4195 			}
4196 			ret = 0;
4197 			ins_nr = 0;
4198 		}
4199 		btrfs_release_path(path);
4200 
4201 		if (min_key.offset < (u64)-1) {
4202 			min_key.offset++;
4203 		} else if (min_key.type < max_key.type) {
4204 			min_key.type++;
4205 			min_key.offset = 0;
4206 		} else {
4207 			break;
4208 		}
4209 	}
4210 	if (ins_nr) {
4211 		ret = copy_items(trans, inode, dst_path, path, &last_extent,
4212 				 ins_start_slot, ins_nr, inode_only,
4213 				 logged_isize);
4214 		if (ret < 0) {
4215 			err = ret;
4216 			goto out_unlock;
4217 		}
4218 		ret = 0;
4219 		ins_nr = 0;
4220 	}
4221 
4222 log_extents:
4223 	btrfs_release_path(path);
4224 	btrfs_release_path(dst_path);
4225 	if (fast_search) {
4226 		/*
4227 		 * Some ordered extents started by fsync might have completed
4228 		 * before we collected the ordered extents in logged_list, which
4229 		 * means they're gone, not in our logged_list nor in the inode's
4230 		 * ordered tree. We want the application/user space to know an
4231 		 * error happened while attempting to persist file data so that
4232 		 * it can take proper action. If such error happened, we leave
4233 		 * without writing to the log tree and the fsync must report the
4234 		 * file data write error and not commit the current transaction.
4235 		 */
4236 		err = btrfs_inode_check_errors(inode);
4237 		if (err) {
4238 			ctx->io_err = err;
4239 			goto out_unlock;
4240 		}
4241 		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4242 						&logged_list, ctx);
4243 		if (ret) {
4244 			err = ret;
4245 			goto out_unlock;
4246 		}
4247 	} else if (inode_only == LOG_INODE_ALL) {
4248 		struct extent_map *em, *n;
4249 
4250 		write_lock(&em_tree->lock);
4251 		/*
4252 		 * We can't just remove every em if we're called for a ranged
4253 		 * fsync - that is, one that doesn't cover the whole possible
4254 		 * file range (0 to LLONG_MAX). This is because we can have
4255 		 * em's that fall outside the range we're logging and therefore
4256 		 * their ordered operations haven't completed yet
4257 		 * (btrfs_finish_ordered_io() not invoked yet). This means we
4258 		 * didn't get their respective file extent item in the fs/subvol
4259 		 * tree yet, and need to let the next fast fsync (one which
4260 		 * consults the list of modified extent maps) find the em so
4261 		 * that it logs a matching file extent item and waits for the
4262 		 * respective ordered operation to complete (if it's still
4263 		 * running).
4264 		 *
4265 		 * Removing every em outside the range we're logging would make
4266 		 * the next fast fsync not log their matching file extent items,
4267 		 * therefore making us lose data after a log replay.
4268 		 */
4269 		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4270 					 list) {
4271 			const u64 mod_end = em->mod_start + em->mod_len - 1;
4272 
4273 			if (em->mod_start >= start && mod_end <= end)
4274 				list_del_init(&em->list);
4275 		}
4276 		write_unlock(&em_tree->lock);
4277 	}
4278 
4279 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4280 		ret = log_directory_changes(trans, root, inode, path, dst_path);
4281 		if (ret) {
4282 			err = ret;
4283 			goto out_unlock;
4284 		}
4285 	}
4286 
4287 	BTRFS_I(inode)->logged_trans = trans->transid;
4288 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4289 out_unlock:
4290 	if (unlikely(err))
4291 		btrfs_put_logged_extents(&logged_list);
4292 	else
4293 		btrfs_submit_logged_extents(&logged_list, log);
4294 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
4295 
4296 	btrfs_free_path(path);
4297 	btrfs_free_path(dst_path);
4298 	return err;
4299 }
4300 
4301 /*
4302  * follow the dentry parent pointers up the chain and see if any
4303  * of the directories in it require a full commit before they can
4304  * be logged.  Returns zero if nothing special needs to be done or 1 if
4305  * a full commit is required.
4306  */
4307 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4308 					       struct inode *inode,
4309 					       struct dentry *parent,
4310 					       struct super_block *sb,
4311 					       u64 last_committed)
4312 {
4313 	int ret = 0;
4314 	struct btrfs_root *root;
4315 	struct dentry *old_parent = NULL;
4316 	struct inode *orig_inode = inode;
4317 
4318 	/*
4319 	 * for regular files, if its inode is already on disk, we don't
4320 	 * have to worry about the parents at all.  This is because
4321 	 * we can use the last_unlink_trans field to record renames
4322 	 * and other fun in this file.
4323 	 */
4324 	if (S_ISREG(inode->i_mode) &&
4325 	    BTRFS_I(inode)->generation <= last_committed &&
4326 	    BTRFS_I(inode)->last_unlink_trans <= last_committed)
4327 			goto out;
4328 
4329 	if (!S_ISDIR(inode->i_mode)) {
4330 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4331 			goto out;
4332 		inode = parent->d_inode;
4333 	}
4334 
4335 	while (1) {
4336 		/*
4337 		 * If we are logging a directory then we start with our inode,
4338 		 * not our parents inode, so we need to skipp setting the
4339 		 * logged_trans so that further down in the log code we don't
4340 		 * think this inode has already been logged.
4341 		 */
4342 		if (inode != orig_inode)
4343 			BTRFS_I(inode)->logged_trans = trans->transid;
4344 		smp_mb();
4345 
4346 		if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4347 			root = BTRFS_I(inode)->root;
4348 
4349 			/*
4350 			 * make sure any commits to the log are forced
4351 			 * to be full commits
4352 			 */
4353 			btrfs_set_log_full_commit(root->fs_info, trans);
4354 			ret = 1;
4355 			break;
4356 		}
4357 
4358 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4359 			break;
4360 
4361 		if (IS_ROOT(parent))
4362 			break;
4363 
4364 		parent = dget_parent(parent);
4365 		dput(old_parent);
4366 		old_parent = parent;
4367 		inode = parent->d_inode;
4368 
4369 	}
4370 	dput(old_parent);
4371 out:
4372 	return ret;
4373 }
4374 
4375 /*
4376  * helper function around btrfs_log_inode to make sure newly created
4377  * parent directories also end up in the log.  A minimal inode and backref
4378  * only logging is done of any parent directories that are older than
4379  * the last committed transaction
4380  */
4381 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
4382 			    	  struct btrfs_root *root, struct inode *inode,
4383 				  struct dentry *parent,
4384 				  const loff_t start,
4385 				  const loff_t end,
4386 				  int exists_only,
4387 				  struct btrfs_log_ctx *ctx)
4388 {
4389 	int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
4390 	struct super_block *sb;
4391 	struct dentry *old_parent = NULL;
4392 	int ret = 0;
4393 	u64 last_committed = root->fs_info->last_trans_committed;
4394 	const struct dentry * const first_parent = parent;
4395 	const bool did_unlink = (BTRFS_I(inode)->last_unlink_trans >
4396 				 last_committed);
4397 
4398 	sb = inode->i_sb;
4399 
4400 	if (btrfs_test_opt(root, NOTREELOG)) {
4401 		ret = 1;
4402 		goto end_no_trans;
4403 	}
4404 
4405 	/*
4406 	 * The prev transaction commit doesn't complete, we need do
4407 	 * full commit by ourselves.
4408 	 */
4409 	if (root->fs_info->last_trans_log_full_commit >
4410 	    root->fs_info->last_trans_committed) {
4411 		ret = 1;
4412 		goto end_no_trans;
4413 	}
4414 
4415 	if (root != BTRFS_I(inode)->root ||
4416 	    btrfs_root_refs(&root->root_item) == 0) {
4417 		ret = 1;
4418 		goto end_no_trans;
4419 	}
4420 
4421 	ret = check_parent_dirs_for_sync(trans, inode, parent,
4422 					 sb, last_committed);
4423 	if (ret)
4424 		goto end_no_trans;
4425 
4426 	if (btrfs_inode_in_log(inode, trans->transid)) {
4427 		ret = BTRFS_NO_LOG_SYNC;
4428 		goto end_no_trans;
4429 	}
4430 
4431 	ret = start_log_trans(trans, root, ctx);
4432 	if (ret)
4433 		goto end_no_trans;
4434 
4435 	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
4436 	if (ret)
4437 		goto end_trans;
4438 
4439 	/*
4440 	 * for regular files, if its inode is already on disk, we don't
4441 	 * have to worry about the parents at all.  This is because
4442 	 * we can use the last_unlink_trans field to record renames
4443 	 * and other fun in this file.
4444 	 */
4445 	if (S_ISREG(inode->i_mode) &&
4446 	    BTRFS_I(inode)->generation <= last_committed &&
4447 	    BTRFS_I(inode)->last_unlink_trans <= last_committed) {
4448 		ret = 0;
4449 		goto end_trans;
4450 	}
4451 
4452 	while (1) {
4453 		if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4454 			break;
4455 
4456 		inode = parent->d_inode;
4457 		if (root != BTRFS_I(inode)->root)
4458 			break;
4459 
4460 		/*
4461 		 * On unlink we must make sure our immediate parent directory
4462 		 * inode is fully logged. This is to prevent leaving dangling
4463 		 * directory index entries and a wrong directory inode's i_size.
4464 		 * Not doing so can result in a directory being impossible to
4465 		 * delete after log replay (rmdir will always fail with error
4466 		 * -ENOTEMPTY).
4467 		 */
4468 		if (did_unlink && parent == first_parent)
4469 			inode_only = LOG_INODE_ALL;
4470 		else
4471 			inode_only = LOG_INODE_EXISTS;
4472 
4473 		if (BTRFS_I(inode)->generation >
4474 		    root->fs_info->last_trans_committed ||
4475 		    inode_only == LOG_INODE_ALL) {
4476 			ret = btrfs_log_inode(trans, root, inode, inode_only,
4477 					      0, LLONG_MAX, ctx);
4478 			if (ret)
4479 				goto end_trans;
4480 		}
4481 		if (IS_ROOT(parent))
4482 			break;
4483 
4484 		parent = dget_parent(parent);
4485 		dput(old_parent);
4486 		old_parent = parent;
4487 	}
4488 	ret = 0;
4489 end_trans:
4490 	dput(old_parent);
4491 	if (ret < 0) {
4492 		btrfs_set_log_full_commit(root->fs_info, trans);
4493 		ret = 1;
4494 	}
4495 
4496 	if (ret)
4497 		btrfs_remove_log_ctx(root, ctx);
4498 	btrfs_end_log_trans(root);
4499 end_no_trans:
4500 	return ret;
4501 }
4502 
4503 /*
4504  * it is not safe to log dentry if the chunk root has added new
4505  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
4506  * If this returns 1, you must commit the transaction to safely get your
4507  * data on disk.
4508  */
4509 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
4510 			  struct btrfs_root *root, struct dentry *dentry,
4511 			  const loff_t start,
4512 			  const loff_t end,
4513 			  struct btrfs_log_ctx *ctx)
4514 {
4515 	struct dentry *parent = dget_parent(dentry);
4516 	int ret;
4517 
4518 	ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent,
4519 				     start, end, 0, ctx);
4520 	dput(parent);
4521 
4522 	return ret;
4523 }
4524 
4525 /*
4526  * should be called during mount to recover any replay any log trees
4527  * from the FS
4528  */
4529 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4530 {
4531 	int ret;
4532 	struct btrfs_path *path;
4533 	struct btrfs_trans_handle *trans;
4534 	struct btrfs_key key;
4535 	struct btrfs_key found_key;
4536 	struct btrfs_key tmp_key;
4537 	struct btrfs_root *log;
4538 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4539 	struct walk_control wc = {
4540 		.process_func = process_one_buffer,
4541 		.stage = 0,
4542 	};
4543 
4544 	path = btrfs_alloc_path();
4545 	if (!path)
4546 		return -ENOMEM;
4547 
4548 	fs_info->log_root_recovering = 1;
4549 
4550 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4551 	if (IS_ERR(trans)) {
4552 		ret = PTR_ERR(trans);
4553 		goto error;
4554 	}
4555 
4556 	wc.trans = trans;
4557 	wc.pin = 1;
4558 
4559 	ret = walk_log_tree(trans, log_root_tree, &wc);
4560 	if (ret) {
4561 		btrfs_error(fs_info, ret, "Failed to pin buffers while "
4562 			    "recovering log root tree.");
4563 		goto error;
4564 	}
4565 
4566 again:
4567 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
4568 	key.offset = (u64)-1;
4569 	key.type = BTRFS_ROOT_ITEM_KEY;
4570 
4571 	while (1) {
4572 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4573 
4574 		if (ret < 0) {
4575 			btrfs_error(fs_info, ret,
4576 				    "Couldn't find tree log root.");
4577 			goto error;
4578 		}
4579 		if (ret > 0) {
4580 			if (path->slots[0] == 0)
4581 				break;
4582 			path->slots[0]--;
4583 		}
4584 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4585 				      path->slots[0]);
4586 		btrfs_release_path(path);
4587 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4588 			break;
4589 
4590 		log = btrfs_read_fs_root(log_root_tree, &found_key);
4591 		if (IS_ERR(log)) {
4592 			ret = PTR_ERR(log);
4593 			btrfs_error(fs_info, ret,
4594 				    "Couldn't read tree log root.");
4595 			goto error;
4596 		}
4597 
4598 		tmp_key.objectid = found_key.offset;
4599 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4600 		tmp_key.offset = (u64)-1;
4601 
4602 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4603 		if (IS_ERR(wc.replay_dest)) {
4604 			ret = PTR_ERR(wc.replay_dest);
4605 			free_extent_buffer(log->node);
4606 			free_extent_buffer(log->commit_root);
4607 			kfree(log);
4608 			btrfs_error(fs_info, ret, "Couldn't read target root "
4609 				    "for tree log recovery.");
4610 			goto error;
4611 		}
4612 
4613 		wc.replay_dest->log_root = log;
4614 		btrfs_record_root_in_trans(trans, wc.replay_dest);
4615 		ret = walk_log_tree(trans, log, &wc);
4616 
4617 		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
4618 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
4619 						      path);
4620 		}
4621 
4622 		key.offset = found_key.offset - 1;
4623 		wc.replay_dest->log_root = NULL;
4624 		free_extent_buffer(log->node);
4625 		free_extent_buffer(log->commit_root);
4626 		kfree(log);
4627 
4628 		if (ret)
4629 			goto error;
4630 
4631 		if (found_key.offset == 0)
4632 			break;
4633 	}
4634 	btrfs_release_path(path);
4635 
4636 	/* step one is to pin it all, step two is to replay just inodes */
4637 	if (wc.pin) {
4638 		wc.pin = 0;
4639 		wc.process_func = replay_one_buffer;
4640 		wc.stage = LOG_WALK_REPLAY_INODES;
4641 		goto again;
4642 	}
4643 	/* step three is to replay everything */
4644 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
4645 		wc.stage++;
4646 		goto again;
4647 	}
4648 
4649 	btrfs_free_path(path);
4650 
4651 	/* step 4: commit the transaction, which also unpins the blocks */
4652 	ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4653 	if (ret)
4654 		return ret;
4655 
4656 	free_extent_buffer(log_root_tree->node);
4657 	log_root_tree->log_root = NULL;
4658 	fs_info->log_root_recovering = 0;
4659 	kfree(log_root_tree);
4660 
4661 	return 0;
4662 error:
4663 	if (wc.trans)
4664 		btrfs_end_transaction(wc.trans, fs_info->tree_root);
4665 	btrfs_free_path(path);
4666 	return ret;
4667 }
4668 
4669 /*
4670  * there are some corner cases where we want to force a full
4671  * commit instead of allowing a directory to be logged.
4672  *
4673  * They revolve around files there were unlinked from the directory, and
4674  * this function updates the parent directory so that a full commit is
4675  * properly done if it is fsync'd later after the unlinks are done.
4676  */
4677 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4678 			     struct inode *dir, struct inode *inode,
4679 			     int for_rename)
4680 {
4681 	/*
4682 	 * when we're logging a file, if it hasn't been renamed
4683 	 * or unlinked, and its inode is fully committed on disk,
4684 	 * we don't have to worry about walking up the directory chain
4685 	 * to log its parents.
4686 	 *
4687 	 * So, we use the last_unlink_trans field to put this transid
4688 	 * into the file.  When the file is logged we check it and
4689 	 * don't log the parents if the file is fully on disk.
4690 	 */
4691 	if (S_ISREG(inode->i_mode))
4692 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
4693 
4694 	/*
4695 	 * if this directory was already logged any new
4696 	 * names for this file/dir will get recorded
4697 	 */
4698 	smp_mb();
4699 	if (BTRFS_I(dir)->logged_trans == trans->transid)
4700 		return;
4701 
4702 	/*
4703 	 * if the inode we're about to unlink was logged,
4704 	 * the log will be properly updated for any new names
4705 	 */
4706 	if (BTRFS_I(inode)->logged_trans == trans->transid)
4707 		return;
4708 
4709 	/*
4710 	 * when renaming files across directories, if the directory
4711 	 * there we're unlinking from gets fsync'd later on, there's
4712 	 * no way to find the destination directory later and fsync it
4713 	 * properly.  So, we have to be conservative and force commits
4714 	 * so the new name gets discovered.
4715 	 */
4716 	if (for_rename)
4717 		goto record;
4718 
4719 	/* we can safely do the unlink without any special recording */
4720 	return;
4721 
4722 record:
4723 	BTRFS_I(dir)->last_unlink_trans = trans->transid;
4724 }
4725 
4726 /*
4727  * Call this after adding a new name for a file and it will properly
4728  * update the log to reflect the new name.
4729  *
4730  * It will return zero if all goes well, and it will return 1 if a
4731  * full transaction commit is required.
4732  */
4733 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4734 			struct inode *inode, struct inode *old_dir,
4735 			struct dentry *parent)
4736 {
4737 	struct btrfs_root * root = BTRFS_I(inode)->root;
4738 
4739 	/*
4740 	 * this will force the logging code to walk the dentry chain
4741 	 * up for the file
4742 	 */
4743 	if (S_ISREG(inode->i_mode))
4744 		BTRFS_I(inode)->last_unlink_trans = trans->transid;
4745 
4746 	/*
4747 	 * if this inode hasn't been logged and directory we're renaming it
4748 	 * from hasn't been logged, we don't need to log it
4749 	 */
4750 	if (BTRFS_I(inode)->logged_trans <=
4751 	    root->fs_info->last_trans_committed &&
4752 	    (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4753 		    root->fs_info->last_trans_committed))
4754 		return 0;
4755 
4756 	return btrfs_log_inode_parent(trans, root, inode, parent, 0,
4757 				      LLONG_MAX, 1, NULL);
4758 }
4759 
4760